diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 12 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 8 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 8 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/net.spad.pamphlet | 101 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3864 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5956 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1936 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9997 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32600 |
10 files changed, 26364 insertions, 28122 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 4b9e32f6..4deded32 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,17 @@ 2008-09-14 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/net.spad.pamphlet (Conduit): New. + (InputByteConduit): Likewise. + (OutputByteConduit): Likewise. + (InputOutputByteConduit): Likewise. + * algebra/exposed.lsp.pamphlet: Expose Conduit, InputByteConduit, + OutputByteConduit, InputOutputByteConduit. + * algebra/Makefile.pamphlet (axiom_algebra_layer_0): Include CONDUIT. + (axiom_algebra_layer_13): Include INBCON, INBCON-, OUTBCON, OUTBCON-. + (axiom_algebra_layer_14): Include IOBCON. + +2008-09-14 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/sys-os.boot (readablep): Import. (writeablep): Document. * algebra/fname.spad.pamphlet (exists?$FileName): Use existingFile? diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 1c06da1f..0facef02 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -363,7 +363,7 @@ axiom_algebra_layer_0 = \ ABELSG- ORDSET ORDSET- FNCAT FILECAT SEXCAT \ MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \ ITFUN3 STREAM1 STREAM2 STREAM3 ANY1 SEGBIND2 \ - COMBOPC EQ2 NONE1 + COMBOPC EQ2 NONE1 CONDUIT axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -569,7 +569,8 @@ axiom_algebra_layer_13 = \ ODESYS ODETOOLS ORDFUNS PERMAN \ PFECAT PFECAT- POINT PSEUDLIN \ PTPACK REP2 SETMN SEX \ - SYMFUNC VECTOR2 CHAR + SYMFUNC VECTOR2 CHAR \ + INBCON INBCON- OUTBCON OUTBCON- axiom_algebra_layer_13_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_13)) @@ -636,7 +637,8 @@ axiom_algebra_layer_14 = \ VOID WEIER WP \ EQTBL GSTBL HASHTBL \ INTABL INTFTBL STBL STRTBL\ - TABLE FST SYMS SYMTAB + TABLE FST SYMS SYMTAB \ + IOBCON axiom_algebra_layer_14_nrlibs = \ diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 6073630c..170c5cab 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -192,7 +192,7 @@ axiom_algebra_layer_0 = \ ABELSG- ORDSET ORDSET- FNCAT FILECAT SEXCAT \ MKBCFUNC MKRECORD MKUCFUNC DROPT1 PLOT1 ITFUN2 \ ITFUN3 STREAM1 STREAM2 STREAM3 ANY1 SEGBIND2 \ - COMBOPC EQ2 NONE1 + COMBOPC EQ2 NONE1 CONDUIT axiom_algebra_layer_0_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_0)) @@ -595,7 +595,8 @@ axiom_algebra_layer_13 = \ ODESYS ODETOOLS ORDFUNS PERMAN \ PFECAT PFECAT- POINT PSEUDLIN \ PTPACK REP2 SETMN SEX \ - SYMFUNC VECTOR2 CHAR + SYMFUNC VECTOR2 CHAR \ + INBCON INBCON- OUTBCON OUTBCON- axiom_algebra_layer_13_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_13)) @@ -759,7 +760,8 @@ axiom_algebra_layer_14 = \ VOID WEIER WP \ EQTBL GSTBL HASHTBL \ INTABL INTFTBL STBL STRTBL\ - TABLE FST SYMS SYMTAB + TABLE FST SYMS SYMTAB \ + IOBCON axiom_algebra_layer_14_nrlibs = \ diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 4a729c69..a4b5a8c4 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -572,6 +572,7 @@ (|CombinatorialOpsCategory| . COMBOPC) (|CommutativeRing| . COMRING) (|ComplexCategory| . COMPCAT) + (|Conduit| . CONDUIT) (|ConvertibleTo| . KONVERT) (|DequeueAggregate| . DQAGG) (|Dictionary| . DIAGG) @@ -627,6 +628,8 @@ (|IndexedAggregate| . IXAGG) (|IndexedDirectProductCategory| . IDPC) (|InnerEvalable| . IEVALAB) + (|InputByteConduit| . INBCON) + (|InputOutputByteConduit| IOBCON) (|IntegerNumberSystem| . INS) (|IntegralDomain| . INTDOM) (|IntervalCategory| . INTCAT) @@ -670,6 +673,7 @@ (|OrderedMultisetAggregate| . OMSAGG) (|OrderedRing| . ORDRING) (|OrderedSet| . ORDSET) + (|OutputByteConduit| . OUTBCON) (|PAdicIntegerCategory| . PADICCT) (|PartialDifferentialRing| . PDRING) (|PartialTranscendentalFunctions| . PTRANFN) diff --git a/src/algebra/net.spad.pamphlet b/src/algebra/net.spad.pamphlet index 70130a5b..4a8d4961 100644 --- a/src/algebra/net.spad.pamphlet +++ b/src/algebra/net.spad.pamphlet @@ -11,6 +11,101 @@ \tableofcontents \eject +\section{The Conduit category} + +<<category CONDUIT Conduit>>= +)abbrev category CONDUIT Conduit +++ Author: Gabriel Dos Reis +++ Date Created: August 24, 2008 +++ Date Last Modified: August 24, 2008 +++ Description: +++ This category is the root of the I/O conduits. +Conduit(): Category == with + close!: % -> % + ++ close!(c) closes the conduit c, changing its state to one + ++ that is invalid for future read or write operations. + +@ + +\subsection{The InputByteConduit category} + +<<category INBCON InputByteConduit>>= +)abbrev category INBCON InputByteConduit +++ Author: Gabriel Dos Reis +++ Date Created: August 24, 2008 +++ Date Last Modified: August 24, 2008 +++ Description: +++ This category describes input byte stream conduits. +InputByteConduit(): Category == Conduit with + readByteIfCan!: % -> SingleInteger + ++ readByteIfCan!(cond) attempts to read a byte from the + ++ input conduit `cond'. Returns the read byte if successful, + ++ otherwise return -1. + ++ Note: Ideally, the return value should have been of type + ++ Maybe Byte; but that would have implied allocating + ++ a cons cell for every read attempt, which is overkill. + readBytes!: (%,ByteArray) -> SingleInteger + ++ readBytes!(c,b) reads byte sequences from conduit `c' into + ++ the byte buffer `b'. The actual number of bytes written + ++ is returned. + add + readBytes!(cond,ary) == + count: SingleInteger := 0 + b : SingleInteger + while count < #ary and ((b := readByteIfCan! cond) >= 0) repeat + qsetelt!(ary,count,b : Byte) + count := count + 1 + count + +@ + +\subsection{The OutputByteConduit category} + +<<category OUTBCON OutputByteConduit>>= +)abbrev category OUTBCON OutputByteConduit +++ Author: Gabriel Dos Reis +++ Date Created: August 24, 2008 +++ Date Last Modified: August 24, 2008 +++ Description: +++ This category describes output byte stream conduits. +OutputByteConduit(): Category == Conduit with + writeByteIfCan!: (%,Byte) -> SingleInteger + ++ writeByteIfCan!(c,b) attempts to write the byte `b' on + ++ the conduit `c'. Returns the written byte if successful, + ++ otherwise, returns -1. + ++ Note: Ideally, the return value should have been of type + ++ Maybe Byte; but that would have implied allocating + ++ a cons cell for every write attempt, which is overkill. + writeBytes!: (%,ByteArray) -> SingleInteger + ++ writeBytes!(c,b) write bytes from buffer `b' + ++ onto the conduit `c'. The actual number of written + ++ bytes is returned. + add + writeBytes!(cond,ary) == + count: SingleInteger := 0 + while count < #ary and + writeByteIfCan!(cond,qelt(ary,count)) >= 0 repeat + count := count + 1 + count + +@ + +\subsection{The InputOutputByteConduit category} + +<<category IOBCON InputOutputByteConduit>>= +)abbrev category IOBCON InputOutputByteConduit +++ Author: Gabriel Dos Reis +++ Date Created: August 24, 2008 +++ Date Last Modified: August 24, 2008 +++ See Also: InputByteConduit, OutputByteConduit. +++ Description: +++ This category describes byte stream conduits supporting +++ both input and output operations. +InputOutputByteConduit(): Category == + Join(InputByteConduit,OutputByteConduit) + +@ + \section{The Hostname domain} <<domain HOSTNAME Hostname>>= @@ -94,6 +189,12 @@ PortNumber(): Public == Private where <<*>>= <<license>> + +<<category CONDUIT Conduit>> +<<category INBCON InputByteConduit>> +<<category OUTBCON OutputByteConduit>> +<<category IOBCON InputOutputByteConduit>> + <<domain HOSTNAME Hostname>> <<domain PORTNUM PortNumber>> diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 148bd83f..b6f03929 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2247723 . 3429568332) +(2249452 . 3430368522) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,23 +46,23 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4297 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4120 . T)) +((-4307 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4303 . T) (-4308 . T) (-4302 . T) (-2337 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -1393) +(-31 R -3395) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) +((|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4300))) +((|HasAttribute| |#1| (QUOTE -4310))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-4120 . T)) +((-2337 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,20 +78,20 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -1393 UP UPUP -2084) +(-39 -3395 UP UPUP -2909) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-391 |#2|) (QUOTE (-139))) (|HasCategory| (-391 |#2|) (QUOTE (-141))) (|HasCategory| (-391 |#2|) (QUOTE (-333))) (-1533 (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-352))) (-1533 (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (-1533 (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-333))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347))))) -(-40 R -1393) +((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-392 |#2|) (QUOTE (-139))) (|HasCategory| (-392 |#2|) (QUOTE (-141))) (|HasCategory| (-392 |#2|) (QUOTE (-335))) (-3850 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-353))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-335))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348))))) +(-40 R -3395) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -406) (|devaluate| |#1|))))) (-41 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -99,48 +99,48 @@ NIL (-42 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-291)))) +((|HasCategory| |#1| (QUOTE (-292)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) +((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4300 . T) (-4301 . T)) -((-1533 (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|))))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-3850 (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811)))) (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-50 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-50) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL -(-51) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-51 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL (-52 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -1393) +(-53 |Base| R -3395) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,144 +150,144 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL -(-56 A B) +(-56 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-57 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-59 -3923) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-59 -3864) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-60 -3864) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -3923) +(-61 -3864) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -3923) +(-62 -3864) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3923) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-63 -3923) +(-63 -3864) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3923) +(-64 -3864) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3923) +(-65 -3864) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3923) +(-66 -3864) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3923) +(-67 -3864) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3923) +(-68 -3864) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3923) +(-69 -3864) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3923) +(-70 -3864) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3923) +(-71 -3864) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3923) +(-72 -3864) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-73 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-73 -3864) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-74 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3923) -((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-75 |nameOne| |nameTwo| |nameThree|) +((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -3923) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-76 -3864) +((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3923) +(-77 -3864) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3923) +(-78 -3864) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3923) +(-79 -3864) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3923) +(-80 -3864) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +NIL +NIL +(-81 -3864) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3923) +(-82 -3864) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3923) +(-83 -3864) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3923) +(-84 -3864) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3923) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-85 -3864) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-85 -3923) +(-86 -3864) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3923) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) -NIL -NIL -(-87 -3923) +(-87 -3864) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-88 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-347)))) +((|HasCategory| |#1| (QUOTE (-348)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-90 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -310,15 +310,15 @@ NIL NIL (-95) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4300 . T)) +((-4310 . T)) NIL (-96) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4300 . T) ((-4302 "*") . T) (-4301 . T) (-4297 . T) (-4295 . T) (-4294 . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4291 . T) (-4290 . T) (-4289 . T) (-4288 . T) (-4296 . T) (-4299 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4287 . T)) +((-4310 . T) ((-4312 "*") . T) (-4311 . T) (-4307 . T) (-4305 . T) (-4304 . T) (-4303 . T) (-4308 . T) (-4302 . T) (-4301 . T) (-4300 . T) (-4299 . T) (-4298 . T) (-4306 . T) (-4309 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4297 . T)) NIL (-97 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4297 . T)) +((-4307 . T)) NIL (-98 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -334,15 +334,15 @@ NIL NIL (-101 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-102 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4302 "*")))) +((|HasAttribute| |#1| (QUOTE (-4312 "*")))) (-103) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4300 . T)) +((-4310 . T)) NIL (-104 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -350,12 +350,12 @@ NIL NIL (-105 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL (-106) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) (-107) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -366,43 +366,43 @@ NIL NIL (-109) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -293) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-111) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -579) (QUOTE (-816))))) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -294) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-111) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -583) (QUOTE (-823))))) (-110 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL (-111) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-112 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) -NIL -((|HasCategory| |#1| (QUOTE (-807)))) -(-113) +(-112) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-114 -1393 UP) +(-113 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) +NIL +((|HasCategory| |#1| (QUOTE (-811)))) +(-114 -3395 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-115 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-115 |#1|) (QUOTE (-862))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-141))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-115 |#1|) (QUOTE (-973))) (|HasCategory| (-115 |#1|) (QUOTE (-780))) (-1533 (|HasCategory| (-115 |#1|) (QUOTE (-780))) (|HasCategory| (-115 |#1|) (QUOTE (-807)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (QUOTE (-1093))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (QUOTE (-218))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -270) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-291))) (|HasCategory| (-115 |#1|) (QUOTE (-522))) (|HasCategory| (-115 |#1|) (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-862)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-115 |#1|) (QUOTE (-869))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-141))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-115 |#1|) (QUOTE (-977))) (|HasCategory| (-115 |#1|) (QUOTE (-784))) (-3850 (|HasCategory| (-115 |#1|) (QUOTE (-784))) (|HasCategory| (-115 |#1|) (QUOTE (-811)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (QUOTE (-1099))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-115 |#1|) (QUOTE (-219))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -271) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-292))) (|HasCategory| (-115 |#1|) (QUOTE (-525))) (|HasCategory| (-115 |#1|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-869)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))))) (-117 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4301))) +((|HasAttribute| |#1| (QUOTE -4311))) (-118 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-4120 . T)) +((-2337 . T)) NIL (-119 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -410,15 +410,15 @@ NIL NIL (-120 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-121 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-122) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL (-123 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -426,24 +426,24 @@ NIL NIL (-124 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (-127) -((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128)))))) (-1533 (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-128) (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-128) (QUOTE (-1045)))) (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-128) (QUOTE (-1045))) (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -579) (QUOTE (-816))))) -(-128) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL +(-128) +((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127)))))) (-3850 (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-127) (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-127) (QUOTE (-1052)))) (|HasCategory| (-127) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-127) (QUOTE (-1052))) (-12 (|HasCategory| (-127) (QUOTE (-1052))) (|HasCategory| (-127) (LIST (QUOTE -294) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -583) (QUOTE (-823))))) (-129) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -454,14 +454,14 @@ NIL NIL (-131) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4302 "*") . T)) +(((-4312 "*") . T)) NIL -(-132 |minix| -1532 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-132 |minix| -2916 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-133 |minix| -1532 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-133 |minix| -2916 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL (-134) @@ -470,8 +470,8 @@ NIL NIL (-135) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4300 . T) (-4290 . T) (-4301 . T)) -((-1533 (-12 (|HasCategory| (-138) (QUOTE (-352))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-138) (QUOTE (-352))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) +((-4310 . T) (-4300 . T) (-4311 . T)) +((-3850 (-12 (|HasCategory| (-138) (QUOTE (-353))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-138) (QUOTE (-353))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) (-136 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -486,7 +486,7 @@ NIL NIL (-139) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4297 . T)) +((-4307 . T)) NIL (-140 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -494,9 +494,9 @@ NIL NIL (-141) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4297 . T)) +((-4307 . T)) NIL -(-142 -1393 UP UPUP) +(-142 -3395 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -507,14 +507,14 @@ NIL (-144 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasAttribute| |#1| (QUOTE -4300))) +((|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasAttribute| |#1| (QUOTE -4310))) (-145 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-4120 . T)) +((-2337 . T)) NIL (-146 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4295 . T) (-4294 . T) (-4297 . T)) +((-4305 . T) (-4304 . T) (-4307 . T)) NIL (-147) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -528,7 +528,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-150 R -1393) +(-150 R -3395) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -555,23 +555,23 @@ NIL (-156 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1139))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasAttribute| |#2| (QUOTE -4296)) (|HasAttribute| |#2| (QUOTE -4299)) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-807)))) +((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasAttribute| |#2| (QUOTE -4306)) (|HasAttribute| |#2| (QUOTE -4309)) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-811)))) (-157 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4293 -1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4296 |has| |#1| (-6 -4296)) (-4299 |has| |#1| (-6 -4299)) (-4161 . T) (-4120 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 -3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4306 |has| |#1| (-6 -4306)) (-4309 |has| |#1| (-6 -4309)) (-1401 . T) (-2337 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-158 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-159 R S) +(-159 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4303 -3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4306 |has| |#1| (-6 -4306)) (-4309 |has| |#1| (-6 -4309)) (-1401 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-219))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-785)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-977))))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-869))))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-785))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1145)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-219))) (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasAttribute| |#1| (QUOTE -4306)) (|HasAttribute| |#1| (QUOTE -4309)) (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-335))))) +(-160 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-160 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4293 -1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4296 |has| |#1| (-6 -4296)) (-4299 |has| |#1| (-6 -4299)) (-4161 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-218))) (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1139)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-862))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-862))))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1007))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-218))) (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasAttribute| |#1| (QUOTE -4296)) (|HasAttribute| |#1| (QUOTE -4299)) (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-333))))) (-161 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -582,4263 +582,4287 @@ NIL NIL (-163) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-164) +((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) +NIL NIL -(-164 R) +(-165 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4302 "*") . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") . T) (-4303 . T) (-4308 . T) (-4302 . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-165) +(-166) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-166 R) +(-167 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-167 R |PolR| E) +(-168 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-168 R S CS) +(-169 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-905 |#2|) (LIST (QUOTE -839) (|devaluate| |#1|)))) -(-169 R) +((|HasCategory| (-905 |#2|) (LIST (QUOTE -845) (|devaluate| |#1|)))) +(-170 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-170) +(-171) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-171 R UP) +(-172 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-172 S ST) +(-173 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-173) +(-174) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-174 R -1393) +(-175 R -3395) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-175 R) +(-176 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-176) +(-177) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-177) +(-178) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-178) +(-179) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-179) +(-180) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-180) +(-181) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-181) +(-182) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-182) +(-183) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-183) +(-184) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-184) +(-185) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-185) +(-186) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-188) +(-189) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-189) +(-190) NIL NIL NIL -(-190) +(-191) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-196) +(-197) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-198) +(-199) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-199 N T$) +(-200 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-200 S) +(-201 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-201 -1393 UP UPUP R) +(-202 -3395 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-202 -1393 FP) +(-203 -3395 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-203) +(-204) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) -(-204 R -1393) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) +(-205 R -3395) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-205 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-206 R) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-206 R1 R2) +(-207 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-207 S) +(-208 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-208 |CoefRing| |listIndVar|) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-209 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-209 R -1393) +(-210 R -3395) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-210) +(-211) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-211) +(-212) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-212 R) +(-213 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-213 A S) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-214 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-214 S) +(-215 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-215 S R) +(-216 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) -(-216 R) +((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219)))) +(-217 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-217 S) +(-218 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-218) +(-219) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4297 . T)) +((-4307 . T)) NIL -(-219 A S) +(-220 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4300))) -(-220 S) +((|HasAttribute| |#1| (QUOTE -4310))) +(-221 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-221) +(-222) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-222 S -1532 R) +(-223 S -2916 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805))) (|HasAttribute| |#3| (QUOTE -4297)) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-1045)))) -(-223 -1532 R) +((|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809))) (|HasAttribute| |#3| (QUOTE -4307)) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-1052)))) +(-224 -2916 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T) (-4120 . T)) +((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T) (-2337 . T)) NIL -(-224 -1532 A B) +(-225 -2916 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) +(-226 -2916 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-225 -1532 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) -(-226) +(-227) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-227 S) +(-228 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-228) +(-229) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4293 . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-229 S) +(-230 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-4120 . T)) +((-2337 . T)) NIL -(-230 S) +(-231 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-231 M) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-232 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-232 |vl| R) +(-233 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-233) +(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-234) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-234 |n| R M S) +(-235 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4297 -1533 (-3319 (|has| |#4| (-998)) (|has| |#4| (-218))) (-3319 (|has| |#4| (-998)) (|has| |#4| (-853 (-1117)))) (|has| |#4| (-6 -4297)) (-3319 (|has| |#4| (-998)) (|has| |#4| (-602 (-537))))) (-4294 |has| |#4| (-998)) (-4295 |has| |#4| (-998)) ((-4302 "*") |has| |#4| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-347))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (QUOTE (-998)))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-347)))) (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (QUOTE (-753))) (-1533 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (QUOTE (-805)))) (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (QUOTE (-163))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-163)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-218)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-347)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-352)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-687)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-753)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-998)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-687))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (|HasCategory| |#4| (QUOTE (-998))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-1533 (|HasAttribute| |#4| (QUOTE -4297)) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-235 |n| R S) +((-4307 -3850 (-3155 (|has| |#4| (-1004)) (|has| |#4| (-219))) (-3155 (|has| |#4| (-1004)) (|has| |#4| (-859 (-1123)))) (|has| |#4| (-6 -4307)) (-3155 (|has| |#4| (-1004)) (|has| |#4| (-606 (-526))))) (-4304 |has| |#4| (-1004)) (-4305 |has| |#4| (-1004)) ((-4312 "*") |has| |#4| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-348))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (QUOTE (-1004)))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-348)))) (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (QUOTE (-757))) (-3850 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-809)))) (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (QUOTE (-163))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-1004)))) (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-691))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004)))) (|HasCategory| |#4| (QUOTE (-691)))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#4| (QUOTE (-1004)))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasAttribute| |#4| (QUOTE -4307)) (-12 (|HasCategory| |#4| (QUOTE (-219))) (|HasCategory| |#4| (QUOTE (-1004))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-236 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4297 -1533 (-3319 (|has| |#3| (-998)) (|has| |#3| (-218))) (-3319 (|has| |#3| (-998)) (|has| |#3| (-853 (-1117)))) (|has| |#3| (-6 -4297)) (-3319 (|has| |#3| (-998)) (|has| |#3| (-602 (-537))))) (-4294 |has| |#3| (-998)) (-4295 |has| |#3| (-998)) ((-4302 "*") |has| |#3| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-347))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-753))) (-1533 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805)))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-163))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-163)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-218)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-347)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-352)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-687)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-753)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-687))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (|HasCategory| |#3| (QUOTE (-998))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-1533 (|HasAttribute| |#3| (QUOTE -4297)) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) -(-236 A R S V E) +((-4307 -3850 (-3155 (|has| |#3| (-1004)) (|has| |#3| (-219))) (-3155 (|has| |#3| (-1004)) (|has| |#3| (-859 (-1123)))) (|has| |#3| (-6 -4307)) (-3155 (|has| |#3| (-1004)) (|has| |#3| (-606 (-526))))) (-4304 |has| |#3| (-1004)) (-4305 |has| |#3| (-1004)) ((-4312 "*") |has| |#3| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-348))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-757))) (-3850 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809)))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-163))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-691)))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasAttribute| |#3| (QUOTE -4307)) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) +(-237 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-218)))) -(-237 R S V E) +((|HasCategory| |#2| (QUOTE (-219)))) +(-238 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-238 S) +(-239 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) +NIL +(-240 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL -(-239) +NIL +(-241) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-240 R |Ex|) +(-242 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-241) +(-243) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-242 R) +(-244 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-243 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +(-245) +((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-244) -((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) +(-246) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-245) +(-247) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-246 S) +(-248 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-247) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) -NIL -NIL -(-248 R S V) +(-249 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#3| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-249 A S) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#3| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#3| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#3| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-250 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-250 S) +(-251 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-251) +(-252) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-252) +(-253) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-253) +(-254) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-254) +(-255) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-255) +(-256) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-256) +(-257) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-257) +(-258) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-258) +(-259) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-259) +(-260) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-260 R -1393) +(-261 R -3395) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-261 R -1393) +(-262 R -3395) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-262 |Coef| UTS ULS) +(-263 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-347)))) -(-263 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-348)))) +(-264 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-347)))) -(-264) +((|HasCategory| |#1| (QUOTE (-348)))) +(-265) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-265 A S) +(-266 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045)))) -(-266 S) +((|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052)))) +(-267 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-267 S) +(-268 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-269 |Coef| UTS) +(-270 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-270 S |Index|) +(-271 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-271 S |Dom| |Im|) +(-272 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4301))) -(-272 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4311))) +(-273 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-273 S R |Mod| -1818 -1470 |exactQuo|) +(-274 S R |Mod| -2125 -3832 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-274) +(-275) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4293 . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-275) +(-276) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-276 R) +(-277 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-277 S R) +(-278 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4307 -3850 (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4304 |has| |#1| (-1004)) (-4305 |has| |#1| (-1004))) +((|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691)))) (|HasCategory| |#1| (QUOTE (-457))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-283))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-457)))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-279 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-278 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4297 -1533 (|has| |#1| (-998)) (|has| |#1| (-456))) (-4294 |has| |#1| (-998)) (-4295 |has| |#1| (-998))) -((|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687)))) (|HasCategory| |#1| (QUOTE (-456))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1045)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-286))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-456)))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-998)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-279 |Key| |Entry|) +(-280 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-280) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-281) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-281 -1393 S) -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) +(-282 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1004)))) +(-283) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -(-282 E -1393) -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) +NIL +(-284 -3395 S) +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-283 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +(-285 E -3395) +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-284) +(-286) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-285 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +(-287 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-998)))) -(-286) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +NIL +(-288) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-287 R1) +(-289 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-288 R1 R2) +(-290 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-289) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) -NIL -NIL -(-290 S) +(-291 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-291) +(-292) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-292 S R) +(-293 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-293 R) +(-294 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-294 -1393) +(-295 -3395) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-295) -((|constructor| (NIL "This domain represents exit expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) -NIL -NIL (-296) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-297 R FE |var| |cen|) +(-297) +((|constructor| (NIL "This domain represents exit expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +NIL +NIL +(-298 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-973))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-780))) (-1533 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-780))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-807)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-1093))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-218))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -293) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -270) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-291))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-522))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| $ (QUOTE (-139)))) (-1533 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| $ (QUOTE (-139)))))) -(-298 R S) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-977))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (-3850 (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-811)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-1099))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-219))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (LIST (QUOTE -271) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-292))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-525))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-869)))) (|HasCategory| (-1192 |#1| |#2| |#3| |#4|) (QUOTE (-139))))) +(-299 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4307 -3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-12 (|has| |#1| (-533)) (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (|has| |#1| (-1004)) (|has| |#1| (-457)))) (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-533)) (-4302 |has| |#1| (-533))) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1063)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1063)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3850 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1004)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) +(-300 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-299 R FE) +(-301 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-300 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4297 -1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-12 (|has| |#1| (-529)) (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (|has| |#1| (-998)) (|has| |#1| (-456)))) (|has| |#1| (-998)) (|has| |#1| (-456))) (-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-529)) (-4292 |has| |#1| (-529))) -((-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1057)))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))))) (-1533 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1057)))) (-1533 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) -(-301 R -1393) +(-302 R -3395) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-302) +(-303) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-303 FE |var| |cen|) +(-304 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-304 M) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-305 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-305 E OV R P) +(-306 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-306 S) +(-307 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-752)))) -(-307 S E) +((-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-756)))) +(-308 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-308 S) +(-309 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-731) (QUOTE (-752)))) -(-309 S R E) +((|HasCategory| (-735) (QUOTE (-756)))) +(-310 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163)))) -(-310 R E) +((|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163)))) +(-311 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-311 S) +(-312 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-312 S -1393) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-313 S -3395) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-352)))) -(-313 -1393) +((|HasCategory| |#2| (QUOTE (-353)))) +(-314 -3395) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-314) +(-315) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-315 E) +(-316 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-316) +(-317) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-317 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-318 -3395 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL +(-319 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-318 S -1393 UP UPUP R) +(-320 S -3395 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-319 -1393 UP UPUP R) +(-321 -3395 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-320 -1393 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL -(-321 S R) +(-322 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-322 R) +((|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-323 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-323 |basicSymbols| |subscriptedSymbols| R) +(-324 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-363)))) (|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) -(-324 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) -NIL -NIL -(-325 S -1393 UP UPUP) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-363)))) (|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) +(-325 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) +(-326 S -3395 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-347)))) -(-326 -1393 UP UPUP) +((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-348)))) +(-327 -3395 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-327 |p| |extdeg|) +(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +NIL +NIL +(-329 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) -(-328 GF |defpol|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) +(-330 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-329 GF |extdeg|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) +(-331 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-330 GF) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) +(-332 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-331 F1 GF F2) +(-333 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-332 S) +(-334 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-333) +(-335) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-334 R UP -1393) +(-336 R UP -3395) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-335 |p| |extdeg|) +(-337 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) -(-336 GF |uni|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| (-865 |#1|) (QUOTE (-139))) (|HasCategory| (-865 |#1|) (QUOTE (-353)))) (|HasCategory| (-865 |#1|) (QUOTE (-141))) (|HasCategory| (-865 |#1|) (QUOTE (-353))) (|HasCategory| (-865 |#1|) (QUOTE (-139)))) +(-338 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-337 GF |extdeg|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) +(-339 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-338 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) -(-339 GF |defpol|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) +(-340 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-340 -1393 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) -NIL -NIL +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) (-341 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-342 -1393 FP FPP) +(-342 -3395 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +NIL +NIL +(-343 -3395 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-343 GF |n|) +(-344 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) -(-344 R |ls|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-139)))) +(-345 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-345 S) +(-346 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4297 . T)) +((-4307 . T)) NIL -(-346 S) +(-347 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-347) +(-348) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -NIL -(-348 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) -NIL +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-349 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-350 S R) +(-350 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +NIL +NIL +(-351 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-529)))) -(-351 R) +((|HasCategory| |#2| (QUOTE (-533)))) +(-352 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) +((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) NIL -(-352) +(-353) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-353 S R UP) +(-354 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-347)))) -(-354 R UP) +((|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-348)))) +(-355 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -NIL -(-355 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) -NIL +((-4304 . T) (-4305 . T) (-4307 . T)) NIL (-356 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045)))) +((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052)))) (-357 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4300 . T) (-4120 . T)) +((-4310 . T) (-2337 . T)) +NIL +(-358 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL -(-358 |VarSet| R) +NIL +(-359 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) NIL -(-359 S V) +(-360 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-360 S R) +(-361 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) -(-361 R) +((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) +(-362 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4297 . T)) -NIL -(-362 |Par|) -((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) -NIL +((-4307 . T)) NIL (-363) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4283 . T) (-4291 . T) (-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4293 . T) (-4301 . T) (-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL (-364 |Par|) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) +NIL +NIL +(-365 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-365 R S) +(-366 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (QUOTE (-163)))) +(-367 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) ((|HasCategory| |#1| (QUOTE (-163)))) -(-366 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4295 . T) (-4294 . T)) -NIL -(-367) +(-368) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-368) +(-369 R |Basis|) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((-4305 . T) (-4304 . T)) +NIL +(-370) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4120 . T)) +((-2337 . T)) NIL -(-369 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (QUOTE (-163)))) -(-370 S) +(-371 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-807)))) -(-371) +((|HasCategory| |#1| (QUOTE (-811)))) +(-372) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-372) +(-373) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-373) +(-374) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-374 |n| |class| R) +(-375 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL -(-375) +(-376) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-376 -1393 UP UPUP R) +(-377 -3395 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-377 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) -NIL -NIL (-378) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-379) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-4120 . T)) +(-379 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +NIL NIL (-380) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4120 . T)) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +NIL NIL (-381) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((-2337 . T)) NIL +(-382) +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-2337 . T)) NIL -(-382 -3923 |returnType| -2920 |symbols|) +(-383 -3864 |returnType| -1444 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-383 -1393 UP) +(-384 -3395 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-384 R) +(-385 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-4120 . T)) +((-2337 . T)) NIL -(-385 S) +(-386 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-386) +(-387) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-387 S) +(-388 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4283)) (|HasAttribute| |#1| (QUOTE -4291))) -(-388) +((|HasAttribute| |#1| (QUOTE -4293)) (|HasAttribute| |#1| (QUOTE -4301))) +(-389) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-389 R S) +(-390 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -271) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-1164))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-1164)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-436)))) +(-391 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-390 A B) +(-392 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4297 -12 (|has| |#1| (-6 -4308)) (|has| |#1| (-436)) (|has| |#1| (-6 -4297))) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-784))) (-3850 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-811)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1099))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-785)))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-525))) (-12 (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-393 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-391 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4287 -12 (|has| |#1| (-6 -4298)) (|has| |#1| (-435)) (|has| |#1| (-6 -4287))) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-780))) (-1533 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-807)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1093))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-522))) (-12 (|HasAttribute| |#1| (QUOTE -4298)) (|HasAttribute| |#1| (QUOTE -4287)) (|HasCategory| |#1| (QUOTE (-435)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-392 S R UP) +(-394 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-393 R UP) +(-395 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-394 A S) +(-396 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) -(-395 S) +((|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) +(-397 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-396 R1 F1 U1 A1 R2 F2 U2 A2) -((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) +(-398 R -3395 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4307 . T)) NIL +(-399 R1 F1 U1 A1 R2 F2 U2 A2) +((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL -(-397 R -1393 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4297 . T)) NIL -(-398 R -1393 UP A |ibasis|) +(-400 R -3395 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -989) (|devaluate| |#2|)))) -(-399 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -995) (|devaluate| |#2|)))) +(-401 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-400 S R) +(-402 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-347)))) -(-401 R) +((|HasCategory| |#2| (QUOTE (-348)))) +(-403 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) +((-4307 |has| |#1| (-533)) (-4305 . T) (-4304 . T)) NIL -(-402 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -270) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1158))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-435)))) -(-403 R) +(-404 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-404 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-405 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL +((|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) +(-406 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4307 -3850 (|has| |#1| (-1004)) (|has| |#1| (-457))) (-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-533)) (-4302 |has| |#1| (-533)) (-2337 . T)) NIL -(-405 R A S B) +(-407 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-406 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) +(-408 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-407 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +(-409 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-408 A S) +(-410 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-352)))) -(-409 S) +((|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-353)))) +(-411 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4300 . T) (-4290 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4300 . T) (-4311 . T) (-2337 . T)) NIL -(-410 R -1393) +(-412 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +NIL +NIL +(-413 R -3395) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-411 R E) +(-414 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4287 -12 (|has| |#1| (-6 -4287)) (|has| |#2| (-6 -4287))) (-4294 . T) (-4295 . T) (-4297 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4287)) (|HasAttribute| |#2| (QUOTE -4287)))) -(-412 R -1393) +((-4297 -12 (|has| |#1| (-6 -4297)) (|has| |#2| (-6 -4297))) (-4304 . T) (-4305 . T) (-4307 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#2| (QUOTE -4297)))) +(-415 R -3395) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-413 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -NIL -((|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) -(-414 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4297 -1533 (|has| |#1| (-998)) (|has| |#1| (-456))) (-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-529)) (-4292 |has| |#1| (-529)) (-4120 . T)) -NIL -(-415 R -1393) +(-416 R -3395) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-416 R -1393) +(-417 R -3395) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-417 R -1393) +(-418 R -3395) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-418) +(-419) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-419 R -1393 UP) +(-420 R -3395 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-47))))) -(-420) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-47))))) +(-421) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-421) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) +(-422) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-422 |f|) +(-423 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-423) +(-424) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-424) +(-425) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4120 . T)) +((-2337 . T)) NIL -(-425 UP) +(-426 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-426 R UP -1393) +(-427 R UP -3395) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-427 R UP) +(-428 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-428 R) +(-429 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-388)))) -(-429) +((|HasCategory| |#1| (QUOTE (-389)))) +(-430) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-430 |Dom| |Expon| |VarSet| |Dpol|) +(-431 |Dom| |Expon| |VarSet| |Dpol|) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +NIL +((|HasCategory| |#1| (QUOTE (-348)))) +(-432 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-431 |Dom| |Expon| |VarSet| |Dpol|) +(-433 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-432 |Dom| |Expon| |VarSet| |Dpol|) +(-434 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-433 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) -NIL -((|HasCategory| |#1| (QUOTE (-347)))) -(-434 S) +(-435 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-435) +(-436) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-436 R |n| |ls| |gamma|) +(-437 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4297 |has| (-391 (-905 |#1|)) (-529)) (-4295 . T) (-4294 . T)) -((|HasCategory| (-391 (-905 |#1|)) (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| (-391 (-905 |#1|)) (QUOTE (-529)))) -(-437 |vl| R E) +((-4307 |has| (-392 (-905 |#1|)) (-533)) (-4305 . T) (-4304 . T)) +((|HasCategory| (-392 (-905 |#1|)) (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-392 (-905 |#1|)) (QUOTE (-533)))) +(-438 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-438 R BP) +(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-439 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-439 OV E S R P) +(-440 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-440 E OV R P) +(-441 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-441 R) +(-442 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-442 R FE) +(-443 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-443 RP TP) +(-444 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-444 |vl| R IS E |ff| P) +(-445 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL -(-445 E V R P Q) +(-446 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-446 R E |VarSet| P) +(-447 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-447 S R E) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-448 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-448 R E) +(-449 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-449) +(-450) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-450) +(-451) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-451) +(-452) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-452 S R E) +(-453 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-453 R E) +(-454 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-454 |lv| -1393 R) +(-455 |lv| -3395 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-455 S) +(-456 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-456) +(-457) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-457 |Coef| |var| |cen|) +(-458 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-458 |Key| |Entry| |Tbl| |dent|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-459 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-459 R E V P) +((-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-460 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-460) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-461) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-461 |Key| |Entry| |hashfn|) +(-462 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-462) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-463) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-463 |vl| R) +(-464 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-464 -1532 S) +(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-465 -2916 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) -(-465) +((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) +(-466) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-466 S) +(-467 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-467 -1393 UP UPUP R) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-468 -3395 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-468 BP) +(-469 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-469) +(-470) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) -(-470 A S) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) +(-471 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4300)) (|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) -(-471 S) +((|HasAttribute| |#1| (QUOTE -4310)) (|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) +(-472 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-472) +(-473) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-473 S) +(-474 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-474) +(-475) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-475 -1393 UP |AlExt| |AlPol|) +(-476 -3395 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-476) +(-477) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) -(-477 S |mn|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| $ (QUOTE (-1004))) (|HasCategory| $ (LIST (QUOTE -995) (QUOTE (-526))))) +(-478 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-478 R |mnRow| |mnCol|) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-479 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-479 K R UP) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-480 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-480 R UP -1393) +(-481 R UP -3395) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-481 |mn|) +(-482 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -293) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-111) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -579) (QUOTE (-816))))) -(-482 K R UP L) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -294) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-111) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-111) (QUOTE (-1052))) (|HasCategory| (-111) (LIST (QUOTE -583) (QUOTE (-823))))) +(-483 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-483) +(-484) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-484 R Q A B) +(-485 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-485 -1393 |Expon| |VarSet| |DPoly|) +(-486 -3395 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-1117))))) -(-486 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-1123))))) +(-487 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-487) +(-488) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-488 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) -NIL -NIL (-489 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL (-490 A S) -((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL (-491 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL (-492 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL (-493 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) +NIL +NIL +(-494 A S) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-494 S A B) +(-495 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-495 A B) +(-496 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-496 S E |un|) +(-497 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-752)))) -(-497 S |mn|) +((|HasCategory| |#2| (QUOTE (-756)))) +(-498 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-498) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-499) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|Syntax|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|Syntax|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|Syntax|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-499 |p| |n|) +(-500 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| (-550 |#1|) (QUOTE (-139))) (|HasCategory| (-550 |#1|) (QUOTE (-352)))) (|HasCategory| (-550 |#1|) (QUOTE (-141))) (|HasCategory| (-550 |#1|) (QUOTE (-352))) (|HasCategory| (-550 |#1|) (QUOTE (-139)))) -(-500 R |mnRow| |mnCol| |Row| |Col|) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (|HasCategory| (-554 |#1|) (QUOTE (-139))) (|HasCategory| (-554 |#1|) (QUOTE (-353)))) (|HasCategory| (-554 |#1|) (QUOTE (-141))) (|HasCategory| (-554 |#1|) (QUOTE (-353))) (|HasCategory| (-554 |#1|) (QUOTE (-139)))) +(-501 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-501 S |mn|) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-502 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-502 R |Row| |Col| M) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-503 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4301))) -(-503 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4311))) +(-504 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4301))) -(-504 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4311))) +(-505 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-505) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-506) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-506) +(-507) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|Syntax|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-507 GF) +(-508 S) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) +NIL +NIL +(-509) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) +NIL +NIL +(-510 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-508 R) +(-511 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-509 |Varset|) +(-512 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-510 K -1393 |Par|) +(-513 K -3395 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-511) +(-514) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-512 R) -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) +(-515) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-513) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +(-516 R) +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-514 |Coef| UTS) +(-517 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-515 K -1393 |Par|) +(-518 K -3395 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-516 R BP |pMod| |nextMod|) +(-519 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-517 OV E R P) +(-520 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-518 K UP |Coef| UTS) +(-521 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-519 |Coef| UTS) +(-522 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-520 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) +(-523 R UP) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-521 S) +(-524 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-522) +(-525) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-526) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4292 . T) (-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-523 |Key| |Entry| |addDom|) +(-527 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-524 R -1393) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-528 R -3395) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-525 R0 -1393 UP UPUP R) +(-529 R0 -3395 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-526) +(-530) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-527 R) +(-531 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4150 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4088 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-528 S) +(-532 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-529) +(-533) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-530 R -1393) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-534 R -3395) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-531 I) +(-535 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-532) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +(-536) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-533 R -1393 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-537 R -3395 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -617) (|devaluate| |#2|)))) -(-534) +((|HasCategory| |#3| (LIST (QUOTE -623) (|devaluate| |#2|)))) +(-538) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-535 -1393 UP UPUP R) +(-539 -3395 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-536 -1393 UP) +(-540 -3395 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-537) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4282 . T) (-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -NIL -(-538) +(-541) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-539 R -1393 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-542 R -3395 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -617) (|devaluate| |#2|)))) -(-540 R -1393) +((|HasCategory| |#3| (LIST (QUOTE -623) (|devaluate| |#2|)))) +(-543 R -3395) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-592))))) -(-541 -1393 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-597))))) +(-544 -3395 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-542 S) +(-545 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-543 -1393) +(-546 -3395) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-544 R) +(-547 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4150 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4088 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-545) +(-548) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-546 R -1393) +(-549 R -3395) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-268))) (|HasCategory| |#2| (QUOTE (-592))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-268)))) (|HasCategory| |#1| (QUOTE (-529)))) -(-547 -1393 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-269))) (|HasCategory| |#2| (QUOTE (-597))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-269)))) (|HasCategory| |#1| (QUOTE (-533)))) +(-550 -3395 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-548 R -1393) +(-551 R -3395) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-549 |p| |unBalanced?|) +(-552) +((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) +NIL +NIL +(-553 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-550 |p|) +(-554 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-352)))) -(-551) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-353)))) +(-555) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-552 R -1393) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-556 -3395) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-1123))))) +(-557 E -3395) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-553 E -1393) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-558 R -3395) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-554 -1393) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-1117))))) -(-555 I) +(-559 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-556 GF) +(-560 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-557 R) +(-561 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-141)))) -(-558) +(-562) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-559 R E V P TS) +(-563 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-560 |mn|) +(-564 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (-1533 (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045)))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) -(-561 E V R P) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (-3850 (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052)))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) +(-565 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-562 |Coef|) +(-566 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))) (|HasCategory| (-537) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537)))))) -(-563 |Coef|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))) (|HasCategory| (-526) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526)))))) +(-567 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4295 |has| |#1| (-529)) (-4294 |has| |#1| (-529)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-529)))) -(-564 A B) +((-4305 |has| |#1| (-533)) (-4304 |has| |#1| (-533)) ((-4312 "*") |has| |#1| (-533)) (-4303 |has| |#1| (-533)) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-533)))) +(-568 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-565 A B C) +(-569 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-566 R -1393 FG) +(-570 R -3395 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-567 S) +(-571 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-568 R |mn|) +(-572 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-569 S |Index| |Entry|) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-573 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-807))) (|HasAttribute| |#1| (QUOTE -4300)) (|HasCategory| |#3| (QUOTE (-1045)))) -(-570 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-811))) (|HasAttribute| |#1| (QUOTE -4310)) (|HasCategory| |#3| (QUOTE (-1052)))) +(-574 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-4120 . T)) +((-2337 . T)) NIL -(-571) +(-575) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-572) +(-576) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-573 R A) +(-577 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4297 -1533 (-3319 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))) (-4295 . T) (-4294 . T)) -((-1533 (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) -(-574 |Entry|) +((-4307 -3850 (-3155 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))) (-4305 . T) (-4304 . T)) +((-3850 (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) +(-578 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| (-1100) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-575 S |Key| |Entry|) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| (-1106) (QUOTE (-811))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-579 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-576 |Key| |Entry|) +(-580 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-577 R S) -((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) +(-581 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) +(-582 R S) +((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL -(-578 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) -(-579 S) +(-583 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-580 S) +(-584 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-581 -1393 UP) +(-585 -3395 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-582 S R) +(-586 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-809)))) +(-587 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-583 R) +(-588 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4297 . T)) +((-4307 . T)) NIL -(-584 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-805)))) -(-585 R -1393) +(-589 R -3395) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-586 R UP) +(-590 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4293 . T) (-4297 . T)) -((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) -(-587 R E V P TS ST) +((-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4303 . T) (-4307 . T)) +((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) +(-591 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-588 OV E Z P) +(-592 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-589) +(-593) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-590 |VarSet| R |Order|) +(-594 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-591 R |ls|) +(-595 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-592) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-596 R -3395) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-593 R -1393) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-597) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-594 |lv| -1393) +(-598 |lv| -3395) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-595) +(-599) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-1100) (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) -(-596 S R) +((-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-1106) (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) +(-600 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4307 -3850 (-3155 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))) (-4305 . T) (-4304 . T)) +((-3850 (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -352) (|devaluate| |#1|)))) +(-601 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-347)))) -(-597 R) +((|HasCategory| |#2| (QUOTE (-348)))) +(-602 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) NIL -(-598 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4297 -1533 (-3319 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))) (-4295 . T) (-4294 . T)) -((-1533 (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) -(-599 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +(-603 R FE) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-600 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +(-604 R) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-601 S R) +(-605 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3679 (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-347)))) -(-602 R) +((-3636 (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-348)))) +(-606 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-603 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +(-607 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-785))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-608 A B) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-604 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +(-609 A B) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-605 A B C) +(-610 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-606 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-607 T$) +(-611 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-608 S) +(-612 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-609 R) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-613 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-610 S E |un|) +(-614 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-611 A S) +(-615 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4301))) -(-612 S) +((|HasAttribute| |#1| (QUOTE -4311))) +(-616 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-613 R -1393 L) +(-617 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (QUOTE (-755)))) +(-618 R -3395 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-614 A) +(-619 A -2717) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) +(-620 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) -(-615 A M) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) +(-621 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) -(-616 S A) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) +(-622 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-347)))) -(-617 A) +((|HasCategory| |#2| (QUOTE (-348)))) +(-623 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-618 -1393 UP) +(-624 -3395 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-619 A -1303) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) -(-620 A L) +(-625 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-621 S) +(-626 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-622) +(-627) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-623 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (QUOTE (-751)))) -(-624 R) +(-628 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-625 |VarSet| R) +(-629 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) -((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-163)))) -(-626 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4305 . T) (-4304 . T)) +((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-163)))) +(-630 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-627 S) +(-631 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-628 -1393) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-632 -3395 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-629 -1393 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-633 -3395) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-630 R E OV P) +(-634 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-631 |n| R) +(-635 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4297 . T) (-4300 . T) (-4294 . T) (-4295 . T)) -((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-529))) (-1533 (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-163)))) -(-632) +((-4307 . T) (-4310 . T) (-4304 . T) (-4305 . T)) +((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE (-4312 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-533))) (-3850 (|HasAttribute| |#2| (QUOTE (-4312 #1#))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-163)))) +(-636) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|Syntax|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-633 |VarSet|) +(-637 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-634 A S) +(-638 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-635 S) +(-639 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-636 R) +(-640 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-637 |VarSet|) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-641 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-638 A) +(-642 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-639 A C) +(-643 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-640 A B C) +(-644 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-641) +(-645) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-642 A) +(-646 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-643 A C) +(-647 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-644 A B C) +(-648 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-645 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) -NIL -NIL -(-646 S R |Row| |Col|) +(-649 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-529)))) -(-647 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-533)))) +(-650 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) +NIL +(-651 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL -(-648 R |Row| |Col| M) +NIL +(-652 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529)))) -(-649 R) +((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533)))) +(-653 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4300 . T) (-4301 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-650 R) +((-4310 . T) (-4311 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-292))) (|HasCategory| |#1| (QUOTE (-533))) (|HasAttribute| |#1| (QUOTE (-4312 "*"))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-654 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-651 T$) +(-655 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-652 S -1393 FLAF FLAS) +(-656 S -3395 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-653 R Q) +(-657 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-654) +(-658) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4293 . T) (-4298 |has| (-659) (-347)) (-4292 |has| (-659) (-347)) (-4161 . T) (-4299 |has| (-659) (-6 -4299)) (-4296 |has| (-659) (-6 -4296)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-659) (QUOTE (-141))) (|HasCategory| (-659) (QUOTE (-139))) (|HasCategory| (-659) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-659) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-659) (QUOTE (-352))) (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-659) (QUOTE (-218))) (-1533 (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-333)))) (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (LIST (QUOTE -270) (QUOTE (-659)) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -293) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-659) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-659) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-659) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (-1533 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-333)))) (|HasCategory| (-659) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-659) (QUOTE (-973))) (|HasCategory| (-659) (QUOTE (-1139))) (-12 (|HasCategory| (-659) (QUOTE (-954))) (|HasCategory| (-659) (QUOTE (-1139)))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-347))) (-12 (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (QUOTE (-862))))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (-12 (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-862)))) (-12 (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (QUOTE (-862))))) (|HasCategory| (-659) (QUOTE (-522))) (-12 (|HasCategory| (-659) (QUOTE (-1007))) (|HasCategory| (-659) (QUOTE (-1139)))) (|HasCategory| (-659) (QUOTE (-1007))) (-1533 (|HasCategory| (-659) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-659) (QUOTE (-347)))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-529)))) (-12 (|HasCategory| (-659) (QUOTE (-218))) (|HasCategory| (-659) (QUOTE (-347)))) (-12 (|HasCategory| (-659) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-659) (QUOTE (-347)))) (|HasCategory| (-659) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-659) (QUOTE (-807))) (|HasCategory| (-659) (QUOTE (-529))) (|HasAttribute| (-659) (QUOTE -4299)) (|HasAttribute| (-659) (QUOTE -4296)) (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-139)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-333))))) -(-655 S) +((-4303 . T) (-4308 |has| (-663) (-348)) (-4302 |has| (-663) (-348)) (-1401 . T) (-4309 |has| (-663) (-6 -4309)) (-4306 |has| (-663) (-6 -4306)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-663) (QUOTE (-141))) (|HasCategory| (-663) (QUOTE (-139))) (|HasCategory| (-663) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-663) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-663) (QUOTE (-353))) (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-663) (QUOTE (-219))) (-3850 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-335)))) (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (LIST (QUOTE -271) (QUOTE (-663)) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -294) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-663)))) (|HasCategory| (-663) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-663) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-663) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-663) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (-3850 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-335)))) (|HasCategory| (-663) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-663) (QUOTE (-977))) (|HasCategory| (-663) (QUOTE (-1145))) (-12 (|HasCategory| (-663) (QUOTE (-960))) (|HasCategory| (-663) (QUOTE (-1145)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-348)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (QUOTE (-869)))) (-12 (|HasCategory| (-663) (QUOTE (-335))) (|HasCategory| (-663) (QUOTE (-869))))) (|HasCategory| (-663) (QUOTE (-525))) (-12 (|HasCategory| (-663) (QUOTE (-1013))) (|HasCategory| (-663) (QUOTE (-1145)))) (|HasCategory| (-663) (QUOTE (-1013))) (-3850 (|HasCategory| (-663) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-663) (QUOTE (-348)))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-348)))) (-3850 (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-533)))) (-12 (|HasCategory| (-663) (QUOTE (-219))) (|HasCategory| (-663) (QUOTE (-348)))) (-12 (|HasCategory| (-663) (QUOTE (-348))) (|HasCategory| (-663) (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| (-663) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-663) (QUOTE (-811))) (|HasCategory| (-663) (QUOTE (-533))) (|HasAttribute| (-663) (QUOTE -4309)) (|HasAttribute| (-663) (QUOTE -4306)) (-12 (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-139)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-663) (QUOTE (-292))) (|HasCategory| (-663) (QUOTE (-869)))) (|HasCategory| (-663) (QUOTE (-335))))) +(-659 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-656 U) +(-660 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-657) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +(-661) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-658 OV E -1393 PG) +(-662 OV E -3395 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-659) +(-663) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4088 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-660 R) +(-664 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-661) +(-665) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4299 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4309 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-662 S D1 D2 I) +(-666 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-663 S) +(-667 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-664 S) +(-668 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-665 S) +(-669 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-666 S T$) +(-670 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-667 S -4230 I) +(-671 S -2969 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-668 E OV R P) +(-672 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-669 R) +(-673 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-670 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-674 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-671) +(-675) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-672 R |Mod| -1818 -1470 |exactQuo|) +(-676 R |Mod| -2125 -3832 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-673 R |Rep|) +(-677 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-674 IS E |ff|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-678 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-675 R M) +(-679 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) ((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) -(-676 R |Mod| -1818 -1470 |exactQuo|) +(-680 R |Mod| -2125 -3832 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4297 . T)) +((-4307 . T)) NIL -(-677 S R) +(-681 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-678 R) +(-682 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL -(-679 -1393) +(-683 -3395) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-680 S) +(-684 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-681) +(-685) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-682 S) +(-686 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-683) +(-687) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-684 S R UP) +(-688 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352)))) -(-685 R UP) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353)))) +(-689 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4293 |has| |#1| (-347)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 |has| |#1| (-348)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-686 S) +(-690 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-687) +(-691) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-688 -1393 UP) +(-692 -3395 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-689 |VarSet| E1 E2 R S PR PS) +(-693 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-690 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-694 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-691 E OV R PPR) +(-695 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-692 |vl| R) +(-696 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-693 E OV R PRF) +(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-824 |#1|) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-697 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-694 E OV R P) +(-698 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-695 R S M) +(-699 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-696 R M) +(-700 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-807)))) -(-697 S) +((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-811)))) +(-701 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4310 . T) (-4300 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-702 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4290 . T) (-4301 . T) (-4120 . T)) +((-4300 . T) (-4311 . T) (-2337 . T)) NIL -(-698 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4300 . T) (-4290 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-699) +(-703) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-700 S) +(-704 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-701 |Coef| |Var|) +(-705 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-702 OV E R P) +(-706 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-703 E OV R P) +(-707 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-704 S R) +(-708 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-705 R) +(-709 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL -(-706) +(-710) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-707) +(-711) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-708) +(-712) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-709) +(-713) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-710) +(-714) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-711) +(-715) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-712) +(-716) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-713) +(-717) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-714) +(-718) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-715) +(-719) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-716) +(-720) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-717) +(-721) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-718) +(-722) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-719) +(-723) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-720) +(-724) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-721 S) +(-725 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-722) +(-726) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-723 S) +(-727 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-724) +(-728) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-725 |Par|) +(-729 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-726 -1393) +(-730 -3395) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-727 P -1393) +(-731 P -3395) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-728 UP -1393) +(-732 UP -3395) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-729) +(-733) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-730 R) +(-734 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-731) +(-735) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4302 "*") . T)) +(((-4312 "*") . T)) NIL -(-732 R -1393) +(-736 R -3395) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-733 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +(-737) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-734) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +(-738 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-735 R |PolR| E |PolE|) +(-739 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-736 R E V P TS) +(-740 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-737 -1393 |ExtF| |SUEx| |ExtP| |n|) +(-741 -3395 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-738 BP E OV R P) +(-742 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-739 |Par|) +(-743 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-740 R |VarSet|) +(-744 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (QUOTE (-522)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537))))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -945) (QUOTE (-537))))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-741 R S) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123))))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (QUOTE (-525)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-526))))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-1123)))) (-3636 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-526))))))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-745 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-746 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-742 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-743 R) +(-747 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) -(-744 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) +(-748 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-745 S) +(-749 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-807)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-163)))) -(-746) +((-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-163)))) +(-750) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-747) +(-751) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-748) +(-752) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-749) +(-753) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-750 |Curve|) +(-754 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-751) +(-755) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-752) +(-756) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-753) +(-757) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-754) +(-758) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-755) -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) -NIL -NIL -(-756 S R) +(-759 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-352)))) -(-757 R) +((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-353)))) +(-760 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-758 -1533 R OS S) -((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +(-761) +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-759 R) +(-762 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (-1533 (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) -(-760) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (-3850 (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-525))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-954 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) +(-763 -3850 R OS S) +((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +NIL +NIL +(-764) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-761 R -1393 L) +(-765 R -3395 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-762 R -1393) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-766 R -3395) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-763) +(-767) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-764 R -1393) +(-768 R -3395) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-765) +(-769) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-766 -1393 UP UPUP R) +(-770 -3395 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-767 -1393 UP L LQ) +(-771 -3395 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-768) +(-772) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-769 -1393 UP L LQ) +(-773 -3395 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-770 -1393 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-774 -3395 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-771 -1393 L UP A LO) +(-775 -3395 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-772 -1393 UP) +(-776 -3395 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-773 -1393 LO) +(-777 -3395 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-774 -1393 LODO) +(-778 -3395 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-775 -1532 S |f|) +(-779 -2916 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) -(-776 R) +((-4304 |has| |#2| (-1004)) (-4305 |has| |#2| (-1004)) (-4307 |has| |#2| (-6 -4307)) ((-4312 "*") |has| |#2| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-757))) (-3850 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809)))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#2| (QUOTE -4307)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) +(-780 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-777 |Kernels| R |var|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-782 (-1123)) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-781 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4302 "*") |has| |#2| (-347)) (-4293 |has| |#2| (-347)) (-4298 |has| |#2| (-347)) (-4292 |has| |#2| (-347)) (-4297 . T) (-4295 . T) (-4294 . T)) -((|HasCategory| |#2| (QUOTE (-347)))) -(-778 S) +(((-4312 "*") |has| |#2| (-348)) (-4303 |has| |#2| (-348)) (-4308 |has| |#2| (-348)) (-4302 |has| |#2| (-348)) (-4307 . T) (-4305 . T) (-4304 . T)) +((|HasCategory| |#2| (QUOTE (-348)))) +(-782 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-779 S) +(-783 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-780) +(-784) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-781) +(-785) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +NIL +NIL +(-786) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-782) +(-787) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-783) +(-788) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-784) -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +(-789) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-785) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +(-790) +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-786 R) +(-791 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-787 P R) +(-792 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-218)))) -(-788) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL -NIL -(-789) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-219)))) +(-793) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-790 S) +(-794 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4300 . T) (-4290 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4300 . T) (-4311 . T) (-2337 . T)) NIL -(-791) +(-795) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-792 R S) +(-796 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4307 |has| |#1| (-809))) +((|HasCategory| |#1| (QUOTE (-809))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-809)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-797 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-793 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4297 |has| |#1| (-805))) -((|HasCategory| |#1| (QUOTE (-805))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-805)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-794 R) +(-798 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) ((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) -(-795) +(-799) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-796) +(-800) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-797) +(-801) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-798) +(-802) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-799 R S) +(-803 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4307 |has| |#1| (-809))) +((|HasCategory| |#1| (QUOTE (-809))) (-3850 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-809)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-804 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-800 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4297 |has| |#1| (-805))) -((|HasCategory| |#1| (QUOTE (-805))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-805)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-801) +(-805) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-802 -1532 S) +(-806 -2916 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-803) +(-807) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-804 S) +(-808 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-805) +(-809) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4297 . T)) +((-4307 . T)) NIL -(-806 S) +(-810 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-807) +(-811) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-808 S R) +(-812 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163)))) -(-809 R) +((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163)))) +(-813 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-810 R C) +(-814 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) -(-811 R |sigma| -2108) +((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) +(-815 R |sigma| -3556) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) -(-812 |x| R |sigma| -2108) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-348)))) +(-816 |x| R |sigma| -3556) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-347)))) -(-813 R) +((-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-348)))) +(-817 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) -(-814) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) +(-818) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-815) +(-819) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-816) -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +(-820) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-817) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +(-821 S) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) +NIL +NIL +(-822) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-818 |VariableList|) +(-823) +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +NIL +NIL +(-824 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-819 R |vl| |wl| |wtlevel|) +(-825 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) -(-820 R PS UP) +((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) +(-826 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-821 R |x| |pt|) +(-827 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-822 |p|) -((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -NIL -(-823 |p|) +(-828 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-824 |p|) +(-829 |p|) +((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-830 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-823 |#1|) (QUOTE (-862))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-823 |#1|) (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-141))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-823 |#1|) (QUOTE (-973))) (|HasCategory| (-823 |#1|) (QUOTE (-780))) (-1533 (|HasCategory| (-823 |#1|) (QUOTE (-780))) (|HasCategory| (-823 |#1|) (QUOTE (-807)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (QUOTE (-1093))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (QUOTE (-218))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -270) (LIST (QUOTE -823) (|devaluate| |#1|)) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (QUOTE (-291))) (|HasCategory| (-823 |#1|) (QUOTE (-522))) (|HasCategory| (-823 |#1|) (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-862)))) (|HasCategory| (-823 |#1|) (QUOTE (-139))))) -(-825 |p| PADIC) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-828 |#1|) (QUOTE (-869))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-828 |#1|) (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-141))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-828 |#1|) (QUOTE (-977))) (|HasCategory| (-828 |#1|) (QUOTE (-784))) (-3850 (|HasCategory| (-828 |#1|) (QUOTE (-784))) (|HasCategory| (-828 |#1|) (QUOTE (-811)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (QUOTE (-1099))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-828 |#1|) (QUOTE (-219))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (LIST (QUOTE -271) (LIST (QUOTE -828) (|devaluate| |#1|)) (LIST (QUOTE -828) (|devaluate| |#1|)))) (|HasCategory| (-828 |#1|) (QUOTE (-292))) (|HasCategory| (-828 |#1|) (QUOTE (-525))) (|HasCategory| (-828 |#1|) (QUOTE (-811))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-828 |#1|) (QUOTE (-869)))) (|HasCategory| (-828 |#1|) (QUOTE (-139))))) +(-831 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-780))) (-1533 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-807)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-826 S T$) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-784))) (-3850 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-811)))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-811))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-832 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))))) -(-827) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3850 (-12 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1052))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))))) +(-833) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-828) +(-834) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-829 CF1 CF2) +(-835 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-830 |ComponentFunction|) +(-836 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-831 CF1 CF2) +(-837 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-832 |ComponentFunction|) +(-838 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-833) +(-839) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-834 CF1 CF2) +(-840 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-835 |ComponentFunction|) +(-841 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-836) +(-842) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-837 R) +(-843 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-838 R S L) +(-844 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-839 S) +(-845 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-840 |Base| |Subject| |Pat|) +(-846 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3679 (|HasCategory| |#2| (QUOTE (-998)))) (-3679 (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (-3679 (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) -(-841 R A B) +((-12 (-3636 (|HasCategory| |#2| (QUOTE (-1004)))) (-3636 (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (-3636 (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) +(-847 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +NIL +NIL +(-848 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-842 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +(-849 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-843 R -4230) +(-850 R -2969) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-844 R S) +(-851 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-845 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) -NIL -NIL -(-846 |VarSet|) +(-852 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-847 UP R) +(-853 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-848) +(-854) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-849 UP -1393) +(-855 UP -3395) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-850) +(-856) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-851) +(-857) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-852 A S) +(-858 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-853 S) +(-859 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4297 . T)) +((-4307 . T)) NIL -(-854 S) +(-860 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-855 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-861 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4307 . T)) +((-3850 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-811)))) +(-862 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-856 S) +(-863 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4297 . T)) +((-4307 . T)) NIL -(-857 S) +(-864 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-858 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4297 . T)) -((-1533 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-807)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-807)))) -(-859 R E |VarSet| S) +(-865 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-353)))) +(-866 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-860 R S) +(-867 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-861 S) +(-868 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-139)))) -(-862) +(-869) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-863 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-352)))) -(-864 R0 -1393 UP UPUP R) +(-870 R0 -3395 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-865 UP UPUP R) +(-871 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-866 UP UPUP) +(-872 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-867 R) +(-873 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-868 R) +(-874 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-869 E OV R P) +(-875 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-870) +(-876) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-871 -1393) +(-877 -3395) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-872 R) +(-878) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4312 "*") . T)) +NIL +(-879 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-873) +(-880) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-881 |xx| -3395) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL -(-874) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4302 "*") . T)) NIL -(-875 -1393 P) +(-882 -3395 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-876 |xx| -1393) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +(-883 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-877 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-884) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-878 S) +(-885 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-879) +(-886) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-880) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) -NIL -NIL -(-881) +(-887) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-882 R -1393) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) +(-888) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-883) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-889 R -3395) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-884 S A B) +(-890 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-885 S R -1393) +(-891 S R -3395) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-886 I) +(-892 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-887 S E) +(-893 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-888 S R L) +(-894 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-889 S E V R P) +(-895 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -839) (|devaluate| |#1|)))) -(-890 R -1393 -4230) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +((|HasCategory| |#3| (LIST (QUOTE -845) (|devaluate| |#1|)))) +(-896 -2969) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-891 -4230) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +(-897 R -3395 -2969) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-892 S R Q) +(-898 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-893 S) +(-899 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-894 S R P) +(-900 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-895) +(-901) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-896 R) +(-902 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-897 |lv| R) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-903 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-898 |TheField| |ThePols|) +(-904 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-805)))) -(-899 R S) +((|HasCategory| |#1| (QUOTE (-809)))) +(-905 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1123) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1123) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1123) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1123) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1123) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-906 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-900 |x| R) +(-907 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-901 S R E |VarSet|) +(-908 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#4| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-807)))) -(-902 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-869))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#4| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#4| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#4| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-811)))) +(-909 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-903 E V R P -1393) +(-910 E V R P -3395) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-904 E |Vars| R P S) +(-911 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-905 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-906 E V R P -1393) +(-912 E V R P -3395) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-435)))) -(-907) +((|HasCategory| |#3| (QUOTE (-436)))) +(-913) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-908) +(-914) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-909 R L) +(-915 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-129)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308))) +(-916 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-910 A B) +(-917 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-918 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-911 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-912) +(-919) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-913 -1393) +(-920 -3395) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-914 I) +(-921 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-915) +(-922) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-916 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-129)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298))) -(-917 A B) +(-923 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4297 -12 (|has| |#2| (-456)) (|has| |#1| (-456)))) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-807))))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-352)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-807))))) -(-918) +((-4307 -12 (|has| |#2| (-457)) (|has| |#1| (-457)))) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-353)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-457)))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691))))) (-12 (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-691)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-811))))) +(-924) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-919 T$) +(-925 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-920) +((|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-926) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-921 S) +(-927 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL -(-922 R |polR|) +(-928 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-435)))) -(-923) +((|HasCategory| |#1| (QUOTE (-436)))) +(-929) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-924) +(-930) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-925 S |Coef| |Expon| |Var|) +(-931 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-926 |Coef| |Expon| |Var|) +(-932 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-927) +(-933) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-928 S R E |VarSet| P) +(-934 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-529)))) -(-929 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-533)))) +(-935 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4300 . T) (-4120 . T)) +((-4310 . T) (-2337 . T)) NIL -(-930 R E V P) +(-936 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-435)))) -(-931 K) +((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-436)))) +(-937 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-932 |VarSet| E RC P) +(-938 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-933 R) +(-939 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-934 R1 R2) +(-940 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-935 R) +(-941 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-936 K) +(-942 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-937 R E OV PPR) +(-943 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-938 K R UP -1393) +(-944 K R UP -3395) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-939 |vl| |nv|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) +(-945 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL +((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-292))))) +(-946 |vl| |nv|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL -(-940 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-291))))) -(-941 R E V P TS) +(-947 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-942) +(-948) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-943 A B R S) -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) -NIL -NIL -(-944 A S) +(-949 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1093)))) -(-945 S) +((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-1099)))) +(-950 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4120 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-2337 . T) (-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-951 A B R S) +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL -(-946 |n| K) +NIL +(-952 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-947 S) +(-953 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL -(-948 S R) +(-954 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4303 |has| |#1| (-275)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-275))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-275))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -271) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-525))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) +(-955 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-274)))) -(-949 R) +((|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-275)))) +(-956 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4293 |has| |#1| (-274)) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 |has| |#1| (-275)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-950 QR R QS S) +(-957 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-951 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4293 |has| |#1| (-274)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-274))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-274))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))))) -(-952 S) +(-958 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-953 S) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-959 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-954) +(-960) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-955 -1393 UP UPUP |radicnd| |n|) +(-961 -3395 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-391 |#2|) (QUOTE (-139))) (|HasCategory| (-391 |#2|) (QUOTE (-141))) (|HasCategory| (-391 |#2|) (QUOTE (-333))) (-1533 (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-352))) (-1533 (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (-1533 (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-333))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347))))) -(-956 |bb|) +((-4303 |has| (-392 |#2|) (-348)) (-4308 |has| (-392 |#2|) (-348)) (-4302 |has| (-392 |#2|) (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-392 |#2|) (QUOTE (-139))) (|HasCategory| (-392 |#2|) (QUOTE (-141))) (|HasCategory| (-392 |#2|) (QUOTE (-335))) (-3850 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (QUOTE (-353))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (|HasCategory| (-392 |#2|) (QUOTE (-335)))) (-3850 (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-335))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (|HasCategory| (-392 |#2|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 |#2|) (QUOTE (-348)))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-348))) (|HasCategory| (-392 |#2|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| (-392 |#2|) (QUOTE (-219))) (|HasCategory| (-392 |#2|) (QUOTE (-348))))) +(-962 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) -(-957) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-526) (QUOTE (-869))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-1123)))) (|HasCategory| (-526) (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-141))) (|HasCategory| (-526) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-977))) (|HasCategory| (-526) (QUOTE (-784))) (-3850 (|HasCategory| (-526) (QUOTE (-784))) (|HasCategory| (-526) (QUOTE (-811)))) (|HasCategory| (-526) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-1099))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-526) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-526) (QUOTE (-219))) (|HasCategory| (-526) (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| (-526) (LIST (QUOTE -496) (QUOTE (-1123)) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -294) (QUOTE (-526)))) (|HasCategory| (-526) (LIST (QUOTE -271) (QUOTE (-526)) (QUOTE (-526)))) (|HasCategory| (-526) (QUOTE (-292))) (|HasCategory| (-526) (QUOTE (-525))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-526) (LIST (QUOTE -606) (QUOTE (-526)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-526) (QUOTE (-869)))) (|HasCategory| (-526) (QUOTE (-139))))) +(-963) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-958) +(-964) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-959 RP) +(-965 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-960 S) +(-966 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-961 A S) +(-967 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-1045)))) -(-962 S) +((|HasAttribute| |#1| (QUOTE -4311)) (|HasCategory| |#2| (QUOTE (-1052)))) +(-968 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-963 S) +(-969 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-964) +(-970) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4293 . T) (-4298 . T) (-4292 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4297 . T)) +((-4303 . T) (-4308 . T) (-4302 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4307 . T)) NIL -(-965 R -1393) +(-971 R -3395) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-966 R -1393) +(-972 R -3395) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-967 -1393 UP) +(-973 -3395 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-968 -1393 UP) +(-974 -3395 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-969 S) +(-975 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-970 F1 UP UPUP R F2) +(-976 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-971 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +(-977) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-972 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +(-978 |Pol|) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-973) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +(-979 |Pol|) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-974) +(-980) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-975 |TheField|) +(-981 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4293 . T) (-4298 . T) (-4292 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4297 . T)) -((-1533 (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (QUOTE (-537))))) -(-976 -1393 L) +((-4303 . T) (-4308 . T) (-4302 . T) (-4305 . T) (-4304 . T) ((-4312 "*") . T) (-4307 . T)) +((-3850 (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-392 (-526)) (LIST (QUOTE -995) (QUOTE (-526))))) +(-982 -3395 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-977 S) +(-983 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1045)))) -(-978 R E V P) +((|HasCategory| |#1| (QUOTE (-1052)))) +(-984 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-979 R) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-985) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL +NIL +(-986 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4302 "*")))) -(-980 R) +((|HasAttribute| |#1| (QUOTE (-4312 "*")))) +(-987 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-291)))) -(-981 S) +((-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-292)))) +(-988 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-982) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL -(-983 S) +(-989 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-984 S) +(-990 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-985 -1393 |Expon| |VarSet| |FPol| |LFPol|) +(-991 -3395 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-986) +(-992) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1117))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-1117) (QUOTE (-807))) (|HasCategory| (-51) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) -(-987) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1123))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-1123) (QUOTE (-811))) (|HasCategory| (-50) (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) +(-993) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-988 A S) +(-994 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-989 S) +(-995 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-990 Q R) +(-996 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-991) +(-997 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-998) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-992 UP) +(-999 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-993 R) +(-1000 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-994 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-995 R |ls|) +(-1001 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| (-740 |#1| (-818 |#2|)) (QUOTE (-1045))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -740) (|devaluate| |#1|) (LIST (QUOTE -818) (|devaluate| |#2|)))))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-740 |#1| (-818 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| (-818 |#2|) (QUOTE (-352))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-996) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| (-744 |#1| (-824 |#2|)) (QUOTE (-1052))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -744) (|devaluate| |#1|) (LIST (QUOTE -824) (|devaluate| |#2|)))))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-744 |#1| (-824 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-824 |#2|) (QUOTE (-353))) (|HasCategory| (-744 |#1| (-824 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1002) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-997 S) +(-1003 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-998) +(-1004) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4297 . T)) +((-4307 . T)) NIL -(-999 |xx| -1393) +(-1005 |xx| -3395) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1000 S |m| |n| R |Row| |Col|) +(-1006 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-291))) (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (QUOTE (-529))) (|HasCategory| |#4| (QUOTE (-163)))) -(-1001 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-292))) (|HasCategory| |#4| (QUOTE (-348))) (|HasCategory| |#4| (QUOTE (-533))) (|HasCategory| |#4| (QUOTE (-163)))) +(-1007 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4300 . T) (-4120 . T) (-4295 . T) (-4294 . T)) +((-4310 . T) (-2337 . T) (-4305 . T) (-4304 . T)) NIL -(-1002 |m| |n| R) +(-1008 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4300 . T) (-4295 . T) (-4294 . T)) -((-1533 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-291))) (|HasCategory| |#3| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))))) -(-1003 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4310 . T) (-4305 . T) (-4304 . T)) +((-3850 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-292))) (|HasCategory| |#3| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) +(-1009 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1004 R) +(-1010 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1005) +(-1011) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1006 S) +(-1012 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1007) +(-1013) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1008 |TheField| |ThePolDom|) +(-1014 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1009) +(-1015) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1010) +(-1016) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1117))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-1117) (QUOTE (-807))) (|HasCategory| (-51) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1011 S R E V) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1123))) (LIST (QUOTE |:|) (QUOTE -2164) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| (-50) (QUOTE (-1052))) (|HasCategory| (-50) (LIST (QUOTE -294) (QUOTE (-50))))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (QUOTE (-1052))) (|HasCategory| (-1123) (QUOTE (-811))) (|HasCategory| (-50) (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-50) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1017 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -945) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-1117))))) -(-1012 R E V) +((|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-525))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-1123))))) +(-1018 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-1013) +(-1019) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1014 S |TheField| |ThePols|) +(-1020 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1015 |TheField| |ThePols|) +(-1021 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1016 R E V P TS) +(-1022 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1017 S R E V P) +(-1023 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1018 R E V P) +(-1024 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1019 R E V P TS) +(-1025 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1020 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1026 |Base| R -3395) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1021 |Base| R -1393) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1027 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1022 |Base| R -1393) +(-1028 |Base| R -3395) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1023 R |ls|) +(-1029 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1024 UP SAE UPA) +(-1030 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4303 |has| |#1| (-348)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-335))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-353))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-335)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (QUOTE (-348))))) +(-1031 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1025 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4293 |has| |#1| (-347)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-333)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347))))) -(-1026 UP SAE UPA) +(-1032 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1027) +(-1033) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1028 S) +(-1034 S) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1029) +(-1035) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1030 S) +(-1036 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1031) +(-1037) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1032 R) +(-1038 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1033 R) +(-1039 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1034 S) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1040 (-1123)) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1040 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1035 R S) +(-1041 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) +NIL +((|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (QUOTE (-1052)))) +(-1042 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-805)))) -(-1036) +((|HasCategory| |#1| (QUOTE (-809)))) +(-1043) ((|constructor| (NIL "This domain represents segement expressions."))) NIL NIL -(-1037 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) +(-1044 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL +((|HasCategory| |#1| (QUOTE (-1052)))) +(-1045 R S) +((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL -(-1038 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1045)))) -(-1039 S) +(-1046 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-4120 . T)) +((-2337 . T)) NIL -(-1040 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-1045)))) -(-1041 S L) +(-1047 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-1042 A S) +(-1048 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4310 . T) (-4300 . T) (-4311 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1049 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1043 S) +(-1050 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4290 . T) (-4120 . T)) +((-4300 . T) (-2337 . T)) NIL -(-1044 S) +(-1051 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1045) +(-1052) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1046 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1053 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1047 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4300 . T) (-4290 . T) (-4301 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1048 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1054) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1049) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1055 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1050 |Str| |Sym| |Int| |Flt| |Expr|) +(-1056 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1051 R FS) +(-1057 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1052 R E V P TS) +(-1058 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1053 R E V P TS) +(-1059 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1054 R E V P) +(-1060 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1055) +(-1061) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1056 S) +(-1062 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1057) +(-1063) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1058 |dimtot| |dim1| S) +(-1064 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4294 |has| |#3| (-998)) (-4295 |has| |#3| (-998)) (-4297 |has| |#3| (-6 -4297)) ((-4302 "*") |has| |#3| (-163)) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#3| (QUOTE (-347))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-753))) (-1533 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805)))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-163))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-1045)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-163)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-218)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-347)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-352)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-687)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-753)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#3| (QUOTE (-998))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasAttribute| |#3| (QUOTE -4297)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1059 R |x|) +((-4304 |has| |#3| (-1004)) (-4305 |has| |#3| (-1004)) (-4307 |has| |#3| (-6 -4307)) ((-4312 "*") |has| |#3| (-163)) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#3| (QUOTE (-348))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-348)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-757))) (-3850 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809)))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-163))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-3850 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-348))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-691))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526)))))) (|HasCategory| (-526) (QUOTE (-811))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#3| (QUOTE (-219))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#3| (QUOTE -4307)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -294) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1065 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-435)))) -(-1060 R -1393) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +((|HasCategory| |#1| (QUOTE (-436)))) +(-1066) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1061 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1067 R -3395) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1062) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +(-1068 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1063) +(-1069) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1064) +(-1070) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4298 . T) (-4302 . T) (-4297 . T) (-4308 . T) (-4309 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1065 S) +(-1071 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4300 . T) (-4301 . T) (-4120 . T)) +((-4310 . T) (-4311 . T) (-2337 . T)) NIL -(-1066 S |ndim| R |Row| |Col|) +(-1072 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-347))) (|HasAttribute| |#3| (QUOTE (-4302 "*"))) (|HasCategory| |#3| (QUOTE (-163)))) -(-1067 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-348))) (|HasAttribute| |#3| (QUOTE (-4312 "*"))) (|HasCategory| |#3| (QUOTE (-163)))) +(-1073 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4120 . T) (-4300 . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-2337 . T) (-4310 . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1068 R |Row| |Col| M) +(-1074 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1069 R |VarSet|) +(-1075 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1070 |Coef| |Var| SMP) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1076 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347)))) -(-1071 R E V P) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348)))) +(-1077 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1072 UP -1393) +(-1078 UP -3395) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1073 R) +(-1079 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1074 R) +(-1080 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1075 R) +(-1081 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1076 S A) +(-1082 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-807)))) -(-1077 R) +((|HasCategory| |#1| (QUOTE (-811)))) +(-1083 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1078 R) +(-1084 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1079) +(-1085) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1080) +(-1086) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1081) +(-1087) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1082 V C) +(-1088 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1083 V C) +(-1089 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -293) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045))) (-1533 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -293) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045))))) (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1084 |ndim| R) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -294) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052))) (-3850 (-12 (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -294) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1088 |#1| |#2|) (QUOTE (-1052)))) (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| (-1088 |#1| |#2|) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1090 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4297 . T) (-4289 |has| |#2| (-6 (-4302 "*"))) (-4300 . T) (-4294 . T) (-4295 . T)) -((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-163)))) -(-1085 S) +((-4307 . T) (-4299 |has| |#2| (-6 (-4312 "*"))) (-4310 . T) (-4304 . T) (-4305 . T)) +((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-348))) (-3850 (|HasAttribute| |#2| (QUOTE (-4312 "*"))) (|HasCategory| |#2| (QUOTE (-219))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-163)))) +(-1091 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1086) +(-1092) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1087 R E V P TS) +(-1093 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1088 R E V P) +(-1094 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1089 S) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1095 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1090 A S) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1096 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1091 S) +(-1097 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-1092 |Key| |Ent| |dent|) +(-1098 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1093) +((-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-811))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1099) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1094 |Coef|) +(-1100 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1095 S) +(-1101 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4311 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1102 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1096 A B) +(-1103 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1097 A B C) +(-1104 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1098 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4301 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1099) +(-1105) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1100) +(-1106) NIL -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1101 |Entry|) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-138) (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| (-138) (QUOTE (-1052))) (-12 (|HasCategory| (-138) (QUOTE (-1052))) (|HasCategory| (-138) (LIST (QUOTE -294) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1107 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#1|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-1100) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1102 A) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (QUOTE (-1106))) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (QUOTE (-1052))) (|HasCategory| (-1106) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1108 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) -(-1103 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) +(-1109 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1104 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1110 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1105 R UP) +(-1111 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-291)))) -(-1106 |n| R) +((|HasCategory| |#1| (QUOTE (-292)))) +(-1112 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1107 S1 S2) +(-1113 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1108 |Coef| |var| |cen|) +(-1114 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4302 "*") -1533 (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-780))) (|has| |#1| (-163)) (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-862)))) (-4293 -1533 (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-780))) (|has| |#1| (-529)) (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-141)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347))))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1109 R -1393) +(((-4312 "*") -3850 (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-784))) (|has| |#1| (-163)) (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-869)))) (-4303 -3850 (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-784))) (|has| |#1| (-533)) (-3155 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-141)))) (|HasCategory| |#1| (QUOTE (-141)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-219)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1121) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-292)))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-139)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1121 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1115 R -3395) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1110 R) +(-1116 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1111 R S) +(-1117 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-869)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-219))) (|HasAttribute| |#1| (QUOTE -4308)) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1118 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1112 E OV R P) +(-1119 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1113 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1114 |Coef| |var| |cen|) +(-1120 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1115 |Coef| |var| |cen|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-1121 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|)))) (|HasCategory| (-731) (QUOTE (-1057))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1116) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|)))) (|HasCategory| (-735) (QUOTE (-1063))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-1122) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1117) +(-1123) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1118 R) +(-1124 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1119 R) +(-1125 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| (-924) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298))) -(-1120) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-6 -4308)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-436))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| (-930) (QUOTE (-129)))) (-3850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasAttribute| |#1| (QUOTE -4308))) +(-1126) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1121) +(-1127) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1122) +(-1128) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1123 R) +(-1129 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1124) +(-1130) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1125 S) +(-1131 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1126 S) +(-1132 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4310 . T) (-4311 . T)) +((-12 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -294) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4179) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2164) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -584) (QUOTE (-515)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-1052))) (-3850 (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-823)))) (|HasCategory| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (LIST (QUOTE -583) (QUOTE (-823))))) +(-1133 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1127 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4300 . T) (-4301 . T)) -((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) -(-1128 R) +(-1134 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1129 S |Key| |Entry|) +(-1135 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1130 |Key| |Entry|) +(-1136 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4301 . T) (-4120 . T)) +((-4311 . T) (-2337 . T)) NIL -(-1131 |Key| |Entry|) +(-1137 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1132) +(-1138) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1133 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1139) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1134) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) +(-1140 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1135) +(-1141) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1136 R) +(-1142 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1137) +(-1143) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1138 S) +(-1144 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1139) +(-1145) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1140 S) +(-1146 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1141 S) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1052))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1147 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1142) +(-1148) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1143 R -1393) +(-1149 R -3395) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1144 R |Row| |Col| M) +(-1150 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1145 R -1393) +(-1151 R -3395) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -839) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -839) (|devaluate| |#1|))))) -(-1146 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -584) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -845) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -845) (|devaluate| |#1|))))) +(-1152 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-348)))) +(-1153 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-352)))) -(-1147 R E V P) +((|HasCategory| |#4| (QUOTE (-353)))) +(-1154 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1148 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347)))) -(-1149 |Curve|) +(-1155 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1150) +(-1156) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1151 S) +(-1157 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1152 -1393) +((|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1158 -3395) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1153) -((|constructor| (NIL "This domain represents a type AST.")) (|coerce| (($ (|Syntax|)) "s::TypeAst injects \\spad{`s'} into the TypeAst domain."))) +(-1159) +((|constructor| (NIL "The fundamental Type."))) +((-2337 . T)) NIL +(-1160) +((|constructor| (NIL "This domain represents a type AST.")) (|coerce| (($ (|Syntax|)) "s::TypeAst injects \\spad{`s'} into the TypeAst domain."))) NIL -(-1154) -((|constructor| (NIL "The fundamental Type."))) -((-4120 . T)) NIL -(-1155 S) +(-1161 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-807)))) -(-1156) +((|HasCategory| |#1| (QUOTE (-811)))) +(-1162) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1157 S) +(-1163 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1158) +(-1164) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1159 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1165 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4312 "*") -3850 (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-784))) (|has| |#1| (-163)) (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-869)))) (-4303 -3850 (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-784))) (|has| |#1| (-533)) (-3155 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-869)))) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-141)))) (|HasCategory| |#1| (QUOTE (-141)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-219)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -271) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -496) (QUOTE (-1123)) (LIST (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-292)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (LIST (QUOTE -995) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-139)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1166 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1160 |Coef|) +(-1167 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1161 S |Coef| UTS) +(-1168 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-347)))) -(-1162 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-348)))) +(-1169 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4120 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-2337 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1163 |Coef| UTS) +(-1170 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-139))))) (-1533 (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-141))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-218)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-973)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807)))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-139)))))) -(-1164 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4302 "*") -1533 (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-780))) (|has| |#1| (-163)) (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-862)))) (-4293 -1533 (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-780))) (|has| |#1| (-529)) (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-141)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139))))) -(-1165 ZP) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-139))))) (-3850 (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-141))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))))) (-3850 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-526)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-219))))) (|HasCategory| (-526) (QUOTE (-1063))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-348))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-1123))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-977)))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -271) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -496) (QUOTE (-1123)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-526))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-811)))) (|HasCategory| |#2| (QUOTE (-869))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-139)))))) +(-1171 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1166 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) -NIL -((|HasCategory| |#1| (QUOTE (-805)))) -(-1167 S) +(-1172 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-1045)))) -(-1168 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#1| (QUOTE (-1052)))) +(-1173 R S) +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) +NIL +((|HasCategory| |#1| (QUOTE (-809)))) +(-1174 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) +(((-4312 "*") |has| |#2| (-163)) (-4303 |has| |#2| (-533)) (-4306 |has| |#2| (-348)) (-4308 |has| |#2| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-363)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-363))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -845) (QUOTE (-526)))) (|HasCategory| (-1033) (LIST (QUOTE -845) (QUOTE (-526))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-363)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526))))) (|HasCategory| (-1033) (LIST (QUOTE -584) (LIST (QUOTE -849) (QUOTE (-526)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| (-1033) (LIST (QUOTE -584) (QUOTE (-515))))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (-3850 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-869)))) (-3850 (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (-3850 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| |#2| (QUOTE (-219))) (|HasAttribute| |#2| (QUOTE -4308)) (|HasCategory| |#2| (QUOTE (-436))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (-3850 (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| $ (QUOTE (-139)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-1175 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1169 R Q UP) +(-1176 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1170 R UP) +(-1177 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1171 R UP) +(-1178 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1172 R U) +(-1179 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1173 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4296 |has| |#2| (-347)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) -(-1174 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) -NIL -NIL -(-1175 S R) +(-1180 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1093)))) -(-1176 R) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-436))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1099)))) +(-1181 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4306 |has| |#1| (-348)) (-4308 |has| |#1| (-6 -4308)) (-4305 . T) (-4304 . T) (-4307 . T)) +NIL +(-1182 R PR S PS) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL -(-1177 S |Coef| |Expon|) +NIL +(-1183 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2341) (LIST (|devaluate| |#2|) (QUOTE (-1117)))))) -(-1178 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4274) (LIST (|devaluate| |#2|) (QUOTE (-1123)))))) +(-1184 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1179 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1185 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1180 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1186 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-1187 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1181 |Coef|) +(-1188 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1182 S |Coef| ULS) +(-1189 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1183 |Coef| ULS) +(-1190 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1184 |Coef| ULS) +(-1191 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) -(-1185 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1186 R FE |var| |cen|) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4308 |has| |#1| (-348)) (-4302 |has| |#1| (-348)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-163))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526))) (|devaluate| |#1|)))) (|HasCategory| (-392 (-526)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-3850 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-533)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -392) (QUOTE (-526)))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526)))))) +(-1192 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4302 "*") |has| (-1185 |#2| |#3| |#4|) (-163)) (-4293 |has| (-1185 |#2| |#3| |#4|) (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-163))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-347))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-435))) (-1533 (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-529)))) -(-1187 A S) +(((-4312 "*") |has| (-1186 |#2| |#3| |#4|) (-163)) (-4303 |has| (-1186 |#2| |#3| |#4|) (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-163))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (QUOTE (-526)))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-348))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-436))) (-3850 (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (LIST (QUOTE -995) (LIST (QUOTE -392) (QUOTE (-526)))))) (|HasCategory| (-1186 |#2| |#3| |#4|) (QUOTE (-533)))) +(-1193 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4301))) -(-1188 S) +((|HasAttribute| |#1| (QUOTE -4311))) +(-1194 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-4120 . T)) +((-2337 . T)) NIL -(-1189 |Coef1| |Coef2| UTS1 UTS2) +(-1195 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (QUOTE (-533))) (-3850 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -859) (QUOTE (-1123)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-735)) (|devaluate| |#1|)))) (|HasCategory| (-735) (QUOTE (-1063))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasSignature| |#1| (LIST (QUOTE -4274) (LIST (|devaluate| |#1|) (QUOTE (-1123)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-735))))) (|HasCategory| |#1| (QUOTE (-348))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-526))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasSignature| |#1| (LIST (QUOTE -4131) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1123))))) (|HasSignature| |#1| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#1|))))))) +(-1196 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1190 S |Coef|) +(-1197 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-912))) (|HasCategory| |#2| (QUOTE (-1139))) (|HasSignature| |#2| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3092) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1117))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) -(-1191 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-526)))) (|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasSignature| |#2| (LIST (QUOTE -3384) (LIST (LIST (QUOTE -607) (QUOTE (-1123))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4131) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1123))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasCategory| |#2| (QUOTE (-348)))) +(-1198 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") |has| |#1| (-163)) (-4303 |has| |#1| (-533)) (-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1192 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|)))) (|HasCategory| (-731) (QUOTE (-1057))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) -(-1193 |Coef| UTS) +(-1199 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1194 -1393 UP L UTS) +(-1200 -3395 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-529)))) -(-1195) +((|HasCategory| |#1| (QUOTE (-533)))) +(-1201) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-4120 . T)) +((-2337 . T)) NIL -(-1196 |sym|) +(-1202 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1197 S R) +(-1203 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1198 R) +((|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-691))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1204 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4301 . T) (-4300 . T) (-4120 . T)) +((-4311 . T) (-4310 . T) (-2337 . T)) NIL -(-1199 A B) +(-1205 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4311 . T) (-4310 . T)) +((-3850 (-12 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|))))) (-3850 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-515)))) (-3850 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-526) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-691))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1206 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1200 R) -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4301 . T) (-4300 . T)) -((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1201) +(-1207) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1208) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1202) +(-1209) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1203) +(-1210) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1204) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) -NIL -NIL -(-1205) +(-1211) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1206 A S) +(-1212 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1207 S) +(-1213 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4295 . T) (-4294 . T)) +((-4305 . T) (-4304 . T)) NIL -(-1208 R) +(-1214 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1209 K R UP -1393) +(-1215 K R UP -3395) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1210) +(-1216) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|Syntax|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1211 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1217 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) -(-1212 R E V P) +((-4305 |has| |#1| (-163)) (-4304 |has| |#1| (-163)) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348)))) +(-1218 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4301 . T) (-4300 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) -(-1213 R) +((-4311 . T) (-4310 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -294) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-515)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#3| (QUOTE (-353))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-823))))) +(-1219 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4294 . T) (-4295 . T) (-4297 . T)) +((-4304 . T) (-4305 . T) (-4307 . T)) NIL -(-1214 |vl| R) +(-1220 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4297 . T) (-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4293))) -(-1215 R |VarSet| XPOLY) +((-4307 . T) (-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4303))) +(-1221 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1216 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) -NIL -(-1217 S -1393) +(-1222 S -3395) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141)))) -(-1218 -1393) +((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141)))) +(-1223 -3395) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-4302 . T) (-4308 . T) (-4303 . T) ((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) +NIL +(-1224 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-1219 |VarSet| R) +(-1225 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -678) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasAttribute| |#2| (QUOTE -4293))) -(-1220 |vl| R) +((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -682) (LIST (QUOTE -392) (QUOTE (-526))))) (|HasAttribute| |#2| (QUOTE -4303))) +(-1226 R) +((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) +((-4303 |has| |#1| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasAttribute| |#1| (QUOTE -4303))) +(-1227 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) +((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) NIL -(-1221 R) -((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4293 |has| |#1| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasAttribute| |#1| (QUOTE -4293))) -(-1222 R E) +(-1228 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4297 . T) (-4298 |has| |#1| (-6 -4298)) (-4293 |has| |#1| (-6 -4293)) (-4295 . T) (-4294 . T)) -((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#1| (QUOTE -4298)) (|HasAttribute| |#1| (QUOTE -4293))) -(-1223 |VarSet| R) +((-4307 . T) (-4308 |has| |#1| (-6 -4308)) (-4303 |has| |#1| (-6 -4303)) (-4305 . T) (-4304 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-348))) (|HasAttribute| |#1| (QUOTE -4307)) (|HasAttribute| |#1| (QUOTE -4308)) (|HasAttribute| |#1| (QUOTE -4303))) +(-1229 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) -((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4293))) -(-1224 A) +((-4303 |has| |#2| (-6 -4303)) (-4305 . T) (-4304 . T) (-4307 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4303))) +(-1230 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1225 R |ls| |ls2|) +(-1231 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1226 R) +(-1232 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1227 |p|) +(-1233 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +(((-4312 "*") . T) (-4304 . T) (-4305 . T) (-4307 . T)) NIL NIL NIL @@ -4856,4 +4880,4 @@ NIL NIL NIL NIL -((-3 NIL 2247703 2247708 2247713 2247718) (-2 NIL 2247683 2247688 2247693 2247698) (-1 NIL 2247663 2247668 2247673 2247678) (0 NIL 2247643 2247648 2247653 2247658) (-1227 "ZMOD.spad" 2247452 2247465 2247581 2247638) (-1226 "ZLINDEP.spad" 2246496 2246507 2247442 2247447) (-1225 "ZDSOLVE.spad" 2236345 2236367 2246486 2246491) (-1224 "YSTREAM.spad" 2235838 2235849 2236335 2236340) (-1223 "XRPOLY.spad" 2235058 2235078 2235694 2235763) (-1222 "XPR.spad" 2232787 2232800 2234776 2234875) (-1221 "XPOLY.spad" 2232342 2232353 2232643 2232712) (-1220 "XPOLYC.spad" 2231659 2231675 2232268 2232337) (-1219 "XPBWPOLY.spad" 2230096 2230116 2231439 2231508) (-1218 "XF.spad" 2228557 2228572 2229998 2230091) (-1217 "XF.spad" 2226998 2227015 2228441 2228446) (-1216 "XFALG.spad" 2224022 2224038 2226924 2226993) (-1215 "XEXPPKG.spad" 2223273 2223299 2224012 2224017) (-1214 "XDPOLY.spad" 2222887 2222903 2223129 2223198) (-1213 "XALG.spad" 2222485 2222496 2222843 2222882) (-1212 "WUTSET.spad" 2218324 2218341 2222131 2222158) (-1211 "WP.spad" 2217338 2217382 2218182 2218249) (-1210 "WHILEAST.spad" 2217137 2217146 2217328 2217333) (-1209 "WFFINTBS.spad" 2214700 2214722 2217127 2217132) (-1208 "WEIER.spad" 2212914 2212925 2214690 2214695) (-1207 "VSPACE.spad" 2212587 2212598 2212882 2212909) (-1206 "VSPACE.spad" 2212280 2212293 2212577 2212582) (-1205 "VOID.spad" 2211870 2211879 2212270 2212275) (-1204 "VIEW.spad" 2209492 2209501 2211860 2211865) (-1203 "VIEWDEF.spad" 2204689 2204698 2209482 2209487) (-1202 "VIEW3D.spad" 2188524 2188533 2204679 2204684) (-1201 "VIEW2D.spad" 2176261 2176270 2188514 2188519) (-1200 "VECTOR.spad" 2174938 2174949 2175189 2175216) (-1199 "VECTOR2.spad" 2173565 2173578 2174928 2174933) (-1198 "VECTCAT.spad" 2171453 2171464 2173521 2173560) (-1197 "VECTCAT.spad" 2169162 2169175 2171232 2171237) (-1196 "VARIABLE.spad" 2168942 2168957 2169152 2169157) (-1195 "UTYPE.spad" 2168576 2168585 2168922 2168937) (-1194 "UTSODETL.spad" 2167869 2167893 2168532 2168537) (-1193 "UTSODE.spad" 2166057 2166077 2167859 2167864) (-1192 "UTS.spad" 2160846 2160874 2164524 2164621) (-1191 "UTSCAT.spad" 2158297 2158313 2160744 2160841) (-1190 "UTSCAT.spad" 2155392 2155410 2157841 2157846) (-1189 "UTS2.spad" 2154985 2155020 2155382 2155387) (-1188 "URAGG.spad" 2149607 2149618 2154965 2154980) (-1187 "URAGG.spad" 2144203 2144216 2149563 2149568) (-1186 "UPXSSING.spad" 2141849 2141875 2143287 2143420) (-1185 "UPXS.spad" 2138876 2138904 2139981 2140130) (-1184 "UPXSCONS.spad" 2136633 2136653 2137008 2137157) (-1183 "UPXSCCA.spad" 2135091 2135111 2136479 2136628) (-1182 "UPXSCCA.spad" 2133691 2133713 2135081 2135086) (-1181 "UPXSCAT.spad" 2132272 2132288 2133537 2133686) (-1180 "UPXS2.spad" 2131813 2131866 2132262 2132267) (-1179 "UPSQFREE.spad" 2130225 2130239 2131803 2131808) (-1178 "UPSCAT.spad" 2127818 2127842 2130123 2130220) (-1177 "UPSCAT.spad" 2125117 2125143 2127424 2127429) (-1176 "UPOLYC.spad" 2120095 2120106 2124959 2125112) (-1175 "UPOLYC.spad" 2114965 2114978 2119831 2119836) (-1174 "UPOLYC2.spad" 2114434 2114453 2114955 2114960) (-1173 "UP.spad" 2111479 2111494 2111987 2112140) (-1172 "UPMP.spad" 2110369 2110382 2111469 2111474) (-1171 "UPDIVP.spad" 2109932 2109946 2110359 2110364) (-1170 "UPDECOMP.spad" 2108169 2108183 2109922 2109927) (-1169 "UPCDEN.spad" 2107376 2107392 2108159 2108164) (-1168 "UP2.spad" 2106738 2106759 2107366 2107371) (-1167 "UNISEG.spad" 2106091 2106102 2106657 2106662) (-1166 "UNISEG2.spad" 2105584 2105597 2106047 2106052) (-1165 "UNIFACT.spad" 2104685 2104697 2105574 2105579) (-1164 "ULS.spad" 2095244 2095272 2096337 2096766) (-1163 "ULSCONS.spad" 2089287 2089307 2089659 2089808) (-1162 "ULSCCAT.spad" 2086884 2086904 2089107 2089282) (-1161 "ULSCCAT.spad" 2084615 2084637 2086840 2086845) (-1160 "ULSCAT.spad" 2082831 2082847 2084461 2084610) (-1159 "ULS2.spad" 2082343 2082396 2082821 2082826) (-1158 "UFD.spad" 2081408 2081417 2082269 2082338) (-1157 "UFD.spad" 2080535 2080546 2081398 2081403) (-1156 "UDVO.spad" 2079382 2079391 2080525 2080530) (-1155 "UDPO.spad" 2076809 2076820 2079338 2079343) (-1154 "TYPE.spad" 2076731 2076740 2076789 2076804) (-1153 "TYPEAST.spad" 2076564 2076573 2076721 2076726) (-1152 "TWOFACT.spad" 2075214 2075229 2076554 2076559) (-1151 "TUPLE.spad" 2074600 2074611 2075113 2075118) (-1150 "TUBETOOL.spad" 2071437 2071446 2074590 2074595) (-1149 "TUBE.spad" 2070078 2070095 2071427 2071432) (-1148 "TS.spad" 2068667 2068683 2069643 2069740) (-1147 "TSETCAT.spad" 2055782 2055799 2068623 2068662) (-1146 "TSETCAT.spad" 2042895 2042914 2055738 2055743) (-1145 "TRMANIP.spad" 2037261 2037278 2042601 2042606) (-1144 "TRIMAT.spad" 2036220 2036245 2037251 2037256) (-1143 "TRIGMNIP.spad" 2034737 2034754 2036210 2036215) (-1142 "TRIGCAT.spad" 2034249 2034258 2034727 2034732) (-1141 "TRIGCAT.spad" 2033759 2033770 2034239 2034244) (-1140 "TREE.spad" 2032330 2032341 2033366 2033393) (-1139 "TRANFUN.spad" 2032161 2032170 2032320 2032325) (-1138 "TRANFUN.spad" 2031990 2032001 2032151 2032156) (-1137 "TOPSP.spad" 2031664 2031673 2031980 2031985) (-1136 "TOOLSIGN.spad" 2031327 2031338 2031654 2031659) (-1135 "TEXTFILE.spad" 2029884 2029893 2031317 2031322) (-1134 "TEX.spad" 2026901 2026910 2029874 2029879) (-1133 "TEX1.spad" 2026457 2026468 2026891 2026896) (-1132 "TEMUTL.spad" 2026012 2026021 2026447 2026452) (-1131 "TBCMPPK.spad" 2024105 2024128 2026002 2026007) (-1130 "TBAGG.spad" 2023129 2023152 2024073 2024100) (-1129 "TBAGG.spad" 2022173 2022198 2023119 2023124) (-1128 "TANEXP.spad" 2021549 2021560 2022163 2022168) (-1127 "TABLE.spad" 2019960 2019983 2020230 2020257) (-1126 "TABLEAU.spad" 2019441 2019452 2019950 2019955) (-1125 "TABLBUMP.spad" 2016224 2016235 2019431 2019436) (-1124 "SYSTEM.spad" 2015498 2015507 2016214 2016219) (-1123 "SYSSOLP.spad" 2012971 2012982 2015488 2015493) (-1122 "SYNTAX.spad" 2009163 2009172 2012961 2012966) (-1121 "SYMTAB.spad" 2007219 2007228 2009153 2009158) (-1120 "SYMS.spad" 2003204 2003213 2007209 2007214) (-1119 "SYMPOLY.spad" 2002214 2002225 2002296 2002423) (-1118 "SYMFUNC.spad" 2001689 2001700 2002204 2002209) (-1117 "SYMBOL.spad" 1999025 1999034 2001679 2001684) (-1116 "SWITCH.spad" 1995782 1995791 1999015 1999020) (-1115 "SUTS.spad" 1992681 1992709 1994249 1994346) (-1114 "SUPXS.spad" 1989695 1989723 1990813 1990962) (-1113 "SUP.spad" 1986467 1986478 1987248 1987401) (-1112 "SUPFRACF.spad" 1985572 1985590 1986457 1986462) (-1111 "SUP2.spad" 1984962 1984975 1985562 1985567) (-1110 "SUMRF.spad" 1983928 1983939 1984952 1984957) (-1109 "SUMFS.spad" 1983561 1983578 1983918 1983923) (-1108 "SULS.spad" 1974107 1974135 1975213 1975642) (-1107 "SUCH.spad" 1973787 1973802 1974097 1974102) (-1106 "SUBSPACE.spad" 1965794 1965809 1973777 1973782) (-1105 "SUBRESP.spad" 1964954 1964968 1965750 1965755) (-1104 "STTF.spad" 1961053 1961069 1964944 1964949) (-1103 "STTFNC.spad" 1957521 1957537 1961043 1961048) (-1102 "STTAYLOR.spad" 1949919 1949930 1957402 1957407) (-1101 "STRTBL.spad" 1948424 1948441 1948573 1948600) (-1100 "STRING.spad" 1947833 1947842 1947847 1947874) (-1099 "STRICAT.spad" 1947609 1947618 1947789 1947828) (-1098 "STREAM.spad" 1944377 1944388 1947134 1947149) (-1097 "STREAM3.spad" 1943922 1943937 1944367 1944372) (-1096 "STREAM2.spad" 1942990 1943003 1943912 1943917) (-1095 "STREAM1.spad" 1942694 1942705 1942980 1942985) (-1094 "STINPROD.spad" 1941600 1941616 1942684 1942689) (-1093 "STEP.spad" 1940801 1940810 1941590 1941595) (-1092 "STBL.spad" 1939327 1939355 1939494 1939509) (-1091 "STAGG.spad" 1938392 1938403 1939307 1939322) (-1090 "STAGG.spad" 1937465 1937478 1938382 1938387) (-1089 "STACK.spad" 1936816 1936827 1937072 1937099) (-1088 "SREGSET.spad" 1934520 1934537 1936462 1936489) (-1087 "SRDCMPK.spad" 1933065 1933085 1934510 1934515) (-1086 "SRAGG.spad" 1928150 1928159 1933021 1933060) (-1085 "SRAGG.spad" 1923267 1923278 1928140 1928145) (-1084 "SQMATRIX.spad" 1920893 1920911 1921801 1921888) (-1083 "SPLTREE.spad" 1915445 1915458 1920329 1920356) (-1082 "SPLNODE.spad" 1912033 1912046 1915435 1915440) (-1081 "SPFCAT.spad" 1910810 1910819 1912023 1912028) (-1080 "SPECOUT.spad" 1909360 1909369 1910800 1910805) (-1079 "spad-parser.spad" 1908825 1908834 1909350 1909355) (-1078 "SPACEC.spad" 1892838 1892849 1908815 1908820) (-1077 "SPACE3.spad" 1892614 1892625 1892828 1892833) (-1076 "SORTPAK.spad" 1892159 1892172 1892570 1892575) (-1075 "SOLVETRA.spad" 1889916 1889927 1892149 1892154) (-1074 "SOLVESER.spad" 1888436 1888447 1889906 1889911) (-1073 "SOLVERAD.spad" 1884446 1884457 1888426 1888431) (-1072 "SOLVEFOR.spad" 1882866 1882884 1884436 1884441) (-1071 "SNTSCAT.spad" 1882454 1882471 1882822 1882861) (-1070 "SMTS.spad" 1880714 1880740 1882019 1882116) (-1069 "SMP.spad" 1878156 1878176 1878546 1878673) (-1068 "SMITH.spad" 1876999 1877024 1878146 1878151) (-1067 "SMATCAT.spad" 1875097 1875127 1876931 1876994) (-1066 "SMATCAT.spad" 1873139 1873171 1874975 1874980) (-1065 "SKAGG.spad" 1872088 1872099 1873095 1873134) (-1064 "SINT.spad" 1870396 1870405 1871954 1872083) (-1063 "SIMPAN.spad" 1870124 1870133 1870386 1870391) (-1062 "SIG.spad" 1869452 1869461 1870114 1870119) (-1061 "SIGNRF.spad" 1868560 1868571 1869442 1869447) (-1060 "SIGNEF.spad" 1867829 1867846 1868550 1868555) (-1059 "SHP.spad" 1865747 1865762 1867785 1867790) (-1058 "SHDP.spad" 1856783 1856810 1857292 1857421) (-1057 "SGROUP.spad" 1856391 1856400 1856773 1856778) (-1056 "SGROUP.spad" 1855997 1856008 1856381 1856386) (-1055 "SGCF.spad" 1848878 1848887 1855987 1855992) (-1054 "SFRTCAT.spad" 1847794 1847811 1848834 1848873) (-1053 "SFRGCD.spad" 1846857 1846877 1847784 1847789) (-1052 "SFQCMPK.spad" 1841494 1841514 1846847 1846852) (-1051 "SFORT.spad" 1840929 1840943 1841484 1841489) (-1050 "SEXOF.spad" 1840772 1840812 1840919 1840924) (-1049 "SEX.spad" 1840664 1840673 1840762 1840767) (-1048 "SEXCAT.spad" 1837768 1837808 1840654 1840659) (-1047 "SET.spad" 1836068 1836079 1837189 1837228) (-1046 "SETMN.spad" 1834502 1834519 1836058 1836063) (-1045 "SETCAT.spad" 1833987 1833996 1834492 1834497) (-1044 "SETCAT.spad" 1833470 1833481 1833977 1833982) (-1043 "SETAGG.spad" 1829979 1829990 1833438 1833465) (-1042 "SETAGG.spad" 1826508 1826521 1829969 1829974) (-1041 "SEGXCAT.spad" 1825620 1825633 1826488 1826503) (-1040 "SEG.spad" 1825433 1825444 1825539 1825544) (-1039 "SEGCAT.spad" 1824252 1824263 1825413 1825428) (-1038 "SEGBIND.spad" 1823324 1823335 1824207 1824212) (-1037 "SEGBIND2.spad" 1823020 1823033 1823314 1823319) (-1036 "SEGAST.spad" 1822929 1822938 1823010 1823015) (-1035 "SEG2.spad" 1822354 1822367 1822885 1822890) (-1034 "SDVAR.spad" 1821630 1821641 1822344 1822349) (-1033 "SDPOL.spad" 1819023 1819034 1819314 1819441) (-1032 "SCPKG.spad" 1817102 1817113 1819013 1819018) (-1031 "SCOPE.spad" 1816247 1816256 1817092 1817097) (-1030 "SCACHE.spad" 1814929 1814940 1816237 1816242) (-1029 "SASTCAT.spad" 1814838 1814847 1814919 1814924) (-1028 "SASTCAT.spad" 1814745 1814756 1814828 1814833) (-1027 "SAOS.spad" 1814617 1814626 1814735 1814740) (-1026 "SAERFFC.spad" 1814330 1814350 1814607 1814612) (-1025 "SAE.spad" 1812508 1812524 1813119 1813254) (-1024 "SAEFACT.spad" 1812209 1812229 1812498 1812503) (-1023 "RURPK.spad" 1809850 1809866 1812199 1812204) (-1022 "RULESET.spad" 1809291 1809315 1809840 1809845) (-1021 "RULE.spad" 1807495 1807519 1809281 1809286) (-1020 "RULECOLD.spad" 1807347 1807360 1807485 1807490) (-1019 "RSETGCD.spad" 1803725 1803745 1807337 1807342) (-1018 "RSETCAT.spad" 1793497 1793514 1803681 1803720) (-1017 "RSETCAT.spad" 1783301 1783320 1793487 1793492) (-1016 "RSDCMPK.spad" 1781753 1781773 1783291 1783296) (-1015 "RRCC.spad" 1780137 1780167 1781743 1781748) (-1014 "RRCC.spad" 1778519 1778551 1780127 1780132) (-1013 "RPTAST.spad" 1778223 1778232 1778509 1778514) (-1012 "RPOLCAT.spad" 1757583 1757598 1778091 1778218) (-1011 "RPOLCAT.spad" 1736658 1736675 1757168 1757173) (-1010 "ROUTINE.spad" 1732521 1732530 1735305 1735332) (-1009 "ROMAN.spad" 1731753 1731762 1732387 1732516) (-1008 "ROIRC.spad" 1730833 1730865 1731743 1731748) (-1007 "RNS.spad" 1729736 1729745 1730735 1730828) (-1006 "RNS.spad" 1728725 1728736 1729726 1729731) (-1005 "RNG.spad" 1728460 1728469 1728715 1728720) (-1004 "RMODULE.spad" 1728098 1728109 1728450 1728455) (-1003 "RMCAT2.spad" 1727506 1727563 1728088 1728093) (-1002 "RMATRIX.spad" 1726185 1726204 1726673 1726712) (-1001 "RMATCAT.spad" 1721706 1721737 1726129 1726180) (-1000 "RMATCAT.spad" 1717129 1717162 1721554 1721559) (-999 "RINTERP.spad" 1717018 1717037 1717119 1717124) (-998 "RING.spad" 1716376 1716384 1716998 1717013) (-997 "RING.spad" 1715742 1715752 1716366 1716371) (-996 "RIDIST.spad" 1715127 1715135 1715732 1715737) (-995 "RGCHAIN.spad" 1713707 1713722 1714612 1714639) (-994 "RF.spad" 1711322 1711332 1713697 1713702) (-993 "RFFACTOR.spad" 1710785 1710795 1711312 1711317) (-992 "RFFACT.spad" 1710521 1710532 1710775 1710780) (-991 "RFDIST.spad" 1709510 1709518 1710511 1710516) (-990 "RETSOL.spad" 1708928 1708940 1709500 1709505) (-989 "RETRACT.spad" 1708278 1708288 1708918 1708923) (-988 "RETRACT.spad" 1707626 1707638 1708268 1708273) (-987 "RETAST.spad" 1707440 1707448 1707616 1707621) (-986 "RESULT.spad" 1705501 1705509 1706087 1706114) (-985 "RESRING.spad" 1704849 1704895 1705439 1705496) (-984 "RESLATC.spad" 1704174 1704184 1704839 1704844) (-983 "REPSQ.spad" 1703904 1703914 1704164 1704169) (-982 "REP.spad" 1701457 1701465 1703894 1703899) (-981 "REPDB.spad" 1701163 1701173 1701447 1701452) (-980 "REP2.spad" 1690736 1690746 1701005 1701010) (-979 "REP1.spad" 1684727 1684737 1690686 1690691) (-978 "REGSET.spad" 1682525 1682541 1684373 1684400) (-977 "REF.spad" 1681855 1681865 1682480 1682485) (-976 "REDORDER.spad" 1681032 1681048 1681845 1681850) (-975 "RECLOS.spad" 1679822 1679841 1680525 1680618) (-974 "REALSOLV.spad" 1678955 1678963 1679812 1679817) (-973 "REAL.spad" 1678828 1678836 1678945 1678950) (-972 "REAL0Q.spad" 1676111 1676125 1678818 1678823) (-971 "REAL0.spad" 1672940 1672954 1676101 1676106) (-970 "RDIV.spad" 1672592 1672616 1672930 1672935) (-969 "RDIST.spad" 1672156 1672166 1672582 1672587) (-968 "RDETRS.spad" 1670953 1670970 1672146 1672151) (-967 "RDETR.spad" 1669061 1669078 1670943 1670948) (-966 "RDEEFS.spad" 1668135 1668151 1669051 1669056) (-965 "RDEEF.spad" 1667132 1667148 1668125 1668130) (-964 "RCFIELD.spad" 1664319 1664327 1667034 1667127) (-963 "RCFIELD.spad" 1661592 1661602 1664309 1664314) (-962 "RCAGG.spad" 1659495 1659505 1661572 1661587) (-961 "RCAGG.spad" 1657335 1657347 1659414 1659419) (-960 "RATRET.spad" 1656696 1656706 1657325 1657330) (-959 "RATFACT.spad" 1656389 1656400 1656686 1656691) (-958 "RANDSRC.spad" 1655709 1655717 1656379 1656384) (-957 "RADUTIL.spad" 1655464 1655472 1655699 1655704) (-956 "RADIX.spad" 1652257 1652270 1653934 1654027) (-955 "RADFF.spad" 1650674 1650710 1650792 1650948) (-954 "RADCAT.spad" 1650268 1650276 1650664 1650669) (-953 "RADCAT.spad" 1649860 1649870 1650258 1650263) (-952 "QUEUE.spad" 1649203 1649213 1649467 1649494) (-951 "QUAT.spad" 1647788 1647798 1648130 1648195) (-950 "QUATCT2.spad" 1647407 1647425 1647778 1647783) (-949 "QUATCAT.spad" 1645572 1645582 1647337 1647402) (-948 "QUATCAT.spad" 1643488 1643500 1645255 1645260) (-947 "QUAGG.spad" 1642302 1642312 1643444 1643483) (-946 "QFORM.spad" 1641765 1641779 1642292 1642297) (-945 "QFCAT.spad" 1640456 1640466 1641655 1641760) (-944 "QFCAT.spad" 1638753 1638765 1639954 1639959) (-943 "QFCAT2.spad" 1638444 1638460 1638743 1638748) (-942 "QEQUAT.spad" 1638001 1638009 1638434 1638439) (-941 "QCMPACK.spad" 1632748 1632767 1637991 1637996) (-940 "QALGSET.spad" 1628823 1628855 1632662 1632667) (-939 "QALGSET2.spad" 1626819 1626837 1628813 1628818) (-938 "PWFFINTB.spad" 1624129 1624150 1626809 1626814) (-937 "PUSHVAR.spad" 1623458 1623477 1624119 1624124) (-936 "PTRANFN.spad" 1619584 1619594 1623448 1623453) (-935 "PTPACK.spad" 1616672 1616682 1619574 1619579) (-934 "PTFUNC2.spad" 1616493 1616507 1616662 1616667) (-933 "PTCAT.spad" 1615575 1615585 1616449 1616488) (-932 "PSQFR.spad" 1614882 1614906 1615565 1615570) (-931 "PSEUDLIN.spad" 1613740 1613750 1614872 1614877) (-930 "PSETPK.spad" 1599173 1599189 1613618 1613623) (-929 "PSETCAT.spad" 1593081 1593104 1599141 1599168) (-928 "PSETCAT.spad" 1586975 1587000 1593037 1593042) (-927 "PSCURVE.spad" 1585958 1585966 1586965 1586970) (-926 "PSCAT.spad" 1584725 1584754 1585856 1585953) (-925 "PSCAT.spad" 1583582 1583613 1584715 1584720) (-924 "PRTITION.spad" 1582425 1582433 1583572 1583577) (-923 "PRTDAST.spad" 1582145 1582153 1582415 1582420) (-922 "PRS.spad" 1571707 1571724 1582101 1582106) (-921 "PRQAGG.spad" 1571126 1571136 1571663 1571702) (-920 "PROPLOG.spad" 1570529 1570537 1571116 1571121) (-919 "PROPFRML.spad" 1568393 1568404 1570465 1570470) (-918 "PROPERTY.spad" 1567887 1567895 1568383 1568388) (-917 "PRODUCT.spad" 1565567 1565579 1565853 1565908) (-916 "PR.spad" 1563956 1563968 1564661 1564788) (-915 "PRINT.spad" 1563708 1563716 1563946 1563951) (-914 "PRIMES.spad" 1561959 1561969 1563698 1563703) (-913 "PRIMELT.spad" 1559940 1559954 1561949 1561954) (-912 "PRIMCAT.spad" 1559563 1559571 1559930 1559935) (-911 "PRIMARR.spad" 1558568 1558578 1558746 1558773) (-910 "PRIMARR2.spad" 1557291 1557303 1558558 1558563) (-909 "PREASSOC.spad" 1556663 1556675 1557281 1557286) (-908 "PPCURVE.spad" 1555800 1555808 1556653 1556658) (-907 "PORTNUM.spad" 1555575 1555583 1555790 1555795) (-906 "POLYROOT.spad" 1554347 1554369 1555531 1555536) (-905 "POLY.spad" 1551647 1551657 1552164 1552291) (-904 "POLYLIFT.spad" 1550908 1550931 1551637 1551642) (-903 "POLYCATQ.spad" 1549010 1549032 1550898 1550903) (-902 "POLYCAT.spad" 1542416 1542437 1548878 1549005) (-901 "POLYCAT.spad" 1535124 1535147 1541588 1541593) (-900 "POLY2UP.spad" 1534572 1534586 1535114 1535119) (-899 "POLY2.spad" 1534167 1534179 1534562 1534567) (-898 "POLUTIL.spad" 1533108 1533137 1534123 1534128) (-897 "POLTOPOL.spad" 1531856 1531871 1533098 1533103) (-896 "POINT.spad" 1530697 1530707 1530784 1530811) (-895 "PNTHEORY.spad" 1527363 1527371 1530687 1530692) (-894 "PMTOOLS.spad" 1526120 1526134 1527353 1527358) (-893 "PMSYM.spad" 1525665 1525675 1526110 1526115) (-892 "PMQFCAT.spad" 1525252 1525266 1525655 1525660) (-891 "PMPRED.spad" 1524721 1524735 1525242 1525247) (-890 "PMPREDFS.spad" 1524165 1524187 1524711 1524716) (-889 "PMPLCAT.spad" 1523235 1523253 1524097 1524102) (-888 "PMLSAGG.spad" 1522816 1522830 1523225 1523230) (-887 "PMKERNEL.spad" 1522383 1522395 1522806 1522811) (-886 "PMINS.spad" 1521959 1521969 1522373 1522378) (-885 "PMFS.spad" 1521532 1521550 1521949 1521954) (-884 "PMDOWN.spad" 1520818 1520832 1521522 1521527) (-883 "PMASS.spad" 1519830 1519838 1520808 1520813) (-882 "PMASSFS.spad" 1518799 1518815 1519820 1519825) (-881 "PLOTTOOL.spad" 1518579 1518587 1518789 1518794) (-880 "PLOT.spad" 1513410 1513418 1518569 1518574) (-879 "PLOT3D.spad" 1509830 1509838 1513400 1513405) (-878 "PLOT1.spad" 1508971 1508981 1509820 1509825) (-877 "PLEQN.spad" 1496187 1496214 1508961 1508966) (-876 "PINTERP.spad" 1495803 1495822 1496177 1496182) (-875 "PINTERPA.spad" 1495585 1495601 1495793 1495798) (-874 "PI.spad" 1495192 1495200 1495559 1495580) (-873 "PID.spad" 1494148 1494156 1495118 1495187) (-872 "PICOERCE.spad" 1493805 1493815 1494138 1494143) (-871 "PGROEB.spad" 1492402 1492416 1493795 1493800) (-870 "PGE.spad" 1483655 1483663 1492392 1492397) (-869 "PGCD.spad" 1482537 1482554 1483645 1483650) (-868 "PFRPAC.spad" 1481680 1481690 1482527 1482532) (-867 "PFR.spad" 1478337 1478347 1481582 1481675) (-866 "PFOTOOLS.spad" 1477595 1477611 1478327 1478332) (-865 "PFOQ.spad" 1476965 1476983 1477585 1477590) (-864 "PFO.spad" 1476384 1476411 1476955 1476960) (-863 "PF.spad" 1475958 1475970 1476189 1476282) (-862 "PFECAT.spad" 1473624 1473632 1475884 1475953) (-861 "PFECAT.spad" 1471318 1471328 1473580 1473585) (-860 "PFBRU.spad" 1469188 1469200 1471308 1471313) (-859 "PFBR.spad" 1466726 1466749 1469178 1469183) (-858 "PERM.spad" 1462407 1462417 1466556 1466571) (-857 "PERMGRP.spad" 1457143 1457153 1462397 1462402) (-856 "PERMCAT.spad" 1455695 1455705 1457123 1457138) (-855 "PERMAN.spad" 1454227 1454241 1455685 1455690) (-854 "PENDTREE.spad" 1453500 1453510 1453856 1453861) (-853 "PDRING.spad" 1451991 1452001 1453480 1453495) (-852 "PDRING.spad" 1450490 1450502 1451981 1451986) (-851 "PDEPROB.spad" 1449447 1449455 1450480 1450485) (-850 "PDEPACK.spad" 1443449 1443457 1449437 1449442) (-849 "PDECOMP.spad" 1442911 1442928 1443439 1443444) (-848 "PDECAT.spad" 1441265 1441273 1442901 1442906) (-847 "PCOMP.spad" 1441116 1441129 1441255 1441260) (-846 "PBWLB.spad" 1439698 1439715 1441106 1441111) (-845 "PATTERN.spad" 1434129 1434139 1439688 1439693) (-844 "PATTERN2.spad" 1433865 1433877 1434119 1434124) (-843 "PATTERN1.spad" 1432167 1432183 1433855 1433860) (-842 "PATRES.spad" 1429714 1429726 1432157 1432162) (-841 "PATRES2.spad" 1429376 1429390 1429704 1429709) (-840 "PATMATCH.spad" 1427538 1427569 1429089 1429094) (-839 "PATMAB.spad" 1426963 1426973 1427528 1427533) (-838 "PATLRES.spad" 1426047 1426061 1426953 1426958) (-837 "PATAB.spad" 1425811 1425821 1426037 1426042) (-836 "PARTPERM.spad" 1423173 1423181 1425801 1425806) (-835 "PARSURF.spad" 1422601 1422629 1423163 1423168) (-834 "PARSU2.spad" 1422396 1422412 1422591 1422596) (-833 "script-parser.spad" 1421916 1421924 1422386 1422391) (-832 "PARSCURV.spad" 1421344 1421372 1421906 1421911) (-831 "PARSC2.spad" 1421133 1421149 1421334 1421339) (-830 "PARPCURV.spad" 1420591 1420619 1421123 1421128) (-829 "PARPC2.spad" 1420380 1420396 1420581 1420586) (-828 "PAN2EXPR.spad" 1419792 1419800 1420370 1420375) (-827 "PALETTE.spad" 1418762 1418770 1419782 1419787) (-826 "PAIR.spad" 1417745 1417758 1418350 1418355) (-825 "PADICRC.spad" 1415078 1415096 1416253 1416346) (-824 "PADICRAT.spad" 1413096 1413108 1413317 1413410) (-823 "PADIC.spad" 1412791 1412803 1413022 1413091) (-822 "PADICCT.spad" 1411332 1411344 1412717 1412786) (-821 "PADEPAC.spad" 1410011 1410030 1411322 1411327) (-820 "PADE.spad" 1408751 1408767 1410001 1410006) (-819 "OWP.spad" 1407735 1407765 1408609 1408676) (-818 "OVAR.spad" 1407516 1407539 1407725 1407730) (-817 "OUT.spad" 1406600 1406608 1407506 1407511) (-816 "OUTFORM.spad" 1396014 1396022 1406590 1406595) (-815 "OSI.spad" 1395489 1395497 1396004 1396009) (-814 "OSGROUP.spad" 1395407 1395415 1395479 1395484) (-813 "ORTHPOL.spad" 1393868 1393878 1395324 1395329) (-812 "OREUP.spad" 1393228 1393256 1393550 1393589) (-811 "ORESUP.spad" 1392529 1392553 1392910 1392949) (-810 "OREPCTO.spad" 1390348 1390360 1392449 1392454) (-809 "OREPCAT.spad" 1384405 1384415 1390304 1390343) (-808 "OREPCAT.spad" 1378352 1378364 1384253 1384258) (-807 "ORDSET.spad" 1377518 1377526 1378342 1378347) (-806 "ORDSET.spad" 1376682 1376692 1377508 1377513) (-805 "ORDRING.spad" 1376072 1376080 1376662 1376677) (-804 "ORDRING.spad" 1375470 1375480 1376062 1376067) (-803 "ORDMON.spad" 1375325 1375333 1375460 1375465) (-802 "ORDFUNS.spad" 1374451 1374467 1375315 1375320) (-801 "ORDFIN.spad" 1374385 1374393 1374441 1374446) (-800 "ORDCOMP.spad" 1372853 1372863 1373935 1373964) (-799 "ORDCOMP2.spad" 1372138 1372150 1372843 1372848) (-798 "OPTPROB.spad" 1370718 1370726 1372128 1372133) (-797 "OPTPACK.spad" 1363103 1363111 1370708 1370713) (-796 "OPTCAT.spad" 1360778 1360786 1363093 1363098) (-795 "OPQUERY.spad" 1360327 1360335 1360768 1360773) (-794 "OP.spad" 1360069 1360079 1360149 1360216) (-793 "ONECOMP.spad" 1358817 1358827 1359619 1359648) (-792 "ONECOMP2.spad" 1358235 1358247 1358807 1358812) (-791 "OMSERVER.spad" 1357237 1357245 1358225 1358230) (-790 "OMSAGG.spad" 1357013 1357023 1357181 1357232) (-789 "OMPKG.spad" 1355625 1355633 1357003 1357008) (-788 "OM.spad" 1354590 1354598 1355615 1355620) (-787 "OMLO.spad" 1354015 1354027 1354476 1354515) (-786 "OMEXPR.spad" 1353849 1353859 1354005 1354010) (-785 "OMERR.spad" 1353392 1353400 1353839 1353844) (-784 "OMERRK.spad" 1352426 1352434 1353382 1353387) (-783 "OMENC.spad" 1351770 1351778 1352416 1352421) (-782 "OMDEV.spad" 1346059 1346067 1351760 1351765) (-781 "OMCONN.spad" 1345468 1345476 1346049 1346054) (-780 "OINTDOM.spad" 1345231 1345239 1345394 1345463) (-779 "OFMONOID.spad" 1341418 1341428 1345221 1345226) (-778 "ODVAR.spad" 1340679 1340689 1341408 1341413) (-777 "ODR.spad" 1340127 1340153 1340491 1340640) (-776 "ODPOL.spad" 1337476 1337486 1337816 1337943) (-775 "ODP.spad" 1328648 1328668 1329021 1329150) (-774 "ODETOOLS.spad" 1327231 1327250 1328638 1328643) (-773 "ODESYS.spad" 1324881 1324898 1327221 1327226) (-772 "ODERTRIC.spad" 1320822 1320839 1324838 1324843) (-771 "ODERED.spad" 1320209 1320233 1320812 1320817) (-770 "ODERAT.spad" 1317760 1317777 1320199 1320204) (-769 "ODEPRRIC.spad" 1314651 1314673 1317750 1317755) (-768 "ODEPROB.spad" 1313850 1313858 1314641 1314646) (-767 "ODEPRIM.spad" 1311124 1311146 1313840 1313845) (-766 "ODEPAL.spad" 1310500 1310524 1311114 1311119) (-765 "ODEPACK.spad" 1297102 1297110 1310490 1310495) (-764 "ODEINT.spad" 1296533 1296549 1297092 1297097) (-763 "ODEIFTBL.spad" 1293928 1293936 1296523 1296528) (-762 "ODEEF.spad" 1289295 1289311 1293918 1293923) (-761 "ODECONST.spad" 1288814 1288832 1289285 1289290) (-760 "ODECAT.spad" 1287410 1287418 1288804 1288809) (-759 "OCT.spad" 1285556 1285566 1286272 1286311) (-758 "OCTCT2.spad" 1285200 1285221 1285546 1285551) (-757 "OC.spad" 1282974 1282984 1285156 1285195) (-756 "OC.spad" 1280473 1280485 1282657 1282662) (-755 "OCAMON.spad" 1280321 1280329 1280463 1280468) (-754 "OASGP.spad" 1280136 1280144 1280311 1280316) (-753 "OAMONS.spad" 1279656 1279664 1280126 1280131) (-752 "OAMON.spad" 1279517 1279525 1279646 1279651) (-751 "OAGROUP.spad" 1279379 1279387 1279507 1279512) (-750 "NUMTUBE.spad" 1278966 1278982 1279369 1279374) (-749 "NUMQUAD.spad" 1266828 1266836 1278956 1278961) (-748 "NUMODE.spad" 1257964 1257972 1266818 1266823) (-747 "NUMINT.spad" 1255522 1255530 1257954 1257959) (-746 "NUMFMT.spad" 1254362 1254370 1255512 1255517) (-745 "NUMERIC.spad" 1246435 1246445 1254168 1254173) (-744 "NTSCAT.spad" 1244925 1244941 1246391 1246430) (-743 "NTPOLFN.spad" 1244470 1244480 1244842 1244847) (-742 "NSUP.spad" 1237483 1237493 1242023 1242176) (-741 "NSUP2.spad" 1236875 1236887 1237473 1237478) (-740 "NSMP.spad" 1233074 1233093 1233382 1233509) (-739 "NREP.spad" 1231446 1231460 1233064 1233069) (-738 "NPCOEF.spad" 1230692 1230712 1231436 1231441) (-737 "NORMRETR.spad" 1230290 1230329 1230682 1230687) (-736 "NORMPK.spad" 1228192 1228211 1230280 1230285) (-735 "NORMMA.spad" 1227880 1227906 1228182 1228187) (-734 "NONE.spad" 1227621 1227629 1227870 1227875) (-733 "NONE1.spad" 1227297 1227307 1227611 1227616) (-732 "NODE1.spad" 1226766 1226782 1227287 1227292) (-731 "NNI.spad" 1225653 1225661 1226740 1226761) (-730 "NLINSOL.spad" 1224275 1224285 1225643 1225648) (-729 "NIPROB.spad" 1222758 1222766 1224265 1224270) (-728 "NFINTBAS.spad" 1220218 1220235 1222748 1222753) (-727 "NCODIV.spad" 1218416 1218432 1220208 1220213) (-726 "NCNTFRAC.spad" 1218058 1218072 1218406 1218411) (-725 "NCEP.spad" 1216218 1216232 1218048 1218053) (-724 "NASRING.spad" 1215814 1215822 1216208 1216213) (-723 "NASRING.spad" 1215408 1215418 1215804 1215809) (-722 "NARNG.spad" 1214752 1214760 1215398 1215403) (-721 "NARNG.spad" 1214094 1214104 1214742 1214747) (-720 "NAGSP.spad" 1213167 1213175 1214084 1214089) (-719 "NAGS.spad" 1202692 1202700 1213157 1213162) (-718 "NAGF07.spad" 1201085 1201093 1202682 1202687) (-717 "NAGF04.spad" 1195317 1195325 1201075 1201080) (-716 "NAGF02.spad" 1189126 1189134 1195307 1195312) (-715 "NAGF01.spad" 1184729 1184737 1189116 1189121) (-714 "NAGE04.spad" 1178189 1178197 1184719 1184724) (-713 "NAGE02.spad" 1168531 1168539 1178179 1178184) (-712 "NAGE01.spad" 1164415 1164423 1168521 1168526) (-711 "NAGD03.spad" 1162335 1162343 1164405 1164410) (-710 "NAGD02.spad" 1154866 1154874 1162325 1162330) (-709 "NAGD01.spad" 1148979 1148987 1154856 1154861) (-708 "NAGC06.spad" 1144766 1144774 1148969 1148974) (-707 "NAGC05.spad" 1143235 1143243 1144756 1144761) (-706 "NAGC02.spad" 1142490 1142498 1143225 1143230) (-705 "NAALG.spad" 1142025 1142035 1142458 1142485) (-704 "NAALG.spad" 1141580 1141592 1142015 1142020) (-703 "MULTSQFR.spad" 1138538 1138555 1141570 1141575) (-702 "MULTFACT.spad" 1137921 1137938 1138528 1138533) (-701 "MTSCAT.spad" 1135955 1135976 1137819 1137916) (-700 "MTHING.spad" 1135612 1135622 1135945 1135950) (-699 "MSYSCMD.spad" 1135046 1135054 1135602 1135607) (-698 "MSET.spad" 1132988 1132998 1134752 1134791) (-697 "MSETAGG.spad" 1132821 1132831 1132944 1132983) (-696 "MRING.spad" 1129792 1129804 1132529 1132596) (-695 "MRF2.spad" 1129360 1129374 1129782 1129787) (-694 "MRATFAC.spad" 1128906 1128923 1129350 1129355) (-693 "MPRFF.spad" 1126936 1126955 1128896 1128901) (-692 "MPOLY.spad" 1124374 1124389 1124733 1124860) (-691 "MPCPF.spad" 1123638 1123657 1124364 1124369) (-690 "MPC3.spad" 1123453 1123493 1123628 1123633) (-689 "MPC2.spad" 1123095 1123128 1123443 1123448) (-688 "MONOTOOL.spad" 1121430 1121447 1123085 1123090) (-687 "MONOID.spad" 1120749 1120757 1121420 1121425) (-686 "MONOID.spad" 1120066 1120076 1120739 1120744) (-685 "MONOGEN.spad" 1118812 1118825 1119926 1120061) (-684 "MONOGEN.spad" 1117580 1117595 1118696 1118701) (-683 "MONADWU.spad" 1115594 1115602 1117570 1117575) (-682 "MONADWU.spad" 1113606 1113616 1115584 1115589) (-681 "MONAD.spad" 1112750 1112758 1113596 1113601) (-680 "MONAD.spad" 1111892 1111902 1112740 1112745) (-679 "MOEBIUS.spad" 1110578 1110592 1111872 1111887) (-678 "MODULE.spad" 1110448 1110458 1110546 1110573) (-677 "MODULE.spad" 1110338 1110350 1110438 1110443) (-676 "MODRING.spad" 1109669 1109708 1110318 1110333) (-675 "MODOP.spad" 1108328 1108340 1109491 1109558) (-674 "MODMONOM.spad" 1107860 1107878 1108318 1108323) (-673 "MODMON.spad" 1104565 1104581 1105341 1105494) (-672 "MODFIELD.spad" 1103923 1103962 1104467 1104560) (-671 "MMLFORM.spad" 1102783 1102791 1103913 1103918) (-670 "MMAP.spad" 1102523 1102557 1102773 1102778) (-669 "MLO.spad" 1100950 1100960 1102479 1102518) (-668 "MLIFT.spad" 1099522 1099539 1100940 1100945) (-667 "MKUCFUNC.spad" 1099055 1099073 1099512 1099517) (-666 "MKRECORD.spad" 1098657 1098670 1099045 1099050) (-665 "MKFUNC.spad" 1098038 1098048 1098647 1098652) (-664 "MKFLCFN.spad" 1096994 1097004 1098028 1098033) (-663 "MKCHSET.spad" 1096770 1096780 1096984 1096989) (-662 "MKBCFUNC.spad" 1096255 1096273 1096760 1096765) (-661 "MINT.spad" 1095694 1095702 1096157 1096250) (-660 "MHROWRED.spad" 1094195 1094205 1095684 1095689) (-659 "MFLOAT.spad" 1092640 1092648 1094085 1094190) (-658 "MFINFACT.spad" 1092040 1092062 1092630 1092635) (-657 "MESH.spad" 1089772 1089780 1092030 1092035) (-656 "MDDFACT.spad" 1087965 1087975 1089762 1089767) (-655 "MDAGG.spad" 1087240 1087250 1087933 1087960) (-654 "MCMPLX.spad" 1083218 1083226 1083832 1084033) (-653 "MCDEN.spad" 1082426 1082438 1083208 1083213) (-652 "MCALCFN.spad" 1079528 1079554 1082416 1082421) (-651 "MAYBE.spad" 1078777 1078788 1079518 1079523) (-650 "MATSTOR.spad" 1076053 1076063 1078767 1078772) (-649 "MATRIX.spad" 1074757 1074767 1075241 1075268) (-648 "MATLIN.spad" 1072083 1072107 1074641 1074646) (-647 "MATCAT.spad" 1063656 1063678 1072039 1072078) (-646 "MATCAT.spad" 1055113 1055137 1063498 1063503) (-645 "MATCAT2.spad" 1054381 1054429 1055103 1055108) (-644 "MAPPKG3.spad" 1053280 1053294 1054371 1054376) (-643 "MAPPKG2.spad" 1052614 1052626 1053270 1053275) (-642 "MAPPKG1.spad" 1051432 1051442 1052604 1052609) (-641 "MAPPAST.spad" 1050745 1050753 1051422 1051427) (-640 "MAPHACK3.spad" 1050553 1050567 1050735 1050740) (-639 "MAPHACK2.spad" 1050318 1050330 1050543 1050548) (-638 "MAPHACK1.spad" 1049948 1049958 1050308 1050313) (-637 "MAGMA.spad" 1047738 1047755 1049938 1049943) (-636 "M3D.spad" 1045436 1045446 1047118 1047123) (-635 "LZSTAGG.spad" 1042654 1042664 1045416 1045431) (-634 "LZSTAGG.spad" 1039880 1039892 1042644 1042649) (-633 "LWORD.spad" 1036585 1036602 1039870 1039875) (-632 "LSTAST.spad" 1036370 1036378 1036575 1036580) (-631 "LSQM.spad" 1034598 1034612 1034996 1035047) (-630 "LSPP.spad" 1034131 1034148 1034588 1034593) (-629 "LSMP.spad" 1032971 1032999 1034121 1034126) (-628 "LSMP1.spad" 1030775 1030789 1032961 1032966) (-627 "LSAGG.spad" 1030432 1030442 1030731 1030770) (-626 "LSAGG.spad" 1030121 1030133 1030422 1030427) (-625 "LPOLY.spad" 1029075 1029094 1029977 1030046) (-624 "LPEFRAC.spad" 1028332 1028342 1029065 1029070) (-623 "LO.spad" 1027733 1027747 1028266 1028293) (-622 "LOGIC.spad" 1027335 1027343 1027723 1027728) (-621 "LOGIC.spad" 1026935 1026945 1027325 1027330) (-620 "LODOOPS.spad" 1025853 1025865 1026925 1026930) (-619 "LODO.spad" 1025239 1025255 1025535 1025574) (-618 "LODOF.spad" 1024283 1024300 1025196 1025201) (-617 "LODOCAT.spad" 1022941 1022951 1024239 1024278) (-616 "LODOCAT.spad" 1021597 1021609 1022897 1022902) (-615 "LODO2.spad" 1020872 1020884 1021279 1021318) (-614 "LODO1.spad" 1020274 1020284 1020554 1020593) (-613 "LODEEF.spad" 1019046 1019064 1020264 1020269) (-612 "LNAGG.spad" 1014838 1014848 1019026 1019041) (-611 "LNAGG.spad" 1010604 1010616 1014794 1014799) (-610 "LMOPS.spad" 1007340 1007357 1010594 1010599) (-609 "LMODULE.spad" 1006982 1006992 1007330 1007335) (-608 "LMDICT.spad" 1006265 1006275 1006533 1006560) (-607 "LITERAL.spad" 1006171 1006182 1006255 1006260) (-606 "LIST.spad" 1003889 1003899 1005318 1005345) (-605 "LIST3.spad" 1003180 1003194 1003879 1003884) (-604 "LIST2.spad" 1001820 1001832 1003170 1003175) (-603 "LIST2MAP.spad" 998697 998709 1001810 1001815) (-602 "LINEXP.spad" 998129 998139 998677 998692) (-601 "LINDEP.spad" 996906 996918 998041 998046) (-600 "LIMITRF.spad" 994820 994830 996896 996901) (-599 "LIMITPS.spad" 993703 993716 994810 994815) (-598 "LIE.spad" 991717 991729 992993 993138) (-597 "LIECAT.spad" 991193 991203 991643 991712) (-596 "LIECAT.spad" 990697 990709 991149 991154) (-595 "LIB.spad" 988745 988753 989356 989371) (-594 "LGROBP.spad" 986098 986117 988735 988740) (-593 "LF.spad" 985017 985033 986088 986093) (-592 "LFCAT.spad" 984036 984044 985007 985012) (-591 "LEXTRIPK.spad" 979539 979554 984026 984031) (-590 "LEXP.spad" 977542 977569 979519 979534) (-589 "LETAST.spad" 977243 977251 977532 977537) (-588 "LEADCDET.spad" 975627 975644 977233 977238) (-587 "LAZM3PK.spad" 974331 974353 975617 975622) (-586 "LAUPOL.spad" 973022 973035 973926 973995) (-585 "LAPLACE.spad" 972595 972611 973012 973017) (-584 "LA.spad" 972035 972049 972517 972556) (-583 "LALG.spad" 971811 971821 972015 972030) (-582 "LALG.spad" 971595 971607 971801 971806) (-581 "KOVACIC.spad" 970308 970325 971585 971590) (-580 "KONVERT.spad" 970030 970040 970298 970303) (-579 "KOERCE.spad" 969767 969777 970020 970025) (-578 "KERNEL.spad" 968302 968312 969551 969556) (-577 "KERNEL2.spad" 968005 968017 968292 968297) (-576 "KDAGG.spad" 967096 967118 967973 968000) (-575 "KDAGG.spad" 966207 966231 967086 967091) (-574 "KAFILE.spad" 965170 965186 965405 965432) (-573 "JORDAN.spad" 962997 963009 964460 964605) (-572 "JOINAST.spad" 962691 962699 962987 962992) (-571 "JAVACODE.spad" 962457 962465 962681 962686) (-570 "IXAGG.spad" 960570 960594 962437 962452) (-569 "IXAGG.spad" 958548 958574 960417 960422) (-568 "IVECTOR.spad" 957321 957336 957476 957503) (-567 "ITUPLE.spad" 956466 956476 957311 957316) (-566 "ITRIGMNP.spad" 955277 955296 956456 956461) (-565 "ITFUN3.spad" 954771 954785 955267 955272) (-564 "ITFUN2.spad" 954501 954513 954761 954766) (-563 "ITAYLOR.spad" 952293 952308 954337 954462) (-562 "ISUPS.spad" 944704 944719 951267 951364) (-561 "ISUMP.spad" 944201 944217 944694 944699) (-560 "ISTRING.spad" 943204 943217 943370 943397) (-559 "IRURPK.spad" 941917 941936 943194 943199) (-558 "IRSN.spad" 939877 939885 941907 941912) (-557 "IRRF2F.spad" 938352 938362 939833 939838) (-556 "IRREDFFX.spad" 937953 937964 938342 938347) (-555 "IROOT.spad" 936284 936294 937943 937948) (-554 "IR.spad" 934074 934088 936140 936167) (-553 "IR2.spad" 933094 933110 934064 934069) (-552 "IR2F.spad" 932294 932310 933084 933089) (-551 "IPRNTPK.spad" 932054 932062 932284 932289) (-550 "IPF.spad" 931619 931631 931859 931952) (-549 "IPADIC.spad" 931380 931406 931545 931614) (-548 "INVLAPLA.spad" 931025 931041 931370 931375) (-547 "INTTR.spad" 924271 924288 931015 931020) (-546 "INTTOOLS.spad" 921983 921999 923846 923851) (-545 "INTSLPE.spad" 921289 921297 921973 921978) (-544 "INTRVL.spad" 920855 920865 921203 921284) (-543 "INTRF.spad" 919219 919233 920845 920850) (-542 "INTRET.spad" 918651 918661 919209 919214) (-541 "INTRAT.spad" 917326 917343 918641 918646) (-540 "INTPM.spad" 915689 915705 916969 916974) (-539 "INTPAF.spad" 913457 913475 915621 915626) (-538 "INTPACK.spad" 903767 903775 913447 913452) (-537 "INT.spad" 903128 903136 903621 903762) (-536 "INTHERTR.spad" 902394 902411 903118 903123) (-535 "INTHERAL.spad" 902060 902084 902384 902389) (-534 "INTHEORY.spad" 898473 898481 902050 902055) (-533 "INTG0.spad" 891936 891954 898405 898410) (-532 "INTFTBL.spad" 885965 885973 891926 891931) (-531 "INTFACT.spad" 885024 885034 885955 885960) (-530 "INTEF.spad" 883339 883355 885014 885019) (-529 "INTDOM.spad" 881954 881962 883265 883334) (-528 "INTDOM.spad" 880631 880641 881944 881949) (-527 "INTCAT.spad" 878884 878894 880545 880626) (-526 "INTBIT.spad" 878387 878395 878874 878879) (-525 "INTALG.spad" 877569 877596 878377 878382) (-524 "INTAF.spad" 877061 877077 877559 877564) (-523 "INTABL.spad" 875579 875610 875742 875769) (-522 "INS.spad" 872975 872983 875481 875574) (-521 "INS.spad" 870457 870467 872965 872970) (-520 "INPSIGN.spad" 869891 869904 870447 870452) (-519 "INPRODPF.spad" 868957 868976 869881 869886) (-518 "INPRODFF.spad" 868015 868039 868947 868952) (-517 "INNMFACT.spad" 866986 867003 868005 868010) (-516 "INMODGCD.spad" 866470 866500 866976 866981) (-515 "INFSP.spad" 864755 864777 866460 866465) (-514 "INFPROD0.spad" 863805 863824 864745 864750) (-513 "INFORM.spad" 861073 861081 863795 863800) (-512 "INFORM1.spad" 860698 860708 861063 861068) (-511 "INFINITY.spad" 860250 860258 860688 860693) (-510 "INEP.spad" 858782 858804 860240 860245) (-509 "INDE.spad" 858511 858528 858772 858777) (-508 "INCRMAPS.spad" 857932 857942 858501 858506) (-507 "INBFF.spad" 853702 853713 857922 857927) (-506 "INAST.spad" 853368 853376 853692 853697) (-505 "IMPTAST.spad" 853076 853084 853358 853363) (-504 "IMATRIX.spad" 852021 852047 852533 852560) (-503 "IMATQF.spad" 851115 851159 851977 851982) (-502 "IMATLIN.spad" 849720 849744 851071 851076) (-501 "ILIST.spad" 848376 848391 848903 848930) (-500 "IIARRAY2.spad" 847764 847802 847983 848010) (-499 "IFF.spad" 847174 847190 847445 847538) (-498 "IFAST.spad" 846791 846799 847164 847169) (-497 "IFARRAY.spad" 844278 844293 845974 846001) (-496 "IFAMON.spad" 844140 844157 844234 844239) (-495 "IEVALAB.spad" 843529 843541 844130 844135) (-494 "IEVALAB.spad" 842916 842930 843519 843524) (-493 "IDPO.spad" 842714 842726 842906 842911) (-492 "IDPOAMS.spad" 842470 842482 842704 842709) (-491 "IDPOAM.spad" 842190 842202 842460 842465) (-490 "IDPC.spad" 841124 841136 842180 842185) (-489 "IDPAM.spad" 840869 840881 841114 841119) (-488 "IDPAG.spad" 840616 840628 840859 840864) (-487 "IDENT.spad" 840533 840541 840606 840611) (-486 "IDECOMP.spad" 837770 837788 840523 840528) (-485 "IDEAL.spad" 832693 832732 837705 837710) (-484 "ICDEN.spad" 831844 831860 832683 832688) (-483 "ICARD.spad" 831033 831041 831834 831839) (-482 "IBPTOOLS.spad" 829626 829643 831023 831028) (-481 "IBITS.spad" 828825 828838 829262 829289) (-480 "IBATOOL.spad" 825700 825719 828815 828820) (-479 "IBACHIN.spad" 824187 824202 825690 825695) (-478 "IARRAY2.spad" 823175 823201 823794 823821) (-477 "IARRAY1.spad" 822220 822235 822358 822385) (-476 "IAN.spad" 820435 820443 822038 822131) (-475 "IALGFACT.spad" 820036 820069 820425 820430) (-474 "HYPCAT.spad" 819460 819468 820026 820031) (-473 "HYPCAT.spad" 818882 818892 819450 819455) (-472 "HOSTNAME.spad" 818690 818698 818872 818877) (-471 "HOAGG.spad" 815948 815958 818670 818685) (-470 "HOAGG.spad" 812991 813003 815715 815720) (-469 "HEXADEC.spad" 810863 810871 811461 811554) (-468 "HEUGCD.spad" 809878 809889 810853 810858) (-467 "HELLFDIV.spad" 809468 809492 809868 809873) (-466 "HEAP.spad" 808860 808870 809075 809102) (-465 "HEADAST.spad" 808391 808399 808850 808855) (-464 "HDP.spad" 799559 799575 799936 800065) (-463 "HDMP.spad" 796738 796753 797356 797483) (-462 "HB.spad" 794975 794983 796728 796733) (-461 "HASHTBL.spad" 793445 793476 793656 793683) (-460 "HACKPI.spad" 792928 792936 793347 793440) (-459 "GTSET.spad" 791867 791883 792574 792601) (-458 "GSTBL.spad" 790386 790421 790560 790575) (-457 "GSERIES.spad" 787553 787580 788518 788667) (-456 "GROUP.spad" 786822 786830 787533 787548) (-455 "GROUP.spad" 786099 786109 786812 786817) (-454 "GROEBSOL.spad" 784587 784608 786089 786094) (-453 "GRMOD.spad" 783158 783170 784577 784582) (-452 "GRMOD.spad" 781727 781741 783148 783153) (-451 "GRIMAGE.spad" 774332 774340 781717 781722) (-450 "GRDEF.spad" 772711 772719 774322 774327) (-449 "GRAY.spad" 771170 771178 772701 772706) (-448 "GRALG.spad" 770217 770229 771160 771165) (-447 "GRALG.spad" 769262 769276 770207 770212) (-446 "GPOLSET.spad" 768716 768739 768944 768971) (-445 "GOSPER.spad" 767981 767999 768706 768711) (-444 "GMODPOL.spad" 767119 767146 767949 767976) (-443 "GHENSEL.spad" 766188 766202 767109 767114) (-442 "GENUPS.spad" 762289 762302 766178 766183) (-441 "GENUFACT.spad" 761866 761876 762279 762284) (-440 "GENPGCD.spad" 761450 761467 761856 761861) (-439 "GENMFACT.spad" 760902 760921 761440 761445) (-438 "GENEEZ.spad" 758841 758854 760892 760897) (-437 "GDMP.spad" 755862 755879 756638 756765) (-436 "GCNAALG.spad" 749757 749784 755656 755723) (-435 "GCDDOM.spad" 748929 748937 749683 749752) (-434 "GCDDOM.spad" 748163 748173 748919 748924) (-433 "GB.spad" 745681 745719 748119 748124) (-432 "GBINTERN.spad" 741701 741739 745671 745676) (-431 "GBF.spad" 737458 737496 741691 741696) (-430 "GBEUCLID.spad" 735332 735370 737448 737453) (-429 "GAUSSFAC.spad" 734629 734637 735322 735327) (-428 "GALUTIL.spad" 732951 732961 734585 734590) (-427 "GALPOLYU.spad" 731397 731410 732941 732946) (-426 "GALFACTU.spad" 729562 729581 731387 731392) (-425 "GALFACT.spad" 719695 719706 729552 729557) (-424 "FVFUN.spad" 716708 716716 719675 719690) (-423 "FVC.spad" 715750 715758 716688 716703) (-422 "FUNCTION.spad" 715599 715611 715740 715745) (-421 "FT.spad" 713811 713819 715589 715594) (-420 "FTEM.spad" 712974 712982 713801 713806) (-419 "FSUPFACT.spad" 711875 711894 712911 712916) (-418 "FST.spad" 709961 709969 711865 711870) (-417 "FSRED.spad" 709439 709455 709951 709956) (-416 "FSPRMELT.spad" 708263 708279 709396 709401) (-415 "FSPECF.spad" 706340 706356 708253 708258) (-414 "FS.spad" 700391 700401 706104 706335) (-413 "FS.spad" 694233 694245 699948 699953) (-412 "FSINT.spad" 693891 693907 694223 694228) (-411 "FSERIES.spad" 693078 693090 693711 693810) (-410 "FSCINT.spad" 692391 692407 693068 693073) (-409 "FSAGG.spad" 691496 691506 692335 692386) (-408 "FSAGG.spad" 690575 690587 691416 691421) (-407 "FSAGG2.spad" 689274 689290 690565 690570) (-406 "FS2UPS.spad" 683663 683697 689264 689269) (-405 "FS2.spad" 683308 683324 683653 683658) (-404 "FS2EXPXP.spad" 682431 682454 683298 683303) (-403 "FRUTIL.spad" 681373 681383 682421 682426) (-402 "FR.spad" 675070 675080 680400 680469) (-401 "FRNAALG.spad" 670157 670167 675012 675065) (-400 "FRNAALG.spad" 665256 665268 670113 670118) (-399 "FRNAAF2.spad" 664710 664728 665246 665251) (-398 "FRMOD.spad" 664105 664135 664642 664647) (-397 "FRIDEAL.spad" 663300 663321 664085 664100) (-396 "FRIDEAL2.spad" 662902 662934 663290 663295) (-395 "FRETRCT.spad" 662413 662423 662892 662897) (-394 "FRETRCT.spad" 661792 661804 662273 662278) (-393 "FRAMALG.spad" 660120 660133 661748 661787) (-392 "FRAMALG.spad" 658480 658495 660110 660115) (-391 "FRAC.spad" 655583 655593 655986 656159) (-390 "FRAC2.spad" 655186 655198 655573 655578) (-389 "FR2.spad" 654520 654532 655176 655181) (-388 "FPS.spad" 651329 651337 654410 654515) (-387 "FPS.spad" 648166 648176 651249 651254) (-386 "FPC.spad" 647208 647216 648068 648161) (-385 "FPC.spad" 646336 646346 647198 647203) (-384 "FPATMAB.spad" 646088 646098 646316 646331) (-383 "FPARFRAC.spad" 644561 644578 646078 646083) (-382 "FORTRAN.spad" 643067 643110 644551 644556) (-381 "FORT.spad" 641996 642004 643057 643062) (-380 "FORTFN.spad" 639156 639164 641976 641991) (-379 "FORTCAT.spad" 638830 638838 639136 639151) (-378 "FORMULA.spad" 636168 636176 638820 638825) (-377 "FORMULA1.spad" 635647 635657 636158 636163) (-376 "FORDER.spad" 635338 635362 635637 635642) (-375 "FOP.spad" 634539 634547 635328 635333) (-374 "FNLA.spad" 633963 633985 634507 634534) (-373 "FNCAT.spad" 632291 632299 633953 633958) (-372 "FNAME.spad" 632183 632191 632281 632286) (-371 "FMTC.spad" 631981 631989 632109 632178) (-370 "FMONOID.spad" 629036 629046 631937 631942) (-369 "FM.spad" 628731 628743 628970 628997) (-368 "FMFUN.spad" 625751 625759 628711 628726) (-367 "FMC.spad" 624793 624801 625731 625746) (-366 "FMCAT.spad" 622447 622465 624761 624788) (-365 "FM1.spad" 621804 621816 622381 622408) (-364 "FLOATRP.spad" 619525 619539 621794 621799) (-363 "FLOAT.spad" 612689 612697 619391 619520) (-362 "FLOATCP.spad" 610106 610120 612679 612684) (-361 "FLINEXP.spad" 609818 609828 610086 610101) (-360 "FLINEXP.spad" 609484 609496 609754 609759) (-359 "FLASORT.spad" 608804 608816 609474 609479) (-358 "FLALG.spad" 606450 606469 608730 608799) (-357 "FLAGG.spad" 603456 603466 606418 606445) (-356 "FLAGG.spad" 600375 600387 603339 603344) (-355 "FLAGG2.spad" 599056 599072 600365 600370) (-354 "FINRALG.spad" 597085 597098 599012 599051) (-353 "FINRALG.spad" 595040 595055 596969 596974) (-352 "FINITE.spad" 594192 594200 595030 595035) (-351 "FINAALG.spad" 583173 583183 594134 594187) (-350 "FINAALG.spad" 572166 572178 583129 583134) (-349 "FILE.spad" 571749 571759 572156 572161) (-348 "FILECAT.spad" 570267 570284 571739 571744) (-347 "FIELD.spad" 569673 569681 570169 570262) (-346 "FIELD.spad" 569165 569175 569663 569668) (-345 "FGROUP.spad" 567774 567784 569145 569160) (-344 "FGLMICPK.spad" 566561 566576 567764 567769) (-343 "FFX.spad" 565936 565951 566277 566370) (-342 "FFSLPE.spad" 565425 565446 565926 565931) (-341 "FFPOLY.spad" 556677 556688 565415 565420) (-340 "FFPOLY2.spad" 555737 555754 556667 556672) (-339 "FFP.spad" 555134 555154 555453 555546) (-338 "FF.spad" 554582 554598 554815 554908) (-337 "FFNBX.spad" 553094 553114 554298 554391) (-336 "FFNBP.spad" 551607 551624 552810 552903) (-335 "FFNB.spad" 550072 550093 551288 551381) (-334 "FFINTBAS.spad" 547486 547505 550062 550067) (-333 "FFIELDC.spad" 545061 545069 547388 547481) (-332 "FFIELDC.spad" 542722 542732 545051 545056) (-331 "FFHOM.spad" 541470 541487 542712 542717) (-330 "FFF.spad" 538905 538916 541460 541465) (-329 "FFCGX.spad" 537752 537772 538621 538714) (-328 "FFCGP.spad" 536641 536661 537468 537561) (-327 "FFCG.spad" 535433 535454 536322 536415) (-326 "FFCAT.spad" 528460 528482 535272 535428) (-325 "FFCAT.spad" 521566 521590 528380 528385) (-324 "FFCAT2.spad" 521311 521351 521556 521561) (-323 "FEXPR.spad" 513024 513070 521071 521110) (-322 "FEVALAB.spad" 512730 512740 513014 513019) (-321 "FEVALAB.spad" 512221 512233 512507 512512) (-320 "FDIV.spad" 511663 511687 512211 512216) (-319 "FDIVCAT.spad" 509705 509729 511653 511658) (-318 "FDIVCAT.spad" 507745 507771 509695 509700) (-317 "FDIV2.spad" 507399 507439 507735 507740) (-316 "FCPAK1.spad" 505952 505960 507389 507394) (-315 "FCOMP.spad" 505331 505341 505942 505947) (-314 "FC.spad" 495156 495164 505321 505326) (-313 "FAXF.spad" 488091 488105 495058 495151) (-312 "FAXF.spad" 481078 481094 488047 488052) (-311 "FARRAY.spad" 479224 479234 480261 480288) (-310 "FAMR.spad" 477344 477356 479122 479219) (-309 "FAMR.spad" 475448 475462 477228 477233) (-308 "FAMONOID.spad" 475098 475108 475402 475407) (-307 "FAMONC.spad" 473320 473332 475088 475093) (-306 "FAGROUP.spad" 472926 472936 473216 473243) (-305 "FACUTIL.spad" 471122 471139 472916 472921) (-304 "FACTFUNC.spad" 470298 470308 471112 471117) (-303 "EXPUPXS.spad" 467131 467154 468430 468579) (-302 "EXPRTUBE.spad" 464359 464367 467121 467126) (-301 "EXPRODE.spad" 461231 461247 464349 464354) (-300 "EXPR.spad" 456533 456543 457247 457650) (-299 "EXPR2UPS.spad" 452625 452638 456523 456528) (-298 "EXPR2.spad" 452328 452340 452615 452620) (-297 "EXPEXPAN.spad" 449269 449294 449903 449996) (-296 "EXIT.spad" 448940 448948 449259 449264) (-295 "EXITAST.spad" 448762 448770 448930 448935) (-294 "EVALCYC.spad" 448220 448234 448752 448757) (-293 "EVALAB.spad" 447784 447794 448210 448215) (-292 "EVALAB.spad" 447346 447358 447774 447779) (-291 "EUCDOM.spad" 444888 444896 447272 447341) (-290 "EUCDOM.spad" 442492 442502 444878 444883) (-289 "ESTOOLS.spad" 434332 434340 442482 442487) (-288 "ESTOOLS2.spad" 433933 433947 434322 434327) (-287 "ESTOOLS1.spad" 433618 433629 433923 433928) (-286 "ES.spad" 426165 426173 433608 433613) (-285 "ES.spad" 418620 418630 426065 426070) (-284 "ESCONT.spad" 415393 415401 418610 418615) (-283 "ESCONT1.spad" 415142 415154 415383 415388) (-282 "ES2.spad" 414637 414653 415132 415137) (-281 "ES1.spad" 414203 414219 414627 414632) (-280 "ERROR.spad" 411524 411532 414193 414198) (-279 "EQTBL.spad" 409996 410018 410205 410232) (-278 "EQ.spad" 404880 404890 407679 407788) (-277 "EQ2.spad" 404596 404608 404870 404875) (-276 "EP.spad" 400910 400920 404586 404591) (-275 "ENV.spad" 399612 399620 400900 400905) (-274 "ENTIRER.spad" 399280 399288 399556 399607) (-273 "EMR.spad" 398481 398522 399206 399275) (-272 "ELTAGG.spad" 396721 396740 398471 398476) (-271 "ELTAGG.spad" 394925 394946 396677 396682) (-270 "ELTAB.spad" 394372 394390 394915 394920) (-269 "ELFUTS.spad" 393751 393770 394362 394367) (-268 "ELEMFUN.spad" 393440 393448 393741 393746) (-267 "ELEMFUN.spad" 393127 393137 393430 393435) (-266 "ELAGG.spad" 391058 391068 393095 393122) (-265 "ELAGG.spad" 388938 388950 390977 390982) (-264 "ELABEXPR.spad" 387869 387877 388928 388933) (-263 "EFUPXS.spad" 384645 384675 387825 387830) (-262 "EFULS.spad" 381481 381504 384601 384606) (-261 "EFSTRUC.spad" 379436 379452 381471 381476) (-260 "EF.spad" 374202 374218 379426 379431) (-259 "EAB.spad" 372478 372486 374192 374197) (-258 "E04UCFA.spad" 372014 372022 372468 372473) (-257 "E04NAFA.spad" 371591 371599 372004 372009) (-256 "E04MBFA.spad" 371171 371179 371581 371586) (-255 "E04JAFA.spad" 370707 370715 371161 371166) (-254 "E04GCFA.spad" 370243 370251 370697 370702) (-253 "E04FDFA.spad" 369779 369787 370233 370238) (-252 "E04DGFA.spad" 369315 369323 369769 369774) (-251 "E04AGNT.spad" 365157 365165 369305 369310) (-250 "DVARCAT.spad" 361842 361852 365147 365152) (-249 "DVARCAT.spad" 358525 358537 361832 361837) (-248 "DSMP.spad" 355959 355973 356264 356391) (-247 "DROPT.spad" 349904 349912 355949 355954) (-246 "DROPT1.spad" 349567 349577 349894 349899) (-245 "DROPT0.spad" 344394 344402 349557 349562) (-244 "DRAWPT.spad" 342549 342557 344384 344389) (-243 "DRAW.spad" 335149 335162 342539 342544) (-242 "DRAWHACK.spad" 334457 334467 335139 335144) (-241 "DRAWCX.spad" 331899 331907 334447 334452) (-240 "DRAWCURV.spad" 331436 331451 331889 331894) (-239 "DRAWCFUN.spad" 320608 320616 331426 331431) (-238 "DQAGG.spad" 318764 318774 320564 320603) (-237 "DPOLCAT.spad" 314105 314121 318632 318759) (-236 "DPOLCAT.spad" 309532 309550 314061 314066) (-235 "DPMO.spad" 302882 302898 303020 303316) (-234 "DPMM.spad" 296245 296263 296370 296666) (-233 "DOMAIN.spad" 295516 295524 296235 296240) (-232 "DMP.spad" 292741 292756 293313 293440) (-231 "DLP.spad" 292089 292099 292731 292736) (-230 "DLIST.spad" 290501 290511 291272 291299) (-229 "DLAGG.spad" 288902 288912 290481 290496) (-228 "DIVRING.spad" 288444 288452 288846 288897) (-227 "DIVRING.spad" 288030 288040 288434 288439) (-226 "DISPLAY.spad" 286210 286218 288020 288025) (-225 "DIRPROD.spad" 277115 277131 277755 277884) (-224 "DIRPROD2.spad" 275923 275941 277105 277110) (-223 "DIRPCAT.spad" 274855 274871 275777 275918) (-222 "DIRPCAT.spad" 273527 273545 274451 274456) (-221 "DIOSP.spad" 272352 272360 273517 273522) (-220 "DIOPS.spad" 271324 271334 272320 272347) (-219 "DIOPS.spad" 270282 270294 271280 271285) (-218 "DIFRING.spad" 269574 269582 270262 270277) (-217 "DIFRING.spad" 268874 268884 269564 269569) (-216 "DIFEXT.spad" 268033 268043 268854 268869) (-215 "DIFEXT.spad" 267109 267121 267932 267937) (-214 "DIAGG.spad" 266727 266737 267077 267104) (-213 "DIAGG.spad" 266365 266377 266717 266722) (-212 "DHMATRIX.spad" 264669 264679 265822 265849) (-211 "DFSFUN.spad" 258077 258085 264659 264664) (-210 "DFLOAT.spad" 254600 254608 257967 258072) (-209 "DFINTTLS.spad" 252809 252825 254590 254595) (-208 "DERHAM.spad" 250719 250751 252789 252804) (-207 "DEQUEUE.spad" 250037 250047 250326 250353) (-206 "DEGRED.spad" 249652 249666 250027 250032) (-205 "DEFINTRF.spad" 247177 247187 249642 249647) (-204 "DEFINTEF.spad" 245673 245689 247167 247172) (-203 "DECIMAL.spad" 243557 243565 244143 244236) (-202 "DDFACT.spad" 241356 241373 243547 243552) (-201 "DBLRESP.spad" 240954 240978 241346 241351) (-200 "DBASE.spad" 239526 239536 240944 240949) (-199 "DATABUF.spad" 239014 239027 239516 239521) (-198 "D03FAFA.spad" 238842 238850 239004 239009) (-197 "D03EEFA.spad" 238662 238670 238832 238837) (-196 "D03AGNT.spad" 237742 237750 238652 238657) (-195 "D02EJFA.spad" 237204 237212 237732 237737) (-194 "D02CJFA.spad" 236682 236690 237194 237199) (-193 "D02BHFA.spad" 236172 236180 236672 236677) (-192 "D02BBFA.spad" 235662 235670 236162 236167) (-191 "D02AGNT.spad" 230466 230474 235652 235657) (-190 "D01WGTS.spad" 228785 228793 230456 230461) (-189 "D01TRNS.spad" 228762 228770 228775 228780) (-188 "D01GBFA.spad" 228284 228292 228752 228757) (-187 "D01FCFA.spad" 227806 227814 228274 228279) (-186 "D01ASFA.spad" 227274 227282 227796 227801) (-185 "D01AQFA.spad" 226720 226728 227264 227269) (-184 "D01APFA.spad" 226144 226152 226710 226715) (-183 "D01ANFA.spad" 225638 225646 226134 226139) (-182 "D01AMFA.spad" 225148 225156 225628 225633) (-181 "D01ALFA.spad" 224688 224696 225138 225143) (-180 "D01AKFA.spad" 224214 224222 224678 224683) (-179 "D01AJFA.spad" 223737 223745 224204 224209) (-178 "D01AGNT.spad" 219796 219804 223727 223732) (-177 "CYCLOTOM.spad" 219302 219310 219786 219791) (-176 "CYCLES.spad" 216134 216142 219292 219297) (-175 "CVMP.spad" 215551 215561 216124 216129) (-174 "CTRIGMNP.spad" 214041 214057 215541 215546) (-173 "CTORCALL.spad" 213629 213637 214031 214036) (-172 "CSTTOOLS.spad" 212872 212885 213619 213624) (-171 "CRFP.spad" 206576 206589 212862 212867) (-170 "CRCAST.spad" 206297 206305 206566 206571) (-169 "CRAPACK.spad" 205340 205350 206287 206292) (-168 "CPMATCH.spad" 204840 204855 205265 205270) (-167 "CPIMA.spad" 204545 204564 204830 204835) (-166 "COORDSYS.spad" 199438 199448 204535 204540) (-165 "CONTOUR.spad" 198840 198848 199428 199433) (-164 "CONTFRAC.spad" 194452 194462 198742 198835) (-163 "COMRING.spad" 194126 194134 194390 194447) (-162 "COMPPROP.spad" 193640 193648 194116 194121) (-161 "COMPLPAT.spad" 193407 193422 193630 193635) (-160 "COMPLEX.spad" 187438 187448 187682 187943) (-159 "COMPLEX2.spad" 187151 187163 187428 187433) (-158 "COMPFACT.spad" 186753 186767 187141 187146) (-157 "COMPCAT.spad" 184809 184819 186475 186748) (-156 "COMPCAT.spad" 182571 182583 184239 184244) (-155 "COMMUPC.spad" 182317 182335 182561 182566) (-154 "COMMONOP.spad" 181850 181858 182307 182312) (-153 "COMM.spad" 181659 181667 181840 181845) (-152 "COMBOPC.spad" 180564 180572 181649 181654) (-151 "COMBINAT.spad" 179309 179319 180554 180559) (-150 "COMBF.spad" 176677 176693 179299 179304) (-149 "COLOR.spad" 175514 175522 176667 176672) (-148 "CMPLXRT.spad" 175223 175240 175504 175509) (-147 "CLIP.spad" 171315 171323 175213 175218) (-146 "CLIF.spad" 169954 169970 171271 171310) (-145 "CLAGG.spad" 166429 166439 169934 169949) (-144 "CLAGG.spad" 162785 162797 166292 166297) (-143 "CINTSLPE.spad" 162110 162123 162775 162780) (-142 "CHVAR.spad" 160188 160210 162100 162105) (-141 "CHARZ.spad" 160103 160111 160168 160183) (-140 "CHARPOL.spad" 159611 159621 160093 160098) (-139 "CHARNZ.spad" 159364 159372 159591 159606) (-138 "CHAR.spad" 157232 157240 159354 159359) (-137 "CFCAT.spad" 156548 156556 157222 157227) (-136 "CDEN.spad" 155706 155720 156538 156543) (-135 "CCLASS.spad" 153855 153863 155117 155156) (-134 "CATEGORY.spad" 153634 153642 153845 153850) (-133 "CARTEN.spad" 148737 148761 153624 153629) (-132 "CARTEN2.spad" 148123 148150 148727 148732) (-131 "CARD.spad" 145412 145420 148097 148118) (-130 "CACHSET.spad" 145034 145042 145402 145407) (-129 "CABMON.spad" 144587 144595 145024 145029) (-128 "BYTE.spad" 143981 143989 144577 144582) (-127 "BYTEARY.spad" 143056 143064 143150 143177) (-126 "BTREE.spad" 142125 142135 142663 142690) (-125 "BTOURN.spad" 141128 141138 141732 141759) (-124 "BTCAT.spad" 140504 140514 141084 141123) (-123 "BTCAT.spad" 139912 139924 140494 140499) (-122 "BTAGG.spad" 139022 139030 139868 139907) (-121 "BTAGG.spad" 138164 138174 139012 139017) (-120 "BSTREE.spad" 136899 136909 137771 137798) (-119 "BRILL.spad" 135094 135105 136889 136894) (-118 "BRAGG.spad" 134008 134018 135074 135089) (-117 "BRAGG.spad" 132896 132908 133964 133969) (-116 "BPADICRT.spad" 130880 130892 131135 131228) (-115 "BPADIC.spad" 130544 130556 130806 130875) (-114 "BOUNDZRO.spad" 130200 130217 130534 130539) (-113 "BOP.spad" 125664 125672 130190 130195) (-112 "BOP1.spad" 123050 123060 125620 125625) (-111 "BOOLEAN.spad" 122374 122382 123040 123045) (-110 "BMODULE.spad" 122086 122098 122342 122369) (-109 "BITS.spad" 121505 121513 121722 121749) (-108 "BINFILE.spad" 120848 120856 121495 121500) (-107 "BINDING.spad" 120267 120275 120838 120843) (-106 "BINARY.spad" 118160 118168 118737 118830) (-105 "BGAGG.spad" 117345 117355 118128 118155) (-104 "BGAGG.spad" 116550 116562 117335 117340) (-103 "BFUNCT.spad" 116114 116122 116530 116545) (-102 "BEZOUT.spad" 115248 115275 116064 116069) (-101 "BBTREE.spad" 112067 112077 114855 114882) (-100 "BASTYPE.spad" 111739 111747 112057 112062) (-99 "BASTYPE.spad" 111410 111419 111729 111734) (-98 "BALFACT.spad" 110850 110862 111400 111405) (-97 "AUTOMOR.spad" 110297 110306 110830 110845) (-96 "ATTREG.spad" 107016 107023 110049 110292) (-95 "ATTRBUT.spad" 103039 103046 106996 107011) (-94 "ATTRAST.spad" 102757 102764 103029 103034) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2249432 2249437 2249442 2249447) (-2 NIL 2249412 2249417 2249422 2249427) (-1 NIL 2249392 2249397 2249402 2249407) (0 NIL 2249372 2249377 2249382 2249387) (-1233 "ZMOD.spad" 2249181 2249194 2249310 2249367) (-1232 "ZLINDEP.spad" 2248225 2248236 2249171 2249176) (-1231 "ZDSOLVE.spad" 2238074 2238096 2248215 2248220) (-1230 "YSTREAM.spad" 2237567 2237578 2238064 2238069) (-1229 "XRPOLY.spad" 2236787 2236807 2237423 2237492) (-1228 "XPR.spad" 2234516 2234529 2236505 2236604) (-1227 "XPOLYC.spad" 2233833 2233849 2234442 2234511) (-1226 "XPOLY.spad" 2233388 2233399 2233689 2233758) (-1225 "XPBWPOLY.spad" 2231825 2231845 2233168 2233237) (-1224 "XFALG.spad" 2228849 2228865 2231751 2231820) (-1223 "XF.spad" 2227310 2227325 2228751 2228844) (-1222 "XF.spad" 2225751 2225768 2227194 2227199) (-1221 "XEXPPKG.spad" 2225002 2225028 2225741 2225746) (-1220 "XDPOLY.spad" 2224616 2224632 2224858 2224927) (-1219 "XALG.spad" 2224214 2224225 2224572 2224611) (-1218 "WUTSET.spad" 2220053 2220070 2223860 2223887) (-1217 "WP.spad" 2219067 2219111 2219911 2219978) (-1216 "WHILEAST.spad" 2218866 2218875 2219057 2219062) (-1215 "WFFINTBS.spad" 2216429 2216451 2218856 2218861) (-1214 "WEIER.spad" 2214643 2214654 2216419 2216424) (-1213 "VSPACE.spad" 2214316 2214327 2214611 2214638) (-1212 "VSPACE.spad" 2214009 2214022 2214306 2214311) (-1211 "VOID.spad" 2213599 2213608 2213999 2214004) (-1210 "VIEWDEF.spad" 2208796 2208805 2213589 2213594) (-1209 "VIEW3D.spad" 2192631 2192640 2208786 2208791) (-1208 "VIEW2D.spad" 2180368 2180377 2192621 2192626) (-1207 "VIEW.spad" 2177990 2177999 2180358 2180363) (-1206 "VECTOR2.spad" 2176617 2176630 2177980 2177985) (-1205 "VECTOR.spad" 2175292 2175303 2175543 2175570) (-1204 "VECTCAT.spad" 2173180 2173191 2175248 2175287) (-1203 "VECTCAT.spad" 2170888 2170901 2172958 2172963) (-1202 "VARIABLE.spad" 2170668 2170683 2170878 2170883) (-1201 "UTYPE.spad" 2170302 2170311 2170648 2170663) (-1200 "UTSODETL.spad" 2169595 2169619 2170258 2170263) (-1199 "UTSODE.spad" 2167783 2167803 2169585 2169590) (-1198 "UTSCAT.spad" 2165234 2165250 2167681 2167778) (-1197 "UTSCAT.spad" 2162329 2162347 2164778 2164783) (-1196 "UTS2.spad" 2161922 2161957 2162319 2162324) (-1195 "UTS.spad" 2156711 2156739 2160389 2160486) (-1194 "URAGG.spad" 2151333 2151344 2156691 2156706) (-1193 "URAGG.spad" 2145929 2145942 2151289 2151294) (-1192 "UPXSSING.spad" 2143575 2143601 2145013 2145146) (-1191 "UPXSCONS.spad" 2141332 2141352 2141707 2141856) (-1190 "UPXSCCA.spad" 2139790 2139810 2141178 2141327) (-1189 "UPXSCCA.spad" 2138390 2138412 2139780 2139785) (-1188 "UPXSCAT.spad" 2136971 2136987 2138236 2138385) (-1187 "UPXS2.spad" 2136512 2136565 2136961 2136966) (-1186 "UPXS.spad" 2133539 2133567 2134644 2134793) (-1185 "UPSQFREE.spad" 2131952 2131966 2133529 2133534) (-1184 "UPSCAT.spad" 2129545 2129569 2131850 2131947) (-1183 "UPSCAT.spad" 2126844 2126870 2129151 2129156) (-1182 "UPOLYC2.spad" 2126313 2126332 2126834 2126839) (-1181 "UPOLYC.spad" 2121291 2121302 2126155 2126308) (-1180 "UPOLYC.spad" 2116161 2116174 2121027 2121032) (-1179 "UPMP.spad" 2115051 2115064 2116151 2116156) (-1178 "UPDIVP.spad" 2114614 2114628 2115041 2115046) (-1177 "UPDECOMP.spad" 2112851 2112865 2114604 2114609) (-1176 "UPCDEN.spad" 2112058 2112074 2112841 2112846) (-1175 "UP2.spad" 2111420 2111441 2112048 2112053) (-1174 "UP.spad" 2108465 2108480 2108973 2109126) (-1173 "UNISEG2.spad" 2107958 2107971 2108421 2108426) (-1172 "UNISEG.spad" 2107311 2107322 2107877 2107882) (-1171 "UNIFACT.spad" 2106412 2106424 2107301 2107306) (-1170 "ULSCONS.spad" 2100455 2100475 2100827 2100976) (-1169 "ULSCCAT.spad" 2098052 2098072 2100275 2100450) (-1168 "ULSCCAT.spad" 2095783 2095805 2098008 2098013) (-1167 "ULSCAT.spad" 2093999 2094015 2095629 2095778) (-1166 "ULS2.spad" 2093511 2093564 2093989 2093994) (-1165 "ULS.spad" 2084070 2084098 2085163 2085592) (-1164 "UFD.spad" 2083135 2083144 2083996 2084065) (-1163 "UFD.spad" 2082262 2082273 2083125 2083130) (-1162 "UDVO.spad" 2081109 2081118 2082252 2082257) (-1161 "UDPO.spad" 2078536 2078547 2081065 2081070) (-1160 "TYPEAST.spad" 2078369 2078378 2078526 2078531) (-1159 "TYPE.spad" 2078291 2078300 2078349 2078364) (-1158 "TWOFACT.spad" 2076941 2076956 2078281 2078286) (-1157 "TUPLE.spad" 2076327 2076338 2076840 2076845) (-1156 "TUBETOOL.spad" 2073164 2073173 2076317 2076322) (-1155 "TUBE.spad" 2071805 2071822 2073154 2073159) (-1154 "TSETCAT.spad" 2058920 2058937 2071761 2071800) (-1153 "TSETCAT.spad" 2046033 2046052 2058876 2058881) (-1152 "TS.spad" 2044622 2044638 2045598 2045695) (-1151 "TRMANIP.spad" 2038988 2039005 2044328 2044333) (-1150 "TRIMAT.spad" 2037947 2037972 2038978 2038983) (-1149 "TRIGMNIP.spad" 2036464 2036481 2037937 2037942) (-1148 "TRIGCAT.spad" 2035976 2035985 2036454 2036459) (-1147 "TRIGCAT.spad" 2035486 2035497 2035966 2035971) (-1146 "TREE.spad" 2034057 2034068 2035093 2035120) (-1145 "TRANFUN.spad" 2033888 2033897 2034047 2034052) (-1144 "TRANFUN.spad" 2033717 2033728 2033878 2033883) (-1143 "TOPSP.spad" 2033391 2033400 2033707 2033712) (-1142 "TOOLSIGN.spad" 2033054 2033065 2033381 2033386) (-1141 "TEXTFILE.spad" 2031611 2031620 2033044 2033049) (-1140 "TEX1.spad" 2031167 2031178 2031601 2031606) (-1139 "TEX.spad" 2028184 2028193 2031157 2031162) (-1138 "TEMUTL.spad" 2027739 2027748 2028174 2028179) (-1137 "TBCMPPK.spad" 2025832 2025855 2027729 2027734) (-1136 "TBAGG.spad" 2024856 2024879 2025800 2025827) (-1135 "TBAGG.spad" 2023900 2023925 2024846 2024851) (-1134 "TANEXP.spad" 2023276 2023287 2023890 2023895) (-1133 "TABLEAU.spad" 2022757 2022768 2023266 2023271) (-1132 "TABLE.spad" 2021168 2021191 2021438 2021465) (-1131 "TABLBUMP.spad" 2017951 2017962 2021158 2021163) (-1130 "SYSTEM.spad" 2017225 2017234 2017941 2017946) (-1129 "SYSSOLP.spad" 2014698 2014709 2017215 2017220) (-1128 "SYNTAX.spad" 2010890 2010899 2014688 2014693) (-1127 "SYMTAB.spad" 2008946 2008955 2010880 2010885) (-1126 "SYMS.spad" 2004937 2004946 2008936 2008941) (-1125 "SYMPOLY.spad" 2003947 2003958 2004029 2004156) (-1124 "SYMFUNC.spad" 2003422 2003433 2003937 2003942) (-1123 "SYMBOL.spad" 2000758 2000767 2003412 2003417) (-1122 "SWITCH.spad" 1997515 1997524 2000748 2000753) (-1121 "SUTS.spad" 1994414 1994442 1995982 1996079) (-1120 "SUPXS.spad" 1991428 1991456 1992546 1992695) (-1119 "SUPFRACF.spad" 1990533 1990551 1991418 1991423) (-1118 "SUP2.spad" 1989923 1989936 1990523 1990528) (-1117 "SUP.spad" 1986695 1986706 1987476 1987629) (-1116 "SUMRF.spad" 1985661 1985672 1986685 1986690) (-1115 "SUMFS.spad" 1985294 1985311 1985651 1985656) (-1114 "SULS.spad" 1975840 1975868 1976946 1977375) (-1113 "SUCH.spad" 1975520 1975535 1975830 1975835) (-1112 "SUBSPACE.spad" 1967527 1967542 1975510 1975515) (-1111 "SUBRESP.spad" 1966687 1966701 1967483 1967488) (-1110 "STTFNC.spad" 1963155 1963171 1966677 1966682) (-1109 "STTF.spad" 1959254 1959270 1963145 1963150) (-1108 "STTAYLOR.spad" 1951652 1951663 1959135 1959140) (-1107 "STRTBL.spad" 1950157 1950174 1950306 1950333) (-1106 "STRING.spad" 1949566 1949575 1949580 1949607) (-1105 "STRICAT.spad" 1949342 1949351 1949522 1949561) (-1104 "STREAM3.spad" 1948887 1948902 1949332 1949337) (-1103 "STREAM2.spad" 1947955 1947968 1948877 1948882) (-1102 "STREAM1.spad" 1947659 1947670 1947945 1947950) (-1101 "STREAM.spad" 1944427 1944438 1947184 1947199) (-1100 "STINPROD.spad" 1943333 1943349 1944417 1944422) (-1099 "STEP.spad" 1942534 1942543 1943323 1943328) (-1098 "STBL.spad" 1941060 1941088 1941227 1941242) (-1097 "STAGG.spad" 1940125 1940136 1941040 1941055) (-1096 "STAGG.spad" 1939198 1939211 1940115 1940120) (-1095 "STACK.spad" 1938549 1938560 1938805 1938832) (-1094 "SREGSET.spad" 1936253 1936270 1938195 1938222) (-1093 "SRDCMPK.spad" 1934798 1934818 1936243 1936248) (-1092 "SRAGG.spad" 1929883 1929892 1934754 1934793) (-1091 "SRAGG.spad" 1925000 1925011 1929873 1929878) (-1090 "SQMATRIX.spad" 1922626 1922644 1923534 1923621) (-1089 "SPLTREE.spad" 1917178 1917191 1922062 1922089) (-1088 "SPLNODE.spad" 1913766 1913779 1917168 1917173) (-1087 "SPFCAT.spad" 1912543 1912552 1913756 1913761) (-1086 "SPECOUT.spad" 1911093 1911102 1912533 1912538) (-1085 "spad-parser.spad" 1910558 1910567 1911083 1911088) (-1084 "SPACEC.spad" 1894571 1894582 1910548 1910553) (-1083 "SPACE3.spad" 1894347 1894358 1894561 1894566) (-1082 "SORTPAK.spad" 1893892 1893905 1894303 1894308) (-1081 "SOLVETRA.spad" 1891649 1891660 1893882 1893887) (-1080 "SOLVESER.spad" 1890169 1890180 1891639 1891644) (-1079 "SOLVERAD.spad" 1886179 1886190 1890159 1890164) (-1078 "SOLVEFOR.spad" 1884599 1884617 1886169 1886174) (-1077 "SNTSCAT.spad" 1884187 1884204 1884555 1884594) (-1076 "SMTS.spad" 1882447 1882473 1883752 1883849) (-1075 "SMP.spad" 1879889 1879909 1880279 1880406) (-1074 "SMITH.spad" 1878732 1878757 1879879 1879884) (-1073 "SMATCAT.spad" 1876830 1876860 1878664 1878727) (-1072 "SMATCAT.spad" 1874872 1874904 1876708 1876713) (-1071 "SKAGG.spad" 1873821 1873832 1874828 1874867) (-1070 "SINT.spad" 1872129 1872138 1873687 1873816) (-1069 "SIMPAN.spad" 1871857 1871866 1872119 1872124) (-1068 "SIGNRF.spad" 1870972 1870983 1871847 1871852) (-1067 "SIGNEF.spad" 1870248 1870265 1870962 1870967) (-1066 "SIG.spad" 1869576 1869585 1870238 1870243) (-1065 "SHP.spad" 1867494 1867509 1869532 1869537) (-1064 "SHDP.spad" 1858510 1858537 1859019 1859150) (-1063 "SGROUP.spad" 1858118 1858127 1858500 1858505) (-1062 "SGROUP.spad" 1857724 1857735 1858108 1858113) (-1061 "SGCF.spad" 1850605 1850614 1857714 1857719) (-1060 "SFRTCAT.spad" 1849521 1849538 1850561 1850600) (-1059 "SFRGCD.spad" 1848584 1848604 1849511 1849516) (-1058 "SFQCMPK.spad" 1843221 1843241 1848574 1848579) (-1057 "SFORT.spad" 1842656 1842670 1843211 1843216) (-1056 "SEXOF.spad" 1842499 1842539 1842646 1842651) (-1055 "SEXCAT.spad" 1839603 1839643 1842489 1842494) (-1054 "SEX.spad" 1839495 1839504 1839593 1839598) (-1053 "SETMN.spad" 1837931 1837948 1839485 1839490) (-1052 "SETCAT.spad" 1837416 1837425 1837921 1837926) (-1051 "SETCAT.spad" 1836899 1836910 1837406 1837411) (-1050 "SETAGG.spad" 1833408 1833419 1836867 1836894) (-1049 "SETAGG.spad" 1829937 1829950 1833398 1833403) (-1048 "SET.spad" 1828237 1828248 1829358 1829397) (-1047 "SEGXCAT.spad" 1827349 1827362 1828217 1828232) (-1046 "SEGCAT.spad" 1826168 1826179 1827329 1827344) (-1045 "SEGBIND2.spad" 1825864 1825877 1826158 1826163) (-1044 "SEGBIND.spad" 1824936 1824947 1825819 1825824) (-1043 "SEGAST.spad" 1824845 1824854 1824926 1824931) (-1042 "SEG2.spad" 1824270 1824283 1824801 1824806) (-1041 "SEG.spad" 1824083 1824094 1824189 1824194) (-1040 "SDVAR.spad" 1823359 1823370 1824073 1824078) (-1039 "SDPOL.spad" 1820752 1820763 1821043 1821170) (-1038 "SCPKG.spad" 1818831 1818842 1820742 1820747) (-1037 "SCOPE.spad" 1817976 1817985 1818821 1818826) (-1036 "SCACHE.spad" 1816658 1816669 1817966 1817971) (-1035 "SASTCAT.spad" 1816567 1816576 1816648 1816653) (-1034 "SASTCAT.spad" 1816474 1816485 1816557 1816562) (-1033 "SAOS.spad" 1816346 1816355 1816464 1816469) (-1032 "SAERFFC.spad" 1816059 1816079 1816336 1816341) (-1031 "SAEFACT.spad" 1815760 1815780 1816049 1816054) (-1030 "SAE.spad" 1813938 1813954 1814549 1814684) (-1029 "RURPK.spad" 1811579 1811595 1813928 1813933) (-1028 "RULESET.spad" 1811020 1811044 1811569 1811574) (-1027 "RULECOLD.spad" 1810872 1810885 1811010 1811015) (-1026 "RULE.spad" 1809076 1809100 1810862 1810867) (-1025 "RSETGCD.spad" 1805454 1805474 1809066 1809071) (-1024 "RSETCAT.spad" 1795226 1795243 1805410 1805449) (-1023 "RSETCAT.spad" 1785030 1785049 1795216 1795221) (-1022 "RSDCMPK.spad" 1783482 1783502 1785020 1785025) (-1021 "RRCC.spad" 1781866 1781896 1783472 1783477) (-1020 "RRCC.spad" 1780248 1780280 1781856 1781861) (-1019 "RPTAST.spad" 1779952 1779961 1780238 1780243) (-1018 "RPOLCAT.spad" 1759312 1759327 1779820 1779947) (-1017 "RPOLCAT.spad" 1738387 1738404 1758897 1758902) (-1016 "ROUTINE.spad" 1734250 1734259 1737034 1737061) (-1015 "ROMAN.spad" 1733482 1733491 1734116 1734245) (-1014 "ROIRC.spad" 1732562 1732594 1733472 1733477) (-1013 "RNS.spad" 1731465 1731474 1732464 1732557) (-1012 "RNS.spad" 1730454 1730465 1731455 1731460) (-1011 "RNG.spad" 1730189 1730198 1730444 1730449) (-1010 "RMODULE.spad" 1729827 1729838 1730179 1730184) (-1009 "RMCAT2.spad" 1729235 1729292 1729817 1729822) (-1008 "RMATRIX.spad" 1727914 1727933 1728402 1728441) (-1007 "RMATCAT.spad" 1723435 1723466 1727858 1727909) (-1006 "RMATCAT.spad" 1718858 1718891 1723283 1723288) (-1005 "RINTERP.spad" 1718746 1718766 1718848 1718853) (-1004 "RING.spad" 1718103 1718112 1718726 1718741) (-1003 "RING.spad" 1717468 1717479 1718093 1718098) (-1002 "RIDIST.spad" 1716852 1716861 1717458 1717463) (-1001 "RGCHAIN.spad" 1715431 1715447 1716337 1716364) (-1000 "RFFACTOR.spad" 1714893 1714904 1715421 1715426) (-999 "RFFACT.spad" 1714629 1714640 1714883 1714888) (-998 "RFDIST.spad" 1713618 1713626 1714619 1714624) (-997 "RF.spad" 1711233 1711243 1713608 1713613) (-996 "RETSOL.spad" 1710651 1710663 1711223 1711228) (-995 "RETRACT.spad" 1710001 1710011 1710641 1710646) (-994 "RETRACT.spad" 1709349 1709361 1709991 1709996) (-993 "RETAST.spad" 1709163 1709171 1709339 1709344) (-992 "RESULT.spad" 1707224 1707232 1707810 1707837) (-991 "RESRING.spad" 1706572 1706618 1707162 1707219) (-990 "RESLATC.spad" 1705897 1705907 1706562 1706567) (-989 "REPSQ.spad" 1705627 1705637 1705887 1705892) (-988 "REPDB.spad" 1705333 1705343 1705617 1705622) (-987 "REP2.spad" 1694906 1694916 1705175 1705180) (-986 "REP1.spad" 1688897 1688907 1694856 1694861) (-985 "REP.spad" 1686450 1686458 1688887 1688892) (-984 "REGSET.spad" 1684248 1684264 1686096 1686123) (-983 "REF.spad" 1683578 1683588 1684203 1684208) (-982 "REDORDER.spad" 1682755 1682771 1683568 1683573) (-981 "RECLOS.spad" 1681545 1681564 1682248 1682341) (-980 "REALSOLV.spad" 1680678 1680686 1681535 1681540) (-979 "REAL0Q.spad" 1677961 1677975 1680668 1680673) (-978 "REAL0.spad" 1674790 1674804 1677951 1677956) (-977 "REAL.spad" 1674663 1674671 1674780 1674785) (-976 "RDIV.spad" 1674315 1674339 1674653 1674658) (-975 "RDIST.spad" 1673879 1673889 1674305 1674310) (-974 "RDETRS.spad" 1672676 1672693 1673869 1673874) (-973 "RDETR.spad" 1670784 1670801 1672666 1672671) (-972 "RDEEFS.spad" 1669858 1669874 1670774 1670779) (-971 "RDEEF.spad" 1668855 1668871 1669848 1669853) (-970 "RCFIELD.spad" 1666042 1666050 1668757 1668850) (-969 "RCFIELD.spad" 1663315 1663325 1666032 1666037) (-968 "RCAGG.spad" 1661218 1661228 1663295 1663310) (-967 "RCAGG.spad" 1659058 1659070 1661137 1661142) (-966 "RATRET.spad" 1658419 1658429 1659048 1659053) (-965 "RATFACT.spad" 1658112 1658123 1658409 1658414) (-964 "RANDSRC.spad" 1657432 1657440 1658102 1658107) (-963 "RADUTIL.spad" 1657187 1657195 1657422 1657427) (-962 "RADIX.spad" 1653980 1653993 1655657 1655750) (-961 "RADFF.spad" 1652397 1652433 1652515 1652671) (-960 "RADCAT.spad" 1651991 1651999 1652387 1652392) (-959 "RADCAT.spad" 1651583 1651593 1651981 1651986) (-958 "QUEUE.spad" 1650926 1650936 1651190 1651217) (-957 "QUATCT2.spad" 1650545 1650563 1650916 1650921) (-956 "QUATCAT.spad" 1648710 1648720 1650475 1650540) (-955 "QUATCAT.spad" 1646626 1646638 1648393 1648398) (-954 "QUAT.spad" 1645211 1645221 1645553 1645618) (-953 "QUAGG.spad" 1644025 1644035 1645167 1645206) (-952 "QFORM.spad" 1643488 1643502 1644015 1644020) (-951 "QFCAT2.spad" 1643179 1643195 1643478 1643483) (-950 "QFCAT.spad" 1641870 1641880 1643069 1643174) (-949 "QFCAT.spad" 1640167 1640179 1641368 1641373) (-948 "QEQUAT.spad" 1639724 1639732 1640157 1640162) (-947 "QCMPACK.spad" 1634471 1634490 1639714 1639719) (-946 "QALGSET2.spad" 1632467 1632485 1634461 1634466) (-945 "QALGSET.spad" 1628544 1628576 1632381 1632386) (-944 "PWFFINTB.spad" 1625854 1625875 1628534 1628539) (-943 "PUSHVAR.spad" 1625183 1625202 1625844 1625849) (-942 "PTRANFN.spad" 1621309 1621319 1625173 1625178) (-941 "PTPACK.spad" 1618397 1618407 1621299 1621304) (-940 "PTFUNC2.spad" 1618218 1618232 1618387 1618392) (-939 "PTCAT.spad" 1617300 1617310 1618174 1618213) (-938 "PSQFR.spad" 1616607 1616631 1617290 1617295) (-937 "PSEUDLIN.spad" 1615465 1615475 1616597 1616602) (-936 "PSETPK.spad" 1600898 1600914 1615343 1615348) (-935 "PSETCAT.spad" 1594806 1594829 1600866 1600893) (-934 "PSETCAT.spad" 1588700 1588725 1594762 1594767) (-933 "PSCURVE.spad" 1587683 1587691 1588690 1588695) (-932 "PSCAT.spad" 1586450 1586479 1587581 1587678) (-931 "PSCAT.spad" 1585307 1585338 1586440 1586445) (-930 "PRTITION.spad" 1584150 1584158 1585297 1585302) (-929 "PRTDAST.spad" 1583870 1583878 1584140 1584145) (-928 "PRS.spad" 1573432 1573449 1583826 1583831) (-927 "PRQAGG.spad" 1572851 1572861 1573388 1573427) (-926 "PROPLOG.spad" 1572254 1572262 1572841 1572846) (-925 "PROPFRML.spad" 1570118 1570129 1572190 1572195) (-924 "PROPERTY.spad" 1569612 1569620 1570108 1570113) (-923 "PRODUCT.spad" 1567292 1567304 1567578 1567633) (-922 "PRINT.spad" 1567044 1567052 1567282 1567287) (-921 "PRIMES.spad" 1565295 1565305 1567034 1567039) (-920 "PRIMELT.spad" 1563276 1563290 1565285 1565290) (-919 "PRIMCAT.spad" 1562899 1562907 1563266 1563271) (-918 "PRIMARR2.spad" 1561622 1561634 1562889 1562894) (-917 "PRIMARR.spad" 1560627 1560637 1560805 1560832) (-916 "PREASSOC.spad" 1559999 1560011 1560617 1560622) (-915 "PR.spad" 1558388 1558400 1559093 1559220) (-914 "PPCURVE.spad" 1557525 1557533 1558378 1558383) (-913 "PORTNUM.spad" 1557300 1557308 1557515 1557520) (-912 "POLYROOT.spad" 1556072 1556094 1557256 1557261) (-911 "POLYLIFT.spad" 1555333 1555356 1556062 1556067) (-910 "POLYCATQ.spad" 1553435 1553457 1555323 1555328) (-909 "POLYCAT.spad" 1546841 1546862 1553303 1553430) (-908 "POLYCAT.spad" 1539549 1539572 1546013 1546018) (-907 "POLY2UP.spad" 1538997 1539011 1539539 1539544) (-906 "POLY2.spad" 1538592 1538604 1538987 1538992) (-905 "POLY.spad" 1535892 1535902 1536409 1536536) (-904 "POLUTIL.spad" 1534833 1534862 1535848 1535853) (-903 "POLTOPOL.spad" 1533581 1533596 1534823 1534828) (-902 "POINT.spad" 1532420 1532430 1532507 1532534) (-901 "PNTHEORY.spad" 1529086 1529094 1532410 1532415) (-900 "PMTOOLS.spad" 1527843 1527857 1529076 1529081) (-899 "PMSYM.spad" 1527388 1527398 1527833 1527838) (-898 "PMQFCAT.spad" 1526975 1526989 1527378 1527383) (-897 "PMPREDFS.spad" 1526419 1526441 1526965 1526970) (-896 "PMPRED.spad" 1525888 1525902 1526409 1526414) (-895 "PMPLCAT.spad" 1524958 1524976 1525820 1525825) (-894 "PMLSAGG.spad" 1524539 1524553 1524948 1524953) (-893 "PMKERNEL.spad" 1524106 1524118 1524529 1524534) (-892 "PMINS.spad" 1523682 1523692 1524096 1524101) (-891 "PMFS.spad" 1523255 1523273 1523672 1523677) (-890 "PMDOWN.spad" 1522541 1522555 1523245 1523250) (-889 "PMASSFS.spad" 1521510 1521526 1522531 1522536) (-888 "PMASS.spad" 1520522 1520530 1521500 1521505) (-887 "PLOTTOOL.spad" 1520302 1520310 1520512 1520517) (-886 "PLOT3D.spad" 1516722 1516730 1520292 1520297) (-885 "PLOT1.spad" 1515863 1515873 1516712 1516717) (-884 "PLOT.spad" 1510694 1510702 1515853 1515858) (-883 "PLEQN.spad" 1497910 1497937 1510684 1510689) (-882 "PINTERPA.spad" 1497692 1497708 1497900 1497905) (-881 "PINTERP.spad" 1497308 1497327 1497682 1497687) (-880 "PID.spad" 1496264 1496272 1497234 1497303) (-879 "PICOERCE.spad" 1495921 1495931 1496254 1496259) (-878 "PI.spad" 1495528 1495536 1495895 1495916) (-877 "PGROEB.spad" 1494125 1494139 1495518 1495523) (-876 "PGE.spad" 1485378 1485386 1494115 1494120) (-875 "PGCD.spad" 1484260 1484277 1485368 1485373) (-874 "PFRPAC.spad" 1483403 1483413 1484250 1484255) (-873 "PFR.spad" 1480060 1480070 1483305 1483398) (-872 "PFOTOOLS.spad" 1479318 1479334 1480050 1480055) (-871 "PFOQ.spad" 1478688 1478706 1479308 1479313) (-870 "PFO.spad" 1478107 1478134 1478678 1478683) (-869 "PFECAT.spad" 1475773 1475781 1478033 1478102) (-868 "PFECAT.spad" 1473467 1473477 1475729 1475734) (-867 "PFBRU.spad" 1471337 1471349 1473457 1473462) (-866 "PFBR.spad" 1468875 1468898 1471327 1471332) (-865 "PF.spad" 1468449 1468461 1468680 1468773) (-864 "PERMGRP.spad" 1463185 1463195 1468439 1468444) (-863 "PERMCAT.spad" 1461737 1461747 1463165 1463180) (-862 "PERMAN.spad" 1460269 1460283 1461727 1461732) (-861 "PERM.spad" 1455950 1455960 1460099 1460114) (-860 "PENDTREE.spad" 1455223 1455233 1455579 1455584) (-859 "PDRING.spad" 1453714 1453724 1455203 1455218) (-858 "PDRING.spad" 1452213 1452225 1453704 1453709) (-857 "PDEPROB.spad" 1451170 1451178 1452203 1452208) (-856 "PDEPACK.spad" 1445172 1445180 1451160 1451165) (-855 "PDECOMP.spad" 1444634 1444651 1445162 1445167) (-854 "PDECAT.spad" 1442988 1442996 1444624 1444629) (-853 "PCOMP.spad" 1442839 1442852 1442978 1442983) (-852 "PBWLB.spad" 1441421 1441438 1442829 1442834) (-851 "PATTERN2.spad" 1441157 1441169 1441411 1441416) (-850 "PATTERN1.spad" 1439459 1439475 1441147 1441152) (-849 "PATTERN.spad" 1433890 1433900 1439449 1439454) (-848 "PATRES2.spad" 1433552 1433566 1433880 1433885) (-847 "PATRES.spad" 1431099 1431111 1433542 1433547) (-846 "PATMATCH.spad" 1429259 1429290 1430810 1430815) (-845 "PATMAB.spad" 1428684 1428694 1429249 1429254) (-844 "PATLRES.spad" 1427768 1427782 1428674 1428679) (-843 "PATAB.spad" 1427532 1427542 1427758 1427763) (-842 "PARTPERM.spad" 1424894 1424902 1427522 1427527) (-841 "PARSURF.spad" 1424322 1424350 1424884 1424889) (-840 "PARSU2.spad" 1424117 1424133 1424312 1424317) (-839 "script-parser.spad" 1423637 1423645 1424107 1424112) (-838 "PARSCURV.spad" 1423065 1423093 1423627 1423632) (-837 "PARSC2.spad" 1422854 1422870 1423055 1423060) (-836 "PARPCURV.spad" 1422312 1422340 1422844 1422849) (-835 "PARPC2.spad" 1422101 1422117 1422302 1422307) (-834 "PAN2EXPR.spad" 1421513 1421521 1422091 1422096) (-833 "PALETTE.spad" 1420483 1420491 1421503 1421508) (-832 "PAIR.spad" 1419466 1419479 1420071 1420076) (-831 "PADICRC.spad" 1416799 1416817 1417974 1418067) (-830 "PADICRAT.spad" 1414817 1414829 1415038 1415131) (-829 "PADICCT.spad" 1413358 1413370 1414743 1414812) (-828 "PADIC.spad" 1413053 1413065 1413284 1413353) (-827 "PADEPAC.spad" 1411732 1411751 1413043 1413048) (-826 "PADE.spad" 1410472 1410488 1411722 1411727) (-825 "OWP.spad" 1409456 1409486 1410330 1410397) (-824 "OVAR.spad" 1409237 1409260 1409446 1409451) (-823 "OUTFORM.spad" 1398651 1398659 1409227 1409232) (-822 "OUTBCON.spad" 1397930 1397938 1398641 1398646) (-821 "OUTBCON.spad" 1397207 1397217 1397920 1397925) (-820 "OUT.spad" 1396291 1396299 1397197 1397202) (-819 "OSI.spad" 1395766 1395774 1396281 1396286) (-818 "OSGROUP.spad" 1395684 1395692 1395756 1395761) (-817 "ORTHPOL.spad" 1394145 1394155 1395601 1395606) (-816 "OREUP.spad" 1393505 1393533 1393827 1393866) (-815 "ORESUP.spad" 1392806 1392830 1393187 1393226) (-814 "OREPCTO.spad" 1390625 1390637 1392726 1392731) (-813 "OREPCAT.spad" 1384682 1384692 1390581 1390620) (-812 "OREPCAT.spad" 1378629 1378641 1384530 1384535) (-811 "ORDSET.spad" 1377795 1377803 1378619 1378624) (-810 "ORDSET.spad" 1376959 1376969 1377785 1377790) (-809 "ORDRING.spad" 1376349 1376357 1376939 1376954) (-808 "ORDRING.spad" 1375747 1375757 1376339 1376344) (-807 "ORDMON.spad" 1375602 1375610 1375737 1375742) (-806 "ORDFUNS.spad" 1374728 1374744 1375592 1375597) (-805 "ORDFIN.spad" 1374662 1374670 1374718 1374723) (-804 "ORDCOMP2.spad" 1373947 1373959 1374652 1374657) (-803 "ORDCOMP.spad" 1372415 1372425 1373497 1373526) (-802 "OPTPROB.spad" 1370995 1371003 1372405 1372410) (-801 "OPTPACK.spad" 1363380 1363388 1370985 1370990) (-800 "OPTCAT.spad" 1361055 1361063 1363370 1363375) (-799 "OPQUERY.spad" 1360604 1360612 1361045 1361050) (-798 "OP.spad" 1360346 1360356 1360426 1360493) (-797 "ONECOMP2.spad" 1359764 1359776 1360336 1360341) (-796 "ONECOMP.spad" 1358512 1358522 1359314 1359343) (-795 "OMSERVER.spad" 1357514 1357522 1358502 1358507) (-794 "OMSAGG.spad" 1357290 1357300 1357458 1357509) (-793 "OMPKG.spad" 1355902 1355910 1357280 1357285) (-792 "OMLO.spad" 1355327 1355339 1355788 1355827) (-791 "OMEXPR.spad" 1355161 1355171 1355317 1355322) (-790 "OMERRK.spad" 1354195 1354203 1355151 1355156) (-789 "OMERR.spad" 1353738 1353746 1354185 1354190) (-788 "OMENC.spad" 1353082 1353090 1353728 1353733) (-787 "OMDEV.spad" 1347371 1347379 1353072 1353077) (-786 "OMCONN.spad" 1346780 1346788 1347361 1347366) (-785 "OM.spad" 1345745 1345753 1346770 1346775) (-784 "OINTDOM.spad" 1345508 1345516 1345671 1345740) (-783 "OFMONOID.spad" 1341695 1341705 1345498 1345503) (-782 "ODVAR.spad" 1340956 1340966 1341685 1341690) (-781 "ODR.spad" 1340404 1340430 1340768 1340917) (-780 "ODPOL.spad" 1337753 1337763 1338093 1338220) (-779 "ODP.spad" 1328905 1328925 1329278 1329409) (-778 "ODETOOLS.spad" 1327488 1327507 1328895 1328900) (-777 "ODESYS.spad" 1325138 1325155 1327478 1327483) (-776 "ODERTRIC.spad" 1321079 1321096 1325095 1325100) (-775 "ODERED.spad" 1320466 1320490 1321069 1321074) (-774 "ODERAT.spad" 1318019 1318036 1320456 1320461) (-773 "ODEPRRIC.spad" 1314910 1314932 1318009 1318014) (-772 "ODEPROB.spad" 1314109 1314117 1314900 1314905) (-771 "ODEPRIM.spad" 1311383 1311405 1314099 1314104) (-770 "ODEPAL.spad" 1310759 1310783 1311373 1311378) (-769 "ODEPACK.spad" 1297361 1297369 1310749 1310754) (-768 "ODEINT.spad" 1296792 1296808 1297351 1297356) (-767 "ODEIFTBL.spad" 1294187 1294195 1296782 1296787) (-766 "ODEEF.spad" 1289558 1289574 1294177 1294182) (-765 "ODECONST.spad" 1289077 1289095 1289548 1289553) (-764 "ODECAT.spad" 1287673 1287681 1289067 1289072) (-763 "OCTCT2.spad" 1287317 1287338 1287663 1287668) (-762 "OCT.spad" 1285463 1285473 1286179 1286218) (-761 "OCAMON.spad" 1285311 1285319 1285453 1285458) (-760 "OC.spad" 1283085 1283095 1285267 1285306) (-759 "OC.spad" 1280584 1280596 1282768 1282773) (-758 "OASGP.spad" 1280399 1280407 1280574 1280579) (-757 "OAMONS.spad" 1279919 1279927 1280389 1280394) (-756 "OAMON.spad" 1279780 1279788 1279909 1279914) (-755 "OAGROUP.spad" 1279642 1279650 1279770 1279775) (-754 "NUMTUBE.spad" 1279229 1279245 1279632 1279637) (-753 "NUMQUAD.spad" 1267091 1267099 1279219 1279224) (-752 "NUMODE.spad" 1258227 1258235 1267081 1267086) (-751 "NUMINT.spad" 1255785 1255793 1258217 1258222) (-750 "NUMFMT.spad" 1254625 1254633 1255775 1255780) (-749 "NUMERIC.spad" 1246697 1246707 1254430 1254435) (-748 "NTSCAT.spad" 1245187 1245203 1246653 1246692) (-747 "NTPOLFN.spad" 1244732 1244742 1245104 1245109) (-746 "NSUP2.spad" 1244124 1244136 1244722 1244727) (-745 "NSUP.spad" 1237137 1237147 1241677 1241830) (-744 "NSMP.spad" 1233336 1233355 1233644 1233771) (-743 "NREP.spad" 1231708 1231722 1233326 1233331) (-742 "NPCOEF.spad" 1230954 1230974 1231698 1231703) (-741 "NORMRETR.spad" 1230552 1230591 1230944 1230949) (-740 "NORMPK.spad" 1228454 1228473 1230542 1230547) (-739 "NORMMA.spad" 1228142 1228168 1228444 1228449) (-738 "NONE1.spad" 1227818 1227828 1228132 1228137) (-737 "NONE.spad" 1227559 1227567 1227808 1227813) (-736 "NODE1.spad" 1227028 1227044 1227549 1227554) (-735 "NNI.spad" 1225915 1225923 1227002 1227023) (-734 "NLINSOL.spad" 1224537 1224547 1225905 1225910) (-733 "NIPROB.spad" 1223020 1223028 1224527 1224532) (-732 "NFINTBAS.spad" 1220480 1220497 1223010 1223015) (-731 "NCODIV.spad" 1218678 1218694 1220470 1220475) (-730 "NCNTFRAC.spad" 1218320 1218334 1218668 1218673) (-729 "NCEP.spad" 1216480 1216494 1218310 1218315) (-728 "NASRING.spad" 1216076 1216084 1216470 1216475) (-727 "NASRING.spad" 1215670 1215680 1216066 1216071) (-726 "NARNG.spad" 1215014 1215022 1215660 1215665) (-725 "NARNG.spad" 1214356 1214366 1215004 1215009) (-724 "NAGSP.spad" 1213429 1213437 1214346 1214351) (-723 "NAGS.spad" 1202954 1202962 1213419 1213424) (-722 "NAGF07.spad" 1201347 1201355 1202944 1202949) (-721 "NAGF04.spad" 1195579 1195587 1201337 1201342) (-720 "NAGF02.spad" 1189388 1189396 1195569 1195574) (-719 "NAGF01.spad" 1184991 1184999 1189378 1189383) (-718 "NAGE04.spad" 1178451 1178459 1184981 1184986) (-717 "NAGE02.spad" 1168793 1168801 1178441 1178446) (-716 "NAGE01.spad" 1164677 1164685 1168783 1168788) (-715 "NAGD03.spad" 1162597 1162605 1164667 1164672) (-714 "NAGD02.spad" 1155128 1155136 1162587 1162592) (-713 "NAGD01.spad" 1149241 1149249 1155118 1155123) (-712 "NAGC06.spad" 1145028 1145036 1149231 1149236) (-711 "NAGC05.spad" 1143497 1143505 1145018 1145023) (-710 "NAGC02.spad" 1142752 1142760 1143487 1143492) (-709 "NAALG.spad" 1142287 1142297 1142720 1142747) (-708 "NAALG.spad" 1141842 1141854 1142277 1142282) (-707 "MULTSQFR.spad" 1138800 1138817 1141832 1141837) (-706 "MULTFACT.spad" 1138183 1138200 1138790 1138795) (-705 "MTSCAT.spad" 1136217 1136238 1138081 1138178) (-704 "MTHING.spad" 1135874 1135884 1136207 1136212) (-703 "MSYSCMD.spad" 1135308 1135316 1135864 1135869) (-702 "MSETAGG.spad" 1135141 1135151 1135264 1135303) (-701 "MSET.spad" 1133083 1133093 1134847 1134886) (-700 "MRING.spad" 1130054 1130066 1132791 1132858) (-699 "MRF2.spad" 1129622 1129636 1130044 1130049) (-698 "MRATFAC.spad" 1129168 1129185 1129612 1129617) (-697 "MPRFF.spad" 1127198 1127217 1129158 1129163) (-696 "MPOLY.spad" 1124636 1124651 1124995 1125122) (-695 "MPCPF.spad" 1123900 1123919 1124626 1124631) (-694 "MPC3.spad" 1123715 1123755 1123890 1123895) (-693 "MPC2.spad" 1123357 1123390 1123705 1123710) (-692 "MONOTOOL.spad" 1121692 1121709 1123347 1123352) (-691 "MONOID.spad" 1121011 1121019 1121682 1121687) (-690 "MONOID.spad" 1120328 1120338 1121001 1121006) (-689 "MONOGEN.spad" 1119074 1119087 1120188 1120323) (-688 "MONOGEN.spad" 1117842 1117857 1118958 1118963) (-687 "MONADWU.spad" 1115856 1115864 1117832 1117837) (-686 "MONADWU.spad" 1113868 1113878 1115846 1115851) (-685 "MONAD.spad" 1113012 1113020 1113858 1113863) (-684 "MONAD.spad" 1112154 1112164 1113002 1113007) (-683 "MOEBIUS.spad" 1110840 1110854 1112134 1112149) (-682 "MODULE.spad" 1110710 1110720 1110808 1110835) (-681 "MODULE.spad" 1110600 1110612 1110700 1110705) (-680 "MODRING.spad" 1109931 1109970 1110580 1110595) (-679 "MODOP.spad" 1108590 1108602 1109753 1109820) (-678 "MODMONOM.spad" 1108122 1108140 1108580 1108585) (-677 "MODMON.spad" 1104827 1104843 1105603 1105756) (-676 "MODFIELD.spad" 1104185 1104224 1104729 1104822) (-675 "MMLFORM.spad" 1103045 1103053 1104175 1104180) (-674 "MMAP.spad" 1102785 1102819 1103035 1103040) (-673 "MLO.spad" 1101212 1101222 1102741 1102780) (-672 "MLIFT.spad" 1099784 1099801 1101202 1101207) (-671 "MKUCFUNC.spad" 1099317 1099335 1099774 1099779) (-670 "MKRECORD.spad" 1098919 1098932 1099307 1099312) (-669 "MKFUNC.spad" 1098300 1098310 1098909 1098914) (-668 "MKFLCFN.spad" 1097256 1097266 1098290 1098295) (-667 "MKCHSET.spad" 1097032 1097042 1097246 1097251) (-666 "MKBCFUNC.spad" 1096517 1096535 1097022 1097027) (-665 "MINT.spad" 1095956 1095964 1096419 1096512) (-664 "MHROWRED.spad" 1094457 1094467 1095946 1095951) (-663 "MFLOAT.spad" 1092902 1092910 1094347 1094452) (-662 "MFINFACT.spad" 1092302 1092324 1092892 1092897) (-661 "MESH.spad" 1090039 1090047 1092292 1092297) (-660 "MDDFACT.spad" 1088232 1088242 1090029 1090034) (-659 "MDAGG.spad" 1087507 1087517 1088200 1088227) (-658 "MCMPLX.spad" 1083485 1083493 1084099 1084300) (-657 "MCDEN.spad" 1082693 1082705 1083475 1083480) (-656 "MCALCFN.spad" 1079795 1079821 1082683 1082688) (-655 "MAYBE.spad" 1079044 1079055 1079785 1079790) (-654 "MATSTOR.spad" 1076320 1076330 1079034 1079039) (-653 "MATRIX.spad" 1075024 1075034 1075508 1075535) (-652 "MATLIN.spad" 1072350 1072374 1074908 1074913) (-651 "MATCAT2.spad" 1071618 1071666 1072340 1072345) (-650 "MATCAT.spad" 1063191 1063213 1071574 1071613) (-649 "MATCAT.spad" 1054648 1054672 1063033 1063038) (-648 "MAPPKG3.spad" 1053547 1053561 1054638 1054643) (-647 "MAPPKG2.spad" 1052881 1052893 1053537 1053542) (-646 "MAPPKG1.spad" 1051699 1051709 1052871 1052876) (-645 "MAPPAST.spad" 1051012 1051020 1051689 1051694) (-644 "MAPHACK3.spad" 1050820 1050834 1051002 1051007) (-643 "MAPHACK2.spad" 1050585 1050597 1050810 1050815) (-642 "MAPHACK1.spad" 1050215 1050225 1050575 1050580) (-641 "MAGMA.spad" 1048005 1048022 1050205 1050210) (-640 "M3D.spad" 1045701 1045711 1047383 1047388) (-639 "LZSTAGG.spad" 1042919 1042929 1045681 1045696) (-638 "LZSTAGG.spad" 1040145 1040157 1042909 1042914) (-637 "LWORD.spad" 1036850 1036867 1040135 1040140) (-636 "LSTAST.spad" 1036635 1036643 1036840 1036845) (-635 "LSQM.spad" 1034860 1034874 1035258 1035309) (-634 "LSPP.spad" 1034393 1034410 1034850 1034855) (-633 "LSMP1.spad" 1032214 1032228 1034383 1034388) (-632 "LSMP.spad" 1031061 1031089 1032204 1032209) (-631 "LSAGG.spad" 1030718 1030728 1031017 1031056) (-630 "LSAGG.spad" 1030407 1030419 1030708 1030713) (-629 "LPOLY.spad" 1029361 1029380 1030263 1030332) (-628 "LPEFRAC.spad" 1028618 1028628 1029351 1029356) (-627 "LOGIC.spad" 1028220 1028228 1028608 1028613) (-626 "LOGIC.spad" 1027820 1027830 1028210 1028215) (-625 "LODOOPS.spad" 1026738 1026750 1027810 1027815) (-624 "LODOF.spad" 1025782 1025799 1026695 1026700) (-623 "LODOCAT.spad" 1024440 1024450 1025738 1025777) (-622 "LODOCAT.spad" 1023096 1023108 1024396 1024401) (-621 "LODO2.spad" 1022371 1022383 1022778 1022817) (-620 "LODO1.spad" 1021773 1021783 1022053 1022092) (-619 "LODO.spad" 1021159 1021175 1021455 1021494) (-618 "LODEEF.spad" 1019931 1019949 1021149 1021154) (-617 "LO.spad" 1019332 1019346 1019865 1019892) (-616 "LNAGG.spad" 1015124 1015134 1019312 1019327) (-615 "LNAGG.spad" 1010890 1010902 1015080 1015085) (-614 "LMOPS.spad" 1007626 1007643 1010880 1010885) (-613 "LMODULE.spad" 1007268 1007278 1007616 1007621) (-612 "LMDICT.spad" 1006551 1006561 1006819 1006846) (-611 "LITERAL.spad" 1006457 1006468 1006541 1006546) (-610 "LIST3.spad" 1005748 1005762 1006447 1006452) (-609 "LIST2MAP.spad" 1002625 1002637 1005738 1005743) (-608 "LIST2.spad" 1001265 1001277 1002615 1002620) (-607 "LIST.spad" 998983 998993 1000412 1000439) (-606 "LINEXP.spad" 998415 998425 998963 998978) (-605 "LINDEP.spad" 997192 997204 998327 998332) (-604 "LIMITRF.spad" 995125 995135 997182 997187) (-603 "LIMITPS.spad" 994015 994028 995115 995120) (-602 "LIECAT.spad" 993491 993501 993941 994010) (-601 "LIECAT.spad" 992995 993007 993447 993452) (-600 "LIE.spad" 991009 991021 992285 992430) (-599 "LIB.spad" 989057 989065 989668 989683) (-598 "LGROBP.spad" 986410 986429 989047 989052) (-597 "LFCAT.spad" 985429 985437 986400 986405) (-596 "LF.spad" 984348 984364 985419 985424) (-595 "LEXTRIPK.spad" 979851 979866 984338 984343) (-594 "LEXP.spad" 977854 977881 979831 979846) (-593 "LETAST.spad" 977555 977563 977844 977849) (-592 "LEADCDET.spad" 975939 975956 977545 977550) (-591 "LAZM3PK.spad" 974643 974665 975929 975934) (-590 "LAUPOL.spad" 973334 973347 974238 974307) (-589 "LAPLACE.spad" 972907 972923 973324 973329) (-588 "LALG.spad" 972683 972693 972887 972902) (-587 "LALG.spad" 972467 972479 972673 972678) (-586 "LA.spad" 971907 971921 972389 972428) (-585 "KOVACIC.spad" 970620 970637 971897 971902) (-584 "KONVERT.spad" 970342 970352 970610 970615) (-583 "KOERCE.spad" 970079 970089 970332 970337) (-582 "KERNEL2.spad" 969782 969794 970069 970074) (-581 "KERNEL.spad" 968317 968327 969566 969571) (-580 "KDAGG.spad" 967408 967430 968285 968312) (-579 "KDAGG.spad" 966519 966543 967398 967403) (-578 "KAFILE.spad" 965482 965498 965717 965744) (-577 "JORDAN.spad" 963309 963321 964772 964917) (-576 "JOINAST.spad" 963003 963011 963299 963304) (-575 "JAVACODE.spad" 962769 962777 962993 962998) (-574 "IXAGG.spad" 960882 960906 962749 962764) (-573 "IXAGG.spad" 958860 958886 960729 960734) (-572 "IVECTOR.spad" 957631 957646 957786 957813) (-571 "ITUPLE.spad" 956776 956786 957621 957626) (-570 "ITRIGMNP.spad" 955587 955606 956766 956771) (-569 "ITFUN3.spad" 955081 955095 955577 955582) (-568 "ITFUN2.spad" 954811 954823 955071 955076) (-567 "ITAYLOR.spad" 952603 952618 954647 954772) (-566 "ISUPS.spad" 945014 945029 951577 951674) (-565 "ISUMP.spad" 944511 944527 945004 945009) (-564 "ISTRING.spad" 943514 943527 943680 943707) (-563 "IRURPK.spad" 942227 942246 943504 943509) (-562 "IRSN.spad" 940187 940195 942217 942222) (-561 "IRRF2F.spad" 938662 938672 940143 940148) (-560 "IRREDFFX.spad" 938263 938274 938652 938657) (-559 "IROOT.spad" 936594 936604 938253 938258) (-558 "IR2F.spad" 935794 935810 936584 936589) (-557 "IR2.spad" 934814 934830 935784 935789) (-556 "IR.spad" 932604 932618 934670 934697) (-555 "IPRNTPK.spad" 932364 932372 932594 932599) (-554 "IPF.spad" 931929 931941 932169 932262) (-553 "IPADIC.spad" 931690 931716 931855 931924) (-552 "IOBCON.spad" 931555 931563 931680 931685) (-551 "INVLAPLA.spad" 931200 931216 931545 931550) (-550 "INTTR.spad" 924458 924475 931190 931195) (-549 "INTTOOLS.spad" 922170 922186 924033 924038) (-548 "INTSLPE.spad" 921476 921484 922160 922165) (-547 "INTRVL.spad" 921042 921052 921390 921471) (-546 "INTRF.spad" 919406 919420 921032 921037) (-545 "INTRET.spad" 918838 918848 919396 919401) (-544 "INTRAT.spad" 917513 917530 918828 918833) (-543 "INTPM.spad" 915876 915892 917156 917161) (-542 "INTPAF.spad" 913651 913669 915808 915813) (-541 "INTPACK.spad" 903961 903969 913641 913646) (-540 "INTHERTR.spad" 903227 903244 903951 903956) (-539 "INTHERAL.spad" 902893 902917 903217 903222) (-538 "INTHEORY.spad" 899306 899314 902883 902888) (-537 "INTG0.spad" 892787 892805 899238 899243) (-536 "INTFTBL.spad" 888241 888249 892777 892782) (-535 "INTFACT.spad" 887300 887310 888231 888236) (-534 "INTEF.spad" 885617 885633 887290 887295) (-533 "INTDOM.spad" 884232 884240 885543 885612) (-532 "INTDOM.spad" 882909 882919 884222 884227) (-531 "INTCAT.spad" 881162 881172 882823 882904) (-530 "INTBIT.spad" 880665 880673 881152 881157) (-529 "INTALG.spad" 879847 879874 880655 880660) (-528 "INTAF.spad" 879339 879355 879837 879842) (-527 "INTABL.spad" 877857 877888 878020 878047) (-526 "INT.spad" 877218 877226 877711 877852) (-525 "INS.spad" 874614 874622 877120 877213) (-524 "INS.spad" 872096 872106 874604 874609) (-523 "INPSIGN.spad" 871552 871565 872086 872091) (-522 "INPRODPF.spad" 870618 870637 871542 871547) (-521 "INPRODFF.spad" 869676 869700 870608 870613) (-520 "INNMFACT.spad" 868647 868664 869666 869671) (-519 "INMODGCD.spad" 868131 868161 868637 868642) (-518 "INFSP.spad" 866416 866438 868121 868126) (-517 "INFPROD0.spad" 865466 865485 866406 866411) (-516 "INFORM1.spad" 865091 865101 865456 865461) (-515 "INFORM.spad" 862359 862367 865081 865086) (-514 "INFINITY.spad" 861911 861919 862349 862354) (-513 "INEP.spad" 860443 860465 861901 861906) (-512 "INDE.spad" 860172 860189 860433 860438) (-511 "INCRMAPS.spad" 859593 859603 860162 860167) (-510 "INBFF.spad" 855363 855374 859583 859588) (-509 "INBCON.spad" 854663 854671 855353 855358) (-508 "INBCON.spad" 853961 853971 854653 854658) (-507 "INAST.spad" 853627 853635 853951 853956) (-506 "IMPTAST.spad" 853335 853343 853617 853622) (-505 "IMATRIX.spad" 852280 852306 852792 852819) (-504 "IMATQF.spad" 851374 851418 852236 852241) (-503 "IMATLIN.spad" 849979 850003 851330 851335) (-502 "ILIST.spad" 848635 848650 849162 849189) (-501 "IIARRAY2.spad" 848023 848061 848242 848269) (-500 "IFF.spad" 847433 847449 847704 847797) (-499 "IFAST.spad" 847050 847058 847423 847428) (-498 "IFARRAY.spad" 844537 844552 846233 846260) (-497 "IFAMON.spad" 844399 844416 844493 844498) (-496 "IEVALAB.spad" 843788 843800 844389 844394) (-495 "IEVALAB.spad" 843175 843189 843778 843783) (-494 "IDPOAMS.spad" 842931 842943 843165 843170) (-493 "IDPOAM.spad" 842651 842663 842921 842926) (-492 "IDPO.spad" 842449 842461 842641 842646) (-491 "IDPC.spad" 841383 841395 842439 842444) (-490 "IDPAM.spad" 841128 841140 841373 841378) (-489 "IDPAG.spad" 840875 840887 841118 841123) (-488 "IDENT.spad" 840792 840800 840865 840870) (-487 "IDECOMP.spad" 838029 838047 840782 840787) (-486 "IDEAL.spad" 832952 832991 837964 837969) (-485 "ICDEN.spad" 832103 832119 832942 832947) (-484 "ICARD.spad" 831292 831300 832093 832098) (-483 "IBPTOOLS.spad" 829885 829902 831282 831287) (-482 "IBITS.spad" 829084 829097 829521 829548) (-481 "IBATOOL.spad" 825959 825978 829074 829079) (-480 "IBACHIN.spad" 824446 824461 825949 825954) (-479 "IARRAY2.spad" 823434 823460 824053 824080) (-478 "IARRAY1.spad" 822479 822494 822617 822644) (-477 "IAN.spad" 820693 820701 822296 822389) (-476 "IALGFACT.spad" 820294 820327 820683 820688) (-475 "HYPCAT.spad" 819718 819726 820284 820289) (-474 "HYPCAT.spad" 819140 819150 819708 819713) (-473 "HOSTNAME.spad" 818948 818956 819130 819135) (-472 "HOAGG.spad" 816206 816216 818928 818943) (-471 "HOAGG.spad" 813249 813261 815973 815978) (-470 "HEXADEC.spad" 811121 811129 811719 811812) (-469 "HEUGCD.spad" 810136 810147 811111 811116) (-468 "HELLFDIV.spad" 809726 809750 810126 810131) (-467 "HEAP.spad" 809118 809128 809333 809360) (-466 "HEADAST.spad" 808649 808657 809108 809113) (-465 "HDP.spad" 799797 799813 800174 800305) (-464 "HDMP.spad" 796976 796991 797594 797721) (-463 "HB.spad" 795213 795221 796966 796971) (-462 "HASHTBL.spad" 793683 793714 793894 793921) (-461 "HACKPI.spad" 793166 793174 793585 793678) (-460 "GTSET.spad" 792105 792121 792812 792839) (-459 "GSTBL.spad" 790624 790659 790798 790813) (-458 "GSERIES.spad" 787791 787818 788756 788905) (-457 "GROUP.spad" 787060 787068 787771 787786) (-456 "GROUP.spad" 786337 786347 787050 787055) (-455 "GROEBSOL.spad" 784825 784846 786327 786332) (-454 "GRMOD.spad" 783396 783408 784815 784820) (-453 "GRMOD.spad" 781965 781979 783386 783391) (-452 "GRIMAGE.spad" 774570 774578 781955 781960) (-451 "GRDEF.spad" 772949 772957 774560 774565) (-450 "GRAY.spad" 771408 771416 772939 772944) (-449 "GRALG.spad" 770455 770467 771398 771403) (-448 "GRALG.spad" 769500 769514 770445 770450) (-447 "GPOLSET.spad" 768954 768977 769182 769209) (-446 "GOSPER.spad" 768219 768237 768944 768949) (-445 "GMODPOL.spad" 767357 767384 768187 768214) (-444 "GHENSEL.spad" 766426 766440 767347 767352) (-443 "GENUPS.spad" 762527 762540 766416 766421) (-442 "GENUFACT.spad" 762104 762114 762517 762522) (-441 "GENPGCD.spad" 761688 761705 762094 762099) (-440 "GENMFACT.spad" 761140 761159 761678 761683) (-439 "GENEEZ.spad" 759079 759092 761130 761135) (-438 "GDMP.spad" 756100 756117 756876 757003) (-437 "GCNAALG.spad" 749995 750022 755894 755961) (-436 "GCDDOM.spad" 749167 749175 749921 749990) (-435 "GCDDOM.spad" 748401 748411 749157 749162) (-434 "GBINTERN.spad" 744421 744459 748391 748396) (-433 "GBF.spad" 740178 740216 744411 744416) (-432 "GBEUCLID.spad" 738052 738090 740168 740173) (-431 "GB.spad" 735570 735608 738008 738013) (-430 "GAUSSFAC.spad" 734867 734875 735560 735565) (-429 "GALUTIL.spad" 733189 733199 734823 734828) (-428 "GALPOLYU.spad" 731635 731648 733179 733184) (-427 "GALFACTU.spad" 729800 729819 731625 731630) (-426 "GALFACT.spad" 719933 719944 729790 729795) (-425 "FVFUN.spad" 716946 716954 719913 719928) (-424 "FVC.spad" 715988 715996 716926 716941) (-423 "FUNCTION.spad" 715837 715849 715978 715983) (-422 "FTEM.spad" 715000 715008 715827 715832) (-421 "FT.spad" 713215 713223 714990 714995) (-420 "FSUPFACT.spad" 712116 712135 713152 713157) (-419 "FST.spad" 710202 710210 712106 712111) (-418 "FSRED.spad" 709680 709696 710192 710197) (-417 "FSPRMELT.spad" 708504 708520 709637 709642) (-416 "FSPECF.spad" 706581 706597 708494 708499) (-415 "FSINT.spad" 706239 706255 706571 706576) (-414 "FSERIES.spad" 705426 705438 706059 706158) (-413 "FSCINT.spad" 704739 704755 705416 705421) (-412 "FSAGG2.spad" 703438 703454 704729 704734) (-411 "FSAGG.spad" 702543 702553 703382 703433) (-410 "FSAGG.spad" 701622 701634 702463 702468) (-409 "FS2UPS.spad" 696011 696045 701612 701617) (-408 "FS2EXPXP.spad" 695134 695157 696001 696006) (-407 "FS2.spad" 694779 694795 695124 695129) (-406 "FS.spad" 688829 688839 694542 694774) (-405 "FS.spad" 682670 682682 688385 688390) (-404 "FRUTIL.spad" 681612 681622 682660 682665) (-403 "FRNAALG.spad" 676699 676709 681554 681607) (-402 "FRNAALG.spad" 671798 671810 676655 676660) (-401 "FRNAAF2.spad" 671252 671270 671788 671793) (-400 "FRMOD.spad" 670647 670677 671184 671189) (-399 "FRIDEAL2.spad" 670249 670281 670637 670642) (-398 "FRIDEAL.spad" 669444 669465 670229 670244) (-397 "FRETRCT.spad" 668955 668965 669434 669439) (-396 "FRETRCT.spad" 668334 668346 668815 668820) (-395 "FRAMALG.spad" 666662 666675 668290 668329) (-394 "FRAMALG.spad" 665022 665037 666652 666657) (-393 "FRAC2.spad" 664625 664637 665012 665017) (-392 "FRAC.spad" 661728 661738 662131 662304) (-391 "FR2.spad" 661062 661074 661718 661723) (-390 "FR.spad" 654786 654796 660089 660158) (-389 "FPS.spad" 651595 651603 654676 654781) (-388 "FPS.spad" 648432 648442 651515 651520) (-387 "FPC.spad" 647474 647482 648334 648427) (-386 "FPC.spad" 646602 646612 647464 647469) (-385 "FPATMAB.spad" 646354 646364 646582 646597) (-384 "FPARFRAC.spad" 644827 644844 646344 646349) (-383 "FORTRAN.spad" 643333 643376 644817 644822) (-382 "FORTFN.spad" 640493 640501 643313 643328) (-381 "FORTCAT.spad" 640167 640175 640473 640488) (-380 "FORT.spad" 639096 639104 640157 640162) (-379 "FORMULA1.spad" 638575 638585 639086 639091) (-378 "FORMULA.spad" 635913 635921 638565 638570) (-377 "FORDER.spad" 635604 635628 635903 635908) (-376 "FOP.spad" 634805 634813 635594 635599) (-375 "FNLA.spad" 634229 634251 634773 634800) (-374 "FNCAT.spad" 632557 632565 634219 634224) (-373 "FNAME.spad" 632449 632457 632547 632552) (-372 "FMTC.spad" 632247 632255 632375 632444) (-371 "FMONOID.spad" 629302 629312 632203 632208) (-370 "FMFUN.spad" 626322 626330 629282 629297) (-369 "FMCAT.spad" 623976 623994 626290 626317) (-368 "FMC.spad" 623018 623026 623956 623971) (-367 "FM1.spad" 622375 622387 622952 622979) (-366 "FM.spad" 622070 622082 622309 622336) (-365 "FLOATRP.spad" 619791 619805 622060 622065) (-364 "FLOATCP.spad" 617208 617222 619781 619786) (-363 "FLOAT.spad" 610372 610380 617074 617203) (-362 "FLINEXP.spad" 610084 610094 610352 610367) (-361 "FLINEXP.spad" 609750 609762 610020 610025) (-360 "FLASORT.spad" 609070 609082 609740 609745) (-359 "FLALG.spad" 606716 606735 608996 609065) (-358 "FLAGG2.spad" 605397 605413 606706 606711) (-357 "FLAGG.spad" 602403 602413 605365 605392) (-356 "FLAGG.spad" 599322 599334 602286 602291) (-355 "FINRALG.spad" 597351 597364 599278 599317) (-354 "FINRALG.spad" 595306 595321 597235 597240) (-353 "FINITE.spad" 594458 594466 595296 595301) (-352 "FINAALG.spad" 583439 583449 594400 594453) (-351 "FINAALG.spad" 572432 572444 583395 583400) (-350 "FILECAT.spad" 570950 570967 572422 572427) (-349 "FILE.spad" 570533 570543 570940 570945) (-348 "FIELD.spad" 569939 569947 570435 570528) (-347 "FIELD.spad" 569431 569441 569929 569934) (-346 "FGROUP.spad" 568040 568050 569411 569426) (-345 "FGLMICPK.spad" 566827 566842 568030 568035) (-344 "FFX.spad" 566202 566217 566543 566636) (-343 "FFSLPE.spad" 565691 565712 566192 566197) (-342 "FFPOLY2.spad" 564751 564768 565681 565686) (-341 "FFPOLY.spad" 556003 556014 564741 564746) (-340 "FFP.spad" 555400 555420 555719 555812) (-339 "FFNBX.spad" 553912 553932 555116 555209) (-338 "FFNBP.spad" 552425 552442 553628 553721) (-337 "FFNB.spad" 550890 550911 552106 552199) (-336 "FFINTBAS.spad" 548304 548323 550880 550885) (-335 "FFIELDC.spad" 545879 545887 548206 548299) (-334 "FFIELDC.spad" 543540 543550 545869 545874) (-333 "FFHOM.spad" 542288 542305 543530 543535) (-332 "FFF.spad" 539723 539734 542278 542283) (-331 "FFCGX.spad" 538570 538590 539439 539532) (-330 "FFCGP.spad" 537459 537479 538286 538379) (-329 "FFCG.spad" 536251 536272 537140 537233) (-328 "FFCAT2.spad" 535996 536036 536241 536246) (-327 "FFCAT.spad" 529023 529045 535835 535991) (-326 "FFCAT.spad" 522129 522153 528943 528948) (-325 "FF.spad" 521577 521593 521810 521903) (-324 "FEXPR.spad" 513289 513335 521336 521375) (-323 "FEVALAB.spad" 512995 513005 513279 513284) (-322 "FEVALAB.spad" 512486 512498 512772 512777) (-321 "FDIVCAT.spad" 510528 510552 512476 512481) (-320 "FDIVCAT.spad" 508568 508594 510518 510523) (-319 "FDIV2.spad" 508222 508262 508558 508563) (-318 "FDIV.spad" 507664 507688 508212 508217) (-317 "FCPAK1.spad" 506217 506225 507654 507659) (-316 "FCOMP.spad" 505596 505606 506207 506212) (-315 "FC.spad" 495421 495429 505586 505591) (-314 "FAXF.spad" 488356 488370 495323 495416) (-313 "FAXF.spad" 481343 481359 488312 488317) (-312 "FARRAY.spad" 479489 479499 480526 480553) (-311 "FAMR.spad" 477609 477621 479387 479484) (-310 "FAMR.spad" 475713 475727 477493 477498) (-309 "FAMONOID.spad" 475363 475373 475667 475672) (-308 "FAMONC.spad" 473585 473597 475353 475358) (-307 "FAGROUP.spad" 473191 473201 473481 473508) (-306 "FACUTIL.spad" 471387 471404 473181 473186) (-305 "FACTFUNC.spad" 470563 470573 471377 471382) (-304 "EXPUPXS.spad" 467396 467419 468695 468844) (-303 "EXPRTUBE.spad" 464624 464632 467386 467391) (-302 "EXPRODE.spad" 461496 461512 464614 464619) (-301 "EXPR2UPS.spad" 457588 457601 461486 461491) (-300 "EXPR2.spad" 457291 457303 457578 457583) (-299 "EXPR.spad" 452576 452586 453290 453697) (-298 "EXPEXPAN.spad" 449517 449542 450151 450244) (-297 "EXITAST.spad" 449339 449347 449507 449512) (-296 "EXIT.spad" 449010 449018 449329 449334) (-295 "EVALCYC.spad" 448468 448482 449000 449005) (-294 "EVALAB.spad" 448032 448042 448458 448463) (-293 "EVALAB.spad" 447594 447606 448022 448027) (-292 "EUCDOM.spad" 445136 445144 447520 447589) (-291 "EUCDOM.spad" 442740 442750 445126 445131) (-290 "ESTOOLS2.spad" 442341 442355 442730 442735) (-289 "ESTOOLS1.spad" 442026 442037 442331 442336) (-288 "ESTOOLS.spad" 433866 433874 442016 442021) (-287 "ESCONT1.spad" 433615 433627 433856 433861) (-286 "ESCONT.spad" 430388 430396 433605 433610) (-285 "ES2.spad" 429883 429899 430378 430383) (-284 "ES1.spad" 429449 429465 429873 429878) (-283 "ES.spad" 421996 422004 429439 429444) (-282 "ES.spad" 414450 414460 421895 421900) (-281 "ERROR.spad" 411771 411779 414440 414445) (-280 "EQTBL.spad" 410243 410265 410452 410479) (-279 "EQ2.spad" 409959 409971 410233 410238) (-278 "EQ.spad" 404833 404843 407632 407744) (-277 "EP.spad" 401147 401157 404823 404828) (-276 "ENV.spad" 399849 399857 401137 401142) (-275 "ENTIRER.spad" 399517 399525 399793 399844) (-274 "EMR.spad" 398718 398759 399443 399512) (-273 "ELTAGG.spad" 396958 396977 398708 398713) (-272 "ELTAGG.spad" 395162 395183 396914 396919) (-271 "ELTAB.spad" 394609 394627 395152 395157) (-270 "ELFUTS.spad" 393988 394007 394599 394604) (-269 "ELEMFUN.spad" 393677 393685 393978 393983) (-268 "ELEMFUN.spad" 393364 393374 393667 393672) (-267 "ELAGG.spad" 391295 391305 393332 393359) (-266 "ELAGG.spad" 389175 389187 391214 391219) (-265 "ELABEXPR.spad" 388106 388114 389165 389170) (-264 "EFUPXS.spad" 384882 384912 388062 388067) (-263 "EFULS.spad" 381718 381741 384838 384843) (-262 "EFSTRUC.spad" 379673 379689 381708 381713) (-261 "EF.spad" 374439 374455 379663 379668) (-260 "EAB.spad" 372715 372723 374429 374434) (-259 "E04UCFA.spad" 372251 372259 372705 372710) (-258 "E04NAFA.spad" 371828 371836 372241 372246) (-257 "E04MBFA.spad" 371408 371416 371818 371823) (-256 "E04JAFA.spad" 370944 370952 371398 371403) (-255 "E04GCFA.spad" 370480 370488 370934 370939) (-254 "E04FDFA.spad" 370016 370024 370470 370475) (-253 "E04DGFA.spad" 369552 369560 370006 370011) (-252 "E04AGNT.spad" 365394 365402 369542 369547) (-251 "DVARCAT.spad" 362079 362089 365384 365389) (-250 "DVARCAT.spad" 358762 358774 362069 362074) (-249 "DSMP.spad" 356196 356210 356501 356628) (-248 "DROPT1.spad" 355859 355869 356186 356191) (-247 "DROPT0.spad" 350686 350694 355849 355854) (-246 "DROPT.spad" 344631 344639 350676 350681) (-245 "DRAWPT.spad" 342786 342794 344621 344626) (-244 "DRAWHACK.spad" 342094 342104 342776 342781) (-243 "DRAWCX.spad" 339536 339544 342084 342089) (-242 "DRAWCURV.spad" 339073 339088 339526 339531) (-241 "DRAWCFUN.spad" 328245 328253 339063 339068) (-240 "DRAW.spad" 320845 320858 328235 328240) (-239 "DQAGG.spad" 319001 319011 320801 320840) (-238 "DPOLCAT.spad" 314342 314358 318869 318996) (-237 "DPOLCAT.spad" 309769 309787 314298 314303) (-236 "DPMO.spad" 303097 303113 303235 303536) (-235 "DPMM.spad" 296438 296456 296563 296864) (-234 "DOMAIN.spad" 295709 295717 296428 296433) (-233 "DMP.spad" 292934 292949 293506 293633) (-232 "DLP.spad" 292282 292292 292924 292929) (-231 "DLIST.spad" 290694 290704 291465 291492) (-230 "DLAGG.spad" 289095 289105 290674 290689) (-229 "DIVRING.spad" 288637 288645 289039 289090) (-228 "DIVRING.spad" 288223 288233 288627 288632) (-227 "DISPLAY.spad" 286403 286411 288213 288218) (-226 "DIRPROD2.spad" 285211 285229 286393 286398) (-225 "DIRPROD.spad" 276096 276112 276736 276867) (-224 "DIRPCAT.spad" 275026 275042 275948 276091) (-223 "DIRPCAT.spad" 273697 273715 274621 274626) (-222 "DIOSP.spad" 272522 272530 273687 273692) (-221 "DIOPS.spad" 271494 271504 272490 272517) (-220 "DIOPS.spad" 270452 270464 271450 271455) (-219 "DIFRING.spad" 269744 269752 270432 270447) (-218 "DIFRING.spad" 269044 269054 269734 269739) (-217 "DIFEXT.spad" 268203 268213 269024 269039) (-216 "DIFEXT.spad" 267279 267291 268102 268107) (-215 "DIAGG.spad" 266897 266907 267247 267274) (-214 "DIAGG.spad" 266535 266547 266887 266892) (-213 "DHMATRIX.spad" 264839 264849 265992 266019) (-212 "DFSFUN.spad" 258247 258255 264829 264834) (-211 "DFLOAT.spad" 254770 254778 258137 258242) (-210 "DFINTTLS.spad" 252979 252995 254760 254765) (-209 "DERHAM.spad" 250889 250921 252959 252974) (-208 "DEQUEUE.spad" 250207 250217 250496 250523) (-207 "DEGRED.spad" 249822 249836 250197 250202) (-206 "DEFINTRF.spad" 247392 247402 249812 249817) (-205 "DEFINTEF.spad" 245916 245932 247382 247387) (-204 "DECIMAL.spad" 243800 243808 244386 244479) (-203 "DDFACT.spad" 241599 241616 243790 243795) (-202 "DBLRESP.spad" 241197 241221 241589 241594) (-201 "DBASE.spad" 239769 239779 241187 241192) (-200 "DATABUF.spad" 239257 239270 239759 239764) (-199 "D03FAFA.spad" 239085 239093 239247 239252) (-198 "D03EEFA.spad" 238905 238913 239075 239080) (-197 "D03AGNT.spad" 237985 237993 238895 238900) (-196 "D02EJFA.spad" 237447 237455 237975 237980) (-195 "D02CJFA.spad" 236925 236933 237437 237442) (-194 "D02BHFA.spad" 236415 236423 236915 236920) (-193 "D02BBFA.spad" 235905 235913 236405 236410) (-192 "D02AGNT.spad" 230709 230717 235895 235900) (-191 "D01WGTS.spad" 229028 229036 230699 230704) (-190 "D01TRNS.spad" 229005 229013 229018 229023) (-189 "D01GBFA.spad" 228527 228535 228995 229000) (-188 "D01FCFA.spad" 228049 228057 228517 228522) (-187 "D01ASFA.spad" 227517 227525 228039 228044) (-186 "D01AQFA.spad" 226963 226971 227507 227512) (-185 "D01APFA.spad" 226387 226395 226953 226958) (-184 "D01ANFA.spad" 225881 225889 226377 226382) (-183 "D01AMFA.spad" 225391 225399 225871 225876) (-182 "D01ALFA.spad" 224931 224939 225381 225386) (-181 "D01AKFA.spad" 224457 224465 224921 224926) (-180 "D01AJFA.spad" 223980 223988 224447 224452) (-179 "D01AGNT.spad" 220039 220047 223970 223975) (-178 "CYCLOTOM.spad" 219545 219553 220029 220034) (-177 "CYCLES.spad" 216377 216385 219535 219540) (-176 "CVMP.spad" 215794 215804 216367 216372) (-175 "CTRIGMNP.spad" 214284 214300 215784 215789) (-174 "CTORCALL.spad" 213872 213880 214274 214279) (-173 "CSTTOOLS.spad" 213115 213128 213862 213867) (-172 "CRFP.spad" 206819 206832 213105 213110) (-171 "CRCAST.spad" 206540 206548 206809 206814) (-170 "CRAPACK.spad" 205583 205593 206530 206535) (-169 "CPMATCH.spad" 205083 205098 205508 205513) (-168 "CPIMA.spad" 204788 204807 205073 205078) (-167 "COORDSYS.spad" 199681 199691 204778 204783) (-166 "CONTOUR.spad" 199083 199091 199671 199676) (-165 "CONTFRAC.spad" 194695 194705 198985 199078) (-164 "CONDUIT.spad" 194453 194461 194685 194690) (-163 "COMRING.spad" 194127 194135 194391 194448) (-162 "COMPPROP.spad" 193641 193649 194117 194122) (-161 "COMPLPAT.spad" 193408 193423 193631 193636) (-160 "COMPLEX2.spad" 193121 193133 193398 193403) (-159 "COMPLEX.spad" 187152 187162 187396 187657) (-158 "COMPFACT.spad" 186754 186768 187142 187147) (-157 "COMPCAT.spad" 184810 184820 186476 186749) (-156 "COMPCAT.spad" 182572 182584 184240 184245) (-155 "COMMUPC.spad" 182318 182336 182562 182567) (-154 "COMMONOP.spad" 181851 181859 182308 182313) (-153 "COMM.spad" 181660 181668 181841 181846) (-152 "COMBOPC.spad" 180565 180573 181650 181655) (-151 "COMBINAT.spad" 179310 179320 180555 180560) (-150 "COMBF.spad" 176678 176694 179300 179305) (-149 "COLOR.spad" 175515 175523 176668 176673) (-148 "CMPLXRT.spad" 175224 175241 175505 175510) (-147 "CLIP.spad" 171316 171324 175214 175219) (-146 "CLIF.spad" 169955 169971 171272 171311) (-145 "CLAGG.spad" 166430 166440 169935 169950) (-144 "CLAGG.spad" 162786 162798 166293 166298) (-143 "CINTSLPE.spad" 162111 162124 162776 162781) (-142 "CHVAR.spad" 160189 160211 162101 162106) (-141 "CHARZ.spad" 160104 160112 160169 160184) (-140 "CHARPOL.spad" 159612 159622 160094 160099) (-139 "CHARNZ.spad" 159365 159373 159592 159607) (-138 "CHAR.spad" 157233 157241 159355 159360) (-137 "CFCAT.spad" 156549 156557 157223 157228) (-136 "CDEN.spad" 155707 155721 156539 156544) (-135 "CCLASS.spad" 153856 153864 155118 155157) (-134 "CATEGORY.spad" 153635 153643 153846 153851) (-133 "CARTEN2.spad" 153021 153048 153625 153630) (-132 "CARTEN.spad" 148124 148148 153011 153016) (-131 "CARD.spad" 145413 145421 148098 148119) (-130 "CACHSET.spad" 145035 145043 145403 145408) (-129 "CABMON.spad" 144588 144596 145025 145030) (-128 "BYTEARY.spad" 143663 143671 143757 143784) (-127 "BYTE.spad" 143057 143065 143653 143658) (-126 "BTREE.spad" 142126 142136 142664 142691) (-125 "BTOURN.spad" 141129 141139 141733 141760) (-124 "BTCAT.spad" 140505 140515 141085 141124) (-123 "BTCAT.spad" 139913 139925 140495 140500) (-122 "BTAGG.spad" 139023 139031 139869 139908) (-121 "BTAGG.spad" 138165 138175 139013 139018) (-120 "BSTREE.spad" 136900 136910 137772 137799) (-119 "BRILL.spad" 135095 135106 136890 136895) (-118 "BRAGG.spad" 134009 134019 135075 135090) (-117 "BRAGG.spad" 132897 132909 133965 133970) (-116 "BPADICRT.spad" 130881 130893 131136 131229) (-115 "BPADIC.spad" 130545 130557 130807 130876) (-114 "BOUNDZRO.spad" 130201 130218 130535 130540) (-113 "BOP1.spad" 127587 127597 130157 130162) (-112 "BOP.spad" 123051 123059 127577 127582) (-111 "BOOLEAN.spad" 122375 122383 123041 123046) (-110 "BMODULE.spad" 122087 122099 122343 122370) (-109 "BITS.spad" 121506 121514 121723 121750) (-108 "BINFILE.spad" 120849 120857 121496 121501) (-107 "BINDING.spad" 120268 120276 120839 120844) (-106 "BINARY.spad" 118161 118169 118738 118831) (-105 "BGAGG.spad" 117346 117356 118129 118156) (-104 "BGAGG.spad" 116551 116563 117336 117341) (-103 "BFUNCT.spad" 116115 116123 116531 116546) (-102 "BEZOUT.spad" 115249 115276 116065 116070) (-101 "BBTREE.spad" 112068 112078 114856 114883) (-100 "BASTYPE.spad" 111740 111748 112058 112063) (-99 "BASTYPE.spad" 111411 111420 111730 111735) (-98 "BALFACT.spad" 110851 110863 111401 111406) (-97 "AUTOMOR.spad" 110298 110307 110831 110846) (-96 "ATTREG.spad" 107017 107024 110050 110293) (-95 "ATTRBUT.spad" 103040 103047 106997 107012) (-94 "ATTRAST.spad" 102758 102765 103030 103035) (-93 "ATRIG.spad" 102228 102235 102748 102753) (-92 "ATRIG.spad" 101696 101705 102218 102223) (-91 "ASTCAT.spad" 101600 101607 101686 101691) (-90 "ASTCAT.spad" 101502 101511 101590 101595) (-89 "ASTACK.spad" 100835 100844 101109 101136) (-88 "ASSOCEQ.spad" 99635 99646 100791 100796) (-87 "ASP9.spad" 98716 98729 99625 99630) (-86 "ASP80.spad" 98038 98051 98706 98711) (-85 "ASP8.spad" 97081 97094 98028 98033) (-84 "ASP78.spad" 96532 96545 97071 97076) (-83 "ASP77.spad" 95901 95914 96522 96527) (-82 "ASP74.spad" 94993 95006 95891 95896) (-81 "ASP73.spad" 94264 94277 94983 94988) (-80 "ASP7.spad" 93424 93437 94254 94259) (-79 "ASP6.spad" 92056 92069 93414 93419) (-78 "ASP55.spad" 90565 90578 92046 92051) (-77 "ASP50.spad" 88382 88395 90555 90560) (-76 "ASP49.spad" 87381 87394 88372 88377) (-75 "ASP42.spad" 85788 85827 87371 87376) (-74 "ASP41.spad" 84367 84406 85778 85783) (-73 "ASP4.spad" 83662 83675 84357 84362) (-72 "ASP35.spad" 82650 82663 83652 83657) (-71 "ASP34.spad" 81951 81964 82640 82645) (-70 "ASP33.spad" 81511 81524 81941 81946) (-69 "ASP31.spad" 80651 80664 81501 81506) (-68 "ASP30.spad" 79543 79556 80641 80646) (-67 "ASP29.spad" 79009 79022 79533 79538) (-66 "ASP28.spad" 70282 70295 78999 79004) (-65 "ASP27.spad" 69179 69192 70272 70277) (-64 "ASP24.spad" 68266 68279 69169 69174) (-63 "ASP20.spad" 67482 67495 68256 68261) (-62 "ASP19.spad" 62168 62181 67472 67477) (-61 "ASP12.spad" 61582 61595 62158 62163) (-60 "ASP10.spad" 60853 60866 61572 61577) (-59 "ASP1.spad" 60234 60247 60843 60848) (-58 "ARRAY2.spad" 59594 59603 59841 59868) (-57 "ARRAY12.spad" 58263 58274 59584 59589) (-56 "ARRAY1.spad" 57098 57107 57446 57473) (-55 "ARR2CAT.spad" 52748 52769 57054 57093) (-54 "ARR2CAT.spad" 48430 48453 52738 52743) (-53 "APPRULE.spad" 47674 47696 48420 48425) (-52 "APPLYORE.spad" 47289 47302 47664 47669) (-51 "ANY1.spad" 46360 46369 47279 47284) (-50 "ANY.spad" 44702 44709 46350 46355) (-49 "ANTISYM.spad" 43141 43157 44682 44697) (-48 "ANON.spad" 42838 42845 43131 43136) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index fc7a7e43..aabeee19 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3246 +1,3246 @@ -(144106 . 3429568338) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#2| |#2|) . T)) -((((-537)) . T)) -((($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2| |#2|) . T) ((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537))))) -((($) . T)) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#2|) . T)) -((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) -(|has| |#1| (-862)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((($) . T) (((-391 (-537))) . T)) -((($) . T)) -((($) . T)) -(((|#2| |#2|) . T)) -((((-138)) . T)) -((((-513)) . T) (((-1100)) . T) (((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) -(((|#1|) . T)) -((((-210)) . T) (((-816)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -((($ $) . T) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1| |#1|) . T)) -(-1533 (|has| |#1| (-780)) (|has| |#1| (-807))) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-805)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(144269 . 3430368528) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-392 |#2|) |#3|) . T)) +((((-392 (-526))) |has| #1=(-392 |#2|) (-995 (-392 (-526)))) (((-526)) |has| #1# (-995 (-526))) ((#1#) . T)) +((((-392 |#2|)) . T)) +((((-526)) |has| #1=(-392 |#2|) (-606 (-526))) ((#1#) . T)) +((((-392 |#2|)) . T)) +((((-392 |#2|) |#3|) . T)) +(|has| (-392 |#2|) (-141)) +((((-392 |#2|) |#3|) . T)) +(|has| (-392 |#2|) (-139)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +(|has| (-392 |#2|) (-219)) +((((-1123)) |has| (-392 |#2|) (-859 (-1123)))) +((((-392 |#2|)) . T)) +(((|#3|) . T)) +(((#1=(-392 |#2|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -(((|#4|) . T)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-816)) . T)) -((((-816)) |has| |#1| (-1045))) -((((-816)) . T) (((-1122)) . T)) -(((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#2| (-464 (-2258 |#1|) (-731))) . T)) -(((|#1| (-509 (-1117))) . T)) -(((#0=(-823 |#1|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#4| (-352)) -(|has| |#3| (-352)) -(((|#1|) . T)) -((((-823 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(|has| |#1| (-529)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -((($) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -((((-816)) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-816)) . T)) -(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) -(((|#1| |#2|) . T)) -((((-816)) . T)) (((|#1|) . T)) -(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) (((|#1|) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($ $) . T)) -(((|#2|) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($) . T)) -(|has| |#1| (-352)) +((((-1090 |#2| |#1|)) . T) ((|#1|) . T)) +((((-823)) . T)) (((|#1|) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| |#2|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) (((|#1| |#1|) . T)) -(|has| |#1| (-529)) -(((|#2| |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) (((-1117) |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-495 (-1117) |#2|)))) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(|has| |#1| (-1045)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(|has| |#1| (-1045)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(|has| |#1| (-805)) -((($) . T) (((-391 (-537))) . T)) -(((|#1|) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) -(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-823)) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) (((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1045)) -(|has| |#1| (-1045)) -(((|#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) . T)) -((((-537) |#1|) . T)) -((((-537)) . T)) -((((-537)) . T)) -((((-863 |#1|)) . T)) -(((|#1| (-509 |#2|)) . T)) -((((-537)) . T)) -((((-537)) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#1| (-731)) . T)) -(|has| |#2| (-753)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(|has| |#2| (-805)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) +((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) ((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +((((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-1100) |#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(((|#3| (-731)) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-1045)) -((((-391 (-537))) . T) (((-537)) . T)) -((((-1117) |#2|) |has| |#2| (-495 (-1117) |#2|)) ((|#2| |#2|) |has| |#2| (-293 |#2|))) -((((-391 (-537))) . T) (((-537)) . T)) +((((-159 (-363))) . T) (((-211)) . T) (((-363)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((((-392 (-526))) . T) (($) . T)) +(((#1=(-392 (-526)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-581 $) $) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (((-526)) . T) (((-581 $)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) . T)) (((|#1|) . T) (($) . T)) -((((-537)) . T)) -((((-537)) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) -((((-537)) . T)) -((((-537)) . T)) -(((#0=(-659) (-1113 #0#)) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((((-537) |#1|) . T)) -((($) . T) (((-537)) . T) (((-391 (-537))) . T)) -(((|#1|) . T)) -(|has| |#2| (-347)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-1100) |#1|) . T)) -(((|#3| |#3|) . T)) -((((-816)) . T)) -((((-816)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +(|has| |#1| (-811)) +(((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1| (-56 |#1|) (-56 |#1|)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-823)) . T)) (((|#1| |#1|) . T)) -(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-537) |#1|) . T)) -((((-160 (-210))) |has| |#1| (-973)) (((-160 (-363))) |has| |#1| (-973)) (((-513)) |has| |#1| (-580 (-513))) (((-1113 |#1|)) . T) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363))))) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#2|) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -(|has| |#1| (-347)) -(-12 (|has| |#4| (-218)) (|has| |#4| (-998))) -(-12 (|has| |#3| (-218)) (|has| |#3| (-998))) -(-1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-816)) . T) (((-1122)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#1|) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -((((-659)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-954)) (|has| |#1| (-1139))) -(((|#2|) . T) (($) . T) (((-391 (-537))) . T)) -(-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))) -((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) -(((|#4| |#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998))) (($ $) |has| |#4| (-163))) -(((|#3| |#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($ $) |has| |#3| (-163))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) -((((-816)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537))))) -((((-816)) . T)) -(((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998))) (($) |has| |#4| (-163))) -(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($) |has| |#3| (-163))) -((((-816)) . T)) -((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) -((((-391 $) (-391 $)) |has| |#2| (-529)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-862)) -((((-1100) (-51)) . T)) -((((-537)) |has| #0=(-391 |#2|) (-602 (-537))) ((#0#) . T)) -((((-513)) . T) (((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) -(((|#1|) |has| |#1| (-163))) -(((|#1| $) |has| |#1| (-270 |#1| |#1|))) -((((-816)) . T)) -((((-816)) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -(|has| |#1| (-807)) -(|has| |#1| (-1045)) -(((|#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-128)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((((-128)) . T)) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(|has| |#1| (-218)) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1| (-509 (-778 (-1117)))) . T)) -(((|#1| (-924)) . T)) -(((#0=(-823 |#1|) $) |has| #0# (-270 #0# #0#))) -((((-537) |#4|) . T)) -((((-537) |#3|) . T)) -(((|#1|) . T)) -(((|#2| |#2|) . T)) -(|has| |#1| (-1093)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -(|has| (-1186 |#1| |#2| |#3| |#4|) (-139)) -(|has| (-1186 |#1| |#2| |#3| |#4|) (-141)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(((|#1|) |has| |#1| (-163))) -((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) -(((|#2|) . T)) -(|has| |#1| (-1045)) -((((-1100) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -(|has| |#2| (-352)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-998))) -((((-816)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) -((((-537) |#1|) . T)) -((((-816)) . T)) -((((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513)))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363))))) (((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) -((((-816)) . T)) -((((-816)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-526)) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-526)) . T) (((-392 (-526))) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((((-526)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((((-526)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-373) (-1070)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-526) (-111)) . T)) +((((-526) (-111)) . T)) +((((-526) (-111)) . T)) +((((-515)) . T)) +((((-111)) . T)) +((((-823)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-515)) . T)) +((((-823)) . T)) +((((-823)) . T)) ((($) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((((-823)) . T)) ((($) . T)) +((($ $) . T)) ((($) . T)) ((($) . T)) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) . T)) -((((-816)) . T)) -(|has| (-1185 |#2| |#3| |#4|) (-141)) -(|has| (-1185 |#2| |#3| |#4|) (-139)) -(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((|#1|) . T)) -(|has| |#1| (-1045)) -((((-816)) . T)) +((((-823)) . T)) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-115 |#1|)) . T) (((-392 (-526))) . T)) +((((-115 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +((((-115 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-115 |#1|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-115 |#1|)) . T)) +((((-1123) #1=(-115 |#1|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) +(((#1=(-115 |#1|)) |has| #1# (-294 #1#))) +(((#1=(-115 |#1|) $) |has| #1# (-271 #1# #1#))) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) (((|#1|) . T)) -((((-537) |#1|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -((((-816)) |has| |#1| (-1045))) -(-1533 (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -((((-863 |#1|)) . T)) -((((-391 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-537) |#1|))) -((((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-807)) -(((|#1|) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -(|has| |#1| (-347)) -(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) -(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) -(|has| |#1| (-347)) -((((-537)) . T)) -(|has| |#1| (-15 * (|#1| (-731) |#1|))) -((((-1084 |#2| (-391 (-905 |#1|)))) . T) (((-391 (-905 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) -(((|#1|) . T)) -((((-537) |#1|) . T)) -(((|#2|) . T)) -(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(((|#1|) . T)) -((((-1117)) -12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) -(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -((($ $) |has| |#1| (-529))) -(((#0=(-659) (-1113 #0#)) . T)) -((((-816)) . T)) -((((-816)) . T) (((-1200 |#4|)) . T)) -((((-816)) . T) (((-1200 |#3|)) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -((($) |has| |#1| (-529))) -((((-816)) . T)) -((($) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((#1=(-1192 |#1| |#2| |#3|) #1#) |has| |#1| (-347)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) . T)) -(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -(((|#3|) |has| |#3| (-998))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(|has| |#1| (-1045)) -(((|#2| (-779 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-347)) -((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1027) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-863 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-735)) . T) (((-823)) . T)) +((((-127)) . T)) +((((-127)) . T)) +((((-823)) . T)) +((((-127)) . T)) +((((-526) (-127)) . T)) +((((-526) (-127)) . T)) +((((-526) (-127)) . T)) +((((-127)) . T)) +((((-127)) . T)) +((((-735)) . T)) +((((-823)) . T)) +((((-526) (-735)) . T) ((|#3| (-735)) . T)) +((((-823)) . T)) +(((|#3|) . T)) +(((|#3| (-735)) . T)) +((((-823)) . T)) +((((-138)) . T)) +((((-138)) . T)) ((((-138)) . T)) ((((-138)) . T)) -(((|#3|) |has| |#3| (-1045)) (((-537)) -12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (((-391 (-537))) -12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) -(|has| |#2| (-780)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-805)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-513)) |has| |#1| (-580 (-513)))) +((((-138)) . T)) +((((-138)) . T)) +((((-138)) . T)) +((((-607 (-138))) . T) (((-1106)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(|has| |#1| (-785)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-335))) +((((-823)) . T)) +(|has| |#1| (-141)) +(((|#1|) . T)) +((((-1123)) |has| |#1| (-859 (-1123)))) +(-3850 (|has| |#1| (-219)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(((|#1|) . T)) +((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) +(((|#1|) |has| |#1| (-294 |#1|))) +(((|#1| $) |has| |#1| (-271 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) +(((|#1|) . T)) +((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-1117 |#1|)) . T)) +(((|#1| (-1117 |#1|)) . T)) +((($) -3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-292)) (|has| |#1| (-348)) (|has| |#1| (-335)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +(((|#1| (-1117 |#1|)) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(-3850 (|has| |#1| (-353)) (|has| |#1| (-335))) +(|has| |#1| (-811)) +(((|#1|) . T)) +((((-159 (-211))) |has| |#1| . #1=((-977))) (((-159 (-363))) |has| |#1| . #1#) (((-515)) |has| |#1| (-584 (-515))) (((-1117 |#1|)) . T) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363))))) +(-12 (|has| |#1| (-292)) (|has| |#1| (-869))) +(-12 (|has| |#1| (-960)) (|has| |#1| (-1145))) +(|has| |#1| (-1145)) +(|has| |#1| (-1145)) +(|has| |#1| (-1145)) +(|has| |#1| (-1145)) +(|has| |#1| (-1145)) +(|has| |#1| (-1145)) +(((|#1|) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (($) . T) (((-392 |#1|)) . T) ((|#1|) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) . T) (((-392 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T) ((#2=(-392 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-392 (-526))) . T) (((-392 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T) (((-392 |#1|)) . T) ((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-526)) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-526)) . T) (((-392 (-526))) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((((-526)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((((-526)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-299 |#1|)) . T)) +((((-823)) . T)) +((((-299 |#1|)) . T) (($) . T)) +((((-299 |#1|)) . T)) +((((-526)) . T) (((-392 (-526))) . T)) +((((-363)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-515)) . T) (((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) +(((|#2|) |has| |#2| (-163))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) +((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) +(|has| |#2| (-163)) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) +(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) +(((|#2|) |has| |#2| (-1004))) +((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) +(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) +(|has| |#2| (-353)) +(((|#2|) |has| |#2| (-1004))) +(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) +((((-526) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2|) . T)) +((((-526) |#2|) . T)) +((((-526) |#2|) . T)) +(|has| |#2| (-757)) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(((|#2|) |has| |#2| (-348))) (((|#1| |#2|) . T)) -((((-1117)) -12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) -((((-1100) |#1|) . T)) -(((|#1| |#2| |#3| (-509 |#3|)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -((((-816)) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(|has| |#1| (-352)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-537)) . T)) -((((-537)) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -((((-816)) . T)) -((((-816)) . T)) -(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) -((((-1117) #0=(-823 |#1|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) -(((|#1|) . T)) -((((-537) |#4|) . T)) -((((-537) |#3|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -((((-391 (-537))) . T) (((-537)) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) -((($) . T) (((-537)) . T) (((-391 (-537))) . T)) -((((-537)) . T)) -((((-537)) . T)) -((($) . T) (((-537)) . T) (((-391 (-537))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) |has| |#1| (-529))) -((((-537) |#4|) . T)) -((((-537) |#3|) . T)) -((((-816)) . T)) -((((-537)) . T) (((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -((((-537) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1117) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-163))) -((($) -1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) |has| |#2| (-163)) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) -(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) -((((-138)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-352)) (|has| |#2| (-352))) -((((-816)) . T)) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) (((|#1|) . T)) -((((-816)) . T)) -(|has| |#1| (-1045)) -(|has| $ (-141)) -((((-537) |#1|) . T)) -((($) -1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) -(|has| |#1| (-347)) -(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) -(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) -(|has| |#1| (-347)) -(|has| |#1| (-15 * (|#1| (-731) |#1|))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-816)) . T)) -((((-537) (-128)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(((|#2| (-509 (-818 |#1|))) . T)) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-550 |#1|)) . T)) +((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) ((($) . T)) -(((|#1|) . T) (($) . T)) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +(((|#2| (-225 (-4273 |#1|) (-735))) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((|#2| (-225 (-4273 |#1|) (-735))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) +((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-811)) +((((-824 |#1|)) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-869)) +((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) +(((|#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) . T)) +((((-823)) . T)) +(((|#4|) |has| |#4| (-163))) +(-3850 (|has| |#4| (-163)) (|has| |#4| (-691)) (|has| |#4| (-809)) (|has| |#4| (-1004))) +(-3850 (|has| |#4| (-163)) (|has| |#4| (-691)) (|has| |#4| (-809)) (|has| |#4| (-1004))) +(-3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) +(-3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) +(((|#3|) . T) ((|#2|) . T) (($) -3850 (|has| |#4| (-163)) (|has| |#4| (-809)) (|has| |#4| (-1004))) ((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004)))) +(((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)))) +((((-823)) . T) (((-1205 |#4|)) . T)) +(|has| |#4| (-163)) +(((|#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004))) (($) |has| |#4| (-163))) +(((|#4| |#4|) -3850 (|has| |#4| (-163)) (|has| |#4| (-348)) (|has| |#4| (-1004))) (($ $) |has| |#4| (-163))) +(((|#4|) |has| |#4| (-1004))) +((((-1123)) -12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) +(-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) +(|has| |#4| (-353)) +(((|#4|) |has| |#4| (-1004))) +(((|#4|) |has| |#4| (-1004)) (((-526)) -12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004)))) +(((|#4|) |has| |#4| (-1052))) +(((|#4|) |has| |#4| (-1052)) (((-526)) -12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052))) (((-392 (-526))) -12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052)))) +((((-526) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (((|#4|) . T)) +((((-526) |#4|) . T)) +((((-526) |#4|) . T)) +(|has| |#4| (-757)) +(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) +(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) +(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) +(-3850 (|has| |#4| (-757)) (|has| |#4| (-809))) +(|has| |#4| (-809)) +(|has| |#4| (-809)) +(((|#4|) |has| |#4| (-348))) +(((|#1| |#4|) . T)) +(((|#3|) |has| |#3| (-163))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(((|#2|) . T) (($) -3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) ((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004)))) +(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) +((((-823)) . T) (((-1205 |#3|)) . T)) +(|has| |#3| (-163)) +(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($) |has| |#3| (-163))) +(((|#3| |#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($ $) |has| |#3| (-163))) +(((|#3|) |has| |#3| (-1004))) +((((-1123)) -12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) +(-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) +(|has| |#3| (-353)) +(((|#3|) |has| |#3| (-1004))) +(((|#3|) |has| |#3| (-1004)) (((-526)) -12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) +(((|#3|) |has| |#3| (-1052))) +(((|#3|) |has| |#3| (-1052)) (((-526)) -12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (((-392 (-526))) -12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) +((((-526) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) +(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (((|#3|) . T)) -((((-823 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) -(((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-537) |#2|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((#1=(-1115 |#1| |#2| |#3|) #1#) |has| |#1| (-347)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -(((|#2|) |has| |#2| (-998))) -(|has| |#1| (-1045)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) . T)) -(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) |has| |#1| (-163)) (($) . T)) -(((|#1|) . T)) -(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((((-816)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#2|) |has| |#1| (-347))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) -((((-537) |#1|) . T)) -((((-816)) . T)) -((((-391 |#2|) |#3|) . T)) -(((|#1| (-391 (-537))) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T) (((-1122)) . T)) -(|has| |#1| (-139)) +((((-526) |#3|) . T)) +((((-526) |#3|) . T)) +(|has| |#3| (-757)) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(|has| |#3| (-809)) +(|has| |#3| (-809)) +(((|#3|) |has| |#3| (-348))) +(((|#1| |#3|) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(|has| |#1| (-219)) +((($) . T)) +(((|#1| (-512 |#3|) |#3|) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) (((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363))))) +((((-1123)) |has| |#1| (-859 (-1123))) ((|#3|) . T)) +(|has| |#1| (-811)) +((($ $) . T) ((|#2| $) |has| |#1| . #1=((-219))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-512 |#3|)) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) (|has| |#1| (-141)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#2| |#3| (-818 |#1|)) . T)) -((((-1117)) |has| |#2| (-853 (-1117)))) -(((|#1|) . T)) -(((|#1| (-509 |#2|) |#2|) . T)) -(((|#1| (-731) (-1027)) . T)) -((((-391 (-537))) |has| |#2| (-347)) (($) . T)) -(((|#1| (-509 (-1034 (-1117))) (-1034 (-1117))) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(|has| |#2| (-753)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#2| (-805)) -((((-846 |#1|)) . T) (((-779 |#1|)) . T)) -((((-779 (-1117))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-606 (-537))) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -(|has| |#1| (-218)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((($ $) . T)) -(((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-1192 |#1| |#2| |#3|) $) -12 (|has| (-1192 |#1| |#2| |#3|) (-270 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) -(((|#1|) . T)) -((((-1082 |#1| |#2|)) |has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) -(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#1|) . T)) -(((|#1| |#2|) . T)) +(|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T)) +(((|#1| (-512 |#3|)) . T)) +((((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) (((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515))))) +((((-1075 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-512 |#3|)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +((((-823)) . T)) ((($) . T)) ((($) . T)) -(((|#2|) . T)) -(((|#3|) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#2|) . T)) -((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) -(((|#1|) |has| |#1| (-163))) -((((-537)) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-537) (-138)) . T)) -((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) -(((|#2|) |has| |#1| (-347))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) . T) (($ $) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| (-509 #0=(-1117)) #0#) . T)) -(((|#1|) . T) (($) . T)) -(|has| |#4| (-163)) -(|has| |#3| (-163)) -(((#0=(-391 (-905 |#1|)) #0#) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(|has| |#1| (-1045)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(|has| |#1| (-1045)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-816)) . T) (((-1122)) . T)) -(((|#1| |#1|) |has| |#1| (-163))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -((((-391 (-905 |#1|))) . T)) -((((-537) (-128)) . T)) -(((|#1|) |has| |#1| (-163))) -((((-128)) . T)) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-816)) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-998)) (((-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) +((((-823)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-823)) . T)) +(((|#1|) |has| |#1| (-348))) +((((-1123)) |has| |#1| (-859 (-1123)))) +(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)))) +(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004)))) +(((|#1| |#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004)))) +(((|#1|) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-1004))) (($) -3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)))) +(-3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(|has| |#1| (-457)) +(-3850 (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052))) +((((-111)) |has| |#1| (-1052)) (((-823)) -3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-457)) (|has| |#1| (-691)) (|has| |#1| (-859 (-1123))) (|has| |#1| (-1004)) (|has| |#1| (-1063)) (|has| |#1| (-1052))) +((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|))) (((|#1| |#2|) . T)) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(|has| |#3| (-753)) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -(|has| |#3| (-805)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#2|) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -(((|#2|) . T)) -((((-537) (-128)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-537) |#2|) . T)) -(((|#1| (-1098 |#1|)) |has| |#1| (-805))) -(|has| |#1| (-1045)) -(((|#1|) . T)) -(-12 (|has| |#1| (-347)) (|has| |#2| (-1093))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#1| (-1045)) -(((|#2|) . T)) -((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) -(((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)))) -(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) -((((-816)) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) -((($ $) . T) ((#0=(-1117) $) |has| |#1| (-218)) ((#0# |#1|) |has| |#1| (-218)) ((#1=(-778 (-1117)) |#1|) . T) ((#1# $) . T)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -((((-537) |#2|) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((($) -1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) ((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998)))) -((((-537) |#1|) . T)) -(|has| (-391 |#2|) (-141)) -(|has| (-391 |#2|) (-139)) -(((|#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-391 (-537))) . T)) -((((-816)) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#2| (-1093)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -((((-816)) . T) (((-1122)) . T)) -((((-816)) . T) (((-1122)) . T)) -(((|#1|) . T)) -((((-1153)) . T) (((-816)) . T) (((-1122)) . T)) -((((-372) (-1100)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-529)) -((((-115 |#1|)) . T)) -((((-128)) . T)) -((((-537) |#1|) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#2|) . T)) -((((-816)) . T)) -((((-779 |#1|)) . T)) -(((|#2|) |has| |#2| (-163))) -((((-1117) (-51)) . T)) -(((|#1|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-529)) -(((|#1|) |has| |#1| (-163))) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513)))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#2|) |has| |#2| (-293 |#2|))) -(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1113 |#1|)) . T)) -(|has| $ (-141)) -(((|#2|) . T)) -(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -((($) . T) (((-537)) . T) (((-391 (-537))) . T)) -(|has| |#2| (-352)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((((-537)) . T) (((-391 (-537))) . T) (($) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-537)) . T) (((-391 (-537))) . T) (($) . T)) -((((-1115 |#1| |#2| |#3|) $) -12 (|has| (-1115 |#1| |#2| |#3|) (-270 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))) (($ $) . T)) -((((-816)) . T)) -((((-816)) . T)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((($ $) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-823)) . T)) +(|has| (-1192 |#1| |#2| |#3| |#4|) (-139)) +(|has| (-1192 |#1| |#2| |#3| |#4|) (-141)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-1192 |#1| |#2| |#3| |#4|)) . T) (((-392 (-526))) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-392 (-526))) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-1192 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1123) #1=(-1192 |#1| |#2| |#3| |#4|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) +(((#1=(-1192 |#1| |#2| |#3| |#4|)) |has| #1# (-294 #1#))) +(((#1=(-1192 |#1| |#2| |#3| |#4|) $) |has| #1# (-271 #1# #1#))) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1186 |#2| |#3| |#4|)) . T) (((-1192 |#1| |#2| |#3| |#4|)) . T)) +((((-1192 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(((|#1|) |has| |#1| (-533))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +((((-823)) . T)) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-457)) (|has| |#1| (-533)) (|has| |#1| (-1004)) (|has| |#1| (-1063))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-457)) (|has| |#1| (-533)) (|has| |#1| (-1004)) (|has| |#1| (-1063))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +((((-581 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533)) (((-392 (-526))) |has| |#1| (-533))) +((($) -3850 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-533)) (|has| |#1| (-1004))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-533))) +(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533)) (((-392 (-526))) |has| |#1| (-533))) +(|has| |#1| (-533)) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-533)) (($) |has| |#1| (-533))) +(((|#1| |#1|) |has| |#1| (-163)) ((#1=(-392 (-526)) #1#) |has| |#1| (-533)) (($ $) |has| |#1| (-533))) +(|has| |#1| (-533)) +(((|#1|) |has| |#1| (-1004))) +(((|#1|) |has| |#1| (-1004)) (((-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) +(((|#1|) . T)) +((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) +(((|#1|) . T)) +(|has| |#1| (-457)) +((((-1123)) |has| |#1| (-1004))) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363))))) +((((-47)) -12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (((-581 $)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) -3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))) (((-392 (-905 |#1|))) |has| |#1| (-533)) (((-905 |#1|)) |has| |#1| (-1004)) (((-1123)) . T)) +(((|#1|) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +((((-823)) . T)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-392 (-526))) . T)) +(((|#1| (-392 (-526))) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1|) . T)) +(((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) +(((|#1| (-392 (-526)) (-1033)) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) ((($ $) . T)) -((((-816)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((#0=(-1192 |#1| |#2| |#3|) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))) (((-1117) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) -(-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))) +(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) (((|#1|) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) +(((|#1| (-526)) . T)) +(((#1=(-526) #1#) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-823)) . T)) +((((-823)) . T)) (((|#1|) . T)) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-391 (-537))) . T) (((-537)) . T)) -((((-537) (-138)) . T)) -((((-138)) . T)) +(((|#1| (-735)) . T)) (((|#1|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) -((((-111)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-111)) . T)) (((|#1|) . T)) -((((-513)) |has| |#1| (-580 (-513))) (((-210)) . #0=(|has| |#1| (-973))) (((-363)) . #0#)) -((((-816)) . T)) -(|has| |#1| (-780)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(|has| |#1| (-807)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -(|has| |#1| (-529)) -(|has| |#1| (-862)) -(((|#1|) . T)) -(|has| |#1| (-1045)) -((((-816)) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) -((((-537) (-138)) . T)) -((($) . T)) -(-1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-816)) . T)) -(|has| |#1| (-1045)) -(((|#1| (-924)) . T)) -(((|#1| |#1|) . T)) -((($) . T)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-456)) (|has| |#2| (-456))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) +(|has| |#1| (-811)) (((|#1|) . T)) -(|has| |#2| (-753)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#2| (-805)) -(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) -(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#1|) |has| |#1| (-163))) -((((-816)) . T)) -(|has| |#1| (-333)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-391 (-537))) . T) (($) . T)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) . T)) -(|has| |#1| (-788)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -(|has| |#1| (-1045)) -(((|#1| $) |has| |#1| (-270 |#1| |#1|))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -((($) |has| |#1| (-529))) -(((|#4|) |has| |#4| (-1045))) -(((|#3|) |has| |#3| (-1045))) -(|has| |#3| (-352)) -(((|#1|) . T) (((-816)) . T)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -((((-816)) . T)) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -(((|#2|) . T)) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#1| |#2|) . T)) -(|has| |#2| (-347)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) -((((-391 (-537))) . T) (((-537)) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -((((-138)) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) -((((-138)) . T)) -((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) -((((-138)) . T)) -(((|#1| |#2| |#3|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-1123)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T) (($) . T)) +(((|#3|) . T)) +((($) . T)) +((($ $) . T) (((-581 $) $) . T)) +((((-823)) . T)) +(((|#3|) . T) (((-581 $)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) (|has| $ (-141)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) (|has| $ (-141)) -(|has| |#1| (-1045)) -((((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-456)) (|has| |#1| (-529)) (|has| |#1| (-998)) (|has| |#1| (-1057))) -((($ $) |has| |#1| (-270 $ $)) ((|#1| $) |has| |#1| (-270 |#1| |#1|))) -(((|#1| (-391 (-537))) . T)) -(((|#1|) . T)) -((((-1117)) . T)) -(|has| |#1| (-529)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-529)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(((|#2|) . T) (($) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -(|has| |#4| (-805)) -(((|#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) . T)) -(|has| |#3| (-805)) -(((|#1| (-509 |#3|) |#3|) . T)) +((((-865 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) (|has| |#1| (-141)) -(|has| |#1| (-139)) -(((#0=(-391 (-537)) #0#) |has| |#2| (-347)) (($ $) . T)) -((((-823 |#1|)) . T)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) (|has| |#1| (-141)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-139)) -((((-391 (-537))) |has| |#2| (-347)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-333)) (|has| |#1| (-352))) -((((-1084 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-163)) -(((|#1| |#2|) . T)) -(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -((((-816)) . T)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(((|#1|) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +(((#1=(-865 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-865 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +(|has| $ (-141)) +((((-865 |#1|)) . T)) (((|#1|) . T)) -(((|#2|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -((((-659)) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(|has| |#1| (-529)) (((|#1|) . T)) (((|#1|) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1117) (-51)) . T)) -((((-816)) . T)) -((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) (((|#1|) . T)) -((((-816)) . T)) -((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -(((|#1| (-537)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-391 (-537))) . T)) -(((|#3|) . T) (((-578 $)) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((#0=(-1115 |#1| |#2| |#3|) #0#) -12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))) (((-1117) #0#) -12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) -((((-816)) . T)) (((|#1|) . T)) -(((|#3| |#3|) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(((|#1|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T)) -((((-1117) (-51)) . T)) -(((|#3|) . T)) -((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-788)) -(|has| |#1| (-1045)) -(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) -((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) -((((-731)) . T)) -((((-537)) . T)) -(|has| |#1| (-529)) -((((-816)) . T)) -(((|#1| (-391 (-537)) (-1027)) . T)) -(|has| |#1| (-139)) (((|#1|) . T)) -(|has| |#1| (-529)) -((((-537)) . T)) -((((-115 |#1|)) . T)) (((|#1|) . T)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-353))) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) (|has| |#1| (-141)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -((((-845 (-537))) . T) (((-845 (-363))) . T) (((-513)) . T) (((-1117)) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-816)) . T) (((-1122)) . T)) -((($) . T)) -((((-816)) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(((|#2|) |has| |#2| (-163))) -((($) -1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) |has| |#2| (-163)) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) -((((-823 |#1|)) . T)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) -(-12 (|has| |#3| (-218)) (|has| |#3| (-998))) -(|has| |#2| (-1093)) -(((#0=(-51)) . T) (((-2 (|:| -2926 (-1117)) (|:| -2140 #0#))) . T)) -(((|#1| |#2|) . T)) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(((|#1| (-537) (-1027)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| (-391 (-537)) (-1027)) . T)) -((($) -1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-537) |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(|has| |#2| (-352)) -(-12 (|has| |#1| (-352)) (|has| |#2| (-352))) -((((-816)) . T)) -((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(((|#1|) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) . T)) -(|has| |#1| (-333)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(|has| |#1| (-529)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -(((|#1| |#2|) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -((((-391 (-537))) . T) (((-537)) . T)) -((((-537)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-823 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -((((-816)) . T)) -(((|#3| |#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($ $) |has| |#3| (-163))) -(|has| |#1| (-973)) -((((-816)) . T)) -(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($) |has| |#3| (-163))) -((((-537) (-111)) . T)) -(((|#1|) |has| |#1| (-293 |#1|))) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -((((-1117) $) |has| |#1| (-495 (-1117) $)) (($ $) |has| |#1| (-293 $)) ((|#1| |#1|) |has| |#1| (-293 |#1|)) (((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|))) -((((-1117)) |has| |#1| (-853 (-1117)))) -(-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333))) -((((-372) (-1064)) . T)) -(((|#1| |#4|) . T)) -(((|#1| |#3|) . T)) -((((-372) |#1|) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-1045)) -((((-816)) . T)) -((((-816)) . T)) -((((-863 |#1|)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(|has| |#1| (-353)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-373) |#1|) . T)) +((((-526)) . T) (((-392 (-526))) . T)) +((((-363)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-515)) . T) (((-1106)) . T) (((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) +((((-211)) . T) (((-823)) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) |has| |#1| (-163))) (((|#1| |#2|) . T)) -((($) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) -(((#0=(-823 |#1|)) |has| #0# (-293 #0#))) -(((|#1| |#2|) . T)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (((|#1|) . T)) -(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#1| (-1139)) -(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#4|) |has| |#4| (-998))) -(((|#3|) |has| |#3| (-998))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(|has| |#1| (-347)) -((((-537)) . T) (((-391 (-537))) . T) (($) . T)) -((($ $) . T) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1| |#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-537) |#3|) . T)) -((((-816)) . T)) -((((-513)) |has| |#3| (-580 (-513)))) -((((-649 |#3|)) . T) (((-816)) . T)) -(((|#1| |#2|) . T)) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -(((#0=(-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) -((($) . T)) -(|has| |#2| (-807)) -((($) . T)) -(((|#2|) |has| |#2| (-1045))) -((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -((((-1100) (-51)) . T)) -(|has| |#1| (-807)) -((((-816)) . T)) -((((-537)) |has| #0=(-391 |#2|) (-602 (-537))) ((#0#) . T)) -((((-537) (-138)) . T)) -((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-816)) . T)) -((((-863 |#1|)) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) -(|has| |#1| (-805)) -(|has| |#1| (-347)) -(|has| |#1| (-805)) -(((|#1|) . T) (($) . T)) -(|has| |#1| (-805)) -((((-1117)) |has| |#1| (-853 (-1117)))) -(((|#1| (-1117)) . T)) -(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) -((((-816)) . T) (((-1122)) . T)) -(((|#1| |#2|) . T)) -((($ $) . T)) -(|has| |#1| (-1045)) -(((|#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) . T)) -((((-391 (-905 |#1|))) . T)) -((((-513)) . T)) -((((-816)) . T)) -((($) . T)) -(((|#2|) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T)) (((|#1|) |has| |#1| (-163))) -((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-823)) . T)) +((((-823)) . T)) (((|#3|) . T)) -(((|#1|) |has| |#1| (-163))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-513)) |has| |#1| (-580 (-513))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537))))) -((((-816)) . T)) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#2| (-805)) -(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) -(|has| |#1| (-529)) -(|has| |#1| (-1093)) -((((-1100) |#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1| |#1|) . T)) -((((-391 (-537))) |has| |#1| (-989 (-537))) (((-537)) |has| |#1| (-989 (-537))) (((-1117)) |has| |#1| (-989 (-1117))) ((|#1|) . T)) -((((-537) |#2|) . T)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1|) . T)) -(((|#1|) . T)) -((((-606 |#4|)) . T) (((-816)) . T)) -((((-513)) |has| |#4| (-580 (-513)))) -((((-513)) |has| |#4| (-580 (-513)))) -((((-816)) . T) (((-606 |#4|)) . T)) -((($) |has| |#1| (-805))) -(((|#1|) . T)) -((((-606 |#4|)) . T) (((-816)) . T)) -((((-513)) |has| |#4| (-580 (-513)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1117)) |has| (-391 |#2|) (-853 (-1117)))) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-816)) -1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-579 (-816))) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) (((-1200 |#3|)) . T)) -((((-537) |#2|) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) -((((-816)) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#2|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-1100) (-1117) (-537) (-210) (-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T)) -((((-537) (-111)) . T)) -(((|#1|) . T)) -((((-816)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-111)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) -(|has| $ (-141)) -((((-391 |#2|)) . T)) -((((-391 (-537))) |has| #0=(-391 |#2|) (-989 (-391 (-537)))) (((-537)) |has| #0# (-989 (-537))) ((#0#) . T)) -(((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-163))) -(|has| |#2| (-139)) -(|has| |#2| (-141)) -(((|#3|) |has| |#3| (-163))) -(|has| |#1| (-141)) +(((|#3|) . T)) +((((-823)) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-392 |#2|)) . T)) +((((-823)) . T)) +(|has| |#1| (-1164)) +((((-515)) |has| |#1| (-584 (-515))) (((-211)) . #1=(|has| |#1| (-977))) (((-363)) . #1#)) +(|has| |#1| (-977)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-1164))) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +((($ $) |has| |#1| (-271 $ $)) ((|#1| $) |has| |#1| (-271 |#1| |#1|))) +((($) |has| |#1| (-294 $)) ((|#1|) |has| |#1| (-294 |#1|))) +((((-1123) $) |has| |#1| (-496 (-1123) $)) (($ $) |has| |#1| (-294 $)) ((|#1| |#1|) |has| |#1| (-294 |#1|)) (((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-219)) +((((-1123)) |has| |#1| (-859 (-1123)))) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(-12 (|has| |#1| (-525)) (|has| |#1| (-785))) +((((-823)) . T)) (|has| |#1| (-139)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(|has| |#1| (-141)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(|has| |#1| (-141)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) (|has| |#1| (-141)) (((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-218)) -((((-1117) (-51)) . T)) -((((-816)) . T)) -(((|#1| |#1|) . T)) -((((-1117)) |has| |#2| (-853 (-1117)))) -((((-537) (-111)) . T)) -(|has| |#1| (-529)) -(((|#2|) . T)) -(((|#2|) . T)) +((((-1123)) |has| |#1| (-859 (-1123)))) +(|has| |#1| (-219)) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) ((|#1|) . T) (((-392 (-526))) . T)) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) +(((|#1|) |has| |#1| (-294 |#1|))) +(((|#1| $) |has| |#1| (-271 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) +(((|#1|) . T)) +((((-526)) |has| |#1| (-845 (-526))) (((-363)) |has| |#1| (-845 (-363)))) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +(-3850 (|has| |#1| (-784)) (|has| |#1| (-811))) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +(|has| |#1| (-784)) +(((|#1|) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-977)) +((((-515)) |has| |#1| (-584 (-515))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-363)) . #1=(|has| |#1| (-977))) (((-211)) . #1#)) +((((-392 (-526))) |has| |#1| . #1=((-995 (-526)))) (((-526)) |has| |#1| . #1#) (((-1123)) |has| |#1| (-995 (-1123))) ((|#1|) . T)) +(|has| |#1| (-1099)) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) (((|#1| |#1|) . T)) +(((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#3|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1|) . T)) -((((-816)) . T)) -((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-951 |#1|)) . T) ((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-391 (-537))) . T) (((-391 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1113 |#1|)) . T)) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -(((|#3|) . T) (($) . T)) -(|has| |#1| (-807)) -(((|#2|) . T)) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -((((-537) |#2|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#2|) . T)) -((((-537) |#3|) . T)) -(((|#2|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T)) -(|has| |#1| (-1045)) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -(|has| |#1| (-37 (-391 (-537)))) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-373) (-1106)) . T)) +((((-823)) . T)) +((((-392 (-905 |#1|))) . T)) +((((-392 (-905 |#1|))) . T)) +((((-1090 |#2| (-392 (-905 |#1|)))) . T) (((-392 (-905 |#1|))) . T)) +((((-823)) . T)) +((((-392 (-905 |#1|))) . T)) +(((#1=(-392 (-905 |#1|)) #1#) . T)) +((((-392 (-905 |#1|))) . T)) +((((-392 (-905 |#1|))) . T)) +((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) +((($) . T)) +(((|#2| |#3|) . T)) (((|#2|) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#2| |#2|) . T)) -(|has| |#2| (-347)) -(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((|#2| |#3|) . T)) (((|#2|) . T)) -((((-1100) (-51)) . T)) -(((|#2|) |has| |#2| (-163))) -((((-537) |#3|) . T)) -((((-537) (-138)) . T)) -((((-138)) . T)) -((((-816)) . T)) -((((-111)) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) +((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-811)) +((((-824 |#1|)) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-869)) +((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) +(((|#2| |#3| (-824 |#1|)) . T)) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +((((-823)) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#4|) . T)) +((((-607 |#4|)) . T) (((-823)) . T)) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) . T)) +((((-515)) |has| |#4| (-584 (-515)))) +(((|#1| |#2| |#3| |#4|) . T)) +((((-823)) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +((((-823)) . T)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-392 (-526))) . T)) +(((|#1| (-392 (-526))) . T)) (|has| |#1| (-141)) -(((|#1|) . T)) (|has| |#1| (-139)) -((($) . T)) -(|has| |#1| (-529)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((($) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -((((-816)) . T)) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) -((((-1100) (-51)) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1|) . T)) +(((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#1|) |has| |#1| (-163))) +(((|#1| (-392 (-526)) (-1033)) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) +((($ $) . T)) +(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1| |#2|) . T)) -((((-537) (-138)) . T)) -(((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(|has| |#1| (-807)) -(((|#2| (-731) (-1027)) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -(|has| |#1| (-751)) -(((|#1|) |has| |#1| (-163))) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-515)) |has| |#4| (-584 (-515)))) (((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (((|#4|) . T)) +((((-823)) . T) (((-607 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-515)) . T) (((-392 (-1117 (-526)))) . T) (((-211)) . T) (((-363)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((((-363)) . T) (((-211)) . T) (((-823)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) (((|#1| |#2|) . T)) -(-1533 (|has| |#1| (-141)) (-12 (|has| |#1| (-347)) (|has| |#2| (-141)))) -(-1533 (|has| |#1| (-139)) (-12 (|has| |#1| (-347)) (|has| |#2| (-139)))) -(((|#4|) . T)) -(|has| |#1| (-139)) -((((-1100) |#1|) . T)) -(|has| |#1| (-141)) -(((|#1|) . T)) -((((-537)) . T)) -((((-816)) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) -((((-816)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#3|) . T)) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045))) (((-911 |#1|)) . T)) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#2| (-347)) -(((|#1|) |has| |#1| (-163))) -(((|#2|) |has| |#2| (-998))) -((((-1100) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -(((|#2| (-846 |#1|)) . T)) -((($) . T)) -((((-372) (-1100)) . T)) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 #0#))) . T)) -(((|#1|) . T)) -((((-816)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -((((-138)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) +((($) . T)) +(((|#2| (-465 (-4273 |#1|) (-735))) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) (|has| |#2| (-139)) (|has| |#2| (-141)) -(|has| |#1| (-456)) -(-1533 (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) -(|has| |#1| (-347)) -((((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -((($) |has| |#1| (-529))) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -((((-816)) . T)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((|#2| (-465 (-4273 |#1|) (-735))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) +((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-811)) +((((-824 |#1|)) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-869)) +((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) +(((|#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) . T)) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) +(((|#2|) |has| |#2| (-163))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) +((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) +(|has| |#2| (-163)) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) +(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) +(((|#2|) |has| |#2| (-1004))) +((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) +(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) +(|has| |#2| (-353)) +(((|#2|) |has| |#2| (-1004))) +(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) +((((-526) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2|) . T)) +((((-526) |#2|) . T)) +((((-526) |#2|) . T)) +(|has| |#2| (-757)) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(((|#2|) |has| |#2| (-348))) (((|#1| |#2|) . T)) -((((-1117)) |has| |#1| (-853 (-1117)))) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -((((-816)) . T)) -(|has| |#1| (-1045)) -(((|#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) . T)) -((((-391 (-537))) . #0=(|has| |#2| (-347))) (($) . #0#)) -(((|#1| (-509 (-1117)) (-1117)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) +((((-823)) . T) (((-1128)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) (((|#1|) . T)) -(|has| |#2| (-163)) -(((|#2| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) +((((-823)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-823)) . T)) +((((-526)) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-526)) . T) (((-392 (-526))) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((((-526)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((((-526)) . T)) +((((-1106)) . T) (((-823)) . T)) +((((-159 (-363))) . T) (((-211)) . T) (((-363)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((((-392 (-526))) . T) (($) . T)) +(((#1=(-392 (-526)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-581 $) $) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (((-526)) . T) (((-581 $)) . T)) +(((|#1|) . T)) +(|has| |#1| (-811)) +(((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-526) (-111)) . T)) +((((-526) (-111)) . T)) +((((-526) (-111)) . T)) +((((-515)) . T)) +((((-111)) . T)) +((((-823)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-1123)) . T) (((-823)) . T) (((-1128)) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +((((-823)) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-1117) (-51)) . T)) -((($ $) . T)) -(((|#1| (-537)) . T)) -((((-863 |#1|)) . T)) -(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998))) (($) -1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)))) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -((((-537) |#2|) . T)) -((((-537)) . T)) -((((-1192 |#1| |#2| |#3|)) -12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) -(|has| |#1| (-807)) -((((-649 |#2|)) . T) (((-816)) . T)) (((|#1| |#2|) . T)) -((((-391 (-905 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#1|) |has| |#1| (-163))) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) -(|has| |#2| (-807)) -(|has| |#1| (-807)) -(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-862))) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -((((-537) |#2|) . T)) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) -(|has| |#1| (-333)) -(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -((($) . T) (((-391 (-537))) . T)) -((((-537) (-111)) . T)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(((|#1|) . T)) -(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-37 (-391 (-537)))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) -(((|#1|) . T)) -(|has| |#1| (-805)) -(((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#1| (-1045)) -((((-816)) . T) (((-1122)) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -(((|#3| |#3|) . T)) -(((|#2|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) -(((|#1| (-509 |#2|) |#2|) . T)) -((((-816)) . T)) -((((-731)) . T) (((-816)) . T)) -(((|#1| (-731) (-1027)) . T)) -(((|#3|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) -((((-138)) . T)) -(((|#2|) |has| |#2| (-163))) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(|has| |#3| (-163)) -(((|#4|) |has| |#4| (-347))) -(((|#3|) |has| |#3| (-347))) +((((-823)) . T) (((-1128)) . T)) +((((-554 |#1|)) . T)) +((((-554 |#1|)) . T)) +((((-554 |#1|)) . T)) +((((-554 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +(((#1=(-554 |#1|) #1#) . T) (($ $) . T) ((#2=(-392 (-526)) #2#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-554 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-554 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +(|has| $ (-141)) +((((-554 |#1|)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-347))) -((((-816)) . T)) -(((|#2|) . T)) -(((|#1| (-1113 |#1|)) . T)) -((((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((($) . T) ((|#1|) . T) (((-391 (-537))) . T)) -(((|#2|) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -((($) |has| |#1| (-805))) -(|has| |#1| (-862)) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1| |#4| |#5|) . T)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -(((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -(((|#1| |#2|) . T)) (((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) -(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) -(|has| |#1| (-807)) -(|has| |#1| (-529)) -((((-550 |#1|)) . T)) -((($) . T)) -(((|#2|) . T)) -(-1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-780))) (-12 (|has| |#1| (-347)) (|has| |#2| (-807)))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -((((-863 |#1|)) . T)) -(((|#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) . T)) -(((|#1| |#4| |#5|) . T)) -(((|#1| (-731)) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-633 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-816)) . T) (((-1122)) . T)) -((((-513)) . T)) -((((-816)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#2|) . T)) -(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -(|has| |#1| (-1139)) -(|has| |#1| (-1139)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) -(|has| |#1| (-1139)) -(|has| |#1| (-1139)) -(((|#3| |#3|) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T) ((#1=(-391 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -(((|#3|) . T)) -((($) . T) (((-391 (-537))) . T) (((-391 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((((-1100) (-51)) . T)) -(|has| |#1| (-1045)) -(-1533 (|has| |#2| (-780)) (|has| |#2| (-807))) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((($) . T)) -((((-1115 |#1| |#2| |#3|)) -12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) -((((-816)) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-816)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -(|has| |#2| (-862)) -(|has| |#1| (-347)) -(((|#2|) |has| |#2| (-1045))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((($) . T) ((|#2|) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) -((((-513)) . T) (((-391 (-1113 (-537)))) . T) (((-210)) . T) (((-363)) . T)) -((((-363)) . T) (((-210)) . T) (((-816)) . T)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +(|has| |#1| (-811)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-735) |#1|) . T)) +((((-823)) . T)) +((((-1054)) . T)) +((((-823)) . T)) +((((-1106) (-1123) (-526) (-211) (-823)) . T)) +((($) . T)) +((((-823)) . T)) +((($) . T)) ((($ $) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((($) . T)) +((($) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-1106)) . T) (((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-526)) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) +((($) . T)) ((($ $) . T)) -((((-537) (-111)) . T)) ((($) . T)) +((((-823)) . T)) +((($) . T)) +((($) . T)) +((((-526)) . T)) (((|#1|) . T)) -((((-537)) . T)) -((((-111)) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1| (-537)) . T)) ((($) . T)) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +((((-823)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) (((|#1|) . T)) -((((-537)) . T)) -(((|#1| |#2|) . T)) -((((-1117)) |has| |#1| (-998))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) +((((-526)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +(|has| $ (-141)) +((($) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +(((|#1|) . T)) +(((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T)) +((((-823)) . T)) +((((-392 (-526))) . T)) +((((-392 (-526))) . T)) +((((-138)) . T)) +((((-138)) . T)) +((((-526) (-138)) . T)) +((((-526) (-138)) . T)) +((((-526) (-138)) . T)) +((((-138)) . T)) +((((-823)) . T)) +((((-138)) . T)) +((((-138)) . T)) +(|has| |#1| (-15 * (|#1| (-526) |#1|))) +((((-823)) . T)) +((($ $) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) +(((|#1| (-526) (-1033)) . T)) +((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +(((|#1| (-526)) . T)) +(((|#1| (-526)) . T)) +((($) |has| |#1| (-533))) +((($ $) |has| |#1| (-533))) +((($) |has| |#1| (-533))) +((($) |has| |#1| (-533))) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +((($) . T)) +((((-823)) . T)) +((((-823)) . T)) (((|#1|) . T)) -((((-816)) . T)) -(((|#1| (-537)) . T)) -(((|#1| (-1192 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-391 (-537))) . T)) -(((|#1| (-1164 |#1| |#2| |#3|)) . T)) -(((|#1| (-731)) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-816)) . T)) -(|has| |#1| (-1045)) -((((-1100) |#1|) . T)) -((($) . T)) -(|has| |#2| (-141)) -(|has| |#2| (-139)) -(((|#1| (-509 (-778 (-1117))) (-778 (-1117))) . T)) -((((-816)) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-998))) -((((-537) (-111)) . T)) -((((-816)) |has| |#1| (-1045))) -(|has| |#2| (-163)) -((((-537)) . T)) -(|has| |#2| (-805)) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) (((|#1|) . T)) -((((-537)) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-333))) -(|has| |#1| (-141)) -((((-816)) . T)) -(((|#3|) . T)) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-816)) . T)) -((((-1185 |#2| |#3| |#4|)) . T) (((-1186 |#1| |#2| |#3| |#4|)) . T)) -((((-816)) . T)) -((((-47)) -12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (((-578 $)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) -1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))) (((-391 (-905 |#1|))) |has| |#1| (-529)) (((-905 |#1|)) |has| |#1| (-998)) (((-1117)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| (-731)) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-293 |#1|))) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) +(|has| |#1| (-811)) (((|#1|) . T)) -(|has| |#1| (-529)) (((|#1|) . T)) -((((-816)) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((|#1|) |has| |#1| (-163))) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +((((-127)) . T) (((-823)) . T)) +((((-1160)) . T) (((-823)) . T) (((-1128)) . T)) +(((|#1|) -3850 (|has| |#2| (-352 |#1|)) (|has| |#2| (-403 |#1|)))) +(((|#1|) |has| |#2| (-403 |#1|))) (((|#1|) . T)) -(((|#3|) |has| |#3| (-1045))) -(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) -((((-1185 |#2| |#3| |#4|)) . T)) -((((-111)) . T)) -(|has| |#1| (-780)) -(|has| |#1| (-780)) -(((|#1| (-537) (-1027)) . T)) -((($) |has| |#1| (-293 $)) ((|#1|) |has| |#1| (-293 |#1|))) -(|has| |#1| (-805)) -(|has| |#1| (-805)) -(((|#1| (-537) (-1027)) . T)) -(-1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1| (-391 (-537)) (-1027)) . T)) -(((|#1| (-731) (-1027)) . T)) -(|has| |#1| (-807)) -(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) -(|has| |#2| (-139)) -(|has| |#2| (-141)) +(((|#1|) . T)) +(((|#2|) . T) (((-823)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T)) +((((-1106) |#1|) . T)) +((((-1106) |#1|) . T)) +((((-1106) |#1|) . T)) +((((-1106) |#1|) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-1106) |#1|) . T)) +((((-823)) . T)) +((((-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-515)) |has| |#1| (-584 (-515))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526))))) +(((|#1|) . T)) +((((-823)) . T)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(((|#2|) . T)) +((((-823)) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T) (($) . T)) (((|#2|) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) (|has| |#1| (-139)) (|has| |#1| (-141)) -(|has| |#1| (-1045)) -((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-1045)) +(((|#2|) . T) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +((((-392 |#2|)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +(|has| |#2| (-219)) +((($) . T)) +((((-823)) . T)) +((((-1123)) |has| |#2| (-859 (-1123)))) +(((|#2|) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-823)) . T)) +((((-1106) (-50)) . T)) +((((-823)) . T)) +((((-1106) (-50)) . T)) +((((-1106) (-50)) . T)) +((((-1106) (-50)) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) +(((#1=(-50)) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 #1#))) . T)) +(((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) . T)) +((((-1106) (-50)) . T)) +(((|#1|) -3850 (|has| |#2| (-352 |#1|)) (|has| |#2| (-403 |#1|)))) +(((|#1|) |has| |#2| (-403 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-823)) . T)) (((|#1|) . T)) -(|has| |#1| (-1045)) -((((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-602 (-537)))) ((|#2|) |has| |#1| (-347))) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) -(((|#2|) |has| |#2| (-163))) -(((|#1|) |has| |#1| (-163))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -((((-816)) . T)) -(|has| |#3| (-805)) -((((-816)) . T)) -((((-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) . T)) -((((-816)) . T)) -(((|#1| |#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998)))) -(((|#1|) . T)) -((((-537)) . T)) -((((-537)) . T)) -(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998)))) -(((|#2|) |has| |#2| (-347))) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) -(|has| |#1| (-807)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -((((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-218)) -(((|#1|) . T)) -(((|#1| (-537)) . T)) -(|has| |#1| (-805)) -(((|#1| (-1115 |#1| |#2| |#3|)) . T)) -(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-785)) (((|#1|) . T)) -(((|#1| (-391 (-537))) . T)) -(((|#1| (-1108 |#1| |#2| |#3|)) . T)) -(((|#1| (-731)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-811)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-823)) . T) (((-1128)) . T)) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-823)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T)) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -(((|#1| |#2|) . T)) -((((-128)) . T)) -((((-138)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) . T) (($ $) . T)) -((((-816)) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| (-391 |#2|) (-218)) -(|has| |#1| (-862)) -(((|#2|) |has| |#2| (-998))) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(|has| |#1| (-347)) (((|#1|) |has| |#1| (-163))) +((((-823)) . T)) +(((|#1|) . T)) (((|#1| |#1|) . T)) -((((-823 |#1|)) . T)) -((((-816)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1045))) -(|has| |#2| (-807)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-391 (-537))) . T) (((-537)) . T) (((-578 $)) . T)) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) (((|#1|) . T)) -((((-816)) . T)) -((($) . T)) -(|has| |#1| (-807)) -((((-816)) . T)) -(((|#1| (-509 |#2|) |#2|) . T)) -(((|#1| (-537) (-1027)) . T)) -((((-863 |#1|)) . T)) -((((-816)) . T)) -(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-163))) +((((-823)) . T)) (((|#1|) . T)) -(((|#1| (-391 (-537)) (-1027)) . T)) -(((|#1| (-731) (-1027)) . T)) -(((#0=(-391 |#2|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-537)) -1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))) (((-391 (-537))) . T)) -(((|#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (($) . T)) (((|#1|) |has| |#1| (-163))) (((|#1|) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) (((|#1|) . T)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -(|has| |#2| (-218)) -(((|#2| (-509 (-818 |#1|)) (-818 |#1|)) . T)) -((((-816)) . T)) -((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) . T)) -(((|#1| |#3|) . T)) -((((-816)) . T)) (((|#1|) |has| |#1| (-163))) -((((-659)) . T)) -((((-659)) . T)) -(((|#2|) |has| |#2| (-163))) -(|has| |#2| (-805)) -((((-111)) |has| |#1| (-1045)) (((-816)) -1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045)))) +((((-823)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) -((((-816)) . T)) -((((-537) |#1|) . T)) -((((-659)) . T) (((-391 (-537))) . T) (((-537)) . T)) -(((|#1| |#1|) |has| |#1| (-163))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -((((-363)) . T)) -((((-659)) . T)) -((((-391 (-537))) . #0=(|has| |#2| (-347))) (($) . #0#)) (((|#1|) |has| |#1| (-163))) -((((-391 (-905 |#1|))) . T)) +(((|#1|) . T)) +((((-637 |#1|)) . T)) +(((|#2| (-637 |#1|)) . T)) +(((|#2|) . T)) (((|#2| |#2|) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#2|) . T)) -(|has| |#2| (-807)) -(((|#3|) |has| |#3| (-998))) -(|has| |#2| (-862)) -(|has| |#1| (-862)) -(|has| |#1| (-347)) -(|has| |#1| (-807)) -((((-1117)) |has| |#2| (-853 (-1117)))) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-456)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-456)) (|has| |#1| (-529)) (|has| |#1| (-998)) (|has| |#1| (-1057))) -(|has| |#1| (-37 (-391 (-537)))) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -(|has| |#1| (-333)) -((((-138)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((($) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#2|) . T) (((-816)) . T)) -(((|#2|) . T) (((-816)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-807)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +(((|#2|) . T)) +((((-823)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) ((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (((|#2|) . T)) -(((|#3|) . T)) -((((-115 |#1|)) . T)) -(|has| |#1| (-352)) -(|has| |#1| (-807)) -(((|#2|) . T) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -((((-115 |#1|)) . T)) -(((|#2|) |has| |#2| (-163))) -(((|#1|) . T)) -((((-537)) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-363)) . #0=(|has| |#1| (-973))) (((-210)) . #0#)) -(((|#1|) |has| |#1| (-347))) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((($ $) . T) (((-578 $) $) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -((($) . T) (((-1186 |#1| |#2| |#3| |#4|)) . T) (((-391 (-537))) . T)) -((($) -1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-529))) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -((((-363)) . T) (((-537)) . T) (((-391 (-537))) . T)) -((((-606 (-740 |#1| (-818 |#2|)))) . T) (((-816)) . T)) -((((-513)) |has| (-740 |#1| (-818 |#2|)) (-580 (-513)))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-6 (-4312 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-653 |#2|)) . T) (((-823)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-1123)) |has| |#2| (-859 (-1123)))) +(|has| |#2| (-219)) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) +(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2|) . T)) +(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +((((-823)) . T) (((-1128)) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-1160)) . T) (((-823)) . T) (((-1128)) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1| (-1205 |#1|) (-1205 |#1|)) . T)) +((((-823)) . T)) +((((-663)) . T)) +((((-663)) . T)) +((((-663)) . T)) +((((-663)) . T)) +((((-663)) . T)) ((((-363)) . T)) -(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -((((-816)) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) -(((|#1|) . T)) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -(|has| |#1| (-1045)) -((((-816)) . T)) -((((-1117)) . T) (((-816)) . T) (((-1122)) . T)) -((((-391 (-537))) . T) (((-537)) . T) (((-578 $)) . T)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -((((-537)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(((#0=(-1185 |#2| |#3| |#4|)) . T) (((-391 (-537))) |has| #0# (-37 (-391 (-537)))) (($) . T)) -((((-537)) . T)) -(|has| |#1| (-347)) -(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-141)) (|has| |#1| (-347))) (|has| |#1| (-141))) -(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))) -(|has| |#1| (-347)) -(|has| |#1| (-139)) -(|has| |#1| (-141)) +((((-663)) . T)) +(((#1=(-663) (-1117 #1#)) . T)) +(((#1=(-663) (-1117 #1#)) . T)) +(((#1=(-663) (-1117 #1#)) . T)) +((((-663)) . T)) +((((-159 (-211))) . T) (((-159 (-363))) . T) (((-1117 (-663))) . T) (((-849 (-363))) . T)) +((((-663)) . T)) +((((-392 (-526))) . T) (((-663)) . T) (($) . T)) +((((-392 (-526))) . T) (((-663)) . T) (($) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (((-663)) . T) (($) . T)) +(((#1=(-392 (-526)) #1#) . T) ((#2=(-663) #2#) . T) (($ $) . T)) +((((-392 (-526))) . T) (((-663)) . T) (($) . T)) +((((-663)) . T) (((-392 (-526))) . T) (((-526)) . T)) +((((-363)) . T) (((-526)) . T) (((-392 (-526))) . T)) +((((-363)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-211)) . T) (((-363)) . T) (((-849 (-363))) . T)) +((((-823)) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((($) . T)) +((($) . T)) +((((-823)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-526)) . T)) +(((|#1|) . T) (((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +(|has| |#1| (-353)) +(((|#1|) . T)) +((((-823)) . T)) +((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(|has| |#1| (-348)) +(((|#1| (-735) (-1033)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) +(|has| |#1| (-811)) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-735)) . T)) (|has| |#1| (-141)) (|has| |#1| (-139)) -(|has| |#1| (-218)) -(|has| |#1| (-347)) -(((|#3|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-537)) |has| |#2| (-602 (-537))) ((|#2|) . T)) -(((|#2|) . T)) -(|has| |#1| (-1045)) -(((|#1| |#2|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -(((|#3|) |has| |#3| (-163))) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) -((((-537)) . T)) -(((|#1| $) |has| |#1| (-270 |#1| |#1|))) -((((-391 (-537))) . T) (($) . T) (((-391 |#1|)) . T) ((|#1|) . T)) -((((-816)) . T)) -(((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-274)) (|has| |#1| (-347))) ((#0=(-391 (-537)) #0#) |has| |#1| (-347))) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -((($) . T)) -((((-537) |#1|) . T)) -((((-1117)) |has| (-391 |#2|) (-853 (-1117)))) -(((|#1|) . T) (($) -1533 (|has| |#1| (-274)) (|has| |#1| (-347))) (((-391 (-537))) |has| |#1| (-347))) -((((-513)) |has| |#2| (-580 (-513)))) -((((-649 |#2|)) . T) (((-816)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -((((-823 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -((((-816)) . T)) -((((-816)) . T)) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#2|) |has| |#2| (-998))) -(((|#1|) . T)) -((((-391 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) -((((-537) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-537)) . T) (($) . T) (((-391 (-537))) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 (-537))) . T) (($) . T)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-1158))) -((($) . T)) -((((-391 (-537))) |has| #0=(-391 |#2|) (-989 (-391 (-537)))) (((-537)) |has| #0# (-989 (-537))) ((#0#) . T)) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -(((|#1| (-731)) . T)) -(|has| |#1| (-807)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-537)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#1| (-805)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-333)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1| |#2|) . T)) -((((-138)) . T)) -((((-740 |#1| (-818 |#2|))) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(|has| |#1| (-1139)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) (((|#1|) . T)) -(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) -((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|))) -(((|#2|) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-863 |#1|)) . T)) +((((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-735)) . T)) +(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((((-391 (-905 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-513)) |has| |#4| (-580 (-513)))) -((((-816)) . T) (((-606 |#4|)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-805)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) -(|has| |#1| (-1045)) -(|has| |#1| (-347)) -(|has| |#1| (-807)) -(((|#1|) . T)) -(((|#1|) . T)) +(|has| |#1| (-1099)) (((|#1|) . T)) -((($) . T) (((-391 (-537))) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) -(|has| |#1| (-139)) -(|has| |#1| (-141)) -(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-141)) (|has| |#1| (-347))) (|has| |#1| (-141))) -(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))) +((((-823)) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) (|has| |#1| (-139)) (|has| |#1| (-141)) -(|has| |#1| (-141)) -(|has| |#1| (-139)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -(|has| |#1| (-805)) -(((|#1| |#2|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-1045)) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T) (((-537)) . T)) +(((|#2| |#2|) . T)) +((((-112)) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-823)) . T)) +((($) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-515)) |has| |#2| (-584 (-515))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526))))) +((($) . T)) +(((|#2| (-512 (-824 |#1|))) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T)) (|has| |#2| (-139)) (|has| |#2| (-141)) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-1045)) -(((|#2|) |has| |#2| (-163))) -(((|#2|) . T)) -(((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-347))) -((((-391 |#2|)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513)))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) -(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)))) -((((-300 |#1|)) . T)) -(((|#2|) |has| |#2| (-347))) -(((|#2|) . T)) -((((-391 (-537))) . T) (((-659)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((#0=(-740 |#1| (-818 |#2|)) #0#) |has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|))))) -((((-818 |#1|)) . T)) -(((|#2|) |has| |#2| (-163))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) . T) (($) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526)))) ((|#2| |#2|) . T) (($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +((((-392 (-526))) |has| |#2| (-37 (-392 (-526)))) ((|#2|) |has| |#2| (-163)) (($) -3850 (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869)))) +(((|#2| (-512 (-824 |#1|))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(-3850 (|has| |#2| (-436)) (|has| |#2| (-869))) +((($ $) . T) ((#1=(-824 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-811)) +((((-824 |#1|)) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-869)) +((((-392 (-526))) |has| |#2| (-995 (-392 (-526)))) (((-526)) |has| |#2| (-995 (-526))) ((|#2|) . T) (((-824 |#1|)) . T)) +(((|#2| (-512 (-824 |#1|)) (-824 |#1|)) . T)) +(-12 (|has| |#1| (-353)) (|has| |#2| (-353))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) |has| |#1| (-163))) (((|#1|) |has| |#1| (-163))) -(((|#2|) . T)) -((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) -((((-1117)) |has| |#1| (-853 (-1117))) (((-1034 (-1117))) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#4|) |has| |#4| (-998)) (((-537)) -12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998)))) -(((|#3|) |has| |#3| (-998)) (((-537)) -12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (|has| |#1| (-139)) (|has| |#1| (-141)) -((($ $) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045))) -(|has| |#1| (-529)) -(((|#2|) . T)) -((((-537)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-823)) . T)) (((|#1|) . T)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) -((((-550 |#1|)) . T)) -((($) . T)) -(((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) +((((-823)) . T)) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (((|#1|) . T)) -((($) . T)) (((|#1|) . T)) -((((-816)) . T)) -(((|#2|) |has| |#2| (-6 (-4302 "*")))) +((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1| (-512 |#2|) |#2|) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))) (((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) +(((|#2|) . T)) +(|has| |#1| (-811)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) (((|#1|) . T)) -((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) -((($) . T) (((-115 |#1|)) . T) (((-391 (-537))) . T)) -((((-1069 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((((-1113 |#1|)) . T) (((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((((-1069 |#1| (-1117))) . T) (((-1034 (-1117))) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-1117)) . T)) -(|has| |#1| (-1045)) -((($) . T)) -(|has| |#1| (-1045)) -((((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))) (((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) -(((|#1| |#2|) . T)) -((((-1117) |#1|) . T)) -(((|#4|) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -((((-1117) (-51)) . T)) -((((-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) . T)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) -((((-816)) . T)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) -(((#0=(-1186 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-163)) ((#0=(-391 (-537)) #0#) |has| |#1| (-529)) (($ $) |has| |#1| (-529))) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1| $) |has| |#1| (-270 |#1| |#1|))) -((((-1186 |#1| |#2| |#3| |#4|)) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-529)) (($) |has| |#1| (-529))) -(|has| |#1| (-347)) -(|has| |#1| (-139)) +(((|#1| (-512 |#2|)) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) (|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((((-1075 |#1| |#2|)) . T) (((-905 |#1|)) |has| |#2| (-584 (-1123))) (((-823)) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T)) +((((-1075 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-512 |#2|)) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +((($) . T)) +((((-905 |#1|)) |has| |#2| (-584 (-1123))) (((-1106)) -12 (|has| |#1| (-995 (-526))) (|has| |#2| (-584 (-1123)))) (((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526))))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363))))) (((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515))))) +(((|#1| (-512 |#2|) |#2|) . T)) +(((|#1|) . T)) +((((-1117 |#1|)) . T) (((-823)) . T)) +((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(|has| |#1| (-348)) +(((|#1| (-735) (-1033)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) +(|has| |#1| (-811)) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-735)) . T)) (|has| |#1| (-141)) (|has| |#1| (-139)) -((((-391 (-537))) . T) (($) . T)) -(((|#3|) |has| |#3| (-347))) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -((((-1117)) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -(((|#2| |#3|) . T)) -(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(((|#1| (-509 |#2|)) . T)) -(((|#1| (-731)) . T)) -(((|#1| (-509 (-1034 (-1117)))) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1|) . T)) -(|has| |#2| (-862)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -((((-816)) . T)) -((($ $) . T) ((#0=(-1185 |#2| |#3| |#4|) #0#) . T) ((#1=(-391 (-537)) #1#) |has| #0# (-37 (-391 (-537))))) -((((-863 |#1|)) . T)) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -((($) . T) (((-391 (-537))) . T)) -((($) . T)) +((((-1117 |#1|)) . T) (((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-735)) . T)) +(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) -(|has| |#1| (-347)) -((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) . T) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) -(((|#1| |#2|) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -(-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347)) (|has| |#1| (-333))) -(-1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) -((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-111)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) -(|has| |#2| (-347)) -(|has| |#1| (-807)) +(|has| |#1| (-1099)) +(((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) +((((-823)) . T)) +((($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-816)) . T)) -(|has| |#1| (-1045)) -(((|#4|) . T)) -(((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-780)) -(((|#4|) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((((-816)) . T)) -(((|#1| (-509 (-1117))) . T)) -(((|#1|) |has| |#1| (-163))) -((((-816)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#2|) -1533 (|has| |#2| (-6 (-4302 "*"))) (|has| |#2| (-163)))) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(|has| |#2| (-807)) -(|has| |#2| (-862)) -(|has| |#1| (-862)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +((((-515)) |has| |#1| (-584 (-515)))) +(|has| |#1| (-353)) +(((|#1|) . T)) +((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) +(((|#1|) |has| |#1| (-294 |#1|))) +(((|#1| $) |has| |#1| (-271 |#1| |#1|))) +((((-954 |#1|)) . T) ((|#1|) . T)) +((((-954 |#1|)) . T) ((|#1|) . T) (((-526)) -3850 (|has| |#1| (-995 (-526))) (|has| (-954 |#1|) (-995 (-526)))) (((-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (|has| (-954 |#1|) (-995 (-392 (-526)))))) +(|has| |#1| (-811)) +(((|#1|) . T)) +((((-823)) . T)) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) +(-3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((|#2|) |has| |#2| (-163))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) -(((|#1|) . T)) -((((-816)) . T)) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-691)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +(-3850 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004))) +((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-809)) (|has| |#2| (-1004))) ((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004)))) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)))) +((((-823)) -3850 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-583 (-823))) (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-353)) (|has| |#2| (-691)) (|has| |#2| (-757)) (|has| |#2| (-809)) (|has| |#2| (-1004)) (|has| |#2| (-1052))) (((-1205 |#2|)) . T)) +(|has| |#2| (-163)) +(((|#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($) |has| |#2| (-163))) +(((|#2| |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-1004))) (($ $) |has| |#2| (-163))) +(((|#2|) |has| |#2| (-1004))) +((((-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) +(-12 (|has| |#2| (-219)) (|has| |#2| (-1004))) +(|has| |#2| (-353)) +(((|#2|) |has| |#2| (-1004))) +(((|#2|) |has| |#2| (-1004)) (((-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (((-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) +((((-526) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2|) . T)) +((((-526) |#2|) . T)) +((((-526) |#2|) . T)) +(|has| |#2| (-757)) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(-3850 (|has| |#2| (-757)) (|has| |#2| (-809))) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(((|#2|) |has| |#2| (-348))) (((|#1| |#2|) . T)) -(((|#1| (-391 (-537))) . T)) (((|#1|) . T)) -(-1533 (|has| |#1| (-274)) (|has| |#1| (-347))) -((((-138)) . T)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-805)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363))))) -((((-1117) (-51)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-606 (-138))) . T) (((-1100)) . T)) -((((-816)) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) -(|has| |#1| (-807)) -((((-816)) . T)) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) . T)) -(((|#2|) |has| |#2| (-347))) -((((-816)) . T)) -((((-513)) |has| |#4| (-580 (-513)))) -((((-816)) . T) (((-606 |#4|)) . T)) -(((|#2|) . T)) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -(-1533 (|has| |#4| (-163)) (|has| |#4| (-687)) (|has| |#4| (-805)) (|has| |#4| (-998))) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-1117) (-51)) . T)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-816)) . T)) -((((-537)) . T)) -(((#0=(-391 (-537)) #0#) . T) (($ $) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#1| (-391 (-537)) (-1027)) . T)) -(|has| |#1| (-1045)) -(|has| |#1| (-529)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(|has| |#1| (-780)) -(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) -((((-391 |#2|)) . T)) -(|has| |#1| (-805)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) . T) ((#1=(-537) #1#) . T) (($ $) . T)) -((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) -(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-823)) . T)) +(|has| |#1| (-219)) +((($) . T)) +(((|#1| (-512 (-782 (-1123))) (-782 (-1123))) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-1123)) |has| |#1| (-859 (-1123))) (((-782 (-1123))) . T)) +(|has| |#1| (-811)) +((($ $) . T) ((#1=(-1123) $) |has| |#1| . #2=((-219))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-782 (-1123)) |#1|) . T) ((#3# $) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-512 (-782 (-1123)))) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) (|has| |#1| (-141)) (|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T)) +(((|#1| (-512 (-782 (-1123)))) . T)) +((((-1075 |#1| (-1123))) . T) (((-782 (-1123))) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-1123)) . T)) +(((|#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) . T)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +((((-392 (-526))) . #1=(|has| |#2| (-348))) (($) . #1#)) +((((-392 (-526))) . #1=(|has| |#2| (-348))) (($) . #1#)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +(|has| |#2| (-348)) +((((-392 (-526))) |has| |#2| (-348)) (($) . T)) +((((-823)) . T)) +((((-392 (-526))) |has| |#2| (-348)) (($) . T)) +(((#1=(-392 (-526)) #1#) |has| |#2| (-348)) (($ $) . T)) +((((-823)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(|has| |#1| (-219)) +(((|#2|) |has| |#2| (-163))) +(((|#2| |#2|) . T)) (((|#2|) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2926 (-1117)) (|:| -2140 #0#))) . T)) -(|has| |#1| (-333)) -((((-537)) . T)) -((((-816)) . T)) -(((#0=(-1186 |#1| |#2| |#3| |#4|) $) |has| #0# (-270 #0# #0#))) -(|has| |#1| (-347)) -(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(((#0=(-391 (-537)) #0#) . T) ((#1=(-659) #1#) . T) (($ $) . T)) -((((-300 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) -(|has| |#1| (-1045)) -(((|#1|) . T)) -(((|#1|) -1533 (|has| |#2| (-351 |#1|)) (|has| |#2| (-401 |#1|)))) -(((|#1|) -1533 (|has| |#2| (-351 |#1|)) (|has| |#2| (-401 |#1|)))) -(((|#2|) . T)) -((((-391 (-537))) . T) (((-659)) . T) (($) . T)) -(((|#3| |#3|) . T)) -(|has| |#2| (-218)) -((((-818 |#1|)) . T)) -((((-1117)) |has| |#1| (-853 (-1117))) ((|#3|) . T)) -(-12 (|has| |#1| (-347)) (|has| |#2| (-973))) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -((((-816)) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -((((-391 (-537))) . T) (($) . T) (((-391 |#1|)) . T) ((|#1|) . T)) -((((-537)) . T)) -(|has| |#1| (-1045)) -(((|#3|) . T)) +((((-823)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-163))) (((|#2|) . T)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +((($) |has| |#1| (-809))) +(|has| |#1| (-809)) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(((|#1| |#1|) . T)) +((((-112)) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-823)) . T)) +((((-823)) . T)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +(|has| |#1| (-809)) +((($) |has| |#1| (-809))) +(|has| |#1| (-809)) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +(-3850 (|has| |#1| (-21)) (|has| |#1| (-809))) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-537)) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -(((|#1| |#2|) . T)) -((($) . T)) -((((-550 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((($) . T) (((-391 (-537))) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((#0=(-115 |#1|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) -((((-1069 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((|#2|) . T)) -(((|#1|) . T)) +((((-823)) . T)) +((($) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) (((|#1|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) +(((|#2|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-849 (-526))) . T) (((-849 (-363))) . T) (((-515)) . T) (((-1123)) . T)) +((((-823)) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-823)) . T)) +((($) . T)) +((((-823)) . T)) +((($) . T)) ((($ $) . T)) -((((-633 |#1|)) . T)) -((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) -((((-115 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) (((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363))))) -(((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) -((((-138)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) . T)) (((|#1|) . T)) -(|has| |#2| (-862)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -(((|#4|) . T)) -(|has| |#2| (-973)) +((((-823)) . T)) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-828 |#1|)) . T) (((-392 (-526))) . T)) +((((-828 |#1|)) . T) (($) . T) (((-392 (-526))) . T)) +((((-828 |#1|)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-828 |#1|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-828 |#1|)) . T)) +((((-1123) #1=(-828 |#1|)) |has| #1# (-496 (-1123) #1#)) ((#1# #1#) |has| #1# (-294 #1#))) +(((#1=(-828 |#1|)) |has| #1# (-294 #1#))) +(((#1=(-828 |#1|) $) |has| #1# (-271 #1# #1#))) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T)) +((((-828 |#1|)) . T)) +((((-823)) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(((|#2|) . T)) +((((-1123)) |has| |#2| (-859 (-1123)))) +(|has| |#2| (-219)) +(((|#2|) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) ((|#2|) . T) (((-392 (-526))) . T)) +(((|#2|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#2|) . T) (((-392 (-526))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-392 (-526)) #1#) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1123) |#2|) |has| |#2| (-496 (-1123) |#2|)) ((|#2| |#2|) |has| |#2| (-294 |#2|))) +(((|#2|) |has| |#2| (-294 |#2|))) +(((|#2| $) |has| |#2| (-271 |#2| |#2|))) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(((|#2|) . T)) +((((-526)) |has| |#2| (-845 (-526))) (((-363)) |has| |#2| (-845 (-363)))) +(|has| |#2| (-784)) +(|has| |#2| (-784)) +(|has| |#2| (-784)) +(-3850 (|has| |#2| (-784)) (|has| |#2| (-811))) +(|has| |#2| (-784)) +(|has| |#2| (-784)) +(|has| |#2| (-784)) +(((|#2|) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-977)) +((((-515)) |has| |#2| (-584 (-515))) (((-849 (-526))) |has| |#2| (-584 (-849 (-526)))) (((-849 (-363))) |has| |#2| (-584 (-849 (-363)))) (((-363)) . #1=(|has| |#2| (-977))) (((-211)) . #1#)) +((((-392 (-526))) |has| |#2| . #1=((-995 (-526)))) (((-526)) |has| |#2| . #1#) (((-1123)) |has| |#2| (-995 (-1123))) ((|#2|) . T)) +(|has| |#2| (-1099)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))) +(-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))) +((((-823)) -3850 (-12 (|has| |#1| (-583 (-823))) (|has| |#2| (-583 (-823)))) (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-1123)) . T) ((|#1|) . T)) +((((-823)) . T)) +((((-637 |#1|)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(-3850 (|has| |#1| (-353)) (|has| |#1| (-811))) +(((|#1|) . T)) +((((-823)) . T)) +((((-526)) . T)) ((($) . T)) -(|has| |#1| (-862)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) ((($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-347)) -((((-863 |#1|)) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(-1533 (|has| |#1| (-352)) (|has| |#1| (-807))) -(((|#1|) . T)) -((((-816)) . T)) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) -((((-391 |#2|) |#3|) . T)) -((($) . T) (((-391 (-537))) . T)) -((((-731) |#1|) . T)) -(((|#2| (-225 (-2258 |#1|) (-731))) . T)) -(((|#1| (-509 |#3|)) . T)) -((((-391 (-537))) . T)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-816)) . T)) -(((#0=(-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) -(|has| |#1| (-862)) -(|has| |#2| (-347)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-160 (-363))) . T) (((-210)) . T) (((-363)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-363)) . T) (((-537)) . T)) -(((#0=(-391 (-537)) #0#) . T) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) -(((|#1| |#1|) . T)) -((((-816)) . T)) -(|has| |#1| (-529)) -((((-391 (-537))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-37 (-391 (-537)))) -(-12 (|has| |#1| (-522)) (|has| |#1| (-788))) -((((-816)) . T)) -((((-1117)) -1533 (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))) (-12 (|has| |#1| (-347)) (|has| |#2| (-853 (-1117)))))) -(|has| |#1| (-347)) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) -(|has| |#1| (-347)) -((((-391 (-537))) . T) (($) . T)) -((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) -((((-537) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-347))) -(((|#2|) |has| |#1| (-347))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| $ (-141)) +((($) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) . T)) +((($) . T) (((-392 (-526))) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-392 (-526)) #1#) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-1117)))) (((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) (((-391 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537))))) -(((|#2|) . T)) -((((-1117) #0=(-1186 |#1| |#2| |#3| |#4|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) -((((-578 $) $) . T) (($ $) . T)) -((((-160 (-210))) . T) (((-160 (-363))) . T) (((-1113 (-659))) . T) (((-845 (-363))) . T)) -((((-816)) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -(|has| (-391 |#2|) (-218)) -(((|#1| (-391 (-537))) . T)) -((($ $) . T)) -((((-1117)) |has| |#2| (-853 (-1117)))) -((($) . T)) -((((-816)) . T)) -((((-391 (-537))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -(((|#2|) |has| |#1| (-347))) -((((-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-363)))) (((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-537))))) -(|has| |#1| (-347)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(|has| |#1| (-347)) -(|has| |#1| (-529)) -(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(((|#3|) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#2|) . T)) -(((|#2|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(((|#1| |#2|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(|has| |#1| (-141)) -((((-1100) |#1|) . T)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(|has| |#1| (-141)) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) -(|has| |#1| (-141)) -((((-550 |#1|)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515))) (((-849 (-363))) |has| |#1| (-584 (-849 (-363)))) (((-849 (-526))) |has| |#1| (-584 (-849 (-526))))) ((($) . T)) -((((-391 |#2|)) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-333))) +(((|#1| (-512 (-1123))) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) +(|has| |#1| (-139)) (|has| |#1| (-141)) -((((-816)) . T)) -((($) . T)) -((((-391 (-537))) |has| |#2| (-989 (-537))) (((-537)) |has| |#2| (-989 (-537))) (((-1117)) |has| |#2| (-989 (-1117))) ((|#2|) . T)) -(((#0=(-391 |#2|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) -((((-1082 |#1| |#2|)) . T)) -(((|#1| (-537)) . T)) -(((|#1| (-391 (-537))) . T)) -((((-537)) |has| |#2| (-839 (-537))) (((-363)) |has| |#2| (-839 (-363)))) -(((|#2|) . T)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-111)) . T)) -(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-816)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-1117) (-51)) . T)) -((((-391 |#2|)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1045)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-113)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) -((((-816)) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529)) (((-391 (-537))) |has| |#1| (-529))) -((((-816)) . T)) -((((-816)) . T)) -(((|#2|) . T)) -((((-816)) . T)) -(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-347)) -(((|#2|) . T)) -((((-537)) . T)) -((((-816)) . T)) -((((-537)) . T)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -((((-160 (-363))) . T) (((-210)) . T) (((-363)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-1100)) . T) (((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) -((((-816)) . T)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(((|#1| (-512 (-1123))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((($ $) . T) ((#1=(-1123) $) . T) ((#1# |#1|) . T)) +(|has| |#1| (-811)) +((((-1123)) . T)) +((((-363)) |has| |#1| (-845 (-363))) (((-526)) |has| |#1| (-845 (-526)))) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T) (((-1123)) . T)) +(((|#1| (-512 (-1123)) (-1123)) . T)) +((((-1070)) . T) (((-823)) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) (|has| |#1| (-141)) (|has| |#1| (-139)) -((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) |has| #0# (-163)) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045))) -(|has| |#1| (-1093)) -((((-537) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-115 |#1|) $) |has| #0# (-270 #0# #0#))) -(((|#1|) |has| |#1| (-163))) -(((|#1|) . T)) -((((-113)) . T) ((|#1|) . T)) -((((-816)) . T)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((((-823)) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) (((|#1| |#2|) . T)) -((((-1117) |#1|) . T)) -(((|#1|) |has| |#1| (-293 |#1|))) -((((-537) |#1|) . T)) (((|#1|) . T)) -((((-537)) . T) (((-391 (-537))) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -(|has| |#1| (-529)) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -((((-363)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) (((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-529)) -(|has| |#1| (-1045)) -((((-740 |#1| (-818 |#2|))) |has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|))))) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) (((|#1|) . T)) -(((|#2| |#3|) . T)) -(|has| |#2| (-862)) -(((|#1|) . T)) -(((|#1| (-509 |#2|)) . T)) -(((|#1| (-731)) . T)) -(|has| |#1| (-218)) -(((|#1| (-509 (-1034 (-1117)))) . T)) -(|has| |#2| (-347)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -((((-816)) . T)) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -((((-816)) . T)) -((((-1064)) . T) (((-816)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-578 $) $) . T)) -(((|#1|) . T)) -((((-537)) . T)) +(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) +(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) +(-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))) +(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) +(-12 (|has| |#1| (-757)) (|has| |#2| (-757))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) +(-12 (|has| |#1| (-457)) (|has| |#2| (-457))) +(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) +(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) +(-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) +(-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) +(-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) +(-12 (|has| |#1| (-353)) (|has| |#2| (-353))) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) |has| |#1| (-583 (-823)))) +((((-823)) . T) (((-1128)) . T)) +((((-607 (-526))) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +((((-515)) |has| |#1| (-584 (-515)))) +(((|#1|) . T)) +((((-1123)) |has| |#1| (-859 (-1123)))) +(|has| |#1| (-219)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-275)) (|has| |#1| (-348))) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) +(((|#1|) . T) (($) -3850 (|has| |#1| (-275)) (|has| |#1| (-348))) (((-392 (-526))) |has| |#1| (-348))) +(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-275)) (|has| |#1| (-348))) ((#1=(-392 (-526)) #1#) |has| |#1| (-348))) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-348))) +(((|#1|) . T)) +((((-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((|#1| |#1|) |has| |#1| (-294 |#1|))) +(((|#1|) |has| |#1| (-294 |#1|))) +(((|#1| $) |has| |#1| (-271 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(|has| |#1| (-811)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-392 |#2|) |#3|) . T)) +((((-392 (-526))) |has| #1=(-392 |#2|) (-995 (-392 (-526)))) (((-526)) |has| #1# (-995 (-526))) ((#1#) . T)) +((((-392 |#2|)) . T)) +((((-526)) |has| #1=(-392 |#2|) (-606 (-526))) ((#1#) . T)) +((((-392 |#2|)) . T)) +((((-392 |#2|) |#3|) . T)) +(|has| (-392 |#2|) (-141)) +((((-392 |#2|) |#3|) . T)) +(|has| (-392 |#2|) (-139)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +(|has| (-392 |#2|) (-219)) +((((-1123)) |has| (-392 |#2|) (-859 (-1123)))) +((((-392 |#2|)) . T)) (((|#3|) . T)) -((((-816)) . T)) -(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) -(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) -(((#0=(-550 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#1|) |has| |#1| (-163))) -(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) -((((-550 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -((($) . T) (((-391 (-537))) . T)) -((($) . T) (((-391 (-537))) . T)) -(((|#2|) |has| |#2| (-6 (-4302 "*")))) +(((#1=(-392 |#2|) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +((((-823)) . T)) +((((-392 |#2|)) . T) (((-392 (-526))) . T) (($) . T)) +(((|#1| |#2| |#3|) . T)) +((((-823)) . T)) +((((-526)) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((($) . T) (((-526)) . T) (((-392 (-526))) . T)) +((((-526)) . T) (($) . T) (((-392 (-526))) . T)) +((((-526)) . T) (((-392 (-526))) . T) (($) . T)) +(((#1=(-526) #1#) . T) ((#2=(-392 (-526)) #2#) . T) (($ $) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-392 (-526))) . T) (((-526)) . T)) +((((-526)) . T)) +((((-823)) . T)) +(((|#1|) . T) (($) . T) (((-392 (-526))) . T) (((-526)) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) . T) ((#2=(-526) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T) (((-526)) . T) (($) . T)) +(((|#1|) . T) (((-392 (-526))) . T)) +(((|#1|) . T) (((-526)) -3850 (|has| |#1| (-995 (-526))) (|has| (-392 (-526)) (-995 (-526)))) (((-392 (-526))) . T)) +(|has| |#1| (-1052)) +((((-823)) |has| |#1| (-1052))) +(|has| |#1| (-1052)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#4|) . T)) +((((-607 |#4|)) . T) (((-823)) . T)) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) . T)) +((((-515)) |has| |#4| (-584 (-515)))) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-816)) |has| |#1| (-579 (-816)))) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +((((-823)) . T)) +(((|#1|) . T) (($) . T)) +((((-1123) (-50)) . T)) +((((-823)) . T)) +((((-1123) (-50)) . T)) +((((-1123) (-50)) . T)) +((((-1123) (-50)) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +(((#1=(-50)) . T) (((-2 (|:| -4179 (-1123)) (|:| -2164 #1#))) . T)) +(((#1=(-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-1123) (-50)) . T)) +((((-823)) . T) (((-1128)) . T)) +(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) +((((-744 |#1| (-824 |#2|))) . T)) +((((-607 (-744 |#1| (-824 |#2|)))) . T) (((-823)) . T)) +((((-744 |#1| (-824 |#2|))) |has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|))))) +(((#1=(-744 |#1| (-824 |#2|)) #1#) |has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|))))) +((((-744 |#1| (-824 |#2|))) . T)) +((((-515)) |has| (-744 |#1| (-824 |#2|)) (-584 (-515)))) +(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) +(((|#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) . T)) +((((-515)) |has| |#3| (-584 (-515)))) +(((|#3|) |has| |#3| (-348))) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +((((-653 |#3|)) . T) (((-823)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) +(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) +(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) +(((|#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +((($) . T)) +((((-823)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-526)) . T)) +((((-1123) (-50)) . T)) +((((-823)) . T)) +((((-1123) (-50)) . T)) +((((-1123) (-50)) . T)) +((((-1123) (-50)) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +(((#1=(-50)) . T) (((-2 (|:| -4179 (-1123)) (|:| -2164 #1#))) . T)) +(((#1=(-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) #1#) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) |has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) . T)) +((((-1123) (-50)) . T)) +((((-823)) . T) (((-1128)) . T)) ((((-278 |#3|)) . T)) -(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) -(((|#1|) . T)) -((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -(((|#2|) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -(((|#2|) . T) ((|#6|) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -((((-816)) . T)) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(|has| |#2| (-862)) -(|has| |#1| (-862)) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T)) -((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) +(((|#3| |#3|) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#3| |#3|) . T)) +((((-823)) . T)) +((((-823)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-348))) +((((-1123)) -12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) +(-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-335))) +(-3850 (|has| |#1| (-353)) (|has| |#1| (-335))) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(-3850 (|has| |#1| (-139)) (|has| |#1| (-335))) +(|has| |#1| (-335)) +(((|#1| |#2|) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($ $) . T) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1| |#1|) . T)) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($) . T) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) (((-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-335))) ((|#1|) . T)) +(|has| |#1| (-141)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-1045)) -(((|#1|) . T)) -((((-1117)) . T) ((|#1|) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) -(((#0=(-391 (-537)) #0#) . T)) -((((-391 (-537))) . T)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#1|) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-513)) . T)) -((((-816)) . T)) -((((-1117)) |has| |#2| (-853 (-1117))) (((-1027)) . T)) -((((-1185 |#2| |#3| |#4|)) . T)) -((((-863 |#1|)) . T)) -((($) . T) (((-391 (-537))) . T)) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -((((-816)) . T)) -(|has| |#1| (-1158)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -((((-1117)) |has| |#1| (-853 (-1117)))) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) . T)) -(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -((($) . T) (((-391 (-537))) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) -(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) -(|has| |#1| (-529)) -(((|#1|) |has| |#1| (-347))) -((((-537)) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-751)) -((((-1117) #0=(-115 |#1|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) -(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) -((((-1027)) . T) ((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-537) (-731)) . T) ((|#3| (-731)) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) (((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-816)) . T)) -(|has| |#2| (-780)) -(|has| |#2| (-780)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2|) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) +((((-823)) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) . T)) +(|has| |#1| (-219)) +((($) . T)) +(((|#1| (-512 (-1040 (-1123))) (-1040 (-1123))) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-1123)) |has| |#1| (-859 (-1123))) (((-1040 (-1123))) . T)) +(|has| |#1| (-811)) +((($ $) . T) ((#1=(-1123) $) |has| |#1| . #2=((-219))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1040 (-1123)) |#1|) . T) ((#3# $) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-512 (-1040 (-1123)))) . T)) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) (((|#1|) . T)) -((((-823 |#1|)) . T)) -((((-823 |#1|)) . T)) -(-12 (|has| |#1| (-347)) (|has| |#2| (-862))) -((((-391 (-537))) . T) (((-659)) . T) (($) . T)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) +(((|#1| (-512 (-1040 (-1123)))) . T)) +((((-1075 |#1| (-1123))) . T) (((-1040 (-1123))) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-1123)) . T)) +(((|#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) . T)) +((((-823)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -(|has| |#1| (-347)) -(((|#2|) . T)) +(((|#1| (-607 |#1|)) |has| |#1| (-809))) +(|has| |#1| (-1052)) +((((-823)) |has| |#1| (-1052))) +(|has| |#1| (-1052)) (((|#1|) . T)) +((((-823)) . T) (((-1128)) . T)) +(|has| |#1| (-1052)) +((((-823)) |has| |#1| (-1052))) +(|has| |#1| (-1052)) (((|#1|) . T)) (((|#1|) . T)) +((((-823)) . T)) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (((|#1|) . T)) -((((-818 |#1|)) . T)) (((|#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) -(((|#2| (-731)) . T)) -((((-1117)) . T)) -((((-823 |#1|)) . T)) -(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-816)) . T)) +(|has| |#1| (-353)) (((|#1|) . T)) -(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) -(-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))) -((((-823 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -((($ $) . T) (((-578 $) $) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-1106) (-1123) (-526) (-211) (-823)) . T)) +((((-823)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +((((-823)) . T)) +(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) +(-3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) +(((|#3|) |has| |#3| (-163))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-691)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +(-3850 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004))) +((($) -3850 (|has| |#3| (-163)) (|has| |#3| (-809)) (|has| |#3| (-1004))) ((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004)))) +(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)))) +((((-823)) -3850 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-583 (-823))) (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-353)) (|has| |#3| (-691)) (|has| |#3| (-757)) (|has| |#3| (-809)) (|has| |#3| (-1004)) (|has| |#3| (-1052))) (((-1205 |#3|)) . T)) +(|has| |#3| (-163)) +(((|#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($) |has| |#3| (-163))) +(((|#3| |#3|) -3850 (|has| |#3| (-163)) (|has| |#3| (-348)) (|has| |#3| (-1004))) (($ $) |has| |#3| (-163))) +(((|#3|) |has| |#3| (-1004))) +((((-1123)) -12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) +(-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) +(|has| |#3| (-353)) +(((|#3|) |has| |#3| (-1004))) +(((|#3|) |has| |#3| (-1004)) (((-526)) -12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) +(((|#3|) |has| |#3| (-1052))) +(((|#3|) |has| |#3| (-1052)) (((-526)) -12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (((-392 (-526))) -12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) +((((-526) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) +(((|#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) +(((|#3|) . T)) +((((-526) |#3|) . T)) +((((-526) |#3|) . T)) +(|has| |#3| (-757)) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(-3850 (|has| |#3| (-757)) (|has| |#3| (-809))) +(|has| |#3| (-809)) +(|has| |#3| (-809)) +(((|#3|) |has| |#3| (-348))) +(((|#1| |#3|) . T)) +((((-823)) . T)) ((($) . T)) -((((-816)) . T)) -((((-537)) . T)) -(((|#2|) . T)) -((((-816)) . T)) -(((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) -((((-816)) . T)) -(((|#1|) . T)) -((((-816)) . T)) -((($) . T) ((|#2|) . T) (((-391 (-537))) . T)) -(|has| |#1| (-1045)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(((|#1|) . T)) +((((-823)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((((-526)) . T)) +((((-526)) . T)) +((((-515)) . T) (((-526)) . T) (((-849 (-526))) . T) (((-363)) . T) (((-211)) . T)) +((((-526)) . T)) +((((-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515)))) (((-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363))))) (((-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) +((($) . T)) +(((|#1| (-512 |#2|)) . T)) (((|#1|) . T)) -((((-816)) . T)) -(|has| |#2| (-862)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) -((((-816)) . T)) -((((-816)) . T)) -(((|#3|) |has| |#3| (-998)) (((-537)) -12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) -((((-1069 |#1| |#2|)) . T) (((-905 |#1|)) |has| |#2| (-580 (-1117))) (((-816)) . T)) -((((-905 |#1|)) |has| |#2| (-580 (-1117))) (((-1100)) -12 (|has| |#1| (-989 (-537))) (|has| |#2| (-580 (-1117)))) (((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537))))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363))))) (((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513))))) -((((-1113 |#1|)) . T) (((-816)) . T)) -((((-816)) . T)) -((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) -((((-115 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T) (((-1117)) . T)) -((((-816)) . T)) -((((-537)) . T)) +((((-823)) . T)) +((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) -3850 (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869)))) +(((|#1| (-512 |#2|)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-606 (-526)))) +(-3850 (|has| |#1| (-436)) (|has| |#1| (-869))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) +(|has| |#1| (-811)) +(((|#2|) . T)) +((((-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363)))) (((-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526))))) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-392 (-526))) |has| |#1| (-995 (-392 (-526)))) (((-526)) |has| |#1| (-995 (-526))) ((|#1|) . T) ((|#2|) . T)) +(((|#1| (-512 |#2|) |#2|) . T)) ((($) . T)) -((((-363)) |has| |#1| (-839 (-363))) (((-537)) |has| |#1| (-839 (-537)))) -((((-537)) . T)) +((($ $) . T) ((|#2| $) . T)) +(((|#2|) . T)) +((((-823)) . T)) +(((|#1| (-512 |#2|) |#2|) . T)) +((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +(((|#1| (-512 |#2|)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| |#2|) . T)) +((((-823)) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-1088 |#1| |#2|)) . T)) +(((#1=(-1088 |#1| |#2|) #1#) |has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|)))) +((((-1088 |#1| |#2|)) |has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|)))) +((((-823)) . T)) +((((-1088 |#1| |#2|)) . T)) +((((-515)) |has| |#2| (-584 (-515)))) +(((|#2|) |has| |#2| (-6 (-4312 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-653 |#2|)) . T) (((-823)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) -3850 (|has| |#2| (-6 (-4312 "*"))) (|has| |#2| (-163)))) +(((|#2|) . T)) +((((-1123)) |has| |#2| (-859 (-1123)))) +(|has| |#2| (-219)) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-606 (-526)))) +(((|#2|) . T)) +(((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) +(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) +(((|#2|) . T)) +(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-515)) |has| |#4| (-584 (-515)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) . T)) +((((-823)) . T) (((-607 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -((((-816)) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) (((|#1|) . T)) -((((-816)) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((((-537)) . T) (((-391 (-537))) . T)) -(((|#1|) |has| |#1| (-293 |#1|))) -((((-816)) . T)) -((((-363)) . T)) (((|#1|) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((((-816)) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-391 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1045)) -(((|#2| (-464 (-2258 |#1|) (-731))) . T)) -((((-537) |#1|) . T)) -((((-1100)) . T) (((-816)) . T)) -(((|#2| |#2|) . T)) -(((|#1| (-509 (-1117))) . T)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-537)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) -(|has| |#1| (-529)) -((($) . T) (((-391 (-537))) . T)) -((($) . T)) -((($) . T)) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) (((|#1|) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-816)) . T)) -((((-138)) . T)) -(((|#1|) . T) (((-391 (-537))) . T)) (((|#1|) . T)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) (((|#1|) . T)) -((((-816)) . T)) +((((-515)) |has| |#1| (-584 (-515)))) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1093)) -(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) (((|#1|) . T)) -((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((((-816)) . T)) -((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T) ((|#2|) . T)) -((((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) -((((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363)))) (((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537))))) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -((((-537) |#1|) . T)) -(((|#1| |#1|) . T)) -((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-163)) (($) . T)) -((($) . T)) -((((-659)) . T)) -((((-740 |#1| (-818 |#2|))) . T)) -((($) . T)) -((((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-1045)) -(|has| |#1| (-1045)) -(|has| |#2| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-37 (-391 (-537)))) -((((-537)) . T)) -((((-1117)) -12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) -((((-1117)) -12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) -(((|#1|) . T)) -(|has| |#1| (-218)) -(((|#1| (-509 |#3|)) . T)) -(|has| |#1| (-352)) -(((|#2| (-225 (-2258 |#1|) (-731))) . T)) -(|has| |#1| (-352)) -(|has| |#1| (-352)) -(((|#1|) . T) (($) . T)) -(((|#1| (-509 |#2|)) . T)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#1| (-731)) . T)) -(|has| |#1| (-529)) -(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-816)) . T)) -(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) -(-1533 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(((|#1|) |has| |#1| (-163))) -(((|#4|) |has| |#4| (-998))) -(((|#3|) |has| |#3| (-998))) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -((((-816)) . T)) -((($) . T) (((-391 (-537))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1045)) (((-537)) -12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045))) (((-391 (-537))) -12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045)))) -(((|#3|) |has| |#3| (-1045)) (((-537)) -12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (((-391 (-537))) -12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) -(|has| |#2| (-347)) -(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) -(((|#1|) . T)) -(|has| |#2| (-347)) -(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(((|#2| |#2|) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) -(((|#2|) . T)) -((((-816)) |has| |#1| (-1045))) -((($) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-780)) -(|has| |#2| (-780)) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) -(|has| |#1| (-347)) -(((|#1|) |has| |#2| (-401 |#1|))) -(((|#1|) |has| |#2| (-401 |#1|))) -((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) . T)) -((((-1153)) . T) (((-816)) . T) (((-1122)) . T)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -((((-537) |#1|) . T)) -((((-537) |#1|) . T)) -((((-537) |#1|) . T)) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-537) |#1|) . T)) -(((|#1|) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((((-1117)) |has| |#1| (-853 (-1117))) (((-778 (-1117))) . T)) -(-1533 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) -((((-779 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-816)) . T)) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(((|#1| |#2|) . T)) -(|has| |#1| (-37 (-391 (-537)))) -((((-816)) . T)) -((((-1186 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-391 (-537))) . T)) -(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529)) (((-391 (-537))) |has| |#1| (-529))) -(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (-12 (|has| |#1| (-347)) (|has| |#2| (-218)))) -(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) -(|has| |#1| (-347)) -(((|#1|) . T)) -(((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1| |#1|) . T)) -((((-537) |#1|) . T)) -((((-300 |#1|)) . T)) -(((#0=(-659) (-1113 #0#)) . T)) -((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-805)) -((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1069 |#1| (-1117))) . T) (((-778 (-1117))) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-1117)) . T)) -((($) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1117) $) |has| |#1| (-218)) ((#0# |#1|) |has| |#1| (-218)) ((#1=(-1034 (-1117)) |#1|) . T) ((#1# $) . T)) -((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) -(|has| |#2| (-862)) -((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) |has| #0# (-163)) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) -((((-537) |#1|) . T)) -(((#0=(-1186 |#1| |#2| |#3| |#4|)) |has| #0# (-293 #0#))) -((($) . T)) +((((-823)) . T)) +((((-138)) . T)) +((((-138)) . T)) +((((-138)) . T)) +((((-526) (-138)) . T)) +((((-526) (-138)) . T)) +((((-526) (-138)) . T)) +((((-138)) . T)) +((((-138)) . T)) +((((-1106) |#1|) . T)) +((((-823)) . T)) +((((-1106) |#1|) . T)) +((((-1106) |#1|) . T)) +((((-1106) |#1|) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((#1=(-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) #1#) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) |has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) . T)) +((((-1106) |#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1121 |#1| |#2| |#3|)) . T)) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +(|has| |#1| (-348)) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1121 |#1| |#2| |#3|)) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))))) +(((#1=(-1121 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|)))) (((-1123) #1#) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))))) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) +((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) +((((-1121 |#1| |#2| |#3|)) |has| |#1| (-348))) +(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-141)))) +(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-139)))) +((((-823)) . T)) +(((|#1|) . T)) +((((-1121 |#1| |#2| |#3|) $) -12 (|has| |#1| (-348)) (|has| (-1121 |#1| |#2| |#3|) (-271 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-526) (-1033)) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((#2=(-1121 |#1| |#2| |#3|) #2#) |has| |#1| (-348)) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1121 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +(((|#1| (-526)) . T)) +(((|#1| (-526)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-1121 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-823)) . T)) +((((-392 $) (-392 $)) |has| |#1| (-533)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) +(|has| |#1| (-348)) +(((|#1| (-735) (-1033)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-1123)) |has| |#1| (-859 (-1123))) (((-1033)) . T)) +(|has| |#1| (-811)) +((((-526)) |has| |#1| (-606 (-526))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-735)) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) . T) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-348)) (|has| |#1| (-436)) (|has| |#1| (-533)) (|has| |#1| (-869))) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) (((|#1|) . T)) -((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2| |#2|) |has| |#1| (-347)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -(|has| |#2| (-218)) -(|has| $ (-141)) -((((-816)) . T)) -((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) -((((-816)) . T)) -(|has| |#1| (-805)) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) -((((-391 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-816)) . T)) -(((|#2| (-633 |#1|)) . T)) -(-12 (|has| |#1| (-291)) (|has| |#1| (-862))) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#4|) . T)) -(|has| |#1| (-529)) -((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2|) |has| |#1| (-347)) ((|#1|) . T)) -((((-1117)) -1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) -(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) -(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) -((((-537) |#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(((|#1|) . T)) -(((|#1| (-509 (-778 (-1117)))) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#1|) . T)) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -(((|#1|) . T)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -((($) . T) (((-823 |#1|)) . T) (((-391 (-537))) . T)) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -(|has| |#1| (-529)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-391 |#2|)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-391 (-537)) #0#) . T) (($ $) . T)) -((((-537)) . T)) -((((-816)) . T)) -(((|#2|) . T) (((-391 (-537))) . T) (($) . T)) -((((-550 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) -((((-816)) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-537) |#1|) . T)) -((((-816)) . T)) -((($ $) . T) (((-1117) $) . T)) -((((-1192 |#1| |#2| |#3|)) . T)) -((((-1192 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) -((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) -((((-816)) . T)) -((((-816)) . T)) -((((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) (((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513))))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1|) . T) (((-816)) . T) (((-1122)) . T)) -((((-816)) . T)) -(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) -((((-816)) . T)) -((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) -(|has| |#1| (-347)) -((((-1117)) . T) (((-816)) . T)) -((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) -(((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((((-1049)) . T)) -((((-816)) . T)) -((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((((-1033)) . T) ((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-735)) . T)) +(((#1=(-1033) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(|has| |#2| (-862)) -(|has| |#1| (-862)) +(|has| |#1| (-1099)) (((|#1|) . T)) +((((-1121 |#1| |#2| |#3|)) . T) (((-1114 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-163))) -((((-659)) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -(((|#1|) |has| |#1| (-163))) -(((|#1|) |has| |#1| (-163))) -((((-391 (-537))) . T) (($) . T)) -(((|#1| (-537)) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-347)) -(|has| |#1| (-347)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) -(((|#1| (-537)) . T)) -(((|#1| (-391 (-537))) . T)) -(((|#1| (-731)) . T)) -((((-391 (-537))) . T)) -(((|#1| (-509 |#2|) |#2|) . T)) -((((-537) |#1|) . T)) -((((-537) |#1|) . T)) -(|has| |#1| (-1045)) -((((-537) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-845 (-363))) . T) (((-845 (-537))) . T) (((-1117)) . T) (((-513)) . T)) -(((|#1|) . T)) -((((-816)) . T)) -(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) -(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) -((((-537)) . T)) -((((-537)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(((|#1| |#2|) . T)) -(((|#1|) . T)) -(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) -((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) -(-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) +(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) +((($ $) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) +(((|#1| (-392 (-526)) (-1033)) . T)) (|has| |#1| (-139)) (|has| |#1| (-141)) -(|has| |#1| (-347)) +(((|#1| (-392 (-526))) . T)) +(((|#1| (-392 (-526))) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +((((-823)) . T)) +(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1| (-1114 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-735)) . T)) +(((|#1| (-735)) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1| (-735) (-1033)) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) +((($ $) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-735) |#1|))) +(((|#1|) . T)) +((((-823)) . T)) +((((-363)) . T) (((-526)) . T)) +((((-849 (-363))) . T) (((-849 (-526))) . T) (((-1123)) . T) (((-515)) . T)) +((((-823)) . T)) +(((|#1| (-930)) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((((-823)) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1|) . T)) +(((|#1|) . T) (((-526)) |has| |#1| (-995 (-526))) (((-392 (-526))) |has| |#1| (-995 (-392 (-526))))) +(((|#1| (-930)) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-218)) -((((-816)) . T)) -(((|#1| (-731) (-1027)) . T)) -((((-537) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-537) |#1|) . T)) -((((-537) |#1|) . T)) -((((-115 |#1|)) . T)) -((((-391 (-537))) . T) (((-537)) . T)) -(((|#2|) |has| |#2| (-998))) -((((-391 (-537))) . T) (($) . T)) -(((|#2|) . T)) -((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) -((((-537)) . T)) -((((-537)) . T)) -((((-1100) (-1117) (-537) (-210) (-816)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1533 (|has| |#1| (-333)) (|has| |#1| (-352))) (((|#1| |#2|) . T)) -((($) . T) ((|#1|) . T)) -((((-816)) . T)) -((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) -(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) -((((-513)) |has| |#1| (-580 (-513)))) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) -((($) . T) (((-391 (-537))) . T)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -((((-210)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) (((-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) (((-845 (-363))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-363))))) (((-845 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-537))))) (((-513)) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-513))))) -((((-816)) . T)) -((((-816)) . T)) -(((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-163))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((#1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #1#) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +(((|#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +((((-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-373) (-1106)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1123) $) . T)) +((((-1123)) . T)) +((((-823)) . T)) +(((|#1| (-512 #1=(-1123)) #1#) . T)) +((($) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526)))) ((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533)))) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +((((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-533))) +(((|#1| (-512 (-1123))) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-1123)) . T)) +(|has| |#1| (-1052)) +(|has| |#1| (-1052)) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-1052))) (((-917 |#1|)) . T)) +((((-823)) . T) (((-1128)) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1195 |#1| |#2| |#3|)) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +(|has| |#1| (-348)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +((((-1195 |#1| |#2| |#3|)) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))))) +(((#1=(-1195 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|)))) (((-1123) #1#) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) +((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-348))) +(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-141)))) +(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-139)))) +((((-823)) . T)) +(((|#1|) . T)) +((((-1195 |#1| |#2| |#3|) $) -12 (|has| |#1| (-348)) (|has| (-1195 |#1| |#2| |#3|) (-271 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-526) (-1033)) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((#2=(-1195 |#1| |#2| |#3|) #2#) |has| |#1| (-348)) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +(((|#1| (-526)) . T)) +(((|#1| (-526)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-1195 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-348))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-1099))) +(((|#2|) . T) (((-1123)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))) (((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) (((-392 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-977))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-869))) +(((|#2|) |has| |#1| (-348))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +(-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-784))) (-12 (|has| |#1| (-348)) (|has| |#2| (-811)))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +(-12 (|has| |#1| (-348)) (|has| |#2| (-784))) +((((-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363)))) (((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526))))) +(|has| |#1| (-348)) +(((|#2|) |has| |#1| (-348))) +((((-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))) ((|#2|) |has| |#1| (-348))) +(((|#2|) |has| |#1| (-348))) +(((|#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) (((-1123) |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) +(((|#2|) |has| |#1| (-348))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) +((((-1123)) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) +(((|#2|) |has| |#1| (-348))) +((((-211)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) (((-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) (((-849 (-363))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363))))) (((-849 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))) (((-515)) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515))))) +(-3850 (|has| |#1| (-141)) (-12 (|has| |#1| (-348)) (|has| |#2| (-141)))) +(-3850 (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| |#2| (-139)))) +((((-823)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))) (($ $) . T)) +(((|#1| (-526) (-1033)) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#2|) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2| |#2|) |has| |#1| (-348)) ((|#1| |#1|) . T)) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2|) |has| |#1| (-348)) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) ((|#2|) |has| |#1| (-348)) (($) . T) ((|#1|) . T)) +((((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533))) ((|#2|) |has| |#1| (-348)) ((|#1|) |has| |#1| (-163))) +(((|#1| (-526)) . T)) +(((|#1| (-526)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| |#2|) . T)) +(((|#1| (-1101 |#1|)) |has| |#1| (-809))) +(|has| |#1| (-1052)) +((((-823)) |has| |#1| (-1052))) +(|has| |#1| (-1052)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((((-392 $) (-392 $)) |has| |#2| (-533)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-348)) +(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(-3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) +(|has| |#2| (-348)) +(((|#2| (-735) (-1033)) . T)) +(|has| |#2| (-869)) +(|has| |#2| (-869)) +((((-1123)) |has| |#2| (-859 (-1123))) (((-1033)) . T)) +(|has| |#2| (-811)) +((((-526)) |has| |#2| (-606 (-526))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-735)) . T)) +(|has| |#2| (-141)) +(|has| |#2| (-139)) +((($) -3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) |has| |#2| (-163)) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) +((($) . T) ((|#2|) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) +((($) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) . T) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#2| (-163)) (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2| |#2|) . T) ((#1=(-392 (-526)) #1#) |has| |#2| (-37 (-392 (-526))))) +((($) -3850 (|has| |#2| (-348)) (|has| |#2| (-436)) (|has| |#2| (-533)) (|has| |#2| (-869))) ((|#2|) |has| |#2| (-163)) (((-392 (-526))) |has| |#2| (-37 (-392 (-526))))) (((|#2|) . T)) -(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) -(((|#1|) |has| |#1| (-163))) +((((-1033)) . T) ((|#2|) . T) (((-526)) |has| |#2| (-995 (-526))) (((-392 (-526))) |has| |#2| (-995 (-392 (-526))))) +(((|#2| (-735)) . T)) +(((#1=(-1033) |#2|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1099)) +(((|#2|) . T)) +((((-1195 |#1| |#2| |#3|)) . T) (((-1165 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) +((($ $) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) +(((|#1| (-392 (-526)) (-1033)) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(((|#1| (-392 (-526))) . T)) +(((|#1| (-392 (-526))) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +((((-823)) . T)) +(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1| (-1165 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) +((($ $) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) +(((|#1| (-392 (-526)) (-1033)) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(((|#1| (-392 (-526))) . T)) +(((|#1| (-392 (-526))) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-348)) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +((((-823)) . T)) +(((|#1|) . T) (($) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1| |#1|) . T) (($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) ((#1=(-392 (-526)) #1#) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348)))) +(((|#1|) . T) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) . T)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(((|#1|) |has| |#1| (-163)) (((-392 (-526))) -3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-348))) (($) -3850 (|has| |#1| (-348)) (|has| |#1| (-533)))) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-348)) (|has| |#1| (-533))) +(-3850 (|has| |#1| (-348)) (|has| |#1| (-533))) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(|has| |#1| (-348)) +(((|#1| |#2|) . T)) +((((-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) . T)) +(|has| (-1186 |#2| |#3| |#4|) (-141)) +(|has| (-1186 |#2| |#3| |#4|) (-139)) +((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) |has| #1# (-163)) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) +((((-823)) . T)) +((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) . T) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) +((($ $) . T) ((#1=(-1186 |#2| |#3| |#4|) #1#) . T) ((#2=(-392 (-526)) #2#) |has| #1# (-37 (-392 (-526))))) +(((#1=(-1186 |#2| |#3| |#4|)) . T) (((-392 (-526))) |has| #1# (-37 (-392 (-526)))) (($) . T)) +((($) . T) ((#1=(-1186 |#2| |#3| |#4|)) |has| #1# (-163)) (((-392 (-526))) |has| #1# (-37 (-392 (-526))))) +((((-1186 |#2| |#3| |#4|)) . T)) +((((-1186 |#2| |#3| |#4|)) . T)) +((((-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(|has| |#1| (-37 (-392 (-526)))) +(((|#1| (-735)) . T)) +(((|#1| (-735)) . T)) +(|has| |#1| (-533)) +(|has| |#1| (-533)) +(-3850 (|has| |#1| (-163)) (|has| |#1| (-533))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +((($ $) -3850 (|has| |#1| (-163)) (|has| |#1| (-533))) ((|#1| |#1|) . T) ((#1=(-392 (-526)) #1#) |has| |#1| (-37 (-392 (-526))))) +((($) |has| |#1| (-533)) ((|#1|) |has| |#1| (-163)) (((-392 (-526))) |has| |#1| (-37 (-392 (-526))))) +(((|#1| (-735) (-1033)) . T)) +((((-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) +((($ $) . T)) +((((-823)) . T)) +(((|#1|) . T) (((-392 (-526))) |has| |#1| (-37 (-392 (-526)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-735) |#1|))) (((|#1|) . T)) -((((-816)) -1533 (-12 (|has| |#1| (-579 (-816))) (|has| |#2| (-579 (-816)))) (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) -((((-391 |#2|) |#3|) . T)) -((((-391 (-537))) . T) (($) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-347)) -((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) -(|has| (-391 |#2|) (-141)) -(|has| (-391 |#2|) (-139)) -((((-659)) . T)) -(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) -(((#0=(-537) #0#) . T)) -((($) . T) (((-391 (-537))) . T)) -(-1533 (|has| |#4| (-163)) (|has| |#4| (-687)) (|has| |#4| (-805)) (|has| |#4| (-998))) -(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) -(|has| |#4| (-753)) -(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) -(|has| |#4| (-805)) -(|has| |#3| (-753)) -(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) -(|has| |#3| (-805)) -((((-537)) . T)) -(((|#2|) . T)) -((((-1117)) -1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) -((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-1123)) . T) (((-823)) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-526) |#1|) . T)) +((((-515)) |has| |#1| (-584 (-515)))) (((|#1|) . T)) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(-3850 (|has| |#1| (-811)) (|has| |#1| (-1052))) +(((|#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +(((|#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) +((((-823)) -3850 (|has| |#1| (-583 (-823))) (|has| |#1| (-811)) (|has| |#1| (-1052)))) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) +(|has| |#1| (-811)) (((|#1|) . T)) -((((-818 |#1|)) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -((((-1082 |#1| |#2|)) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -((($) . T)) -(|has| |#1| (-973)) -(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -((((-816)) . T)) -((((-513)) |has| |#2| (-580 (-513))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-363)) . #0=(|has| |#2| (-973))) (((-210)) . #0#)) -((((-1117) (-51)) . T)) -(|has| |#1| (-37 (-391 (-537)))) -(|has| |#1| (-37 (-391 (-537)))) -(((|#2|) . T)) -((($ $) . T)) -((((-391 (-537))) . T) (((-659)) . T) (($) . T)) -((((-1115 |#1| |#2| |#3|)) . T)) -((((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T)) -((((-816)) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-537) |#1|) . T)) -((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) -(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) +((((-823)) . T)) +((((-823)) . T)) +((((-823)) . T) (((-1128)) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-823)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-515)) |has| |#4| (-584 (-515)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) +(((|#4|) . T)) +((((-823)) . T) (((-607 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-163))) (((|#2|) . T)) -(|has| |#2| (-347)) -(((|#3|) . T) ((|#2|) . T) (($) -1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) ((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998)))) -(((|#2|) . T) (($) -1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) ((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998)))) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-347)) -((((-115 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1|) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) -((((-128)) . T) (((-816)) . T)) -((((-537) |#1|) . T)) +(((|#1| |#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +((((-823)) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-163))) +((((-783 |#1|)) . T)) +(((|#2| (-783 |#1|)) . T)) +(((|#2| (-852 |#1|)) . T)) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-823)) . T)) +((((-852 |#1|)) . T) (((-783 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-1123) |#1|) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) +(((|#1|) . T) (($) . T)) +((((-823)) . T)) +((((-783 (-1123))) . T)) +((((-1123) |#1|) . T)) +(((|#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-347)) (|has| |#2| (-270 |#2| |#2|))) (($ $) . T)) -((($ $) . T)) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) -((((-816)) . T)) -((((-816)) . T)) -((((-816)) . T)) -(((|#1| (-509 |#2|)) . T)) -((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) -(((|#1| (-537)) . T)) -(((|#1| (-391 (-537))) . T)) -(((|#1| (-731)) . T)) -((((-816)) . T) (((-1122)) . T)) -((((-816)) . T) (((-1122)) . T)) -((((-115 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) -((((-816)) . T) (((-1122)) . T)) -((((-816)) . T) (((-1122)) . T)) -((((-816)) . T) (((-1122)) . T)) -(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) -(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) -((($) . T)) -(((|#2| (-509 (-818 |#1|))) . T)) -((((-537) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-731)) . T)) -((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) +(((|#1|) . T) (($) . T)) +((((-823)) . T)) (((|#1| |#2|) . T)) -((((-1100) |#1|) . T)) -((((-391 |#2|)) . T)) -((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) -(|has| |#1| (-529)) -(|has| |#1| (-529)) -((($) . T) ((|#2|) . T)) -(((|#1|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-823)) . T)) +((((-783 |#1|)) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-270 |#2| |#2|))) -(((|#1| (-606 |#1|)) |has| |#1| (-805))) -(-1533 (|has| |#1| (-218)) (|has| |#1| (-333))) -(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) -(|has| |#1| (-1045)) -(((|#1|) . T)) -((((-391 (-537))) . T) (($) . T)) -((((-951 |#1|)) . T) ((|#1|) . T) (((-537)) -1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537)))) (((-391 (-537))) -1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -((((-1117)) |has| |#1| (-853 (-1117)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) -(((|#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) . T)) -(((|#1|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1082 |#1| |#2|) #0#) |has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) -(((#0=(-115 |#1|)) |has| #0# (-293 #0#))) -(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-526)) . T)) ((($ $) . T)) -((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-218)) ((|#2| |#1|) |has| |#1| (-218)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-623 . -1045) T) ((-248 . -495) 143997) ((-232 . -495) 143940) ((-544 . -110) 143925) ((-509 . -23) T) ((-230 . -1045) 143875) ((-116 . -293) 143832) ((-461 . -495) 143624) ((-654 . -100) T) ((-1083 . -495) 143543) ((-374 . -129) T) ((-1212 . -929) 143512) ((-568 . -471) 143496) ((-584 . -129) T) ((-779 . -803) T) ((-504 . -55) 143446) ((-57 . -495) 143379) ((-500 . -495) 143312) ((-402 . -853) 143271) ((-160 . -998) T) ((-497 . -495) 143204) ((-478 . -495) 143137) ((-477 . -495) 143070) ((-759 . -989) 142857) ((-659 . -37) 142822) ((-327 . -333) T) ((-1040 . -1039) 142806) ((-1040 . -1045) 142784) ((-160 . -228) 142735) ((-160 . -218) 142686) ((-1040 . -1041) 142644) ((-825 . -270) 142602) ((-210 . -755) T) ((-210 . -752) T) ((-654 . -268) NIL) ((-1092 . -1130) 142581) ((-391 . -945) 142565) ((-661 . -21) T) ((-661 . -25) T) ((-1214 . -609) 142539) ((-300 . -152) 142518) ((-300 . -137) 142497) ((-1092 . -105) 142447) ((-131 . -25) T) ((-39 . -216) 142424) ((-115 . -21) T) ((-115 . -25) T) ((-574 . -272) 142400) ((-458 . -272) 142379) ((-1173 . -998) T) ((-812 . -998) T) ((-759 . -322) 142363) ((-116 . -1093) NIL) ((-89 . -579) 142295) ((-460 . -129) T) ((-560 . -1154) T) ((-1173 . -310) 142272) ((-544 . -998) T) ((-1173 . -218) T) ((-623 . -678) 142256) ((-911 . -272) 142233) ((-58 . -33) T) ((-1009 . -755) T) ((-1009 . -752) T) ((-776 . -687) T) ((-692 . -46) 142198) ((-586 . -37) 142185) ((-339 . -274) T) ((-336 . -274) T) ((-328 . -274) T) ((-248 . -274) 142116) ((-232 . -274) 142047) ((-1036 . -579) 142013) ((-1013 . -579) 141979) ((-987 . -579) 141945) ((-975 . -100) T) ((-397 . -687) T) ((-116 . -37) 141890) ((-589 . -579) 141856) ((-397 . -456) T) ((-465 . -579) 141822) ((-338 . -100) T) ((-1148 . -1005) T) ((-672 . -1005) T) ((-1115 . -46) 141799) ((-1114 . -46) 141769) ((-1108 . -46) 141746) ((-986 . -145) 141692) ((-863 . -274) T) ((-1070 . -46) 141664) ((-654 . -293) NIL) ((-496 . -579) 141646) ((-491 . -579) 141628) ((-489 . -579) 141610) ((-311 . -1045) 141560) ((-673 . -435) 141491) ((-47 . -100) T) ((-1184 . -270) 141476) ((-1163 . -270) 141396) ((-606 . -627) 141380) ((-606 . -612) 141364) ((-323 . -21) T) ((-323 . -25) T) ((-39 . -333) NIL) ((-164 . -21) T) ((-164 . -25) T) ((-606 . -357) 141348) ((-568 . -270) 141325) ((-571 . -579) 141292) ((-372 . -100) T) ((-1064 . -137) T) ((-125 . -579) 141224) ((-827 . -1045) T) ((-619 . -395) 141208) ((-675 . -579) 141190) ((-153 . -579) 141172) ((-149 . -579) 141154) ((-1214 . -687) T) ((-1047 . -33) T) ((-824 . -755) NIL) ((-824 . -752) NIL) ((-815 . -807) T) ((-692 . -839) NIL) ((-1223 . -129) T) ((-365 . -129) T) ((-857 . -100) T) ((-692 . -989) 141032) ((-509 . -129) T) ((-1033 . -395) 141016) ((-952 . -471) 141000) ((-116 . -384) 140977) ((-1108 . -1154) 140956) ((-742 . -395) 140940) ((-740 . -395) 140924) ((-896 . -33) T) ((-654 . -1093) NIL) ((-235 . -609) 140761) ((-234 . -609) 140585) ((-777 . -873) 140564) ((-437 . -395) 140548) ((-568 . -19) 140532) ((-1088 . -1147) 140501) ((-1108 . -839) NIL) ((-1108 . -837) 140453) ((-568 . -570) 140430) ((-1140 . -579) 140362) ((-1116 . -579) 140344) ((-60 . -379) T) ((-1114 . -989) 140279) ((-1108 . -989) 140245) ((-654 . -37) 140195) ((-457 . -270) 140180) ((-692 . -361) 140164) ((-619 . -1005) T) ((-1184 . -954) 140130) ((-1163 . -954) 140096) ((-1010 . -1130) 140071) ((-825 . -580) 139879) ((-825 . -579) 139861) ((-1127 . -471) 139798) ((-402 . -973) 139777) ((-47 . -293) 139764) ((-1010 . -105) 139710) ((-461 . -471) 139647) ((-501 . -1154) T) ((-1108 . -322) 139599) ((-1083 . -471) 139570) ((-1108 . -361) 139522) ((-1033 . -1005) T) ((-421 . -100) T) ((-173 . -1045) T) ((-235 . -33) T) ((-234 . -33) T) ((-742 . -1005) T) ((-740 . -1005) T) ((-692 . -853) 139499) ((-437 . -1005) T) ((-57 . -471) 139483) ((-985 . -1004) 139457) ((-500 . -471) 139441) ((-497 . -471) 139425) ((-478 . -471) 139409) ((-477 . -471) 139393) ((-230 . -495) 139326) ((-985 . -110) 139293) ((-1115 . -853) 139206) ((-1114 . -853) 139112) ((-631 . -1057) T) ((-1108 . -853) 138945) ((-607 . -91) T) ((-1070 . -853) 138929) ((-338 . -1093) T) ((-306 . -1004) 138911) ((-235 . -751) 138890) ((-235 . -754) 138841) ((-235 . -753) 138820) ((-234 . -751) 138799) ((-234 . -754) 138750) ((-234 . -753) 138729) ((-49 . -1005) T) ((-235 . -687) 138640) ((-234 . -687) 138551) ((-1148 . -1045) T) ((-631 . -23) T) ((-550 . -1005) T) ((-499 . -1005) T) ((-363 . -1004) 138516) ((-306 . -110) 138491) ((-71 . -367) T) ((-71 . -379) T) ((-975 . -37) 138428) ((-654 . -384) 138410) ((-97 . -100) T) ((-672 . -1045) T) ((-955 . -139) 138382) ((-955 . -141) 138354) ((-363 . -110) 138310) ((-303 . -1158) 138289) ((-457 . -954) 138255) ((-338 . -37) 138220) ((-39 . -354) 138192) ((-826 . -579) 138064) ((-126 . -124) 138048) ((-120 . -124) 138032) ((-794 . -1004) 138002) ((-793 . -21) 137954) ((-787 . -1004) 137938) ((-793 . -25) 137890) ((-303 . -529) 137841) ((-537 . -788) T) ((-225 . -1154) T) ((-794 . -110) 137806) ((-787 . -110) 137785) ((-1184 . -579) 137767) ((-1163 . -579) 137749) ((-1163 . -580) 137422) ((-1113 . -862) 137401) ((-1069 . -862) 137380) ((-47 . -37) 137345) ((-1221 . -1057) T) ((-568 . -579) 137257) ((-568 . -580) 137218) ((-1219 . -1057) T) ((-225 . -989) 137047) ((-1113 . -609) 136972) ((-1069 . -609) 136897) ((-679 . -579) 136879) ((-811 . -609) 136853) ((-472 . -1045) T) ((-1221 . -23) T) ((-1219 . -23) T) ((-985 . -998) T) ((-1127 . -270) 136832) ((-160 . -352) 136783) ((-956 . -1154) T) ((-43 . -23) T) ((-461 . -270) 136762) ((-554 . -1045) T) ((-1088 . -1054) 136731) ((-1049 . -1048) 136683) ((-127 . -1154) T) ((-374 . -21) T) ((-374 . -25) T) ((-146 . -1057) T) ((-1227 . -100) T) ((-956 . -837) 136665) ((-956 . -839) 136647) ((-1148 . -678) 136544) ((-586 . -216) 136528) ((-584 . -21) T) ((-273 . -529) T) ((-584 . -25) T) ((-1134 . -1045) T) ((-672 . -678) 136493) ((-225 . -361) 136463) ((-956 . -989) 136423) ((-363 . -998) T) ((-208 . -1005) T) ((-116 . -216) 136400) ((-57 . -270) 136377) ((-146 . -23) T) ((-497 . -270) 136354) ((-311 . -495) 136287) ((-477 . -270) 136264) ((-363 . -228) T) ((-363 . -218) T) ((-794 . -998) T) ((-787 . -998) T) ((-673 . -902) 136233) ((-661 . -807) T) ((-457 . -579) 136215) ((-787 . -218) 136194) ((-131 . -807) T) ((-619 . -1045) T) ((-1127 . -570) 136173) ((-523 . -1130) 136152) ((-320 . -1045) T) ((-303 . -347) 136131) ((-391 . -141) 136110) ((-391 . -139) 136089) ((-917 . -1057) 135988) ((-225 . -853) 135921) ((-775 . -1057) 135832) ((-615 . -809) 135816) ((-461 . -570) 135795) ((-523 . -105) 135745) ((-956 . -361) 135727) ((-956 . -322) 135709) ((-95 . -1045) T) ((-917 . -23) 135520) ((-460 . -21) T) ((-460 . -25) T) ((-775 . -23) 135391) ((-1117 . -579) 135373) ((-57 . -19) 135357) ((-1117 . -580) 135279) ((-1113 . -687) T) ((-1069 . -687) T) ((-497 . -19) 135263) ((-477 . -19) 135247) ((-57 . -570) 135224) ((-1033 . -1045) T) ((-854 . -100) 135202) ((-811 . -687) T) ((-742 . -1045) T) ((-497 . -570) 135179) ((-477 . -570) 135156) ((-740 . -1045) T) ((-740 . -1012) 135123) ((-444 . -1045) T) ((-437 . -1045) T) ((-554 . -678) 135098) ((-610 . -1045) T) ((-956 . -853) NIL) ((-1192 . -46) 135075) ((-590 . -1057) T) ((-631 . -129) T) ((-1186 . -100) T) ((-1185 . -46) 135045) ((-1164 . -46) 135022) ((-1148 . -163) 134973) ((-1025 . -1158) 134924) ((-259 . -1045) T) ((-83 . -424) T) ((-83 . -379) T) ((-1114 . -291) 134903) ((-1108 . -291) 134882) ((-49 . -1045) T) ((-1025 . -529) 134833) ((-672 . -163) T) ((-562 . -46) 134810) ((-210 . -609) 134775) ((-550 . -1045) T) ((-499 . -1045) T) ((-343 . -1158) T) ((-337 . -1158) T) ((-329 . -1158) T) ((-469 . -780) T) ((-469 . -873) T) ((-303 . -1057) T) ((-106 . -1158) T) ((-323 . -807) T) ((-203 . -873) T) ((-203 . -780) T) ((-675 . -1004) 134745) ((-343 . -529) T) ((-337 . -529) T) ((-329 . -529) T) ((-106 . -529) T) ((-619 . -678) 134715) ((-1108 . -973) NIL) ((-303 . -23) T) ((-65 . -1154) T) ((-952 . -579) 134647) ((-654 . -216) 134629) ((-675 . -110) 134594) ((-606 . -33) T) ((-230 . -471) 134578) ((-1047 . -1043) 134562) ((-162 . -1045) T) ((-905 . -862) 134541) ((-463 . -862) 134520) ((-1223 . -21) T) ((-1223 . -25) T) ((-1221 . -129) T) ((-1219 . -129) T) ((-1033 . -678) 134369) ((-1009 . -609) 134356) ((-905 . -609) 134281) ((-742 . -678) 134110) ((-513 . -579) 134092) ((-513 . -580) 134073) ((-740 . -678) 133922) ((-1212 . -100) T) ((-1022 . -100) T) ((-365 . -25) T) ((-365 . -21) T) ((-463 . -609) 133847) ((-444 . -678) 133818) ((-437 . -678) 133667) ((-940 . -100) T) ((-698 . -100) T) ((-1227 . -1093) T) ((-1196 . -579) 133633) ((-1164 . -1154) 133612) ((-509 . -25) T) ((-1164 . -839) NIL) ((-1164 . -837) 133564) ((-1127 . -580) NIL) ((-1127 . -579) 133546) ((-135 . -100) T) ((-43 . -129) T) ((-1084 . -1067) 133491) ((-327 . -1005) T) ((-273 . -1057) T) ((-625 . -579) 133473) ((-607 . -579) 133426) ((-641 . -91) T) ((-339 . -579) 133408) ((-336 . -579) 133390) ((-328 . -579) 133372) ((-248 . -580) 133120) ((-248 . -579) 133102) ((-232 . -579) 133084) ((-232 . -580) 132945) ((-995 . -1147) 132874) ((-854 . -293) 132812) ((-1185 . -989) 132747) ((-1164 . -989) 132713) ((-1148 . -495) 132680) ((-1083 . -579) 132662) ((-779 . -814) T) ((-779 . -687) T) ((-568 . -272) 132639) ((-550 . -678) 132604) ((-461 . -580) NIL) ((-461 . -579) 132586) ((-499 . -678) 132531) ((-300 . -100) T) ((-297 . -100) T) ((-273 . -23) T) ((-146 . -129) T) ((-370 . -687) T) ((-825 . -1004) 132483) ((-863 . -579) 132465) ((-863 . -580) 132447) ((-825 . -110) 132385) ((-133 . -100) T) ((-113 . -100) T) ((-673 . -1176) 132369) ((-675 . -998) T) ((-654 . -333) NIL) ((-500 . -579) 132301) ((-363 . -755) T) ((-208 . -1045) T) ((-363 . -752) T) ((-210 . -754) T) ((-210 . -751) T) ((-57 . -580) 132262) ((-57 . -579) 132174) ((-210 . -687) T) ((-497 . -580) 132135) ((-497 . -579) 132047) ((-478 . -579) 131979) ((-477 . -580) 131940) ((-477 . -579) 131852) ((-1025 . -347) 131803) ((-39 . -395) 131780) ((-75 . -1154) T) ((-824 . -862) NIL) ((-343 . -313) 131764) ((-343 . -347) T) ((-337 . -313) 131748) ((-337 . -347) T) ((-329 . -313) 131732) ((-329 . -347) T) ((-300 . -268) 131711) ((-106 . -347) T) ((-68 . -1154) T) ((-1164 . -322) 131663) ((-824 . -609) 131608) ((-1164 . -361) 131560) ((-917 . -129) 131415) ((-775 . -129) 131286) ((-911 . -612) 131270) ((-1033 . -163) 131181) ((-911 . -357) 131165) ((-1009 . -754) T) ((-1009 . -751) T) ((-742 . -163) 131056) ((-740 . -163) 130967) ((-776 . -46) 130929) ((-1009 . -687) T) ((-311 . -471) 130913) ((-905 . -687) T) ((-437 . -163) 130824) ((-230 . -270) 130801) ((-463 . -687) T) ((-1212 . -293) 130739) ((-1192 . -853) 130652) ((-1185 . -853) 130558) ((-1184 . -1004) 130393) ((-1164 . -853) 130226) ((-1163 . -1004) 130034) ((-1148 . -274) 130013) ((-1088 . -145) 129997) ((-1064 . -100) T) ((-1020 . -100) T) ((-880 . -908) T) ((-73 . -1154) T) ((-698 . -293) 129935) ((-160 . -862) 129888) ((-625 . -366) 129860) ((-30 . -908) T) ((-1 . -579) 129842) ((-1062 . -1045) T) ((-1025 . -23) T) ((-49 . -583) 129826) ((-1025 . -1057) T) ((-955 . -393) 129798) ((-562 . -853) 129711) ((-422 . -100) T) ((-135 . -293) NIL) ((-825 . -998) T) ((-793 . -807) 129690) ((-79 . -1154) T) ((-672 . -274) T) ((-39 . -1005) T) ((-550 . -163) T) ((-499 . -163) T) ((-492 . -579) 129672) ((-160 . -609) 129582) ((-488 . -579) 129564) ((-335 . -141) 129546) ((-335 . -139) T) ((-343 . -1057) T) ((-337 . -1057) T) ((-329 . -1057) T) ((-956 . -291) T) ((-867 . -291) T) ((-825 . -228) T) ((-106 . -1057) T) ((-825 . -218) 129525) ((-1184 . -110) 129346) ((-1163 . -110) 129135) ((-230 . -1188) 129119) ((-537 . -805) T) ((-343 . -23) T) ((-338 . -333) T) ((-300 . -293) 129106) ((-297 . -293) 129047) ((-337 . -23) T) ((-303 . -129) T) ((-329 . -23) T) ((-956 . -973) T) ((-106 . -23) T) ((-230 . -570) 129024) ((-1186 . -37) 128916) ((-1173 . -862) 128895) ((-111 . -1045) T) ((-986 . -100) T) ((-1173 . -609) 128820) ((-824 . -754) NIL) ((-812 . -609) 128794) ((-824 . -751) NIL) ((-776 . -839) NIL) ((-824 . -687) T) ((-1033 . -495) 128667) ((-742 . -495) 128614) ((-740 . -495) 128566) ((-544 . -609) 128553) ((-776 . -989) 128383) ((-437 . -495) 128326) ((-372 . -373) T) ((-58 . -1154) T) ((-584 . -807) 128305) ((-481 . -622) T) ((-1088 . -929) 128274) ((-955 . -435) T) ((-659 . -805) T) ((-491 . -752) T) ((-457 . -1004) 128109) ((-327 . -1045) T) ((-297 . -1093) NIL) ((-273 . -129) T) ((-378 . -1045) T) ((-654 . -354) 128076) ((-823 . -1005) T) ((-208 . -583) 128053) ((-311 . -270) 128030) ((-457 . -110) 127851) ((-1184 . -998) T) ((-1163 . -998) T) ((-776 . -361) 127835) ((-160 . -687) T) ((-615 . -100) T) ((-1184 . -228) 127814) ((-1184 . -218) 127766) ((-1163 . -218) 127671) ((-1163 . -228) 127650) ((-955 . -386) NIL) ((-631 . -602) 127598) ((-300 . -37) 127508) ((-297 . -37) 127437) ((-67 . -579) 127419) ((-303 . -474) 127385) ((-1127 . -272) 127364) ((-1058 . -1057) 127275) ((-81 . -1154) T) ((-59 . -579) 127257) ((-461 . -272) 127236) ((-1214 . -989) 127213) ((-1106 . -1045) T) ((-1058 . -23) 127084) ((-776 . -853) 127020) ((-1173 . -687) T) ((-1047 . -1154) T) ((-1033 . -274) 126951) ((-846 . -100) T) ((-742 . -274) 126862) ((-311 . -19) 126846) ((-57 . -272) 126823) ((-740 . -274) 126754) ((-812 . -687) T) ((-116 . -805) NIL) ((-497 . -272) 126731) ((-311 . -570) 126708) ((-477 . -272) 126685) ((-437 . -274) 126616) ((-986 . -293) 126467) ((-544 . -687) T) ((-641 . -579) 126417) ((-623 . -579) 126399) ((-230 . -580) 126360) ((-230 . -579) 126272) ((-1089 . -33) T) ((-896 . -1154) T) ((-327 . -678) 126217) ((-631 . -25) T) ((-631 . -21) T) ((-457 . -998) T) ((-598 . -401) 126182) ((-573 . -401) 126147) ((-1064 . -1093) T) ((-550 . -274) T) ((-499 . -274) T) ((-1185 . -291) 126126) ((-457 . -218) 126078) ((-457 . -228) 126057) ((-1164 . -291) 126036) ((-1164 . -973) NIL) ((-1025 . -129) T) ((-825 . -755) 126015) ((-138 . -100) T) ((-39 . -1045) T) ((-825 . -752) 125994) ((-606 . -962) 125978) ((-549 . -1005) T) ((-537 . -1005) T) ((-476 . -1005) T) ((-391 . -435) T) ((-343 . -129) T) ((-300 . -384) 125962) ((-297 . -384) 125923) ((-337 . -129) T) ((-329 . -129) T) ((-1122 . -1045) T) ((-1064 . -37) 125910) ((-1040 . -579) 125877) ((-106 . -129) T) ((-907 . -1045) T) ((-874 . -1045) T) ((-731 . -1045) T) ((-633 . -1045) T) ((-487 . -1029) T) ((-661 . -141) T) ((-115 . -141) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-625 . -1004) 125861) ((-509 . -807) T) ((-481 . -807) T) ((-339 . -1004) 125813) ((-336 . -1004) 125765) ((-328 . -1004) 125717) ((-235 . -1154) T) ((-234 . -1154) T) ((-248 . -1004) 125560) ((-232 . -1004) 125403) ((-625 . -110) 125382) ((-339 . -110) 125320) ((-336 . -110) 125258) ((-328 . -110) 125196) ((-248 . -110) 125025) ((-232 . -110) 124854) ((-777 . -1158) 124833) ((-586 . -395) 124817) ((-43 . -21) T) ((-43 . -25) T) ((-775 . -602) 124725) ((-777 . -529) 124704) ((-235 . -989) 124533) ((-234 . -989) 124362) ((-125 . -118) 124346) ((-863 . -1004) 124311) ((-659 . -1005) T) ((-673 . -100) T) ((-327 . -163) T) ((-146 . -21) T) ((-146 . -25) T) ((-86 . -579) 124293) ((-863 . -110) 124249) ((-39 . -678) 124194) ((-823 . -1045) T) ((-311 . -580) 124155) ((-311 . -579) 124067) ((-1163 . -752) 124020) ((-1163 . -755) 123973) ((-235 . -361) 123943) ((-234 . -361) 123913) ((-615 . -37) 123883) ((-574 . -33) T) ((-464 . -1057) 123794) ((-458 . -33) T) ((-1058 . -129) 123665) ((-917 . -25) 123476) ((-827 . -579) 123458) ((-917 . -21) 123413) ((-775 . -21) 123324) ((-775 . -25) 123176) ((-586 . -1005) T) ((-1119 . -529) 123155) ((-1113 . -46) 123132) ((-339 . -998) T) ((-336 . -998) T) ((-464 . -23) 123003) ((-328 . -998) T) ((-232 . -998) T) ((-248 . -998) T) ((-1069 . -46) 122975) ((-116 . -1005) T) ((-985 . -609) 122949) ((-911 . -33) T) ((-339 . -218) 122928) ((-339 . -228) T) ((-336 . -218) 122907) ((-336 . -228) T) ((-232 . -310) 122864) ((-328 . -218) 122843) ((-328 . -228) T) ((-248 . -310) 122815) ((-248 . -218) 122794) ((-1098 . -145) 122778) ((-235 . -853) 122711) ((-234 . -853) 122644) ((-1027 . -807) T) ((-1167 . -1154) T) ((-398 . -1057) T) ((-1002 . -23) T) ((-863 . -998) T) ((-306 . -609) 122626) ((-975 . -805) T) ((-1148 . -954) 122592) ((-1114 . -873) 122571) ((-1108 . -873) 122550) ((-863 . -228) T) ((-777 . -347) 122529) ((-369 . -23) T) ((-126 . -1045) 122507) ((-120 . -1045) 122485) ((-863 . -218) T) ((-1108 . -780) NIL) ((-363 . -609) 122450) ((-823 . -678) 122437) ((-995 . -145) 122402) ((-39 . -163) T) ((-654 . -395) 122384) ((-673 . -293) 122371) ((-794 . -609) 122331) ((-787 . -609) 122305) ((-303 . -25) T) ((-303 . -21) T) ((-619 . -270) 122284) ((-549 . -1045) T) ((-537 . -1045) T) ((-476 . -1045) T) ((-230 . -272) 122261) ((-297 . -216) 122222) ((-1113 . -839) NIL) ((-1069 . -839) 122081) ((-128 . -807) T) ((-1113 . -989) 121963) ((-1069 . -989) 121848) ((-173 . -579) 121830) ((-811 . -989) 121728) ((-742 . -270) 121655) ((-777 . -1057) T) ((-985 . -687) T) ((-568 . -612) 121639) ((-995 . -929) 121568) ((-951 . -100) T) ((-777 . -23) T) ((-673 . -1093) 121546) ((-654 . -1005) T) ((-568 . -357) 121530) ((-335 . -435) T) ((-327 . -274) T) ((-1201 . -1045) T) ((-233 . -1045) T) ((-383 . -100) T) ((-273 . -21) T) ((-273 . -25) T) ((-345 . -687) T) ((-671 . -1045) T) ((-659 . -1045) T) ((-345 . -456) T) ((-1148 . -579) 121512) ((-1113 . -361) 121496) ((-1069 . -361) 121480) ((-975 . -395) 121442) ((-135 . -214) 121424) ((-363 . -754) T) ((-363 . -751) T) ((-823 . -163) T) ((-363 . -687) T) ((-672 . -579) 121406) ((-673 . -37) 121235) ((-1200 . -1198) 121219) ((-335 . -386) T) ((-1200 . -1045) 121169) ((-549 . -678) 121156) ((-537 . -678) 121143) ((-476 . -678) 121108) ((-300 . -592) 121087) ((-794 . -687) T) ((-787 . -687) T) ((-606 . -1154) T) ((-1025 . -602) 121035) ((-1113 . -853) 120978) ((-1069 . -853) 120962) ((-623 . -1004) 120946) ((-106 . -602) 120928) ((-464 . -129) 120799) ((-1119 . -1057) T) ((-905 . -46) 120768) ((-586 . -1045) T) ((-623 . -110) 120747) ((-472 . -579) 120713) ((-311 . -272) 120690) ((-463 . -46) 120647) ((-1119 . -23) T) ((-116 . -1045) T) ((-101 . -100) 120625) ((-1211 . -1057) T) ((-1002 . -129) T) ((-975 . -1005) T) ((-779 . -989) 120609) ((-955 . -685) 120581) ((-1211 . -23) T) ((-659 . -678) 120546) ((-554 . -579) 120528) ((-370 . -989) 120512) ((-338 . -1005) T) ((-369 . -129) T) ((-308 . -989) 120496) ((-210 . -839) 120478) ((-956 . -873) T) ((-89 . -33) T) ((-956 . -780) T) ((-867 . -873) T) ((-469 . -1158) T) ((-1134 . -579) 120460) ((-1050 . -1045) T) ((-203 . -1158) T) ((-951 . -293) 120425) ((-210 . -989) 120385) ((-39 . -274) T) ((-1025 . -21) T) ((-1025 . -25) T) ((-1064 . -788) T) ((-469 . -529) T) ((-343 . -25) T) ((-203 . -529) T) ((-343 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-675 . -609) 120345) ((-329 . -25) T) ((-329 . -21) T) ((-106 . -25) T) ((-106 . -21) T) ((-47 . -1005) T) ((-549 . -163) T) ((-537 . -163) T) ((-476 . -163) T) ((-619 . -579) 120327) ((-698 . -697) 120311) ((-320 . -579) 120293) ((-66 . -367) T) ((-66 . -379) T) ((-1047 . -105) 120277) ((-1009 . -839) 120259) ((-905 . -839) 120184) ((-614 . -1057) T) ((-586 . -678) 120171) ((-463 . -839) NIL) ((-1088 . -100) T) ((-1009 . -989) 120153) ((-95 . -579) 120135) ((-460 . -141) T) ((-905 . -989) 120017) ((-116 . -678) 119962) ((-614 . -23) T) ((-463 . -989) 119840) ((-1033 . -580) NIL) ((-1033 . -579) 119822) ((-742 . -580) NIL) ((-742 . -579) 119783) ((-740 . -580) 119418) ((-740 . -579) 119332) ((-1058 . -602) 119240) ((-444 . -579) 119222) ((-437 . -579) 119204) ((-437 . -580) 119065) ((-986 . -214) 119011) ((-125 . -33) T) ((-777 . -129) T) ((-825 . -862) 118990) ((-610 . -579) 118972) ((-339 . -1218) 118956) ((-336 . -1218) 118940) ((-328 . -1218) 118924) ((-126 . -495) 118857) ((-120 . -495) 118790) ((-492 . -752) T) ((-492 . -755) T) ((-491 . -754) T) ((-101 . -293) 118728) ((-207 . -100) 118706) ((-654 . -1045) T) ((-659 . -163) T) ((-825 . -609) 118658) ((-63 . -368) T) ((-259 . -579) 118640) ((-63 . -379) T) ((-905 . -361) 118624) ((-823 . -274) T) ((-49 . -579) 118606) ((-951 . -37) 118554) ((-550 . -579) 118536) ((-463 . -361) 118520) ((-550 . -580) 118502) ((-499 . -579) 118484) ((-863 . -1218) 118471) ((-824 . -1154) T) ((-661 . -435) T) ((-476 . -495) 118437) ((-469 . -347) T) ((-339 . -352) 118416) ((-336 . -352) 118395) ((-328 . -352) 118374) ((-203 . -347) T) ((-675 . -687) T) ((-115 . -435) T) ((-1222 . -1213) 118358) ((-824 . -837) 118335) ((-824 . -839) NIL) ((-917 . -807) 118234) ((-775 . -807) 118185) ((-615 . -617) 118169) ((-1140 . -33) T) ((-162 . -579) 118151) ((-1058 . -21) 118062) ((-1058 . -25) 117914) ((-824 . -989) 117891) ((-905 . -853) 117872) ((-1173 . -46) 117849) ((-863 . -352) T) ((-57 . -612) 117833) ((-497 . -612) 117817) ((-463 . -853) 117794) ((-69 . -424) T) ((-69 . -379) T) ((-477 . -612) 117778) ((-57 . -357) 117762) ((-586 . -163) T) ((-497 . -357) 117746) ((-477 . -357) 117730) ((-787 . -669) 117714) ((-1113 . -291) 117693) ((-1119 . -129) T) ((-116 . -163) T) ((-1088 . -293) 117631) ((-160 . -1154) T) ((-598 . -705) 117615) ((-573 . -705) 117599) ((-1211 . -129) T) ((-1185 . -873) 117578) ((-1164 . -873) 117557) ((-1164 . -780) NIL) ((-654 . -678) 117507) ((-1163 . -862) 117460) ((-975 . -1045) T) ((-824 . -361) 117437) ((-824 . -322) 117414) ((-858 . -1057) T) ((-160 . -837) 117398) ((-160 . -839) 117323) ((-469 . -1057) T) ((-338 . -1045) T) ((-203 . -1057) T) ((-74 . -424) T) ((-74 . -379) T) ((-160 . -989) 117221) ((-303 . -807) T) ((-1200 . -495) 117154) ((-1184 . -609) 117051) ((-1163 . -609) 116921) ((-825 . -754) 116900) ((-825 . -751) 116879) ((-825 . -687) T) ((-469 . -23) T) ((-208 . -579) 116861) ((-164 . -435) T) ((-207 . -293) 116799) ((-84 . -424) T) ((-84 . -379) T) ((-203 . -23) T) ((-1223 . -1216) 116778) ((-549 . -274) T) ((-537 . -274) T) ((-637 . -989) 116762) ((-476 . -274) T) ((-133 . -453) 116717) ((-47 . -1045) T) ((-673 . -216) 116701) ((-824 . -853) NIL) ((-1173 . -839) NIL) ((-842 . -100) T) ((-838 . -100) T) ((-372 . -1045) T) ((-160 . -361) 116685) ((-160 . -322) 116669) ((-1173 . -989) 116551) ((-812 . -989) 116449) ((-1084 . -100) T) ((-614 . -129) T) ((-116 . -495) 116357) ((-623 . -752) 116336) ((-623 . -755) 116315) ((-544 . -989) 116297) ((-278 . -1207) 116267) ((-819 . -100) T) ((-916 . -529) 116246) ((-1148 . -1004) 116129) ((-464 . -602) 116037) ((-857 . -1045) T) ((-975 . -678) 115974) ((-672 . -1004) 115939) ((-568 . -33) T) ((-1089 . -1154) T) ((-1148 . -110) 115808) ((-457 . -609) 115705) ((-338 . -678) 115650) ((-160 . -853) 115609) ((-659 . -274) T) ((-654 . -163) T) ((-672 . -110) 115565) ((-1227 . -1005) T) ((-1173 . -361) 115549) ((-402 . -1158) 115527) ((-1062 . -579) 115509) ((-297 . -805) NIL) ((-402 . -529) T) ((-210 . -291) T) ((-1163 . -751) 115462) ((-1163 . -754) 115415) ((-1184 . -687) T) ((-1163 . -687) T) ((-47 . -678) 115380) ((-210 . -973) T) ((-335 . -1207) 115357) ((-1186 . -395) 115323) ((-679 . -687) T) ((-1173 . -853) 115266) ((-111 . -579) 115248) ((-111 . -580) 115230) ((-679 . -456) T) ((-464 . -21) 115141) ((-126 . -471) 115125) ((-120 . -471) 115109) ((-464 . -25) 114961) ((-586 . -274) T) ((-554 . -1004) 114936) ((-421 . -1045) T) ((-1009 . -291) T) ((-116 . -274) T) ((-1049 . -100) T) ((-955 . -100) T) ((-554 . -110) 114904) ((-1084 . -293) 114842) ((-1148 . -998) T) ((-1009 . -973) T) ((-64 . -1154) T) ((-1002 . -25) T) ((-1002 . -21) T) ((-672 . -998) T) ((-369 . -21) T) ((-369 . -25) T) ((-654 . -495) NIL) ((-975 . -163) T) ((-672 . -228) T) ((-1009 . -522) T) ((-487 . -100) T) ((-483 . -100) T) ((-338 . -163) T) ((-327 . -579) 114824) ((-378 . -579) 114806) ((-457 . -687) T) ((-1064 . -805) T) ((-845 . -989) 114774) ((-106 . -807) T) ((-619 . -1004) 114758) ((-469 . -129) T) ((-1186 . -1005) T) ((-203 . -129) T) ((-1098 . -100) 114736) ((-97 . -1045) T) ((-230 . -627) 114720) ((-230 . -612) 114704) ((-619 . -110) 114683) ((-300 . -395) 114667) ((-230 . -357) 114651) ((-1101 . -220) 114598) ((-951 . -216) 114582) ((-72 . -1154) T) ((-47 . -163) T) ((-661 . -371) T) ((-661 . -137) T) ((-1222 . -100) T) ((-1033 . -1004) 114425) ((-248 . -862) 114404) ((-232 . -862) 114383) ((-742 . -1004) 114206) ((-740 . -1004) 114049) ((-574 . -1154) T) ((-1106 . -579) 114031) ((-1033 . -110) 113860) ((-995 . -100) T) ((-458 . -1154) T) ((-444 . -1004) 113831) ((-437 . -1004) 113674) ((-625 . -609) 113658) ((-824 . -291) T) ((-742 . -110) 113467) ((-740 . -110) 113296) ((-339 . -609) 113248) ((-336 . -609) 113200) ((-328 . -609) 113152) ((-248 . -609) 113077) ((-232 . -609) 113002) ((-1100 . -807) T) ((-1034 . -989) 112986) ((-444 . -110) 112947) ((-437 . -110) 112776) ((-1021 . -989) 112753) ((-952 . -33) T) ((-919 . -579) 112714) ((-911 . -1154) T) ((-125 . -962) 112698) ((-916 . -1057) T) ((-824 . -973) NIL) ((-696 . -1057) T) ((-676 . -1057) T) ((-1200 . -471) 112682) ((-1084 . -37) 112642) ((-916 . -23) T) ((-800 . -100) T) ((-777 . -21) T) ((-777 . -25) T) ((-696 . -23) T) ((-676 . -23) T) ((-109 . -622) T) ((-863 . -609) 112607) ((-550 . -1004) 112572) ((-499 . -1004) 112517) ((-212 . -55) 112475) ((-436 . -23) T) ((-391 . -100) T) ((-247 . -100) T) ((-654 . -274) T) ((-819 . -37) 112445) ((-550 . -110) 112401) ((-499 . -110) 112330) ((-402 . -1057) T) ((-300 . -1005) 112221) ((-297 . -1005) T) ((-619 . -998) T) ((-1227 . -1045) T) ((-160 . -291) 112152) ((-402 . -23) T) ((-39 . -579) 112134) ((-39 . -580) 112118) ((-106 . -945) 112100) ((-115 . -822) 112084) ((-47 . -495) 112050) ((-1140 . -962) 112034) ((-1122 . -579) 112016) ((-1127 . -33) T) ((-907 . -579) 111982) ((-874 . -579) 111964) ((-1058 . -807) 111915) ((-731 . -579) 111897) ((-633 . -579) 111879) ((-1098 . -293) 111817) ((-461 . -33) T) ((-1038 . -1154) T) ((-460 . -435) T) ((-1033 . -998) T) ((-1083 . -33) T) ((-742 . -998) T) ((-740 . -998) T) ((-608 . -220) 111801) ((-595 . -220) 111747) ((-1173 . -291) 111726) ((-1033 . -310) 111687) ((-437 . -998) T) ((-1119 . -21) T) ((-1033 . -218) 111666) ((-742 . -310) 111643) ((-742 . -218) T) ((-740 . -310) 111615) ((-311 . -612) 111599) ((-692 . -1158) 111578) ((-1119 . -25) T) ((-57 . -33) T) ((-500 . -33) T) ((-497 . -33) T) ((-437 . -310) 111557) ((-311 . -357) 111541) ((-478 . -33) T) ((-477 . -33) T) ((-955 . -1093) NIL) ((-598 . -100) T) ((-573 . -100) T) ((-692 . -529) 111472) ((-339 . -687) T) ((-336 . -687) T) ((-328 . -687) T) ((-248 . -687) T) ((-232 . -687) T) ((-995 . -293) 111380) ((-854 . -1045) 111358) ((-49 . -998) T) ((-1211 . -21) T) ((-1211 . -25) T) ((-1115 . -529) 111337) ((-1114 . -1158) 111316) ((-550 . -998) T) ((-499 . -998) T) ((-1108 . -1158) 111295) ((-345 . -989) 111279) ((-306 . -989) 111263) ((-975 . -274) T) ((-363 . -839) 111245) ((-1114 . -529) 111196) ((-1108 . -529) 111147) ((-955 . -37) 111092) ((-759 . -1057) T) ((-863 . -687) T) ((-550 . -228) T) ((-550 . -218) T) ((-499 . -218) T) ((-499 . -228) T) ((-1070 . -529) 111071) ((-338 . -274) T) ((-608 . -655) 111055) ((-363 . -989) 111015) ((-1064 . -1005) T) ((-101 . -124) 110999) ((-759 . -23) T) ((-1200 . -270) 110976) ((-391 . -293) 110941) ((-1221 . -1216) 110917) ((-1219 . -1216) 110896) ((-1186 . -1045) T) ((-823 . -579) 110878) ((-794 . -989) 110847) ((-189 . -747) T) ((-188 . -747) T) ((-187 . -747) T) ((-186 . -747) T) ((-185 . -747) T) ((-184 . -747) T) ((-183 . -747) T) ((-182 . -747) T) ((-181 . -747) T) ((-180 . -747) T) ((-476 . -954) T) ((-258 . -796) T) ((-257 . -796) T) ((-256 . -796) T) ((-255 . -796) T) ((-47 . -274) T) ((-254 . -796) T) ((-253 . -796) T) ((-252 . -796) T) ((-179 . -747) T) ((-578 . -807) T) ((-615 . -395) 110831) ((-109 . -807) T) ((-614 . -21) T) ((-614 . -25) T) ((-1222 . -37) 110801) ((-116 . -270) 110752) ((-1200 . -19) 110736) ((-1200 . -570) 110713) ((-1212 . -1045) T) ((-1022 . -1045) T) ((-940 . -1045) T) ((-916 . -129) T) ((-698 . -1045) T) ((-696 . -129) T) ((-676 . -129) T) ((-492 . -753) T) ((-391 . -1093) 110691) ((-436 . -129) T) ((-492 . -754) T) ((-208 . -998) T) ((-278 . -100) 110474) ((-135 . -1045) T) ((-659 . -954) T) ((-89 . -1154) T) ((-126 . -579) 110406) ((-120 . -579) 110338) ((-1227 . -163) T) ((-1114 . -347) 110317) ((-1108 . -347) 110296) ((-300 . -1045) T) ((-402 . -129) T) ((-297 . -1045) T) ((-391 . -37) 110248) ((-1077 . -100) T) ((-1186 . -678) 110140) ((-615 . -1005) T) ((-303 . -139) 110119) ((-303 . -141) 110098) ((-133 . -1045) T) ((-113 . -1045) T) ((-815 . -100) T) ((-549 . -579) 110080) ((-537 . -580) 109979) ((-537 . -579) 109961) ((-476 . -579) 109943) ((-476 . -580) 109888) ((-467 . -23) T) ((-464 . -807) 109839) ((-469 . -602) 109821) ((-918 . -579) 109803) ((-203 . -602) 109785) ((-210 . -388) T) ((-623 . -609) 109769) ((-1113 . -873) 109748) ((-692 . -1057) T) ((-335 . -100) T) ((-1153 . -1029) T) ((-778 . -807) T) ((-692 . -23) T) ((-327 . -1004) 109693) ((-1100 . -1099) T) ((-1089 . -105) 109677) ((-1115 . -1057) T) ((-1114 . -1057) T) ((-496 . -989) 109661) ((-1108 . -1057) T) ((-1070 . -1057) T) ((-327 . -110) 109590) ((-956 . -1158) T) ((-125 . -1154) T) ((-867 . -1158) T) ((-654 . -270) NIL) ((-1201 . -579) 109572) ((-1115 . -23) T) ((-1114 . -23) T) ((-1108 . -23) T) ((-956 . -529) T) ((-1084 . -216) 109556) ((-867 . -529) T) ((-1070 . -23) T) ((-233 . -579) 109538) ((-1020 . -1045) T) ((-759 . -129) T) ((-671 . -579) 109520) ((-300 . -678) 109430) ((-297 . -678) 109359) ((-659 . -579) 109341) ((-659 . -580) 109286) ((-391 . -384) 109270) ((-422 . -1045) T) ((-469 . -25) T) ((-469 . -21) T) ((-1064 . -1045) T) ((-203 . -25) T) ((-203 . -21) T) ((-673 . -395) 109254) ((-675 . -989) 109223) ((-1200 . -579) 109135) ((-1200 . -580) 109096) ((-1186 . -163) T) ((-230 . -33) T) ((-879 . -927) T) ((-1140 . -1154) T) ((-623 . -751) 109075) ((-623 . -754) 109054) ((-382 . -379) T) ((-504 . -100) 109032) ((-986 . -1045) T) ((-207 . -947) 109016) ((-485 . -100) T) ((-586 . -579) 108998) ((-44 . -807) NIL) ((-586 . -580) 108975) ((-986 . -576) 108950) ((-854 . -495) 108883) ((-327 . -998) T) ((-116 . -580) NIL) ((-116 . -579) 108865) ((-825 . -1154) T) ((-631 . -401) 108849) ((-631 . -1067) 108794) ((-481 . -145) 108776) ((-327 . -218) T) ((-327 . -228) T) ((-39 . -1004) 108721) ((-825 . -837) 108705) ((-825 . -839) 108630) ((-673 . -1005) T) ((-654 . -954) NIL) ((-3 . |UnionCategory|) T) ((-1184 . -46) 108600) ((-1163 . -46) 108577) ((-1083 . -962) 108548) ((-210 . -873) T) ((-39 . -110) 108477) ((-825 . -989) 108344) ((-1064 . -678) 108331) ((-1050 . -579) 108313) ((-1025 . -141) 108292) ((-1025 . -139) 108243) ((-956 . -347) T) ((-303 . -1142) 108209) ((-363 . -291) T) ((-303 . -1139) 108175) ((-300 . -163) 108154) ((-297 . -163) T) ((-955 . -216) 108131) ((-867 . -347) T) ((-550 . -1218) 108118) ((-499 . -1218) 108095) ((-343 . -141) 108074) ((-343 . -139) 108025) ((-337 . -141) 108004) ((-337 . -139) 107955) ((-574 . -1130) 107931) ((-329 . -141) 107910) ((-329 . -139) 107861) ((-303 . -34) 107827) ((-458 . -1130) 107806) ((0 . |EnumerationCategory|) T) ((-303 . -93) 107772) ((-363 . -973) T) ((-106 . -141) T) ((-106 . -139) NIL) ((-44 . -220) 107722) ((-615 . -1045) T) ((-574 . -105) 107669) ((-467 . -129) T) ((-458 . -105) 107619) ((-225 . -1057) 107530) ((-825 . -361) 107514) ((-825 . -322) 107498) ((-225 . -23) 107369) ((-1009 . -873) T) ((-1009 . -780) T) ((-550 . -352) T) ((-499 . -352) T) ((-335 . -1093) T) ((-311 . -33) T) ((-43 . -401) 107353) ((-826 . -1154) T) ((-374 . -705) 107337) ((-1212 . -495) 107270) ((-692 . -129) T) ((-1192 . -529) 107249) ((-1185 . -1158) 107228) ((-1185 . -529) 107179) ((-1164 . -1158) 107158) ((-295 . -1029) T) ((-1164 . -529) 107109) ((-698 . -495) 107042) ((-1163 . -1154) 107021) ((-1163 . -839) 106894) ((-846 . -1045) T) ((-138 . -801) T) ((-1163 . -837) 106864) ((-651 . -579) 106846) ((-1115 . -129) T) ((-504 . -293) 106784) ((-1114 . -129) T) ((-135 . -495) NIL) ((-1108 . -129) T) ((-1070 . -129) T) ((-975 . -954) T) ((-956 . -23) T) ((-335 . -37) 106749) ((-956 . -1057) T) ((-867 . -1057) T) ((-80 . -579) 106731) ((-39 . -998) T) ((-823 . -1004) 106718) ((-955 . -333) NIL) ((-825 . -853) 106677) ((-661 . -100) T) ((-924 . -23) T) ((-568 . -1154) T) ((-867 . -23) T) ((-823 . -110) 106662) ((-411 . -1057) T) ((-457 . -46) 106632) ((-199 . -100) T) ((-131 . -100) T) ((-39 . -218) 106604) ((-39 . -228) T) ((-115 . -100) T) ((-563 . -529) 106583) ((-562 . -529) 106562) ((-654 . -579) 106544) ((-654 . -580) 106452) ((-300 . -495) 106418) ((-297 . -495) 106310) ((-1184 . -989) 106294) ((-1163 . -989) 106083) ((-951 . -395) 106067) ((-411 . -23) T) ((-1064 . -163) T) ((-1186 . -274) T) ((-615 . -678) 106037) ((-138 . -1045) T) ((-47 . -954) T) ((-391 . -216) 106021) ((-279 . -220) 105971) ((-824 . -873) T) ((-824 . -780) NIL) ((-818 . -807) T) ((-1163 . -322) 105941) ((-1163 . -361) 105911) ((-207 . -1065) 105895) ((-1200 . -272) 105872) ((-1148 . -609) 105797) ((-916 . -21) T) ((-916 . -25) T) ((-696 . -21) T) ((-696 . -25) T) ((-676 . -21) T) ((-676 . -25) T) ((-672 . -609) 105762) ((-436 . -21) T) ((-436 . -25) T) ((-323 . -100) T) ((-164 . -100) T) ((-951 . -1005) T) ((-823 . -998) T) ((-734 . -100) T) ((-1185 . -347) 105741) ((-1184 . -853) 105647) ((-1164 . -347) 105626) ((-1163 . -853) 105477) ((-975 . -579) 105459) ((-391 . -788) 105412) ((-1115 . -474) 105378) ((-160 . -873) 105309) ((-1114 . -474) 105275) ((-1108 . -474) 105241) ((-673 . -1045) T) ((-1070 . -474) 105207) ((-549 . -1004) 105194) ((-537 . -1004) 105181) ((-476 . -1004) 105146) ((-300 . -274) 105125) ((-297 . -274) T) ((-338 . -579) 105107) ((-402 . -25) T) ((-402 . -21) T) ((-97 . -270) 105086) ((-549 . -110) 105071) ((-537 . -110) 105056) ((-476 . -110) 105012) ((-1117 . -839) 104979) ((-854 . -471) 104963) ((-47 . -579) 104945) ((-47 . -580) 104890) ((-225 . -129) 104761) ((-1173 . -873) 104740) ((-776 . -1158) 104719) ((-986 . -495) 104563) ((-372 . -579) 104545) ((-776 . -529) 104476) ((-554 . -609) 104451) ((-248 . -46) 104423) ((-232 . -46) 104380) ((-509 . -490) 104357) ((-952 . -1154) T) ((-659 . -1004) 104322) ((-1192 . -1057) T) ((-1185 . -1057) T) ((-1164 . -1057) T) ((-955 . -354) 104294) ((-111 . -352) T) ((-457 . -853) 104200) ((-1192 . -23) T) ((-1185 . -23) T) ((-857 . -579) 104182) ((-89 . -105) 104166) ((-1148 . -687) T) ((-858 . -807) 104117) ((-661 . -1093) T) ((-659 . -110) 104073) ((-1164 . -23) T) ((-563 . -1057) T) ((-562 . -1057) T) ((-673 . -678) 103902) ((-672 . -687) T) ((-1064 . -274) T) ((-956 . -129) T) ((-469 . -807) T) ((-924 . -129) T) ((-867 . -129) T) ((-759 . -25) T) ((-203 . -807) T) ((-759 . -21) T) ((-549 . -998) T) ((-537 . -998) T) ((-476 . -998) T) ((-563 . -23) T) ((-327 . -1218) 103879) ((-303 . -435) 103858) ((-323 . -293) 103845) ((-562 . -23) T) ((-411 . -129) T) ((-619 . -609) 103819) ((-230 . -962) 103803) ((-825 . -291) T) ((-1223 . -1213) 103787) ((-661 . -37) 103774) ((-537 . -218) T) ((-476 . -228) T) ((-476 . -218) T) ((-731 . -752) T) ((-731 . -755) T) ((-1092 . -220) 103724) ((-1033 . -862) 103703) ((-115 . -37) 103690) ((-195 . -760) T) ((-194 . -760) T) ((-193 . -760) T) ((-192 . -760) T) ((-825 . -973) 103669) ((-1212 . -471) 103653) ((-742 . -862) 103632) ((-740 . -862) 103611) ((-1127 . -1154) T) ((-437 . -862) 103590) ((-698 . -471) 103574) ((-1033 . -609) 103499) ((-742 . -609) 103424) ((-586 . -1004) 103411) ((-461 . -1154) T) ((-327 . -352) T) ((-135 . -471) 103393) ((-740 . -609) 103318) ((-1083 . -1154) T) ((-444 . -609) 103289) ((-248 . -839) 103148) ((-232 . -839) NIL) ((-116 . -1004) 103093) ((-437 . -609) 103018) ((-625 . -989) 102995) ((-586 . -110) 102980) ((-339 . -989) 102964) ((-336 . -989) 102948) ((-328 . -989) 102932) ((-248 . -989) 102778) ((-232 . -989) 102656) ((-116 . -110) 102585) ((-57 . -1154) T) ((-500 . -1154) T) ((-497 . -1154) T) ((-478 . -1154) T) ((-477 . -1154) T) ((-421 . -579) 102567) ((-418 . -579) 102549) ((-3 . -100) T) ((-978 . -1147) 102518) ((-793 . -100) T) ((-649 . -55) 102476) ((-659 . -998) T) ((-49 . -609) 102450) ((-273 . -435) T) ((-459 . -1147) 102419) ((0 . -100) T) ((-550 . -609) 102384) ((-499 . -609) 102329) ((-48 . -100) T) ((-863 . -989) 102316) ((-659 . -228) T) ((-1025 . -393) 102295) ((-692 . -602) 102243) ((-951 . -1045) T) ((-673 . -163) 102134) ((-469 . -945) 102116) ((-248 . -361) 102100) ((-232 . -361) 102084) ((-383 . -1045) T) ((-323 . -37) 102068) ((-977 . -100) 102046) ((-203 . -945) 102028) ((-164 . -37) 101960) ((-1184 . -291) 101939) ((-1163 . -291) 101918) ((-619 . -687) T) ((-97 . -579) 101900) ((-1108 . -602) 101852) ((-467 . -25) T) ((-467 . -21) T) ((-1163 . -973) 101805) ((-586 . -998) T) ((-363 . -388) T) ((-374 . -100) T) ((-248 . -853) 101751) ((-232 . -853) 101728) ((-116 . -998) T) ((-776 . -1057) T) ((-1033 . -687) T) ((-586 . -218) 101707) ((-584 . -100) T) ((-742 . -687) T) ((-740 . -687) T) ((-397 . -1057) T) ((-116 . -228) T) ((-39 . -352) NIL) ((-116 . -218) NIL) ((-437 . -687) T) ((-776 . -23) T) ((-692 . -25) T) ((-692 . -21) T) ((-663 . -807) T) ((-1022 . -270) 101686) ((-76 . -380) T) ((-76 . -379) T) ((-654 . -1004) 101636) ((-1192 . -129) T) ((-1185 . -129) T) ((-1164 . -129) T) ((-1084 . -395) 101620) ((-598 . -351) 101552) ((-573 . -351) 101484) ((-1098 . -1091) 101468) ((-101 . -1045) 101446) ((-1115 . -25) T) ((-1115 . -21) T) ((-1114 . -21) T) ((-951 . -678) 101394) ((-208 . -609) 101361) ((-654 . -110) 101295) ((-49 . -687) T) ((-1114 . -25) T) ((-335 . -333) T) ((-1108 . -21) T) ((-1025 . -435) 101246) ((-1108 . -25) T) ((-673 . -495) 101193) ((-550 . -687) T) ((-499 . -687) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-563 . -129) T) ((-562 . -129) T) ((-343 . -435) T) ((-337 . -435) T) ((-329 . -435) T) ((-457 . -291) 101172) ((-297 . -270) 101107) ((-106 . -435) T) ((-77 . -424) T) ((-77 . -379) T) ((-460 . -100) T) ((-1227 . -579) 101089) ((-1227 . -580) 101071) ((-1025 . -386) 101050) ((-986 . -471) 100981) ((-537 . -755) T) ((-537 . -752) T) ((-1010 . -220) 100927) ((-343 . -386) 100878) ((-337 . -386) 100829) ((-329 . -386) 100780) ((-1214 . -1057) T) ((-1214 . -23) T) ((-1202 . -100) T) ((-165 . -579) 100762) ((-1084 . -1005) T) ((-631 . -705) 100746) ((-1119 . -139) 100725) ((-1119 . -141) 100704) ((-1088 . -1045) T) ((-1088 . -1018) 100673) ((-67 . -1154) T) ((-975 . -1004) 100610) ((-819 . -1005) T) ((-225 . -602) 100518) ((-654 . -998) T) ((-338 . -1004) 100463) ((-59 . -1154) T) ((-975 . -110) 100379) ((-854 . -579) 100311) ((-654 . -228) T) ((-654 . -218) NIL) ((-800 . -805) 100290) ((-659 . -755) T) ((-659 . -752) T) ((-955 . -395) 100267) ((-338 . -110) 100196) ((-363 . -873) T) ((-391 . -805) 100175) ((-673 . -274) 100086) ((-208 . -687) T) ((-1192 . -474) 100052) ((-1185 . -474) 100018) ((-1164 . -474) 99984) ((-300 . -954) 99963) ((-207 . -1045) 99941) ((-303 . -926) 99903) ((-103 . -100) T) ((-47 . -1004) 99868) ((-1223 . -100) T) ((-365 . -100) T) ((-47 . -110) 99824) ((-956 . -602) 99806) ((-1186 . -579) 99788) ((-509 . -100) T) ((-481 . -100) T) ((-1077 . -1078) 99772) ((-146 . -1207) 99756) ((-230 . -1154) T) ((-1153 . -100) T) ((-1113 . -1158) 99735) ((-1069 . -1158) 99714) ((-225 . -21) 99625) ((-225 . -25) 99477) ((-126 . -118) 99461) ((-120 . -118) 99445) ((-43 . -705) 99429) ((-1113 . -529) 99340) ((-1069 . -529) 99271) ((-986 . -270) 99246) ((-776 . -129) T) ((-116 . -755) NIL) ((-116 . -752) NIL) ((-339 . -291) T) ((-336 . -291) T) ((-328 . -291) T) ((-1040 . -1154) T) ((-235 . -1057) 99157) ((-234 . -1057) 99068) ((-975 . -998) T) ((-955 . -1005) T) ((-327 . -609) 99013) ((-584 . -37) 98997) ((-1212 . -579) 98959) ((-1212 . -580) 98920) ((-1022 . -579) 98902) ((-975 . -228) T) ((-338 . -998) T) ((-775 . -1207) 98872) ((-235 . -23) T) ((-234 . -23) T) ((-940 . -579) 98854) ((-698 . -580) 98815) ((-698 . -579) 98797) ((-759 . -807) 98776) ((-951 . -495) 98688) ((-338 . -218) T) ((-338 . -228) T) ((-1101 . -145) 98635) ((-956 . -25) T) ((-135 . -579) 98617) ((-135 . -580) 98576) ((-863 . -291) T) ((-956 . -21) T) ((-924 . -25) T) ((-867 . -21) T) ((-867 . -25) T) ((-411 . -21) T) ((-411 . -25) T) ((-800 . -395) 98560) ((-47 . -998) T) ((-1221 . -1213) 98544) ((-1219 . -1213) 98528) ((-986 . -570) 98503) ((-300 . -580) 98364) ((-300 . -579) 98346) ((-297 . -580) NIL) ((-297 . -579) 98328) ((-47 . -228) T) ((-47 . -218) T) ((-615 . -270) 98289) ((-523 . -220) 98239) ((-133 . -579) 98221) ((-113 . -579) 98203) ((-460 . -37) 98168) ((-1223 . -1220) 98147) ((-1214 . -129) T) ((-1222 . -1005) T) ((-1027 . -100) T) ((-86 . -1154) T) ((-481 . -293) NIL) ((-952 . -105) 98131) ((-842 . -1045) T) ((-838 . -1045) T) ((-1200 . -612) 98115) ((-1200 . -357) 98099) ((-311 . -1154) T) ((-560 . -807) T) ((-1084 . -1045) T) ((-1084 . -1001) 98039) ((-101 . -495) 97972) ((-880 . -579) 97954) ((-327 . -687) T) ((-30 . -579) 97936) ((-819 . -1045) T) ((-800 . -1005) 97915) ((-39 . -609) 97860) ((-210 . -1158) T) ((-391 . -1005) T) ((-1100 . -145) 97842) ((-951 . -274) 97793) ((-210 . -529) T) ((-303 . -1181) 97777) ((-303 . -1178) 97747) ((-1127 . -1130) 97726) ((-1020 . -579) 97708) ((-608 . -145) 97692) ((-595 . -145) 97638) ((-1127 . -105) 97588) ((-461 . -1130) 97567) ((-469 . -141) T) ((-469 . -139) NIL) ((-1064 . -580) 97482) ((-422 . -579) 97464) ((-203 . -141) T) ((-203 . -139) NIL) ((-1064 . -579) 97446) ((-128 . -100) T) ((-51 . -100) T) ((-1164 . -602) 97398) ((-461 . -105) 97348) ((-946 . -23) T) ((-1223 . -37) 97318) ((-1113 . -1057) T) ((-1069 . -1057) T) ((-1009 . -1158) T) ((-295 . -100) T) ((-811 . -1057) T) ((-905 . -1158) 97297) ((-463 . -1158) 97276) ((-692 . -807) 97255) ((-1009 . -529) T) ((-905 . -529) 97186) ((-1113 . -23) T) ((-1069 . -23) T) ((-811 . -23) T) ((-463 . -529) 97117) ((-1084 . -678) 97049) ((-1088 . -495) 96982) ((-986 . -580) NIL) ((-986 . -579) 96964) ((-94 . -1029) T) ((-819 . -678) 96934) ((-1148 . -46) 96903) ((-234 . -129) T) ((-235 . -129) T) ((-1049 . -1045) T) ((-955 . -1045) T) ((-60 . -579) 96885) ((-1108 . -807) NIL) ((-975 . -752) T) ((-975 . -755) T) ((-1227 . -1004) 96872) ((-1227 . -110) 96857) ((-823 . -609) 96844) ((-1192 . -25) T) ((-1192 . -21) T) ((-1185 . -21) T) ((-1185 . -25) T) ((-1164 . -21) T) ((-1164 . -25) T) ((-978 . -145) 96828) ((-825 . -780) 96807) ((-825 . -873) T) ((-673 . -270) 96734) ((-563 . -21) T) ((-563 . -25) T) ((-562 . -21) T) ((-39 . -687) T) ((-207 . -495) 96667) ((-562 . -25) T) ((-459 . -145) 96651) ((-446 . -145) 96635) ((-874 . -754) T) ((-874 . -687) T) ((-731 . -753) T) ((-731 . -754) T) ((-487 . -1045) T) ((-483 . -1045) T) ((-731 . -687) T) ((-210 . -347) T) ((-1098 . -1045) 96613) ((-824 . -1158) T) ((-615 . -579) 96595) ((-824 . -529) T) ((-654 . -352) NIL) ((-343 . -1207) 96579) ((-631 . -100) T) ((-337 . -1207) 96563) ((-329 . -1207) 96547) ((-1222 . -1045) T) ((-501 . -807) 96526) ((-777 . -435) 96505) ((-995 . -1045) T) ((-995 . -1018) 96434) ((-978 . -929) 96403) ((-779 . -1057) T) ((-955 . -678) 96348) ((-370 . -1057) T) ((-459 . -929) 96317) ((-446 . -929) 96286) ((-109 . -145) 96268) ((-71 . -579) 96250) ((-846 . -579) 96232) ((-1025 . -685) 96211) ((-1227 . -998) T) ((-776 . -602) 96159) ((-278 . -1005) 96102) ((-160 . -1158) 96007) ((-210 . -1057) T) ((-308 . -23) T) ((-1108 . -945) 95959) ((-800 . -1045) T) ((-1070 . -701) 95938) ((-1186 . -1004) 95843) ((-1184 . -873) 95822) ((-823 . -687) T) ((-160 . -529) 95733) ((-1163 . -873) 95712) ((-549 . -609) 95699) ((-391 . -1045) T) ((-537 . -609) 95686) ((-247 . -1045) T) ((-476 . -609) 95651) ((-210 . -23) T) ((-1163 . -780) 95604) ((-1221 . -100) T) ((-338 . -1218) 95581) ((-1219 . -100) T) ((-1186 . -110) 95473) ((-138 . -579) 95455) ((-946 . -129) T) ((-43 . -100) T) ((-225 . -807) 95406) ((-1173 . -1158) 95385) ((-101 . -471) 95369) ((-1222 . -678) 95339) ((-1033 . -46) 95300) ((-1009 . -1057) T) ((-905 . -1057) T) ((-126 . -33) T) ((-120 . -33) T) ((-742 . -46) 95277) ((-740 . -46) 95249) ((-1173 . -529) 95160) ((-338 . -352) T) ((-463 . -1057) T) ((-1113 . -129) T) ((-1069 . -129) T) ((-437 . -46) 95139) ((-824 . -347) T) ((-811 . -129) T) ((-146 . -100) T) ((-1009 . -23) T) ((-905 . -23) T) ((-544 . -529) T) ((-776 . -25) T) ((-776 . -21) T) ((-1084 . -495) 95072) ((-554 . -989) 95056) ((-463 . -23) T) ((-335 . -1005) T) ((-1148 . -853) 95037) ((-631 . -293) 94975) ((-1058 . -1207) 94945) ((-659 . -609) 94910) ((-955 . -163) T) ((-916 . -139) 94889) ((-598 . -1045) T) ((-573 . -1045) T) ((-916 . -141) 94868) ((-956 . -807) T) ((-696 . -141) 94847) ((-696 . -139) 94826) ((-924 . -807) T) ((-457 . -873) 94805) ((-300 . -1004) 94715) ((-297 . -1004) 94644) ((-951 . -270) 94602) ((-391 . -678) 94554) ((-127 . -807) T) ((-661 . -805) T) ((-1186 . -998) T) ((-300 . -110) 94450) ((-297 . -110) 94363) ((-917 . -100) T) ((-775 . -100) 94154) ((-673 . -580) NIL) ((-673 . -579) 94136) ((-619 . -989) 94034) ((-1186 . -310) 93978) ((-986 . -272) 93953) ((-549 . -687) T) ((-537 . -754) T) ((-160 . -347) 93904) ((-537 . -751) T) ((-537 . -687) T) ((-476 . -687) T) ((-1088 . -471) 93888) ((-1033 . -839) NIL) ((-824 . -1057) T) ((-116 . -862) NIL) ((-1221 . -1220) 93864) ((-1219 . -1220) 93843) ((-742 . -839) NIL) ((-740 . -839) 93702) ((-1214 . -25) T) ((-1214 . -21) T) ((-1151 . -100) 93680) ((-1051 . -379) T) ((-586 . -609) 93667) ((-437 . -839) NIL) ((-636 . -100) 93645) ((-1033 . -989) 93474) ((-824 . -23) T) ((-742 . -989) 93335) ((-740 . -989) 93194) ((-116 . -609) 93139) ((-437 . -989) 93017) ((-610 . -989) 93001) ((-590 . -100) T) ((-207 . -471) 92985) ((-1200 . -33) T) ((-598 . -678) 92969) ((-573 . -678) 92953) ((-631 . -37) 92913) ((-303 . -100) T) ((-83 . -579) 92895) ((-49 . -989) 92879) ((-1064 . -1004) 92866) ((-1033 . -361) 92850) ((-742 . -361) 92834) ((-58 . -55) 92796) ((-659 . -754) T) ((-659 . -751) T) ((-550 . -989) 92783) ((-499 . -989) 92760) ((-659 . -687) T) ((-308 . -129) T) ((-300 . -998) 92651) ((-297 . -998) T) ((-160 . -1057) T) ((-740 . -361) 92635) ((-44 . -145) 92585) ((-956 . -945) 92567) ((-437 . -361) 92551) ((-391 . -163) T) ((-300 . -228) 92530) ((-297 . -228) T) ((-297 . -218) NIL) ((-278 . -1045) 92313) ((-210 . -129) T) ((-1064 . -110) 92298) ((-160 . -23) T) ((-759 . -141) 92277) ((-759 . -139) 92256) ((-235 . -602) 92164) ((-234 . -602) 92072) ((-303 . -268) 92038) ((-1098 . -495) 91971) ((-1077 . -1045) T) ((-210 . -1007) T) ((-775 . -293) 91909) ((-1033 . -853) 91844) ((-742 . -853) 91787) ((-740 . -853) 91771) ((-1221 . -37) 91741) ((-1219 . -37) 91711) ((-1173 . -1057) T) ((-812 . -1057) T) ((-437 . -853) 91688) ((-815 . -1045) T) ((-1173 . -23) T) ((-544 . -1057) T) ((-812 . -23) T) ((-586 . -687) T) ((-339 . -873) T) ((-336 . -873) T) ((-273 . -100) T) ((-328 . -873) T) ((-1009 . -129) T) ((-923 . -1029) T) ((-905 . -129) T) ((-116 . -754) NIL) ((-116 . -751) NIL) ((-116 . -687) T) ((-654 . -862) NIL) ((-995 . -495) 91589) ((-463 . -129) T) ((-544 . -23) T) ((-636 . -293) 91527) ((-598 . -722) T) ((-573 . -722) T) ((-1164 . -807) NIL) ((-955 . -274) T) ((-235 . -21) T) ((-654 . -609) 91477) ((-335 . -1045) T) ((-235 . -25) T) ((-234 . -21) T) ((-234 . -25) T) ((-146 . -37) 91461) ((-2 . -100) T) ((-863 . -873) T) ((-464 . -1207) 91431) ((-208 . -989) 91408) ((-1064 . -998) T) ((-672 . -291) T) ((-278 . -678) 91350) ((-661 . -1005) T) ((-469 . -435) T) ((-391 . -495) 91262) ((-203 . -435) T) ((-1064 . -218) T) ((-279 . -145) 91212) ((-951 . -580) 91173) ((-951 . -579) 91155) ((-942 . -579) 91137) ((-115 . -1005) T) ((-615 . -1004) 91121) ((-210 . -474) T) ((-383 . -579) 91103) ((-383 . -580) 91080) ((-1002 . -1207) 91050) ((-615 . -110) 91029) ((-1084 . -471) 91013) ((-775 . -37) 90983) ((-61 . -424) T) ((-61 . -379) T) ((-1101 . -100) T) ((-824 . -129) T) ((-466 . -100) 90961) ((-1227 . -352) T) ((-1025 . -100) T) ((-1008 . -100) T) ((-335 . -678) 90906) ((-692 . -141) 90885) ((-692 . -139) 90864) ((-975 . -609) 90801) ((-504 . -1045) 90779) ((-343 . -100) T) ((-337 . -100) T) ((-329 . -100) T) ((-106 . -100) T) ((-485 . -1045) T) ((-338 . -609) 90724) ((-1113 . -602) 90672) ((-1069 . -602) 90620) ((-369 . -490) 90599) ((-793 . -805) 90578) ((-363 . -1158) T) ((-654 . -687) T) ((-323 . -1005) T) ((-1164 . -945) 90530) ((-164 . -1005) T) ((-101 . -579) 90462) ((-1115 . -139) 90441) ((-1115 . -141) 90420) ((-363 . -529) T) ((-1114 . -141) 90399) ((-1114 . -139) 90378) ((-1108 . -139) 90285) ((-391 . -274) T) ((-1108 . -141) 90192) ((-1070 . -141) 90171) ((-1070 . -139) 90150) ((-303 . -37) 89991) ((-160 . -129) T) ((-297 . -755) NIL) ((-297 . -752) NIL) ((-615 . -998) T) ((-47 . -609) 89956) ((-946 . -21) T) ((-126 . -962) 89940) ((-120 . -962) 89924) ((-946 . -25) T) ((-854 . -118) 89908) ((-1100 . -100) T) ((-776 . -807) 89887) ((-1173 . -129) T) ((-1113 . -25) T) ((-1113 . -21) T) ((-812 . -129) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-811 . -25) T) ((-811 . -21) T) ((-742 . -291) 89866) ((-608 . -100) 89844) ((-595 . -100) T) ((-1101 . -293) 89639) ((-544 . -129) T) ((-584 . -805) 89618) ((-1098 . -471) 89602) ((-1092 . -145) 89552) ((-1088 . -579) 89514) ((-1088 . -580) 89475) ((-975 . -751) T) ((-975 . -754) T) ((-975 . -687) T) ((-466 . -293) 89413) ((-436 . -401) 89383) ((-335 . -163) T) ((-273 . -37) 89370) ((-258 . -100) T) ((-257 . -100) T) ((-256 . -100) T) ((-255 . -100) T) ((-254 . -100) T) ((-253 . -100) T) ((-252 . -100) T) ((-327 . -989) 89347) ((-198 . -100) T) ((-197 . -100) T) ((-195 . -100) T) ((-194 . -100) T) ((-193 . -100) T) ((-192 . -100) T) ((-189 . -100) T) ((-188 . -100) T) ((-673 . -1004) 89170) ((-187 . -100) T) ((-186 . -100) T) ((-185 . -100) T) ((-184 . -100) T) ((-183 . -100) T) ((-182 . -100) T) ((-181 . -100) T) ((-180 . -100) T) ((-179 . -100) T) ((-338 . -687) T) ((-673 . -110) 88979) ((-631 . -216) 88963) ((-550 . -291) T) ((-499 . -291) T) ((-278 . -495) 88912) ((-106 . -293) NIL) ((-70 . -379) T) ((-1058 . -100) 88703) ((-793 . -395) 88687) ((-1064 . -755) T) ((-1064 . -752) T) ((-661 . -1045) T) ((-363 . -347) T) ((-160 . -474) 88665) ((-199 . -1045) T) ((-207 . -579) 88597) ((-131 . -1045) T) ((-115 . -1045) T) ((-47 . -687) T) ((-995 . -471) 88562) ((-487 . -91) T) ((-135 . -409) 88544) ((-135 . -352) T) ((-978 . -100) T) ((-493 . -490) 88523) ((-459 . -100) T) ((-446 . -100) T) ((-985 . -1057) T) ((-1115 . -34) 88489) ((-1115 . -93) 88455) ((-1115 . -1142) 88421) ((-1115 . -1139) 88387) ((-1100 . -293) NIL) ((-87 . -380) T) ((-87 . -379) T) ((-1025 . -1093) 88366) ((-1114 . -1139) 88332) ((-1114 . -1142) 88298) ((-985 . -23) T) ((-1114 . -93) 88264) ((-544 . -474) T) ((-1114 . -34) 88230) ((-1108 . -1139) 88196) ((-1108 . -1142) 88162) ((-1108 . -93) 88128) ((-345 . -1057) T) ((-343 . -1093) 88107) ((-337 . -1093) 88086) ((-329 . -1093) 88065) ((-1108 . -34) 88031) ((-1070 . -34) 87997) ((-1070 . -93) 87963) ((-106 . -1093) T) ((-1070 . -1142) 87929) ((-793 . -1005) 87908) ((-608 . -293) 87846) ((-595 . -293) 87697) ((-1070 . -1139) 87663) ((-673 . -998) T) ((-1009 . -602) 87645) ((-1025 . -37) 87513) ((-905 . -602) 87461) ((-956 . -141) T) ((-956 . -139) NIL) ((-363 . -1057) T) ((-308 . -25) T) ((-306 . -23) T) ((-896 . -807) 87440) ((-673 . -310) 87417) ((-463 . -602) 87365) ((-39 . -989) 87255) ((-661 . -678) 87242) ((-673 . -218) T) ((-323 . -1045) T) ((-164 . -1045) T) ((-315 . -807) T) ((-402 . -435) 87192) ((-363 . -23) T) ((-343 . -37) 87157) ((-337 . -37) 87122) ((-329 . -37) 87087) ((-78 . -424) T) ((-78 . -379) T) ((-210 . -25) T) ((-210 . -21) T) ((-794 . -1057) T) ((-106 . -37) 87037) ((-787 . -1057) T) ((-734 . -1045) T) ((-115 . -678) 87024) ((-633 . -989) 87008) ((-578 . -100) T) ((-794 . -23) T) ((-787 . -23) T) ((-1098 . -270) 86985) ((-1058 . -293) 86923) ((-1047 . -220) 86907) ((-62 . -380) T) ((-62 . -379) T) ((-109 . -100) T) ((-39 . -361) 86884) ((-94 . -100) T) ((-614 . -809) 86868) ((-1009 . -21) T) ((-1009 . -25) T) ((-775 . -216) 86838) ((-905 . -25) T) ((-905 . -21) T) ((-584 . -1005) T) ((-463 . -25) T) ((-463 . -21) T) ((-978 . -293) 86776) ((-842 . -579) 86758) ((-838 . -579) 86740) ((-235 . -807) 86691) ((-234 . -807) 86642) ((-504 . -495) 86575) ((-824 . -602) 86552) ((-459 . -293) 86490) ((-446 . -293) 86428) ((-335 . -274) T) ((-1098 . -1188) 86412) ((-1084 . -579) 86374) ((-1084 . -580) 86335) ((-1082 . -100) T) ((-951 . -1004) 86231) ((-39 . -853) 86183) ((-1098 . -570) 86160) ((-1227 . -609) 86147) ((-1010 . -145) 86093) ((-825 . -1158) T) ((-951 . -110) 85975) ((-323 . -678) 85959) ((-819 . -579) 85941) ((-164 . -678) 85873) ((-391 . -270) 85831) ((-825 . -529) T) ((-106 . -384) 85813) ((-82 . -368) T) ((-82 . -379) T) ((-661 . -163) T) ((-97 . -687) T) ((-464 . -100) 85604) ((-97 . -456) T) ((-115 . -163) T) ((-1058 . -37) 85574) ((-160 . -602) 85522) ((-1002 . -100) T) ((-824 . -25) T) ((-775 . -223) 85501) ((-824 . -21) T) ((-778 . -100) T) ((-398 . -100) T) ((-369 . -100) T) ((-109 . -293) NIL) ((-212 . -100) 85479) ((-126 . -1154) T) ((-120 . -1154) T) ((-985 . -129) T) ((-631 . -351) 85463) ((-951 . -998) T) ((-1173 . -602) 85411) ((-1049 . -579) 85393) ((-955 . -579) 85375) ((-496 . -23) T) ((-491 . -23) T) ((-327 . -291) T) ((-489 . -23) T) ((-306 . -129) T) ((-3 . -1045) T) ((-955 . -580) 85359) ((-951 . -228) 85338) ((-951 . -218) 85317) ((-1227 . -687) T) ((-1192 . -139) 85296) ((-793 . -1045) T) ((-1192 . -141) 85275) ((-1185 . -141) 85254) ((-1185 . -139) 85233) ((-1184 . -1158) 85212) ((-1164 . -139) 85119) ((-1164 . -141) 85026) ((-1163 . -1158) 85005) ((-363 . -129) T) ((-537 . -839) 84987) ((0 . -1045) T) ((-164 . -163) T) ((-160 . -21) T) ((-160 . -25) T) ((-48 . -1045) T) ((-1186 . -609) 84892) ((-1184 . -529) 84843) ((-675 . -1057) T) ((-1163 . -529) 84794) ((-537 . -989) 84776) ((-562 . -141) 84755) ((-562 . -139) 84734) ((-476 . -989) 84677) ((-85 . -368) T) ((-85 . -379) T) ((-825 . -347) T) ((-794 . -129) T) ((-787 . -129) T) ((-675 . -23) T) ((-487 . -579) 84627) ((-483 . -579) 84609) ((-1223 . -1005) T) ((-363 . -1007) T) ((-977 . -1045) 84587) ((-854 . -33) T) ((-464 . -293) 84525) ((-1098 . -580) 84486) ((-1098 . -579) 84418) ((-1113 . -807) 84397) ((-44 . -100) T) ((-1069 . -807) 84376) ((-777 . -100) T) ((-1173 . -25) T) ((-1173 . -21) T) ((-812 . -25) T) ((-43 . -351) 84360) ((-812 . -21) T) ((-692 . -435) 84311) ((-572 . -1029) T) ((-1222 . -579) 84293) ((-544 . -25) T) ((-544 . -21) T) ((-374 . -1045) T) ((-1002 . -293) 84231) ((-632 . -1029) T) ((-170 . -1029) T) ((-584 . -1045) T) ((-659 . -839) 84213) ((-1200 . -1154) T) ((-212 . -293) 84151) ((-138 . -352) T) ((-995 . -580) 84093) ((-995 . -579) 84036) ((-297 . -862) NIL) ((-659 . -989) 83981) ((-672 . -873) T) ((-457 . -1158) 83960) ((-1114 . -435) 83939) ((-1108 . -435) 83918) ((-314 . -100) T) ((-825 . -1057) T) ((-300 . -609) 83740) ((-297 . -609) 83669) ((-457 . -529) 83620) ((-323 . -495) 83586) ((-523 . -145) 83536) ((-39 . -291) T) ((-800 . -579) 83518) ((-661 . -274) T) ((-825 . -23) T) ((-363 . -474) T) ((-1025 . -216) 83488) ((-493 . -100) T) ((-391 . -580) 83296) ((-391 . -579) 83278) ((-247 . -579) 83260) ((-115 . -274) T) ((-1186 . -687) T) ((-1184 . -347) 83239) ((-1163 . -347) 83218) ((-1212 . -33) T) ((-116 . -1154) T) ((-106 . -216) 83200) ((-1119 . -100) T) ((-460 . -1045) T) ((-504 . -471) 83184) ((-698 . -33) T) ((-464 . -37) 83154) ((-135 . -33) T) ((-116 . -837) 83131) ((-116 . -839) NIL) ((-586 . -989) 83016) ((-606 . -807) 82995) ((-1211 . -100) T) ((-279 . -100) T) ((-673 . -352) 82974) ((-116 . -989) 82951) ((-374 . -678) 82935) ((-584 . -678) 82919) ((-44 . -293) 82723) ((-776 . -139) 82702) ((-776 . -141) 82681) ((-1222 . -366) 82660) ((-779 . -807) T) ((-1202 . -1045) T) ((-1101 . -214) 82607) ((-370 . -807) 82586) ((-1192 . -1142) 82552) ((-1192 . -1139) 82518) ((-1185 . -1139) 82484) ((-496 . -129) T) ((-1185 . -1142) 82450) ((-1164 . -1139) 82416) ((-1164 . -1142) 82382) ((-1192 . -34) 82348) ((-1192 . -93) 82314) ((-598 . -579) 82283) ((-573 . -579) 82252) ((-210 . -807) T) ((-1185 . -93) 82218) ((-1185 . -34) 82184) ((-1184 . -1057) T) ((-1064 . -609) 82171) ((-1164 . -93) 82137) ((-1163 . -1057) T) ((-560 . -145) 82119) ((-1025 . -333) 82098) ((-116 . -361) 82075) ((-116 . -322) 82052) ((-164 . -274) T) ((-1164 . -34) 82018) ((-823 . -291) T) ((-297 . -754) NIL) ((-297 . -751) NIL) ((-300 . -687) 81868) ((-297 . -687) T) ((-457 . -347) 81847) ((-343 . -333) 81826) ((-337 . -333) 81805) ((-329 . -333) 81784) ((-300 . -456) 81763) ((-1184 . -23) T) ((-1163 . -23) T) ((-679 . -1057) T) ((-675 . -129) T) ((-614 . -100) T) ((-460 . -678) 81728) ((-44 . -266) 81678) ((-103 . -1045) T) ((-66 . -579) 81660) ((-923 . -100) T) ((-818 . -100) T) ((-586 . -853) 81619) ((-1223 . -1045) T) ((-365 . -1045) T) ((-1153 . -1045) T) ((-80 . -1154) T) ((-1009 . -807) T) ((-905 . -807) 81598) ((-116 . -853) NIL) ((-742 . -873) 81577) ((-674 . -807) T) ((-509 . -1045) T) ((-481 . -1045) T) ((-339 . -1158) T) ((-336 . -1158) T) ((-328 . -1158) T) ((-248 . -1158) 81556) ((-232 . -1158) 81535) ((-1058 . -216) 81505) ((-463 . -807) 81484) ((-1084 . -1004) 81468) ((-374 . -722) T) ((-1100 . -788) T) ((-654 . -1154) T) ((-339 . -529) T) ((-336 . -529) T) ((-328 . -529) T) ((-248 . -529) 81399) ((-232 . -529) 81330) ((-506 . -1029) T) ((-1084 . -110) 81309) ((-436 . -705) 81279) ((-819 . -1004) 81249) ((-777 . -37) 81191) ((-654 . -837) 81173) ((-654 . -839) 81155) ((-279 . -293) 80959) ((-863 . -1158) T) ((-631 . -395) 80943) ((-819 . -110) 80908) ((-654 . -989) 80853) ((-956 . -435) T) ((-863 . -529) T) ((-550 . -873) T) ((-457 . -1057) T) ((-499 . -873) T) ((-1098 . -272) 80830) ((-867 . -435) T) ((-63 . -579) 80812) ((-595 . -214) 80758) ((-457 . -23) T) ((-1064 . -754) T) ((-825 . -129) T) ((-1064 . -751) T) ((-1214 . -1216) 80737) ((-1064 . -687) T) ((-615 . -609) 80711) ((-278 . -579) 80453) ((-986 . -33) T) ((-775 . -805) 80432) ((-549 . -291) T) ((-537 . -291) T) ((-476 . -291) T) ((-1223 . -678) 80402) ((-654 . -361) 80384) ((-654 . -322) 80366) ((-460 . -163) T) ((-365 . -678) 80336) ((-824 . -807) NIL) ((-537 . -973) T) ((-476 . -973) T) ((-1077 . -579) 80318) ((-1058 . -223) 80297) ((-200 . -100) T) ((-1092 . -100) T) ((-69 . -579) 80279) ((-1084 . -998) T) ((-1119 . -37) 80176) ((-815 . -579) 80158) ((-537 . -522) T) ((-631 . -1005) T) ((-692 . -902) 80111) ((-1084 . -218) 80090) ((-1027 . -1045) T) ((-985 . -25) T) ((-985 . -21) T) ((-955 . -1004) 80035) ((-858 . -100) T) ((-819 . -998) T) ((-654 . -853) NIL) ((-339 . -313) 80019) ((-339 . -347) T) ((-336 . -313) 80003) ((-336 . -347) T) ((-328 . -313) 79987) ((-328 . -347) T) ((-469 . -100) T) ((-1211 . -37) 79957) ((-504 . -647) 79907) ((-203 . -100) T) ((-975 . -989) 79789) ((-955 . -110) 79718) ((-1115 . -926) 79687) ((-1114 . -926) 79649) ((-501 . -145) 79633) ((-1025 . -354) 79612) ((-335 . -579) 79594) ((-306 . -21) T) ((-338 . -989) 79571) ((-306 . -25) T) ((-1108 . -926) 79540) ((-1070 . -926) 79507) ((-74 . -579) 79489) ((-659 . -291) T) ((-160 . -807) 79468) ((-863 . -347) T) ((-363 . -25) T) ((-363 . -21) T) ((-863 . -313) 79455) ((-84 . -579) 79437) ((-659 . -973) T) ((-637 . -807) T) ((-1184 . -129) T) ((-1163 . -129) T) ((-854 . -962) 79421) ((-794 . -21) T) ((-47 . -989) 79364) ((-794 . -25) T) ((-787 . -25) T) ((-787 . -21) T) ((-1221 . -1005) T) ((-1219 . -1005) T) ((-615 . -687) T) ((-1222 . -1004) 79348) ((-1173 . -807) 79327) ((-775 . -395) 79296) ((-101 . -118) 79280) ((-128 . -1045) T) ((-51 . -1045) T) ((-879 . -579) 79262) ((-824 . -945) 79239) ((-783 . -100) T) ((-1222 . -110) 79218) ((-614 . -37) 79188) ((-544 . -807) T) ((-339 . -1057) T) ((-336 . -1057) T) ((-328 . -1057) T) ((-248 . -1057) T) ((-232 . -1057) T) ((-586 . -291) 79167) ((-1092 . -293) 78971) ((-505 . -1029) T) ((-295 . -1045) T) ((-625 . -23) T) ((-464 . -216) 78941) ((-146 . -1005) T) ((-339 . -23) T) ((-336 . -23) T) ((-328 . -23) T) ((-116 . -291) T) ((-248 . -23) T) ((-232 . -23) T) ((-955 . -998) T) ((-673 . -862) 78920) ((-955 . -218) 78892) ((-955 . -228) T) ((-116 . -973) NIL) ((-863 . -1057) T) ((-1185 . -435) 78871) ((-1164 . -435) 78850) ((-504 . -579) 78782) ((-673 . -609) 78707) ((-391 . -1004) 78659) ((-485 . -579) 78641) ((-863 . -23) T) ((-469 . -293) NIL) ((-457 . -129) T) ((-203 . -293) NIL) ((-391 . -110) 78579) ((-775 . -1005) 78510) ((-698 . -1043) 78494) ((-1184 . -474) 78460) ((-1163 . -474) 78426) ((-460 . -274) T) ((-135 . -1043) 78408) ((-127 . -145) 78390) ((-1222 . -998) T) ((-1010 . -100) T) ((-481 . -495) NIL) ((-663 . -100) T) ((-464 . -223) 78369) ((-1113 . -139) 78348) ((-1113 . -141) 78327) ((-1069 . -141) 78306) ((-1069 . -139) 78285) ((-598 . -1004) 78269) ((-573 . -1004) 78253) ((-631 . -1045) T) ((-631 . -1001) 78193) ((-1115 . -1191) 78177) ((-1115 . -1178) 78154) ((-469 . -1093) T) ((-1114 . -1183) 78115) ((-1114 . -1178) 78085) ((-1114 . -1181) 78069) ((-203 . -1093) T) ((-327 . -873) T) ((-778 . -250) 78053) ((-598 . -110) 78032) ((-573 . -110) 78011) ((-1108 . -1162) 77972) ((-800 . -998) 77951) ((-1108 . -1178) 77928) ((-496 . -25) T) ((-476 . -286) T) ((-492 . -23) T) ((-491 . -25) T) ((-489 . -25) T) ((-488 . -23) T) ((-1108 . -1160) 77912) ((-391 . -998) T) ((-303 . -1005) T) ((-654 . -291) T) ((-106 . -805) T) ((-391 . -228) T) ((-391 . -218) 77891) ((-673 . -687) T) ((-469 . -37) 77841) ((-203 . -37) 77791) ((-457 . -474) 77757) ((-1100 . -1086) T) ((-1046 . -100) T) ((-661 . -579) 77739) ((-661 . -580) 77654) ((-675 . -21) T) ((-675 . -25) T) ((-199 . -579) 77636) ((-131 . -579) 77618) ((-115 . -579) 77600) ((-149 . -25) T) ((-1221 . -1045) T) ((-825 . -602) 77548) ((-1219 . -1045) T) ((-916 . -100) T) ((-696 . -100) T) ((-676 . -100) T) ((-436 . -100) T) ((-776 . -435) 77499) ((-43 . -1045) T) ((-1034 . -807) T) ((-625 . -129) T) ((-1010 . -293) 77350) ((-631 . -678) 77334) ((-273 . -1005) T) ((-339 . -129) T) ((-336 . -129) T) ((-328 . -129) T) ((-248 . -129) T) ((-232 . -129) T) ((-402 . -100) T) ((-146 . -1045) T) ((-44 . -214) 77284) ((-911 . -807) 77263) ((-951 . -609) 77201) ((-225 . -1207) 77171) ((-975 . -291) T) ((-278 . -1004) 77093) ((-863 . -129) T) ((-39 . -873) T) ((-469 . -384) 77075) ((-338 . -291) T) ((-203 . -384) 77057) ((-1025 . -395) 77041) ((-278 . -110) 76958) ((-825 . -25) T) ((-825 . -21) T) ((-323 . -579) 76940) ((-1186 . -46) 76884) ((-210 . -141) T) ((-164 . -579) 76866) ((-1058 . -805) 76845) ((-734 . -579) 76827) ((-574 . -220) 76774) ((-458 . -220) 76724) ((-1221 . -678) 76694) ((-47 . -291) T) ((-1219 . -678) 76664) ((-917 . -1045) T) ((-775 . -1045) 76455) ((-296 . -100) T) ((-854 . -1154) T) ((-47 . -973) T) ((-1163 . -602) 76363) ((-649 . -100) 76341) ((-43 . -678) 76325) ((-523 . -100) T) ((-65 . -367) T) ((-65 . -379) T) ((-623 . -23) T) ((-631 . -722) T) ((-1151 . -1045) 76303) ((-335 . -1004) 76248) ((-636 . -1045) 76226) ((-1009 . -141) T) ((-905 . -141) 76205) ((-905 . -139) 76184) ((-759 . -100) T) ((-146 . -678) 76168) ((-463 . -141) 76147) ((-463 . -139) 76126) ((-335 . -110) 76055) ((-1025 . -1005) T) ((-306 . -807) 76034) ((-1192 . -926) 76003) ((-590 . -1045) T) ((-1185 . -926) 75965) ((-492 . -129) T) ((-488 . -129) T) ((-279 . -214) 75915) ((-343 . -1005) T) ((-337 . -1005) T) ((-329 . -1005) T) ((-278 . -998) 75858) ((-1164 . -926) 75827) ((-363 . -807) T) ((-106 . -1005) T) ((-951 . -687) T) ((-823 . -873) T) ((-800 . -755) 75806) ((-800 . -752) 75785) ((-402 . -293) 75724) ((-451 . -100) T) ((-562 . -926) 75693) ((-303 . -1045) T) ((-391 . -755) 75672) ((-391 . -752) 75651) ((-481 . -471) 75633) ((-1186 . -989) 75599) ((-1184 . -21) T) ((-1184 . -25) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-775 . -678) 75541) ((-659 . -388) T) ((-572 . -100) T) ((-1212 . -1154) T) ((-1058 . -395) 75510) ((-955 . -352) NIL) ((-632 . -100) T) ((-170 . -100) T) ((-101 . -33) T) ((-698 . -1154) T) ((-43 . -722) T) ((-560 . -100) T) ((-75 . -380) T) ((-75 . -379) T) ((-614 . -617) 75494) ((-135 . -1154) T) ((-824 . -141) T) ((-824 . -139) NIL) ((-1153 . -91) T) ((-335 . -998) T) ((-68 . -367) T) ((-68 . -379) T) ((-1107 . -100) T) ((-631 . -495) 75427) ((-649 . -293) 75365) ((-916 . -37) 75262) ((-696 . -37) 75232) ((-523 . -293) 75036) ((-300 . -1154) T) ((-335 . -218) T) ((-335 . -228) T) ((-297 . -1154) T) ((-273 . -1045) T) ((-1121 . -579) 75018) ((-672 . -1158) T) ((-1098 . -612) 75002) ((-1148 . -529) 74981) ((-672 . -529) T) ((-300 . -837) 74965) ((-300 . -839) 74890) ((-297 . -837) 74851) ((-297 . -839) NIL) ((-759 . -293) 74816) ((-303 . -678) 74657) ((-308 . -307) 74634) ((-467 . -100) T) ((-457 . -25) T) ((-457 . -21) T) ((-402 . -37) 74608) ((-300 . -989) 74276) ((-210 . -1139) T) ((-210 . -1142) T) ((-3 . -579) 74258) ((-297 . -989) 74188) ((-2 . -1045) T) ((-2 . |RecordCategory|) T) ((-793 . -579) 74170) ((-1058 . -1005) 74101) ((-549 . -873) T) ((-537 . -780) T) ((-537 . -873) T) ((-476 . -873) T) ((-133 . -989) 74085) ((-210 . -93) T) ((-73 . -424) T) ((-73 . -379) T) ((0 . -579) 74067) ((-160 . -141) 74046) ((-160 . -139) 73997) ((-210 . -34) T) ((-48 . -579) 73979) ((-460 . -1005) T) ((-469 . -216) 73961) ((-466 . -921) 73945) ((-464 . -805) 73924) ((-203 . -216) 73906) ((-79 . -424) T) ((-79 . -379) T) ((-1088 . -33) T) ((-775 . -163) 73885) ((-692 . -100) T) ((-977 . -579) 73852) ((-481 . -270) 73827) ((-300 . -361) 73797) ((-297 . -361) 73758) ((-297 . -322) 73719) ((-1031 . -579) 73701) ((-776 . -902) 73648) ((-623 . -129) T) ((-1173 . -139) 73627) ((-1173 . -141) 73606) ((-1115 . -100) T) ((-1114 . -100) T) ((-1108 . -100) T) ((-1101 . -1045) T) ((-1070 . -100) T) ((-207 . -33) T) ((-273 . -678) 73593) ((-1101 . -576) 73569) ((-560 . -293) NIL) ((-466 . -1045) 73547) ((-374 . -579) 73529) ((-491 . -807) T) ((-1092 . -214) 73479) ((-1192 . -1191) 73463) ((-1192 . -1178) 73440) ((-1185 . -1183) 73401) ((-1185 . -1178) 73371) ((-1185 . -1181) 73355) ((-1164 . -1162) 73316) ((-1164 . -1178) 73293) ((-584 . -579) 73275) ((-1164 . -1160) 73259) ((-659 . -873) T) ((-1115 . -268) 73225) ((-1114 . -268) 73191) ((-1108 . -268) 73157) ((-1025 . -1045) T) ((-1008 . -1045) T) ((-47 . -286) T) ((-300 . -853) 73124) ((-297 . -853) NIL) ((-1008 . -1015) 73103) ((-1064 . -839) 73085) ((-759 . -37) 73069) ((-248 . -602) 73017) ((-232 . -602) 72965) ((-661 . -1004) 72952) ((-562 . -1178) 72929) ((-1070 . -268) 72895) ((-303 . -163) 72826) ((-343 . -1045) T) ((-337 . -1045) T) ((-329 . -1045) T) ((-481 . -19) 72808) ((-1064 . -989) 72790) ((-1047 . -145) 72774) ((-106 . -1045) T) ((-115 . -1004) 72761) ((-672 . -347) T) ((-481 . -570) 72736) ((-661 . -110) 72721) ((-420 . -100) T) ((-44 . -1091) 72671) ((-115 . -110) 72656) ((-598 . -681) T) ((-573 . -681) T) ((-775 . -495) 72589) ((-986 . -1154) T) ((-896 . -145) 72573) ((-506 . -100) T) ((-501 . -100) 72523) ((-1033 . -1158) 72502) ((-742 . -1158) 72481) ((-740 . -1158) 72460) ((-60 . -1154) T) ((-460 . -579) 72412) ((-460 . -580) 72334) ((-1113 . -435) 72265) ((-1100 . -1045) T) ((-1084 . -609) 72239) ((-1033 . -529) 72170) ((-464 . -395) 72139) ((-586 . -873) 72118) ((-437 . -1158) 72097) ((-1069 . -435) 72048) ((-742 . -529) 71959) ((-382 . -579) 71941) ((-740 . -529) 71872) ((-636 . -495) 71805) ((-692 . -293) 71792) ((-625 . -25) T) ((-625 . -21) T) ((-437 . -529) 71723) ((-116 . -873) T) ((-116 . -780) NIL) ((-339 . -25) T) ((-339 . -21) T) ((-336 . -25) T) ((-336 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-81 . -368) T) ((-81 . -379) T) ((-232 . -25) T) ((-232 . -21) T) ((-1202 . -579) 71705) ((-1148 . -1057) T) ((-1148 . -23) T) ((-1108 . -293) 71590) ((-1070 . -293) 71577) ((-1025 . -678) 71445) ((-819 . -609) 71405) ((-896 . -933) 71389) ((-863 . -21) T) ((-273 . -163) T) ((-863 . -25) T) ((-295 . -91) T) ((-825 . -807) 71340) ((-672 . -1057) T) ((-672 . -23) T) ((-608 . -1045) 71318) ((-595 . -576) 71293) ((-595 . -1045) T) ((-550 . -1158) T) ((-499 . -1158) T) ((-550 . -529) T) ((-499 . -529) T) ((-343 . -678) 71245) ((-337 . -678) 71197) ((-164 . -1004) 71129) ((-323 . -1004) 71113) ((-106 . -678) 71063) ((-164 . -110) 70974) ((-329 . -678) 70926) ((-323 . -110) 70905) ((-258 . -1045) T) ((-257 . -1045) T) ((-256 . -1045) T) ((-255 . -1045) T) ((-661 . -998) T) ((-254 . -1045) T) ((-253 . -1045) T) ((-252 . -1045) T) ((-198 . -1045) T) ((-197 . -1045) T) ((-195 . -1045) T) ((-160 . -1142) 70883) ((-160 . -1139) 70861) ((-194 . -1045) T) ((-193 . -1045) T) ((-115 . -998) T) ((-192 . -1045) T) ((-189 . -1045) T) ((-661 . -218) T) ((-188 . -1045) T) ((-187 . -1045) T) ((-186 . -1045) T) ((-185 . -1045) T) ((-184 . -1045) T) ((-183 . -1045) T) ((-182 . -1045) T) ((-181 . -1045) T) ((-180 . -1045) T) ((-179 . -1045) T) ((-225 . -100) 70652) ((-160 . -34) 70630) ((-160 . -93) 70608) ((-615 . -989) 70506) ((-464 . -1005) 70437) ((-1058 . -1045) 70228) ((-1084 . -33) T) ((-631 . -471) 70212) ((-71 . -1154) T) ((-103 . -579) 70194) ((-1223 . -579) 70176) ((-365 . -579) 70158) ((-544 . -1142) T) ((-544 . -1139) T) ((-692 . -37) 70007) ((-509 . -579) 69989) ((-501 . -293) 69927) ((-481 . -579) 69909) ((-481 . -580) 69891) ((-1153 . -579) 69857) ((-1108 . -1093) NIL) ((-978 . -1018) 69826) ((-978 . -1045) T) ((-956 . -100) T) ((-924 . -100) T) ((-867 . -100) T) ((-846 . -989) 69803) ((-1084 . -687) T) ((-955 . -609) 69748) ((-459 . -1045) T) ((-446 . -1045) T) ((-554 . -23) T) ((-544 . -34) T) ((-544 . -93) T) ((-411 . -100) T) ((-1010 . -214) 69694) ((-127 . -100) T) ((-1115 . -37) 69591) ((-819 . -687) T) ((-654 . -873) T) ((-492 . -25) T) ((-488 . -21) T) ((-488 . -25) T) ((-1114 . -37) 69432) ((-323 . -998) T) ((-1108 . -37) 69228) ((-1025 . -163) T) ((-164 . -998) T) ((-1070 . -37) 69125) ((-673 . -46) 69102) ((-343 . -163) T) ((-337 . -163) T) ((-500 . -55) 69076) ((-478 . -55) 69026) ((-335 . -1218) 69003) ((-210 . -435) T) ((-303 . -274) 68954) ((-329 . -163) T) ((-164 . -228) T) ((-1163 . -807) 68853) ((-106 . -163) T) ((-825 . -945) 68837) ((-619 . -1057) T) ((-550 . -347) T) ((-550 . -313) 68824) ((-499 . -313) 68801) ((-499 . -347) T) ((-300 . -291) 68780) ((-297 . -291) T) ((-568 . -807) 68759) ((-1058 . -678) 68701) ((-501 . -266) 68685) ((-619 . -23) T) ((-402 . -216) 68669) ((-297 . -973) NIL) ((-320 . -23) T) ((-101 . -962) 68653) ((-44 . -35) 68632) ((-578 . -1045) T) ((-335 . -352) T) ((-505 . -100) T) ((-476 . -27) T) ((-225 . -293) 68570) ((-1033 . -1057) T) ((-1222 . -609) 68544) ((-742 . -1057) T) ((-740 . -1057) T) ((-437 . -1057) T) ((-1009 . -435) T) ((-905 . -435) 68495) ((-109 . -1045) T) ((-1033 . -23) T) ((-777 . -1005) T) ((-742 . -23) T) ((-740 . -23) T) ((-463 . -435) 68446) ((-1101 . -495) 68229) ((-365 . -366) 68208) ((-1119 . -395) 68192) ((-444 . -23) T) ((-437 . -23) T) ((-94 . -1045) T) ((-466 . -495) 68125) ((-273 . -274) T) ((-1027 . -579) 68107) ((-391 . -862) 68086) ((-49 . -1057) T) ((-975 . -873) T) ((-955 . -687) T) ((-673 . -839) NIL) ((-550 . -1057) T) ((-499 . -1057) T) ((-800 . -609) 68059) ((-1148 . -129) T) ((-1108 . -384) 68011) ((-956 . -293) NIL) ((-775 . -471) 67995) ((-338 . -873) T) ((-1098 . -33) T) ((-391 . -609) 67947) ((-49 . -23) T) ((-672 . -129) T) ((-673 . -989) 67829) ((-550 . -23) T) ((-106 . -495) NIL) ((-499 . -23) T) ((-160 . -393) 67800) ((-127 . -293) NIL) ((-1082 . -1045) T) ((-1214 . -1213) 67784) ((-661 . -755) T) ((-661 . -752) T) ((-1064 . -291) T) ((-363 . -141) T) ((-264 . -579) 67766) ((-1163 . -945) 67736) ((-47 . -873) T) ((-636 . -471) 67720) ((-235 . -1207) 67690) ((-234 . -1207) 67660) ((-1117 . -807) T) ((-1058 . -163) 67639) ((-1064 . -973) T) ((-995 . -33) T) ((-794 . -141) 67618) ((-794 . -139) 67597) ((-698 . -105) 67581) ((-578 . -130) T) ((-464 . -1045) 67372) ((-1119 . -1005) T) ((-824 . -435) T) ((-83 . -1154) T) ((-225 . -37) 67342) ((-135 . -105) 67324) ((-673 . -361) 67308) ((-1064 . -522) T) ((-374 . -1004) 67292) ((-1222 . -687) T) ((-1113 . -902) 67261) ((-128 . -579) 67228) ((-51 . -579) 67210) ((-1069 . -902) 67177) ((-614 . -395) 67161) ((-1211 . -1005) T) ((-584 . -1004) 67145) ((-623 . -25) T) ((-623 . -21) T) ((-1100 . -495) NIL) ((-1192 . -100) T) ((-1185 . -100) T) ((-374 . -110) 67124) ((-207 . -238) 67108) ((-1164 . -100) T) ((-1002 . -1045) T) ((-956 . -1093) T) ((-1002 . -1001) 67048) ((-778 . -1045) T) ((-327 . -1158) T) ((-598 . -609) 67032) ((-584 . -110) 67011) ((-573 . -609) 66995) ((-563 . -100) T) ((-554 . -129) T) ((-562 . -100) T) ((-398 . -1045) T) ((-369 . -1045) T) ((-295 . -579) 66961) ((-212 . -1045) 66939) ((-608 . -495) 66872) ((-595 . -495) 66716) ((-793 . -998) 66695) ((-606 . -145) 66679) ((-327 . -529) T) ((-673 . -853) 66622) ((-523 . -214) 66572) ((-1192 . -268) 66538) ((-1025 . -274) 66489) ((-469 . -805) T) ((-208 . -1057) T) ((-1185 . -268) 66455) ((-1164 . -268) 66421) ((-956 . -37) 66371) ((-203 . -805) T) ((-1148 . -474) 66337) ((-867 . -37) 66289) ((-800 . -754) 66268) ((-800 . -751) 66247) ((-800 . -687) 66226) ((-343 . -274) T) ((-337 . -274) T) ((-329 . -274) T) ((-160 . -435) 66157) ((-411 . -37) 66141) ((-106 . -274) T) ((-208 . -23) T) ((-391 . -754) 66120) ((-391 . -751) 66099) ((-391 . -687) T) ((-481 . -272) 66074) ((-460 . -1004) 66039) ((-619 . -129) T) ((-1058 . -495) 65972) ((-320 . -129) T) ((-160 . -386) 65951) ((-464 . -678) 65893) ((-775 . -270) 65870) ((-460 . -110) 65826) ((-614 . -1005) T) ((-1173 . -435) 65757) ((-1210 . -1029) T) ((-1033 . -129) T) ((-248 . -807) 65736) ((-232 . -807) 65715) ((-742 . -129) T) ((-740 . -129) T) ((-544 . -435) T) ((-1002 . -678) 65657) ((-584 . -998) T) ((-978 . -495) 65590) ((-444 . -129) T) ((-437 . -129) T) ((-44 . -1045) T) ((-369 . -678) 65560) ((-777 . -1045) T) ((-459 . -495) 65493) ((-446 . -495) 65426) ((-436 . -351) 65396) ((-44 . -576) 65375) ((-300 . -286) T) ((-631 . -579) 65337) ((-57 . -807) 65316) ((-1164 . -293) 65201) ((-956 . -384) 65183) ((-775 . -570) 65160) ((-497 . -807) 65139) ((-477 . -807) 65118) ((-39 . -1158) T) ((-951 . -989) 65016) ((-49 . -129) T) ((-550 . -129) T) ((-499 . -129) T) ((-278 . -609) 64878) ((-327 . -313) 64855) ((-327 . -347) T) ((-306 . -307) 64832) ((-303 . -270) 64817) ((-39 . -529) T) ((-363 . -1139) T) ((-363 . -1142) T) ((-986 . -1130) 64792) ((-1127 . -220) 64742) ((-1108 . -216) 64694) ((-314 . -1045) T) ((-363 . -93) T) ((-363 . -34) T) ((-986 . -105) 64640) ((-460 . -998) T) ((-461 . -220) 64590) ((-1101 . -471) 64524) ((-1223 . -1004) 64508) ((-365 . -1004) 64492) ((-460 . -228) T) ((-776 . -100) T) ((-675 . -141) 64471) ((-675 . -139) 64450) ((-466 . -471) 64434) ((-467 . -319) 64403) ((-1223 . -110) 64382) ((-493 . -1045) T) ((-464 . -163) 64361) ((-951 . -361) 64345) ((-397 . -100) T) ((-365 . -110) 64324) ((-951 . -322) 64308) ((-263 . -936) 64292) ((-262 . -936) 64276) ((-1221 . -579) 64258) ((-1219 . -579) 64240) ((-109 . -495) NIL) ((-1113 . -1176) 64224) ((-811 . -809) 64208) ((-1119 . -1045) T) ((-101 . -1154) T) ((-905 . -902) 64169) ((-777 . -678) 64111) ((-1164 . -1093) NIL) ((-463 . -902) 64056) ((-1009 . -137) T) ((-58 . -100) 64034) ((-43 . -579) 64016) ((-76 . -579) 63998) ((-335 . -609) 63943) ((-1211 . -1045) T) ((-492 . -807) T) ((-327 . -1057) T) ((-279 . -1045) T) ((-951 . -853) 63902) ((-279 . -576) 63881) ((-1192 . -37) 63778) ((-1185 . -37) 63619) ((-469 . -1005) T) ((-1164 . -37) 63415) ((-203 . -1005) T) ((-327 . -23) T) ((-146 . -579) 63397) ((-793 . -755) 63376) ((-793 . -752) 63355) ((-563 . -37) 63328) ((-562 . -37) 63225) ((-823 . -529) T) ((-208 . -129) T) ((-303 . -954) 63191) ((-77 . -579) 63173) ((-673 . -291) 63152) ((-278 . -687) 63055) ((-784 . -100) T) ((-818 . -801) T) ((-278 . -456) 63034) ((-1214 . -100) T) ((-39 . -347) T) ((-825 . -141) 63013) ((-825 . -139) 62992) ((-1100 . -471) 62974) ((-1223 . -998) T) ((-464 . -495) 62907) ((-1088 . -1154) T) ((-917 . -579) 62889) ((-608 . -471) 62873) ((-595 . -471) 62804) ((-775 . -579) 62536) ((-47 . -27) T) ((-1119 . -678) 62433) ((-614 . -1045) T) ((-420 . -348) 62407) ((-1047 . -100) T) ((-776 . -293) 62394) ((-923 . -1045) T) ((-818 . -1045) T) ((-1219 . -366) 62366) ((-1002 . -495) 62299) ((-1101 . -270) 62275) ((-225 . -216) 62245) ((-1211 . -678) 62215) ((-777 . -163) 62194) ((-212 . -495) 62127) ((-584 . -755) 62106) ((-584 . -752) 62085) ((-1151 . -579) 61997) ((-207 . -1154) T) ((-636 . -579) 61929) ((-1098 . -962) 61913) ((-335 . -687) T) ((-896 . -100) 61863) ((-1164 . -384) 61815) ((-1058 . -471) 61799) ((-58 . -293) 61737) ((-315 . -100) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-39 . -1057) T) ((-672 . -21) T) ((-590 . -579) 61719) ((-496 . -307) 61698) ((-672 . -25) T) ((-106 . -270) NIL) ((-874 . -1057) T) ((-39 . -23) T) ((-731 . -1057) T) ((-537 . -1158) T) ((-476 . -1158) T) ((-303 . -579) 61680) ((-956 . -216) 61662) ((-160 . -157) 61646) ((-549 . -529) T) ((-537 . -529) T) ((-476 . -529) T) ((-731 . -23) T) ((-1184 . -141) 61625) ((-1101 . -570) 61601) ((-1184 . -139) 61580) ((-978 . -471) 61564) ((-1163 . -139) 61489) ((-1163 . -141) 61414) ((-1214 . -1220) 61393) ((-459 . -471) 61377) ((-446 . -471) 61361) ((-504 . -33) T) ((-614 . -678) 61331) ((-111 . -920) T) ((-623 . -807) 61310) ((-1119 . -163) 61261) ((-349 . -100) T) ((-225 . -223) 61240) ((-235 . -100) T) ((-234 . -100) T) ((-1173 . -902) 61209) ((-108 . -100) T) ((-230 . -807) 61188) ((-776 . -37) 61037) ((-44 . -495) 60829) ((-1100 . -270) 60804) ((-200 . -1045) T) ((-1092 . -1045) T) ((-1092 . -576) 60783) ((-554 . -25) T) ((-554 . -21) T) ((-1047 . -293) 60721) ((-916 . -395) 60705) ((-659 . -1158) T) ((-595 . -270) 60680) ((-1033 . -602) 60628) ((-742 . -602) 60576) ((-740 . -602) 60524) ((-327 . -129) T) ((-273 . -579) 60506) ((-659 . -529) T) ((-858 . -1045) T) ((-823 . -1057) T) ((-437 . -602) 60454) ((-858 . -856) 60438) ((-363 . -435) T) ((-469 . -1045) T) ((-661 . -609) 60425) ((-896 . -293) 60363) ((-203 . -1045) T) ((-300 . -873) 60342) ((-297 . -873) T) ((-297 . -780) NIL) ((-374 . -681) T) ((-823 . -23) T) ((-115 . -609) 60329) ((-457 . -139) 60308) ((-402 . -395) 60292) ((-457 . -141) 60271) ((-109 . -471) 60253) ((-2 . -579) 60235) ((-1100 . -19) 60217) ((-1100 . -570) 60192) ((-619 . -21) T) ((-619 . -25) T) ((-560 . -1086) T) ((-1058 . -270) 60169) ((-320 . -25) T) ((-320 . -21) T) ((-476 . -347) T) ((-1214 . -37) 60139) ((-1084 . -1154) T) ((-595 . -570) 60114) ((-1033 . -25) T) ((-1033 . -21) T) ((-509 . -752) T) ((-509 . -755) T) ((-116 . -1158) T) ((-916 . -1005) T) ((-586 . -529) T) ((-742 . -25) T) ((-742 . -21) T) ((-740 . -21) T) ((-740 . -25) T) ((-696 . -1005) T) ((-676 . -1005) T) ((-631 . -1004) 60098) ((-498 . -1029) T) ((-444 . -25) T) ((-116 . -529) T) ((-444 . -21) T) ((-437 . -25) T) ((-437 . -21) T) ((-1084 . -989) 59996) ((-777 . -274) 59975) ((-783 . -1045) T) ((-919 . -920) T) ((-631 . -110) 59954) ((-279 . -495) 59746) ((-1221 . -1004) 59730) ((-1219 . -1004) 59714) ((-1184 . -1139) 59680) ((-235 . -293) 59618) ((-234 . -293) 59556) ((-1167 . -100) 59534) ((-1101 . -580) NIL) ((-1101 . -579) 59516) ((-1184 . -1142) 59482) ((-1164 . -216) 59434) ((-1163 . -1139) 59400) ((-94 . -91) T) ((-1163 . -1142) 59366) ((-1084 . -361) 59350) ((-1064 . -780) T) ((-1064 . -873) T) ((-1058 . -570) 59327) ((-1025 . -580) 59311) ((-466 . -579) 59243) ((-775 . -272) 59220) ((-574 . -145) 59167) ((-402 . -1005) T) ((-469 . -678) 59117) ((-464 . -471) 59101) ((-311 . -807) 59080) ((-323 . -609) 59054) ((-49 . -21) T) ((-49 . -25) T) ((-203 . -678) 59004) ((-160 . -685) 58975) ((-164 . -609) 58907) ((-550 . -21) T) ((-550 . -25) T) ((-499 . -25) T) ((-499 . -21) T) ((-458 . -145) 58857) ((-1025 . -579) 58839) ((-1008 . -579) 58821) ((-946 . -100) T) ((-816 . -100) T) ((-759 . -395) 58785) ((-39 . -129) T) ((-659 . -347) T) ((-198 . -848) T) ((-661 . -754) T) ((-661 . -751) T) ((-549 . -1057) T) ((-537 . -1057) T) ((-476 . -1057) T) ((-661 . -687) T) ((-343 . -579) 58767) ((-337 . -579) 58749) ((-329 . -579) 58731) ((-64 . -380) T) ((-64 . -379) T) ((-106 . -580) 58661) ((-106 . -579) 58643) ((-197 . -848) T) ((-911 . -145) 58627) ((-1184 . -93) 58593) ((-731 . -129) T) ((-131 . -687) T) ((-115 . -687) T) ((-1184 . -34) 58559) ((-1002 . -471) 58543) ((-549 . -23) T) ((-537 . -23) T) ((-476 . -23) T) ((-1163 . -93) 58509) ((-1163 . -34) 58475) ((-1113 . -100) T) ((-1069 . -100) T) ((-811 . -100) T) ((-212 . -471) 58459) ((-1221 . -110) 58438) ((-1219 . -110) 58417) ((-43 . -1004) 58401) ((-1173 . -1176) 58385) ((-812 . -809) 58369) ((-1119 . -274) 58348) ((-109 . -270) 58323) ((-1084 . -853) 58282) ((-43 . -110) 58261) ((-631 . -998) T) ((-1122 . -1195) T) ((-1100 . -580) NIL) ((-1100 . -579) 58243) ((-1010 . -576) 58218) ((-1010 . -1045) T) ((-72 . -424) T) ((-72 . -379) T) ((-631 . -218) 58197) ((-146 . -1004) 58181) ((-544 . -527) 58165) ((-339 . -141) 58144) ((-339 . -139) 58095) ((-336 . -141) 58074) ((-663 . -1045) T) ((-336 . -139) 58025) ((-328 . -141) 58004) ((-328 . -139) 57955) ((-248 . -139) 57934) ((-248 . -141) 57913) ((-235 . -37) 57883) ((-232 . -141) 57862) ((-116 . -347) T) ((-232 . -139) 57841) ((-234 . -37) 57811) ((-146 . -110) 57790) ((-955 . -989) 57680) ((-1108 . -805) NIL) ((-654 . -1158) T) ((-759 . -1005) T) ((-659 . -1057) T) ((-1221 . -998) T) ((-1219 . -998) T) ((-1098 . -1154) T) ((-955 . -361) 57657) ((-863 . -139) T) ((-863 . -141) 57639) ((-823 . -129) T) ((-775 . -1004) 57537) ((-654 . -529) T) ((-659 . -23) T) ((-608 . -579) 57469) ((-608 . -580) 57430) ((-595 . -580) NIL) ((-595 . -579) 57412) ((-469 . -163) T) ((-208 . -21) T) ((-203 . -163) T) ((-208 . -25) T) ((-457 . -1142) 57378) ((-457 . -1139) 57344) ((-258 . -579) 57326) ((-257 . -579) 57308) ((-256 . -579) 57290) ((-255 . -579) 57272) ((-254 . -579) 57254) ((-481 . -612) 57236) ((-253 . -579) 57218) ((-323 . -687) T) ((-252 . -579) 57200) ((-109 . -19) 57182) ((-164 . -687) T) ((-481 . -357) 57164) ((-198 . -579) 57146) ((-501 . -1091) 57130) ((-481 . -122) T) ((-109 . -570) 57105) ((-197 . -579) 57087) ((-457 . -34) 57053) ((-457 . -93) 57019) ((-195 . -579) 57001) ((-194 . -579) 56983) ((-193 . -579) 56965) ((-192 . -579) 56947) ((-189 . -579) 56929) ((-188 . -579) 56911) ((-187 . -579) 56893) ((-186 . -579) 56875) ((-185 . -579) 56857) ((-184 . -579) 56839) ((-183 . -579) 56821) ((-513 . -1048) 56773) ((-182 . -579) 56755) ((-181 . -579) 56737) ((-44 . -471) 56674) ((-180 . -579) 56656) ((-179 . -579) 56638) ((-775 . -110) 56529) ((-606 . -100) 56479) ((-464 . -270) 56456) ((-1058 . -579) 56188) ((-1046 . -1045) T) ((-995 . -1154) T) ((-586 . -1057) T) ((-1222 . -989) 56172) ((-1113 . -293) 56159) ((-1069 . -293) 56146) ((-1036 . -1029) T) ((-1013 . -1029) T) ((-987 . -1029) T) ((-116 . -1057) T) ((-779 . -100) T) ((-589 . -1029) T) ((-586 . -23) T) ((-1092 . -495) 55938) ((-465 . -1029) T) ((-370 . -100) T) ((-308 . -100) T) ((-955 . -853) 55890) ((-916 . -1045) T) ((-146 . -998) T) ((-116 . -23) T) ((-692 . -395) 55874) ((-696 . -1045) T) ((-676 . -1045) T) ((-663 . -130) T) ((-436 . -1045) T) ((-300 . -414) 55858) ((-391 . -1154) T) ((-978 . -580) 55819) ((-975 . -1158) T) ((-210 . -100) T) ((-978 . -579) 55781) ((-776 . -216) 55765) ((-975 . -529) T) ((-793 . -609) 55738) ((-338 . -1158) T) ((-459 . -579) 55700) ((-459 . -580) 55661) ((-446 . -580) 55622) ((-446 . -579) 55584) ((-391 . -837) 55568) ((-303 . -1004) 55403) ((-391 . -839) 55328) ((-800 . -989) 55226) ((-469 . -495) NIL) ((-464 . -570) 55203) ((-338 . -529) T) ((-203 . -495) NIL) ((-825 . -435) T) ((-402 . -1045) T) ((-391 . -989) 55070) ((-303 . -110) 54891) ((-654 . -347) T) ((-210 . -268) T) ((-47 . -1158) T) ((-775 . -998) 54822) ((-549 . -129) T) ((-537 . -129) T) ((-476 . -129) T) ((-47 . -529) T) ((-1101 . -272) 54798) ((-1113 . -1093) 54776) ((-300 . -27) 54755) ((-1009 . -100) T) ((-775 . -218) 54708) ((-225 . -805) 54687) ((-905 . -100) T) ((-674 . -100) T) ((-279 . -471) 54624) ((-463 . -100) T) ((-692 . -1005) T) ((-578 . -579) 54606) ((-578 . -580) 54467) ((-391 . -361) 54451) ((-391 . -322) 54435) ((-1113 . -37) 54264) ((-1069 . -37) 54113) ((-811 . -37) 54083) ((-374 . -609) 54067) ((-606 . -293) 54005) ((-916 . -678) 53902) ((-207 . -105) 53886) ((-44 . -270) 53811) ((-696 . -678) 53781) ((-584 . -609) 53755) ((-296 . -1045) T) ((-273 . -1004) 53742) ((-109 . -579) 53724) ((-109 . -580) 53706) ((-436 . -678) 53676) ((-776 . -237) 53615) ((-649 . -1045) 53593) ((-523 . -1045) T) ((-1115 . -1005) T) ((-1114 . -1005) T) ((-1108 . -1005) T) ((-273 . -110) 53578) ((-1070 . -1005) T) ((-523 . -576) 53557) ((-94 . -579) 53523) ((-956 . -805) T) ((-212 . -647) 53481) ((-654 . -1057) T) ((-1148 . -701) 53457) ((-303 . -998) T) ((-327 . -25) T) ((-327 . -21) T) ((-391 . -853) 53416) ((-66 . -1154) T) ((-793 . -754) 53395) ((-402 . -678) 53369) ((-759 . -1045) T) ((-793 . -751) 53348) ((-659 . -129) T) ((-673 . -873) 53327) ((-654 . -23) T) ((-469 . -274) T) ((-793 . -687) 53306) ((-303 . -218) 53258) ((-303 . -228) 53237) ((-203 . -274) T) ((-975 . -347) T) ((-1184 . -435) 53216) ((-1163 . -435) 53195) ((-338 . -313) 53172) ((-338 . -347) T) ((-1082 . -579) 53154) ((-44 . -1188) 53104) ((-824 . -100) T) ((-606 . -266) 53088) ((-659 . -1007) T) ((-460 . -609) 53053) ((-451 . -1045) T) ((-44 . -570) 52978) ((-1210 . -100) T) ((-1100 . -272) 52953) ((-39 . -602) 52892) ((-47 . -347) T) ((-1051 . -579) 52874) ((-1033 . -807) 52853) ((-595 . -272) 52828) ((-742 . -807) 52807) ((-740 . -807) 52786) ((-464 . -579) 52518) ((-225 . -395) 52487) ((-905 . -293) 52474) ((-437 . -807) 52453) ((-63 . -1154) T) ((-586 . -129) T) ((-463 . -293) 52440) ((-572 . -1045) T) ((-1010 . -495) 52284) ((-116 . -129) T) ((-632 . -1045) T) ((-273 . -998) T) ((-170 . -1045) T) ((-436 . -722) T) ((-916 . -163) 52235) ((-923 . -91) T) ((-1025 . -1004) 52145) ((-584 . -754) 52124) ((-560 . -1045) T) ((-584 . -751) 52103) ((-584 . -687) T) ((-279 . -270) 52082) ((-278 . -1154) T) ((-1002 . -579) 52044) ((-1002 . -580) 52005) ((-975 . -1057) T) ((-160 . -100) T) ((-259 . -807) T) ((-1107 . -1045) T) ((-778 . -579) 51987) ((-1058 . -272) 51964) ((-1047 . -214) 51948) ((-955 . -291) T) ((-759 . -678) 51932) ((-343 . -1004) 51884) ((-338 . -1057) T) ((-337 . -1004) 51836) ((-398 . -579) 51818) ((-369 . -579) 51800) ((-329 . -1004) 51752) ((-212 . -579) 51684) ((-1025 . -110) 51580) ((-975 . -23) T) ((-106 . -1004) 51530) ((-851 . -100) T) ((-798 . -100) T) ((-768 . -100) T) ((-729 . -100) T) ((-637 . -100) T) ((-457 . -435) 51509) ((-402 . -163) T) ((-343 . -110) 51447) ((-337 . -110) 51385) ((-329 . -110) 51323) ((-235 . -216) 51293) ((-234 . -216) 51263) ((-338 . -23) T) ((-69 . -1154) T) ((-210 . -37) 51228) ((-106 . -110) 51162) ((-39 . -25) T) ((-39 . -21) T) ((-631 . -681) T) ((-160 . -268) 51140) ((-47 . -1057) T) ((-874 . -25) T) ((-731 . -25) T) ((-1092 . -471) 51077) ((-467 . -1045) T) ((-1223 . -609) 51051) ((-1173 . -100) T) ((-812 . -100) T) ((-225 . -1005) 50982) ((-1009 . -1093) T) ((-917 . -752) 50935) ((-365 . -609) 50919) ((-47 . -23) T) ((-917 . -755) 50872) ((-775 . -755) 50823) ((-775 . -752) 50774) ((-279 . -570) 50753) ((-460 . -687) T) ((-544 . -100) T) ((-824 . -293) 50710) ((-614 . -270) 50689) ((-111 . -622) T) ((-74 . -1154) T) ((-1009 . -37) 50676) ((-625 . -358) 50655) ((-905 . -37) 50504) ((-692 . -1045) T) ((-463 . -37) 50353) ((-84 . -1154) T) ((-544 . -268) T) ((-1164 . -805) NIL) ((-1115 . -1045) T) ((-1114 . -1045) T) ((-1108 . -1045) T) ((-335 . -989) 50330) ((-1025 . -998) T) ((-956 . -1005) T) ((-44 . -579) 50312) ((-44 . -580) NIL) ((-867 . -1005) T) ((-777 . -579) 50294) ((-1089 . -100) 50272) ((-1025 . -228) 50223) ((-411 . -1005) T) ((-343 . -998) T) ((-337 . -998) T) ((-349 . -348) 50200) ((-329 . -998) T) ((-235 . -223) 50179) ((-234 . -223) 50158) ((-108 . -348) 50132) ((-1025 . -218) 50057) ((-1070 . -1045) T) ((-278 . -853) 50016) ((-106 . -998) T) ((-654 . -129) T) ((-402 . -495) 49858) ((-343 . -218) 49837) ((-343 . -228) T) ((-43 . -681) T) ((-337 . -218) 49816) ((-337 . -228) T) ((-329 . -218) 49795) ((-329 . -228) T) ((-160 . -293) 49760) ((-106 . -228) T) ((-106 . -218) T) ((-303 . -752) T) ((-823 . -21) T) ((-823 . -25) T) ((-391 . -291) T) ((-481 . -33) T) ((-109 . -272) 49735) ((-1058 . -1004) 49633) ((-824 . -1093) NIL) ((-314 . -579) 49615) ((-391 . -973) 49594) ((-1058 . -110) 49485) ((-651 . -1195) T) ((-420 . -1045) T) ((-1223 . -687) T) ((-61 . -579) 49467) ((-824 . -37) 49412) ((-504 . -1154) T) ((-568 . -145) 49396) ((-493 . -579) 49378) ((-1173 . -293) 49365) ((-692 . -678) 49214) ((-509 . -753) T) ((-509 . -754) T) ((-537 . -602) 49196) ((-476 . -602) 49156) ((-339 . -435) T) ((-336 . -435) T) ((-328 . -435) T) ((-248 . -435) 49107) ((-506 . -1045) T) ((-501 . -1045) 49057) ((-232 . -435) 49008) ((-1092 . -270) 48987) ((-1119 . -579) 48969) ((-649 . -495) 48902) ((-916 . -274) 48881) ((-523 . -495) 48673) ((-1113 . -216) 48657) ((-160 . -1093) 48636) ((-1211 . -579) 48618) ((-1115 . -678) 48515) ((-1114 . -678) 48356) ((-845 . -100) T) ((-1108 . -678) 48152) ((-1070 . -678) 48049) ((-1098 . -635) 48033) ((-339 . -386) 47984) ((-336 . -386) 47935) ((-328 . -386) 47886) ((-975 . -129) T) ((-759 . -495) 47798) ((-279 . -580) NIL) ((-279 . -579) 47780) ((-863 . -435) T) ((-917 . -352) 47733) ((-775 . -352) 47712) ((-491 . -490) 47691) ((-489 . -490) 47670) ((-469 . -270) NIL) ((-464 . -272) 47647) ((-402 . -274) T) ((-338 . -129) T) ((-203 . -270) NIL) ((-654 . -474) NIL) ((-97 . -1057) T) ((-160 . -37) 47475) ((-1184 . -926) 47437) ((-1089 . -293) 47375) ((-1163 . -926) 47344) ((-863 . -386) T) ((-1058 . -998) 47275) ((-1186 . -529) T) ((-1092 . -570) 47254) ((-111 . -807) T) ((-1010 . -471) 47185) ((-549 . -21) T) ((-549 . -25) T) ((-537 . -21) T) ((-537 . -25) T) ((-476 . -25) T) ((-476 . -21) T) ((-1173 . -1093) 47163) ((-1058 . -218) 47116) ((-47 . -129) T) ((-1135 . -100) T) ((-225 . -1045) 46907) ((-824 . -384) 46884) ((-1034 . -100) T) ((-1021 . -100) T) ((-574 . -100) T) ((-458 . -100) T) ((-1173 . -37) 46713) ((-812 . -37) 46683) ((-692 . -163) 46594) ((-614 . -579) 46576) ((-607 . -1029) T) ((-544 . -37) 46563) ((-923 . -579) 46529) ((-911 . -100) 46479) ((-818 . -579) 46461) ((-818 . -580) 46383) ((-560 . -495) NIL) ((-1192 . -1005) T) ((-1185 . -1005) T) ((-1164 . -1005) T) ((-563 . -1005) T) ((-562 . -1005) T) ((-1227 . -1057) T) ((-1115 . -163) 46334) ((-1114 . -163) 46265) ((-1108 . -163) 46196) ((-1070 . -163) 46147) ((-956 . -1045) T) ((-924 . -1045) T) ((-867 . -1045) T) ((-1148 . -141) 46126) ((-759 . -757) 46110) ((-659 . -25) T) ((-659 . -21) T) ((-116 . -602) 46087) ((-661 . -839) 46069) ((-411 . -1045) T) ((-300 . -1158) 46048) ((-297 . -1158) T) ((-160 . -384) 46032) ((-1148 . -139) 46011) ((-457 . -926) 45973) ((-127 . -1045) T) ((-70 . -579) 45955) ((-106 . -755) T) ((-106 . -752) T) ((-300 . -529) 45934) ((-661 . -989) 45916) ((-297 . -529) T) ((-1227 . -23) T) ((-131 . -989) 45898) ((-464 . -1004) 45796) ((-44 . -272) 45721) ((-225 . -678) 45663) ((-498 . -100) T) ((-464 . -110) 45554) ((-1038 . -100) 45532) ((-985 . -100) T) ((-606 . -788) 45511) ((-692 . -495) 45454) ((-1002 . -1004) 45438) ((-1010 . -270) 45413) ((-586 . -21) T) ((-586 . -25) T) ((-505 . -1045) T) ((-345 . -100) T) ((-306 . -100) T) ((-631 . -609) 45387) ((-369 . -1004) 45371) ((-1002 . -110) 45350) ((-776 . -395) 45334) ((-116 . -25) T) ((-87 . -579) 45316) ((-116 . -21) T) ((-574 . -293) 45111) ((-458 . -293) 44915) ((-1092 . -580) NIL) ((-369 . -110) 44894) ((-363 . -100) T) ((-200 . -579) 44876) ((-1092 . -579) 44858) ((-956 . -678) 44808) ((-1108 . -495) 44577) ((-867 . -678) 44529) ((-1070 . -495) 44499) ((-335 . -291) T) ((-1127 . -145) 44449) ((-911 . -293) 44387) ((-794 . -100) T) ((-411 . -678) 44371) ((-210 . -788) T) ((-787 . -100) T) ((-785 . -100) T) ((-461 . -145) 44321) ((-1184 . -1183) 44300) ((-1064 . -1158) T) ((-323 . -989) 44267) ((-1184 . -1178) 44237) ((-1184 . -1181) 44221) ((-1163 . -1162) 44200) ((-78 . -579) 44182) ((-858 . -579) 44164) ((-1163 . -1178) 44141) ((-1064 . -529) T) ((-874 . -807) T) ((-469 . -580) 44071) ((-469 . -579) 44053) ((-731 . -807) T) ((-363 . -268) T) ((-633 . -807) T) ((-1163 . -1160) 44037) ((-1186 . -1057) T) ((-203 . -580) 43967) ((-203 . -579) 43949) ((-1010 . -570) 43924) ((-57 . -145) 43908) ((-497 . -145) 43892) ((-477 . -145) 43876) ((-343 . -1218) 43860) ((-337 . -1218) 43844) ((-329 . -1218) 43828) ((-300 . -347) 43807) ((-297 . -347) T) ((-464 . -998) 43738) ((-654 . -602) 43720) ((-1221 . -609) 43694) ((-1219 . -609) 43668) ((-1186 . -23) T) ((-649 . -471) 43652) ((-62 . -579) 43634) ((-1058 . -755) 43585) ((-1058 . -752) 43536) ((-523 . -471) 43473) ((-631 . -33) T) ((-464 . -218) 43426) ((-279 . -272) 43405) ((-225 . -163) 43384) ((-776 . -1005) T) ((-43 . -609) 43342) ((-1025 . -352) 43293) ((-692 . -274) 43224) ((-501 . -495) 43157) ((-777 . -1004) 43108) ((-1033 . -139) 43087) ((-343 . -352) 43066) ((-337 . -352) 43045) ((-329 . -352) 43024) ((-1033 . -141) 43003) ((-824 . -216) 42980) ((-777 . -110) 42922) ((-742 . -139) 42901) ((-742 . -141) 42880) ((-248 . -902) 42847) ((-235 . -805) 42826) ((-232 . -902) 42771) ((-234 . -805) 42750) ((-740 . -139) 42729) ((-740 . -141) 42708) ((-146 . -609) 42682) ((-437 . -141) 42661) ((-437 . -139) 42640) ((-631 . -687) T) ((-783 . -579) 42622) ((-1192 . -1045) T) ((-1185 . -1045) T) ((-1164 . -1045) T) ((-1148 . -1142) 42588) ((-1148 . -1139) 42554) ((-1115 . -274) 42533) ((-1114 . -274) 42484) ((-1108 . -274) 42435) ((-1070 . -274) 42414) ((-323 . -853) 42395) ((-956 . -163) T) ((-867 . -163) T) ((-563 . -1045) T) ((-562 . -1045) T) ((-654 . -21) T) ((-654 . -25) T) ((-457 . -1181) 42379) ((-457 . -1178) 42349) ((-402 . -270) 42277) ((-300 . -1057) 42127) ((-297 . -1057) T) ((-1148 . -34) 42093) ((-1148 . -93) 42059) ((-82 . -579) 42041) ((-89 . -100) 42019) ((-1227 . -129) T) ((-550 . -139) T) ((-550 . -141) 42001) ((-499 . -141) 41983) ((-499 . -139) T) ((-300 . -23) 41836) ((-39 . -326) 41810) ((-297 . -23) T) ((-1100 . -612) 41792) ((-775 . -609) 41642) ((-1214 . -1005) T) ((-1100 . -357) 41624) ((-160 . -216) 41608) ((-1036 . -100) T) ((-1013 . -100) T) ((-987 . -100) T) ((-560 . -471) 41590) ((-589 . -100) T) ((-225 . -495) 41523) ((-465 . -100) T) ((-1221 . -687) T) ((-1219 . -687) T) ((-1119 . -1004) 41406) ((-1119 . -110) 41275) ((-777 . -998) T) ((-641 . -1029) T) ((-496 . -100) T) ((-47 . -602) 41235) ((-491 . -100) T) ((-489 . -100) T) ((-1211 . -1004) 41205) ((-985 . -37) 41189) ((-777 . -218) T) ((-777 . -228) 41168) ((-523 . -270) 41147) ((-1211 . -110) 41112) ((-572 . -91) T) ((-1192 . -678) 41009) ((-1173 . -216) 40993) ((-1185 . -678) 40834) ((-1010 . -580) NIL) ((-1010 . -579) 40816) ((-632 . -91) T) ((-170 . -91) T) ((-1164 . -678) 40612) ((-955 . -873) T) ((-663 . -579) 40581) ((-146 . -687) T) ((-1058 . -352) 40560) ((-956 . -495) NIL) ((-235 . -395) 40529) ((-234 . -395) 40498) ((-975 . -25) T) ((-975 . -21) T) ((-563 . -678) 40471) ((-562 . -678) 40368) ((-759 . -270) 40326) ((-125 . -100) 40304) ((-793 . -989) 40202) ((-160 . -788) 40181) ((-303 . -609) 40078) ((-775 . -33) T) ((-675 . -100) T) ((-1064 . -1057) T) ((-127 . -495) NIL) ((-977 . -1154) T) ((-363 . -37) 40043) ((-338 . -25) T) ((-338 . -21) T) ((-153 . -100) T) ((-149 . -100) T) ((-339 . -1207) 40027) ((-336 . -1207) 40011) ((-328 . -1207) 39995) ((-160 . -333) 39974) ((-537 . -807) T) ((-476 . -807) T) ((-1064 . -23) T) ((-85 . -579) 39956) ((-661 . -291) T) ((-794 . -37) 39926) ((-787 . -37) 39896) ((-1186 . -129) T) ((-1092 . -272) 39875) ((-917 . -753) 39828) ((-917 . -754) 39781) ((-775 . -751) 39760) ((-115 . -291) T) ((-89 . -293) 39698) ((-636 . -33) T) ((-523 . -570) 39677) ((-47 . -25) T) ((-47 . -21) T) ((-775 . -754) 39628) ((-775 . -753) 39607) ((-661 . -973) T) ((-614 . -1004) 39591) ((-917 . -687) 39490) ((-775 . -687) 39401) ((-917 . -456) 39354) ((-464 . -755) 39305) ((-464 . -752) 39256) ((-863 . -1207) 39243) ((-1119 . -998) T) ((-614 . -110) 39222) ((-1119 . -310) 39199) ((-1140 . -100) 39177) ((-1046 . -579) 39159) ((-661 . -522) T) ((-776 . -1045) T) ((-1211 . -998) T) ((-397 . -1045) T) ((-235 . -1005) 39090) ((-234 . -1005) 39021) ((-273 . -609) 39008) ((-560 . -270) 38983) ((-649 . -647) 38941) ((-916 . -579) 38923) ((-825 . -100) T) ((-696 . -579) 38905) ((-676 . -579) 38887) ((-1192 . -163) 38838) ((-1185 . -163) 38769) ((-1164 . -163) 38700) ((-659 . -807) T) ((-956 . -274) T) ((-436 . -579) 38682) ((-590 . -687) T) ((-58 . -1045) 38660) ((-230 . -145) 38644) ((-867 . -274) T) ((-975 . -964) T) ((-590 . -456) T) ((-673 . -1158) 38623) ((-563 . -163) 38602) ((-562 . -163) 38553) ((-1200 . -807) 38532) ((-673 . -529) 38443) ((-391 . -873) T) ((-391 . -780) 38422) ((-303 . -754) T) ((-303 . -687) T) ((-402 . -579) 38404) ((-402 . -580) 38312) ((-606 . -1091) 38296) ((-109 . -612) 38278) ((-125 . -293) 38216) ((-109 . -357) 38198) ((-164 . -291) T) ((-382 . -1154) T) ((-300 . -129) 38070) ((-297 . -129) T) ((-67 . -379) T) ((-109 . -122) T) ((-501 . -471) 38054) ((-615 . -1057) T) ((-560 . -19) 38036) ((-59 . -424) T) ((-59 . -379) T) ((-784 . -1045) T) ((-560 . -570) 38011) ((-460 . -989) 37971) ((-614 . -998) T) ((-615 . -23) T) ((-1214 . -1045) T) ((-776 . -678) 37820) ((-116 . -807) NIL) ((-1113 . -395) 37804) ((-1069 . -395) 37788) ((-811 . -395) 37772) ((-826 . -100) 37723) ((-1184 . -100) T) ((-1164 . -495) 37492) ((-506 . -91) T) ((-1140 . -293) 37430) ((-296 . -579) 37412) ((-1163 . -100) T) ((-1047 . -1045) T) ((-1115 . -270) 37397) ((-1114 . -270) 37382) ((-273 . -687) T) ((-106 . -862) NIL) ((-649 . -579) 37314) ((-649 . -580) 37275) ((-1025 . -609) 37185) ((-567 . -579) 37167) ((-523 . -580) NIL) ((-523 . -579) 37149) ((-1108 . -270) 36997) ((-469 . -1004) 36947) ((-672 . -435) T) ((-492 . -490) 36926) ((-488 . -490) 36905) ((-203 . -1004) 36855) ((-343 . -609) 36807) ((-337 . -609) 36759) ((-210 . -805) T) ((-329 . -609) 36711) ((-568 . -100) 36661) ((-464 . -352) 36640) ((-106 . -609) 36590) ((-469 . -110) 36524) ((-225 . -471) 36508) ((-327 . -141) 36490) ((-327 . -139) T) ((-160 . -354) 36461) ((-896 . -1198) 36445) ((-203 . -110) 36379) ((-825 . -293) 36344) ((-896 . -1045) 36294) ((-759 . -580) 36255) ((-759 . -579) 36237) ((-679 . -100) T) ((-315 . -1045) T) ((-1064 . -129) T) ((-675 . -37) 36207) ((-300 . -474) 36186) ((-481 . -1154) T) ((-1184 . -268) 36152) ((-1163 . -268) 36118) ((-311 . -145) 36102) ((-1010 . -272) 36077) ((-1214 . -678) 36047) ((-1101 . -33) T) ((-1223 . -989) 36024) ((-451 . -579) 36006) ((-466 . -33) T) ((-365 . -989) 35990) ((-1113 . -1005) T) ((-1069 . -1005) T) ((-811 . -1005) T) ((-1009 . -805) T) ((-776 . -163) 35901) ((-501 . -270) 35878) ((-127 . -471) 35860) ((-116 . -945) 35837) ((-1192 . -274) 35816) ((-1185 . -274) 35767) ((-1135 . -348) 35741) ((-572 . -579) 35691) ((-1034 . -250) 35675) ((-632 . -579) 35641) ((-457 . -100) T) ((-349 . -1045) T) ((-235 . -1045) T) ((-234 . -1045) T) ((-170 . -579) 35607) ((-108 . -1045) T) ((-1164 . -274) 35558) ((-825 . -1093) 35536) ((-1115 . -954) 35502) ((-574 . -348) 35442) ((-1114 . -954) 35408) ((-574 . -214) 35355) ((-560 . -579) 35337) ((-560 . -580) NIL) ((-654 . -807) T) ((-458 . -214) 35287) ((-469 . -998) T) ((-1108 . -954) 35253) ((-86 . -423) T) ((-86 . -379) T) ((-203 . -998) T) ((-1070 . -954) 35219) ((-1025 . -687) T) ((-673 . -1057) T) ((-563 . -274) 35198) ((-562 . -274) 35177) ((-469 . -228) T) ((-469 . -218) T) ((-203 . -228) T) ((-203 . -218) T) ((-1107 . -579) 35159) ((-825 . -37) 35111) ((-343 . -687) T) ((-337 . -687) T) ((-329 . -687) T) ((-106 . -754) T) ((-106 . -751) T) ((-501 . -1188) 35095) ((-106 . -687) T) ((-673 . -23) T) ((-1227 . -25) T) ((-457 . -268) 35061) ((-1227 . -21) T) ((-1163 . -293) 35000) ((-1117 . -100) T) ((-39 . -139) 34972) ((-39 . -141) 34944) ((-501 . -570) 34921) ((-1058 . -609) 34771) ((-568 . -293) 34709) ((-44 . -612) 34659) ((-44 . -627) 34609) ((-44 . -357) 34559) ((-1100 . -33) T) ((-824 . -805) NIL) ((-615 . -129) T) ((-467 . -579) 34541) ((-225 . -270) 34518) ((-608 . -33) T) ((-595 . -33) T) ((-1033 . -435) 34469) ((-776 . -495) 34343) ((-742 . -435) 34274) ((-740 . -435) 34225) ((-437 . -435) 34176) ((-905 . -395) 34160) ((-692 . -579) 34142) ((-235 . -678) 34084) ((-234 . -678) 34026) ((-692 . -580) 33887) ((-463 . -395) 33871) ((-323 . -286) T) ((-505 . -91) T) ((-335 . -873) T) ((-952 . -100) 33849) ((-975 . -807) T) ((-58 . -495) 33782) ((-1163 . -1093) 33734) ((-956 . -270) NIL) ((-210 . -1005) T) ((-363 . -788) T) ((-1058 . -33) T) ((-1167 . -1039) 33718) ((-550 . -435) T) ((-499 . -435) T) ((-1167 . -1045) 33696) ((-1167 . -1041) 33653) ((-225 . -570) 33630) ((-1115 . -579) 33612) ((-1114 . -579) 33594) ((-1108 . -579) 33576) ((-1108 . -580) NIL) ((-1070 . -579) 33558) ((-127 . -270) 33533) ((-825 . -384) 33517) ((-513 . -100) T) ((-1184 . -37) 33358) ((-1163 . -37) 33172) ((-823 . -141) T) ((-550 . -386) T) ((-47 . -807) T) ((-499 . -386) T) ((-1196 . -100) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-1058 . -751) 33151) ((-1058 . -754) 33102) ((-1058 . -753) 33081) ((-946 . -1045) T) ((-978 . -33) T) ((-816 . -1045) T) ((-1058 . -687) 32992) ((-625 . -100) T) ((-607 . -100) T) ((-523 . -272) 32971) ((-1127 . -100) T) ((-459 . -33) T) ((-446 . -33) T) ((-339 . -100) T) ((-336 . -100) T) ((-328 . -100) T) ((-248 . -100) T) ((-232 . -100) T) ((-460 . -291) T) ((-1009 . -1005) T) ((-905 . -1005) T) ((-300 . -602) 32879) ((-297 . -602) 32840) ((-463 . -1005) T) ((-461 . -100) T) ((-420 . -579) 32822) ((-1113 . -1045) T) ((-1069 . -1045) T) ((-811 . -1045) T) ((-1083 . -100) T) ((-776 . -274) 32753) ((-916 . -1004) 32636) ((-460 . -973) T) ((-127 . -19) 32618) ((-696 . -1004) 32588) ((-127 . -570) 32563) ((-436 . -1004) 32533) ((-1089 . -1065) 32517) ((-1047 . -495) 32450) ((-916 . -110) 32319) ((-863 . -100) T) ((-696 . -110) 32284) ((-506 . -579) 32250) ((-57 . -100) 32200) ((-501 . -580) 32161) ((-501 . -579) 32073) ((-500 . -100) 32051) ((-497 . -100) 32001) ((-478 . -100) 31979) ((-477 . -100) 31929) ((-436 . -110) 31892) ((-235 . -163) 31871) ((-234 . -163) 31850) ((-402 . -1004) 31824) ((-1148 . -926) 31786) ((-951 . -1057) T) ((-896 . -495) 31719) ((-469 . -755) T) ((-457 . -37) 31560) ((-402 . -110) 31527) ((-469 . -752) T) ((-952 . -293) 31465) ((-203 . -755) T) ((-203 . -752) T) ((-951 . -23) T) ((-673 . -129) T) ((-1163 . -384) 31435) ((-300 . -25) 31288) ((-160 . -395) 31272) ((-300 . -21) 31144) ((-297 . -25) T) ((-297 . -21) T) ((-818 . -352) T) ((-109 . -33) T) ((-464 . -609) 30994) ((-824 . -1005) T) ((-560 . -272) 30969) ((-549 . -141) T) ((-537 . -141) T) ((-476 . -141) T) ((-1113 . -678) 30798) ((-1069 . -678) 30647) ((-1064 . -602) 30629) ((-811 . -678) 30599) ((-631 . -1154) T) ((-1 . -100) T) ((-225 . -579) 30331) ((-1173 . -395) 30315) ((-1127 . -293) 30119) ((-916 . -998) T) ((-696 . -998) T) ((-676 . -998) T) ((-606 . -1045) 30069) ((-1002 . -609) 30053) ((-812 . -395) 30037) ((-492 . -100) T) ((-488 . -100) T) ((-232 . -293) 30024) ((-248 . -293) 30011) ((-916 . -310) 29990) ((-369 . -609) 29974) ((-461 . -293) 29778) ((-235 . -495) 29711) ((-631 . -989) 29609) ((-234 . -495) 29542) ((-1083 . -293) 29468) ((-779 . -1045) T) ((-759 . -1004) 29452) ((-1192 . -270) 29437) ((-1185 . -270) 29422) ((-1164 . -270) 29270) ((-370 . -1045) T) ((-308 . -1045) T) ((-402 . -998) T) ((-160 . -1005) T) ((-57 . -293) 29208) ((-759 . -110) 29187) ((-562 . -270) 29172) ((-500 . -293) 29110) ((-497 . -293) 29048) ((-478 . -293) 28986) ((-477 . -293) 28924) ((-402 . -218) 28903) ((-464 . -33) T) ((-956 . -580) 28833) ((-210 . -1045) T) ((-956 . -579) 28815) ((-924 . -579) 28797) ((-924 . -580) 28772) ((-867 . -579) 28754) ((-659 . -141) T) ((-661 . -873) T) ((-661 . -780) T) ((-411 . -579) 28736) ((-1064 . -21) T) ((-127 . -580) NIL) ((-127 . -579) 28718) ((-1064 . -25) T) ((-631 . -361) 28702) ((-115 . -873) T) ((-825 . -216) 28686) ((-76 . -1154) T) ((-125 . -124) 28670) ((-1002 . -33) T) ((-1221 . -989) 28644) ((-1219 . -989) 28601) ((-1173 . -1005) T) ((-812 . -1005) T) ((-464 . -751) 28580) ((-339 . -1093) 28559) ((-336 . -1093) 28538) ((-328 . -1093) 28517) ((-464 . -754) 28468) ((-464 . -753) 28447) ((-212 . -33) T) ((-464 . -687) 28358) ((-58 . -471) 28342) ((-544 . -1005) T) ((-1113 . -163) 28233) ((-1069 . -163) 28144) ((-1009 . -1045) T) ((-1033 . -902) 28089) ((-905 . -1045) T) ((-777 . -609) 28040) ((-742 . -902) 28009) ((-674 . -1045) T) ((-740 . -902) 27976) ((-497 . -266) 27960) ((-631 . -853) 27919) ((-463 . -1045) T) ((-437 . -902) 27886) ((-77 . -1154) T) ((-339 . -37) 27851) ((-336 . -37) 27816) ((-328 . -37) 27781) ((-248 . -37) 27630) ((-232 . -37) 27479) ((-863 . -1093) T) ((-586 . -141) 27458) ((-586 . -139) 27437) ((-505 . -579) 27403) ((-116 . -141) T) ((-116 . -139) NIL) ((-398 . -687) T) ((-759 . -998) T) ((-327 . -435) T) ((-1192 . -954) 27369) ((-1185 . -954) 27335) ((-1164 . -954) 27301) ((-863 . -37) 27266) ((-210 . -678) 27231) ((-303 . -46) 27201) ((-39 . -393) 27173) ((-134 . -579) 27155) ((-951 . -129) T) ((-775 . -1154) T) ((-164 . -873) T) ((-327 . -386) T) ((-501 . -272) 27132) ((-44 . -33) T) ((-775 . -989) 26961) ((-641 . -100) T) ((-623 . -100) T) ((-615 . -21) T) ((-615 . -25) T) ((-1047 . -471) 26945) ((-1163 . -216) 26915) ((-636 . -1154) T) ((-230 . -100) 26865) ((-824 . -1045) T) ((-1119 . -609) 26790) ((-1009 . -678) 26777) ((-692 . -1004) 26620) ((-1113 . -495) 26567) ((-905 . -678) 26416) ((-1069 . -495) 26368) ((-1210 . -1045) T) ((-463 . -678) 26217) ((-65 . -579) 26199) ((-692 . -110) 26028) ((-896 . -471) 26012) ((-1211 . -609) 25972) ((-777 . -687) T) ((-1115 . -1004) 25855) ((-1114 . -1004) 25690) ((-1108 . -1004) 25480) ((-1070 . -1004) 25363) ((-955 . -1158) T) ((-1040 . -100) 25341) ((-775 . -361) 25311) ((-955 . -529) T) ((-1115 . -110) 25180) ((-1114 . -110) 25001) ((-1108 . -110) 24770) ((-1070 . -110) 24639) ((-1050 . -1048) 24603) ((-363 . -805) T) ((-1192 . -579) 24585) ((-1185 . -579) 24567) ((-1164 . -579) 24549) ((-1164 . -580) NIL) ((-225 . -272) 24526) ((-39 . -435) T) ((-210 . -163) T) ((-160 . -1045) T) ((-654 . -141) T) ((-654 . -139) NIL) ((-563 . -579) 24508) ((-562 . -579) 24490) ((-851 . -1045) T) ((-798 . -1045) T) ((-768 . -1045) T) ((-729 . -1045) T) ((-619 . -809) 24474) ((-637 . -1045) T) ((-775 . -853) 24407) ((-39 . -386) NIL) ((-1064 . -622) T) ((-824 . -678) 24352) ((-235 . -471) 24336) ((-234 . -471) 24320) ((-673 . -602) 24268) ((-614 . -609) 24242) ((-279 . -33) T) ((-692 . -998) T) ((-550 . -1207) 24229) ((-499 . -1207) 24206) ((-1173 . -1045) T) ((-1113 . -274) 24117) ((-1069 . -274) 24048) ((-1009 . -163) T) ((-812 . -1045) T) ((-905 . -163) 23959) ((-742 . -1176) 23943) ((-606 . -495) 23876) ((-75 . -579) 23858) ((-692 . -310) 23823) ((-1119 . -687) T) ((-544 . -1045) T) ((-463 . -163) 23734) ((-230 . -293) 23672) ((-127 . -272) 23647) ((-1084 . -1057) T) ((-68 . -579) 23629) ((-1211 . -687) T) ((-1115 . -998) T) ((-1114 . -998) T) ((-311 . -100) 23579) ((-1108 . -998) T) ((-1084 . -23) T) ((-1070 . -998) T) ((-89 . -1065) 23563) ((-819 . -1057) T) ((-1115 . -218) 23522) ((-1114 . -228) 23501) ((-1114 . -218) 23453) ((-1108 . -218) 23340) ((-1108 . -228) 23319) ((-303 . -853) 23225) ((-819 . -23) T) ((-160 . -678) 23053) ((-391 . -1158) T) ((-1046 . -352) T) ((-975 . -141) T) ((-955 . -347) T) ((-823 . -435) T) ((-896 . -270) 23030) ((-300 . -807) T) ((-297 . -807) NIL) ((-827 . -100) T) ((-673 . -25) T) ((-391 . -529) T) ((-673 . -21) T) ((-338 . -141) 23012) ((-338 . -139) T) ((-1089 . -1045) 22990) ((-436 . -681) T) ((-73 . -579) 22972) ((-113 . -807) T) ((-230 . -266) 22956) ((-225 . -1004) 22854) ((-79 . -579) 22836) ((-696 . -352) 22789) ((-1117 . -788) T) ((-698 . -220) 22773) ((-1101 . -1154) T) ((-135 . -220) 22755) ((-225 . -110) 22646) ((-1173 . -678) 22475) ((-47 . -141) T) ((-824 . -163) T) ((-812 . -678) 22445) ((-466 . -1154) T) ((-905 . -495) 22392) ((-614 . -687) T) ((-544 . -678) 22379) ((-985 . -1005) T) ((-463 . -495) 22322) ((-896 . -19) 22306) ((-896 . -570) 22283) ((-776 . -580) NIL) ((-776 . -579) 22265) ((-956 . -1004) 22215) ((-397 . -579) 22197) ((-235 . -270) 22174) ((-234 . -270) 22151) ((-469 . -862) NIL) ((-300 . -29) 22121) ((-106 . -1154) T) ((-955 . -1057) T) ((-203 . -862) NIL) ((-867 . -1004) 22073) ((-1025 . -989) 21971) ((-956 . -110) 21905) ((-248 . -216) 21889) ((-698 . -655) 21873) ((-411 . -1004) 21857) ((-363 . -1005) T) ((-955 . -23) T) ((-867 . -110) 21795) ((-654 . -1142) NIL) ((-469 . -609) 21745) ((-106 . -837) 21727) ((-106 . -839) 21709) ((-654 . -1139) NIL) ((-203 . -609) 21659) ((-343 . -989) 21643) ((-337 . -989) 21627) ((-311 . -293) 21565) ((-329 . -989) 21549) ((-210 . -274) T) ((-411 . -110) 21528) ((-58 . -579) 21460) ((-160 . -163) T) ((-1064 . -807) T) ((-106 . -989) 21420) ((-845 . -1045) T) ((-794 . -1005) T) ((-787 . -1005) T) ((-654 . -34) NIL) ((-654 . -93) NIL) ((-297 . -945) 21381) ((-173 . -100) T) ((-549 . -435) T) ((-537 . -435) T) ((-476 . -435) T) ((-391 . -347) T) ((-225 . -998) 21312) ((-1092 . -33) T) ((-460 . -873) T) ((-951 . -602) 21260) ((-235 . -570) 21237) ((-234 . -570) 21214) ((-1025 . -361) 21198) ((-824 . -495) 21106) ((-225 . -218) 21059) ((-1100 . -1154) T) ((-784 . -579) 21041) ((-1222 . -1057) T) ((-1214 . -579) 21023) ((-1173 . -163) 20914) ((-106 . -361) 20896) ((-106 . -322) 20878) ((-1009 . -274) T) ((-905 . -274) 20809) ((-759 . -352) 20788) ((-608 . -1154) T) ((-595 . -1154) T) ((-463 . -274) 20719) ((-544 . -163) T) ((-311 . -266) 20703) ((-1222 . -23) T) ((-1148 . -100) T) ((-1135 . -1045) T) ((-1034 . -1045) T) ((-1021 . -1045) T) ((-81 . -579) 20685) ((-672 . -100) T) ((-339 . -333) 20664) ((-574 . -1045) T) ((-336 . -333) 20643) ((-328 . -333) 20622) ((-458 . -1045) T) ((-1127 . -214) 20572) ((-248 . -237) 20534) ((-1084 . -129) T) ((-574 . -576) 20510) ((-1025 . -853) 20443) ((-956 . -998) T) ((-867 . -998) T) ((-458 . -576) 20422) ((-1108 . -752) NIL) ((-1108 . -755) NIL) ((-1047 . -580) 20383) ((-461 . -214) 20333) ((-1047 . -579) 20315) ((-956 . -228) T) ((-956 . -218) T) ((-411 . -998) T) ((-911 . -1045) 20265) ((-867 . -228) T) ((-819 . -129) T) ((-659 . -435) T) ((-800 . -1057) 20244) ((-106 . -853) NIL) ((-1148 . -268) 20210) ((-825 . -805) 20189) ((-1058 . -1154) T) ((-858 . -687) T) ((-160 . -495) 20101) ((-951 . -25) T) ((-858 . -456) T) ((-391 . -1057) T) ((-469 . -754) T) ((-469 . -751) T) ((-863 . -333) T) ((-469 . -687) T) ((-203 . -754) T) ((-203 . -751) T) ((-951 . -21) T) ((-203 . -687) T) ((-800 . -23) 20053) ((-303 . -291) 20032) ((-986 . -220) 19978) ((-391 . -23) T) ((-896 . -580) 19939) ((-896 . -579) 19851) ((-606 . -471) 19835) ((-44 . -962) 19785) ((-472 . -100) T) ((-315 . -579) 19767) ((-1058 . -989) 19596) ((-560 . -612) 19578) ((-560 . -357) 19560) ((-327 . -1207) 19537) ((-978 . -1154) T) ((-824 . -274) T) ((-1173 . -495) 19484) ((-459 . -1154) T) ((-446 . -1154) T) ((-554 . -100) T) ((-1113 . -270) 19411) ((-586 . -435) 19390) ((-952 . -947) 19374) ((-1214 . -366) 19346) ((-498 . -1045) T) ((-116 . -435) T) ((-1134 . -100) T) ((-1038 . -1045) 19324) ((-985 . -1045) T) ((-846 . -807) T) ((-335 . -1158) T) ((-1192 . -1004) 19207) ((-1058 . -361) 19177) ((-1185 . -1004) 19012) ((-1164 . -1004) 18802) ((-1192 . -110) 18671) ((-1185 . -110) 18492) ((-1164 . -110) 18261) ((-1148 . -293) 18248) ((-335 . -529) T) ((-349 . -579) 18230) ((-273 . -291) T) ((-563 . -1004) 18203) ((-562 . -1004) 18086) ((-345 . -1045) T) ((-306 . -1045) T) ((-235 . -579) 18047) ((-234 . -579) 18008) ((-955 . -129) T) ((-108 . -579) 17990) ((-598 . -23) T) ((-654 . -393) 17957) ((-573 . -23) T) ((-619 . -100) T) ((-563 . -110) 17928) ((-562 . -110) 17797) ((-363 . -1045) T) ((-320 . -100) T) ((-160 . -274) 17708) ((-1163 . -805) 17661) ((-675 . -1005) T) ((-1089 . -495) 17594) ((-1058 . -853) 17527) ((-794 . -1045) T) ((-787 . -1045) T) ((-785 . -1045) T) ((-95 . -100) T) ((-138 . -807) T) ((-578 . -837) 17511) ((-109 . -1154) T) ((-1033 . -100) T) ((-1010 . -33) T) ((-742 . -100) T) ((-740 . -100) T) ((-444 . -100) T) ((-437 . -100) T) ((-225 . -755) 17462) ((-225 . -752) 17413) ((-610 . -100) T) ((-1173 . -274) 17324) ((-625 . -597) 17308) ((-606 . -270) 17285) ((-985 . -678) 17269) ((-544 . -274) T) ((-916 . -609) 17194) ((-1222 . -129) T) ((-696 . -609) 17154) ((-676 . -609) 17141) ((-259 . -100) T) ((-436 . -609) 17071) ((-49 . -100) T) ((-550 . -100) T) ((-499 . -100) T) ((-1192 . -998) T) ((-1185 . -998) T) ((-1164 . -998) T) ((-1192 . -218) 17030) ((-306 . -678) 17012) ((-1185 . -228) 16991) ((-1185 . -218) 16943) ((-1164 . -218) 16830) ((-1164 . -228) 16809) ((-1148 . -37) 16706) ((-956 . -755) T) ((-563 . -998) T) ((-562 . -998) T) ((-956 . -752) T) ((-924 . -755) T) ((-924 . -752) T) ((-825 . -1005) T) ((-823 . -822) 16690) ((-107 . -579) 16672) ((-654 . -435) T) ((-363 . -678) 16637) ((-402 . -609) 16611) ((-673 . -807) 16590) ((-672 . -37) 16555) ((-562 . -218) 16514) ((-39 . -685) 16486) ((-335 . -313) 16463) ((-335 . -347) T) ((-1025 . -291) 16414) ((-278 . -1057) 16296) ((-1051 . -1154) T) ((-162 . -100) T) ((-1167 . -579) 16263) ((-800 . -129) 16215) ((-606 . -1188) 16199) ((-794 . -678) 16169) ((-787 . -678) 16139) ((-464 . -1154) T) ((-343 . -291) T) ((-337 . -291) T) ((-329 . -291) T) ((-606 . -570) 16116) ((-391 . -129) T) ((-501 . -627) 16100) ((-106 . -291) T) ((-278 . -23) 15984) ((-501 . -612) 15968) ((-654 . -386) NIL) ((-501 . -357) 15952) ((-275 . -579) 15934) ((-89 . -1045) 15912) ((-106 . -973) T) ((-537 . -137) T) ((-1200 . -145) 15896) ((-464 . -989) 15725) ((-1186 . -139) 15686) ((-1186 . -141) 15647) ((-1002 . -1154) T) ((-946 . -579) 15629) ((-816 . -579) 15611) ((-776 . -1004) 15454) ((-1033 . -293) 15441) ((-212 . -1154) T) ((-1036 . -1045) T) ((-1013 . -1045) T) ((-987 . -1045) T) ((-742 . -293) 15428) ((-740 . -293) 15415) ((-776 . -110) 15244) ((-589 . -1045) T) ((-1210 . -91) T) ((-1113 . -580) NIL) ((-437 . -293) 15231) ((-465 . -1045) T) ((-1113 . -579) 15213) ((-1069 . -579) 15195) ((-1069 . -580) 14943) ((-985 . -163) T) ((-811 . -579) 14925) ((-896 . -272) 14902) ((-574 . -495) 14685) ((-778 . -989) 14669) ((-458 . -495) 14461) ((-916 . -687) T) ((-696 . -687) T) ((-676 . -687) T) ((-335 . -1057) T) ((-1120 . -579) 14443) ((-208 . -100) T) ((-464 . -361) 14413) ((-496 . -1045) T) ((-491 . -1045) T) ((-489 . -1045) T) ((-759 . -609) 14387) ((-975 . -435) T) ((-911 . -495) 14320) ((-335 . -23) T) ((-598 . -129) T) ((-573 . -129) T) ((-338 . -435) T) ((-225 . -352) 14299) ((-363 . -163) T) ((-1184 . -1005) T) ((-1163 . -1005) T) ((-210 . -954) T) ((-659 . -371) T) ((-402 . -687) T) ((-661 . -1158) T) ((-1084 . -602) 14247) ((-549 . -822) 14231) ((-1101 . -1130) 14207) ((-661 . -529) T) ((-125 . -1045) 14185) ((-1214 . -1004) 14169) ((-675 . -1045) T) ((-464 . -853) 14102) ((-619 . -37) 14072) ((-338 . -386) T) ((-300 . -141) 14051) ((-300 . -139) 14030) ((-115 . -529) T) ((-297 . -141) 13986) ((-297 . -139) 13942) ((-47 . -435) T) ((-153 . -1045) T) ((-149 . -1045) T) ((-1101 . -105) 13889) ((-742 . -1093) 13867) ((-649 . -33) T) ((-1214 . -110) 13846) ((-523 . -33) T) ((-466 . -105) 13830) ((-235 . -272) 13807) ((-234 . -272) 13784) ((-824 . -270) 13735) ((-44 . -1154) T) ((-776 . -998) T) ((-1119 . -46) 13712) ((-776 . -310) 13674) ((-1033 . -37) 13523) ((-776 . -218) 13502) ((-742 . -37) 13331) ((-740 . -37) 13180) ((-127 . -612) 13162) ((-437 . -37) 13011) ((-127 . -357) 12993) ((-1062 . -100) T) ((-606 . -580) 12954) ((-606 . -579) 12866) ((-550 . -1093) T) ((-499 . -1093) T) ((-1089 . -471) 12850) ((-1140 . -1045) 12828) ((-1084 . -25) T) ((-1084 . -21) T) ((-457 . -1005) T) ((-1164 . -752) NIL) ((-1164 . -755) NIL) ((-951 . -807) 12807) ((-779 . -579) 12789) ((-819 . -21) T) ((-819 . -25) T) ((-759 . -687) T) ((-164 . -1158) T) ((-550 . -37) 12754) ((-499 . -37) 12719) ((-370 . -579) 12701) ((-308 . -579) 12683) ((-160 . -270) 12641) ((-61 . -1154) T) ((-111 . -100) T) ((-825 . -1045) T) ((-164 . -529) T) ((-675 . -678) 12611) ((-278 . -129) 12495) ((-210 . -579) 12477) ((-210 . -580) 12407) ((-955 . -602) 12346) ((-1214 . -998) T) ((-1064 . -141) T) ((-595 . -1130) 12321) ((-692 . -862) 12300) ((-560 . -33) T) ((-608 . -105) 12284) ((-595 . -105) 12230) ((-1173 . -270) 12157) ((-692 . -609) 12082) ((-279 . -1154) T) ((-1119 . -989) 11980) ((-1108 . -862) NIL) ((-1009 . -580) 11895) ((-1009 . -579) 11877) ((-327 . -100) T) ((-235 . -1004) 11775) ((-234 . -1004) 11673) ((-378 . -100) T) ((-905 . -579) 11655) ((-905 . -580) 11516) ((-674 . -579) 11498) ((-1212 . -1147) 11467) ((-463 . -579) 11449) ((-463 . -580) 11310) ((-232 . -395) 11294) ((-248 . -395) 11278) ((-235 . -110) 11169) ((-234 . -110) 11060) ((-1115 . -609) 10985) ((-1114 . -609) 10882) ((-1108 . -609) 10734) ((-1070 . -609) 10659) ((-335 . -129) T) ((-80 . -424) T) ((-80 . -379) T) ((-955 . -25) T) ((-955 . -21) T) ((-826 . -1045) 10610) ((-825 . -678) 10562) ((-363 . -274) T) ((-160 . -954) 10514) ((-654 . -371) T) ((-951 . -949) 10498) ((-661 . -1057) T) ((-654 . -157) 10480) ((-1184 . -1045) T) ((-1163 . -1045) T) ((-300 . -1139) 10459) ((-300 . -1142) 10438) ((-1106 . -100) T) ((-300 . -912) 10417) ((-131 . -1057) T) ((-115 . -1057) T) ((-568 . -1198) 10401) ((-661 . -23) T) ((-568 . -1045) 10351) ((-89 . -495) 10284) ((-164 . -347) T) ((-300 . -93) 10263) ((-300 . -34) 10242) ((-574 . -471) 10176) ((-131 . -23) T) ((-115 . -23) T) ((-679 . -1045) T) ((-458 . -471) 10113) ((-391 . -602) 10061) ((-614 . -989) 9959) ((-911 . -471) 9943) ((-339 . -1005) T) ((-336 . -1005) T) ((-328 . -1005) T) ((-248 . -1005) T) ((-232 . -1005) T) ((-824 . -580) NIL) ((-824 . -579) 9925) ((-1222 . -21) T) ((-1210 . -579) 9891) ((-544 . -954) T) ((-692 . -687) T) ((-1222 . -25) T) ((-235 . -998) 9822) ((-234 . -998) 9753) ((-70 . -1154) T) ((-235 . -218) 9706) ((-234 . -218) 9659) ((-39 . -100) T) ((-863 . -1005) T) ((-1122 . -100) T) ((-1115 . -687) T) ((-1114 . -687) T) ((-1108 . -687) T) ((-1108 . -751) NIL) ((-1108 . -754) NIL) ((-907 . -100) T) ((-874 . -100) T) ((-1070 . -687) T) ((-731 . -100) T) ((-633 . -100) T) ((-457 . -1045) T) ((-323 . -1057) T) ((-164 . -1057) T) ((-303 . -873) 9638) ((-1184 . -678) 9479) ((-825 . -163) T) ((-1163 . -678) 9293) ((-800 . -21) 9245) ((-800 . -25) 9197) ((-230 . -1091) 9181) ((-125 . -495) 9114) ((-391 . -25) T) ((-391 . -21) T) ((-323 . -23) T) ((-160 . -579) 9096) ((-160 . -580) 8864) ((-164 . -23) T) ((-606 . -272) 8841) ((-501 . -33) T) ((-851 . -579) 8823) ((-87 . -1154) T) ((-798 . -579) 8805) ((-768 . -579) 8787) ((-729 . -579) 8769) ((-637 . -579) 8751) ((-225 . -609) 8601) ((-1117 . -1045) T) ((-1113 . -1004) 8424) ((-1092 . -1154) T) ((-1069 . -1004) 8267) ((-811 . -1004) 8251) ((-1113 . -110) 8060) ((-1069 . -110) 7889) ((-811 . -110) 7868) ((-1173 . -580) NIL) ((-1173 . -579) 7850) ((-327 . -1093) T) ((-812 . -579) 7832) ((-1021 . -270) 7811) ((-78 . -1154) T) ((-956 . -862) NIL) ((-574 . -270) 7787) ((-1140 . -495) 7720) ((-469 . -1154) T) ((-544 . -579) 7702) ((-458 . -270) 7681) ((-498 . -91) T) ((-203 . -1154) T) ((-1033 . -216) 7665) ((-273 . -873) T) ((-777 . -291) 7644) ((-823 . -100) T) ((-742 . -216) 7628) ((-956 . -609) 7578) ((-911 . -270) 7555) ((-867 . -609) 7507) ((-598 . -21) T) ((-598 . -25) T) ((-573 . -21) T) ((-327 . -37) 7472) ((-654 . -685) 7439) ((-469 . -837) 7421) ((-469 . -839) 7403) ((-457 . -678) 7244) ((-203 . -837) 7226) ((-62 . -1154) T) ((-203 . -839) 7208) ((-573 . -25) T) ((-411 . -609) 7182) ((-469 . -989) 7142) ((-825 . -495) 7054) ((-203 . -989) 7014) ((-225 . -33) T) ((-952 . -1045) 6992) ((-1184 . -163) 6923) ((-1163 . -163) 6854) ((-673 . -139) 6833) ((-673 . -141) 6812) ((-661 . -129) T) ((-133 . -448) 6789) ((-619 . -617) 6773) ((-1089 . -579) 6705) ((-115 . -129) T) ((-460 . -1158) T) ((-574 . -570) 6681) ((-458 . -570) 6660) ((-320 . -319) 6629) ((-513 . -1045) T) ((-460 . -529) T) ((-1113 . -998) T) ((-1069 . -998) T) ((-811 . -998) T) ((-225 . -751) 6608) ((-225 . -754) 6559) ((-225 . -753) 6538) ((-1113 . -310) 6515) ((-225 . -687) 6426) ((-911 . -19) 6410) ((-469 . -361) 6392) ((-469 . -322) 6374) ((-1069 . -310) 6346) ((-338 . -1207) 6323) ((-203 . -361) 6305) ((-203 . -322) 6287) ((-911 . -570) 6264) ((-1113 . -218) T) ((-625 . -1045) T) ((-607 . -1045) T) ((-1196 . -1045) T) ((-1127 . -1045) T) ((-1033 . -237) 6201) ((-339 . -1045) T) ((-336 . -1045) T) ((-328 . -1045) T) ((-248 . -1045) T) ((-232 . -1045) T) ((-82 . -1154) T) ((-126 . -100) 6179) ((-120 . -100) 6157) ((-127 . -33) T) ((-1127 . -576) 6136) ((-461 . -1045) T) ((-1083 . -1045) T) ((-461 . -576) 6115) ((-235 . -755) 6066) ((-235 . -752) 6017) ((-234 . -755) 5968) ((-39 . -1093) NIL) ((-234 . -752) 5919) ((-1025 . -873) 5870) ((-956 . -754) T) ((-956 . -751) T) ((-956 . -687) T) ((-924 . -754) T) ((-867 . -687) T) ((-89 . -471) 5854) ((-469 . -853) NIL) ((-863 . -1045) T) ((-210 . -1004) 5819) ((-825 . -274) T) ((-203 . -853) NIL) ((-793 . -1057) 5798) ((-57 . -1045) 5748) ((-500 . -1045) 5726) ((-497 . -1045) 5676) ((-478 . -1045) 5654) ((-477 . -1045) 5604) ((-549 . -100) T) ((-537 . -100) T) ((-476 . -100) T) ((-457 . -163) 5535) ((-343 . -873) T) ((-337 . -873) T) ((-329 . -873) T) ((-210 . -110) 5491) ((-793 . -23) 5443) ((-411 . -687) T) ((-106 . -873) T) ((-39 . -37) 5388) ((-106 . -780) T) ((-550 . -333) T) ((-499 . -333) T) ((-1163 . -495) 5248) ((-300 . -435) 5227) ((-297 . -435) T) ((-794 . -270) 5206) ((-323 . -129) T) ((-164 . -129) T) ((-278 . -25) 5071) ((-278 . -21) 4955) ((-44 . -1130) 4934) ((-64 . -579) 4916) ((-845 . -579) 4898) ((-568 . -495) 4831) ((-44 . -105) 4781) ((-1047 . -409) 4765) ((-1047 . -352) 4744) ((-1010 . -1154) T) ((-1009 . -1004) 4731) ((-905 . -1004) 4574) ((-463 . -1004) 4417) ((-625 . -678) 4401) ((-1009 . -110) 4386) ((-905 . -110) 4215) ((-460 . -347) T) ((-339 . -678) 4167) ((-336 . -678) 4119) ((-328 . -678) 4071) ((-248 . -678) 3920) ((-232 . -678) 3769) ((-1201 . -100) T) ((-1200 . -100) 3719) ((-896 . -612) 3703) ((-1164 . -862) NIL) ((-463 . -110) 3532) ((-1036 . -91) T) ((-1013 . -91) T) ((-896 . -357) 3516) ((-233 . -100) T) ((-987 . -91) T) ((-72 . -579) 3498) ((-916 . -46) 3477) ((-584 . -1057) T) ((-1 . -1045) T) ((-671 . -100) T) ((-659 . -100) T) ((-1192 . -609) 3402) ((-589 . -91) T) ((-1185 . -609) 3299) ((-1135 . -579) 3281) ((-125 . -471) 3265) ((-465 . -91) T) ((-1034 . -579) 3247) ((-374 . -23) T) ((-1021 . -579) 3229) ((-85 . -1154) T) ((-1164 . -609) 3081) ((-863 . -678) 3046) ((-584 . -23) T) ((-574 . -579) 3028) ((-574 . -580) NIL) ((-458 . -580) NIL) ((-458 . -579) 3010) ((-492 . -1045) T) ((-488 . -1045) T) ((-335 . -25) T) ((-335 . -21) T) ((-126 . -293) 2948) ((-120 . -293) 2886) ((-563 . -609) 2873) ((-210 . -998) T) ((-562 . -609) 2798) ((-363 . -954) T) ((-210 . -228) T) ((-210 . -218) T) ((-911 . -580) 2759) ((-911 . -579) 2671) ((-823 . -37) 2658) ((-1184 . -274) 2609) ((-1163 . -274) 2560) ((-1064 . -435) T) ((-483 . -807) T) ((-300 . -1081) 2539) ((-951 . -141) 2518) ((-951 . -139) 2497) ((-476 . -293) 2484) ((-279 . -1130) 2463) ((-460 . -1057) T) ((-824 . -1004) 2408) ((-586 . -100) T) ((-1140 . -471) 2392) ((-235 . -352) 2371) ((-234 . -352) 2350) ((-279 . -105) 2300) ((-1009 . -998) T) ((-116 . -100) T) ((-905 . -998) T) ((-824 . -110) 2229) ((-460 . -23) T) ((-463 . -998) T) ((-1009 . -218) T) ((-905 . -310) 2198) ((-463 . -310) 2155) ((-339 . -163) T) ((-336 . -163) T) ((-328 . -163) T) ((-248 . -163) 2066) ((-232 . -163) 1977) ((-916 . -989) 1875) ((-696 . -989) 1846) ((-498 . -579) 1812) ((-1050 . -100) T) ((-1038 . -579) 1779) ((-985 . -579) 1761) ((-1192 . -687) T) ((-1185 . -687) T) ((-1164 . -751) NIL) ((-160 . -1004) 1671) ((-1164 . -754) NIL) ((-863 . -163) T) ((-1164 . -687) T) ((-1212 . -145) 1655) ((-955 . -326) 1629) ((-952 . -495) 1562) ((-800 . -807) 1541) ((-537 . -1093) T) ((-457 . -274) 1492) ((-563 . -687) T) ((-345 . -579) 1474) ((-306 . -579) 1456) ((-402 . -989) 1354) ((-562 . -687) T) ((-391 . -807) 1305) ((-160 . -110) 1201) ((-793 . -129) 1153) ((-698 . -145) 1137) ((-1200 . -293) 1075) ((-469 . -291) T) ((-363 . -579) 1042) ((-501 . -962) 1026) ((-363 . -580) 940) ((-203 . -291) T) ((-135 . -145) 922) ((-675 . -270) 901) ((-469 . -973) T) ((-549 . -37) 888) ((-537 . -37) 875) ((-476 . -37) 840) ((-203 . -973) T) ((-824 . -998) T) ((-794 . -579) 822) ((-787 . -579) 804) ((-785 . -579) 786) ((-776 . -862) 765) ((-1223 . -1057) T) ((-1173 . -1004) 588) ((-812 . -1004) 572) ((-824 . -228) T) ((-824 . -218) NIL) ((-649 . -1154) T) ((-1223 . -23) T) ((-776 . -609) 497) ((-523 . -1154) T) ((-402 . -322) 481) ((-544 . -1004) 468) ((-1173 . -110) 277) ((-661 . -602) 259) ((-812 . -110) 238) ((-365 . -23) T) ((-1127 . -495) 30) ((-641 . -1045) T))
\ No newline at end of file +((($) . T)) +((((-823)) . T)) +((($) . T)) +(((-1233 . -163) T) ((-1233 . -691) T) ((-1233 . -1063) T) ((-1233 . -1011) T) ((-1233 . -1004) T) ((-1233 . -613) 144256) ((-1233 . -129) T) ((-1233 . -25) T) ((-1233 . -100) T) ((-1233 . -583) 144238) ((-1233 . -1052) T) ((-1233 . -23) T) ((-1233 . -21) T) ((-1233 . -1010) 144225) ((-1233 . -110) 144210) ((-1233 . -353) T) ((-1233 . -584) 144192) ((-1233 . -1099) T) ((-1229 . -1227) 144171) ((-1229 . -995) 144148) ((-1229 . -1004) T) ((-1229 . -1011) T) ((-1229 . -1063) T) ((-1229 . -691) T) ((-1229 . -21) T) ((-1229 . -23) T) ((-1229 . -1052) T) ((-1229 . -583) 144130) ((-1229 . -100) T) ((-1229 . -25) T) ((-1229 . -129) T) ((-1229 . -613) 144104) ((-1229 . -1219) 144088) ((-1229 . -682) 144058) ((-1229 . -1010) 144042) ((-1229 . -110) 144021) ((-1229 . -37) 143991) ((-1229 . -1224) 143970) ((-1228 . -1004) T) ((-1228 . -1011) T) ((-1228 . -1063) T) ((-1228 . -691) T) ((-1228 . -21) T) ((-1228 . -23) T) ((-1228 . -1052) T) ((-1228 . -583) 143952) ((-1228 . -100) T) ((-1228 . -25) T) ((-1228 . -129) T) ((-1228 . -613) 143926) ((-1228 . -1219) 143910) ((-1228 . -682) 143880) ((-1228 . -1010) 143864) ((-1228 . -110) 143843) ((-1228 . -37) 143813) ((-1228 . -369) 143792) ((-1228 . -995) 143776) ((-1226 . -1227) 143752) ((-1226 . -995) 143726) ((-1226 . -1004) T) ((-1226 . -1011) T) ((-1226 . -1063) T) ((-1226 . -691) T) ((-1226 . -21) T) ((-1226 . -23) T) ((-1226 . -1052) T) ((-1226 . -583) 143708) ((-1226 . -100) T) ((-1226 . -25) T) ((-1226 . -129) T) ((-1226 . -613) 143682) ((-1226 . -1219) 143666) ((-1226 . -682) 143636) ((-1226 . -1010) 143620) ((-1226 . -110) 143599) ((-1226 . -37) 143569) ((-1226 . -1224) 143545) ((-1225 . -1227) 143524) ((-1225 . -995) 143481) ((-1225 . -1004) T) ((-1225 . -1011) T) ((-1225 . -1063) T) ((-1225 . -691) T) ((-1225 . -21) T) ((-1225 . -23) T) ((-1225 . -1052) T) ((-1225 . -583) 143463) ((-1225 . -100) T) ((-1225 . -25) T) ((-1225 . -129) T) ((-1225 . -613) 143437) ((-1225 . -1219) 143421) ((-1225 . -682) 143391) ((-1225 . -1010) 143375) ((-1225 . -110) 143354) ((-1225 . -37) 143324) ((-1225 . -1224) 143303) ((-1225 . -369) 143275) ((-1220 . -369) 143247) ((-1220 . -995) 143224) ((-1220 . -682) 143194) ((-1220 . -613) 143168) ((-1220 . -129) T) ((-1220 . -25) T) ((-1220 . -100) T) ((-1220 . -583) 143150) ((-1220 . -1052) T) ((-1220 . -23) T) ((-1220 . -21) T) ((-1220 . -1010) 143134) ((-1220 . -110) 143113) ((-1220 . -1227) 143092) ((-1220 . -1004) T) ((-1220 . -1011) T) ((-1220 . -1063) T) ((-1220 . -691) T) ((-1220 . -1219) 143076) ((-1220 . -37) 143046) ((-1220 . -1224) 143025) ((-1218 . -1154) 142994) ((-1218 . -583) 142956) ((-1218 . -145) 142940) ((-1218 . -33) T) ((-1218 . -1159) T) ((-1218 . -294) 142878) ((-1218 . -496) 142811) ((-1218 . -1052) T) ((-1218 . -100) T) ((-1218 . -472) 142795) ((-1218 . -584) 142756) ((-1218 . -935) 142725) ((-1217 . -1004) T) ((-1217 . -1011) T) ((-1217 . -1063) T) ((-1217 . -691) T) ((-1217 . -21) T) ((-1217 . -23) T) ((-1217 . -1052) T) ((-1217 . -583) 142707) ((-1217 . -100) T) ((-1217 . -25) T) ((-1217 . -129) T) ((-1217 . -613) 142667) ((-1217 . -37) 142637) ((-1217 . -110) 142602) ((-1217 . -1010) 142572) ((-1217 . -682) 142542) ((-1216 . -1035) T) ((-1216 . -583) 142508) ((-1216 . -1052) T) ((-1216 . -100) T) ((-1216 . -91) T) ((-1209 . -1052) T) ((-1209 . -583) 142490) ((-1209 . -100) T) ((-1208 . -1052) T) ((-1208 . -583) 142472) ((-1208 . -100) T) ((-1205 . -1204) 142456) ((-1205 . -357) 142440) ((-1205 . -811) 142419) ((-1205 . -145) 142403) ((-1205 . -33) T) ((-1205 . -1159) T) ((-1205 . -583) 142315) ((-1205 . -294) 142253) ((-1205 . -496) 142186) ((-1205 . -1052) 142136) ((-1205 . -100) 142086) ((-1205 . -472) 142070) ((-1205 . -584) 142031) ((-1205 . -574) 142008) ((-1205 . -271) 141985) ((-1205 . -273) 141962) ((-1205 . -616) 141946) ((-1205 . -19) 141930) ((-1202 . -1052) T) ((-1202 . -583) 141896) ((-1202 . -100) T) ((-1195 . -1198) 141880) ((-1195 . -219) 141839) ((-1195 . -613) 141764) ((-1195 . -129) T) ((-1195 . -25) T) ((-1195 . -100) T) ((-1195 . -583) 141746) ((-1195 . -1052) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -691) T) ((-1195 . -1063) T) ((-1195 . -1011) T) ((-1195 . -1004) T) ((-1195 . -271) 141731) ((-1195 . -859) 141644) ((-1195 . -932) 141613) ((-1195 . -37) 141510) ((-1195 . -110) 141379) ((-1195 . -1010) 141262) ((-1195 . -682) 141159) ((-1195 . -139) 141138) ((-1195 . -141) 141117) ((-1195 . -163) 141068) ((-1195 . -533) 141047) ((-1195 . -275) 141026) ((-1195 . -46) 141003) ((-1195 . -1184) 140980) ((-1195 . -34) 140946) ((-1195 . -93) 140912) ((-1195 . -269) 140878) ((-1195 . -475) 140844) ((-1195 . -1148) 140810) ((-1195 . -1145) 140776) ((-1195 . -960) 140742) ((-1192 . -311) 140686) ((-1192 . -995) 140652) ((-1192 . -397) 140618) ((-1192 . -37) 140510) ((-1192 . -613) 140415) ((-1192 . -691) T) ((-1192 . -1063) T) ((-1192 . -1011) T) ((-1192 . -1004) T) ((-1192 . -110) 140307) ((-1192 . -1010) 140212) ((-1192 . -21) T) ((-1192 . -23) T) ((-1192 . -1052) T) ((-1192 . -583) 140194) ((-1192 . -100) T) ((-1192 . -25) T) ((-1192 . -129) T) ((-1192 . -682) 140086) ((-1192 . -139) 140047) ((-1192 . -141) 140008) ((-1192 . -163) T) ((-1192 . -533) T) ((-1192 . -275) T) ((-1192 . -46) 139952) ((-1191 . -1190) 139931) ((-1191 . -348) 139910) ((-1191 . -1164) 139889) ((-1191 . -880) 139868) ((-1191 . -533) 139819) ((-1191 . -163) 139750) ((-1191 . -682) 139591) ((-1191 . -37) 139432) ((-1191 . -436) 139411) ((-1191 . -292) 139390) ((-1191 . -613) 139287) ((-1191 . -691) T) ((-1191 . -1063) T) ((-1191 . -1011) T) ((-1191 . -1004) T) ((-1191 . -110) 139108) ((-1191 . -1010) 138943) ((-1191 . -21) T) ((-1191 . -23) T) ((-1191 . -1052) T) ((-1191 . -583) 138925) ((-1191 . -100) T) ((-1191 . -25) T) ((-1191 . -129) T) ((-1191 . -275) 138876) ((-1191 . -229) 138855) ((-1191 . -960) 138821) ((-1191 . -1145) 138787) ((-1191 . -1148) 138753) ((-1191 . -475) 138719) ((-1191 . -269) 138685) ((-1191 . -93) 138651) ((-1191 . -34) 138617) ((-1191 . -1184) 138587) ((-1191 . -46) 138557) ((-1191 . -141) 138536) ((-1191 . -139) 138515) ((-1191 . -932) 138477) ((-1191 . -859) 138383) ((-1191 . -271) 138368) ((-1191 . -219) 138320) ((-1191 . -1188) 138304) ((-1191 . -995) 138288) ((-1186 . -1190) 138249) ((-1186 . -348) 138228) ((-1186 . -1164) 138207) ((-1186 . -880) 138186) ((-1186 . -533) 138137) ((-1186 . -163) 138068) ((-1186 . -682) 137909) ((-1186 . -37) 137750) ((-1186 . -436) 137729) ((-1186 . -292) 137708) ((-1186 . -613) 137605) ((-1186 . -691) T) ((-1186 . -1063) T) ((-1186 . -1011) T) ((-1186 . -1004) T) ((-1186 . -110) 137426) ((-1186 . -1010) 137261) ((-1186 . -21) T) ((-1186 . -23) T) ((-1186 . -1052) T) ((-1186 . -583) 137243) ((-1186 . -100) T) ((-1186 . -25) T) ((-1186 . -129) T) ((-1186 . -275) 137194) ((-1186 . -229) 137173) ((-1186 . -960) 137139) ((-1186 . -1145) 137105) ((-1186 . -1148) 137071) ((-1186 . -475) 137037) ((-1186 . -269) 137003) ((-1186 . -93) 136969) ((-1186 . -34) 136935) ((-1186 . -1184) 136905) ((-1186 . -46) 136875) ((-1186 . -141) 136854) ((-1186 . -139) 136833) ((-1186 . -932) 136795) ((-1186 . -859) 136701) ((-1186 . -271) 136686) ((-1186 . -219) 136638) ((-1186 . -1188) 136622) ((-1186 . -995) 136557) ((-1174 . -1181) 136541) ((-1174 . -1099) 136519) ((-1174 . -584) NIL) ((-1174 . -294) 136506) ((-1174 . -496) 136453) ((-1174 . -311) 136430) ((-1174 . -995) 136312) ((-1174 . -397) 136296) ((-1174 . -37) 136125) ((-1174 . -110) 135934) ((-1174 . -1010) 135757) ((-1174 . -613) 135682) ((-1174 . -682) 135511) ((-1174 . -139) 135490) ((-1174 . -141) 135469) ((-1174 . -46) 135446) ((-1174 . -362) 135430) ((-1174 . -606) 135378) ((-1174 . -811) 135357) ((-1174 . -859) 135300) ((-1174 . -845) NIL) ((-1174 . -869) 135279) ((-1174 . -1164) 135258) ((-1174 . -909) 135227) ((-1174 . -880) 135206) ((-1174 . -533) 135117) ((-1174 . -275) 135028) ((-1174 . -163) 134919) ((-1174 . -436) 134850) ((-1174 . -292) 134829) ((-1174 . -271) 134756) ((-1174 . -219) T) ((-1174 . -129) T) ((-1174 . -25) T) ((-1174 . -100) T) ((-1174 . -583) 134738) ((-1174 . -1052) T) ((-1174 . -23) T) ((-1174 . -21) T) ((-1174 . -691) T) ((-1174 . -1063) T) ((-1174 . -1011) T) ((-1174 . -1004) T) ((-1174 . -217) 134722) ((-1172 . -1046) 134706) ((-1172 . -1159) T) ((-1172 . -1052) 134684) ((-1172 . -583) 134651) ((-1172 . -100) 134629) ((-1172 . -1047) 134586) ((-1170 . -1169) 134565) ((-1170 . -960) 134531) ((-1170 . -1145) 134497) ((-1170 . -1148) 134463) ((-1170 . -475) 134429) ((-1170 . -269) 134395) ((-1170 . -93) 134361) ((-1170 . -34) 134327) ((-1170 . -1184) 134304) ((-1170 . -46) 134281) ((-1170 . -682) 134095) ((-1170 . -613) 133965) ((-1170 . -1010) 133773) ((-1170 . -110) 133562) ((-1170 . -37) 133376) ((-1170 . -932) 133345) ((-1170 . -271) 133265) ((-1170 . -1167) 133249) ((-1170 . -691) T) ((-1170 . -1063) T) ((-1170 . -1011) T) ((-1170 . -1004) T) ((-1170 . -21) T) ((-1170 . -23) T) ((-1170 . -1052) T) ((-1170 . -583) 133231) ((-1170 . -100) T) ((-1170 . -25) T) ((-1170 . -129) T) ((-1170 . -139) 133156) ((-1170 . -141) 133081) ((-1170 . -584) 132754) ((-1170 . -217) 132724) ((-1170 . -859) 132575) ((-1170 . -219) 132480) ((-1170 . -348) 132459) ((-1170 . -1164) 132438) ((-1170 . -880) 132417) ((-1170 . -533) 132368) ((-1170 . -163) 132299) ((-1170 . -436) 132278) ((-1170 . -292) 132257) ((-1170 . -275) 132208) ((-1170 . -229) 132187) ((-1170 . -323) 132157) ((-1170 . -496) 132017) ((-1170 . -294) 131956) ((-1170 . -362) 131926) ((-1170 . -606) 131834) ((-1170 . -385) 131804) ((-1170 . -1159) 131783) ((-1170 . -845) 131656) ((-1170 . -784) 131609) ((-1170 . -755) 131562) ((-1170 . -756) 131515) ((-1170 . -811) 131414) ((-1170 . -758) 131367) ((-1170 . -761) 131320) ((-1170 . -809) 131273) ((-1170 . -843) 131243) ((-1170 . -869) 131196) ((-1170 . -977) 131149) ((-1170 . -995) 130938) ((-1170 . -1099) 130890) ((-1170 . -950) 130860) ((-1165 . -1169) 130821) ((-1165 . -960) 130787) ((-1165 . -1145) 130753) ((-1165 . -1148) 130719) ((-1165 . -475) 130685) ((-1165 . -269) 130651) ((-1165 . -93) 130617) ((-1165 . -34) 130583) ((-1165 . -1184) 130560) ((-1165 . -46) 130537) ((-1165 . -682) 130333) ((-1165 . -613) 130185) ((-1165 . -1010) 129975) ((-1165 . -110) 129744) ((-1165 . -37) 129540) ((-1165 . -932) 129509) ((-1165 . -271) 129357) ((-1165 . -1167) 129341) ((-1165 . -691) T) ((-1165 . -1063) T) ((-1165 . -1011) T) ((-1165 . -1004) T) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1052) T) ((-1165 . -583) 129323) ((-1165 . -100) T) ((-1165 . -25) T) ((-1165 . -129) T) ((-1165 . -139) 129230) ((-1165 . -141) 129137) ((-1165 . -584) NIL) ((-1165 . -217) 129089) ((-1165 . -859) 128922) ((-1165 . -219) 128809) ((-1165 . -348) 128788) ((-1165 . -1164) 128767) ((-1165 . -880) 128746) ((-1165 . -533) 128697) ((-1165 . -163) 128628) ((-1165 . -436) 128607) ((-1165 . -292) 128586) ((-1165 . -275) 128537) ((-1165 . -229) 128516) ((-1165 . -323) 128468) ((-1165 . -496) 128237) ((-1165 . -294) 128122) ((-1165 . -362) 128074) ((-1165 . -606) 128026) ((-1165 . -385) 127978) ((-1165 . -1159) 127957) ((-1165 . -845) NIL) ((-1165 . -784) NIL) ((-1165 . -755) NIL) ((-1165 . -756) NIL) ((-1165 . -811) NIL) ((-1165 . -758) NIL) ((-1165 . -761) NIL) ((-1165 . -809) NIL) ((-1165 . -843) 127909) ((-1165 . -869) NIL) ((-1165 . -977) NIL) ((-1165 . -995) 127875) ((-1165 . -1099) NIL) ((-1165 . -950) 127827) ((-1160 . -1035) T) ((-1160 . -583) 127793) ((-1160 . -1052) T) ((-1160 . -100) T) ((-1160 . -91) T) ((-1157 . -583) 127705) ((-1157 . -1052) 127683) ((-1157 . -100) 127661) ((-1152 . -705) 127637) ((-1152 . -34) 127603) ((-1152 . -93) 127569) ((-1152 . -269) 127535) ((-1152 . -475) 127501) ((-1152 . -1148) 127467) ((-1152 . -1145) 127433) ((-1152 . -960) 127399) ((-1152 . -46) 127368) ((-1152 . -37) 127265) ((-1152 . -682) 127162) ((-1152 . -275) 127141) ((-1152 . -533) 127120) ((-1152 . -110) 126989) ((-1152 . -1010) 126872) ((-1152 . -163) 126823) ((-1152 . -141) 126802) ((-1152 . -139) 126781) ((-1152 . -613) 126706) ((-1152 . -932) 126668) ((-1152 . -1004) T) ((-1152 . -1011) T) ((-1152 . -1063) T) ((-1152 . -691) T) ((-1152 . -21) T) ((-1152 . -23) T) ((-1152 . -1052) T) ((-1152 . -583) 126650) ((-1152 . -100) T) ((-1152 . -25) T) ((-1152 . -129) T) ((-1152 . -859) 126631) ((-1152 . -496) 126598) ((-1152 . -294) 126585) ((-1146 . -968) 126569) ((-1146 . -33) T) ((-1146 . -1159) T) ((-1146 . -583) 126501) ((-1146 . -294) 126439) ((-1146 . -496) 126372) ((-1146 . -1052) 126350) ((-1146 . -100) 126328) ((-1146 . -472) 126312) ((-1141 . -350) 126286) ((-1141 . -100) T) ((-1141 . -583) 126268) ((-1141 . -1052) T) ((-1139 . -1052) T) ((-1139 . -583) 126250) ((-1139 . -100) T) ((-1132 . -1136) 126229) ((-1132 . -215) 126179) ((-1132 . -105) 126129) ((-1132 . -294) 125933) ((-1132 . -496) 125725) ((-1132 . -472) 125662) ((-1132 . -145) 125612) ((-1132 . -584) NIL) ((-1132 . -221) 125562) ((-1132 . -580) 125541) ((-1132 . -273) 125520) ((-1132 . -271) 125499) ((-1132 . -100) T) ((-1132 . -1052) T) ((-1132 . -583) 125481) ((-1132 . -1159) T) ((-1132 . -33) T) ((-1132 . -574) 125460) ((-1128 . -1201) T) ((-1128 . -1052) T) ((-1128 . -583) 125442) ((-1128 . -100) T) ((-1127 . -583) 125424) ((-1126 . -583) 125406) ((-1125 . -311) 125383) ((-1125 . -995) 125281) ((-1125 . -397) 125265) ((-1125 . -37) 125162) ((-1125 . -613) 125087) ((-1125 . -691) T) ((-1125 . -1063) T) ((-1125 . -1011) T) ((-1125 . -1004) T) ((-1125 . -110) 124956) ((-1125 . -1010) 124839) ((-1125 . -21) T) ((-1125 . -23) T) ((-1125 . -1052) T) ((-1125 . -583) 124821) ((-1125 . -100) T) ((-1125 . -25) T) ((-1125 . -129) T) ((-1125 . -682) 124718) ((-1125 . -139) 124697) ((-1125 . -141) 124676) ((-1125 . -163) 124627) ((-1125 . -533) 124606) ((-1125 . -275) 124585) ((-1125 . -46) 124562) ((-1123 . -811) T) ((-1123 . -100) T) ((-1123 . -583) 124544) ((-1123 . -1052) T) ((-1123 . -584) 124466) ((-1123 . -785) T) ((-1123 . -845) 124433) ((-1122 . -583) 124415) ((-1121 . -1198) 124399) ((-1121 . -219) 124358) ((-1121 . -613) 124283) ((-1121 . -129) T) ((-1121 . -25) T) ((-1121 . -100) T) ((-1121 . -583) 124265) ((-1121 . -1052) T) ((-1121 . -23) T) ((-1121 . -21) T) ((-1121 . -691) T) ((-1121 . -1063) T) ((-1121 . -1011) T) ((-1121 . -1004) T) ((-1121 . -271) 124250) ((-1121 . -859) 124163) ((-1121 . -932) 124132) ((-1121 . -37) 124029) ((-1121 . -110) 123898) ((-1121 . -1010) 123781) ((-1121 . -682) 123678) ((-1121 . -139) 123657) ((-1121 . -141) 123636) ((-1121 . -163) 123587) ((-1121 . -533) 123566) ((-1121 . -275) 123545) ((-1121 . -46) 123522) ((-1121 . -1184) 123499) ((-1121 . -34) 123465) ((-1121 . -93) 123431) ((-1121 . -269) 123397) ((-1121 . -475) 123363) ((-1121 . -1148) 123329) ((-1121 . -1145) 123295) ((-1121 . -960) 123261) ((-1120 . -1190) 123222) ((-1120 . -348) 123201) ((-1120 . -1164) 123180) ((-1120 . -880) 123159) ((-1120 . -533) 123110) ((-1120 . -163) 123041) ((-1120 . -682) 122882) ((-1120 . -37) 122723) ((-1120 . -436) 122702) ((-1120 . -292) 122681) ((-1120 . -613) 122578) ((-1120 . -691) T) ((-1120 . -1063) T) ((-1120 . -1011) T) ((-1120 . -1004) T) ((-1120 . -110) 122399) ((-1120 . -1010) 122234) ((-1120 . -21) T) ((-1120 . -23) T) ((-1120 . -1052) T) ((-1120 . -583) 122216) ((-1120 . -100) T) ((-1120 . -25) T) ((-1120 . -129) T) ((-1120 . -275) 122167) ((-1120 . -229) 122146) ((-1120 . -960) 122112) ((-1120 . -1145) 122078) ((-1120 . -1148) 122044) ((-1120 . -475) 122010) ((-1120 . -269) 121976) ((-1120 . -93) 121942) ((-1120 . -34) 121908) ((-1120 . -1184) 121878) ((-1120 . -46) 121848) ((-1120 . -141) 121827) ((-1120 . -139) 121806) ((-1120 . -932) 121768) ((-1120 . -859) 121674) ((-1120 . -271) 121659) ((-1120 . -219) 121611) ((-1120 . -1188) 121595) ((-1120 . -995) 121530) ((-1117 . -1181) 121514) ((-1117 . -1099) 121492) ((-1117 . -584) NIL) ((-1117 . -294) 121479) ((-1117 . -496) 121426) ((-1117 . -311) 121403) ((-1117 . -995) 121285) ((-1117 . -397) 121269) ((-1117 . -37) 121098) ((-1117 . -110) 120907) ((-1117 . -1010) 120730) ((-1117 . -613) 120655) ((-1117 . -682) 120484) ((-1117 . -139) 120463) ((-1117 . -141) 120442) ((-1117 . -46) 120419) ((-1117 . -362) 120403) ((-1117 . -606) 120351) ((-1117 . -811) 120330) ((-1117 . -859) 120273) ((-1117 . -845) NIL) ((-1117 . -869) 120252) ((-1117 . -1164) 120231) ((-1117 . -909) 120200) ((-1117 . -880) 120179) ((-1117 . -533) 120090) ((-1117 . -275) 120001) ((-1117 . -163) 119892) ((-1117 . -436) 119823) ((-1117 . -292) 119802) ((-1117 . -271) 119729) ((-1117 . -219) T) ((-1117 . -129) T) ((-1117 . -25) T) ((-1117 . -100) T) ((-1117 . -583) 119711) ((-1117 . -1052) T) ((-1117 . -23) T) ((-1117 . -21) T) ((-1117 . -691) T) ((-1117 . -1063) T) ((-1117 . -1011) T) ((-1117 . -1004) T) ((-1117 . -217) 119695) ((-1114 . -1169) 119656) ((-1114 . -960) 119622) ((-1114 . -1145) 119588) ((-1114 . -1148) 119554) ((-1114 . -475) 119520) ((-1114 . -269) 119486) ((-1114 . -93) 119452) ((-1114 . -34) 119418) ((-1114 . -1184) 119395) ((-1114 . -46) 119372) ((-1114 . -682) 119168) ((-1114 . -613) 119020) ((-1114 . -1010) 118810) ((-1114 . -110) 118579) ((-1114 . -37) 118375) ((-1114 . -932) 118344) ((-1114 . -271) 118192) ((-1114 . -1167) 118176) ((-1114 . -691) T) ((-1114 . -1063) T) ((-1114 . -1011) T) ((-1114 . -1004) T) ((-1114 . -21) T) ((-1114 . -23) T) ((-1114 . -1052) T) ((-1114 . -583) 118158) ((-1114 . -100) T) ((-1114 . -25) T) ((-1114 . -129) T) ((-1114 . -139) 118065) ((-1114 . -141) 117972) ((-1114 . -584) NIL) ((-1114 . -217) 117924) ((-1114 . -859) 117757) ((-1114 . -219) 117644) ((-1114 . -348) 117623) ((-1114 . -1164) 117602) ((-1114 . -880) 117581) ((-1114 . -533) 117532) ((-1114 . -163) 117463) ((-1114 . -436) 117442) ((-1114 . -292) 117421) ((-1114 . -275) 117372) ((-1114 . -229) 117351) ((-1114 . -323) 117303) ((-1114 . -496) 117072) ((-1114 . -294) 116957) ((-1114 . -362) 116909) ((-1114 . -606) 116861) ((-1114 . -385) 116813) ((-1114 . -1159) 116792) ((-1114 . -845) NIL) ((-1114 . -784) NIL) ((-1114 . -755) NIL) ((-1114 . -756) NIL) ((-1114 . -811) NIL) ((-1114 . -758) NIL) ((-1114 . -761) NIL) ((-1114 . -809) NIL) ((-1114 . -843) 116744) ((-1114 . -869) NIL) ((-1114 . -977) NIL) ((-1114 . -995) 116710) ((-1114 . -1099) NIL) ((-1114 . -950) 116662) ((-1113 . -1052) T) ((-1113 . -583) 116644) ((-1113 . -100) T) ((-1112 . -1052) T) ((-1112 . -583) 116626) ((-1112 . -100) T) ((-1107 . -1136) 116602) ((-1107 . -215) 116549) ((-1107 . -105) 116496) ((-1107 . -294) 116291) ((-1107 . -496) 116074) ((-1107 . -472) 116008) ((-1107 . -145) 115955) ((-1107 . -584) NIL) ((-1107 . -221) 115902) ((-1107 . -580) 115878) ((-1107 . -273) 115854) ((-1107 . -271) 115830) ((-1107 . -100) T) ((-1107 . -1052) T) ((-1107 . -583) 115812) ((-1107 . -1159) T) ((-1107 . -33) T) ((-1107 . -574) 115788) ((-1106 . -1105) T) ((-1106 . -19) 115770) ((-1106 . -616) 115752) ((-1106 . -273) 115727) ((-1106 . -271) 115702) ((-1106 . -574) 115677) ((-1106 . -584) NIL) ((-1106 . -472) 115659) ((-1106 . -496) NIL) ((-1106 . -294) NIL) ((-1106 . -1159) T) ((-1106 . -33) T) ((-1106 . -145) 115641) ((-1106 . -811) T) ((-1106 . -357) 115623) ((-1106 . -1092) T) ((-1106 . -100) T) ((-1106 . -583) 115605) ((-1106 . -1052) T) ((-1106 . -785) T) ((-1101 . -639) 115589) ((-1101 . -616) 115573) ((-1101 . -273) 115550) ((-1101 . -271) 115527) ((-1101 . -574) 115504) ((-1101 . -584) 115465) ((-1101 . -472) 115449) ((-1101 . -100) 115427) ((-1101 . -1052) 115405) ((-1101 . -496) 115338) ((-1101 . -294) 115276) ((-1101 . -583) 115208) ((-1101 . -1159) T) ((-1101 . -33) T) ((-1101 . -145) 115192) ((-1101 . -1194) 115176) ((-1101 . -968) 115160) ((-1101 . -1097) 115144) ((-1098 . -1136) 115123) ((-1098 . -215) 115073) ((-1098 . -105) 115023) ((-1098 . -294) 114827) ((-1098 . -496) 114619) ((-1098 . -472) 114556) ((-1098 . -145) 114506) ((-1098 . -584) NIL) ((-1098 . -221) 114456) ((-1098 . -580) 114435) ((-1098 . -273) 114414) ((-1098 . -271) 114393) ((-1098 . -100) T) ((-1098 . -1052) T) ((-1098 . -583) 114375) ((-1098 . -1159) T) ((-1098 . -33) T) ((-1098 . -574) 114354) ((-1095 . -1071) 114338) ((-1095 . -472) 114322) ((-1095 . -100) 114300) ((-1095 . -1052) 114278) ((-1095 . -496) 114211) ((-1095 . -294) 114149) ((-1095 . -583) 114081) ((-1095 . -1159) T) ((-1095 . -33) T) ((-1095 . -105) 114065) ((-1094 . -1060) 114034) ((-1094 . -1154) 114003) ((-1094 . -583) 113965) ((-1094 . -145) 113949) ((-1094 . -33) T) ((-1094 . -1159) T) ((-1094 . -294) 113887) ((-1094 . -496) 113820) ((-1094 . -1052) T) ((-1094 . -100) T) ((-1094 . -472) 113804) ((-1094 . -584) 113765) ((-1094 . -935) 113734) ((-1094 . -1024) 113703) ((-1090 . -1073) 113648) ((-1090 . -472) 113632) ((-1090 . -496) 113565) ((-1090 . -294) 113503) ((-1090 . -1159) T) ((-1090 . -33) T) ((-1090 . -1007) 113443) ((-1090 . -995) 113341) ((-1090 . -397) 113325) ((-1090 . -606) 113273) ((-1090 . -362) 113257) ((-1090 . -219) 113236) ((-1090 . -859) 113195) ((-1090 . -217) 113179) ((-1090 . -682) 113111) ((-1090 . -613) 113085) ((-1090 . -129) T) ((-1090 . -25) T) ((-1090 . -100) T) ((-1090 . -583) 113047) ((-1090 . -1052) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -1010) 113031) ((-1090 . -110) 113010) ((-1090 . -1004) T) ((-1090 . -1011) T) ((-1090 . -1063) T) ((-1090 . -691) T) ((-1090 . -37) 112970) ((-1090 . -584) 112931) ((-1089 . -968) 112902) ((-1089 . -33) T) ((-1089 . -1159) T) ((-1089 . -583) 112884) ((-1089 . -294) 112810) ((-1089 . -496) 112729) ((-1089 . -1052) T) ((-1089 . -100) T) ((-1089 . -472) 112700) ((-1088 . -1052) T) ((-1088 . -583) 112682) ((-1088 . -100) T) ((-1083 . -1084) 112666) ((-1083 . -100) T) ((-1083 . -583) 112648) ((-1083 . -1052) T) ((-1076 . -705) 112627) ((-1076 . -34) 112593) ((-1076 . -93) 112559) ((-1076 . -269) 112525) ((-1076 . -475) 112491) ((-1076 . -1148) 112457) ((-1076 . -1145) 112423) ((-1076 . -960) 112389) ((-1076 . -46) 112361) ((-1076 . -37) 112258) ((-1076 . -682) 112155) ((-1076 . -275) 112134) ((-1076 . -533) 112113) ((-1076 . -110) 111982) ((-1076 . -1010) 111865) ((-1076 . -163) 111816) ((-1076 . -141) 111795) ((-1076 . -139) 111774) ((-1076 . -613) 111699) ((-1076 . -932) 111666) ((-1076 . -1004) T) ((-1076 . -1011) T) ((-1076 . -1063) T) ((-1076 . -691) T) ((-1076 . -21) T) ((-1076 . -23) T) ((-1076 . -1052) T) ((-1076 . -583) 111648) ((-1076 . -100) T) ((-1076 . -25) T) ((-1076 . -129) T) ((-1076 . -859) 111632) ((-1076 . -496) 111602) ((-1076 . -294) 111589) ((-1075 . -909) 111556) ((-1075 . -995) 111441) ((-1075 . -1164) 111420) ((-1075 . -869) 111399) ((-1075 . -845) 111258) ((-1075 . -859) 111242) ((-1075 . -811) 111221) ((-1075 . -496) 111173) ((-1075 . -436) 111124) ((-1075 . -606) 111072) ((-1075 . -362) 111056) ((-1075 . -46) 111028) ((-1075 . -37) 110877) ((-1075 . -682) 110726) ((-1075 . -275) 110657) ((-1075 . -533) 110588) ((-1075 . -110) 110417) ((-1075 . -1010) 110260) ((-1075 . -163) 110171) ((-1075 . -141) 110150) ((-1075 . -139) 110129) ((-1075 . -613) 110054) ((-1075 . -129) T) ((-1075 . -25) T) ((-1075 . -100) T) ((-1075 . -583) 110036) ((-1075 . -1052) T) ((-1075 . -23) T) ((-1075 . -21) T) ((-1075 . -1004) T) ((-1075 . -1011) T) ((-1075 . -1063) T) ((-1075 . -691) T) ((-1075 . -397) 110020) ((-1075 . -311) 109992) ((-1075 . -294) 109979) ((-1075 . -584) 109727) ((-1070 . -525) T) ((-1070 . -1164) T) ((-1070 . -1099) T) ((-1070 . -995) 109709) ((-1070 . -584) 109624) ((-1070 . -977) T) ((-1070 . -845) 109606) ((-1070 . -809) T) ((-1070 . -761) T) ((-1070 . -758) T) ((-1070 . -811) T) ((-1070 . -756) T) ((-1070 . -755) T) ((-1070 . -784) T) ((-1070 . -606) 109588) ((-1070 . -880) T) ((-1070 . -533) T) ((-1070 . -275) T) ((-1070 . -163) T) ((-1070 . -682) 109575) ((-1070 . -1010) 109562) ((-1070 . -110) 109547) ((-1070 . -37) 109534) ((-1070 . -436) T) ((-1070 . -292) T) ((-1070 . -219) T) ((-1070 . -137) T) ((-1070 . -1004) T) ((-1070 . -1011) T) ((-1070 . -1063) T) ((-1070 . -691) T) ((-1070 . -21) T) ((-1070 . -23) T) ((-1070 . -1052) T) ((-1070 . -583) 109516) ((-1070 . -100) T) ((-1070 . -25) T) ((-1070 . -129) T) ((-1070 . -613) 109503) ((-1070 . -141) T) ((-1070 . -627) T) ((-1070 . -785) T) ((-1066 . -1052) T) ((-1066 . -583) 109485) ((-1066 . -100) T) ((-1064 . -224) 109464) ((-1064 . -1213) 109434) ((-1064 . -755) 109413) ((-1064 . -809) 109392) ((-1064 . -761) 109343) ((-1064 . -758) 109294) ((-1064 . -811) 109245) ((-1064 . -756) 109196) ((-1064 . -757) 109175) ((-1064 . -273) 109152) ((-1064 . -271) 109129) ((-1064 . -472) 109113) ((-1064 . -496) 109046) ((-1064 . -294) 108984) ((-1064 . -1159) T) ((-1064 . -33) T) ((-1064 . -574) 108961) ((-1064 . -995) 108790) ((-1064 . -397) 108759) ((-1064 . -606) 108665) ((-1064 . -362) 108634) ((-1064 . -353) 108613) ((-1064 . -219) 108565) ((-1064 . -859) 108497) ((-1064 . -217) 108466) ((-1064 . -110) 108356) ((-1064 . -1010) 108253) ((-1064 . -163) 108232) ((-1064 . -583) 107963) ((-1064 . -682) 107905) ((-1064 . -613) 107753) ((-1064 . -129) 107623) ((-1064 . -23) 107493) ((-1064 . -21) 107403) ((-1064 . -1004) 107333) ((-1064 . -1011) 107263) ((-1064 . -1063) 107173) ((-1064 . -691) 107083) ((-1064 . -37) 107053) ((-1064 . -1052) 106843) ((-1064 . -100) 106633) ((-1064 . -25) 106484) ((-1057 . -381) T) ((-1057 . -1159) T) ((-1057 . -583) 106466) ((-1056 . -1055) 106430) ((-1056 . -100) T) ((-1056 . -583) 106412) ((-1056 . -1052) T) ((-1054 . -1055) 106364) ((-1054 . -100) T) ((-1054 . -583) 106346) ((-1054 . -1052) T) ((-1053 . -353) T) ((-1053 . -100) T) ((-1053 . -583) 106328) ((-1053 . -1052) T) ((-1048 . -411) 106312) ((-1048 . -1050) 106296) ((-1048 . -353) 106275) ((-1048 . -221) 106259) ((-1048 . -584) 106220) ((-1048 . -145) 106204) ((-1048 . -472) 106188) ((-1048 . -100) T) ((-1048 . -1052) T) ((-1048 . -496) 106121) ((-1048 . -294) 106059) ((-1048 . -583) 106041) ((-1048 . -1159) T) ((-1048 . -33) T) ((-1048 . -105) 106025) ((-1048 . -215) 106009) ((-1044 . -1159) T) ((-1044 . -1052) 105987) ((-1044 . -583) 105954) ((-1044 . -100) 105932) ((-1043 . -1035) T) ((-1043 . -583) 105898) ((-1043 . -1052) T) ((-1043 . -100) T) ((-1043 . -91) T) ((-1041 . -1046) 105882) ((-1041 . -1159) T) ((-1041 . -1052) 105860) ((-1041 . -583) 105827) ((-1041 . -100) 105805) ((-1041 . -1047) 105763) ((-1040 . -251) 105747) ((-1040 . -995) 105731) ((-1040 . -1052) T) ((-1040 . -583) 105713) ((-1040 . -100) T) ((-1040 . -811) T) ((-1039 . -238) 105650) ((-1039 . -995) 105479) ((-1039 . -584) NIL) ((-1039 . -311) 105440) ((-1039 . -397) 105424) ((-1039 . -37) 105273) ((-1039 . -110) 105102) ((-1039 . -1010) 104945) ((-1039 . -613) 104870) ((-1039 . -682) 104719) ((-1039 . -139) 104698) ((-1039 . -141) 104677) ((-1039 . -163) 104588) ((-1039 . -533) 104519) ((-1039 . -275) 104450) ((-1039 . -46) 104411) ((-1039 . -362) 104395) ((-1039 . -606) 104343) ((-1039 . -436) 104294) ((-1039 . -496) 104161) ((-1039 . -811) 104140) ((-1039 . -859) 104075) ((-1039 . -845) NIL) ((-1039 . -869) 104054) ((-1039 . -1164) 104033) ((-1039 . -909) 103978) ((-1039 . -294) 103965) ((-1039 . -219) 103944) ((-1039 . -129) T) ((-1039 . -25) T) ((-1039 . -100) T) ((-1039 . -583) 103926) ((-1039 . -1052) T) ((-1039 . -23) T) ((-1039 . -21) T) ((-1039 . -691) T) ((-1039 . -1063) T) ((-1039 . -1011) T) ((-1039 . -1004) T) ((-1039 . -217) 103910) ((-1037 . -583) 103892) ((-1033 . -811) T) ((-1033 . -100) T) ((-1033 . -583) 103874) ((-1033 . -1052) T) ((-1030 . -689) 103853) ((-1030 . -995) 103751) ((-1030 . -397) 103735) ((-1030 . -606) 103683) ((-1030 . -362) 103667) ((-1030 . -355) 103646) ((-1030 . -141) 103625) ((-1030 . -682) 103493) ((-1030 . -613) 103403) ((-1030 . -1010) 103313) ((-1030 . -110) 103209) ((-1030 . -37) 103077) ((-1030 . -395) 103056) ((-1030 . -387) 103035) ((-1030 . -139) 102986) ((-1030 . -1099) 102965) ((-1030 . -335) 102944) ((-1030 . -353) 102895) ((-1030 . -229) 102846) ((-1030 . -275) 102797) ((-1030 . -292) 102748) ((-1030 . -436) 102699) ((-1030 . -533) 102650) ((-1030 . -880) 102601) ((-1030 . -1164) 102552) ((-1030 . -348) 102503) ((-1030 . -219) 102428) ((-1030 . -859) 102361) ((-1030 . -217) 102331) ((-1030 . -584) 102315) ((-1030 . -21) T) ((-1030 . -23) T) ((-1030 . -1052) T) ((-1030 . -583) 102297) ((-1030 . -100) T) ((-1030 . -25) T) ((-1030 . -129) T) ((-1030 . -1004) T) ((-1030 . -1011) T) ((-1030 . -1063) T) ((-1030 . -691) T) ((-1030 . -163) T) ((-1028 . -1052) T) ((-1028 . -583) 102279) ((-1028 . -100) T) ((-1028 . -271) 102258) ((-1027 . -1052) T) ((-1027 . -583) 102240) ((-1027 . -100) T) ((-1026 . -1052) T) ((-1026 . -583) 102222) ((-1026 . -100) T) ((-1026 . -271) 102201) ((-1026 . -995) 102178) ((-1019 . -1035) T) ((-1019 . -583) 102144) ((-1019 . -1052) T) ((-1019 . -100) T) ((-1019 . -91) T) ((-1016 . -1136) 102119) ((-1016 . -215) 102065) ((-1016 . -105) 102011) ((-1016 . -294) 101862) ((-1016 . -496) 101706) ((-1016 . -472) 101637) ((-1016 . -145) 101583) ((-1016 . -584) NIL) ((-1016 . -221) 101529) ((-1016 . -580) 101504) ((-1016 . -273) 101479) ((-1016 . -271) 101454) ((-1016 . -100) T) ((-1016 . -1052) T) ((-1016 . -583) 101436) ((-1016 . -1159) T) ((-1016 . -33) T) ((-1016 . -574) 101411) ((-1015 . -525) T) ((-1015 . -1164) T) ((-1015 . -1099) T) ((-1015 . -995) 101393) ((-1015 . -584) 101308) ((-1015 . -977) T) ((-1015 . -845) 101290) ((-1015 . -809) T) ((-1015 . -761) T) ((-1015 . -758) T) ((-1015 . -811) T) ((-1015 . -756) T) ((-1015 . -755) T) ((-1015 . -784) T) ((-1015 . -606) 101272) ((-1015 . -880) T) ((-1015 . -533) T) ((-1015 . -275) T) ((-1015 . -163) T) ((-1015 . -682) 101259) ((-1015 . -1010) 101246) ((-1015 . -110) 101231) ((-1015 . -37) 101218) ((-1015 . -436) T) ((-1015 . -292) T) ((-1015 . -219) T) ((-1015 . -137) T) ((-1015 . -1004) T) ((-1015 . -1011) T) ((-1015 . -1063) T) ((-1015 . -691) T) ((-1015 . -21) T) ((-1015 . -23) T) ((-1015 . -1052) T) ((-1015 . -583) 101200) ((-1015 . -100) T) ((-1015 . -25) T) ((-1015 . -129) T) ((-1015 . -613) 101187) ((-1015 . -141) T) ((-1014 . -1021) 101166) ((-1014 . -100) T) ((-1014 . -583) 101148) ((-1014 . -1052) T) ((-1008 . -1007) 101088) ((-1008 . -682) 101030) ((-1008 . -33) T) ((-1008 . -1159) T) ((-1008 . -294) 100968) ((-1008 . -496) 100901) ((-1008 . -472) 100885) ((-1008 . -613) 100869) ((-1008 . -129) T) ((-1008 . -25) T) ((-1008 . -100) T) ((-1008 . -583) 100831) ((-1008 . -1052) T) ((-1008 . -23) T) ((-1008 . -21) T) ((-1008 . -1010) 100815) ((-1008 . -110) 100794) ((-1008 . -1213) 100764) ((-1008 . -584) 100725) ((-1001 . -1024) 100654) ((-1001 . -935) 100583) ((-1001 . -584) 100525) ((-1001 . -472) 100490) ((-1001 . -100) T) ((-1001 . -1052) T) ((-1001 . -496) 100391) ((-1001 . -294) 100299) ((-1001 . -583) 100242) ((-1001 . -1159) T) ((-1001 . -33) T) ((-1001 . -145) 100207) ((-1001 . -1154) 100136) ((-993 . -1035) T) ((-993 . -583) 100102) ((-993 . -1052) T) ((-993 . -100) T) ((-993 . -91) T) ((-992 . -1136) 100077) ((-992 . -215) 100023) ((-992 . -105) 99969) ((-992 . -294) 99820) ((-992 . -496) 99664) ((-992 . -472) 99595) ((-992 . -145) 99541) ((-992 . -584) NIL) ((-992 . -221) 99487) ((-992 . -580) 99462) ((-992 . -273) 99437) ((-992 . -271) 99412) ((-992 . -100) T) ((-992 . -1052) T) ((-992 . -583) 99394) ((-992 . -1159) T) ((-992 . -33) T) ((-992 . -574) 99369) ((-991 . -163) T) ((-991 . -691) T) ((-991 . -1063) T) ((-991 . -1011) T) ((-991 . -1004) T) ((-991 . -613) 99343) ((-991 . -129) T) ((-991 . -25) T) ((-991 . -100) T) ((-991 . -583) 99325) ((-991 . -1052) T) ((-991 . -23) T) ((-991 . -21) T) ((-991 . -1010) 99299) ((-991 . -110) 99266) ((-991 . -37) 99250) ((-991 . -682) 99234) ((-984 . -1024) 99203) ((-984 . -935) 99172) ((-984 . -584) 99133) ((-984 . -472) 99117) ((-984 . -100) T) ((-984 . -1052) T) ((-984 . -496) 99050) ((-984 . -294) 98988) ((-984 . -583) 98950) ((-984 . -1159) T) ((-984 . -33) T) ((-984 . -145) 98934) ((-984 . -1154) 98903) ((-983 . -1159) T) ((-983 . -1052) 98881) ((-983 . -583) 98848) ((-983 . -100) 98826) ((-981 . -970) T) ((-981 . -960) T) ((-981 . -755) T) ((-981 . -756) T) ((-981 . -811) T) ((-981 . -758) T) ((-981 . -761) T) ((-981 . -809) T) ((-981 . -995) 98708) ((-981 . -397) 98670) ((-981 . -229) T) ((-981 . -275) T) ((-981 . -292) T) ((-981 . -436) T) ((-981 . -37) 98607) ((-981 . -682) 98544) ((-981 . -533) T) ((-981 . -880) T) ((-981 . -1164) T) ((-981 . -348) T) ((-981 . -110) 98460) ((-981 . -1010) 98397) ((-981 . -163) T) ((-981 . -141) T) ((-981 . -613) 98334) ((-981 . -129) T) ((-981 . -25) T) ((-981 . -100) T) ((-981 . -583) 98316) ((-981 . -1052) T) ((-981 . -23) T) ((-981 . -21) T) ((-981 . -1004) T) ((-981 . -1011) T) ((-981 . -1063) T) ((-981 . -691) T) ((-962 . -950) 98298) ((-962 . -1099) T) ((-962 . -995) 98258) ((-962 . -584) 98188) ((-962 . -977) T) ((-962 . -869) NIL) ((-962 . -843) 98170) ((-962 . -809) T) ((-962 . -761) T) ((-962 . -758) T) ((-962 . -811) T) ((-962 . -756) T) ((-962 . -755) T) ((-962 . -784) T) ((-962 . -845) 98152) ((-962 . -1159) T) ((-962 . -385) 98134) ((-962 . -606) 98116) ((-962 . -362) 98098) ((-962 . -271) NIL) ((-962 . -294) NIL) ((-962 . -496) NIL) ((-962 . -323) 98080) ((-962 . -229) T) ((-962 . -110) 98014) ((-962 . -1010) 97964) ((-962 . -275) T) ((-962 . -682) 97914) ((-962 . -613) 97864) ((-962 . -37) 97814) ((-962 . -292) T) ((-962 . -436) T) ((-962 . -163) T) ((-962 . -533) T) ((-962 . -880) T) ((-962 . -1164) T) ((-962 . -348) T) ((-962 . -219) T) ((-962 . -859) NIL) ((-962 . -217) 97796) ((-962 . -141) T) ((-962 . -139) NIL) ((-962 . -129) T) ((-962 . -25) T) ((-962 . -100) T) ((-962 . -583) 97778) ((-962 . -1052) T) ((-962 . -23) T) ((-962 . -21) T) ((-962 . -1004) T) ((-962 . -1011) T) ((-962 . -1063) T) ((-962 . -691) T) ((-961 . -327) 97752) ((-961 . -163) T) ((-961 . -691) T) ((-961 . -1063) T) ((-961 . -1011) T) ((-961 . -1004) T) ((-961 . -613) 97697) ((-961 . -129) T) ((-961 . -25) T) ((-961 . -100) T) ((-961 . -583) 97679) ((-961 . -1052) T) ((-961 . -23) T) ((-961 . -21) T) ((-961 . -1010) 97624) ((-961 . -110) 97553) ((-961 . -584) 97537) ((-961 . -217) 97514) ((-961 . -859) 97466) ((-961 . -219) 97438) ((-961 . -348) T) ((-961 . -1164) T) ((-961 . -880) T) ((-961 . -533) T) ((-961 . -682) 97383) ((-961 . -37) 97328) ((-961 . -436) T) ((-961 . -292) T) ((-961 . -275) T) ((-961 . -229) T) ((-961 . -353) NIL) ((-961 . -335) NIL) ((-961 . -1099) NIL) ((-961 . -139) 97300) ((-961 . -387) NIL) ((-961 . -395) 97272) ((-961 . -141) 97244) ((-961 . -355) 97216) ((-961 . -362) 97193) ((-961 . -606) 97132) ((-961 . -397) 97109) ((-961 . -995) 96999) ((-961 . -689) 96971) ((-958 . -953) 96955) ((-958 . -472) 96939) ((-958 . -100) 96917) ((-958 . -1052) 96895) ((-958 . -496) 96828) ((-958 . -294) 96766) ((-958 . -583) 96698) ((-958 . -1159) T) ((-958 . -33) T) ((-958 . -105) 96682) ((-954 . -956) 96666) ((-954 . -811) 96645) ((-954 . -995) 96543) ((-954 . -397) 96527) ((-954 . -606) 96475) ((-954 . -362) 96459) ((-954 . -271) 96417) ((-954 . -294) 96382) ((-954 . -496) 96294) ((-954 . -323) 96278) ((-954 . -37) 96226) ((-954 . -110) 96108) ((-954 . -1010) 96004) ((-954 . -613) 95942) ((-954 . -682) 95890) ((-954 . -275) 95841) ((-954 . -229) 95820) ((-954 . -219) 95799) ((-954 . -859) 95758) ((-954 . -217) 95742) ((-954 . -584) 95703) ((-954 . -141) 95682) ((-954 . -139) 95661) ((-954 . -129) T) ((-954 . -25) T) ((-954 . -100) T) ((-954 . -583) 95643) ((-954 . -1052) T) ((-954 . -23) T) ((-954 . -21) T) ((-954 . -1004) T) ((-954 . -1011) T) ((-954 . -1063) T) ((-954 . -691) T) ((-952 . -21) T) ((-952 . -23) T) ((-952 . -1052) T) ((-952 . -583) 95625) ((-952 . -100) T) ((-952 . -25) T) ((-952 . -129) T) ((-948 . -583) 95607) ((-945 . -1052) T) ((-945 . -583) 95589) ((-945 . -100) T) ((-930 . -761) T) ((-930 . -758) T) ((-930 . -811) T) ((-930 . -756) T) ((-930 . -23) T) ((-930 . -1052) T) ((-930 . -583) 95571) ((-930 . -100) T) ((-930 . -25) T) ((-930 . -129) T) ((-930 . -584) 95546) ((-929 . -1035) T) ((-929 . -583) 95512) ((-929 . -1052) T) ((-929 . -100) T) ((-929 . -91) T) ((-925 . -926) T) ((-925 . -583) 95473) ((-924 . -583) 95455) ((-923 . -1052) T) ((-923 . -583) 95437) ((-923 . -100) T) ((-923 . -353) 95390) ((-923 . -691) 95289) ((-923 . -1063) 95188) ((-923 . -23) 94999) ((-923 . -25) 94810) ((-923 . -129) 94665) ((-923 . -457) 94618) ((-923 . -21) 94573) ((-923 . -757) 94526) ((-923 . -756) 94479) ((-923 . -811) 94378) ((-923 . -758) 94331) ((-923 . -761) 94284) ((-917 . -19) 94268) ((-917 . -616) 94252) ((-917 . -273) 94229) ((-917 . -271) 94206) ((-917 . -574) 94183) ((-917 . -584) 94144) ((-917 . -472) 94128) ((-917 . -100) 94078) ((-917 . -1052) 94028) ((-917 . -496) 93961) ((-917 . -294) 93899) ((-917 . -583) 93811) ((-917 . -1159) T) ((-917 . -33) T) ((-917 . -145) 93795) ((-917 . -811) 93774) ((-917 . -357) 93758) ((-915 . -311) 93737) ((-915 . -995) 93635) ((-915 . -397) 93619) ((-915 . -37) 93516) ((-915 . -613) 93441) ((-915 . -691) T) ((-915 . -1063) T) ((-915 . -1011) T) ((-915 . -1004) T) ((-915 . -110) 93310) ((-915 . -1010) 93193) ((-915 . -21) T) ((-915 . -23) T) ((-915 . -1052) T) ((-915 . -583) 93175) ((-915 . -100) T) ((-915 . -25) T) ((-915 . -129) T) ((-915 . -682) 93072) ((-915 . -139) 93051) ((-915 . -141) 93030) ((-915 . -163) 92981) ((-915 . -533) 92960) ((-915 . -275) 92939) ((-915 . -46) 92918) ((-913 . -1052) T) ((-913 . -583) 92884) ((-913 . -100) T) ((-905 . -909) 92845) ((-905 . -995) 92727) ((-905 . -1164) 92706) ((-905 . -869) 92685) ((-905 . -845) 92610) ((-905 . -859) 92591) ((-905 . -811) 92570) ((-905 . -496) 92517) ((-905 . -436) 92468) ((-905 . -606) 92416) ((-905 . -362) 92400) ((-905 . -46) 92369) ((-905 . -37) 92218) ((-905 . -682) 92067) ((-905 . -275) 91998) ((-905 . -533) 91929) ((-905 . -110) 91758) ((-905 . -1010) 91601) ((-905 . -163) 91512) ((-905 . -141) 91491) ((-905 . -139) 91470) ((-905 . -613) 91395) ((-905 . -129) T) ((-905 . -25) T) ((-905 . -100) T) ((-905 . -583) 91377) ((-905 . -1052) T) ((-905 . -23) T) ((-905 . -21) T) ((-905 . -1004) T) ((-905 . -1011) T) ((-905 . -1063) T) ((-905 . -691) T) ((-905 . -397) 91361) ((-905 . -311) 91330) ((-905 . -294) 91317) ((-905 . -584) 91178) ((-902 . -939) 91162) ((-902 . -19) 91146) ((-902 . -616) 91130) ((-902 . -273) 91107) ((-902 . -271) 91084) ((-902 . -574) 91061) ((-902 . -584) 91022) ((-902 . -472) 91006) ((-902 . -100) 90956) ((-902 . -1052) 90906) ((-902 . -496) 90839) ((-902 . -294) 90777) ((-902 . -583) 90689) ((-902 . -1159) T) ((-902 . -33) T) ((-902 . -145) 90673) ((-902 . -811) 90652) ((-902 . -357) 90636) ((-902 . -1204) 90620) ((-886 . -933) T) ((-886 . -583) 90602) ((-884 . -914) T) ((-884 . -583) 90584) ((-878 . -758) T) ((-878 . -811) T) ((-878 . -1052) T) ((-878 . -583) 90566) ((-878 . -100) T) ((-878 . -25) T) ((-878 . -691) T) ((-878 . -1063) T) ((-873 . -348) T) ((-873 . -1164) T) ((-873 . -880) T) ((-873 . -533) T) ((-873 . -163) T) ((-873 . -682) 90518) ((-873 . -37) 90470) ((-873 . -436) T) ((-873 . -292) T) ((-873 . -613) 90422) ((-873 . -691) T) ((-873 . -1063) T) ((-873 . -1011) T) ((-873 . -1004) T) ((-873 . -110) 90360) ((-873 . -1010) 90312) ((-873 . -21) T) ((-873 . -23) T) ((-873 . -1052) T) ((-873 . -583) 90294) ((-873 . -100) T) ((-873 . -25) T) ((-873 . -129) T) ((-873 . -275) T) ((-873 . -229) T) ((-865 . -335) T) ((-865 . -1099) T) ((-865 . -353) T) ((-865 . -139) T) ((-865 . -348) T) ((-865 . -1164) T) ((-865 . -880) T) ((-865 . -533) T) ((-865 . -163) T) ((-865 . -682) 90259) ((-865 . -37) 90224) ((-865 . -436) T) ((-865 . -292) T) ((-865 . -110) 90180) ((-865 . -1010) 90145) ((-865 . -613) 90110) ((-865 . -275) T) ((-865 . -229) T) ((-865 . -387) T) ((-865 . -1004) T) ((-865 . -1011) T) ((-865 . -1063) T) ((-865 . -691) T) ((-865 . -21) T) ((-865 . -23) T) ((-865 . -1052) T) ((-865 . -583) 90092) ((-865 . -100) T) ((-865 . -25) T) ((-865 . -129) T) ((-865 . -219) T) ((-865 . -314) 90079) ((-865 . -141) 90061) ((-865 . -995) 90048) ((-865 . -1213) 90035) ((-865 . -1223) 90022) ((-865 . -584) 90004) ((-864 . -1052) T) ((-864 . -583) 89986) ((-864 . -100) T) ((-861 . -863) 89970) ((-861 . -811) 89921) ((-861 . -691) T) ((-861 . -1052) T) ((-861 . -583) 89903) ((-861 . -100) T) ((-861 . -1063) T) ((-861 . -457) T) ((-860 . -118) 89887) ((-860 . -472) 89871) ((-860 . -100) 89849) ((-860 . -1052) 89827) ((-860 . -496) 89760) ((-860 . -294) 89698) ((-860 . -583) 89630) ((-860 . -1159) T) ((-860 . -33) T) ((-860 . -968) 89614) ((-857 . -1052) T) ((-857 . -583) 89596) ((-857 . -100) T) ((-852 . -811) T) ((-852 . -100) T) ((-852 . -583) 89578) ((-852 . -1052) T) ((-852 . -995) 89555) ((-849 . -1052) T) ((-849 . -583) 89537) ((-849 . -100) T) ((-849 . -995) 89505) ((-847 . -1052) T) ((-847 . -583) 89487) ((-847 . -100) T) ((-844 . -1052) T) ((-844 . -583) 89469) ((-844 . -100) T) ((-833 . -1052) T) ((-833 . -583) 89451) ((-833 . -100) T) ((-832 . -1159) T) ((-832 . -583) 89323) ((-832 . -1052) 89274) ((-832 . -100) 89225) ((-831 . -950) 89209) ((-831 . -1099) 89187) ((-831 . -995) 89055) ((-831 . -584) 88863) ((-831 . -977) 88842) ((-831 . -869) 88821) ((-831 . -843) 88805) ((-831 . -809) 88784) ((-831 . -761) 88763) ((-831 . -758) 88742) ((-831 . -811) 88693) ((-831 . -756) 88672) ((-831 . -755) 88651) ((-831 . -784) 88630) ((-831 . -845) 88555) ((-831 . -1159) T) ((-831 . -385) 88539) ((-831 . -606) 88487) ((-831 . -362) 88471) ((-831 . -271) 88429) ((-831 . -294) 88394) ((-831 . -496) 88306) ((-831 . -323) 88290) ((-831 . -229) T) ((-831 . -110) 88228) ((-831 . -1010) 88180) ((-831 . -275) T) ((-831 . -682) 88132) ((-831 . -613) 88084) ((-831 . -37) 88036) ((-831 . -292) T) ((-831 . -436) T) ((-831 . -163) T) ((-831 . -533) T) ((-831 . -880) T) ((-831 . -1164) T) ((-831 . -348) T) ((-831 . -219) 88015) ((-831 . -859) 87974) ((-831 . -217) 87958) ((-831 . -141) 87937) ((-831 . -139) 87916) ((-831 . -129) T) ((-831 . -25) T) ((-831 . -100) T) ((-831 . -583) 87898) ((-831 . -1052) T) ((-831 . -23) T) ((-831 . -21) T) ((-831 . -1004) T) ((-831 . -1011) T) ((-831 . -1063) T) ((-831 . -691) T) ((-830 . -950) 87875) ((-830 . -1099) NIL) ((-830 . -995) 87852) ((-830 . -584) NIL) ((-830 . -977) NIL) ((-830 . -869) NIL) ((-830 . -843) 87829) ((-830 . -809) NIL) ((-830 . -761) NIL) ((-830 . -758) NIL) ((-830 . -811) NIL) ((-830 . -756) NIL) ((-830 . -755) NIL) ((-830 . -784) NIL) ((-830 . -845) NIL) ((-830 . -1159) T) ((-830 . -385) 87806) ((-830 . -606) 87783) ((-830 . -362) 87760) ((-830 . -271) 87711) ((-830 . -294) 87668) ((-830 . -496) 87576) ((-830 . -323) 87553) ((-830 . -229) T) ((-830 . -110) 87482) ((-830 . -1010) 87427) ((-830 . -275) T) ((-830 . -682) 87372) ((-830 . -613) 87317) ((-830 . -37) 87262) ((-830 . -292) T) ((-830 . -436) T) ((-830 . -163) T) ((-830 . -533) T) ((-830 . -880) T) ((-830 . -1164) T) ((-830 . -348) T) ((-830 . -219) NIL) ((-830 . -859) NIL) ((-830 . -217) 87239) ((-830 . -141) T) ((-830 . -139) NIL) ((-830 . -129) T) ((-830 . -25) T) ((-830 . -100) T) ((-830 . -583) 87221) ((-830 . -1052) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1004) T) ((-830 . -1011) T) ((-830 . -1063) T) ((-830 . -691) T) ((-828 . -829) 87205) ((-828 . -880) T) ((-828 . -533) T) ((-828 . -275) T) ((-828 . -163) T) ((-828 . -682) 87192) ((-828 . -1010) 87179) ((-828 . -110) 87164) ((-828 . -37) 87151) ((-828 . -436) T) ((-828 . -292) T) ((-828 . -1004) T) ((-828 . -1011) T) ((-828 . -1063) T) ((-828 . -691) T) ((-828 . -21) T) ((-828 . -23) T) ((-828 . -1052) T) ((-828 . -583) 87133) ((-828 . -100) T) ((-828 . -25) T) ((-828 . -129) T) ((-828 . -613) 87120) ((-828 . -141) T) ((-825 . -1004) T) ((-825 . -1011) T) ((-825 . -1063) T) ((-825 . -691) T) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1052) T) ((-825 . -583) 87102) ((-825 . -100) T) ((-825 . -25) T) ((-825 . -129) T) ((-825 . -613) 87062) ((-825 . -37) 87032) ((-825 . -110) 86997) ((-825 . -1010) 86967) ((-825 . -682) 86937) ((-824 . -805) T) ((-824 . -811) T) ((-824 . -1052) T) ((-824 . -583) 86919) ((-824 . -100) T) ((-824 . -353) T) ((-824 . -584) 86841) ((-823 . -1052) T) ((-823 . -583) 86823) ((-823 . -100) T) ((-819 . -811) T) ((-819 . -100) T) ((-819 . -583) 86805) ((-819 . -1052) T) ((-816 . -813) 86789) ((-816 . -995) 86687) ((-816 . -397) 86671) ((-816 . -682) 86641) ((-816 . -613) 86615) ((-816 . -129) T) ((-816 . -25) T) ((-816 . -100) T) ((-816 . -583) 86597) ((-816 . -1052) T) ((-816 . -23) T) ((-816 . -21) T) ((-816 . -1010) 86581) ((-816 . -110) 86560) ((-816 . -1004) T) ((-816 . -1011) T) ((-816 . -1063) T) ((-816 . -691) T) ((-816 . -37) 86530) ((-815 . -813) 86514) ((-815 . -995) 86412) ((-815 . -397) 86396) ((-815 . -682) 86366) ((-815 . -613) 86340) ((-815 . -129) T) ((-815 . -25) T) ((-815 . -100) T) ((-815 . -583) 86322) ((-815 . -1052) T) ((-815 . -23) T) ((-815 . -21) T) ((-815 . -1010) 86306) ((-815 . -110) 86285) ((-815 . -1004) T) ((-815 . -1011) T) ((-815 . -1063) T) ((-815 . -691) T) ((-815 . -37) 86255) ((-803 . -1052) T) ((-803 . -583) 86237) ((-803 . -100) T) ((-803 . -397) 86221) ((-803 . -995) 86119) ((-803 . -21) 86071) ((-803 . -23) 86023) ((-803 . -25) 85975) ((-803 . -129) 85927) ((-803 . -809) 85906) ((-803 . -613) 85879) ((-803 . -1011) 85858) ((-803 . -1004) 85837) ((-803 . -761) 85816) ((-803 . -758) 85795) ((-803 . -811) 85774) ((-803 . -756) 85753) ((-803 . -755) 85732) ((-803 . -1063) 85711) ((-803 . -691) 85690) ((-802 . -1052) T) ((-802 . -583) 85672) ((-802 . -100) T) ((-798 . -1004) T) ((-798 . -1011) T) ((-798 . -1063) T) ((-798 . -691) T) ((-798 . -21) T) ((-798 . -23) T) ((-798 . -1052) T) ((-798 . -583) 85654) ((-798 . -100) T) ((-798 . -25) T) ((-798 . -129) T) ((-798 . -613) 85614) ((-798 . -995) 85583) ((-798 . -271) 85562) ((-798 . -141) 85541) ((-798 . -139) 85520) ((-798 . -37) 85490) ((-798 . -110) 85455) ((-798 . -1010) 85425) ((-798 . -682) 85395) ((-796 . -1052) T) ((-796 . -583) 85377) ((-796 . -100) T) ((-796 . -397) 85361) ((-796 . -995) 85259) ((-796 . -21) 85211) ((-796 . -23) 85163) ((-796 . -25) 85115) ((-796 . -129) 85067) ((-796 . -809) 85046) ((-796 . -613) 85019) ((-796 . -1011) 84998) ((-796 . -1004) 84977) ((-796 . -761) 84956) ((-796 . -758) 84935) ((-796 . -811) 84914) ((-796 . -756) 84893) ((-796 . -755) 84872) ((-796 . -1063) 84851) ((-796 . -691) 84830) ((-792 . -673) 84814) ((-792 . -682) 84784) ((-792 . -613) 84758) ((-792 . -129) T) ((-792 . -25) T) ((-792 . -100) T) ((-792 . -583) 84740) ((-792 . -1052) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -1010) 84724) ((-792 . -110) 84703) ((-792 . -1004) T) ((-792 . -1011) T) ((-792 . -1063) T) ((-792 . -691) T) ((-792 . -37) 84673) ((-792 . -219) 84652) ((-790 . -1052) T) ((-790 . -583) 84634) ((-790 . -100) T) ((-789 . -1052) T) ((-789 . -583) 84616) ((-789 . -100) T) ((-788 . -1052) T) ((-788 . -583) 84598) ((-788 . -100) T) ((-783 . -807) T) ((-783 . -811) T) ((-783 . -818) T) ((-783 . -1063) T) ((-783 . -100) T) ((-783 . -583) 84580) ((-783 . -1052) T) ((-783 . -691) T) ((-783 . -995) 84564) ((-782 . -251) 84548) ((-782 . -995) 84532) ((-782 . -1052) T) ((-782 . -583) 84514) ((-782 . -100) T) ((-782 . -811) T) ((-781 . -110) 84456) ((-781 . -1010) 84407) ((-781 . -21) T) ((-781 . -23) T) ((-781 . -1052) T) ((-781 . -583) 84389) ((-781 . -100) T) ((-781 . -25) T) ((-781 . -129) T) ((-781 . -613) 84340) ((-781 . -219) T) ((-781 . -691) T) ((-781 . -1063) T) ((-781 . -1011) T) ((-781 . -1004) T) ((-781 . -348) 84319) ((-781 . -1164) 84298) ((-781 . -880) 84277) ((-781 . -533) 84256) ((-781 . -163) 84235) ((-781 . -682) 84177) ((-781 . -37) 84119) ((-781 . -436) 84098) ((-781 . -292) 84077) ((-781 . -275) 84056) ((-781 . -229) 84035) ((-780 . -238) 83974) ((-780 . -995) 83804) ((-780 . -584) NIL) ((-780 . -311) 83766) ((-780 . -397) 83750) ((-780 . -37) 83599) ((-780 . -110) 83428) ((-780 . -1010) 83271) ((-780 . -613) 83196) ((-780 . -682) 83045) ((-780 . -139) 83024) ((-780 . -141) 83003) ((-780 . -163) 82914) ((-780 . -533) 82845) ((-780 . -275) 82776) ((-780 . -46) 82738) ((-780 . -362) 82722) ((-780 . -606) 82670) ((-780 . -436) 82621) ((-780 . -496) 82489) ((-780 . -811) 82468) ((-780 . -859) 82404) ((-780 . -845) NIL) ((-780 . -869) 82383) ((-780 . -1164) 82362) ((-780 . -909) 82309) ((-780 . -294) 82296) ((-780 . -219) 82275) ((-780 . -129) T) ((-780 . -25) T) ((-780 . -100) T) ((-780 . -583) 82257) ((-780 . -1052) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -691) T) ((-780 . -1063) T) ((-780 . -1011) T) ((-780 . -1004) T) ((-780 . -217) 82241) ((-779 . -224) 82220) ((-779 . -1213) 82190) ((-779 . -755) 82169) ((-779 . -809) 82148) ((-779 . -761) 82099) ((-779 . -758) 82050) ((-779 . -811) 82001) ((-779 . -756) 81952) ((-779 . -757) 81931) ((-779 . -273) 81908) ((-779 . -271) 81885) ((-779 . -472) 81869) ((-779 . -496) 81802) ((-779 . -294) 81740) ((-779 . -1159) T) ((-779 . -33) T) ((-779 . -574) 81717) ((-779 . -995) 81546) ((-779 . -397) 81515) ((-779 . -606) 81421) ((-779 . -362) 81390) ((-779 . -353) 81369) ((-779 . -219) 81321) ((-779 . -859) 81253) ((-779 . -217) 81222) ((-779 . -110) 81112) ((-779 . -1010) 81009) ((-779 . -163) 80988) ((-779 . -583) 80719) ((-779 . -682) 80661) ((-779 . -613) 80509) ((-779 . -129) 80379) ((-779 . -23) 80249) ((-779 . -21) 80159) ((-779 . -1004) 80089) ((-779 . -1011) 80019) ((-779 . -1063) 79929) ((-779 . -691) 79839) ((-779 . -37) 79809) ((-779 . -1052) 79599) ((-779 . -100) 79389) ((-779 . -25) 79240) ((-772 . -1052) T) ((-772 . -583) 79222) ((-772 . -100) T) ((-762 . -760) 79206) ((-762 . -811) 79185) ((-762 . -995) 78972) ((-762 . -397) 78936) ((-762 . -271) 78894) ((-762 . -294) 78859) ((-762 . -496) 78771) ((-762 . -323) 78755) ((-762 . -353) 78734) ((-762 . -584) 78695) ((-762 . -141) 78674) ((-762 . -139) 78653) ((-762 . -682) 78637) ((-762 . -613) 78611) ((-762 . -129) T) ((-762 . -25) T) ((-762 . -100) T) ((-762 . -583) 78593) ((-762 . -1052) T) ((-762 . -23) T) ((-762 . -21) T) ((-762 . -1010) 78577) ((-762 . -110) 78556) ((-762 . -1004) T) ((-762 . -1011) T) ((-762 . -1063) T) ((-762 . -691) T) ((-762 . -37) 78540) ((-745 . -1181) 78524) ((-745 . -1099) 78502) ((-745 . -584) NIL) ((-745 . -294) 78489) ((-745 . -496) 78436) ((-745 . -311) 78413) ((-745 . -995) 78274) ((-745 . -397) 78258) ((-745 . -37) 78087) ((-745 . -110) 77896) ((-745 . -1010) 77719) ((-745 . -613) 77644) ((-745 . -682) 77473) ((-745 . -139) 77452) ((-745 . -141) 77431) ((-745 . -46) 77408) ((-745 . -362) 77392) ((-745 . -606) 77340) ((-745 . -811) 77319) ((-745 . -859) 77262) ((-745 . -845) NIL) ((-745 . -869) 77241) ((-745 . -1164) 77220) ((-745 . -909) 77189) ((-745 . -880) 77168) ((-745 . -533) 77079) ((-745 . -275) 76990) ((-745 . -163) 76881) ((-745 . -436) 76812) ((-745 . -292) 76791) ((-745 . -271) 76718) ((-745 . -219) T) ((-745 . -129) T) ((-745 . -25) T) ((-745 . -100) T) ((-745 . -583) 76679) ((-745 . -1052) T) ((-745 . -23) T) ((-745 . -21) T) ((-745 . -691) T) ((-745 . -1063) T) ((-745 . -1011) T) ((-745 . -1004) T) ((-745 . -217) 76663) ((-744 . -1018) 76630) ((-744 . -584) 76265) ((-744 . -294) 76252) ((-744 . -496) 76204) ((-744 . -311) 76176) ((-744 . -995) 76035) ((-744 . -397) 76019) ((-744 . -37) 75868) ((-744 . -613) 75793) ((-744 . -691) T) ((-744 . -1063) T) ((-744 . -1011) T) ((-744 . -1004) T) ((-744 . -110) 75622) ((-744 . -1010) 75465) ((-744 . -21) T) ((-744 . -23) T) ((-744 . -1052) T) ((-744 . -583) 75379) ((-744 . -100) T) ((-744 . -25) T) ((-744 . -129) T) ((-744 . -682) 75228) ((-744 . -139) 75207) ((-744 . -141) 75186) ((-744 . -163) 75097) ((-744 . -533) 75028) ((-744 . -275) 74959) ((-744 . -46) 74931) ((-744 . -362) 74915) ((-744 . -606) 74863) ((-744 . -436) 74814) ((-744 . -811) 74793) ((-744 . -859) 74777) ((-744 . -845) 74636) ((-744 . -869) 74615) ((-744 . -1164) 74594) ((-744 . -909) 74561) ((-737 . -1052) T) ((-737 . -583) 74543) ((-737 . -100) T) ((-735 . -757) T) ((-735 . -129) T) ((-735 . -25) T) ((-735 . -100) T) ((-735 . -583) 74525) ((-735 . -1052) T) ((-735 . -23) T) ((-735 . -756) T) ((-735 . -811) T) ((-735 . -758) T) ((-735 . -761) T) ((-735 . -691) T) ((-735 . -1063) T) ((-733 . -1052) T) ((-733 . -583) 74507) ((-733 . -100) T) ((-701 . -702) 74491) ((-701 . -1050) 74475) ((-701 . -221) 74459) ((-701 . -584) 74420) ((-701 . -145) 74404) ((-701 . -472) 74388) ((-701 . -100) T) ((-701 . -1052) T) ((-701 . -496) 74321) ((-701 . -294) 74259) ((-701 . -583) 74241) ((-701 . -1159) T) ((-701 . -33) T) ((-701 . -105) 74225) ((-701 . -659) 74209) ((-700 . -1004) T) ((-700 . -1011) T) ((-700 . -1063) T) ((-700 . -691) T) ((-700 . -21) T) ((-700 . -23) T) ((-700 . -1052) T) ((-700 . -583) 74191) ((-700 . -100) T) ((-700 . -25) T) ((-700 . -129) T) ((-700 . -613) 74151) ((-700 . -995) 74122) ((-700 . -141) 74101) ((-700 . -139) 74080) ((-700 . -37) 74050) ((-700 . -110) 74015) ((-700 . -1010) 73985) ((-700 . -682) 73955) ((-700 . -353) 73908) ((-696 . -909) 73861) ((-696 . -995) 73739) ((-696 . -1164) 73718) ((-696 . -869) 73697) ((-696 . -845) NIL) ((-696 . -859) 73674) ((-696 . -811) 73653) ((-696 . -496) 73596) ((-696 . -436) 73547) ((-696 . -606) 73495) ((-696 . -362) 73479) ((-696 . -46) 73444) ((-696 . -37) 73293) ((-696 . -682) 73142) ((-696 . -275) 73073) ((-696 . -533) 73004) ((-696 . -110) 72833) ((-696 . -1010) 72676) ((-696 . -163) 72587) ((-696 . -141) 72566) ((-696 . -139) 72545) ((-696 . -613) 72470) ((-696 . -129) T) ((-696 . -25) T) ((-696 . -100) T) ((-696 . -583) 72452) ((-696 . -1052) T) ((-696 . -23) T) ((-696 . -21) T) ((-696 . -1004) T) ((-696 . -1011) T) ((-696 . -1063) T) ((-696 . -691) T) ((-696 . -397) 72436) ((-696 . -311) 72401) ((-696 . -294) 72388) ((-696 . -584) 72249) ((-683 . -457) T) ((-683 . -1063) T) ((-683 . -100) T) ((-683 . -583) 72231) ((-683 . -1052) T) ((-683 . -691) T) ((-680 . -1004) T) ((-680 . -1011) T) ((-680 . -1063) T) ((-680 . -691) T) ((-680 . -21) T) ((-680 . -23) T) ((-680 . -1052) T) ((-680 . -583) 72213) ((-680 . -100) T) ((-680 . -25) T) ((-680 . -129) T) ((-680 . -613) 72200) ((-679 . -1004) T) ((-679 . -1011) T) ((-679 . -1063) T) ((-679 . -691) T) ((-679 . -21) T) ((-679 . -23) T) ((-679 . -1052) T) ((-679 . -583) 72182) ((-679 . -100) T) ((-679 . -25) T) ((-679 . -129) T) ((-679 . -613) 72142) ((-679 . -995) 72111) ((-679 . -271) 72090) ((-679 . -141) 72069) ((-679 . -139) 72048) ((-679 . -37) 72018) ((-679 . -110) 71983) ((-679 . -1010) 71953) ((-679 . -682) 71923) ((-678 . -811) T) ((-678 . -100) T) ((-678 . -583) 71905) ((-678 . -1052) T) ((-677 . -1181) 71889) ((-677 . -1099) 71867) ((-677 . -584) NIL) ((-677 . -294) 71854) ((-677 . -496) 71801) ((-677 . -311) 71778) ((-677 . -995) 71660) ((-677 . -397) 71644) ((-677 . -37) 71473) ((-677 . -110) 71282) ((-677 . -1010) 71105) ((-677 . -613) 71030) ((-677 . -682) 70859) ((-677 . -139) 70838) ((-677 . -141) 70817) ((-677 . -46) 70794) ((-677 . -362) 70778) ((-677 . -606) 70726) ((-677 . -811) 70705) ((-677 . -859) 70648) ((-677 . -845) NIL) ((-677 . -869) 70627) ((-677 . -1164) 70606) ((-677 . -909) 70575) ((-677 . -880) 70554) ((-677 . -533) 70465) ((-677 . -275) 70376) ((-677 . -163) 70267) ((-677 . -436) 70198) ((-677 . -292) 70177) ((-677 . -271) 70104) ((-677 . -219) T) ((-677 . -129) T) ((-677 . -25) T) ((-677 . -100) T) ((-677 . -583) 70086) ((-677 . -1052) T) ((-677 . -23) T) ((-677 . -21) T) ((-677 . -691) T) ((-677 . -1063) T) ((-677 . -1011) T) ((-677 . -1004) T) ((-677 . -217) 70070) ((-677 . -353) 70049) ((-676 . -348) T) ((-676 . -1164) T) ((-676 . -880) T) ((-676 . -533) T) ((-676 . -163) T) ((-676 . -682) 70014) ((-676 . -37) 69979) ((-676 . -436) T) ((-676 . -292) T) ((-676 . -613) 69944) ((-676 . -691) T) ((-676 . -1063) T) ((-676 . -1011) T) ((-676 . -1004) T) ((-676 . -110) 69900) ((-676 . -1010) 69865) ((-676 . -21) T) ((-676 . -23) T) ((-676 . -1052) T) ((-676 . -583) 69847) ((-676 . -100) T) ((-676 . -25) T) ((-676 . -129) T) ((-676 . -275) T) ((-676 . -229) T) ((-675 . -1052) T) ((-675 . -583) 69829) ((-675 . -100) T) ((-667 . -130) T) ((-667 . -1052) T) ((-667 . -583) 69798) ((-667 . -100) T) ((-667 . -811) T) ((-665 . -372) T) ((-665 . -995) 69780) ((-665 . -811) T) ((-665 . -37) 69767) ((-665 . -691) T) ((-665 . -1063) T) ((-665 . -1011) T) ((-665 . -1004) T) ((-665 . -110) 69752) ((-665 . -1010) 69739) ((-665 . -21) T) ((-665 . -23) T) ((-665 . -1052) T) ((-665 . -583) 69721) ((-665 . -100) T) ((-665 . -25) T) ((-665 . -129) T) ((-665 . -613) 69708) ((-665 . -682) 69695) ((-665 . -163) T) ((-665 . -275) T) ((-665 . -533) T) ((-665 . -525) T) ((-665 . -1164) T) ((-665 . -1099) T) ((-665 . -584) 69610) ((-665 . -977) T) ((-665 . -845) 69592) ((-665 . -809) T) ((-665 . -761) T) ((-665 . -758) T) ((-665 . -756) T) ((-665 . -755) T) ((-665 . -784) T) ((-665 . -606) 69574) ((-665 . -880) T) ((-665 . -436) T) ((-665 . -292) T) ((-665 . -219) T) ((-665 . -137) T) ((-665 . -141) T) ((-663 . -389) T) ((-663 . -141) T) ((-663 . -613) 69539) ((-663 . -129) T) ((-663 . -25) T) ((-663 . -100) T) ((-663 . -583) 69521) ((-663 . -1052) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -691) T) ((-663 . -1063) T) ((-663 . -1011) T) ((-663 . -1004) T) ((-663 . -584) 69466) ((-663 . -348) T) ((-663 . -1164) T) ((-663 . -880) T) ((-663 . -533) T) ((-663 . -163) T) ((-663 . -682) 69431) ((-663 . -37) 69396) ((-663 . -436) T) ((-663 . -292) T) ((-663 . -110) 69352) ((-663 . -1010) 69317) ((-663 . -275) T) ((-663 . -229) T) ((-663 . -809) T) ((-663 . -761) T) ((-663 . -758) T) ((-663 . -811) T) ((-663 . -756) T) ((-663 . -755) T) ((-663 . -845) 69299) ((-663 . -960) T) ((-663 . -977) T) ((-663 . -995) 69244) ((-663 . -1013) T) ((-663 . -372) T) ((-658 . -372) T) ((-658 . -995) 69189) ((-658 . -811) T) ((-658 . -37) 69139) ((-658 . -691) T) ((-658 . -1063) T) ((-658 . -1011) T) ((-658 . -1004) T) ((-658 . -110) 69073) ((-658 . -1010) 69023) ((-658 . -21) T) ((-658 . -23) T) ((-658 . -1052) T) ((-658 . -583) 69005) ((-658 . -100) T) ((-658 . -25) T) ((-658 . -129) T) ((-658 . -613) 68955) ((-658 . -682) 68905) ((-658 . -163) T) ((-658 . -275) T) ((-658 . -533) T) ((-658 . -157) 68887) ((-658 . -34) NIL) ((-658 . -93) NIL) ((-658 . -269) NIL) ((-658 . -475) NIL) ((-658 . -1148) NIL) ((-658 . -1145) NIL) ((-658 . -960) NIL) ((-658 . -869) NIL) ((-658 . -584) 68795) ((-658 . -843) 68777) ((-658 . -353) NIL) ((-658 . -335) NIL) ((-658 . -1099) NIL) ((-658 . -387) NIL) ((-658 . -395) 68744) ((-658 . -355) 68711) ((-658 . -689) 68678) ((-658 . -397) 68660) ((-658 . -845) 68642) ((-658 . -1159) T) ((-658 . -385) 68624) ((-658 . -606) 68606) ((-658 . -362) 68588) ((-658 . -271) NIL) ((-658 . -294) NIL) ((-658 . -496) NIL) ((-658 . -323) 68570) ((-658 . -229) T) ((-658 . -1164) T) ((-658 . -348) T) ((-658 . -880) T) ((-658 . -436) T) ((-658 . -292) T) ((-658 . -219) NIL) ((-658 . -859) NIL) ((-658 . -217) 68552) ((-658 . -141) T) ((-658 . -139) NIL) ((-655 . -1201) T) ((-655 . -583) 68534) ((-653 . -650) 68492) ((-653 . -472) 68476) ((-653 . -100) 68454) ((-653 . -1052) 68432) ((-653 . -496) 68365) ((-653 . -294) 68303) ((-653 . -583) 68235) ((-653 . -1159) T) ((-653 . -33) T) ((-653 . -55) 68193) ((-653 . -584) 68154) ((-645 . -1035) T) ((-645 . -583) 68104) ((-645 . -1052) T) ((-645 . -100) T) ((-645 . -91) T) ((-641 . -811) T) ((-641 . -100) T) ((-641 . -583) 68086) ((-641 . -1052) T) ((-641 . -995) 68070) ((-640 . -472) 68054) ((-640 . -100) 68032) ((-640 . -1052) 68010) ((-640 . -496) 67943) ((-640 . -294) 67881) ((-640 . -583) 67813) ((-640 . -1159) T) ((-640 . -33) T) ((-637 . -811) T) ((-637 . -100) T) ((-637 . -583) 67795) ((-637 . -1052) T) ((-637 . -995) 67779) ((-636 . -1035) T) ((-636 . -583) 67745) ((-636 . -1052) T) ((-636 . -100) T) ((-636 . -91) T) ((-635 . -1073) 67690) ((-635 . -472) 67674) ((-635 . -496) 67607) ((-635 . -294) 67545) ((-635 . -1159) T) ((-635 . -33) T) ((-635 . -1007) 67485) ((-635 . -995) 67383) ((-635 . -397) 67367) ((-635 . -606) 67315) ((-635 . -362) 67299) ((-635 . -219) 67278) ((-635 . -859) 67237) ((-635 . -217) 67221) ((-635 . -682) 67205) ((-635 . -613) 67179) ((-635 . -129) T) ((-635 . -25) T) ((-635 . -100) T) ((-635 . -583) 67141) ((-635 . -1052) T) ((-635 . -23) T) ((-635 . -21) T) ((-635 . -1010) 67125) ((-635 . -110) 67104) ((-635 . -1004) T) ((-635 . -1011) T) ((-635 . -1063) T) ((-635 . -691) T) ((-635 . -37) 67064) ((-635 . -403) 67048) ((-635 . -709) 67032) ((-635 . -685) T) ((-635 . -726) T) ((-635 . -352) 67016) ((-629 . -359) 66995) ((-629 . -682) 66979) ((-629 . -613) 66963) ((-629 . -129) T) ((-629 . -25) T) ((-629 . -100) T) ((-629 . -583) 66945) ((-629 . -1052) T) ((-629 . -23) T) ((-629 . -21) T) ((-629 . -1010) 66929) ((-629 . -110) 66908) ((-629 . -602) 66892) ((-629 . -369) 66864) ((-629 . -995) 66841) ((-621 . -623) 66825) ((-621 . -37) 66795) ((-621 . -613) 66769) ((-621 . -691) T) ((-621 . -1063) T) ((-621 . -1011) T) ((-621 . -1004) T) ((-621 . -110) 66748) ((-621 . -1010) 66732) ((-621 . -21) T) ((-621 . -23) T) ((-621 . -1052) T) ((-621 . -583) 66714) ((-621 . -100) T) ((-621 . -25) T) ((-621 . -129) T) ((-621 . -682) 66684) ((-621 . -397) 66668) ((-621 . -995) 66566) ((-621 . -813) 66550) ((-621 . -271) 66511) ((-620 . -623) 66495) ((-620 . -37) 66465) ((-620 . -613) 66439) ((-620 . -691) T) ((-620 . -1063) T) ((-620 . -1011) T) ((-620 . -1004) T) ((-620 . -110) 66418) ((-620 . -1010) 66402) ((-620 . -21) T) ((-620 . -23) T) ((-620 . -1052) T) ((-620 . -583) 66384) ((-620 . -100) T) ((-620 . -25) T) ((-620 . -129) T) ((-620 . -682) 66354) ((-620 . -397) 66338) ((-620 . -995) 66236) ((-620 . -813) 66220) ((-620 . -271) 66199) ((-619 . -623) 66183) ((-619 . -37) 66153) ((-619 . -613) 66127) ((-619 . -691) T) ((-619 . -1063) T) ((-619 . -1011) T) ((-619 . -1004) T) ((-619 . -110) 66106) ((-619 . -1010) 66090) ((-619 . -21) T) ((-619 . -23) T) ((-619 . -1052) T) ((-619 . -583) 66072) ((-619 . -100) T) ((-619 . -25) T) ((-619 . -129) T) ((-619 . -682) 66042) ((-619 . -397) 66026) ((-619 . -995) 65924) ((-619 . -813) 65908) ((-619 . -271) 65887) ((-617 . -682) 65871) ((-617 . -613) 65855) ((-617 . -129) T) ((-617 . -25) T) ((-617 . -100) T) ((-617 . -583) 65837) ((-617 . -1052) T) ((-617 . -23) T) ((-617 . -21) T) ((-617 . -1010) 65821) ((-617 . -110) 65800) ((-617 . -755) 65779) ((-617 . -756) 65758) ((-617 . -811) 65737) ((-617 . -758) 65716) ((-617 . -761) 65695) ((-614 . -1052) T) ((-614 . -583) 65677) ((-614 . -100) T) ((-614 . -995) 65661) ((-612 . -659) 65645) ((-612 . -105) 65629) ((-612 . -33) T) ((-612 . -1159) T) ((-612 . -583) 65561) ((-612 . -294) 65499) ((-612 . -496) 65432) ((-612 . -1052) 65410) ((-612 . -100) 65388) ((-612 . -472) 65372) ((-612 . -145) 65356) ((-612 . -584) 65317) ((-612 . -221) 65301) ((-611 . -1035) T) ((-611 . -583) 65254) ((-611 . -1052) T) ((-611 . -100) T) ((-611 . -91) T) ((-607 . -631) 65238) ((-607 . -1194) 65222) ((-607 . -968) 65206) ((-607 . -1097) 65190) ((-607 . -811) 65169) ((-607 . -357) 65153) ((-607 . -616) 65137) ((-607 . -273) 65114) ((-607 . -271) 65091) ((-607 . -574) 65068) ((-607 . -584) 65029) ((-607 . -472) 65013) ((-607 . -100) 64963) ((-607 . -1052) 64913) ((-607 . -496) 64846) ((-607 . -294) 64784) ((-607 . -583) 64696) ((-607 . -1159) T) ((-607 . -33) T) ((-607 . -145) 64680) ((-607 . -267) 64664) ((-607 . -785) 64643) ((-600 . -709) 64627) ((-600 . -685) T) ((-600 . -726) T) ((-600 . -110) 64606) ((-600 . -1010) 64590) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1052) T) ((-600 . -583) 64559) ((-600 . -100) T) ((-600 . -25) T) ((-600 . -129) T) ((-600 . -613) 64543) ((-600 . -682) 64527) ((-600 . -403) 64492) ((-600 . -352) 64424) ((-599 . -1136) 64399) ((-599 . -215) 64345) ((-599 . -105) 64291) ((-599 . -294) 64142) ((-599 . -496) 63986) ((-599 . -472) 63917) ((-599 . -145) 63863) ((-599 . -584) NIL) ((-599 . -221) 63809) ((-599 . -580) 63784) ((-599 . -273) 63759) ((-599 . -271) 63734) ((-599 . -100) T) ((-599 . -1052) T) ((-599 . -583) 63716) ((-599 . -1159) T) ((-599 . -33) T) ((-599 . -574) 63691) ((-594 . -457) T) ((-594 . -1063) T) ((-594 . -100) T) ((-594 . -583) 63673) ((-594 . -1052) T) ((-594 . -691) T) ((-593 . -1035) T) ((-593 . -583) 63639) ((-593 . -1052) T) ((-593 . -100) T) ((-593 . -91) T) ((-590 . -217) 63623) ((-590 . -859) 63582) ((-590 . -1004) T) ((-590 . -1011) T) ((-590 . -1063) T) ((-590 . -691) T) ((-590 . -21) T) ((-590 . -23) T) ((-590 . -1052) T) ((-590 . -583) 63564) ((-590 . -100) T) ((-590 . -25) T) ((-590 . -129) T) ((-590 . -613) 63551) ((-590 . -219) 63530) ((-590 . -533) T) ((-590 . -275) T) ((-590 . -163) T) ((-590 . -682) 63517) ((-590 . -1010) 63504) ((-590 . -110) 63489) ((-590 . -37) 63476) ((-590 . -584) 63453) ((-590 . -397) 63437) ((-590 . -995) 63322) ((-590 . -141) 63301) ((-590 . -139) 63280) ((-590 . -292) 63259) ((-590 . -436) 63238) ((-590 . -880) 63217) ((-586 . -37) 63201) ((-586 . -613) 63175) ((-586 . -691) T) ((-586 . -1063) T) ((-586 . -1011) T) ((-586 . -1004) T) ((-586 . -110) 63154) ((-586 . -1010) 63138) ((-586 . -21) T) ((-586 . -23) T) ((-586 . -1052) T) ((-586 . -583) 63120) ((-586 . -100) T) ((-586 . -25) T) ((-586 . -129) T) ((-586 . -682) 63104) ((-586 . -809) 63083) ((-586 . -761) 63062) ((-586 . -758) 63041) ((-586 . -811) 63020) ((-586 . -756) 62999) ((-586 . -755) 62978) ((-581 . -130) T) ((-581 . -1052) T) ((-581 . -583) 62960) ((-581 . -100) T) ((-581 . -811) T) ((-581 . -843) 62944) ((-581 . -584) 62805) ((-578 . -350) 62745) ((-578 . -100) T) ((-578 . -583) 62727) ((-578 . -1052) T) ((-578 . -1136) 62703) ((-578 . -215) 62650) ((-578 . -105) 62597) ((-578 . -294) 62392) ((-578 . -496) 62175) ((-578 . -472) 62109) ((-578 . -145) 62056) ((-578 . -584) NIL) ((-578 . -221) 62003) ((-578 . -580) 61979) ((-578 . -273) 61955) ((-578 . -271) 61931) ((-578 . -1159) T) ((-578 . -33) T) ((-578 . -574) 61907) ((-577 . -709) 61891) ((-577 . -685) T) ((-577 . -726) T) ((-577 . -110) 61870) ((-577 . -1010) 61854) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1052) T) ((-577 . -583) 61823) ((-577 . -100) T) ((-577 . -25) T) ((-577 . -129) T) ((-577 . -613) 61807) ((-577 . -682) 61791) ((-577 . -403) 61756) ((-577 . -352) 61688) ((-576 . -1035) T) ((-576 . -583) 61638) ((-576 . -1052) T) ((-576 . -100) T) ((-576 . -91) T) ((-575 . -583) 61605) ((-572 . -1204) 61589) ((-572 . -357) 61573) ((-572 . -811) 61552) ((-572 . -145) 61536) ((-572 . -33) T) ((-572 . -1159) T) ((-572 . -583) 61448) ((-572 . -294) 61386) ((-572 . -496) 61319) ((-572 . -1052) 61269) ((-572 . -100) 61219) ((-572 . -472) 61203) ((-572 . -584) 61164) ((-572 . -574) 61141) ((-572 . -271) 61118) ((-572 . -273) 61095) ((-572 . -616) 61079) ((-572 . -19) 61063) ((-571 . -583) 61045) ((-567 . -1004) T) ((-567 . -1011) T) ((-567 . -1063) T) ((-567 . -691) T) ((-567 . -21) T) ((-567 . -23) T) ((-567 . -1052) T) ((-567 . -583) 61027) ((-567 . -100) T) ((-567 . -25) T) ((-567 . -129) T) ((-567 . -613) 61014) ((-567 . -533) 60993) ((-567 . -275) 60972) ((-567 . -163) 60951) ((-567 . -682) 60924) ((-567 . -1010) 60897) ((-567 . -110) 60868) ((-567 . -37) 60841) ((-566 . -1184) 60818) ((-566 . -46) 60795) ((-566 . -37) 60692) ((-566 . -682) 60589) ((-566 . -275) 60568) ((-566 . -533) 60547) ((-566 . -110) 60416) ((-566 . -1010) 60299) ((-566 . -163) 60250) ((-566 . -141) 60229) ((-566 . -139) 60208) ((-566 . -613) 60133) ((-566 . -932) 60102) ((-566 . -859) 60015) ((-566 . -271) 60000) ((-566 . -1004) T) ((-566 . -1011) T) ((-566 . -1063) T) ((-566 . -691) T) ((-566 . -21) T) ((-566 . -23) T) ((-566 . -1052) T) ((-566 . -583) 59982) ((-566 . -100) T) ((-566 . -25) T) ((-566 . -129) T) ((-566 . -219) 59941) ((-564 . -1092) T) ((-564 . -357) 59923) ((-564 . -811) T) ((-564 . -145) 59905) ((-564 . -33) T) ((-564 . -1159) T) ((-564 . -583) 59887) ((-564 . -294) NIL) ((-564 . -496) NIL) ((-564 . -1052) T) ((-564 . -100) T) ((-564 . -472) 59869) ((-564 . -584) NIL) ((-564 . -574) 59844) ((-564 . -271) 59819) ((-564 . -273) 59794) ((-564 . -616) 59776) ((-564 . -19) 59758) ((-556 . -682) 59733) ((-556 . -613) 59708) ((-556 . -129) T) ((-556 . -25) T) ((-556 . -100) T) ((-556 . -583) 59690) ((-556 . -1052) T) ((-556 . -23) T) ((-556 . -21) T) ((-556 . -1010) 59665) ((-556 . -110) 59633) ((-556 . -995) 59617) ((-554 . -335) T) ((-554 . -1099) T) ((-554 . -353) T) ((-554 . -139) T) ((-554 . -348) T) ((-554 . -1164) T) ((-554 . -880) T) ((-554 . -533) T) ((-554 . -163) T) ((-554 . -682) 59582) ((-554 . -37) 59547) ((-554 . -436) T) ((-554 . -292) T) ((-554 . -110) 59503) ((-554 . -1010) 59468) ((-554 . -613) 59433) ((-554 . -275) T) ((-554 . -229) T) ((-554 . -387) T) ((-554 . -1004) T) ((-554 . -1011) T) ((-554 . -1063) T) ((-554 . -691) T) ((-554 . -21) T) ((-554 . -23) T) ((-554 . -1052) T) ((-554 . -583) 59415) ((-554 . -100) T) ((-554 . -25) T) ((-554 . -129) T) ((-554 . -219) T) ((-554 . -314) 59402) ((-554 . -141) 59384) ((-554 . -995) 59371) ((-554 . -1213) 59358) ((-554 . -1223) 59345) ((-554 . -584) 59327) ((-553 . -829) 59311) ((-553 . -880) T) ((-553 . -533) T) ((-553 . -275) T) ((-553 . -163) T) ((-553 . -682) 59298) ((-553 . -1010) 59285) ((-553 . -110) 59270) ((-553 . -37) 59257) ((-553 . -436) T) ((-553 . -292) T) ((-553 . -1004) T) ((-553 . -1011) T) ((-553 . -1063) T) ((-553 . -691) T) ((-553 . -21) T) ((-553 . -23) T) ((-553 . -1052) T) ((-553 . -583) 59239) ((-553 . -100) T) ((-553 . -25) T) ((-553 . -129) T) ((-553 . -613) 59226) ((-553 . -141) T) ((-547 . -531) 59210) ((-547 . -34) T) ((-547 . -93) T) ((-547 . -269) T) ((-547 . -475) T) ((-547 . -1148) T) ((-547 . -1145) T) ((-547 . -995) 59192) ((-547 . -960) T) ((-547 . -811) T) ((-547 . -533) T) ((-547 . -275) T) ((-547 . -163) T) ((-547 . -682) 59179) ((-547 . -613) 59166) ((-547 . -129) T) ((-547 . -25) T) ((-547 . -100) T) ((-547 . -583) 59148) ((-547 . -1052) T) ((-547 . -23) T) ((-547 . -21) T) ((-547 . -1010) 59135) ((-547 . -110) 59120) ((-547 . -1004) T) ((-547 . -1011) T) ((-547 . -1063) T) ((-547 . -691) T) ((-547 . -37) 59107) ((-547 . -436) T) ((-527 . -1136) 59086) ((-527 . -215) 59036) ((-527 . -105) 58986) ((-527 . -294) 58790) ((-527 . -496) 58582) ((-527 . -472) 58519) ((-527 . -145) 58469) ((-527 . -584) NIL) ((-527 . -221) 58419) ((-527 . -580) 58398) ((-527 . -273) 58377) ((-527 . -271) 58356) ((-527 . -100) T) ((-527 . -1052) T) ((-527 . -583) 58338) ((-527 . -1159) T) ((-527 . -33) T) ((-527 . -574) 58317) ((-526 . -525) T) ((-526 . -1164) T) ((-526 . -1099) T) ((-526 . -995) 58299) ((-526 . -584) 58198) ((-526 . -977) T) ((-526 . -845) 58180) ((-526 . -809) T) ((-526 . -761) T) ((-526 . -758) T) ((-526 . -811) T) ((-526 . -756) T) ((-526 . -755) T) ((-526 . -784) T) ((-526 . -606) 58162) ((-526 . -880) T) ((-526 . -533) T) ((-526 . -275) T) ((-526 . -163) T) ((-526 . -682) 58149) ((-526 . -1010) 58136) ((-526 . -110) 58121) ((-526 . -37) 58108) ((-526 . -436) T) ((-526 . -292) T) ((-526 . -219) T) ((-526 . -137) T) ((-526 . -1004) T) ((-526 . -1011) T) ((-526 . -1063) T) ((-526 . -691) T) ((-526 . -21) T) ((-526 . -23) T) ((-526 . -1052) T) ((-526 . -583) 58090) ((-526 . -100) T) ((-526 . -25) T) ((-526 . -129) T) ((-526 . -613) 58077) ((-526 . -141) T) ((-526 . -785) T) ((-515 . -1055) 58029) ((-515 . -100) T) ((-515 . -583) 58011) ((-515 . -1052) T) ((-515 . -584) 57992) ((-512 . -757) T) ((-512 . -129) T) ((-512 . -25) T) ((-512 . -100) T) ((-512 . -583) 57974) ((-512 . -1052) T) ((-512 . -23) T) ((-512 . -756) T) ((-512 . -811) T) ((-512 . -758) T) ((-512 . -761) T) ((-512 . -491) 57951) ((-507 . -1035) T) ((-507 . -583) 57917) ((-507 . -1052) T) ((-507 . -100) T) ((-507 . -91) T) ((-506 . -1035) T) ((-506 . -583) 57883) ((-506 . -1052) T) ((-506 . -100) T) ((-506 . -91) T) ((-505 . -650) 57833) ((-505 . -472) 57817) ((-505 . -100) 57795) ((-505 . -1052) 57773) ((-505 . -496) 57706) ((-505 . -294) 57644) ((-505 . -583) 57576) ((-505 . -1159) T) ((-505 . -33) T) ((-505 . -55) 57526) ((-502 . -631) 57510) ((-502 . -1194) 57494) ((-502 . -968) 57478) ((-502 . -1097) 57462) ((-502 . -811) 57441) ((-502 . -357) 57425) ((-502 . -616) 57409) ((-502 . -273) 57386) ((-502 . -271) 57363) ((-502 . -574) 57340) ((-502 . -584) 57301) ((-502 . -472) 57285) ((-502 . -100) 57235) ((-502 . -1052) 57185) ((-502 . -496) 57118) ((-502 . -294) 57056) ((-502 . -583) 56968) ((-502 . -1159) T) ((-502 . -33) T) ((-502 . -145) 56952) ((-502 . -267) 56936) ((-501 . -55) 56910) ((-501 . -33) T) ((-501 . -1159) T) ((-501 . -583) 56842) ((-501 . -294) 56780) ((-501 . -496) 56713) ((-501 . -1052) 56691) ((-501 . -100) 56669) ((-501 . -472) 56653) ((-500 . -314) 56630) ((-500 . -219) T) ((-500 . -353) T) ((-500 . -1099) T) ((-500 . -335) T) ((-500 . -141) 56612) ((-500 . -613) 56557) ((-500 . -129) T) ((-500 . -25) T) ((-500 . -100) T) ((-500 . -583) 56539) ((-500 . -1052) T) ((-500 . -23) T) ((-500 . -21) T) ((-500 . -691) T) ((-500 . -1063) T) ((-500 . -1011) T) ((-500 . -1004) T) ((-500 . -348) T) ((-500 . -1164) T) ((-500 . -880) T) ((-500 . -533) T) ((-500 . -163) T) ((-500 . -682) 56484) ((-500 . -37) 56449) ((-500 . -436) T) ((-500 . -292) T) ((-500 . -110) 56378) ((-500 . -1010) 56323) ((-500 . -275) T) ((-500 . -229) T) ((-500 . -387) T) ((-500 . -139) T) ((-500 . -995) 56300) ((-500 . -1213) 56277) ((-500 . -1223) 56254) ((-499 . -1035) T) ((-499 . -583) 56220) ((-499 . -1052) T) ((-499 . -100) T) ((-499 . -91) T) ((-498 . -19) 56204) ((-498 . -616) 56188) ((-498 . -273) 56165) ((-498 . -271) 56142) ((-498 . -574) 56119) ((-498 . -584) 56080) ((-498 . -472) 56064) ((-498 . -100) 56014) ((-498 . -1052) 55964) ((-498 . -496) 55897) ((-498 . -294) 55835) ((-498 . -583) 55747) ((-498 . -1159) T) ((-498 . -33) T) ((-498 . -145) 55731) ((-498 . -811) 55710) ((-498 . -357) 55694) ((-498 . -267) 55678) ((-497 . -308) 55657) ((-497 . -995) 55641) ((-497 . -23) T) ((-497 . -1052) T) ((-497 . -583) 55623) ((-497 . -100) T) ((-497 . -25) T) ((-497 . -129) T) ((-494 . -757) T) ((-494 . -129) T) ((-494 . -25) T) ((-494 . -100) T) ((-494 . -583) 55605) ((-494 . -1052) T) ((-494 . -23) T) ((-494 . -756) T) ((-494 . -811) T) ((-494 . -758) T) ((-494 . -761) T) ((-494 . -491) 55584) ((-493 . -756) T) ((-493 . -811) T) ((-493 . -758) T) ((-493 . -25) T) ((-493 . -100) T) ((-493 . -583) 55566) ((-493 . -1052) T) ((-493 . -23) T) ((-493 . -491) 55545) ((-492 . -491) 55524) ((-492 . -100) T) ((-492 . -583) 55506) ((-492 . -1052) T) ((-490 . -23) T) ((-490 . -1052) T) ((-490 . -583) 55488) ((-490 . -100) T) ((-490 . -25) T) ((-490 . -491) 55467) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1052) T) ((-489 . -583) 55449) ((-489 . -100) T) ((-489 . -25) T) ((-489 . -129) T) ((-489 . -491) 55428) ((-488 . -1035) T) ((-488 . -583) 55378) ((-488 . -1052) T) ((-488 . -100) T) ((-488 . -91) T) ((-486 . -1052) T) ((-486 . -583) 55360) ((-486 . -100) T) ((-484 . -811) T) ((-484 . -100) T) ((-484 . -583) 55342) ((-484 . -1052) T) ((-482 . -122) T) ((-482 . -357) 55324) ((-482 . -811) T) ((-482 . -145) 55306) ((-482 . -33) T) ((-482 . -1159) T) ((-482 . -583) 55288) ((-482 . -294) NIL) ((-482 . -496) NIL) ((-482 . -1052) T) ((-482 . -472) 55270) ((-482 . -584) 55252) ((-482 . -574) 55227) ((-482 . -271) 55202) ((-482 . -273) 55177) ((-482 . -616) 55159) ((-482 . -19) 55141) ((-482 . -100) T) ((-482 . -627) T) ((-479 . -55) 55091) ((-479 . -33) T) ((-479 . -1159) T) ((-479 . -583) 55023) ((-479 . -294) 54961) ((-479 . -496) 54894) ((-479 . -1052) 54872) ((-479 . -100) 54850) ((-479 . -472) 54834) ((-478 . -19) 54818) ((-478 . -616) 54802) ((-478 . -273) 54779) ((-478 . -271) 54756) ((-478 . -574) 54733) ((-478 . -584) 54694) ((-478 . -472) 54678) ((-478 . -100) 54628) ((-478 . -1052) 54578) ((-478 . -496) 54511) ((-478 . -294) 54449) ((-478 . -583) 54361) ((-478 . -1159) T) ((-478 . -33) T) ((-478 . -145) 54345) ((-478 . -811) 54324) ((-478 . -357) 54308) ((-477 . -283) T) ((-477 . -995) 54251) ((-477 . -1052) T) ((-477 . -583) 54233) ((-477 . -100) T) ((-477 . -811) T) ((-477 . -496) 54199) ((-477 . -294) 54186) ((-477 . -27) T) ((-477 . -960) T) ((-477 . -229) T) ((-477 . -110) 54142) ((-477 . -1010) 54107) ((-477 . -275) T) ((-477 . -682) 54072) ((-477 . -613) 54037) ((-477 . -129) T) ((-477 . -25) T) ((-477 . -23) T) ((-477 . -21) T) ((-477 . -1004) T) ((-477 . -1011) T) ((-477 . -1063) T) ((-477 . -691) T) ((-477 . -37) 54002) ((-477 . -292) T) ((-477 . -436) T) ((-477 . -163) T) ((-477 . -533) T) ((-477 . -880) T) ((-477 . -1164) T) ((-477 . -348) T) ((-477 . -606) 53962) ((-477 . -977) T) ((-477 . -584) 53907) ((-477 . -141) T) ((-477 . -219) T) ((-473 . -1052) T) ((-473 . -583) 53873) ((-473 . -100) T) ((-470 . -950) 53855) ((-470 . -1099) T) ((-470 . -995) 53815) ((-470 . -584) 53745) ((-470 . -977) T) ((-470 . -869) NIL) ((-470 . -843) 53727) ((-470 . -809) T) ((-470 . -761) T) ((-470 . -758) T) ((-470 . -811) T) ((-470 . -756) T) ((-470 . -755) T) ((-470 . -784) T) ((-470 . -845) 53709) ((-470 . -1159) T) ((-470 . -385) 53691) ((-470 . -606) 53673) ((-470 . -362) 53655) ((-470 . -271) NIL) ((-470 . -294) NIL) ((-470 . -496) NIL) ((-470 . -323) 53637) ((-470 . -229) T) ((-470 . -110) 53571) ((-470 . -1010) 53521) ((-470 . -275) T) ((-470 . -682) 53471) ((-470 . -613) 53421) ((-470 . -37) 53371) ((-470 . -292) T) ((-470 . -436) T) ((-470 . -163) T) ((-470 . -533) T) ((-470 . -880) T) ((-470 . -1164) T) ((-470 . -348) T) ((-470 . -219) T) ((-470 . -859) NIL) ((-470 . -217) 53353) ((-470 . -141) T) ((-470 . -139) NIL) ((-470 . -129) T) ((-470 . -25) T) ((-470 . -100) T) ((-470 . -583) 53335) ((-470 . -1052) T) ((-470 . -23) T) ((-470 . -21) T) ((-470 . -1004) T) ((-470 . -1011) T) ((-470 . -1063) T) ((-470 . -691) T) ((-468 . -321) 53304) ((-468 . -129) T) ((-468 . -25) T) ((-468 . -100) T) ((-468 . -583) 53286) ((-468 . -1052) T) ((-468 . -23) T) ((-468 . -21) T) ((-467 . -927) 53270) ((-467 . -472) 53254) ((-467 . -100) 53232) ((-467 . -1052) 53210) ((-467 . -496) 53143) ((-467 . -294) 53081) ((-467 . -583) 53013) ((-467 . -1159) T) ((-467 . -33) T) ((-467 . -105) 52997) ((-466 . -1035) T) ((-466 . -583) 52963) ((-466 . -1052) T) ((-466 . -100) T) ((-466 . -91) T) ((-465 . -224) 52942) ((-465 . -1213) 52912) ((-465 . -755) 52891) ((-465 . -809) 52870) ((-465 . -761) 52821) ((-465 . -758) 52772) ((-465 . -811) 52723) ((-465 . -756) 52674) ((-465 . -757) 52653) ((-465 . -273) 52630) ((-465 . -271) 52607) ((-465 . -472) 52591) ((-465 . -496) 52524) ((-465 . -294) 52462) ((-465 . -1159) T) ((-465 . -33) T) ((-465 . -574) 52439) ((-465 . -995) 52268) ((-465 . -397) 52237) ((-465 . -606) 52143) ((-465 . -362) 52112) ((-465 . -353) 52091) ((-465 . -219) 52043) ((-465 . -859) 51975) ((-465 . -217) 51944) ((-465 . -110) 51834) ((-465 . -1010) 51731) ((-465 . -163) 51710) ((-465 . -583) 51441) ((-465 . -682) 51383) ((-465 . -613) 51231) ((-465 . -129) 51101) ((-465 . -23) 50971) ((-465 . -21) 50881) ((-465 . -1004) 50811) ((-465 . -1011) 50741) ((-465 . -1063) 50651) ((-465 . -691) 50561) ((-465 . -37) 50531) ((-465 . -1052) 50321) ((-465 . -100) 50111) ((-465 . -25) 49962) ((-464 . -909) 49907) ((-464 . -995) 49785) ((-464 . -1164) 49764) ((-464 . -869) 49743) ((-464 . -845) NIL) ((-464 . -859) 49720) ((-464 . -811) 49699) ((-464 . -496) 49642) ((-464 . -436) 49593) ((-464 . -606) 49541) ((-464 . -362) 49525) ((-464 . -46) 49482) ((-464 . -37) 49331) ((-464 . -682) 49180) ((-464 . -275) 49111) ((-464 . -533) 49042) ((-464 . -110) 48871) ((-464 . -1010) 48714) ((-464 . -163) 48625) ((-464 . -141) 48604) ((-464 . -139) 48583) ((-464 . -613) 48508) ((-464 . -129) T) ((-464 . -25) T) ((-464 . -100) T) ((-464 . -583) 48490) ((-464 . -1052) T) ((-464 . -23) T) ((-464 . -21) T) ((-464 . -1004) T) ((-464 . -1011) T) ((-464 . -1063) T) ((-464 . -691) T) ((-464 . -397) 48474) ((-464 . -311) 48431) ((-464 . -294) 48418) ((-464 . -584) 48279) ((-462 . -1136) 48258) ((-462 . -215) 48208) ((-462 . -105) 48158) ((-462 . -294) 47962) ((-462 . -496) 47754) ((-462 . -472) 47691) ((-462 . -145) 47641) ((-462 . -584) NIL) ((-462 . -221) 47591) ((-462 . -580) 47570) ((-462 . -273) 47549) ((-462 . -271) 47528) ((-462 . -100) T) ((-462 . -1052) T) ((-462 . -583) 47510) ((-462 . -1159) T) ((-462 . -33) T) ((-462 . -574) 47489) ((-461 . -348) T) ((-461 . -1164) T) ((-461 . -880) T) ((-461 . -533) T) ((-461 . -163) T) ((-461 . -682) 47454) ((-461 . -37) 47419) ((-461 . -436) T) ((-461 . -292) T) ((-461 . -613) 47384) ((-461 . -691) T) ((-461 . -1063) T) ((-461 . -1011) T) ((-461 . -1004) T) ((-461 . -110) 47340) ((-461 . -1010) 47305) ((-461 . -21) T) ((-461 . -23) T) ((-461 . -1052) T) ((-461 . -583) 47257) ((-461 . -100) T) ((-461 . -25) T) ((-461 . -129) T) ((-461 . -275) T) ((-461 . -229) T) ((-461 . -141) T) ((-461 . -995) 47217) ((-461 . -977) T) ((-461 . -584) 47139) ((-460 . -1154) 47108) ((-460 . -583) 47070) ((-460 . -145) 47054) ((-460 . -33) T) ((-460 . -1159) T) ((-460 . -294) 46992) ((-460 . -496) 46925) ((-460 . -1052) T) ((-460 . -100) T) ((-460 . -472) 46909) ((-460 . -584) 46870) ((-460 . -935) 46839) ((-459 . -1136) 46818) ((-459 . -215) 46768) ((-459 . -105) 46718) ((-459 . -294) 46522) ((-459 . -496) 46314) ((-459 . -472) 46251) ((-459 . -145) 46201) ((-459 . -584) NIL) ((-459 . -221) 46151) ((-459 . -580) 46130) ((-459 . -273) 46109) ((-459 . -271) 46088) ((-459 . -100) T) ((-459 . -1052) T) ((-459 . -583) 46070) ((-459 . -1159) T) ((-459 . -33) T) ((-459 . -574) 46049) ((-458 . -1188) 46033) ((-458 . -219) 45985) ((-458 . -271) 45970) ((-458 . -859) 45876) ((-458 . -932) 45838) ((-458 . -37) 45679) ((-458 . -110) 45500) ((-458 . -1010) 45335) ((-458 . -613) 45232) ((-458 . -682) 45073) ((-458 . -139) 45052) ((-458 . -141) 45031) ((-458 . -46) 45001) ((-458 . -1184) 44971) ((-458 . -34) 44937) ((-458 . -93) 44903) ((-458 . -269) 44869) ((-458 . -475) 44835) ((-458 . -1148) 44801) ((-458 . -1145) 44767) ((-458 . -960) 44733) ((-458 . -229) 44712) ((-458 . -275) 44663) ((-458 . -129) T) ((-458 . -25) T) ((-458 . -100) T) ((-458 . -583) 44645) ((-458 . -1052) T) ((-458 . -23) T) ((-458 . -21) T) ((-458 . -1004) T) ((-458 . -1011) T) ((-458 . -1063) T) ((-458 . -691) T) ((-458 . -292) 44624) ((-458 . -436) 44603) ((-458 . -163) 44534) ((-458 . -533) 44485) ((-458 . -880) 44464) ((-458 . -1164) 44443) ((-458 . -348) 44422) ((-452 . -1052) T) ((-452 . -583) 44404) ((-452 . -100) T) ((-447 . -935) 44373) ((-447 . -584) 44334) ((-447 . -472) 44318) ((-447 . -100) T) ((-447 . -1052) T) ((-447 . -496) 44251) ((-447 . -294) 44189) ((-447 . -583) 44151) ((-447 . -1159) T) ((-447 . -33) T) ((-447 . -145) 44135) ((-445 . -682) 44106) ((-445 . -613) 44077) ((-445 . -129) T) ((-445 . -25) T) ((-445 . -100) T) ((-445 . -583) 44059) ((-445 . -1052) T) ((-445 . -23) T) ((-445 . -21) T) ((-445 . -1010) 44030) ((-445 . -110) 43991) ((-438 . -909) 43958) ((-438 . -995) 43836) ((-438 . -1164) 43815) ((-438 . -869) 43794) ((-438 . -845) NIL) ((-438 . -859) 43771) ((-438 . -811) 43750) ((-438 . -496) 43693) ((-438 . -436) 43644) ((-438 . -606) 43592) ((-438 . -362) 43576) ((-438 . -46) 43555) ((-438 . -37) 43404) ((-438 . -682) 43253) ((-438 . -275) 43184) ((-438 . -533) 43115) ((-438 . -110) 42944) ((-438 . -1010) 42787) ((-438 . -163) 42698) ((-438 . -141) 42677) ((-438 . -139) 42656) ((-438 . -613) 42581) ((-438 . -129) T) ((-438 . -25) T) ((-438 . -100) T) ((-438 . -583) 42563) ((-438 . -1052) T) ((-438 . -23) T) ((-438 . -21) T) ((-438 . -1004) T) ((-438 . -1011) T) ((-438 . -1063) T) ((-438 . -691) T) ((-438 . -397) 42547) ((-438 . -311) 42526) ((-438 . -294) 42513) ((-438 . -584) 42374) ((-437 . -403) 42344) ((-437 . -709) 42314) ((-437 . -685) T) ((-437 . -726) T) ((-437 . -110) 42277) ((-437 . -1010) 42247) ((-437 . -21) T) ((-437 . -23) T) ((-437 . -1052) T) ((-437 . -583) 42229) ((-437 . -100) T) ((-437 . -25) T) ((-437 . -129) T) ((-437 . -613) 42159) ((-437 . -682) 42129) ((-437 . -352) 42099) ((-423 . -1052) T) ((-423 . -583) 42081) ((-423 . -100) T) ((-422 . -350) 42055) ((-422 . -100) T) ((-422 . -583) 42037) ((-422 . -1052) T) ((-421 . -1052) T) ((-421 . -583) 42019) ((-421 . -100) T) ((-419 . -583) 42001) ((-414 . -37) 41985) ((-414 . -613) 41959) ((-414 . -691) T) ((-414 . -1063) T) ((-414 . -1011) T) ((-414 . -1004) T) ((-414 . -110) 41938) ((-414 . -1010) 41922) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1052) T) ((-414 . -583) 41904) ((-414 . -100) T) ((-414 . -25) T) ((-414 . -129) T) ((-414 . -682) 41888) ((-400 . -691) T) ((-400 . -1052) T) ((-400 . -583) 41870) ((-400 . -100) T) ((-400 . -1063) T) ((-398 . -457) T) ((-398 . -1063) T) ((-398 . -100) T) ((-398 . -583) 41852) ((-398 . -1052) T) ((-398 . -691) T) ((-392 . -950) 41836) ((-392 . -1099) 41814) ((-392 . -995) 41682) ((-392 . -584) 41490) ((-392 . -977) 41469) ((-392 . -869) 41448) ((-392 . -843) 41432) ((-392 . -809) 41411) ((-392 . -761) 41390) ((-392 . -758) 41369) ((-392 . -811) 41320) ((-392 . -756) 41299) ((-392 . -755) 41278) ((-392 . -784) 41257) ((-392 . -845) 41182) ((-392 . -1159) T) ((-392 . -385) 41166) ((-392 . -606) 41114) ((-392 . -362) 41098) ((-392 . -271) 41056) ((-392 . -294) 41021) ((-392 . -496) 40933) ((-392 . -323) 40917) ((-392 . -229) T) ((-392 . -110) 40855) ((-392 . -1010) 40807) ((-392 . -275) T) ((-392 . -682) 40759) ((-392 . -613) 40711) ((-392 . -37) 40663) ((-392 . -292) T) ((-392 . -436) T) ((-392 . -163) T) ((-392 . -533) T) ((-392 . -880) T) ((-392 . -1164) T) ((-392 . -348) T) ((-392 . -219) 40642) ((-392 . -859) 40601) ((-392 . -217) 40585) ((-392 . -141) 40564) ((-392 . -139) 40543) ((-392 . -129) T) ((-392 . -25) T) ((-392 . -100) T) ((-392 . -583) 40525) ((-392 . -1052) T) ((-392 . -23) T) ((-392 . -21) T) ((-392 . -1004) T) ((-392 . -1011) T) ((-392 . -1063) T) ((-392 . -691) T) ((-392 . -785) 40478) ((-390 . -533) T) ((-390 . -275) T) ((-390 . -163) T) ((-390 . -682) 40452) ((-390 . -613) 40426) ((-390 . -129) T) ((-390 . -25) T) ((-390 . -100) T) ((-390 . -583) 40408) ((-390 . -1052) T) ((-390 . -23) T) ((-390 . -21) T) ((-390 . -1010) 40382) ((-390 . -110) 40349) ((-390 . -1004) T) ((-390 . -1011) T) ((-390 . -1063) T) ((-390 . -691) T) ((-390 . -37) 40323) ((-390 . -217) 40307) ((-390 . -859) 40266) ((-390 . -219) 40245) ((-390 . -323) 40229) ((-390 . -496) 40071) ((-390 . -294) 40010) ((-390 . -271) 39938) ((-390 . -397) 39922) ((-390 . -995) 39820) ((-390 . -436) 39770) ((-390 . -977) 39749) ((-390 . -584) 39657) ((-390 . -1164) 39635) ((-384 . -1052) T) ((-384 . -583) 39617) ((-384 . -100) T) ((-384 . -584) 39594) ((-383 . -381) T) ((-383 . -1159) T) ((-383 . -583) 39576) ((-378 . -1052) T) ((-378 . -583) 39558) ((-378 . -100) T) ((-375 . -709) 39542) ((-375 . -685) T) ((-375 . -726) T) ((-375 . -110) 39521) ((-375 . -1010) 39505) ((-375 . -21) T) ((-375 . -23) T) ((-375 . -1052) T) ((-375 . -583) 39487) ((-375 . -100) T) ((-375 . -25) T) ((-375 . -129) T) ((-375 . -613) 39471) ((-375 . -682) 39455) ((-373 . -374) T) ((-373 . -100) T) ((-373 . -583) 39437) ((-373 . -1052) T) ((-371 . -691) T) ((-371 . -1052) T) ((-371 . -583) 39419) ((-371 . -100) T) ((-371 . -1063) T) ((-371 . -995) 39403) ((-371 . -811) 39382) ((-367 . -369) 39361) ((-367 . -995) 39345) ((-367 . -682) 39315) ((-367 . -613) 39299) ((-367 . -129) T) ((-367 . -25) T) ((-367 . -100) T) ((-367 . -583) 39281) ((-367 . -1052) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -1010) 39265) ((-367 . -110) 39244) ((-366 . -110) 39223) ((-366 . -1010) 39207) ((-366 . -21) T) ((-366 . -23) T) ((-366 . -1052) T) ((-366 . -583) 39189) ((-366 . -100) T) ((-366 . -25) T) ((-366 . -129) T) ((-366 . -613) 39173) ((-366 . -491) 39152) ((-366 . -682) 39122) ((-363 . -389) T) ((-363 . -141) T) ((-363 . -613) 39087) ((-363 . -129) T) ((-363 . -25) T) ((-363 . -100) T) ((-363 . -583) 39054) ((-363 . -1052) T) ((-363 . -23) T) ((-363 . -21) T) ((-363 . -691) T) ((-363 . -1063) T) ((-363 . -1011) T) ((-363 . -1004) T) ((-363 . -584) 38968) ((-363 . -348) T) ((-363 . -1164) T) ((-363 . -880) T) ((-363 . -533) T) ((-363 . -163) T) ((-363 . -682) 38933) ((-363 . -37) 38898) ((-363 . -436) T) ((-363 . -292) T) ((-363 . -110) 38854) ((-363 . -1010) 38819) ((-363 . -275) T) ((-363 . -229) T) ((-363 . -809) T) ((-363 . -761) T) ((-363 . -758) T) ((-363 . -811) T) ((-363 . -756) T) ((-363 . -755) T) ((-363 . -845) 38801) ((-363 . -960) T) ((-363 . -977) T) ((-363 . -995) 38761) ((-363 . -1013) T) ((-363 . -219) T) ((-363 . -785) T) ((-363 . -1145) T) ((-363 . -1148) T) ((-363 . -475) T) ((-363 . -269) T) ((-363 . -93) T) ((-363 . -34) T) ((-349 . -350) 38738) ((-349 . -100) T) ((-349 . -583) 38720) ((-349 . -1052) T) ((-346 . -457) T) ((-346 . -1063) T) ((-346 . -100) T) ((-346 . -583) 38702) ((-346 . -1052) T) ((-346 . -691) T) ((-346 . -995) 38686) ((-344 . -314) 38670) ((-344 . -219) 38649) ((-344 . -353) 38628) ((-344 . -1099) 38607) ((-344 . -335) 38586) ((-344 . -141) 38565) ((-344 . -613) 38517) ((-344 . -129) T) ((-344 . -25) T) ((-344 . -100) T) ((-344 . -583) 38499) ((-344 . -1052) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -691) T) ((-344 . -1063) T) ((-344 . -1011) T) ((-344 . -1004) T) ((-344 . -348) T) ((-344 . -1164) T) ((-344 . -880) T) ((-344 . -533) T) ((-344 . -163) T) ((-344 . -682) 38451) ((-344 . -37) 38416) ((-344 . -436) T) ((-344 . -292) T) ((-344 . -110) 38354) ((-344 . -1010) 38306) ((-344 . -275) T) ((-344 . -229) T) ((-344 . -387) 38257) ((-344 . -139) 38208) ((-344 . -995) 38192) ((-344 . -1213) 38176) ((-344 . -1223) 38160) ((-340 . -314) 38144) ((-340 . -219) 38123) ((-340 . -353) 38102) ((-340 . -1099) 38081) ((-340 . -335) 38060) ((-340 . -141) 38039) ((-340 . -613) 37991) ((-340 . -129) T) ((-340 . -25) T) ((-340 . -100) T) ((-340 . -583) 37973) ((-340 . -1052) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -691) T) ((-340 . -1063) T) ((-340 . -1011) T) ((-340 . -1004) T) ((-340 . -348) T) ((-340 . -1164) T) ((-340 . -880) T) ((-340 . -533) T) ((-340 . -163) T) ((-340 . -682) 37925) ((-340 . -37) 37890) ((-340 . -436) T) ((-340 . -292) T) ((-340 . -110) 37828) ((-340 . -1010) 37780) ((-340 . -275) T) ((-340 . -229) T) ((-340 . -387) 37731) ((-340 . -139) 37682) ((-340 . -995) 37666) ((-340 . -1213) 37650) ((-340 . -1223) 37634) ((-339 . -314) 37618) ((-339 . -219) 37597) ((-339 . -353) 37576) ((-339 . -1099) 37555) ((-339 . -335) 37534) ((-339 . -141) 37513) ((-339 . -613) 37465) ((-339 . -129) T) ((-339 . -25) T) ((-339 . -100) T) ((-339 . -583) 37447) ((-339 . -1052) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -691) T) ((-339 . -1063) T) ((-339 . -1011) T) ((-339 . -1004) T) ((-339 . -348) T) ((-339 . -1164) T) ((-339 . -880) T) ((-339 . -533) T) ((-339 . -163) T) ((-339 . -682) 37399) ((-339 . -37) 37364) ((-339 . -436) T) ((-339 . -292) T) ((-339 . -110) 37302) ((-339 . -1010) 37254) ((-339 . -275) T) ((-339 . -229) T) ((-339 . -387) 37205) ((-339 . -139) 37156) ((-339 . -995) 37140) ((-339 . -1213) 37124) ((-339 . -1223) 37108) ((-338 . -314) 37092) ((-338 . -219) 37071) ((-338 . -353) 37050) ((-338 . -1099) 37029) ((-338 . -335) 37008) ((-338 . -141) 36987) ((-338 . -613) 36939) ((-338 . -129) T) ((-338 . -25) T) ((-338 . -100) T) ((-338 . -583) 36921) ((-338 . -1052) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -691) T) ((-338 . -1063) T) ((-338 . -1011) T) ((-338 . -1004) T) ((-338 . -348) T) ((-338 . -1164) T) ((-338 . -880) T) ((-338 . -533) T) ((-338 . -163) T) ((-338 . -682) 36873) ((-338 . -37) 36838) ((-338 . -436) T) ((-338 . -292) T) ((-338 . -110) 36776) ((-338 . -1010) 36728) ((-338 . -275) T) ((-338 . -229) T) ((-338 . -387) 36679) ((-338 . -139) 36630) ((-338 . -995) 36614) ((-338 . -1213) 36598) ((-338 . -1223) 36582) ((-337 . -314) 36559) ((-337 . -219) T) ((-337 . -353) T) ((-337 . -1099) T) ((-337 . -335) T) ((-337 . -141) 36541) ((-337 . -613) 36486) ((-337 . -129) T) ((-337 . -25) T) ((-337 . -100) T) ((-337 . -583) 36468) ((-337 . -1052) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -691) T) ((-337 . -1063) T) ((-337 . -1011) T) ((-337 . -1004) T) ((-337 . -348) T) ((-337 . -1164) T) ((-337 . -880) T) ((-337 . -533) T) ((-337 . -163) T) ((-337 . -682) 36413) ((-337 . -37) 36378) ((-337 . -436) T) ((-337 . -292) T) ((-337 . -110) 36307) ((-337 . -1010) 36252) ((-337 . -275) T) ((-337 . -229) T) ((-337 . -387) T) ((-337 . -139) T) ((-337 . -995) 36229) ((-337 . -1213) 36206) ((-337 . -1223) 36183) ((-331 . -314) 36167) ((-331 . -219) 36146) ((-331 . -353) 36125) ((-331 . -1099) 36104) ((-331 . -335) 36083) ((-331 . -141) 36062) ((-331 . -613) 36014) ((-331 . -129) T) ((-331 . -25) T) ((-331 . -100) T) ((-331 . -583) 35996) ((-331 . -1052) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -691) T) ((-331 . -1063) T) ((-331 . -1011) T) ((-331 . -1004) T) ((-331 . -348) T) ((-331 . -1164) T) ((-331 . -880) T) ((-331 . -533) T) ((-331 . -163) T) ((-331 . -682) 35948) ((-331 . -37) 35913) ((-331 . -436) T) ((-331 . -292) T) ((-331 . -110) 35851) ((-331 . -1010) 35803) ((-331 . -275) T) ((-331 . -229) T) ((-331 . -387) 35754) ((-331 . -139) 35705) ((-331 . -995) 35689) ((-331 . -1213) 35673) ((-331 . -1223) 35657) ((-330 . -314) 35641) ((-330 . -219) 35620) ((-330 . -353) 35599) ((-330 . -1099) 35578) ((-330 . -335) 35557) ((-330 . -141) 35536) ((-330 . -613) 35488) ((-330 . -129) T) ((-330 . -25) T) ((-330 . -100) T) ((-330 . -583) 35470) ((-330 . -1052) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -691) T) ((-330 . -1063) T) ((-330 . -1011) T) ((-330 . -1004) T) ((-330 . -348) T) ((-330 . -1164) T) ((-330 . -880) T) ((-330 . -533) T) ((-330 . -163) T) ((-330 . -682) 35422) ((-330 . -37) 35387) ((-330 . -436) T) ((-330 . -292) T) ((-330 . -110) 35325) ((-330 . -1010) 35277) ((-330 . -275) T) ((-330 . -229) T) ((-330 . -387) 35228) ((-330 . -139) 35179) ((-330 . -995) 35163) ((-330 . -1213) 35147) ((-330 . -1223) 35131) ((-329 . -314) 35108) ((-329 . -219) T) ((-329 . -353) T) ((-329 . -1099) T) ((-329 . -335) T) ((-329 . -141) 35090) ((-329 . -613) 35035) ((-329 . -129) T) ((-329 . -25) T) ((-329 . -100) T) ((-329 . -583) 35017) ((-329 . -1052) T) ((-329 . -23) T) ((-329 . -21) T) ((-329 . -691) T) ((-329 . -1063) T) ((-329 . -1011) T) ((-329 . -1004) T) ((-329 . -348) T) ((-329 . -1164) T) ((-329 . -880) T) ((-329 . -533) T) ((-329 . -163) T) ((-329 . -682) 34962) ((-329 . -37) 34927) ((-329 . -436) T) ((-329 . -292) T) ((-329 . -110) 34856) ((-329 . -1010) 34801) ((-329 . -275) T) ((-329 . -229) T) ((-329 . -387) T) ((-329 . -139) T) ((-329 . -995) 34778) ((-329 . -1213) 34755) ((-329 . -1223) 34732) ((-325 . -314) 34709) ((-325 . -219) T) ((-325 . -353) T) ((-325 . -1099) T) ((-325 . -335) T) ((-325 . -141) 34691) ((-325 . -613) 34636) ((-325 . -129) T) ((-325 . -25) T) ((-325 . -100) T) ((-325 . -583) 34618) ((-325 . -1052) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -691) T) ((-325 . -1063) T) ((-325 . -1011) T) ((-325 . -1004) T) ((-325 . -348) T) ((-325 . -1164) T) ((-325 . -880) T) ((-325 . -533) T) ((-325 . -163) T) ((-325 . -682) 34563) ((-325 . -37) 34528) ((-325 . -436) T) ((-325 . -292) T) ((-325 . -110) 34457) ((-325 . -1010) 34402) ((-325 . -275) T) ((-325 . -229) T) ((-325 . -387) T) ((-325 . -139) T) ((-325 . -995) 34379) ((-325 . -1213) 34356) ((-325 . -1223) 34333) ((-324 . -283) T) ((-324 . -995) 34300) ((-324 . -1052) T) ((-324 . -583) 34282) ((-324 . -100) T) ((-324 . -811) T) ((-324 . -496) 34248) ((-324 . -294) 34235) ((-324 . -37) 34219) ((-324 . -613) 34193) ((-324 . -691) T) ((-324 . -1063) T) ((-324 . -1011) T) ((-324 . -1004) T) ((-324 . -110) 34172) ((-324 . -1010) 34156) ((-324 . -21) T) ((-324 . -23) T) ((-324 . -25) T) ((-324 . -129) T) ((-324 . -682) 34140) ((-324 . -859) 34121) ((-318 . -321) 34090) ((-318 . -129) T) ((-318 . -25) T) ((-318 . -100) T) ((-318 . -583) 34072) ((-318 . -1052) T) ((-318 . -23) T) ((-318 . -21) T) ((-316 . -811) T) ((-316 . -100) T) ((-316 . -583) 34054) ((-316 . -1052) T) ((-315 . -1052) T) ((-315 . -583) 34036) ((-315 . -100) T) ((-312 . -19) 34020) ((-312 . -616) 34004) ((-312 . -273) 33981) ((-312 . -271) 33958) ((-312 . -574) 33935) ((-312 . -584) 33896) ((-312 . -472) 33880) ((-312 . -100) 33830) ((-312 . -1052) 33780) ((-312 . -496) 33713) ((-312 . -294) 33651) ((-312 . -583) 33563) ((-312 . -1159) T) ((-312 . -33) T) ((-312 . -145) 33547) ((-312 . -811) 33526) ((-312 . -357) 33510) ((-312 . -267) 33494) ((-309 . -308) 33471) ((-309 . -995) 33455) ((-309 . -23) T) ((-309 . -1052) T) ((-309 . -583) 33437) ((-309 . -100) T) ((-309 . -25) T) ((-309 . -129) T) ((-307 . -21) T) ((-307 . -23) T) ((-307 . -1052) T) ((-307 . -583) 33419) ((-307 . -100) T) ((-307 . -25) T) ((-307 . -129) T) ((-307 . -682) 33401) ((-307 . -613) 33383) ((-307 . -1010) 33365) ((-307 . -110) 33340) ((-307 . -308) 33317) ((-307 . -995) 33301) ((-307 . -811) 33280) ((-304 . -1188) 33264) ((-304 . -219) 33216) ((-304 . -271) 33201) ((-304 . -859) 33107) ((-304 . -932) 33069) ((-304 . -37) 32910) ((-304 . -110) 32731) ((-304 . -1010) 32566) ((-304 . -613) 32463) ((-304 . -682) 32304) ((-304 . -139) 32283) ((-304 . -141) 32262) ((-304 . -46) 32232) ((-304 . -1184) 32202) ((-304 . -34) 32168) ((-304 . -93) 32134) ((-304 . -269) 32100) ((-304 . -475) 32066) ((-304 . -1148) 32032) ((-304 . -1145) 31998) ((-304 . -960) 31964) ((-304 . -229) 31943) ((-304 . -275) 31894) ((-304 . -129) T) ((-304 . -25) T) ((-304 . -100) T) ((-304 . -583) 31876) ((-304 . -1052) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -1004) T) ((-304 . -1011) T) ((-304 . -1063) T) ((-304 . -691) T) ((-304 . -292) 31855) ((-304 . -436) 31834) ((-304 . -163) 31765) ((-304 . -533) 31716) ((-304 . -880) 31695) ((-304 . -1164) 31674) ((-304 . -348) 31653) ((-304 . -756) T) ((-304 . -811) T) ((-304 . -758) T) ((-299 . -406) 31637) ((-299 . -995) 31304) ((-299 . -584) 31165) ((-299 . -843) 31149) ((-299 . -859) 31115) ((-299 . -457) 31094) ((-299 . -397) 31078) ((-299 . -845) 31003) ((-299 . -1159) T) ((-299 . -385) 30987) ((-299 . -606) 30893) ((-299 . -362) 30862) ((-299 . -229) 30841) ((-299 . -110) 30737) ((-299 . -1010) 30647) ((-299 . -275) 30626) ((-299 . -682) 30536) ((-299 . -613) 30357) ((-299 . -37) 30267) ((-299 . -292) 30246) ((-299 . -436) 30225) ((-299 . -163) 30204) ((-299 . -533) 30183) ((-299 . -880) 30162) ((-299 . -1164) 30141) ((-299 . -348) 30120) ((-299 . -294) 30107) ((-299 . -496) 30073) ((-299 . -811) T) ((-299 . -283) T) ((-299 . -141) 30052) ((-299 . -139) 30031) ((-299 . -1004) 29921) ((-299 . -1011) 29811) ((-299 . -1063) 29660) ((-299 . -691) 29509) ((-299 . -129) 29380) ((-299 . -25) 29232) ((-299 . -100) T) ((-299 . -583) 29214) ((-299 . -1052) T) ((-299 . -23) 29066) ((-299 . -21) 28937) ((-299 . -29) 28907) ((-299 . -960) 28886) ((-299 . -27) 28865) ((-299 . -1145) 28844) ((-299 . -1148) 28823) ((-299 . -475) 28802) ((-299 . -269) 28781) ((-299 . -93) 28760) ((-299 . -34) 28739) ((-299 . -152) 28718) ((-299 . -137) 28697) ((-299 . -597) 28676) ((-299 . -919) 28655) ((-299 . -1087) 28634) ((-298 . -950) 28595) ((-298 . -1099) NIL) ((-298 . -995) 28525) ((-298 . -584) NIL) ((-298 . -977) NIL) ((-298 . -869) NIL) ((-298 . -843) 28486) ((-298 . -809) NIL) ((-298 . -761) NIL) ((-298 . -758) NIL) ((-298 . -811) NIL) ((-298 . -756) NIL) ((-298 . -755) NIL) ((-298 . -784) NIL) ((-298 . -845) NIL) ((-298 . -1159) T) ((-298 . -385) 28447) ((-298 . -606) 28408) ((-298 . -362) 28369) ((-298 . -271) 28304) ((-298 . -294) 28245) ((-298 . -496) 28137) ((-298 . -323) 28098) ((-298 . -229) T) ((-298 . -110) 28011) ((-298 . -1010) 27940) ((-298 . -275) T) ((-298 . -682) 27869) ((-298 . -613) 27798) ((-298 . -37) 27727) ((-298 . -292) T) ((-298 . -436) T) ((-298 . -163) T) ((-298 . -533) T) ((-298 . -880) T) ((-298 . -1164) T) ((-298 . -348) T) ((-298 . -219) NIL) ((-298 . -859) NIL) ((-298 . -217) 27688) ((-298 . -141) 27644) ((-298 . -139) 27600) ((-298 . -129) T) ((-298 . -25) T) ((-298 . -100) T) ((-298 . -583) 27582) ((-298 . -1052) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -1004) T) ((-298 . -1011) T) ((-298 . -1063) T) ((-298 . -691) T) ((-297 . -1035) T) ((-297 . -583) 27548) ((-297 . -1052) T) ((-297 . -100) T) ((-297 . -91) T) ((-296 . -1052) T) ((-296 . -583) 27530) ((-296 . -100) T) ((-280 . -1136) 27509) ((-280 . -215) 27459) ((-280 . -105) 27409) ((-280 . -294) 27213) ((-280 . -496) 27005) ((-280 . -472) 26942) ((-280 . -145) 26892) ((-280 . -584) NIL) ((-280 . -221) 26842) ((-280 . -580) 26821) ((-280 . -273) 26800) ((-280 . -271) 26779) ((-280 . -100) T) ((-280 . -1052) T) ((-280 . -583) 26761) ((-280 . -1159) T) ((-280 . -33) T) ((-280 . -574) 26740) ((-278 . -1159) T) ((-278 . -496) 26689) ((-278 . -1052) 26471) ((-278 . -583) 26212) ((-278 . -100) 25994) ((-278 . -25) 25858) ((-278 . -21) 25741) ((-278 . -23) 25624) ((-278 . -129) 25507) ((-278 . -1063) 25388) ((-278 . -691) 25290) ((-278 . -457) 25269) ((-278 . -1004) 25211) ((-278 . -1011) 25153) ((-278 . -613) 25013) ((-278 . -110) 24929) ((-278 . -1010) 24850) ((-278 . -682) 24792) ((-278 . -859) 24751) ((-278 . -1213) 24721) ((-276 . -583) 24703) ((-274 . -292) T) ((-274 . -436) T) ((-274 . -37) 24690) ((-274 . -691) T) ((-274 . -1063) T) ((-274 . -1011) T) ((-274 . -1004) T) ((-274 . -110) 24675) ((-274 . -1010) 24662) ((-274 . -21) T) ((-274 . -23) T) ((-274 . -1052) T) ((-274 . -583) 24644) ((-274 . -100) T) ((-274 . -25) T) ((-274 . -129) T) ((-274 . -613) 24631) ((-274 . -682) 24618) ((-274 . -163) T) ((-274 . -275) T) ((-274 . -533) T) ((-274 . -880) T) ((-265 . -583) 24600) ((-264 . -942) 24584) ((-263 . -942) 24568) ((-260 . -811) T) ((-260 . -100) T) ((-260 . -583) 24550) ((-260 . -1052) T) ((-259 . -800) T) ((-259 . -100) T) ((-259 . -583) 24532) ((-259 . -1052) T) ((-258 . -800) T) ((-258 . -100) T) ((-258 . -583) 24514) ((-258 . -1052) T) ((-257 . -800) T) ((-257 . -100) T) ((-257 . -583) 24496) ((-257 . -1052) T) ((-256 . -800) T) ((-256 . -100) T) ((-256 . -583) 24478) ((-256 . -1052) T) ((-255 . -800) T) ((-255 . -100) T) ((-255 . -583) 24460) ((-255 . -1052) T) ((-254 . -800) T) ((-254 . -100) T) ((-254 . -583) 24442) ((-254 . -1052) T) ((-253 . -800) T) ((-253 . -100) T) ((-253 . -583) 24424) ((-253 . -1052) T) ((-249 . -238) 24386) ((-249 . -995) 24232) ((-249 . -584) 23980) ((-249 . -311) 23952) ((-249 . -397) 23936) ((-249 . -37) 23785) ((-249 . -110) 23614) ((-249 . -1010) 23457) ((-249 . -613) 23382) ((-249 . -682) 23231) ((-249 . -139) 23210) ((-249 . -141) 23189) ((-249 . -163) 23100) ((-249 . -533) 23031) ((-249 . -275) 22962) ((-249 . -46) 22934) ((-249 . -362) 22918) ((-249 . -606) 22866) ((-249 . -436) 22817) ((-249 . -496) 22702) ((-249 . -811) 22681) ((-249 . -859) 22627) ((-249 . -845) 22486) ((-249 . -869) 22465) ((-249 . -1164) 22444) ((-249 . -909) 22411) ((-249 . -294) 22398) ((-249 . -219) 22377) ((-249 . -129) T) ((-249 . -25) T) ((-249 . -100) T) ((-249 . -583) 22359) ((-249 . -1052) T) ((-249 . -23) T) ((-249 . -21) T) ((-249 . -691) T) ((-249 . -1063) T) ((-249 . -1011) T) ((-249 . -1004) T) ((-249 . -217) 22343) ((-246 . -1052) T) ((-246 . -583) 22325) ((-246 . -100) T) ((-236 . -224) 22304) ((-236 . -1213) 22274) ((-236 . -755) 22253) ((-236 . -809) 22232) ((-236 . -761) 22183) ((-236 . -758) 22134) ((-236 . -811) 22085) ((-236 . -756) 22036) ((-236 . -757) 22015) ((-236 . -273) 21992) ((-236 . -271) 21969) ((-236 . -472) 21953) ((-236 . -496) 21886) ((-236 . -294) 21824) ((-236 . -1159) T) ((-236 . -33) T) ((-236 . -574) 21801) ((-236 . -995) 21630) ((-236 . -397) 21599) ((-236 . -606) 21505) ((-236 . -362) 21474) ((-236 . -353) 21453) ((-236 . -219) 21405) ((-236 . -859) 21337) ((-236 . -217) 21306) ((-236 . -110) 21196) ((-236 . -1010) 21093) ((-236 . -163) 21072) ((-236 . -583) 21033) ((-236 . -682) 20975) ((-236 . -613) 20810) ((-236 . -129) T) ((-236 . -23) T) ((-236 . -21) T) ((-236 . -1004) 20740) ((-236 . -1011) 20670) ((-236 . -1063) 20580) ((-236 . -691) 20490) ((-236 . -37) 20460) ((-236 . -1052) T) ((-236 . -100) T) ((-236 . -25) T) ((-235 . -224) 20439) ((-235 . -1213) 20409) ((-235 . -755) 20388) ((-235 . -809) 20367) ((-235 . -761) 20318) ((-235 . -758) 20269) ((-235 . -811) 20220) ((-235 . -756) 20171) ((-235 . -757) 20150) ((-235 . -273) 20127) ((-235 . -271) 20104) ((-235 . -472) 20088) ((-235 . -496) 20021) ((-235 . -294) 19959) ((-235 . -1159) T) ((-235 . -33) T) ((-235 . -574) 19936) ((-235 . -995) 19765) ((-235 . -397) 19734) ((-235 . -606) 19640) ((-235 . -362) 19609) ((-235 . -353) 19588) ((-235 . -219) 19540) ((-235 . -859) 19472) ((-235 . -217) 19441) ((-235 . -110) 19331) ((-235 . -1010) 19228) ((-235 . -163) 19207) ((-235 . -583) 19168) ((-235 . -682) 19110) ((-235 . -613) 18932) ((-235 . -129) T) ((-235 . -23) T) ((-235 . -21) T) ((-235 . -1004) 18862) ((-235 . -1011) 18792) ((-235 . -1063) 18702) ((-235 . -691) 18612) ((-235 . -37) 18582) ((-235 . -1052) T) ((-235 . -100) T) ((-235 . -25) T) ((-234 . -1052) T) ((-234 . -583) 18564) ((-234 . -100) T) ((-233 . -909) 18509) ((-233 . -995) 18387) ((-233 . -1164) 18366) ((-233 . -869) 18345) ((-233 . -845) NIL) ((-233 . -859) 18322) ((-233 . -811) 18301) ((-233 . -496) 18244) ((-233 . -436) 18195) ((-233 . -606) 18143) ((-233 . -362) 18127) ((-233 . -46) 18084) ((-233 . -37) 17933) ((-233 . -682) 17782) ((-233 . -275) 17713) ((-233 . -533) 17644) ((-233 . -110) 17473) ((-233 . -1010) 17316) ((-233 . -163) 17227) ((-233 . -141) 17206) ((-233 . -139) 17185) ((-233 . -613) 17110) ((-233 . -129) T) ((-233 . -25) T) ((-233 . -100) T) ((-233 . -583) 17092) ((-233 . -1052) T) ((-233 . -23) T) ((-233 . -21) T) ((-233 . -1004) T) ((-233 . -1011) T) ((-233 . -1063) T) ((-233 . -691) T) ((-233 . -397) 17076) ((-233 . -311) 17033) ((-233 . -294) 17020) ((-233 . -584) 16881) ((-231 . -631) 16865) ((-231 . -1194) 16849) ((-231 . -968) 16833) ((-231 . -1097) 16817) ((-231 . -811) 16796) ((-231 . -357) 16780) ((-231 . -616) 16764) ((-231 . -273) 16741) ((-231 . -271) 16718) ((-231 . -574) 16695) ((-231 . -584) 16656) ((-231 . -472) 16640) ((-231 . -100) 16590) ((-231 . -1052) 16540) ((-231 . -496) 16473) ((-231 . -294) 16411) ((-231 . -583) 16323) ((-231 . -1159) T) ((-231 . -33) T) ((-231 . -145) 16307) ((-231 . -267) 16291) ((-225 . -224) 16270) ((-225 . -1213) 16240) ((-225 . -755) 16219) ((-225 . -809) 16198) ((-225 . -761) 16149) ((-225 . -758) 16100) ((-225 . -811) 16051) ((-225 . -756) 16002) ((-225 . -757) 15981) ((-225 . -273) 15958) ((-225 . -271) 15935) ((-225 . -472) 15919) ((-225 . -496) 15852) ((-225 . -294) 15790) ((-225 . -1159) T) ((-225 . -33) T) ((-225 . -574) 15767) ((-225 . -995) 15596) ((-225 . -397) 15565) ((-225 . -606) 15471) ((-225 . -362) 15440) ((-225 . -353) 15419) ((-225 . -219) 15371) ((-225 . -859) 15303) ((-225 . -217) 15272) ((-225 . -110) 15162) ((-225 . -1010) 15059) ((-225 . -163) 15038) ((-225 . -583) 14769) ((-225 . -682) 14711) ((-225 . -613) 14559) ((-225 . -129) 14429) ((-225 . -23) 14299) ((-225 . -21) 14209) ((-225 . -1004) 14139) ((-225 . -1011) 14069) ((-225 . -1063) 13979) ((-225 . -691) 13889) ((-225 . -37) 13859) ((-225 . -1052) 13649) ((-225 . -100) 13439) ((-225 . -25) 13290) ((-213 . -650) 13248) ((-213 . -472) 13232) ((-213 . -100) 13210) ((-213 . -1052) 13188) ((-213 . -496) 13121) ((-213 . -294) 13059) ((-213 . -583) 12991) ((-213 . -1159) T) ((-213 . -33) T) ((-213 . -55) 12949) ((-211 . -389) T) ((-211 . -141) T) ((-211 . -613) 12914) ((-211 . -129) T) ((-211 . -25) T) ((-211 . -100) T) ((-211 . -583) 12896) ((-211 . -1052) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -691) T) ((-211 . -1063) T) ((-211 . -1011) T) ((-211 . -1004) T) ((-211 . -584) 12826) ((-211 . -348) T) ((-211 . -1164) T) ((-211 . -880) T) ((-211 . -533) T) ((-211 . -163) T) ((-211 . -682) 12791) ((-211 . -37) 12756) ((-211 . -436) T) ((-211 . -292) T) ((-211 . -110) 12712) ((-211 . -1010) 12677) ((-211 . -275) T) ((-211 . -229) T) ((-211 . -809) T) ((-211 . -761) T) ((-211 . -758) T) ((-211 . -811) T) ((-211 . -756) T) ((-211 . -755) T) ((-211 . -845) 12659) ((-211 . -960) T) ((-211 . -977) T) ((-211 . -995) 12619) ((-211 . -1013) T) ((-211 . -219) T) ((-211 . -785) T) ((-211 . -1145) T) ((-211 . -1148) T) ((-211 . -475) T) ((-211 . -269) T) ((-211 . -93) T) ((-211 . -34) T) ((-209 . -588) 12596) ((-209 . -613) 12563) ((-209 . -691) T) ((-209 . -1063) T) ((-209 . -1011) T) ((-209 . -1004) T) ((-209 . -21) T) ((-209 . -23) T) ((-209 . -1052) T) ((-209 . -583) 12545) ((-209 . -100) T) ((-209 . -25) T) ((-209 . -129) T) ((-209 . -995) 12522) ((-208 . -239) 12506) ((-208 . -1071) 12490) ((-208 . -105) 12474) ((-208 . -33) T) ((-208 . -1159) T) ((-208 . -583) 12406) ((-208 . -294) 12344) ((-208 . -496) 12277) ((-208 . -1052) 12255) ((-208 . -100) 12233) ((-208 . -472) 12217) ((-208 . -953) 12201) ((-204 . -950) 12183) ((-204 . -1099) T) ((-204 . -995) 12143) ((-204 . -584) 12073) ((-204 . -977) T) ((-204 . -869) NIL) ((-204 . -843) 12055) ((-204 . -809) T) ((-204 . -761) T) ((-204 . -758) T) ((-204 . -811) T) ((-204 . -756) T) ((-204 . -755) T) ((-204 . -784) T) ((-204 . -845) 12037) ((-204 . -1159) T) ((-204 . -385) 12019) ((-204 . -606) 12001) ((-204 . -362) 11983) ((-204 . -271) NIL) ((-204 . -294) NIL) ((-204 . -496) NIL) ((-204 . -323) 11965) ((-204 . -229) T) ((-204 . -110) 11899) ((-204 . -1010) 11849) ((-204 . -275) T) ((-204 . -682) 11799) ((-204 . -613) 11749) ((-204 . -37) 11699) ((-204 . -292) T) ((-204 . -436) T) ((-204 . -163) T) ((-204 . -533) T) ((-204 . -880) T) ((-204 . -1164) T) ((-204 . -348) T) ((-204 . -219) T) ((-204 . -859) NIL) ((-204 . -217) 11681) ((-204 . -141) T) ((-204 . -139) NIL) ((-204 . -129) T) ((-204 . -25) T) ((-204 . -100) T) ((-204 . -583) 11663) ((-204 . -1052) T) ((-204 . -23) T) ((-204 . -21) T) ((-204 . -1004) T) ((-204 . -1011) T) ((-204 . -1063) T) ((-204 . -691) T) ((-201 . -1052) T) ((-201 . -583) 11645) ((-201 . -100) T) ((-200 . -1052) T) ((-200 . -583) 11627) ((-200 . -100) T) ((-199 . -854) T) ((-199 . -100) T) ((-199 . -583) 11609) ((-199 . -1052) T) ((-198 . -854) T) ((-198 . -100) T) ((-198 . -583) 11591) ((-198 . -1052) T) ((-196 . -764) T) ((-196 . -100) T) ((-196 . -583) 11573) ((-196 . -1052) T) ((-195 . -764) T) ((-195 . -100) T) ((-195 . -583) 11555) ((-195 . -1052) T) ((-194 . -764) T) ((-194 . -100) T) ((-194 . -583) 11537) ((-194 . -1052) T) ((-193 . -764) T) ((-193 . -100) T) ((-193 . -583) 11519) ((-193 . -1052) T) ((-190 . -751) T) ((-190 . -100) T) ((-190 . -583) 11501) ((-190 . -1052) T) ((-189 . -751) T) ((-189 . -100) T) ((-189 . -583) 11483) ((-189 . -1052) T) ((-188 . -751) T) ((-188 . -100) T) ((-188 . -583) 11465) ((-188 . -1052) T) ((-187 . -751) T) ((-187 . -100) T) ((-187 . -583) 11447) ((-187 . -1052) T) ((-186 . -751) T) ((-186 . -100) T) ((-186 . -583) 11429) ((-186 . -1052) T) ((-185 . -751) T) ((-185 . -100) T) ((-185 . -583) 11411) ((-185 . -1052) T) ((-184 . -751) T) ((-184 . -100) T) ((-184 . -583) 11393) ((-184 . -1052) T) ((-183 . -751) T) ((-183 . -100) T) ((-183 . -583) 11375) ((-183 . -1052) T) ((-182 . -751) T) ((-182 . -100) T) ((-182 . -583) 11357) ((-182 . -1052) T) ((-181 . -751) T) ((-181 . -100) T) ((-181 . -583) 11339) ((-181 . -1052) T) ((-180 . -751) T) ((-180 . -100) T) ((-180 . -583) 11321) ((-180 . -1052) T) ((-174 . -1052) T) ((-174 . -583) 11303) ((-174 . -100) T) ((-171 . -1035) T) ((-171 . -583) 11269) ((-171 . -1052) T) ((-171 . -100) T) ((-171 . -91) T) ((-166 . -583) 11251) ((-165 . -37) 11183) ((-165 . -613) 11115) ((-165 . -691) T) ((-165 . -1063) T) ((-165 . -1011) T) ((-165 . -1004) T) ((-165 . -110) 11026) ((-165 . -1010) 10958) ((-165 . -21) T) ((-165 . -23) T) ((-165 . -1052) T) ((-165 . -583) 10940) ((-165 . -100) T) ((-165 . -25) T) ((-165 . -129) T) ((-165 . -682) 10872) ((-165 . -348) T) ((-165 . -1164) T) ((-165 . -880) T) ((-165 . -533) T) ((-165 . -163) T) ((-165 . -436) T) ((-165 . -292) T) ((-165 . -275) T) ((-165 . -229) T) ((-162 . -1052) T) ((-162 . -583) 10854) ((-162 . -100) T) ((-159 . -157) 10838) ((-159 . -34) 10816) ((-159 . -93) 10794) ((-159 . -269) 10772) ((-159 . -475) 10750) ((-159 . -1148) 10728) ((-159 . -1145) 10706) ((-159 . -960) 10658) ((-159 . -869) 10611) ((-159 . -584) 10373) ((-159 . -843) 10357) ((-159 . -811) 10336) ((-159 . -353) 10287) ((-159 . -335) 10266) ((-159 . -1099) 10245) ((-159 . -387) 10224) ((-159 . -395) 10195) ((-159 . -37) 10023) ((-159 . -110) 9919) ((-159 . -1010) 9829) ((-159 . -613) 9739) ((-159 . -682) 9567) ((-159 . -355) 9538) ((-159 . -689) 9509) ((-159 . -995) 9407) ((-159 . -397) 9391) ((-159 . -845) 9316) ((-159 . -1159) T) ((-159 . -385) 9300) ((-159 . -606) 9248) ((-159 . -362) 9232) ((-159 . -271) 9190) ((-159 . -294) 9155) ((-159 . -496) 9067) ((-159 . -323) 9051) ((-159 . -229) 9002) ((-159 . -1164) 8907) ((-159 . -348) 8858) ((-159 . -880) 8789) ((-159 . -533) 8700) ((-159 . -275) 8611) ((-159 . -436) 8542) ((-159 . -292) 8473) ((-159 . -219) 8424) ((-159 . -859) 8383) ((-159 . -217) 8367) ((-159 . -163) T) ((-159 . -141) 8346) ((-159 . -1004) T) ((-159 . -1011) T) ((-159 . -1063) T) ((-159 . -691) T) ((-159 . -21) T) ((-159 . -23) T) ((-159 . -1052) T) ((-159 . -583) 8328) ((-159 . -100) T) ((-159 . -25) T) ((-159 . -129) T) ((-159 . -139) 8279) ((-159 . -785) 8258) ((-153 . -1052) T) ((-153 . -583) 8240) ((-153 . -100) T) ((-149 . -25) T) ((-149 . -100) T) ((-149 . -583) 8222) ((-149 . -1052) T) ((-146 . -1004) T) ((-146 . -1011) T) ((-146 . -1063) T) ((-146 . -691) T) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1052) T) ((-146 . -583) 8204) ((-146 . -100) T) ((-146 . -25) T) ((-146 . -129) T) ((-146 . -613) 8178) ((-146 . -37) 8162) ((-146 . -110) 8141) ((-146 . -1010) 8125) ((-146 . -682) 8109) ((-146 . -1213) 8093) ((-138 . -805) T) ((-138 . -811) T) ((-138 . -1052) T) ((-138 . -583) 8075) ((-138 . -100) T) ((-138 . -353) T) ((-135 . -1052) T) ((-135 . -583) 8057) ((-135 . -100) T) ((-135 . -584) 8016) ((-135 . -411) 7998) ((-135 . -1050) 7980) ((-135 . -353) T) ((-135 . -221) 7962) ((-135 . -145) 7944) ((-135 . -472) 7926) ((-135 . -496) NIL) ((-135 . -294) NIL) ((-135 . -1159) T) ((-135 . -33) T) ((-135 . -105) 7908) ((-135 . -215) 7890) ((-134 . -583) 7872) ((-132 . -449) 7849) ((-132 . -995) 7833) ((-132 . -1052) T) ((-132 . -583) 7815) ((-132 . -100) T) ((-132 . -454) 7770) ((-131 . -811) T) ((-131 . -100) T) ((-131 . -583) 7752) ((-131 . -1052) T) ((-131 . -23) T) ((-131 . -25) T) ((-131 . -691) T) ((-131 . -1063) T) ((-131 . -995) 7734) ((-128 . -19) 7716) ((-128 . -616) 7698) ((-128 . -273) 7673) ((-128 . -271) 7648) ((-128 . -574) 7623) ((-128 . -584) NIL) ((-128 . -472) 7605) ((-128 . -100) T) ((-128 . -1052) T) ((-128 . -496) NIL) ((-128 . -294) NIL) ((-128 . -583) 7587) ((-128 . -1159) T) ((-128 . -33) T) ((-128 . -145) 7569) ((-128 . -811) T) ((-128 . -357) 7551) ((-127 . -811) T) ((-127 . -100) T) ((-127 . -583) 7518) ((-127 . -1052) T) ((-126 . -124) 7502) ((-126 . -968) 7486) ((-126 . -33) T) ((-126 . -1159) T) ((-126 . -583) 7418) ((-126 . -294) 7356) ((-126 . -496) 7289) ((-126 . -1052) 7267) ((-126 . -100) 7245) ((-126 . -472) 7229) ((-126 . -118) 7213) ((-125 . -124) 7197) ((-125 . -968) 7181) ((-125 . -33) T) ((-125 . -1159) T) ((-125 . -583) 7113) ((-125 . -294) 7051) ((-125 . -496) 6984) ((-125 . -1052) 6962) ((-125 . -100) 6940) ((-125 . -472) 6924) ((-125 . -118) 6908) ((-120 . -124) 6892) ((-120 . -968) 6876) ((-120 . -33) T) ((-120 . -1159) T) ((-120 . -583) 6808) ((-120 . -294) 6746) ((-120 . -496) 6679) ((-120 . -1052) 6657) ((-120 . -100) 6635) ((-120 . -472) 6619) ((-120 . -118) 6603) ((-116 . -950) 6580) ((-116 . -1099) NIL) ((-116 . -995) 6557) ((-116 . -584) NIL) ((-116 . -977) NIL) ((-116 . -869) NIL) ((-116 . -843) 6534) ((-116 . -809) NIL) ((-116 . -761) NIL) ((-116 . -758) NIL) ((-116 . -811) NIL) ((-116 . -756) NIL) ((-116 . -755) NIL) ((-116 . -784) NIL) ((-116 . -845) NIL) ((-116 . -1159) T) ((-116 . -385) 6511) ((-116 . -606) 6488) ((-116 . -362) 6465) ((-116 . -271) 6416) ((-116 . -294) 6373) ((-116 . -496) 6281) ((-116 . -323) 6258) ((-116 . -229) T) ((-116 . -110) 6187) ((-116 . -1010) 6132) ((-116 . -275) T) ((-116 . -682) 6077) ((-116 . -613) 6022) ((-116 . -37) 5967) ((-116 . -292) T) ((-116 . -436) T) ((-116 . -163) T) ((-116 . -533) T) ((-116 . -880) T) ((-116 . -1164) T) ((-116 . -348) T) ((-116 . -219) NIL) ((-116 . -859) NIL) ((-116 . -217) 5944) ((-116 . -141) T) ((-116 . -139) NIL) ((-116 . -129) T) ((-116 . -25) T) ((-116 . -100) T) ((-116 . -583) 5926) ((-116 . -1052) T) ((-116 . -23) T) ((-116 . -21) T) ((-116 . -1004) T) ((-116 . -1011) T) ((-116 . -1063) T) ((-116 . -691) T) ((-115 . -829) 5910) ((-115 . -880) T) ((-115 . -533) T) ((-115 . -275) T) ((-115 . -163) T) ((-115 . -682) 5897) ((-115 . -1010) 5884) ((-115 . -110) 5869) ((-115 . -37) 5856) ((-115 . -436) T) ((-115 . -292) T) ((-115 . -1004) T) ((-115 . -1011) T) ((-115 . -1063) T) ((-115 . -691) T) ((-115 . -21) T) ((-115 . -23) T) ((-115 . -1052) T) ((-115 . -583) 5838) ((-115 . -100) T) ((-115 . -25) T) ((-115 . -129) T) ((-115 . -613) 5825) ((-115 . -141) T) ((-112 . -811) T) ((-112 . -100) T) ((-112 . -583) 5807) ((-112 . -1052) T) ((-111 . -811) T) ((-111 . -100) T) ((-111 . -583) 5789) ((-111 . -1052) T) ((-111 . -353) T) ((-111 . -627) T) ((-111 . -926) T) ((-111 . -584) 5771) ((-109 . -122) T) ((-109 . -357) 5753) ((-109 . -811) T) ((-109 . -145) 5735) ((-109 . -33) T) ((-109 . -1159) T) ((-109 . -583) 5717) ((-109 . -294) NIL) ((-109 . -496) NIL) ((-109 . -1052) T) ((-109 . -472) 5699) ((-109 . -584) 5681) ((-109 . -574) 5656) ((-109 . -271) 5631) ((-109 . -273) 5606) ((-109 . -616) 5588) ((-109 . -19) 5570) ((-109 . -100) T) ((-109 . -627) T) ((-108 . -350) 5544) ((-108 . -100) T) ((-108 . -583) 5526) ((-108 . -1052) T) ((-107 . -583) 5508) ((-106 . -950) 5490) ((-106 . -1099) T) ((-106 . -995) 5450) ((-106 . -584) 5380) ((-106 . -977) T) ((-106 . -869) NIL) ((-106 . -843) 5362) ((-106 . -809) T) ((-106 . -761) T) ((-106 . -758) T) ((-106 . -811) T) ((-106 . -756) T) ((-106 . -755) T) ((-106 . -784) T) ((-106 . -845) 5344) ((-106 . -1159) T) ((-106 . -385) 5326) ((-106 . -606) 5308) ((-106 . -362) 5290) ((-106 . -271) NIL) ((-106 . -294) NIL) ((-106 . -496) NIL) ((-106 . -323) 5272) ((-106 . -229) T) ((-106 . -110) 5206) ((-106 . -1010) 5156) ((-106 . -275) T) ((-106 . -682) 5106) ((-106 . -613) 5056) ((-106 . -37) 5006) ((-106 . -292) T) ((-106 . -436) T) ((-106 . -163) T) ((-106 . -533) T) ((-106 . -880) T) ((-106 . -1164) T) ((-106 . -348) T) ((-106 . -219) T) ((-106 . -859) NIL) ((-106 . -217) 4988) ((-106 . -141) T) ((-106 . -139) NIL) ((-106 . -129) T) ((-106 . -25) T) ((-106 . -100) T) ((-106 . -583) 4970) ((-106 . -1052) T) ((-106 . -23) T) ((-106 . -21) T) ((-106 . -1004) T) ((-106 . -1011) T) ((-106 . -1063) T) ((-106 . -691) T) ((-103 . -1052) T) ((-103 . -583) 4952) ((-103 . -100) T) ((-101 . -124) 4936) ((-101 . -968) 4920) ((-101 . -33) T) ((-101 . -1159) T) ((-101 . -583) 4852) ((-101 . -294) 4790) ((-101 . -496) 4723) ((-101 . -1052) 4701) ((-101 . -100) 4679) ((-101 . -472) 4663) ((-101 . -118) 4647) ((-97 . -457) T) ((-97 . -1063) T) ((-97 . -100) T) ((-97 . -583) 4629) ((-97 . -1052) T) ((-97 . -691) T) ((-97 . -271) 4608) ((-95 . -1052) T) ((-95 . -583) 4590) ((-95 . -100) T) ((-94 . -1035) T) ((-94 . -583) 4556) ((-94 . -1052) T) ((-94 . -100) T) ((-94 . -91) T) ((-89 . -1071) 4540) ((-89 . -472) 4524) ((-89 . -100) 4502) ((-89 . -1052) 4480) ((-89 . -496) 4413) ((-89 . -294) 4351) ((-89 . -583) 4283) ((-89 . -1159) T) ((-89 . -33) T) ((-89 . -105) 4267) ((-87 . -382) T) ((-87 . -583) 4249) ((-87 . -1159) T) ((-87 . -381) T) ((-86 . -370) T) ((-86 . -583) 4231) ((-86 . -1159) T) ((-86 . -381) T) ((-85 . -424) T) ((-85 . -583) 4213) ((-85 . -1159) T) ((-85 . -381) T) ((-84 . -425) T) ((-84 . -583) 4195) ((-84 . -1159) T) ((-84 . -381) T) ((-83 . -370) T) ((-83 . -583) 4177) ((-83 . -1159) T) ((-83 . -381) T) ((-82 . -370) T) ((-82 . -583) 4159) ((-82 . -1159) T) ((-82 . -381) T) ((-81 . -425) T) ((-81 . -583) 4141) ((-81 . -1159) T) ((-81 . -381) T) ((-80 . -425) T) ((-80 . -583) 4123) ((-80 . -1159) T) ((-80 . -381) T) ((-79 . -425) T) ((-79 . -583) 4105) ((-79 . -1159) T) ((-79 . -381) T) ((-78 . -425) T) ((-78 . -583) 4087) ((-78 . -1159) T) ((-78 . -381) T) ((-77 . -425) T) ((-77 . -583) 4069) ((-77 . -1159) T) ((-77 . -381) T) ((-76 . -382) T) ((-76 . -583) 4051) ((-76 . -1159) T) ((-76 . -381) T) ((-75 . -425) T) ((-75 . -583) 4033) ((-75 . -1159) T) ((-75 . -381) T) ((-74 . -425) T) ((-74 . -583) 4015) ((-74 . -1159) T) ((-74 . -381) T) ((-73 . -382) T) ((-73 . -583) 3997) ((-73 . -1159) T) ((-73 . -381) T) ((-72 . -425) T) ((-72 . -583) 3979) ((-72 . -1159) T) ((-72 . -381) T) ((-71 . -368) T) ((-71 . -583) 3961) ((-71 . -1159) T) ((-71 . -381) T) ((-70 . -381) T) ((-70 . -1159) T) ((-70 . -583) 3943) ((-69 . -425) T) ((-69 . -583) 3925) ((-69 . -1159) T) ((-69 . -381) T) ((-68 . -368) T) ((-68 . -583) 3907) ((-68 . -1159) T) ((-68 . -381) T) ((-67 . -381) T) ((-67 . -1159) T) ((-67 . -583) 3889) ((-66 . -368) T) ((-66 . -583) 3871) ((-66 . -1159) T) ((-66 . -381) T) ((-65 . -368) T) ((-65 . -583) 3853) ((-65 . -1159) T) ((-65 . -381) T) ((-64 . -382) T) ((-64 . -583) 3835) ((-64 . -1159) T) ((-64 . -381) T) ((-63 . -370) T) ((-63 . -583) 3817) ((-63 . -1159) T) ((-63 . -381) T) ((-62 . -425) T) ((-62 . -583) 3799) ((-62 . -1159) T) ((-62 . -381) T) ((-61 . -381) T) ((-61 . -1159) T) ((-61 . -583) 3781) ((-60 . -425) T) ((-60 . -583) 3763) ((-60 . -1159) T) ((-60 . -381) T) ((-59 . -382) T) ((-59 . -583) 3745) ((-59 . -1159) T) ((-59 . -381) T) ((-58 . -55) 3707) ((-58 . -33) T) ((-58 . -1159) T) ((-58 . -583) 3639) ((-58 . -294) 3577) ((-58 . -496) 3510) ((-58 . -1052) 3488) ((-58 . -100) 3466) ((-58 . -472) 3450) ((-56 . -19) 3434) ((-56 . -616) 3418) ((-56 . -273) 3395) ((-56 . -271) 3372) ((-56 . -574) 3349) ((-56 . -584) 3310) ((-56 . -472) 3294) ((-56 . -100) 3244) ((-56 . -1052) 3194) ((-56 . -496) 3127) ((-56 . -294) 3065) ((-56 . -583) 2977) ((-56 . -1159) T) ((-56 . -33) T) ((-56 . -145) 2961) ((-56 . -811) 2940) ((-56 . -357) 2924) ((-50 . -1052) T) ((-50 . -583) 2906) ((-50 . -100) T) ((-49 . -588) 2890) ((-49 . -613) 2864) ((-49 . -691) T) ((-49 . -1063) T) ((-49 . -1011) T) ((-49 . -1004) T) ((-49 . -21) T) ((-49 . -23) T) ((-49 . -1052) T) ((-49 . -583) 2846) ((-49 . -100) T) ((-49 . -25) T) ((-49 . -129) T) ((-49 . -995) 2830) ((-48 . -1052) T) ((-48 . -583) 2812) ((-48 . -100) T) ((-47 . -283) T) ((-47 . -995) 2755) ((-47 . -1052) T) ((-47 . -583) 2737) ((-47 . -100) T) ((-47 . -811) T) ((-47 . -496) 2703) ((-47 . -294) 2690) ((-47 . -27) T) ((-47 . -960) T) ((-47 . -229) T) ((-47 . -110) 2646) ((-47 . -1010) 2611) ((-47 . -275) T) ((-47 . -682) 2576) ((-47 . -613) 2541) ((-47 . -129) T) ((-47 . -25) T) ((-47 . -23) T) ((-47 . -21) T) ((-47 . -1004) T) ((-47 . -1011) T) ((-47 . -1063) T) ((-47 . -691) T) ((-47 . -37) 2506) ((-47 . -292) T) ((-47 . -436) T) ((-47 . -163) T) ((-47 . -533) T) ((-47 . -880) T) ((-47 . -1164) T) ((-47 . -348) T) ((-47 . -606) 2466) ((-47 . -977) T) ((-47 . -584) 2411) ((-47 . -141) T) ((-47 . -219) T) ((-44 . -35) 2390) ((-44 . -574) 2315) ((-44 . -294) 2119) ((-44 . -496) 1911) ((-44 . -472) 1848) ((-44 . -271) 1773) ((-44 . -273) 1698) ((-44 . -580) 1677) ((-44 . -221) 1627) ((-44 . -105) 1577) ((-44 . -215) 1527) ((-44 . -1136) 1506) ((-44 . -267) 1456) ((-44 . -145) 1406) ((-44 . -33) T) ((-44 . -1159) T) ((-44 . -583) 1388) ((-44 . -1052) T) ((-44 . -100) T) ((-44 . -584) NIL) ((-44 . -616) 1338) ((-44 . -357) 1288) ((-44 . -811) NIL) ((-44 . -1097) 1238) ((-44 . -968) 1188) ((-44 . -1194) 1138) ((-44 . -631) 1088) ((-43 . -403) 1072) ((-43 . -709) 1056) ((-43 . -685) T) ((-43 . -726) T) ((-43 . -110) 1035) ((-43 . -1010) 1019) ((-43 . -21) T) ((-43 . -23) T) ((-43 . -1052) T) ((-43 . -583) 1001) ((-43 . -100) T) ((-43 . -25) T) ((-43 . -129) T) ((-43 . -613) 959) ((-43 . -682) 943) ((-43 . -352) 927) ((-39 . -327) 901) ((-39 . -163) T) ((-39 . -691) T) ((-39 . -1063) T) ((-39 . -1011) T) ((-39 . -1004) T) ((-39 . -613) 846) ((-39 . -129) T) ((-39 . -25) T) ((-39 . -100) T) ((-39 . -583) 828) ((-39 . -1052) T) ((-39 . -23) T) ((-39 . -21) T) ((-39 . -1010) 773) ((-39 . -110) 702) ((-39 . -584) 686) ((-39 . -217) 663) ((-39 . -859) 615) ((-39 . -219) 587) ((-39 . -348) T) ((-39 . -1164) T) ((-39 . -880) T) ((-39 . -533) T) ((-39 . -682) 532) ((-39 . -37) 477) ((-39 . -436) T) ((-39 . -292) T) ((-39 . -275) T) ((-39 . -229) T) ((-39 . -353) NIL) ((-39 . -335) NIL) ((-39 . -1099) NIL) ((-39 . -139) 449) ((-39 . -387) NIL) ((-39 . -395) 421) ((-39 . -141) 393) ((-39 . -355) 365) ((-39 . -362) 342) ((-39 . -606) 281) ((-39 . -397) 258) ((-39 . -995) 148) ((-39 . -689) 120) ((-30 . -914) T) ((-30 . -583) 102) ((0 . |EnumerationCategory|) T) ((0 . -583) 84) ((0 . -1052) T) ((0 . -100) T) ((-1 . -1052) T) ((-1 . -583) 66) ((-1 . -100) T) ((-2 . |RecordCategory|) T) ((-2 . -583) 48) ((-2 . -1052) T) ((-2 . -100) T) ((-3 . |UnionCategory|) T) ((-3 . -583) 30) ((-3 . -1052) T) ((-3 . -100) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 19cd67e3..36da215f 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,207 +1,181 @@ -(30 . 3429568331) -(4303 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3430368521) +(4313 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| - |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| - |AbelianSemiGroup| |AlgebraicallyClosedField&| - |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| - |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| - |AlgebraicFunction| |Aggregate&| |Aggregate| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| + |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| + |AlgebraicallyClosedField&| |AlgebraicallyClosedField| + |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| + |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| - |Algebra| |AlgFactor| |AlgebraicFunctionField| - |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| - |AlgebraGivenByStructuralConstants| |AssociationList| - |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| - |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| - |ApplyUnivariateSkewPolynomial| |ApplyRules| - |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| - |OneDimensionalArrayFunctions2| |OneDimensionalArray| - |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| - |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| - |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| - |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| + |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| + |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| + |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| + |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| + |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| + |TwoDimensionalArrayCategory| |OneDimensionalArray| + |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |Asp1| |Asp10| |Asp12| + |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| + |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| + |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| - |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| - |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| - |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| - |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid| - |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| - |CartesianTensor| |Category| |CharacterClass| |CommonDenominator| - |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| - |CharacteristicPolynomialPackage| |CharacteristicZero| - |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| - |Collection&| |Collection| |CliffordAlgebra| - |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| + |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| + |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| + |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |Byte| |ByteArray| |CancellationAbelianMonoid| |CachableSet| + |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |Category| + |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| + |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| + |CharacteristicZero| |ChangeOfVariable| + |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| + |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| - |CommuteUnivariatePolynomialCategory| |ComplexCategory&| - |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| - |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| - |ContinuedFraction| |Contour| |CoordinateSystems| - |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| - |CyclicStreamTools| |ConstructorCall| - |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| - |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| - |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| - |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| - |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| - |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| - |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| - |ElementaryFunctionDefiniteIntegration| - |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| - |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| - |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| - |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| + |ComplexFactorization| |Complex| |ComplexFunctions2| |ComplexPattern| + |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| + |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| + |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| + |CyclicStreamTools| |ConstructorCall| |ComplexTrigonometricManipulations| + |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| + |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| + |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| + |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| + |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| + |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage| + |DistinctDegreeFactorize| |DecimalExpansion| + |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| + |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| + |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| + |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| - |DirectProductCategory&| |DirectProductCategory| - |DirectProductFunctions2| |DirectProduct| |DisplayPackage| - |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| - |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| + |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| + |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| + |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| - |DrawNumericHack| |TopLevelDrawFunctions| - |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DrawOption| - |DifferentialSparseMultivariatePolynomial| + |DequeueAggregate| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForCompiledFunctions| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| + |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| - |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| - |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| - |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| - |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| - |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| - |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| - |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| - |ExponentialExpansion| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |Expression| - |ExpressionSpaceODESolver| |ExpressionTubePlot| - |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| - |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| - |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| - |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| - |FortranCode| |FourierComponent| |FortranCodePackage1| - |FiniteDivisorFunctions2| |FiniteDivisorCategory&| - |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| - |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| - |FunctionFieldCategory| |FiniteFieldCyclicGroup| - |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| + |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| + |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| + |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| + |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| + |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| + |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| + |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| + |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| + |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| + |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| + |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| + |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| + |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| + |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| - |FiniteFieldCategory| |FunctionFieldIntegralBasis| - |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteField| - |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| - |FiniteFieldPolynomialPackage| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| + |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| + |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| + |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| - |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| - |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| - |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| - |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| - |FreeModuleCat| |FortranMatrixCategory| - |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| - |FortranMachineTypeCategory| |FileName| |FileNameCategory| - |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| - |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| - |FortranFunctionCategory| |FortranPackage| |FortranProgram| - |FullPartialFractionExpansion| |FullyPatternMatchable| - |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| - |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| - |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| - |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| - |FractionalIdeal| |FramedModule| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| + |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| + |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| + |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| + |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| + |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| + |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| + |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| + |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| + |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| + |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| + |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| + |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| + |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| + |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| - |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| - |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| - |FiniteSetAggregate&| |FiniteSetAggregate| - |FunctionSpaceComplexIntegration| |FourierSeries| - |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| + |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| + |FunctionSpace| |FunctionSpaceFunctions2| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| + |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| + |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| - |FortranType| |FunctionCalled| |FortranVectorCategory| - |FortranVectorFunctionCategory| |GaloisGroupFactorizer| - |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| - |GaloisGroupUtilities| |GaussianFactorizationPackage| + |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| + |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| + |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| + |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| + |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| - |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| - |GeneralDistributedMultivariatePolynomial| |GenExEuclid| - |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| + |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| - |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| - |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| - |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| - |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| - |HallBasis| |HomogeneousDistributedMultivariatePolynomial| - |HomogeneousDirectProduct| |HeadAst| |Heap| - |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| - |HomogeneousAggregate&| |HomogeneousAggregate| |Hostname| - |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| + |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| + |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| + |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| + |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| + |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| + |HomogeneousDirectProduct| |HeadAst| |Heap| |HyperellipticFiniteDivisor| + |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| + |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| - |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| - |IdealDecompositionPackage| |Identifier| - |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| - |IndexedDirectProductCategory| - |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| - |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| - |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| - |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| - |InAst| |InnerNormalBasisFieldFunctions| |IncrementingMaps| - |IndexedExponents| |InnerNumericEigenPackage| |Infinity| - |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| - |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| - |InfiniteProductFiniteField| |InfiniteProductPrimeField| - |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| - |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| - |IntervalCategory| |IntegralDomain&| |IntegralDomain| - |ElementaryIntegration| |IntegerFactorizationPackage| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| + |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| + |Identifier| |IndexedDirectProductAbelianGroup| + |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| + |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| + |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| + |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| + |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| + |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1| + |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| + |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| + |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| + |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration| + |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| + |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |Integer| - |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| - |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| - |RationalFunctionIntegration| |Interval| + |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| + |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| + |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| + |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| - |IntegrationResultToFunction| |IntegrationResultFunctions2| - |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| + |IntegrationResult| |IntegrationResultFunctions2| + |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| @@ -209,906 +183,804 @@ |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| - |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| - |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| - |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| - |LeadingCoefDetermination| |LetAst| |LieExponentials| - |LexTriangularPackage| |LiouvillianFunctionCategory| - |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| - |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| - |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| - |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| - |ListMonoidOps| |LinearAggregate&| |LinearAggregate| - |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| + |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| + |Kovacic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| + |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| + |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| + |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| + |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| + |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| + |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal| + |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| + |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| + |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperator| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage1| - |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| - |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| - |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| + |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| + |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| + |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| - |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| - |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| - |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| - |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| - |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| - |MakeBinaryCompiledFunction| |MakeCachableSet| + |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory| + |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| + |StorageEfficientMatrixOperations| |Maybe| |MultiVariableCalculusFunctions| + |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| + |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| + |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| + |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| - |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| - |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| - |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| - |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| - |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| - |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| - |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| - |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| - |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| - |MultivariateFactorize| |MultivariateSquareFree| - |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| + |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| + |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| + |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| + |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| + |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| + |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| + |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| + |MultisetAggregate| |MoreSystemCommands| |MergeThing| + |MultivariateTaylorSeriesCategory| |MultivariateFactorize| + |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| - |NagMatrixOperationsPackage| |NagEigenPackage| - |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| - |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| - |NonAssociativeRing| |NumericComplexEigenPackage| - |NumericContinuedFraction| |NonCommutativeOperatorDivision| - |NumberFieldIntegralBasis| |NumericalIntegrationProblem| - |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| - |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| - |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| - |NewSparseUnivariatePolynomialFunctions2| - |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| - |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| - |NumericalIntegrationCategory| + |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| + |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| + |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| + |NumericComplexEigenPackage| |NumericContinuedFraction| + |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| + |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| + |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| + |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| + |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| + |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| + |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| - |OrderedCancellationAbelianMonoid| |OctonionCategory&| - |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| - |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| - |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| - |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| - |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| - |SystemODESolver| |ODETools| |OrderedDirectProduct| - |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| - |OrderlyDifferentialVariable| |OrderedFreeMonoid| - |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| - |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| - |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| - |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| - |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| - |OperationsQuery| |NumericalOptimizationCategory| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| + |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| + |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| + |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| + |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| + |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| + |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| + |OrderedDirectProduct| |OrderlyDifferentialPolynomial| + |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| + |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| + |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| + |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| + |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| + |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| - |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| - |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| - |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| - |OrderedSemiGroup| |OrdSetInts| |OutputForm| |OutputPackage| + |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| + |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| + |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| + |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| + |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| - |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| - |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| - |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| - |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| - |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| - |ParametricSurface| |PartitionsAndPermutations| |Patternable| - |PatternMatchListResult| |PatternMatchable| |PatternMatch| - |PatternMatchResultFunctions2| |PatternMatchResult| - |PatternFunctions1| |PatternFunctions2| |Pattern| - |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| - |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| - |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| - |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| - |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| - |PolynomialFactorizationByRecursion| + |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| + |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| + |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| + |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| + |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| + |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| + |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| + |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| + |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| + |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| + |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| + |PendantTree| |Permutation| |Permanent| |PermutationCategory| + |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| - |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| - |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| - |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| - |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| - |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| - |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| - |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| + |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| + |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| + |PrincipalIdealDomain| |PolynomialInterpolation| + |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| + |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| + |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |FunctionSpaceAttachPredicates| |AttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| - |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| - |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| - |PolynomialCategory| |PolynomialCategoryQuotientFunctions| - |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| - |PortNumber| |PlottablePlaneCurveCategory| - |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| - |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| - |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| - |Property| |PropositionalFormula| |PropositionalLogic| - |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| - |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| - |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| - |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| - |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| - |PushVariables| |PAdicWildFunctionFieldIntegralBasis| - |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| - |QueryEquation| |QuotientFieldCategoryFunctions2| - |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| - |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| - |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| - |RadicalCategory| |RadicalFunctionField| |RadixExpansion| - |RadixUtilities| |RandomNumberSource| |RationalFactorize| - |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| - |RealClosedField&| |RealClosedField| |ElementaryRischDE| + |AttachPredicates| |FunctionSpaceAttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| + |PolynomialNumberTheoryFunctions| |Point| |PolToPol| + |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| + |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| + |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| + |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| + |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| + |PrintPackage| |Product| |Property| |PropositionalFormula| + |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| + |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| + |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| + |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| + |PartialTranscendentalFunctions| |PushVariables| + |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| + |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| + |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| + |QueueAggregate| |Quaternion| |QuaternionCategory&| |QuaternionCategory| + |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| |RadicalCategory| + |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| + |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| + |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| - |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| + |RealConstant| |RealZeroPackage| |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| - |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| - |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| - |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| - |RetractSolvePackage| |RandomFloatDistributions| - |RationalFunctionFactor| |RationalFunctionFactorizer| - |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| - |Ring| |RationalInterpolation| |RectangularMatrixCategory&| + |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2| + |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| + |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| + |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions| + |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| - |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| - |RealNumberSystem&| |RealNumberSystem| - |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| - |RecursivePolynomialCategory&| |RecursivePolynomialCategory| + |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| + |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| + |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| - |RationalUnivariateRepresentationPackage| - |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| - |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| - |SpadSyntaxCategory&| |SpadSyntaxCategory| |SortedCache| |Scope| - |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| - |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| - |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| - |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| - |SExpressionCategory| |SExpression| |SExpressionOf| - |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| - |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| - |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| - |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |ElementaryFunctionSign| |RationalFunctionSign| |Signature| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| - |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| - |SmithNormalForm| |SparseMultivariatePolynomial| - |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| - |PolynomialSolveByFormulas| |RadicalSolvePackage| - |TransSolvePackageService| |TransSolvePackage| |SortPackage| - |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage| - |SpecialFunctionCategory| |SplittingNode| |SplittingTree| - |SquareMatrix| |StringAggregate&| |StringAggregate| - |SquareFreeRegularSetDecompositionPackage| - |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| - |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| - |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| - |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| - |StreamTranscendentalFunctionsNonCommutative| - |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| + |RegularTriangularSetGcdPackage| |RewriteRule| |RuleCalled| |Ruleset| + |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| + |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| + |SingletonAsOrderedSet| |SpadSyntaxCategory&| |SpadSyntaxCategory| + |SortedCache| |Scope| |StructuralConstantsPackage| + |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment| + |SegmentFunctions2| |SegmentAst| |SegmentBinding| |SegmentBindingFunctions2| + |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&| + |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| + |SExpression| |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| + |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| + |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| + |Signature| |ElementaryFunctionSign| |RationalFunctionSign| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| + |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| + |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| + |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| + |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadParser| + |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| + |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| + |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| + |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| + |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2| + |StreamFunctions3| |StringCategory| |String| |StringTable| + |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| + |StreamTranscendentalFunctionsNonCommutative| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| - |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| - |SupFractionFactorizer| |SparseUnivariatePolynomial| - |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| - |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| - |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |System| - |TableauxBumpers| |Tableau| |Table| |TangentExpansions| - |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| - |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| - |TopLevelThreeSpace| |TranscendentalFunctionCategory&| - |TranscendentalFunctionCategory| |Tree| + |RationalFunctionSum| |SparseUnivariatePolynomial| + |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| + |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| + |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| + |SymbolTable| |Syntax| |SystemSolvePackage| |System| |TableauxBumpers| |Table| + |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| + |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| + |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| - |TranscendentalManipulations| |TriangularSetCategory&| - |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| - |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering| - |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| - |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| + |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| + |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| + |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |UniqueFactorizationDomain&| |UniqueFactorizationDomain| + |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| - |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| - |UnivariatePolynomialFunctions2| - |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| + |UniversalSegmentFunctions2| |UnivariatePolynomial| + |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| - |UnivariatePolynomialCategoryFunctions2| - |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| + |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| - |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesWithExponentialSingularity| - |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| + |UnivariatePuiseuxSeriesConstructor| + |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| + |UnaryRecursiveAggregate| |UnivariateTaylorSeries| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| - |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| - |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| - |TwoDimensionalViewport| |ThreeDimensionalViewport| - |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| - |WildFunctionFieldIntegralBasis| |WhileAst| |WeightedPolynomials| - |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| - |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| - |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| - |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| + |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| + |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| + |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| + |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| + |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| + |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| + |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |symFunc| |trunc| |cos| |iicos| |basisOfRightNucloid| - |iiatanh| |realEigenvectors| |axes| |OMread| |copyInto!| |moebiusMu| - |OMputVariable| |match| |permutationRepresentation| - |commonDenominator| |tan| |cAsech| |isMult| |mainMonomials| - |ScanArabic| |nthRootIfCan| |graphCurves| |plot| |positiveRemainder| - |viewport2D| |cotIfCan| |chainSubResultants| |cot| |dom| |startTable!| - |shellSort| |OMputApp| |parametric?| |antisymmetricTensors| |find| - |getZechTable| |hexDigit?| |iisqrt2| |indices| |e02dff| |set| |sec| - |rischDE| |sh| |transcendent?| |prod| |viewSizeDefault| |swap!| - |linearMatrix| |viewWriteDefault| |linGenPos| |lazyGintegrate| |rk4f| - |list| |csc| |semiResultantEuclidean1| |expenseOfEvaluation| - |mapMatrixIfCan| |option?| |stopTableInvSet!| |rationalApproximation| - |fortranInteger| |extractPoint| |makeGraphImage| |lazyPremWithDefault| - |car| |startTableGcd!| |leader| |asin| |palglimint0| |print| |diff| - |mainDefiningPolynomial| |getConstant| |setValue!| - |nextsousResultant2| |overlap| |primPartElseUnitCanonical| - |mainVariable| |findCycle| |OMgetApp| |cdr| |acos| |substring?| - |returnTypeOf| |createIrreduciblePoly| |bumptab| - |factorSquareFreePolynomial| |mapmult| |inverse| |sizeMultiplication| - |quasiRegular?| |numberOfNormalPoly| |mapExpon| |setDifference| |tab1| - |atan| |partialNumerators| |mathieu24| |hypergeometric0F1| - |nextSublist| |selectFiniteRoutines| |title| |iicot| |infix| |s15adf| - |close!| |An| |acot| |dictionary| |suffix?| |backOldPos| - |cRationalPower| |binomThmExpt| |e01sbf| |fixedPoints| |cothIfCan| - |e02aef| |setPoly| |primitivePart| |asec| |argumentListOf| |rotatey| - |bumptab1| |getButtonValue| |setImagSteps| |binaryFunction| - |changeName| |basisOfLeftAnnihilator| |nthCoef| |pack!| |e| |iiacsch| - |acsc| |goto| |prefix?| |relationsIdeal| |reduced?| |e04dgf| |result| - |measure| |iiacoth| |void| |constantOpIfCan| |removeDuplicates!| - |singRicDE| |sinh| |OMwrite| |bivariateSLPEBR| |radicalSolve| |iilog| - |divideExponents| |newSubProgram| |numberOfCycles| |iiperm| - |tableForDiscreteLogarithm| |quoByVar| |cosh| |setButtonValue| - |brillhartIrreducible?| |semiSubResultantGcdEuclidean1| F - |totalDegree| |squareFreePart| |integerBound| |unit| - |decreasePrecision| |palgextint| |listLoops| |showSummary| |show| - |tanh| |objectOf| |cTan| |recolor| |resetVariableOrder| |implies| - |trivialIdeal?| |prindINFO| |lighting| |linearPolynomials| - |rootKerSimp| |quasiRegular| |coth| |d01asf| |getProperties| - |predicates| |multinomial| |normalDeriv| |lprop| |printTypes| - |leftFactorIfCan| |front| |controlPanel| |showAttributes| - |lyndonIfCan| |trace| |sech| |e02ajf| |particularSolution| |f04asf| - |BumInSepFFE| |predicate| |xor| |alphanumeric?| |iiexp| |cyclicCopy| - |pointColor| |f02adf| |csch| |infix?| |cyclotomic| |groebner?| - |semiIndiceSubResultantEuclidean| |physicalLength| |laurentIfCan| - |halfExtendedResultant2| |collect| |s18acf| |zeroDim?| |noKaratsuba| - |asinh| |mask| |infLex?| |iidsum| |composites| |rarrow| |powers| - |thetaCoord| |central?| |graphs| |OMgetFloat| |mvar| |acosh| - |binaryTournament| |f07fdf| UP2UTS |quoted?| |merge| |pastel| |c06gbf| - |romberg| |tValues| |atanh| |OMgetEndApp| |listBranches| - |splitDenominator| |identitySquareMatrix| |solve1| |lfextendedint| - |d01apf| |lfextlimint| |coordinates| |acoth| |setEpilogue!| - |constantToUnaryFunction| |subResultantGcdEuclidean| |rk4a| - |triangSolve| |s17agf| |explicitlyFinite?| |rk4qc| |loopPoints| - |asech| |associatedSystem| |cycle| |setCondition!| - |genericRightMinimalPolynomial| |indiceSubResultantEuclidean| |/\\| - |putGraph| |stronglyReduced?| |pr2dmp| |shiftRight| |d03faf| - |property| |basisOfCommutingElements| |integral| |palglimint| - |bracket| |\\/| |maxPoints| |symbolTable| |numerators| |retractIfCan| - |cartesian| |makeTerm| |subst| |parameters| NOT |cExp| |positiveSolve| - |generator| |terms| |normalizedAssociate| |printingInfo?| |prevPrime| - |fortranDouble| |df2mf| |unexpand| |dim| OR |kroneckerDelta| - |coth2tanh| |setrest!| |karatsuba| |monomial?| - |pushFortranOutputStack| |extend| |randomR| |ellipticCylindrical| - |sort!| |iisin| AND |block| |units| |plusInfinity| |setClosed| - |bitLength| |nsqfree| |writable?| |critpOrder| |debug3D| |module| - |removeRedundantFactorsInContents| |minusInfinity| |bubbleSort!| - |seriesToOutputForm| |generalSqFr| |upperCase!| |contractSolve| - |f07aef| |nextPartition| |orOperands| |sort| |ref| |lllip| |rootBound| - |isPower| |e02adf| |removeSinhSq| |mapBivariate| |smith| |normalForm| - |contains?| |complete| |setStatus| |startStats!| |shuffle| |over| - |countable?| |complement| |ridHack1| |mainForm| |truncate| - |returnType!| |cyclicParents| |coerceImages| |gethi| |iicsc| - |OMUnknownSymbol?| |digamma| |objects| |laplace| |expint| |relerror| - |LyndonBasis| |extract!| |integralAtInfinity?| |f01maf| |f04axf| - |replaceKthElement| |leastAffineMultiple| |base| |unaryFunction| - |transcendentalDecompose| |groebnerIdeal| |lo| |startPolynomial| - |homogeneous?| |map| |insertRoot!| |genericLeftMinimalPolynomial| - |type| |lllp| |tanintegrate| |random| |bumprow| |clearTable!| - |constantLeft| |incr| |createNormalPoly| |getStream| |ricDsolve| - |unparse| |cardinality| |nthExpon| |sturmSequence| - |derivationCoordinates| |hi| |qinterval| |rootDirectory| |calcRanges| - |mainSquareFreePart| |divisor| * |algebraicOf| |untab| - |numberOfPrimitivePoly| |index?| |more?| |s19acf| |clip| |monomials| - |merge!| |second| |sumOfSquares| |squareFreePolynomial| |biRank| - |isAbsolutelyIrreducible?| |leftUnit| |addMatch| |latex| |exprex| - |zero?| |iiacot| |third| |minIndex| |integer?| |radicalRoots| - |cyclicEntries| |univcase| |elem?| |s20acf| |OMlistCDs| - |explimitedint| |conjug| |f04mcf| |htrigs| |linearAssociatedOrder| - |remainder| |ran| |commutator| |euclideanNormalForm| |totalfract| - |prologue| |e01baf| |dmpToHdmp| |iroot| |root?| |linear| |cons| - |lieAlgebra?| |getOrder| |setFieldInfo| |high| |keys| - |indicialEquation| |leftLcm| |symmetricProduct| - |indicialEquationAtInfinity| |cscIfCan| |symbol| |slex| |separant| - |isOp| |mkAnswer| |subNode?| |OMencodingBinary| |bsolve| - |simplifyPower| |ksec| |rightGcd| |expression| |polynomial| - |extractClosed| |basisOfMiddleNucleus| |screenResolution| |whileLoop| - |tanSum| |linSolve| |collectUpper| |plotPolar| |integer| |besselI| - |complexEigenvectors| |OMputError| |chvar| |previous| |optional?| - |unitNormalize| |ODESolve| |clipBoolean| |OMputFloat| - |fortranCompilerName| |twoFactor| |ef2edf| |corrPoly| - |stoseInvertibleSetsqfreg| |swapColumns!| |c06gqf| - |stoseInvertible?sqfreg| |integralMatrixAtInfinity| |setFormula!| - |d01bbf| |sub| |ignore?| |nextPrime| |mapUp!| |shiftRoots| |f01mcf| - |hasHi| |source| |inR?| |fixedDivisor| |signature| |att2Result| - |f02awf| |universe| |ranges| |outputFixed| |invmod| - |doubleFloatFormat| |quartic| |setMinPoints3D| |deepestTail| - |leviCivitaSymbol| |callForm?| |tanNa| |branchIfCan| |solid| - |clearTheFTable| |semicolonSeparate| |credPol| |argscript| |scripted?| - |eulerE| |sPol| |indicialEquations| |extractTop!| |fortranTypeOf| - |showAllElements| |lazyIrreducibleFactors| |zeroMatrix| |OMgetEndBVar| - |choosemon| |divisors| |FormatArabic| |complex?| |coefChoose| - |integralBasisAtInfinity| |yCoordinates| |tanQ| |sturmVariationsOf| - |width| |hyperelliptic| |reducedDiscriminant| |d01aqf| |fractionPart| - |Frobenius| |bright| |OMreceive| |localAbs| |divideIfCan!| |target| - |rational?| |cCos| |bezoutResultant| |usingTable?| |atanIfCan| - |stoseLastSubResultant| |cSin| |diag| |nonLinearPart| - |iteratedInitials| |d01gbf| |idealSimplify| |coth2trigh| |nand| - |var1Steps| |mainCharacterization| |properties| |setTex!| - |rootNormalize| |f04jgf| |f02bbf| |reduction| |preprocess| - |ListOfTerms| |imagK| |box| |rootSimp| |exprToXXP| |translate| |hue| - |closedCurve| |e04jaf| |rightRank| |antisymmetric?| |laplacian| - |c06fqf| |nextIrreduciblePoly| |lp| |content| |drawComplexVectorField| - |normalise| |sequence| |dimension| |zCoord| |subResultantGcd| - |lastSubResultant| |printHeader| |deleteRoutine!| |expr| |direction| - |critMonD1| |showScalarValues| |optional| |localUnquote| - |iterationVar| |lazyPrem| |ramifiedAtInfinity?| |HermiteIntegrate| - |rightAlternative?| |delete| |fortranCharacter| |root| |extractIfCan| - |trigs| |ptree| |extractSplittingLeaf| |extendedint| |duplicates| - |rootOfIrreduciblePoly| |btwFact| |conical| |setPredicates| |cond| - |toseSquareFreePart| |numeric| |poisson| |generate| |wholePart| - |totolex| |updateStatus!| |redPo| |simplifyExp| - |nativeModuleExtension| |pointLists| |pade| |radical| |minimumDegree| - |varselect| |bitCoef| |aQuadratic| |neglist| |currentCategoryFrame| - |rightCharacteristicPolynomial| |variable| |plenaryPower| - |explicitlyEmpty?| |irreducibleFactors| |incrementBy| |solve| |f01ref| - |rationalFunction| |reopen!| |rightRankPolynomial| - |eisensteinIrreducible?| |iterators| |selectODEIVPRoutines| - |flexibleArray| |aromberg| |expand| |stoseInvertibleSet| - |symmetricPower| |viewDeltaXDefault| |rootRadius| |mulmod| |rootPoly| - |tan2trig| |colorFunction| |simpsono| |filterWhile| |c06eaf| - |upperCase?| |deriv| |repeatUntilLoop| |lflimitedint| |bottom!| |elt| - |binaryTree| |style| |constDsolve| |filterUntil| |s17akf| - |exteriorDifferential| |invmultisect| |euclideanSize| |realRoots| - |f07fef| |areEquivalent?| |se2rfi| |cycleEntry| |select| - |lowerPolynomial| |c05pbf| |parent| |consnewpol| |sts2stst| |OMsend| - |curve| |e02bbf| |OMputEndBind| |decrease| |mapUnivariateIfCan| - |approximants| |rationalPoint?| |shade| |quadratic| |linear?| - |qfactor| |derivative| |changeThreshhold| |expintegrate| |s18dcf| - |extendedResultant| |padicFraction| |enumerate| |besselK| - |highCommonTerms| |groebgen| |tanAn| LODO2FUN |decimal| |recur| - |measure2Result| |rubiksGroup| |log10| |outlineRender| |alternative?| - |partialFraction| |rootsOf| |s13adf| |bitand| |conjugates| |conjugate| - |internalLastSubResultant| |iiacsc| |infRittWu?| |stopTable!| - |withPredicates| |po| |listYoungTableaus| |OMgetError| |getRef| - |setfirst!| |primeFactor| |gcdcofactprim| |completeEval| - |extendedIntegrate| |forLoop| |nil?| |iifact| |makeRecord| - |currentEnv| |semiResultantReduitEuclidean| |ramified?| |acschIfCan| - |cyclotomicDecomposition| |lazyPseudoQuotient| |interReduce| - |perfectNthPower?| |factorGroebnerBasis| |dmpToP| |fortranLiteralLine| - |medialSet| |index| |toseLastSubResultant| |SturmHabichtCoefficients| - |readIfCan!| |iiasinh| |basisOfCenter| |innerEigenvectors| - |oddintegers| |rationalPower| |sizePascalTriangle| |e01saf| - |linearPart| |headReduce| |solveLinearPolynomialEquation| - |SturmHabichtMultiple| |distFact| |getMeasure| |option| |limitPlus| - |bringDown| |diophantineSystem| |any?| |algint| |cycleElt| |idealiser| - |basisOfNucleus| |clikeUniv| |outputMeasure| |e02ahf| |OMgetSymbol| - |pair| |minPoly| |character?| BY |f02axf| |inRadical?| - |expenseOfEvaluationIF| |OMputEndBVar| |SturmHabicht| |exQuo| |c06ekf| - |hex| |enqueue!| |padecf| |reducedSystem| |atanhIfCan| |norm| - |oblateSpheroidal| |checkPrecision| |rightExactQuotient| |addPoint2| - |edf2ef| |resultantnaif| |heapSort| |computeInt| |OMgetString| - |numberOfOperations| |function| |discriminant| |cAtanh| - |lazyResidueClass| |listConjugateBases| |zeroDimPrimary?| - |cyclicSubmodule| |realZeros| |fixedPoint| |coshIfCan| |operation| - |jordanAdmissible?| |symmetricSquare| |readLineIfCan!| - |removeRoughlyRedundantFactorsInPols| |symmetricTensors| |typeLists| - |exprHasLogarithmicWeights| |modulus| |rotate| |completeHensel| - |extractProperty| |tanh2trigh| |moduloP| |modifyPointData| |genus| - |create3Space| |palgint| |OMconnInDevice| |palgint0| - |validExponential| |d03eef| |iitan| |upperCase| |extension| - |selectsecond| |basisOfLeftNucleus| |permutationGroup| |fortranReal| - |s19abf| |fortran| |s13acf| |delta| |nthFlag| |outputArgs| - |primintegrate| |powerSum| |hasPredicate?| |pair?| |component| - |defineProperty| |inverseLaplace| |mathieu22| |showArrayValues| - |univariateSolve| |roughUnitIdeal?| |basis| |s14baf| |s17aef| - |integralMatrix| |li| |laguerre| |normalDenom| |s18def| - |changeMeasure| |viewWriteAvailable| |radicalEigenvalues| |range| - |imagE| |makeprod| |fortranLinkerArgs| |chiSquare| |printStatement| - |viewDefaults| |entry| |extendedSubResultantGcd| |hasTopPredicate?| - |move| |rule| |basisOfRightAnnihilator| |mathieu23| |airyBi| |getlo| - |nthFractionalTerm| |movedPoints| |read!| |dominantTerm| |pattern| - |removeRoughlyRedundantFactorsInContents| |rules| |mapDown!| - |skewSFunction| |PDESolve| |roughSubIdeal?| |moduleSum| |s21bcf| - |constant?| |varList| |pointColorPalette| |limit| |clearCache| - |inHallBasis?| |imagJ| |sup| |partialQuotients| |setAdaptive3D| - |putColorInfo| |lambda| |signAround| |Si| |laurentRep| |mirror| - |ravel| |sparsityIF| |log| |internal?| |generalizedEigenvectors| |lcm| - |center| |innerSolve| |noncommutativeJordanAlgebra?| |maxIndex| - |partitions| |monicDecomposeIfCan| |distribute| |mapCoef| |reshape| - |empty?| |point?| |complexLimit| |message| |logIfCan| |column| - |mapExponents| |omError| |useSingleFactorBound?| |reorder| |append| - |OMputEndAttr| |singularAtInfinity?| |clearTheIFTable| |algebraicSort| - |dimensionsOf| |abs| |pushup| |gcd| - |solveLinearPolynomialEquationByRecursion| |secIfCan| |fibonacci| - |pToDmp| |LowTriBddDenomInv| |heap| |cross| |approxSqrt| |bfKeys| - |false| |intPatternMatch| |sechIfCan| |insertTop!| |script| |iisech| - |numberOfComputedEntries| |const| |vconcat| |numberOfFractionalTerms| - |socf2socdf| |power!| |element?| |bipolarCylindrical| |setEmpty!| - |setlast!| |satisfy?| |powmod| |update| |stoseSquareFreePart| - |meshPar2Var| |patternVariable| |elements| = |generalPosition| - |OMsupportsSymbol?| |Gamma| |domainOf| |e02zaf| |matrixConcat3D| - |schema| |semiDiscriminantEuclidean| |tex| |iiabs| |nonQsign| |redPol| - |mapUnivariate| |#| |magnitude| |lowerCase?| |cCot| |rightQuotient| < - |cylindrical| |hMonic| |s19adf| |datalist| |sinhIfCan| |generators| - |leastMonomial| > |normalizedDivide| |prefix| |factorByRecursion| - |comment| |nextsubResultant2| |anfactor| |listexp| - |exprHasAlgebraicWeight| |sin?| |bandedJacobian| <= |knownInfBasis| - |checkRur| |lSpaceBasis| |logGamma| |exactQuotient!| |test| - |symbolIfCan| |plus| |meshFun2Var| |squareFreePrim| >= |safeFloor| - |superHeight| |subPolSet?| |coerceS| |gcdPolynomial| |position| - |precision| |LyndonWordsList| |jacobian| |OMgetObject| - |unprotectedRemoveRedundantFactors| |eq?| |symbolTableOf| - |enterInCache| |space| |perspective| |doubleResultant| |updatD| - |cCsch| |dAndcExp| |internalSubPolSet?| |principal?| |create| |slash| - + |addmod| |currentScope| |Is| |elliptic| |makeFR| |swapRows!| - |e02agf| |times| |tanh2coth| |yCoord| - ~= |writeLine!| |changeVar| - |numberOfFactors| |lookup| |wreath| |belong?| |close| |gramschmidt| - |oddInfiniteProduct| / |coerce| |nullity| |delay| |fortranLiteral| - |tableau| |limitedint| |anticoord| |linearDependence| - |resultantEuclidean| |construct| |bivariatePolynomials| |contract| - |odd?| |besselJ| |remove| |display| |buildSyntax| |mathieu12| - |meatAxe| |binomial| |printStats!| |pole?| |s17aff| |distance| - |applyRules| |hessian| |monom| |f2st| |leadingIndex| |leadingTerm| - |optimize| |exists?| |lineColorDefault| |fortranLogical| |last| - |resetBadValues| |intcompBasis| |acosIfCan| |wordInStrongGenerators| - |froot| |assoc| |exponents| |hconcat| |npcoef| |point| |s21bbf| - |createMultiplicationMatrix| |maxdeg| |brillhartTrials| - |viewPhiDefault| |OMencodingSGML| |useEisensteinCriterion| |iCompose| - |common| |denominator| |critT| |setTopPredicate| |binary| |lyndon?| - |startTableInvSet!| |ldf2vmf| |complexIntegrate| |bezoutMatrix| - |computeCycleLength| |karatsubaDivide| |totalGroebner| |rroot| - |realElementary| |createZechTable| |d03edf| |series| |pushdown| |swap| - |squareFree| |jacobiIdentity?| |virtualDegree| |vertConcat| |multiset| - |goodnessOfFit| |pushdterm| |prinb| |initials| |f01qdf| |middle| - |tubeRadius| |iidprod| |finiteBasis| |OMclose| |fillPascalTriangle| - |pow| |setAdaptive| |nextLatticePermutation| |solveid| |cCsc| - |complexElementary| |sincos| |e02ddf| |multisect| |increase| - |ocf2ocdf| |makeVariable| |df2st| |createLowComplexityNormalBasis| - |min| |mpsode| |combineFeatureCompatibility| |presuper| - |getIdentifier| |argument| |sorted?| |bipolar| |OMencodingXML| - |topFortranOutputStack| |minColIndex| |cos2sec| |copies| - |removeSuperfluousCases| |flatten| |associatedEquations| - |generalTwoFactor| |fixedPointExquo| |cn| |chebyshevT| |quickSort| - |realSolve| |conditionP| |selectNonFiniteRoutines| |dioSolve| - |getMultiplicationMatrix| |transform| - |setLegalFortranSourceExtensions| |rightUnits| |packageCall| - |semiDegreeSubResultantEuclidean| |s17def| |setelt| |normalize| - |safetyMargin| |purelyAlgebraic?| |next| |getGoodPrime| |freeOf?| - |tryFunctionalDecomposition?| |rationalIfCan| |maxColIndex| |digit?| - |makingStats?| |collectUnder| |less?| |systemSizeIF| |endOfFile?| - |impliesOperands| |cubic| |copy| |resultantReduit| |isQuotient| - |leftZero| |complexNumericIfCan| |integers| |mainContent| - |paraboloidal| |enterPointData| |rightDiscriminant| |lyndon| |rk4| - |size?| |closeComponent| |balancedBinaryTree| - |stoseInternalLastSubResultant| |associative?| - |leadingCoefficientRicDE| |s21baf| |internalSubQuasiComponent?| - |getMultiplicationTable| |sinIfCan| |taylorIfCan| |prolateSpheroidal| - |isobaric?| |e01sef| |topPredicate| |expt| |autoCoerce| - |complexNormalize| |headReduced?| |nextNormalPoly| |companionBlocks| - |systemCommand| |hash| |definingPolynomial| |edf2fi| |coerceL| |hclf| - |atoms| |graphImage| |equiv?| |critB| |sign| |arrayStack| |count| - |printInfo| |rightPower| |d02bhf| |plus!| - |zeroSetSplitIntoTriangularSystems| |height| |var2StepsDefault| |scan| - |generateIrredPoly| |prefixRagits| |rewriteSetWithReduction| |df2ef| - |cyclicGroup| |factorList| |showTheSymbolTable| |outerProduct| |or?| - |LyndonWordsList1| |e04ucf| |normal| |subscriptedVariables| - |external?| |returns| |lintgcd| |rootProduct| |primintfldpoly| - |isPlus| |dfRange| |someBasis| |factorsOfDegree| |nodes| |seed| |and?| - |setColumn!| |ScanFloatIgnoreSpaces| |equivOperands| - |clipPointsDefault| |e02akf| |bitTruth| |errorInfo| |stoseInvertible?| - |multiEuclidean| |ParCond| |insertionSort!| |expextendedint| - |RemainderList| |getCode| |primes| |pdct| |wholeRagits| |nthRoot| - |zero| |cfirst| |LazardQuotient| |trim| |c06fpf| |basisOfRightNucleus| - |groebner| |generalizedContinuumHypothesisAssumed| |quadraticForm| - |summation| |algintegrate| |lowerCase| |expintfldpoly| |lex| - |invertible?| |solveLinearlyOverQ| |allRootsOf| |And| |solveLinear| - |leftExtendedGcd| |Beta| |position!| |sn| |approxNthRoot| - |retractable?| |rational| |Or| |pdf2df| |replace| |numericIfCan| - |sylvesterSequence| |binarySearchTree| |rightLcm| |rightTrace| - |ratDsolve| |Not| |removeZero| |factorSquareFreeByRecursion| - |imaginary| |nullSpace| |jordanAlgebra?| |genericLeftTrace| - |RittWuCompare| |minPoints| |boundOfCauchy| |coordinate| |Ei| - |permutations| |prime?| |cyclePartition| |numberOfComposites| - |primeFrobenius| |OMgetEndObject| |charthRoot| |alphanumeric| - |wordsForStrongGenerators| |myDegree| |eigenvector| |rightUnit| - |makeop| |numberOfImproperPartitions| |zeroOf| |lifting1| |polygon?| - |constantOperator| |splitConstant| |pseudoRemainder| |coord| |elRow2!| - |fracPart| |genericRightTraceForm| |removeCosSq| |alphabetic| - |regularRepresentation| |OMlistSymbols| |rCoord| |mindegTerm| - |numberOfMonomials| |d01ajf| |e01bef| |mr| |say| |pascalTriangle| - |clearFortranOutputStack| |symmetricRemainder| |minGbasis| - |splitNodeOf!| |multiple| |f01qcf| |lexico| |or| |solveRetract| - |octon| |orbits| |extensionDegree| |explogs2trigs| |roman| - |applyQuote| |constructorName| |getPickedPoints| |factorFraction| - |unvectorise| |squareFreeLexTriangular| |polyRDE| |leadingBasisTerm| - |birth| |primaryDecomp| |bivariate?| |cot2trig| |entry?| - |stiffnessAndStabilityFactor| |quasiComponent| |nthExponent| - |rightExtendedGcd| |lfinfieldint| |functionIsFracPolynomial?| - |halfExtendedSubResultantGcd2| |generalizedInverse| |cosIfCan| - |wholeRadix| |minPol| |taylorRep| |ruleset| |checkForZero| |distdfact| - |quasiMonicPolynomials| |OMopenString| |sdf2lst| |e01daf| |setRow!| - |primPartElseUnitCanonical!| |radPoly| |squareTop| |reset| |d01alf| - |baseRDEsys| |composite| |linearAssociatedLog| |leadingExponent| - |cAcos| |kmax| |f04faf| |leftExactQuotient| |triangular?| - |getOperands| |characteristicPolynomial| |probablyZeroDim?| |suchThat| - |hasoln| |splitLinear| |write| |regime| |absolutelyIrreducible?| - |gcdcofact| |modularGcd| |sinhcosh| |showRegion| |ode2| - |exponentialOrder| |removeRedundantFactors| |save| |duplicates?| |bag| - |asecIfCan| |internalZeroSetSplit| |mat| |leftDiscriminant| |times!| - |subSet| |deepExpand| |OMgetType| |viewPosDefault| |coleman| - |internalDecompose| |mainKernel| |weights| - |halfExtendedSubResultantGcd1| |dihedral| |critM| |radicalEigenvector| - |lazyVariations| |selectOrPolynomials| |addBadValue| |setProperties!| - |cschIfCan| |weierstrass| |isList| |sech2cosh| |d02gaf| - |definingEquations| |midpoints| |mathieu11| |inspect| |rst| - |polyRicDE| |OMunhandledSymbol| |constant| |reducedContinuedFraction| - |trueEqual| |overset?| |reducedQPowers| |iiasec| - |sumOfKthPowerDivisors| |iiasin| |rightZero| |basisOfLeftNucloid| - |Lazard2| |quotedOperators| |monomRDE| |iiGamma| |iibinom| - |monomRDEsys| |gradient| |children| |makeSeries| - |invertibleElseSplit?| |float?| |eigenMatrix| |loadNativeModule| - |s17ahf| |nary?| |e04mbf| |d01anf| |stirling2| |asechIfCan| |char| - |numericalIntegration| |leftMinimalPolynomial| |roughEqualIdeals?| - |nextNormalPrimitivePoly| |fixPredicate| |innerSolve1| - |LagrangeInterpolation| |nextItem| |intensity| |iisinh| |testDim| - |OMreadFile| |aQuartic| |collectQuasiMonic| |notOperand| - |createRandomElement| |hspace| |mkPrim| |quasiMonic?| |one?| - |OMputEndAtp| |tanIfCan| |jacobi| |negative?| |linearAssociatedExp| - |LyndonCoordinates| |subQuasiComponent?| |light| |alternatingGroup| - |primlimintfrac| |cAtan| |explicitEntries?| |permanent| |hdmpToP| - |float| |harmonic| |schwerpunkt| - |rewriteIdealWithQuasiMonicGenerators| |multiple?| |csch2sinh| - |clipWithRanges| |cAcosh| |search| |transcendenceDegree| - |torsionIfCan| |psolve| |iiatan| |saturate| |redpps| |term?| - |difference| |numerator| |lhs| |readLine!| |factorial| |degree| - |factorset| |qqq| |printCode| |head| |ptFunc| |removeSinSq| - |singleFactorBound| |rhs| |singularitiesOf| |formula| |invertIfCan| - |stoseInvertible?reg| |listRepresentation| |connect| |in?| |e04naf| - |fractRadix| |qPot| |pushucoef| |getBadValues| |assign| - |linearlyDependentOverZ?| |basicSet| |lquo| |lazyPseudoDivide| - |cAcsch| |frobenius| |outputGeneral| |mainVariables| |null| |monic?| - |droot| |irreducibleFactor| |Aleph| |complexZeros| |normDeriv2| - |prime| |mdeg| |minus!| |cycleRagits| |node| |OMgetAttr| |case| - |degreePartition| |endSubProgram| |palgintegrate| |d02raf| |arguments| - |integralRepresents| |f07adf| |e02bdf| |OMputBind| |f01rcf| |key| - |rotatex| |Zero| |OMputEndApp| |bernoulli| |nrows| |shrinkable| - |inGroundField?| |dmp2rfi| |variationOfParameters| - |addMatchRestricted| |matrixGcd| |dark| |factorials| - |shanksDiscLogAlgorithm| |insertBottom!| |null?| |One| - |deepestInitial| |ncols| |whatInfinity| GE |filename| - |degreeSubResultantEuclidean| |frst| |s21bdf| |countRealRoots| - |newTypeLists| |generic| |hasSolution?| |c02aff| |OMputInteger| - |deref| |mainMonomial| GT |iprint| |setMinPoints| |imagI| |row| - |infiniteProduct| |not?| |permutation| |localReal?| - |symmetricDifference| |setVariableOrder| |pseudoQuotient| |rightTrim| - LE |primitive?| |maxrank| |OMputObject| |even?| |numberOfChildren| - |parse| |setleft!| |deepCopy| |ReduceOrder| |isExpt| - |selectPolynomials| |leftTrim| LT |leftAlternative?| - |factorSFBRlcUnit| |outputSpacing| |pol| |doubleComplex?| |top| - |push!| |specialTrigs| |geometric| |rightDivide| |makeYoungTableau| - |continue| |label| |upDateBranches| |inverseColeman| |getGraph| - |s18adf| |setref| |generalInfiniteProduct| |integerIfCan| - |internalIntegrate| |userOrdered?| |viewDeltaYDefault| |entries| - |showTypeInOutput| |fortranCarriageReturn| |ipow| |augment| - |createThreeSpace| |tree| |perfectSqrt| |diagonalProduct| - |complexRoots| |firstUncouplingMatrix| |rischNormalize| - |rightScalarTimes!| |mergeDifference| |outputList| |digits| |remove!| - |level| |toroidal| |lastSubResultantElseSplit| |discreteLog| - |LazardQuotient2| |countRealRootsMultiple| |nodeOf?| |morphism| - |string| |closedCurve?| |lowerCase!| |singular?| |low| |fill!| - |elRow1!| |algebraic?| |OMmakeConn| |BasicMethod| |f01qef| - |graphStates| |f01brf| |certainlySubVariety?| |cup| |beauzamyBound| - |resetAttributeButtons| |c05nbf| |color| |henselFact| |vedf2vef| - |equation| |e02gaf| |f04atf| |phiCoord| |leftPower| |d01amf| |child| - |moebius| |wronskianMatrix| |check| |setPrologue!| |OMconnOutDevice| - |curve?| |axesColorDefault| |insertMatch| |discriminantEuclidean| - |indiceSubResultant| |weight| |acothIfCan| |determinant| |mapdiv| - |euclideanGroebner| |supDimElseRittWu?| |unitNormal| - |screenResolution3D| |mainCoefficients| |complexForm| |bfEntry| - |directory| |charpol| |cot2tan| |eigenvectors| |useNagFunctions| |dec| - |blankSeparate| |setleaves!| |integrate| |red| |setMaxPoints3D| - |Lazard| |leftScalarTimes!| |uniform| |setLabelValue| |zeroDimPrime?| - |iicoth| |setIntersection| |algDsolve| |d01gaf| |resetNew| - |showTheFTable| |mesh| |functionIsContinuousAtEndPoints| - |stiffnessAndStabilityOfODEIF| |d02kef| |scalarMatrix| |evenlambert| - |rightMinimalPolynomial| |genericRightDiscriminant| |setUnion| - |concat!| |hermite| |rootSplit| |rewriteIdealWithHeadRemainder| |id| - |horizConcat| |ratpart| |member?| |s14aaf| |findBinding| - |stopMusserTrials| |maxRowIndex| |apply| |symbol?| |int| |fprindINFO| - |mightHaveRoots| |weakBiRank| |ScanFloatIgnoreSpacesIfCan| - |lastSubResultantEuclidean| |roughBasicSet| |cycleTail| - |perfectNthRoot| |curryLeft| |rquo| |expandPower| - |incrementKthElement| |karatsubaOnce| |exprHasWeightCosWXorSinWX| - |table| |setErrorBound| |evaluate| |multMonom| |fmecg| - |separateFactors| |OMputString| |size| |OMputAttr| - |characteristicSerie| |zeroSquareMatrix| |meshPar1Var| |listOfLists| - |new| |normal01| |factorSquareFree| |write!| |algebraicCoefficients?| - |flexible?| |viewZoomDefault| |trapezoidalo| |purelyTranscendental?| - |newReduc| |coerceListOfPairs| |randomLC| |quadratic?| |compBound| - |edf2df| |multiplyExponents| |setnext!| |genericPosition| - |setMaxPoints| |simplify| |realEigenvalues| |triangularSystems| - |s15aef| |OMgetBind| |redmat| |tubePlot| |lift| - |inverseIntegralMatrixAtInfinity| |cAcoth| |c06gcf| |twist| |first| - |diagonalMatrix| |scale| |Ci| |reducedForm| |leftGcd| - |algebraicVariables| |reduce| |cap| |iisqrt3| - |genericLeftDiscriminant| |minimalPolynomial| |rest| |normalized?| - UTS2UP |curry| |rowEchelonLocal| |andOperands| |every?| |substitute| - |d02bbf| |restorePrecision| |f02aaf| |partition| |antiCommutator| - |tab| |stop| |is?| |iomode| |asinIfCan| |rename!| |setPosition| - |charClass| |removeDuplicates| |createNormalPrimitivePoly| - |prepareSubResAlgo| |irreducible?| |OMbindTCP| |tensorProduct| - |nullary?| |rspace| |lepol| |GospersMethod| |cLog| |monomialIntegrate| - |getVariableOrder| |symmetric?| |univariatePolynomial| |Hausdorff| - |tubePoints| |c06frf| |lifting| |pomopo!| |copy!| |representationType| - |shallowExpand| |pureLex| |resultantEuclideannaif| |bit?| |flagFactor| - |fortranComplex| |matrixDimensions| |green| |linkToFortran| |cSech| - |lazy?| |createNormalElement| |randnum| |shufflein| |firstSubsetGray| - |lfintegrate| |top!| |convergents| |commutativeEquality| |diagonals| - |variable?| |computePowers| |stosePrepareSubResAlgo| |uniform01| - |left| |palgLODE| |selectSumOfSquaresRoutines| |exp1| |setright!| - |bits| |largest| |clipSurface| |iicosh| |associates?| |hdmpToDmp| - |right| |binding| |constantRight| |branchPoint?| |delete!| |exponent| - ~ |subNodeOf?| |pointData| |toseInvertibleSet| |besselY| |reverse| - |nthr| |divisorCascade| |s20adf| |pseudoDivide| - |generalizedEigenvector| |expandTrigProducts| |powern| - |balancedFactorisation| |showFortranOutputStack| |matrix| |true| - |numer| |categories| |tanhIfCan| |atrapezoidal| |baseRDE| |c06ebf| - |integralDerivationMatrix| |popFortranOutputStack| |open| - |definingInequation| |dimensions| |laguerreL| |has?| |alternating| - |denom| |curveColor| |hostPlatform| |processTemplate| |and| - |subresultantSequence| |makeCos| |outputAsFortran| |iiacos| - |leftUnits| |aspFilename| |problemPoints| |OMputSymbol| - |solveLinearPolynomialEquationByFractions| |sortConstraints| |string?| - |nextPrimitivePoly| |internalIntegrate0| |polCase| |llprop| |cyclic?| - |OMgetEndError| |localIntegralBasis| |pi| |OMReadError?| |cosSinInfo| - |subresultantVector| |xCoord| |escape| |finite?| |quatern| |OMgetAtp| - |tubePointsDefault| |square?| |infinity| |operators| |edf2efi| - |pToHdmp| |compose| |qroot| |d02gbf| |csubst| |internalAugment| - |sayLength| |scalarTypeOf| |code| |decomposeFunc| |fglmIfCan| |e01sff| - |powerAssociative?| |commutative?| |simpson| |fTable| |e02bcf| - |maxPoints3D| |factorPolynomial| |product| |makeViewport3D| |rightOne| - |f02aff| |linears| |polygon| |unitCanonical| |expPot| |OMgetEndAttr| - |solid?| |kernel| |leftMult| |zag| |deleteProperty!| |leastPower| - |OMsetEncoding| |acscIfCan| |primlimitedint| |extendIfCan| |draw| - |lazyPseudoRemainder| |OMputBVar| |tan2cot| |createLowComplexityTable| - |radix| |bombieriNorm| |aLinear| |purelyAlgebraicLeadingMonomial?| - |graphState| |diagonal?| SEGMENT |pointPlot| |monicCompleteDecompose| - |fullDisplay| |splitSquarefree| |inf| |OMgetBVar| |leftNorm| |cycles| - |pleskenSplit| |argumentList!| |monicLeftDivide| |quotient| - |evaluateInverse| |factors| |dot| |rangeIsFinite| |subtractIfCan| - |f04qaf| |vark| |removeIrreducibleRedundantFactors| |squareMatrix| - |maxrow| |increment| |empty| |makeObject| |optAttributes| |s17dcf| - |wrregime| |midpoint| |exponential| |makeMulti| |moreAlgebraic?| - |concat| |select!| |crushedSet| |completeEchelonBasis| |coerceP| - |rightFactorCandidate| |parabolicCylindrical| |condition| |elementary| - |interpret| |pop!| |vector| |scopes| |represents| |zeroSetSplit| - |coef| |algSplitSimple| |removeRoughlyRedundantFactorsInPol| - |bindings| |modularGcdPrimitive| |imagk| |c06fuf| |differentiate| - |viewport3D| |coHeight| |coefficients| |quasiAlgebraicSet| - |pmComplexintegrate| |appendPoint| |ScanRoman| |iflist2Result| - |unrankImproperPartitions0| |nextPrimitiveNormalPoly| |thenBranch| - |lieAdmissible?| |f02abf| |complexExpand| |showTheRoutinesTable| - |pquo| |semiResultantEuclidean2| |addPoint| |trace2PowMod| - |elseBranch| |list?| |double?| |hitherPlane| |submod| - |evenInfiniteProduct| |OMopenFile| |critBonD| - |unrankImproperPartitions1| |firstDenom| |leftRegularRepresentation| - |var1StepsDefault| |outputFloating| |OMgetInteger| |recip| - |monicModulo| |unitVector| |comparison| |monomialIntPoly| |subset?| - |curveColorPalette| |e02daf| |s17adf| |insert!| |coefficient| |d01fcf| - |airyAi| |modularFactor| |minset| |queue| |showTheIFTable| |iFTable| - |orthonormalBasis| |removeSuperfluousQuasiComponents| |subscript| - |getProperty| |sinh2csch| |cTanh| |region| |exquo| - |functionIsOscillatory| |kovacic| |nextSubsetGray| |makeResult| GF2FG - |setStatus!| |normalElement| |c02agf| |f04maf| |logical?| - |OMputEndObject| |div| |raisePolynomial| |drawStyle| - |antiAssociative?| |scanOneDimSubspaces| |halfExtendedResultant1| - |quotientByP| |s18aef| |s13aaf| |showClipRegion| |cCoth| - |univariatePolynomialsGcds| |quo| |unravel| |genericLeftNorm| - |setRealSteps| |gbasis| |rationalPoints| |critMTonD1| |reverseLex| - |idealiserMatrix| |polygamma| |supersub| |KrullNumber| |rotatez| - |printInfo!| |createPrimitiveElement| |sqfree| |leftRemainder| - |compactFraction| |nothing| |monicRightDivide| |complementaryBasis| - |cAsec| |seriesSolve| |externalList| |rem| |exponential1| - |computeCycleEntry| |trigs2explogs| |toScale| |interpolate| |output| - |factorsOfCyclicGroupSize| |extractIndex| |mapGen| |characteristicSet| - |c05adf| |brace| |kernels| |part?| |SFunction| |cAcsc| - |minimumExponent| |denomRicDE| |innerint| |leaves| |imports| - |trapezoidal| |tryFunctionalDecomposition| |modifyPoint| |univariate| - |makeSUP| |var2Steps| |simpleBounds?| |leftQuotient| |makeViewport2D| - |number?| |recoverAfterFail| |minimize| |cycleLength| - |physicalLength!| |compile| |iisec| |leadingIdeal| |d01akf| |iiacosh| - |musserTrials| |f02bjf| |Nul| |dihedralGroup| |pdf2ef| - |normalizeIfCan| |status| |pointColorDefault| |abelianGroup| |ode1| - |makeUnit| |numberOfVariables| |figureUnits| |stFuncN| - |maximumExponent| |value| |getDatabase| |legendreP| |factor| - |traceMatrix| |B1solve| |eyeDistance| |pushuconst| |f02fjf| - |groebSolve| |doublyTransitive?| |rowEchelon| |genericLeftTraceForm| - |setsubMatrix!| |sqrt| |createMultiplicationTable| |setProperties| - |denomLODE| |OMserve| |univariatePolynomials| |any| - |selectPDERoutines| |rotate!| |cyclicEqual?| |rightMult| |failed?| - |real| |resultantReduitEuclidean| |clipParametric| - |monicRightFactorIfCan| |quote| |setvalue!| - |stoseIntegralLastSubResultant| |mix| |acoshIfCan| |characteristic| - |separate| |imag| |denominators| |FormatRoman| |reflect| |transpose| - |parts| |badNum| |extendedEuclidean| |yellow| |bat| - |radicalOfLeftTraceForm| |zeroVector| |directProduct| |power| |digit| - |dflist| |degreeSubResultant| |semiSubResultantGcdEuclidean2| - |stFunc1| |perfectSquare?| |computeBasis| |leftRank| - |associatorDependence| |not| |mapSolve| |intChoose| - |linearDependenceOverZ| |alphabetic?| |Vectorise| - |setScreenResolution| |cSinh| |mappingAst| |primextintfrac| - |removeRedundantFactorsInPols| |destruct| |basisOfCentroid| |e04gcf| - |parametersOf| |scaleRoots| |mainValue| |cAsinh| - |generalizedContinuumHypothesisAssumed?| |surface| |leftTraceMatrix| - |trailingCoefficient| |host| |reseed| |members| |split!| |rank| |nlde| - |toseInvertible?| |numberOfDivisors| |port| |OMgetVariable| - |OMencodingUnknown| |reciprocalPolynomial| |s17acf| |fintegrate| - |bezoutDiscriminant| |getSyntaxFormsFromFile| |identification| - |hexDigit| |shiftLeft| |rootPower| |nextColeman| |palginfieldint| - |prinpolINFO| |generalLambert| |infieldIntegrate| |mainVariable?| - |associator| |weighted| |super| |internalInfRittWu?| |depth| |points| - |monomial| |doubleRank| |branchPointAtInfinity?| |limitedIntegrate| - |double| |open?| |unmakeSUP| |inrootof| |selectIntegrationRoutines| - |standardBasisOfCyclicSubmodule| |cycleSplit!| |initial| |orbit| - |multivariate| |chineseRemainder| |exprToUPS| |leadingSupport| - |antiCommutative?| |makeCrit| |separateDegrees| |zerosOf| |ideal| - |headAst| |adaptive?| |variables| |irreducibleRepresentation| - |zeroDimensional?| |match?| |stopTableGcd!| |infinityNorm| |split| - |infieldint| |sylvesterMatrix| |integral?| |elliptic?| |addPointLast| - |cyclotomicFactorization| |maxint| |readable?| - |useEisensteinCriterion?| |complexSolve| |lists| |bitior| - |drawComplex| |intermediateResultsIF| |integralBasis| |identityMatrix| - |removeCoshSq| ** |numberOfHues| FG2F |legendre| - |initializeGroupForWordProblem| |makeFloatFunction| |initiallyReduce| - |janko2| |cCosh| |generic?| |polar| |totalLex| |makeEq| |pmintegrate| - |setOfMinN| |selectfirst| |positive?| |subTriSet?| |squareFreeFactors| - |rightRecip| |rewriteIdealWithRemainder| |eulerPhi| |subCase?| |reify| - |useSingleFactorBound| |stFunc2| |makeSin| |notelem| EQ - |changeNameToObjf| |groebnerFactorize| |initiallyReduced?| - |oneDimensionalArray| |nilFactor| |taylor| |rangePascalTriangle| - |declare!| |OMUnknownCD?| |outputForm| |leftRecip| - |showIntensityFunctions| |structuralConstants| |testModulus| - |radicalSimplify| |rombergo| |invertibleSet| |laurent| - |rectangularMatrix| |ddFact| |floor| |leftOne| |sample| |obj| - |completeHermite| |ffactor| |LiePolyIfCan| |complexEigenvalues| - |presub| |puiseux| |simplifyLog| |e02def| |badValues| - |integralLastSubResultant| |stripCommentsAndBlanks| |length| |f04adf| - |vectorise| |exactQuotient| |cache| |normFactors| |hermiteH| |tower| - |removeConstantTerm| |multiEuclideanTree| |shallowCopy| - |normInvertible?| |tRange| |scripts| |mkIntegral| |mkcomm| - |selectOptimizationRoutines| |leaf?| |primextendedint| |comp| |inv| - |uncouplingMatrices| |constantCoefficientRicDE| |node?| |finiteBound| - |normal?| |dimensionOfIrreducibleRepresentation| |f02aef| |rdHack1| - |solveInField| |headRemainder| |ground?| |palgLODE0| |refine| |shift| - |unitsColorDefault| |parabolic| |prem| |declare| |blue| - |strongGenerators| |paren| |numFunEvals3D| |e04ycf| |max| |ground| - |intersect| |coercePreimagesImages| |autoReduced?| |iiasech| - |mainPrimitivePart| |equality| |nor| |isTimes| |getExplanations| - |typeList| |leadingMonomial| |addiag| |ceiling| |completeSmith| - |doubleDisc| |polyred| |df2fi| |ldf2lst| |expIfCan| |sqfrFactor| - |tube| |leadingCoefficient| |complexNumeric| |rischDEsys| F2FG - |adaptive3D?| |createGenericMatrix| |resize| |extractBottom!| - |tablePow| |prepareDecompose| |adaptive| |name| |e02bef| |compound?| - |primitiveMonomials| |error| |real?| |compiledFunction| |messagePrint| - |f02xef| |monicDivide| |totalDifferential| |f2df| |f02agf| |body| - |viewpoint| |compdegd| |setScreenResolution3D| |reductum| - |nonSingularModel| |torsion?| |interpretString| |subResultantsChain| - |assert| |reduceByQuasiMonic| |spherical| |d02ejf| |subHeight| - |youngGroup| |s17dlf| |sumSquares| |palgRDE0| |sumOfDivisors| |f02akf| - |init| |directSum| |retract| |log2| |minordet| |lexTriangular| - |relativeApprox| |taylorQuoByVar| |increasePrecision| |c06ecf| - |dequeue| |s17ajf| |multiplyCoefficients| |push| |s19aaf| |imagj| - |OMconnectTCP| |infinite?| |quadraticNorm| |segment| |padicallyExpand| - |palgRDE| |leftDivide| |operator| |sncndn| |round| |tracePowMod| - |aCubic| |integralCoordinates| |mergeFactors| |getCurve| |cAsin| - |asimpson| |numFunEvals| |expandLog| |createPrimitivePoly| - |constantKernel| |inverseIntegralMatrix| |minrank| |gcdPrimitive| - |convert| |genericRightNorm| |divide| |setchildren!| |removeZeroes| - |cAcot| |roughBase?| |newLine| |constantIfCan| |radicalEigenvectors| - |clearTheSymbolTable| |chiSquare1| |changeBase| |lambert| |arity| - |key?| |euler| |primitivePart!| |rowEchLocal| |bounds| |oddlambert| - |unit?| |listOfMonoms| |d02cjf| |mantissa| |OMgetEndAtp| |firstNumer| - |partialDenominators| |updatF| |fractRagits| |OMParseError?| - |drawCurves| |vspace| |numberOfIrreduciblePoly| |qelt| |postfix| - |SturmHabichtSequence| |cPower| |curryRight| |decompose| |modTree| - |OMputEndError| |setProperty| |elColumn2!| |e01bff| |hcrf| - |bernoulliB| |setProperty!| |rdregime| |ratPoly| |fullPartialFraction| - |lazyPquo| |reindex| |insert| |xRange| |showAll?| |zoom| |failed| - |imagi| |patternMatchTimes| |outputAsTex| |currentSubProgram| |equiv| - |yRange| |safeCeiling| |f04mbf| |supRittWu?| |univariate?| RF2UTS |t| - |prinshINFO| |clearDenominator| |subMatrix| |asinhIfCan| |zRange| - |LiePoly| |fractionFreeGauss!| |selectAndPolynomials| |ord| - |eigenvalues| |semiResultantEuclideannaif| - |rewriteSetByReducingWithParticularGenerators| |inc| |leftFactor| - |rowEch| |map!| |logpart| |OMcloseConn| |ratDenom| |nullary| - |resultant| |polarCoordinates| |subResultantChain| |diagonal| - |categoryFrame| |qsetelt!| |colorDef| |goodPoint| |sequences| - |divideIfCan| |leftRankPolynomial| |mesh?| |initTable!| |sizeLess?| - |PollardSmallFactor| |OMsupportsCD?| |pushNewContour| |triangulate| - |setClipValue| |f02wef| |lfunc| |epilogue| |subspace| |csc2sin| - |overbar| |minRowIndex| |graeffe| |eq| |overlabel| |traverse| |eval| - |stirling1| |numericalOptimization| |bat1| |nil| |principalIdeal| - |contours| |outputAsScript| |iter| |nthFactor| |errorKind| |revert| - |rightFactorIfCan| |superscript| |HenselLift| |possiblyNewVariety?| - |getMatch| |setprevious!| |algebraicDecompose| |f01rdf| |chebyshevU| - |iicsch| |e02baf| |build| |sec2cos| |acsch| Y |gcdprim| |polyPart| - |primitiveElement| |reverse!| |numberOfComponents| |s18aff| |f04arf| - |approximate| |divergence| |e01bgf| |exprToGenUPS| |symmetricGroup| - |s17dgf| |selectMultiDimensionalRoutines| |op| |commaSeparate| - |makeSketch| |stack| |complex| |lexGroebner| |f01bsf| - |stoseInvertibleSetreg| |repeating| |cSec| |rur| |s17dhf| |OMputAtp| - |differentialVariables| |factorAndSplit| |removeSquaresIfCan| |call| - |ode| |gderiv| |genericRightTrace| |opeval| |xn| |closed?| |term| |dn| - |createPrimitiveNormalPoly| |conditionsForIdempotents| |lazyIntegrate| - |exp| |stronglyReduce| |fi2df| |minPoints3D| |drawToScale| |rootOf| - |s14abf| |reduceLODE| |palgextint0| |optpair| |acotIfCan| - |patternMatch| |tubeRadiusDefault| |dequeue!| |tail| |iExquo| - |lazyEvaluate| |UpTriBddDenomInv| |reduceBasisAtInfinity| |setelt!| - |normalizeAtInfinity| |pile| |leftCharacteristicPolynomial| |s01eaf| - |viewThetaDefault| |e01bhf| |implies?| |wordInGenerators| - |inconsistent?| |semiLastSubResultantEuclidean| |mindeg| - |changeWeightLevel| |leftTrace| |erf| |e04fdf| |debug| |union| - |lagrange| |setOrder| |pointSizeDefault| |continuedFraction| - |polynomialZeros| |crest| |interval| |bandedHessian| D |order| |iipow| - |atom?| |setAttributeButtonStep| |UnVectorise| |sum| |identity| - |routines| |arg1| |e02dcf| |f02ajf| |getOperator| |exptMod| - |OMreadStr| |expressIdealMember| |rightRegularRepresentation| |back| - |accuracyIF| |cyclic| |fortranDoubleComplex| |factor1| |arg2| - |OMgetEndBind| |possiblyInfinite?| |input| |dilog| |rename| |unary?| - |repSq| |rightNorm| |child?| |UP2ifCan| |rightTraceMatrix| - |repeating?| |ParCondList| |options| |components| |cosh2sech| - |library| |sin| |byte| |factorOfDegree| |adjoint| |linearlyDependent?| - |sin2csc| |iitanh| |noLinearFactor?| |c06gsf| |rightRemainder| - |conditions| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| + |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| + |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| + |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| + |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| + |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| + |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| + |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| + |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf| + |any| |applyRules| |localUnquote| |setColumn!| |setRow!| |oneDimensionalArray| + |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack| + |setButtonValue| |setAttributeButtonStep| |resetAttributeButtons| + |getButtonValue| |decrease| |increase| |morphism| |balancedFactorisation| + |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| + |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| + |inspect| |extract!| |bag| |binding| |position!| |test| |false| |true| + |setProperties| |setProperty| |deleteProperty!| |has?| |input| |comparison| + |equality| |nary?| |unary?| |nullary?| |arity| |properties| |derivative| + |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| + |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| + |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| + |bitior| |bitand| |byte| |subtractIfCan| |setPosition| + |generalizedContinuumHypothesisAssumed| + |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| + |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |alphanumeric| + |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| + |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| + |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| + |find| |e| |clipParametric| |clipWithRanges| |numberOfHues| |blue| |green| + |yellow| |red| |iifact| |iibinom| |iiperm| |iipow| |iidsum| |iidprod| |ipow| + |factorial| |multinomial| |permutation| |stirling1| |stirling2| |summation| + |factorials| |mkcomm| |polarCoordinates| |complex| |imaginary| |solid| + |solid?| |denominators| |numerators| |convergents| |approximants| + |reducedForm| |partialQuotients| |partialDenominators| |partialNumerators| + |reducedContinuedFraction| |push| |bindings| |cartesian| |polar| |cylindrical| + |spherical| |parabolic| |parabolicCylindrical| |paraboloidal| + |ellipticCylindrical| |prolateSpheroidal| |oblateSpheroidal| |bipolar| + |bipolarCylindrical| |toroidal| |conical| |modTree| |multiEuclideanTree| + |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| + |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| + |startPolynomial| |cycleElt| |computeCycleLength| |computeCycleEntry| + |arguments| |constructorName| |coerceP| |powerSum| |elementary| |alternating| + |cyclic| |dihedral| |cap| |cup| |wreath| |SFunction| |skewSFunction| + |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite| + |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName| + |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight| + |exprHasLogarithmicWeights| |combineFeatureCompatibility| |sparsityIF| + |stiffnessAndStabilityFactor| |stiffnessAndStabilityOfODEIF| |systemSizeIF| + |expenseOfEvaluationIF| |accuracyIF| |intermediateResultsIF| + |subscriptedVariables| |central?| |elliptic?| |doubleResultant| |distdfact| + |separateDegrees| |trace2PowMod| |tracePowMod| |irreducible?| |decimal| + |innerint| |exteriorDifferential| |totalDifferential| |homogeneous?| + |leadingBasisTerm| |ignore?| |computeInt| |checkForZero| |doubleFloatFormat| + |logGamma| |hypergeometric0F1| |rotatez| |rotatey| |rotatex| |identity| + |dictionary| |dioSolve| |directProduct| |newLine| |copies| |say| |sayLength| + |setnext!| |setprevious!| |next| |previous| |datalist| + |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| |separant| |initial| + |leader| |isobaric?| |weights| |differentialVariables| |extractBottom!| + |extractTop!| |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| + |makeObject| |recolor| |drawComplex| |drawComplexVectorField| |setRealSteps| + |setImagSteps| |setClipValue| |draw| |option?| |range| |colorFunction| + |curveColor| |pointColor| |clip| |clipBoolean| |style| |toScale| + |pointColorPalette| |curveColorPalette| |var1Steps| |var2Steps| |space| + |tubePoints| |tubeRadius| |option| |weight| |makeVariable| |finiteBound| + |sortConstraints| |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| + |linearPart| |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| + |Nul| |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| + |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| + |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| + |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| + |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| + |callForm?| |getIdentifier| |getConstant| |type| |select!| |delete!| |sn| |cn| + |dn| |sncndn| |qsetelt!| |categoryFrame| |currentEnv| |setProperties!| + |getProperties| |setProperty!| |getProperty| |scopes| |eigenvalues| + |eigenvector| |generalizedEigenvector| |generalizedEigenvectors| + |eigenvectors| |factorAndSplit| |rightOne| |leftOne| |rightZero| |leftZero| + |swap| |error| |minPoly| |freeOf?| |operators| |tower| |kernels| |mainKernel| + |distribute| |subst| |functionIsFracPolynomial?| |problemPoints| |zerosOf| + |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| |ocf2ocdf| |socf2socdf| + |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| |numberOfOperations| |edf2efi| + |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| |vedf2vef| |df2st| |f2st| + |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| |measure2Result| + |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| |fi2df| |mat| |neglist| + |multiEuclidean| |extendedEuclidean| |euclideanSize| |sizeLess?| + |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| |tubePlot| + |exponentialOrder| |completeEval| |lowerPolynomial| |raisePolynomial| + |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| |binomThmExpt| + |pomopo!| |mapExponents| |linearAssociatedLog| |linearAssociatedOrder| + |linearAssociatedExp| |createNormalElement| |setLabelValue| |getCode| + |printCode| |code| |operation| |common| |printStatement| |save| |stop| |block| + |cond| |returns| |call| |comment| |continue| |goto| |repeatUntilLoop| + |whileLoop| |forLoop| |sin?| |zeroVector| |zeroSquareMatrix| + |identitySquareMatrix| |lSpaceBasis| |finiteBasis| |principal?| |divisor| + |useNagFunctions| |rationalPoints| |nonSingularModel| |algSplitSimple| + |hyperelliptic| |elliptic| |integralDerivationMatrix| |integralRepresents| + |integralCoordinates| |yCoordinates| |inverseIntegralMatrixAtInfinity| + |integralMatrixAtInfinity| |inverseIntegralMatrix| |integralMatrix| + |reduceBasisAtInfinity| |normalizeAtInfinity| |complementaryBasis| |integral?| + |integralAtInfinity?| |integralBasisAtInfinity| |ramified?| + |ramifiedAtInfinity?| |singular?| |singularAtInfinity?| |branchPoint?| + |branchPointAtInfinity?| |rationalPoint?| |absolutelyIrreducible?| |genus| + |getZechTable| |createZechTable| |createMultiplicationTable| + |createMultiplicationMatrix| |createLowComplexityTable| + |createLowComplexityNormalBasis| |representationType| |createPrimitiveElement| + |tableForDiscreteLogarithm| |factorsOfCyclicGroupSize| |sizeMultiplication| + |getMultiplicationMatrix| |getMultiplicationTable| |primitive?| + |numberOfIrreduciblePoly| |numberOfPrimitivePoly| |numberOfNormalPoly| + |createIrreduciblePoly| |createPrimitivePoly| |createNormalPoly| + |createNormalPrimitivePoly| |createPrimitiveNormalPoly| |nextIrreduciblePoly| + |nextPrimitivePoly| |nextNormalPoly| |nextNormalPrimitivePoly| + |nextPrimitiveNormalPoly| |leastAffineMultiple| |reducedQPowers| + |rootOfIrreduciblePoly| |write!| |read!| |iomode| |close!| |reopen!| |open| + |rightUnit| |leftUnit| |rightMinimalPolynomial| |leftMinimalPolynomial| + |associatorDependence| |lieAlgebra?| |jordanAlgebra?| + |noncommutativeJordanAlgebra?| |jordanAdmissible?| |lieAdmissible?| + |jacobiIdentity?| |powerAssociative?| |alternative?| |flexible?| + |rightAlternative?| |leftAlternative?| |antiAssociative?| |associative?| + |antiCommutative?| |commutative?| |rightCharacteristicPolynomial| + |leftCharacteristicPolynomial| |rightNorm| |leftNorm| |rightTrace| |leftTrace| + |someBasis| |sort!| |copyInto!| |sorted?| |LiePoly| |quickSort| |heapSort| + |shellSort| |outputSpacing| |outputGeneral| |outputFixed| |outputFloating| + |exp1| |log10| |log2| |rationalApproximation| |relerror| |complexSolve| + |complexRoots| |realRoots| |leadingTerm| |writable?| |readable?| |exists?| + |extension| |directory| |filename| |shallowExpand| |deepExpand| + |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack| + |pushFortranOutputStack| |topFortranOutputStack| |setFormula!| |formula| + |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| + |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| + |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| + |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |nilFactor| + |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| + |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| + |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| + |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| + |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| + |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| + |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| + |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| + |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| + |fortranDouble| |fortranReal| |external?| |scalarTypeOf| + |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| + |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| + |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| + |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| + |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| + |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| + |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| + |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| + |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| + |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| + |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| + |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| + |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| + |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| + |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| + |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| + |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| + |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| + |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| + |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| + |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| + |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| + |putColorInfo| |appendPoint| |component| |ranges| |pointLists| + |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| + |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| + |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| + |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| + |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| + |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| + |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| + |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| + |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| + |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength| + |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports| + |sequence| |iterationVar| |readBytes!| |readByteIfCan!| |setFieldInfo| |pol| + |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis| + |normalElement| |minimalPolynomial| |increment| |incrementBy| |charpol| + |solve1| |innerEigenvectors| |compile| |declare| |unparse| |flatten| |lambda| + |binary| |packageCall| |interpret| |innerSolve1| |innerSolve| |makeEq| + |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod| |powmod| + |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder| + |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate| + |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf| + |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal| + |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint| + |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable| + |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0| + |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic| + |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| + |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| + |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| + |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| + |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| + |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| + |expintegrate| |tanintegrate| |primextendedint| |expextendedint| + |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| + |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| + |inverseLaplace| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| + |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?| + |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand| + |complexIntegrate| |dimensionOfIrreducibleRepresentation| + |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| + |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| + |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| + |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| + |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG + |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| + |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| + |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |laplace| + |trailingCoefficient| |normalizeIfCan| |polCase| |distFact| |identification| + |LyndonCoordinates| |LyndonBasis| |zeroDimensional?| |fglmIfCan| |groebner| + |lexTriangular| |squareFreeLexTriangular| |belong?| |operator| |erf| |dilog| + |li| |Ci| |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| + |coord| |anticoord| |intcompBasis| |choosemon| |transform| |pack!| |library| + |complexLimit| |limit| |linearlyDependent?| |linearDependence| |solveLinear| + |reducedSystem| |setDifference| |setIntersection| |setUnion| |append| |null| + |nil| |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| + |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm| + |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| + |symmetricProduct| |symmetricPower| |directSum| + |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| + |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| + |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| + |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| + |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| + |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| + |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| + |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| + |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| + |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| + |rightScalarTimes!| |times!| |power!| |nothing| |gradient| |divergence| + |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| + |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| + |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| + |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| + |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| + |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| + |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| + |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| + |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| + |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| + |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| + |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference| + |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| + |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| + |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| + |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| + |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| + |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| + |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| + |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| + |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| + |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| + |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| + |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| + |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| + |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| + |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| + |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| + |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| + |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| + |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| + |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| + |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| + |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| + |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| + |complexEigenvalues| |complexEigenvectors| |shift| |normalizedAssociate| + |normalize| |outputArgs| |normInvertible?| |normFactors| |npcoef| |listexp| + |characteristicPolynomial| |realEigenvalues| |realEigenvectors| + |halfExtendedResultant2| |halfExtendedResultant1| |extendedResultant| + |subResultantsChain| |lazyPseudoQuotient| |lazyPseudoRemainder| |bernoulliB| + |eulerE| |numeric| |complexNumeric| |numericIfCan| |complexNumericIfCan| + |FormatArabic| |ScanArabic| |FormatRoman| |ScanRoman| |ScanFloatIgnoreSpaces| + |ScanFloatIgnoreSpacesIfCan| |numericalIntegration| |rk4| |rk4a| |rk4qc| + |rk4f| |aromberg| |asimpson| |atrapezoidal| |romberg| |simpson| |trapezoidal| + |rombergo| |simpsono| |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| + |imagi| |octon| |ODESolve| |constDsolve| |showTheIFTable| |clearTheIFTable| + |keys| |iFTable| |showIntensityFunctions| |expint| |diff| |algDsolve| + |denomLODE| |indicialEquations| |indicialEquation| |denomRicDE| + |leadingCoefficientRicDE| |constantCoefficientRicDE| |changeVar| |ratDsolve| + |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| + |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| + |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn| + |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP| + |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp| + |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp| + |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError| + |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString| + |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar| + |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr| + |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger| + |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType| + |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown| + |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?| + |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile| + |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?| + |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop| + |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |getDatabase| + |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?| + |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| + |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| |rightRemainder| + |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| |leftExactQuotient| + |leftRemainder| |leftQuotient| |times| |apply| |monicLeftDivide| + |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| |laguerreL| + |legendreP| |outputList| |writeBytes!| |writeByteIfCan!| |quo| |rem| |div| >= + > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| + |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| + |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| + |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| + |hspace| |superHeight| |subHeight| |height| |width| |messagePrint| |message| + |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits| + |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| + |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates| + |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult| + |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| + |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| + |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| + |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| + |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |predicate| + |satisfy?| |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| + |PDESolve| |leftFactor| |rightFactorCandidate| |measure| D |ptree| + |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| + |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| + |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints| + |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| + |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| + |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| + |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| + |charthRoot| |conditionP| |solveLinearPolynomialEquation| + |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| + |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| + |doubleDisc| |polyred| |padicFraction| |padicallyExpand| + |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| + |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| + |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| + |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| + |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| + |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| + |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| + |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| + |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| + |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| + |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| + |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| + |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| + |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| + |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| + |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| + |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| + |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| + |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| + |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| + |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| + |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| + |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?| + |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?| + |notOperand| |not?| |variable?| |term| |term?| |and| |or| |implies| |equiv| + |merge!| |resultantEuclidean| |semiResultantEuclidean2| + |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean| + |semiIndiceSubResultantEuclidean| |degreeSubResultant| + |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean| + |lastSubResultantEuclidean| |semiLastSubResultantEuclidean| + |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2| + |semiSubResultantGcdEuclidean1| |discriminantEuclidean| + |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit| + |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard| + |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| + |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| + |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| + |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| + |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| + |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| + |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| + |unprotectedRemoveRedundantFactors| |removeRedundantFactors| + |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| + |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| + |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| + |linearPolynomials| |bivariate?| |bivariatePolynomials| + |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| + |interReduce| |roughBasicSet| |crushedSet| + |rewriteSetByReducingWithParticularGenerators| + |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| + |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| + |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| + |irreducibleFactors| |lazyIrreducibleFactors| + |removeIrreducibleRedundantFactors| |normalForm| |changeBase| + |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| + |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| + |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| + |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| + |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| + |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| + |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| + |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| + |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| + |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| + |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| + |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| + |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| + |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| + |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| + |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |midpoint| |midpoints| + |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = |setref| + |deref| |ref| |radicalEigenvectors| |radicalEigenvector| |radicalEigenvalues| + |eigenMatrix| |normalise| |gramschmidt| |orthonormalBasis| + |antisymmetricTensors| |createGenericMatrix| |symmetricTensors| + |tensorProduct| |permutationRepresentation| |completeEchelonBasis| + |createRandomElement| |cyclicSubmodule| |standardBasisOfCyclicSubmodule| + |areEquivalent?| |isAbsolutelyIrreducible?| |meatAxe| |scanOneDimSubspaces| + |double| |expt| |lift| |showArrayValues| |showScalarValues| |expression| + |solveRetract| |variables| |mainVariable| |univariate| |multivariate| + |uniform01| |normal01| |exponential1| |chiSquare1| |normal| |exponential| + |chiSquare| F |t| |factorFraction| |uniform| |binomial| |poisson| |geometric| + |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| + |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| + |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| + |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| + |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| + |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!| + |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold| + |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| + |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| + |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| + |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| + |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| + |subResultantChain| |halfExtendedSubResultantGcd2| + |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| + |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| + |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| + |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| + |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| + |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| + |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |body| |iterators| + |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| + |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| + |invertibleSet| |invertible?| |invertibleElseSplit?| + |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| + |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| + |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| + |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |quotedOperators| + |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| |clearCache| + |cache| |enterInCache| |currentCategoryFrame| |currentScope| |pushNewContour| + |findBinding| |contours| |structuralConstants| |coordinates| |bounds| + |equation| |incr| |high| |low| |hi| |lo| BY |union| |subset?| + |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| + |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| + |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| + |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| + |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| + |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| + |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| + |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| + |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| + |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| + |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| + |stoseIntegralLastSubResultant| |stoseLastSubResultant| + |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| + |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| + |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| + |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| + |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| + |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| + |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| + |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| + |Or| |And| |Not| |xor| |not| |min| |max| ~ |/\\| |\\/| |depth| |top| |pop!| + |push!| |minordet| |determinant| |diagonalProduct| |trace| |diagonal| + |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| |smith| + |completeSmith| |diophantineSystem| |csubst| |particularSolution| |mapSolve| + |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| + |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| + |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| |lprop| + |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| + |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData| + |composites| |components| |numberOfComposites| |numberOfComponents| + |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs| + |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| + |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!| + |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!| + |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| + |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| + |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| + |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| + |KrullNumber| |numberOfVariables| |algebraicDecompose| + |transcendentalDecompose| |internalDecompose| |decompose| |upDateBranches| + |printInfo| |preprocess| |internalZeroSetSplit| |internalAugment| |stack| + |possiblyInfinite?| |explicitlyFinite?| |nextItem| |init| |infiniteProduct| + |evenInfiniteProduct| |oddInfiniteProduct| |generalInfiniteProduct| + |filterUntil| |filterWhile| |generate| |showAll?| |showAllElements| |output| + |cons| |delay| |findCycle| |repeating?| |repeating| |exquo| |recip| |integers| + |oddintegers| |int| |mapmult| |deriv| |gderiv| |compose| |addiag| + |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| |power| |sincos| + |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| |cosh| |tanh| + |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| |acsch| + |subresultantVector| |primitivePart| |pointData| |parent| |level| + |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| + |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| + |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| + |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| |sum| + |outputForm| NOT AND EQ OR GE LE GT LT |sample| |list| |string| |argscript| + |superscript| |subscript| |script| |scripts| |scripted?| |name| |resetNew| + |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| |printHeader| + |returnType!| |argumentList!| |endSubProgram| |currentSubProgram| + |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| |symbolTable| + |printTypes| |newTypeLists| |typeLists| |externalList| |typeList| + |parametersOf| |fortranTypeOf| |declare!| |empty| |case| |compound?| + |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| |solve| + |triangularSystems| |rootDirectory| |hostPlatform| |nativeModuleExtension| + |loadNativeModule| |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1| + |tab| |lex| |slex| |inverse| |maxrow| |mr| |tableau| |listOfLists| |tanSum| + |tanAn| |tanNa| |table| |initTable!| |printInfo!| |startStats!| |printStats!| + |clearTable!| |usingTable?| |printingInfo?| |makingStats?| |extractIfCan| + |insert!| |interpretString| |stripCommentsAndBlanks| |setPrologue!| |setTex!| + |setEpilogue!| |prologue| |new| |tex| |epilogue| |display| |endOfFile?| + |readIfCan!| |readLineIfCan!| |readLine!| |writeLine!| |sign| |nonQsign| + |direction| |createThreeSpace| |pi| |cyclicParents| |cyclicEqual?| + |cyclicEntries| |cyclicCopy| |tree| |cyclic?| |cos| |cot| |csc| |sec| |sin| + |tan| |complexNormalize| |complexElementary| |trigs| |real| |imag| |real?| + |complexForm| |UpTriBddDenomInv| |LowTriBddDenomInv| |simplify| |htrigs| + |simplifyExp| |simplifyLog| |expandPower| |expandLog| |cos2sec| |cosh2sech| + |cot2trig| |coth2trigh| |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| + |sinh2csch| |tan2trig| |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| + |coth2tanh| |removeCosSq| |removeSinSq| |removeCoshSq| |removeSinhSq| + |expandTrigProducts| |fintegrate| |coefficient| |coHeight| |extendIfCan| + |algebraicVariables| |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| + |reduceByQuasiMonic| |collectQuasiMonic| |removeZero| |initiallyReduce| + |headReduce| |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| + |initiallyReduced?| |headReduced?| |stronglyReduced?| |reduced?| |normalized?| + |quasiComponent| |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| + |closed?| |open?| |setClosed| |tube| |point| |unitVector| |cosSinInfo| + |loopPoints| |select| |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| + |getOrder| |less?| |userOrdered?| |largest| |more?| |setVariableOrder| + |getVariableOrder| |resetVariableOrder| |prime?| |rationalFunction| + |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree| + |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator| + |clearDenominator| |splitDenominator| |monicRightFactorIfCan| + |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan| + |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce| + |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite| + |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft| + |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP| + |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order| + |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents| + |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm| + |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!| + |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail| + |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert| + |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange| + |differentiate| |univariatePolynomial| |integrate| ** |polynomial| + |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| + |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP + LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| - + |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show| + |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs| + |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints| + |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface| + |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective| + |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes| + |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options| + |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault| + |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| + |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault| + |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults| + |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| + |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| + |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis| + |localIntegralBasis| |condition| |changeWeightLevel| |characteristicSerie| + |characteristicSet| |medialSet| |Hausdorff| |Frobenius| |transcendenceDegree| + |extensionDegree| |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| + |mirror| |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| + |LiePolyIfCan| |trunc| |degree| / |quasiRegular| |quasiRegular?| |constant| + |constant?| |coef| |mindeg| |maxdeg| |#| |coerce| |map| |reductum| * + |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| + |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| + |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| + |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index bf807ea3..bb14c2f3 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5043 +1,5070 @@ -(3148264 . 3429568352) -((-2450 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-1543 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-2476 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-1167 (-537)) |#2|) 34)) (-4146 (($ $) 59)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2299 (((-537) (-1 (-111) |#2|) $) 22) (((-537) |#2| $) NIL) (((-537) |#2| $ (-537)) 73)) (-3661 (((-606 |#2|) $) 13)) (-1470 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-4081 (($ (-1 |#2| |#2|) $) 29)) (-1612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4049 (($ |#2| $ (-537)) NIL) (($ $ $ (-537)) 50)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3206 (((-111) (-1 (-111) |#2|) $) 21)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL) (($ $ (-1167 (-537))) 49)) (-1856 (($ $ (-537)) 56) (($ $ (-1167 (-537))) 55)) (-2539 (((-731) (-1 (-111) |#2|) $) 26) (((-731) |#2| $) NIL)) (-1241 (($ $ $ (-537)) 52)) (-2494 (($ $) 51)) (-2350 (($ (-606 |#2|)) 53)) (-3434 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-606 $)) 62)) (-2341 (((-816) $) 69)) (-2030 (((-111) (-1 (-111) |#2|) $) 20)) (-2244 (((-111) $ $) 72)) (-2263 (((-111) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -2450 ((-111) |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) (-19 |#2|) (-1154)) (T -18)) +(3141278 . 3430368541) +((-1824 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-1822 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-4106 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-1172 (-526)) |#2|) 34)) (-2346 (($ $) 59)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3738 (((-526) (-1 (-111) |#2|) $) 22) (((-526) |#2| $) NIL) (((-526) |#2| $ (-526)) 73)) (-2044 (((-607 |#2|) $) 13)) (-3832 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2048 (($ (-1 |#2| |#2|) $) 29)) (-4275 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2351 (($ |#2| $ (-526)) NIL) (($ $ $ (-526)) 50)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-2046 (((-111) (-1 (-111) |#2|) $) 21)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL) (($ $ (-1172 (-526))) 49)) (-2352 (($ $ (-526)) 56) (($ $ (-1172 (-526))) 55)) (-2045 (((-735) (-1 (-111) |#2|) $) 26) (((-735) |#2| $) NIL)) (-1823 (($ $ $ (-526)) 52)) (-3719 (($ $) 51)) (-3844 (($ (-607 |#2|)) 53)) (-4120 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-607 $)) 62)) (-4274 (((-823) $) 69)) (-2047 (((-111) (-1 (-111) |#2|) $) 20)) (-3353 (((-111) $ $) 72)) (-2985 (((-111) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -1824 ((-111) |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) (-19 |#2|) (-1159)) (T -18)) NIL -(-10 -8 (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -2450 ((-111) |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-19 |#1|) (-134) (-1154)) (T -19)) +(-10 -8 (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -1824 ((-111) |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-19 |#1|) (-134) (-1159)) (T -19)) NIL -(-13 (-357 |t#1|) (-10 -7 (-6 -4301))) -(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) -((-3418 (((-3 $ "failed") $ $) 12)) (-2329 (($ $) NIL) (($ $ $) 9)) (* (($ (-874) $) NIL) (($ (-731) $) 16) (($ (-537) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-21)) (T -20)) +(-13 (-357 |t#1|) (-10 -7 (-6 -4311))) +(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) +((-1345 (((-3 $ "failed") $ $) 12)) (-4156 (($ $) NIL) (($ $ $) 9)) (* (($ (-878) $) NIL) (($ (-735) $) 16) (($ (-526) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20))) +(-10 -8 (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -1345 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20))) (((-21) (-134)) (T -21)) -((-2329 (*1 *1 *1) (-4 *1 (-21))) (-2329 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-537))))) -(-13 (-129) (-10 -8 (-15 -2329 ($ $)) (-15 -2329 ($ $ $)) (-15 * ($ (-537) $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-1656 (((-111) $) 10)) (-3832 (($) 15)) (* (($ (-874) $) 14) (($ (-731) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 * (|#1| (-874) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15))) +((-4156 (*1 *1 *1) (-4 *1 (-21))) (-4156 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-526))))) +(-13 (-129) (-10 -8 (-15 -4156 ($ $)) (-15 -4156 ($ $ $)) (-15 * ($ (-526) $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-3502 (((-111) $) 10)) (-3855 (($) 15)) (* (($ (-878) $) 14) (($ (-735) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 * (|#1| (-878) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15))) (((-23) (-134)) (T -23)) -((-2928 (*1 *1) (-4 *1 (-23))) (-3832 (*1 *1) (-4 *1 (-23))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-731))))) -(-13 (-25) (-10 -8 (-15 (-2928) ($) -2787) (-15 -3832 ($) -2787) (-15 -1656 ((-111) $)) (-15 * ($ (-731) $)))) -(((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((* (($ (-874) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-874) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13))) +((-2957 (*1 *1) (-4 *1 (-23))) (-3855 (*1 *1) (-4 *1 (-23))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-735))))) +(-13 (-25) (-10 -8 (-15 (-2957) ($) -4268) (-15 -3855 ($) -4268) (-15 -3502 ((-111) $)) (-15 * ($ (-735) $)))) +(((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((* (($ (-878) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-878) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13))) (((-25) (-134)) (T -25)) -((-2318 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-874))))) -(-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ (-874) $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-3753 (((-606 $) (-905 $)) 29) (((-606 $) (-1113 $)) 16) (((-606 $) (-1113 $) (-1117)) 20)) (-2652 (($ (-905 $)) 27) (($ (-1113 $)) 11) (($ (-1113 $) (-1117)) 54)) (-1974 (((-606 $) (-905 $)) 30) (((-606 $) (-1113 $)) 18) (((-606 $) (-1113 $) (-1117)) 19)) (-4190 (($ (-905 $)) 28) (($ (-1113 $)) 13) (($ (-1113 $) (-1117)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) -((-2330 (((-111) $ $) 7)) (-3753 (((-606 $) (-905 $)) 77) (((-606 $) (-1113 $)) 76) (((-606 $) (-1113 $) (-1117)) 75)) (-2652 (($ (-905 $)) 80) (($ (-1113 $)) 79) (($ (-1113 $) (-1117)) 78)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 89)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1974 (((-606 $) (-905 $)) 83) (((-606 $) (-1113 $)) 82) (((-606 $) (-1113 $) (-1117)) 81)) (-4190 (($ (-905 $)) 86) (($ (-1113 $)) 85) (($ (-1113 $) (-1117)) 84)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 87)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +((-4158 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-878))))) +(-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ (-878) $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-1643 (((-607 $) (-905 $)) 29) (((-607 $) (-1117 $)) 16) (((-607 $) (-1117 $) (-1123)) 20)) (-1238 (($ (-905 $)) 27) (($ (-1117 $)) 11) (($ (-1117 $) (-1123)) 54)) (-1239 (((-607 $) (-905 $)) 30) (((-607 $) (-1117 $)) 18) (((-607 $) (-1117 $) (-1123)) 19)) (-3497 (($ (-905 $)) 28) (($ (-1117 $)) 13) (($ (-1117 $) (-1123)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) +((-2865 (((-111) $ $) 7)) (-1643 (((-607 $) (-905 $)) 77) (((-607 $) (-1117 $)) 76) (((-607 $) (-1117 $) (-1123)) 75)) (-1238 (($ (-905 $)) 80) (($ (-1117 $)) 79) (($ (-1117 $) (-1123)) 78)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 89)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-1239 (((-607 $) (-905 $)) 83) (((-607 $) (-1117 $)) 82) (((-607 $) (-1117 $) (-1123)) 81)) (-3497 (($ (-905 $)) 86) (($ (-1117 $)) 85) (($ (-1117 $) (-1123)) 84)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 88)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 87)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) (((-27) (-134)) (T -27)) -((-4190 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) (-4190 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) (-2652 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-606 *1))))) -(-13 (-347) (-954) (-10 -8 (-15 -4190 ($ (-905 $))) (-15 -4190 ($ (-1113 $))) (-15 -4190 ($ (-1113 $) (-1117))) (-15 -1974 ((-606 $) (-905 $))) (-15 -1974 ((-606 $) (-1113 $))) (-15 -1974 ((-606 $) (-1113 $) (-1117))) (-15 -2652 ($ (-905 $))) (-15 -2652 ($ (-1113 $))) (-15 -2652 ($ (-1113 $) (-1117))) (-15 -3753 ((-606 $) (-905 $))) (-15 -3753 ((-606 $) (-1113 $))) (-15 -3753 ((-606 $) (-1113 $) (-1117))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-954) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-3753 (((-606 $) (-905 $)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 $) (-1117)) 50) (((-606 $) $) 19) (((-606 $) $ (-1117)) 41)) (-2652 (($ (-905 $)) NIL) (($ (-1113 $)) NIL) (($ (-1113 $) (-1117)) 52) (($ $) 17) (($ $ (-1117)) 37)) (-1974 (((-606 $) (-905 $)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 $) (-1117)) 48) (((-606 $) $) 15) (((-606 $) $ (-1117)) 43)) (-4190 (($ (-905 $)) NIL) (($ (-1113 $)) NIL) (($ (-1113 $) (-1117)) NIL) (($ $) 12) (($ $ (-1117)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3753 ((-606 |#1|) |#1| (-1117))) (-15 -2652 (|#1| |#1| (-1117))) (-15 -3753 ((-606 |#1|) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1974 ((-606 |#1|) |#1| (-1117))) (-15 -4190 (|#1| |#1| (-1117))) (-15 -1974 ((-606 |#1|) |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) (-29 |#2|) (-13 (-807) (-529))) (T -28)) -NIL -(-10 -8 (-15 -3753 ((-606 |#1|) |#1| (-1117))) (-15 -2652 (|#1| |#1| (-1117))) (-15 -3753 ((-606 |#1|) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1974 ((-606 |#1|) |#1| (-1117))) (-15 -4190 (|#1| |#1| (-1117))) (-15 -1974 ((-606 |#1|) |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) -((-2330 (((-111) $ $) 7)) (-3753 (((-606 $) (-905 $)) 77) (((-606 $) (-1113 $)) 76) (((-606 $) (-1113 $) (-1117)) 75) (((-606 $) $) 123) (((-606 $) $ (-1117)) 121)) (-2652 (($ (-905 $)) 80) (($ (-1113 $)) 79) (($ (-1113 $) (-1117)) 78) (($ $) 124) (($ $ (-1117)) 122)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1117)) $) 198)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 230 (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3852 (((-606 (-578 $)) $) 161)) (-3418 (((-3 $ "failed") $ $) 19)) (-1519 (($ $ (-606 (-578 $)) (-606 $)) 151) (($ $ (-606 (-278 $))) 150) (($ $ (-278 $)) 149)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 89)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1974 (((-606 $) (-905 $)) 83) (((-606 $) (-1113 $)) 82) (((-606 $) (-1113 $) (-1117)) 81) (((-606 $) $) 127) (((-606 $) $ (-1117)) 125)) (-4190 (($ (-905 $)) 86) (($ (-1113 $)) 85) (($ (-1113 $) (-1117)) 84) (($ $) 128) (($ $ (-1117)) 126)) (-1516 (((-3 (-905 |#1|) "failed") $) 248 (|has| |#1| (-998))) (((-3 (-391 (-905 |#1|)) "failed") $) 232 (|has| |#1| (-529))) (((-3 |#1| "failed") $) 194) (((-3 (-537) "failed") $) 192 (|has| |#1| (-989 (-537)))) (((-3 (-1117) "failed") $) 185) (((-3 (-578 $) "failed") $) 136) (((-3 (-391 (-537)) "failed") $) 120 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-905 |#1|) $) 249 (|has| |#1| (-998))) (((-391 (-905 |#1|)) $) 233 (|has| |#1| (-529))) ((|#1| $) 195) (((-537) $) 191 (|has| |#1| (-989 (-537)))) (((-1117) $) 186) (((-578 $) $) 137) (((-391 (-537)) $) 119 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) 53)) (-2053 (((-649 |#1|) (-649 $)) 238 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 237 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 118 (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (((-649 (-537)) (-649 $)) 117 (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 190 (|has| |#1| (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 189 (|has| |#1| (-839 (-537))))) (-3886 (($ (-606 $)) 155) (($ $) 154)) (-3350 (((-606 (-113)) $) 162)) (-3979 (((-113) (-113)) 163)) (-2836 (((-111) $) 30)) (-2353 (((-111) $) 183 (|has| $ (-989 (-537))))) (-2868 (($ $) 215 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 214 (|has| |#1| (-998)))) (-2590 (($ $ (-537)) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2040 (((-1113 $) (-578 $)) 180 (|has| $ (-998)))) (-2444 (($ $ $) 134)) (-3889 (($ $ $) 133)) (-1612 (($ (-1 $ $) (-578 $)) 169)) (-2765 (((-3 (-578 $) "failed") $) 159)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 160)) (-3381 (($ (-113) (-606 $)) 168) (($ (-113) $) 167)) (-3898 (((-3 (-606 $) "failed") $) 209 (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 218 (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 211 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 212 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 217 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 216 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 210 (|has| |#1| (-1057)))) (-3215 (((-111) $ (-1117)) 166) (((-111) $ (-113)) 165)) (-3865 (($ $) 67)) (-2545 (((-731) $) 158)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 196)) (-3890 ((|#1| $) 197)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-2482 (((-111) $ (-1117)) 171) (((-111) $ $) 170)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-2977 (((-111) $) 182 (|has| $ (-989 (-537))))) (-4116 (($ $ (-1117) (-731) (-1 $ $)) 222 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) 221 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 220 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 219 (|has| |#1| (-998))) (($ $ (-606 (-113)) (-606 $) (-1117)) 208 (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 207 (|has| |#1| (-580 (-513)))) (($ $) 206 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) 205 (|has| |#1| (-580 (-513)))) (($ $ (-1117)) 204 (|has| |#1| (-580 (-513)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-606 $))) 178) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 177) (($ $ (-606 (-113)) (-606 (-1 $ $))) 176) (($ $ (-1117) (-1 $ $)) 175) (($ $ (-1117) (-1 $ (-606 $))) 174) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 173) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 172) (($ $ (-606 $) (-606 $)) 143) (($ $ $ $) 142) (($ $ (-278 $)) 141) (($ $ (-606 (-278 $))) 140) (($ $ (-606 (-578 $)) (-606 $)) 139) (($ $ (-578 $) $) 138)) (-1930 (((-731) $) 56)) (-1922 (($ (-113) (-606 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2190 (($ $ $) 157) (($ $) 156)) (-3456 (($ $ (-1117)) 246 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 245 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 244 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) 243 (|has| |#1| (-998)))) (-2395 (($ $) 225 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 224 (|has| |#1| (-529)))) (-2529 (($ $) 181 (|has| $ (-998)))) (-3996 (((-513) $) 252 (|has| |#1| (-580 (-513)))) (($ (-402 $)) 223 (|has| |#1| (-529))) (((-845 (-363)) $) 188 (|has| |#1| (-580 (-845 (-363))))) (((-845 (-537)) $) 187 (|has| |#1| (-580 (-845 (-537)))))) (-1978 (($ $ $) 251 (|has| |#1| (-456)))) (-1674 (($ $ $) 250 (|has| |#1| (-456)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-905 |#1|)) 247 (|has| |#1| (-998))) (($ (-391 (-905 |#1|))) 231 (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) 229 (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) 228 (|has| |#1| (-529))) (($ (-391 |#1|)) 227 (|has| |#1| (-529))) (($ (-1069 |#1| (-578 $))) 213 (|has| |#1| (-998))) (($ |#1|) 193) (($ (-1117)) 184) (($ (-578 $)) 135)) (-2644 (((-3 $ "failed") $) 236 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1822 (($ (-606 $)) 153) (($ $) 152)) (-2336 (((-111) (-113)) 164)) (-3276 (((-111) $ $) 37)) (-2688 (($ (-1117) (-606 $)) 203) (($ (-1117) $ $ $ $) 202) (($ (-1117) $ $ $) 201) (($ (-1117) $ $) 200) (($ (-1117) $) 199)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1117)) 242 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 241 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 240 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) 239 (|has| |#1| (-998)))) (-2293 (((-111) $ $) 131)) (-2271 (((-111) $ $) 130)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 132)) (-2263 (((-111) $ $) 129)) (-2340 (($ $ $) 62) (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 226 (|has| |#1| (-529)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 87)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-163))) (($ |#1| $) 234 (|has| |#1| (-163))))) -(((-29 |#1|) (-134) (-13 (-807) (-529))) (T -29)) -((-4190 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *4)))) (-2652 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) (-3753 (*1 *2 *1) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -4190 ($ $)) (-15 -1974 ((-606 $) $)) (-15 -4190 ($ $ (-1117))) (-15 -1974 ((-606 $) $ (-1117))) (-15 -2652 ($ $)) (-15 -3753 ((-606 $) $)) (-15 -2652 ($ $ (-1117))) (-15 -3753 ((-606 $) $ (-1117))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) . T) ((-27) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-228) . T) ((-274) . T) ((-291) . T) ((-293 $) . T) ((-286) . T) ((-347) . T) ((-361 |#1|) |has| |#1| (-998)) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-414 |#1|) . T) ((-435) . T) ((-456) |has| |#1| (-456)) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) |has| |#1| (-163)) ((-609 $) . T) ((-602 (-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) ((-602 |#1|) |has| |#1| (-998)) ((-678 #0#) . T) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-853 (-1117)) |has| |#1| (-998)) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-873) . T) ((-954) . T) ((-989 (-391 (-537))) -1533 (|has| |#1| (-989 (-391 (-537)))) (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) ((-989 (-391 (-905 |#1|))) |has| |#1| (-529)) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-578 $)) . T) ((-989 (-905 |#1|)) |has| |#1| (-998)) ((-989 (-1117)) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) |has| |#1| (-163)) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1154) . T) ((-1158) . T)) -((-4059 (((-1040 (-210)) $) NIL)) (-4050 (((-1040 (-210)) $) NIL)) (-3878 (($ $ (-210)) 125)) (-4159 (($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537)))) 83)) (-1477 (((-606 (-606 (-896 (-210)))) $) 137)) (-2341 (((-816) $) 149))) -(((-30) (-13 (-908) (-10 -8 (-15 -4159 ($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537))))) (-15 -3878 ($ $ (-210)))))) (T -30)) -((-4159 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-905 (-537))) (-5 *3 (-1117)) (-5 *4 (-1040 (-391 (-537)))) (-5 *1 (-30)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-30))))) -(-13 (-908) (-10 -8 (-15 -4159 ($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537))))) (-15 -3878 ($ $ (-210))))) -((-4190 ((|#2| (-1113 |#2|) (-1117)) 43)) (-3979 (((-113) (-113)) 56)) (-2040 (((-1113 |#2|) (-578 |#2|)) 133 (|has| |#1| (-989 (-537))))) (-1680 ((|#2| |#1| (-537)) 122 (|has| |#1| (-989 (-537))))) (-3740 ((|#2| (-1113 |#2|) |#2|) 30)) (-2904 (((-816) (-606 |#2|)) 85)) (-2529 ((|#2| |#2|) 129 (|has| |#1| (-989 (-537))))) (-2336 (((-111) (-113)) 18)) (** ((|#2| |#2| (-391 (-537))) 96 (|has| |#1| (-989 (-537)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -4190 (|#2| (-1113 |#2|) (-1117))) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3740 (|#2| (-1113 |#2|) |#2|)) (-15 -2904 ((-816) (-606 |#2|))) (IF (|has| |#1| (-989 (-537))) (PROGN (-15 ** (|#2| |#2| (-391 (-537)))) (-15 -2040 ((-1113 |#2|) (-578 |#2|))) (-15 -2529 (|#2| |#2|)) (-15 -1680 (|#2| |#1| (-537)))) |%noBranch|)) (-13 (-807) (-529)) (-414 |#1|)) (T -31)) -((-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *2 (-414 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-989 *4)) (-4 *3 (-13 (-807) (-529))))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-989 (-537))) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *2)) (-4 *2 (-414 *3)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-414 *4)) (-4 *4 (-989 (-537))) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-1113 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-989 (-537))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)) (-4 *2 (-414 *4)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-816)) (-5 *1 (-31 *4 *5)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-31 *4 *5)) (-4 *5 (-414 *4)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *4)) (-4 *4 (-414 *3)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *2)) (-5 *4 (-1117)) (-4 *2 (-414 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-807) (-529)))))) -(-10 -7 (-15 -4190 (|#2| (-1113 |#2|) (-1117))) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3740 (|#2| (-1113 |#2|) |#2|)) (-15 -2904 ((-816) (-606 |#2|))) (IF (|has| |#1| (-989 (-537))) (PROGN (-15 ** (|#2| |#2| (-391 (-537)))) (-15 -2040 ((-1113 |#2|) (-578 |#2|))) (-15 -2529 (|#2| |#2|)) (-15 -1680 (|#2| |#1| (-537)))) |%noBranch|)) -((-2506 (((-111) $ (-731)) 16)) (-3832 (($) 10)) (-1642 (((-111) $ (-731)) 15)) (-2489 (((-111) $ (-731)) 14)) (-2305 (((-111) $ $) 8)) (-2193 (((-111) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -3832 (|#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2193 ((-111) |#1|)) (-15 -2305 ((-111) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -3832 (|#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2193 ((-111) |#1|)) (-15 -2305 ((-111) |#1| |#1|))) -((-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-1642 (((-111) $ (-731)) 9)) (-2489 (((-111) $ (-731)) 10)) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2494 (($ $) 13)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +((-3497 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) (-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) (-1238 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1))))) +(-13 (-348) (-960) (-10 -8 (-15 -3497 ($ (-905 $))) (-15 -3497 ($ (-1117 $))) (-15 -3497 ($ (-1117 $) (-1123))) (-15 -1239 ((-607 $) (-905 $))) (-15 -1239 ((-607 $) (-1117 $))) (-15 -1239 ((-607 $) (-1117 $) (-1123))) (-15 -1238 ($ (-905 $))) (-15 -1238 ($ (-1117 $))) (-15 -1238 ($ (-1117 $) (-1123))) (-15 -1643 ((-607 $) (-905 $))) (-15 -1643 ((-607 $) (-1117 $))) (-15 -1643 ((-607 $) (-1117 $) (-1123))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-960) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-1643 (((-607 $) (-905 $)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 $) (-1123)) 50) (((-607 $) $) 19) (((-607 $) $ (-1123)) 41)) (-1238 (($ (-905 $)) NIL) (($ (-1117 $)) NIL) (($ (-1117 $) (-1123)) 52) (($ $) 17) (($ $ (-1123)) 37)) (-1239 (((-607 $) (-905 $)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 $) (-1123)) 48) (((-607 $) $) 15) (((-607 $) $ (-1123)) 43)) (-3497 (($ (-905 $)) NIL) (($ (-1117 $)) NIL) (($ (-1117 $) (-1123)) NIL) (($ $) 12) (($ $ (-1123)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1643 ((-607 |#1|) |#1| (-1123))) (-15 -1238 (|#1| |#1| (-1123))) (-15 -1643 ((-607 |#1|) |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -1239 ((-607 |#1|) |#1| (-1123))) (-15 -3497 (|#1| |#1| (-1123))) (-15 -1239 ((-607 |#1|) |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) (-29 |#2|) (-13 (-811) (-533))) (T -28)) +NIL +(-10 -8 (-15 -1643 ((-607 |#1|) |#1| (-1123))) (-15 -1238 (|#1| |#1| (-1123))) (-15 -1643 ((-607 |#1|) |#1|)) (-15 -1238 (|#1| |#1|)) (-15 -1239 ((-607 |#1|) |#1| (-1123))) (-15 -3497 (|#1| |#1| (-1123))) (-15 -1239 ((-607 |#1|) |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1643 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1643 ((-607 |#1|) (-1117 |#1|))) (-15 -1643 ((-607 |#1|) (-905 |#1|))) (-15 -1238 (|#1| (-1117 |#1|) (-1123))) (-15 -1238 (|#1| (-1117 |#1|))) (-15 -1238 (|#1| (-905 |#1|))) (-15 -1239 ((-607 |#1|) (-1117 |#1|) (-1123))) (-15 -1239 ((-607 |#1|) (-1117 |#1|))) (-15 -1239 ((-607 |#1|) (-905 |#1|))) (-15 -3497 (|#1| (-1117 |#1|) (-1123))) (-15 -3497 (|#1| (-1117 |#1|))) (-15 -3497 (|#1| (-905 |#1|)))) +((-2865 (((-111) $ $) 7)) (-1643 (((-607 $) (-905 $)) 77) (((-607 $) (-1117 $)) 76) (((-607 $) (-1117 $) (-1123)) 75) (((-607 $) $) 123) (((-607 $) $ (-1123)) 121)) (-1238 (($ (-905 $)) 80) (($ (-1117 $)) 79) (($ (-1117 $) (-1123)) 78) (($ $) 124) (($ $ (-1123)) 122)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1123)) $) 198)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 230 (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1636 (((-607 (-581 $)) $) 161)) (-1345 (((-3 $ "failed") $ $) 19)) (-1640 (($ $ (-607 (-581 $)) (-607 $)) 151) (($ $ (-607 (-278 $))) 150) (($ $ (-278 $)) 149)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 89)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-1239 (((-607 $) (-905 $)) 83) (((-607 $) (-1117 $)) 82) (((-607 $) (-1117 $) (-1123)) 81) (((-607 $) $) 127) (((-607 $) $ (-1123)) 125)) (-3497 (($ (-905 $)) 86) (($ (-1117 $)) 85) (($ (-1117 $) (-1123)) 84) (($ $) 128) (($ $ (-1123)) 126)) (-3470 (((-3 (-905 |#1|) #1="failed") $) 248 (|has| |#1| (-1004))) (((-3 (-392 (-905 |#1|)) #1#) $) 232 (|has| |#1| (-533))) (((-3 |#1| #1#) $) 194) (((-3 (-526) #1#) $) 192 (|has| |#1| (-995 (-526)))) (((-3 (-1123) #1#) $) 185) (((-3 (-581 $) #1#) $) 136) (((-3 (-392 (-526)) #1#) $) 120 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-905 |#1|) $) 249 (|has| |#1| (-1004))) (((-392 (-905 |#1|)) $) 233 (|has| |#1| (-533))) ((|#1| $) 195) (((-526) $) 191 (|has| |#1| (-995 (-526)))) (((-1123) $) 186) (((-581 $) $) 137) (((-392 (-526)) $) 119 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) 53)) (-2331 (((-653 |#1|) (-653 $)) 238 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 237 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 118 (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (((-653 (-526)) (-653 $)) 117 (-3850 (-3155 (|has| |#1| (-1004)) (|has| |#1| (-606 (-526)))) (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 190 (|has| |#1| (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 189 (|has| |#1| (-845 (-526))))) (-2870 (($ (-607 $)) 155) (($ $) 154)) (-1635 (((-607 (-112)) $) 162)) (-2307 (((-112) (-112)) 163)) (-2471 (((-111) $) 30)) (-2973 (((-111) $) 183 (|has| $ (-995 (-526))))) (-3296 (($ $) 215 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 214 (|has| |#1| (-1004)))) (-3311 (($ $ (-526)) 88)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-1633 (((-1117 $) (-581 $)) 180 (|has| $ (-1004)))) (-3637 (($ $ $) 134)) (-3638 (($ $ $) 133)) (-4275 (($ (-1 $ $) (-581 $)) 169)) (-1638 (((-3 (-581 $) "failed") $) 159)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 160)) (-2288 (($ (-112) (-607 $)) 168) (($ (-112) $) 167)) (-3123 (((-3 (-607 $) #3="failed") $) 209 (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) #3#) $) 218 (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) #3#) $) 211 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-1123)) 217 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-112)) 216 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $) 210 (|has| |#1| (-1063)))) (-2930 (((-111) $ (-1123)) 166) (((-111) $ (-112)) 165)) (-2703 (($ $) 67)) (-2900 (((-735) $) 158)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 196)) (-1891 ((|#1| $) 197)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1634 (((-111) $ (-1123)) 171) (((-111) $ $) 170)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-2974 (((-111) $) 182 (|has| $ (-995 (-526))))) (-4086 (($ $ (-1123) (-735) (-1 $ $)) 222 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) 221 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 220 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 219 (|has| |#1| (-1004))) (($ $ (-607 (-112)) (-607 $) (-1123)) 208 (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 207 (|has| |#1| (-584 (-515)))) (($ $) 206 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) 205 (|has| |#1| (-584 (-515)))) (($ $ (-1123)) 204 (|has| |#1| (-584 (-515)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-607 $))) 178) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 177) (($ $ (-607 (-112)) (-607 (-1 $ $))) 176) (($ $ (-1123) (-1 $ $)) 175) (($ $ (-1123) (-1 $ (-607 $))) 174) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 173) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 172) (($ $ (-607 $) (-607 $)) 143) (($ $ $ $) 142) (($ $ (-278 $)) 141) (($ $ (-607 (-278 $))) 140) (($ $ (-607 (-581 $)) (-607 $)) 139) (($ $ (-581 $) $) 138)) (-1680 (((-735) $) 56)) (-4118 (($ (-112) (-607 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1639 (($ $ $) 157) (($ $) 156)) (-4129 (($ $ (-1123)) 246 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 245 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 244 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) 243 (|has| |#1| (-1004)))) (-3295 (($ $) 225 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 224 (|has| |#1| (-533)))) (-3499 (($ $) 181 (|has| $ (-1004)))) (-4287 (((-515) $) 252 (|has| |#1| (-584 (-515)))) (($ (-390 $)) 223 (|has| |#1| (-533))) (((-849 (-363)) $) 188 (|has| |#1| (-584 (-849 (-363))))) (((-849 (-526)) $) 187 (|has| |#1| (-584 (-849 (-526)))))) (-3309 (($ $ $) 251 (|has| |#1| (-457)))) (-2655 (($ $ $) 250 (|has| |#1| (-457)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-905 |#1|)) 247 (|has| |#1| (-1004))) (($ (-392 (-905 |#1|))) 231 (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) 229 (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) 228 (|has| |#1| (-533))) (($ (-392 |#1|)) 227 (|has| |#1| (-533))) (($ (-1075 |#1| (-581 $))) 213 (|has| |#1| (-1004))) (($ |#1|) 193) (($ (-1123)) 184) (($ (-581 $)) 135)) (-3002 (((-3 $ "failed") $) 236 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2887 (($ (-607 $)) 153) (($ $) 152)) (-2306 (((-111) (-112)) 164)) (-2150 (((-111) $ $) 37)) (-1890 (($ (-1123) (-607 $)) 203) (($ (-1123) $ $ $ $) 202) (($ (-1123) $ $ $) 201) (($ (-1123) $ $) 200) (($ (-1123) $) 199)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1123)) 242 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 241 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 240 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) 239 (|has| |#1| (-1004)))) (-2863 (((-111) $ $) 131)) (-2864 (((-111) $ $) 130)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 132)) (-2985 (((-111) $ $) 129)) (-4265 (($ $ $) 62) (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 226 (|has| |#1| (-533)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 87)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-163))) (($ |#1| $) 234 (|has| |#1| (-163))))) +(((-29 |#1|) (-134) (-13 (-811) (-533))) (T -29)) +((-3497 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) (-1239 (*1 *2 *1) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *4)))) (-1238 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) (-1643 (*1 *2 *1) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) (-1238 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-406 |t#1|) (-10 -8 (-15 -3497 ($ $)) (-15 -1239 ((-607 $) $)) (-15 -3497 ($ $ (-1123))) (-15 -1239 ((-607 $) $ (-1123))) (-15 -1238 ($ $)) (-15 -1643 ((-607 $) $)) (-15 -1238 ($ $ (-1123))) (-15 -1643 ((-607 $) $ (-1123))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) . T) ((-27) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-229) . T) ((-275) . T) ((-292) . T) ((-294 $) . T) ((-283) . T) ((-348) . T) ((-362 |#1|) |has| |#1| (-1004)) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-406 |#1|) . T) ((-436) . T) ((-457) |has| |#1| (-457)) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) |has| |#1| (-163)) ((-613 $) . T) ((-606 (-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) ((-606 |#1|) |has| |#1| (-1004)) ((-682 #1#) . T) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-859 (-1123)) |has| |#1| (-1004)) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-880) . T) ((-960) . T) ((-995 (-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) ((-995 (-392 (-905 |#1|))) |has| |#1| (-533)) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-581 $)) . T) ((-995 (-905 |#1|)) |has| |#1| (-1004)) ((-995 (-1123)) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) |has| |#1| (-163)) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1159) . T) ((-1164) . T)) +((-3196 (((-1041 (-211)) $) NIL)) (-3197 (((-1041 (-211)) $) NIL)) (-3431 (($ $ (-211)) 125)) (-1240 (($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526)))) 83)) (-3198 (((-607 (-607 (-902 (-211)))) $) 137)) (-4274 (((-823) $) 149))) +(((-30) (-13 (-914) (-10 -8 (-15 -1240 ($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526))))) (-15 -3431 ($ $ (-211)))))) (T -30)) +((-1240 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-905 (-526))) (-5 *3 (-1123)) (-5 *4 (-1041 (-392 (-526)))) (-5 *1 (-30)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-30))))) +(-13 (-914) (-10 -8 (-15 -1240 ($ (-905 (-526)) (-1123) (-1123) (-1041 (-392 (-526))) (-1041 (-392 (-526))))) (-15 -3431 ($ $ (-211))))) +((-3497 ((|#2| (-1117 |#2|) (-1123)) 43)) (-2307 (((-112) (-112)) 56)) (-1633 (((-1117 |#2|) (-581 |#2|)) 133 (|has| |#1| (-995 (-526))))) (-1243 ((|#2| |#1| (-526)) 122 (|has| |#1| (-995 (-526))))) (-1241 ((|#2| (-1117 |#2|) |#2|) 30)) (-1242 (((-823) (-607 |#2|)) 85)) (-3499 ((|#2| |#2|) 129 (|has| |#1| (-995 (-526))))) (-2306 (((-111) (-112)) 18)) (** ((|#2| |#2| (-392 (-526))) 96 (|has| |#1| (-995 (-526)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -3497 (|#2| (-1117 |#2|) (-1123))) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -1241 (|#2| (-1117 |#2|) |#2|)) (-15 -1242 ((-823) (-607 |#2|))) (IF (|has| |#1| (-995 (-526))) (PROGN (-15 ** (|#2| |#2| (-392 (-526)))) (-15 -1633 ((-1117 |#2|) (-581 |#2|))) (-15 -3499 (|#2| |#2|)) (-15 -1243 (|#2| |#1| (-526)))) |%noBranch|)) (-13 (-811) (-533)) (-406 |#1|)) (T -31)) +((-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-995 *4)) (-4 *3 (-13 (-811) (-533))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-995 (-526))) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *2)) (-4 *2 (-406 *3)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-581 *5)) (-4 *5 (-406 *4)) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-1117 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-823)) (-5 *1 (-31 *4 *5)))) (-1241 (*1 *2 *3 *2) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-31 *4 *2)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *4)) (-4 *4 (-406 *3)))) (-3497 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *2)) (-5 *4 (-1123)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-811) (-533)))))) +(-10 -7 (-15 -3497 (|#2| (-1117 |#2|) (-1123))) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -1241 (|#2| (-1117 |#2|) |#2|)) (-15 -1242 ((-823) (-607 |#2|))) (IF (|has| |#1| (-995 (-526))) (PROGN (-15 ** (|#2| |#2| (-392 (-526)))) (-15 -1633 ((-1117 |#2|) (-581 |#2|))) (-15 -3499 (|#2| |#2|)) (-15 -1243 (|#2| |#1| (-526)))) |%noBranch|)) +((-1244 (((-111) $ (-735)) 16)) (-3855 (($) 10)) (-4041 (((-111) $ (-735)) 15)) (-4038 (((-111) $ (-735)) 14)) (-1245 (((-111) $ $) 8)) (-3722 (((-111) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -3855 (|#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3722 ((-111) |#1|)) (-15 -1245 ((-111) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -3855 (|#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3722 ((-111) |#1|)) (-15 -1245 ((-111) |#1| |#1|))) +((-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-4041 (((-111) $ (-735)) 9)) (-4038 (((-111) $ (-735)) 10)) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3719 (($ $) 13)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) (((-33) (-134)) (T -33)) -((-2305 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-2494 (*1 *1 *1) (-4 *1 (-33))) (-3425 (*1 *1) (-4 *1 (-33))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-2489 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-1642 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-2506 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-3832 (*1 *1) (-4 *1 (-33))) (-2258 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-33)) (-5 *2 (-731))))) -(-13 (-1154) (-10 -8 (-15 -2305 ((-111) $ $)) (-15 -2494 ($ $)) (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -2489 ((-111) $ (-731))) (-15 -1642 ((-111) $ (-731))) (-15 -2506 ((-111) $ (-731))) (-15 -3832 ($) -2787) (IF (|has| $ (-6 -4300)) (-15 -2258 ((-731) $)) |%noBranch|))) -(((-1154) . T)) -((-1475 (($ $) 11)) (-1453 (($ $) 10)) (-1495 (($ $) 9)) (-4141 (($ $) 8)) (-1485 (($ $) 7)) (-1465 (($ $) 6))) +((-1245 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-3719 (*1 *1 *1) (-4 *1 (-33))) (-3887 (*1 *1) (-4 *1 (-33))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-4038 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-4041 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-1244 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) (-3855 (*1 *1) (-4 *1 (-33))) (-4273 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-33)) (-5 *2 (-735))))) +(-13 (-1159) (-10 -8 (-15 -1245 ((-111) $ $)) (-15 -3719 ($ $)) (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -4038 ((-111) $ (-735))) (-15 -4041 ((-111) $ (-735))) (-15 -1244 ((-111) $ (-735))) (-15 -3855 ($) -4268) (IF (|has| $ (-6 -4310)) (-15 -4273 ((-735) $)) |%noBranch|))) +(((-1159) . T)) +((-3812 (($ $) 11)) (-3810 (($ $) 10)) (-3814 (($ $) 9)) (-3815 (($ $) 8)) (-3813 (($ $) 7)) (-3811 (($ $) 6))) (((-34) (-134)) (T -34)) -((-1475 (*1 *1 *1) (-4 *1 (-34))) (-1453 (*1 *1 *1) (-4 *1 (-34))) (-1495 (*1 *1 *1) (-4 *1 (-34))) (-4141 (*1 *1 *1) (-4 *1 (-34))) (-1485 (*1 *1 *1) (-4 *1 (-34))) (-1465 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -1465 ($ $)) (-15 -1485 ($ $)) (-15 -4141 ($ $)) (-15 -1495 ($ $)) (-15 -1453 ($ $)) (-15 -1475 ($ $)))) -((-2330 (((-111) $ $) 19 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3619 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 125)) (-1658 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 148)) (-4199 (($ $) 146)) (-3144 (($) 72) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 71)) (-1279 (((-1205) $ |#1| |#1|) 99 (|has| $ (-6 -4301))) (((-1205) $ (-537) (-537)) 178 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 159 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1543 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 200 (|has| $ (-6 -4301))) (($ $) 199 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-3650 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 134 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 155 (|has| $ (-6 -4301)))) (-2236 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 157 (|has| $ (-6 -4301)))) (-1988 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 153 (|has| $ (-6 -4301)))) (-2476 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 189 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-1167 (-537)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 160 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 158 (|has| $ (-6 -4301))) (($ $ "rest" $) 156 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 154 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 133 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 132 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 216)) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 175 (|has| $ (-6 -4300)))) (-1647 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 147)) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-4146 (($ $) 201 (|has| $ (-6 -4301)))) (-3289 (($ $) 211)) (-3200 (($ $ (-731)) 142) (($ $) 140)) (-1376 (($ $) 214 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3221 (($ $) 58 (-1533 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))) (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 220) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 215 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 174 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 176 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 173 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 172 (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 190 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 88) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 188)) (-4254 (((-111) $) 192)) (-2299 (((-537) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 208) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 207 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 206 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300))) (((-606 |#2|) $) 79 (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 114 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 123)) (-3868 (((-111) $ $) 131 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3157 (($ (-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 169)) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 96 (|has| |#1| (-807))) (((-537) $) 180 (|has| (-537) (-807)))) (-2444 (($ $ $) 198 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1646 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1470 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300))) (((-606 |#2|) $) 80 (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 115 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 95 (|has| |#1| (-807))) (((-537) $) 181 (|has| (-537) (-807)))) (-3889 (($ $ $) 197 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 110 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 109)) (-1285 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 225)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 128)) (-3862 (((-111) $) 124)) (-1654 (((-1100) $) 22 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2375 (($ $ (-731)) 145) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 143)) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 219) (($ $ $ (-537)) 218)) (-4049 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 162) (($ $ $ (-537)) 161)) (-1270 (((-606 |#1|) $) 93) (((-606 (-537)) $) 183)) (-1641 (((-111) |#1| $) 92) (((-111) (-537) $) 184)) (-2528 (((-1064) $) 21 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3188 ((|#2| $) 97 (|has| |#1| (-807))) (($ $ (-731)) 139) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 137)) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51) (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 171)) (-3040 (($ $ |#2|) 98 (|has| $ (-6 -4301))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 179 (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-1492 (((-111) $) 191)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 112 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) 83 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 121 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 120 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 119 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 118 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 182 (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3010 (((-606 |#2|) $) 91) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 185)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 187) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 186) (($ $ (-1167 (-537))) 165) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first") 138) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value") 126)) (-2364 (((-537) $ $) 129)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-3282 (($ $ (-537)) 222) (($ $ (-1167 (-537))) 221)) (-1856 (($ $ (-537)) 164) (($ $ (-1167 (-537))) 163)) (-3335 (((-111) $) 127)) (-3136 (($ $) 151)) (-3743 (($ $) 152 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 150)) (-1935 (($ $) 149)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) |#2| $) 81 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 113 (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) 202 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513)))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 170)) (-3115 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 224) (($ $ $) 223)) (-3434 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 168) (($ (-606 $)) 167) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 136) (($ $ $) 135)) (-2341 (((-816) $) 18 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))))) (-2804 (((-606 $) $) 122)) (-4261 (((-111) $ $) 130 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2381 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") |#1| $) 108)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 111 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 195 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2271 (((-111) $ $) 194 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2244 (((-111) $ $) 20 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2282 (((-111) $ $) 196 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2263 (((-111) $ $) 193 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-35 |#1| |#2|) (-134) (-1045) (-1045)) (T -35)) -((-2381 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2926 *3) (|:| -2140 *4)))))) -(-13 (-1130 |t#1| |t#2|) (-627 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))) (-10 -8 (-15 -2381 ((-3 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #1=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-270 #2=(-537) #1#) . T) ((-270 |#1| |#2|) . T) ((-272 #2# #1#) . T) ((-272 |#1| |#2|) . T) ((-293 #1#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-266 #1#) . T) ((-357 #1#) . T) ((-471 #1#) . T) ((-471 |#2|) . T) ((-570 #2# #1#) . T) ((-570 |#1| |#2|) . T) ((-495 #1# #1#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-576 |#1| |#2|) . T) ((-612 #1#) . T) ((-627 #1#) . T) ((-807) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) ((-962 #1#) . T) ((-1045) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))) ((-1091 #1#) . T) ((-1130 |#1| |#2|) . T) ((-1154) . T) ((-1188 #1#) . T)) -((-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-37 |#2|) (-163)) (T -36)) -NIL -(-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3812 (*1 *1 *1) (-4 *1 (-34))) (-3810 (*1 *1 *1) (-4 *1 (-34))) (-3814 (*1 *1 *1) (-4 *1 (-34))) (-3815 (*1 *1 *1) (-4 *1 (-34))) (-3813 (*1 *1 *1) (-4 *1 (-34))) (-3811 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -3811 ($ $)) (-15 -3813 ($ $)) (-15 -3815 ($ $)) (-15 -3814 ($ $)) (-15 -3810 ($ $)) (-15 -3812 ($ $)))) +((-2865 (((-111) $ $) 19 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3721 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 125)) (-4113 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 148)) (-4115 (($ $) 146)) (-3919 (($) 72) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 71)) (-2276 (((-1211) $ |#1| |#1|) 99 (|has| $ (-6 -4311))) (((-1211) $ (-526) (-526)) 178 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 159 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1822 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 200 (|has| $ (-6 -4311))) (($ $) 199 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-3325 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 134 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 155 (|has| $ (-6 -4311)))) (-4104 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 157 (|has| $ (-6 -4311)))) (-4107 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 153 (|has| $ (-6 -4311)))) (-4106 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 189 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-1172 (-526)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 160 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1="last" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 158 (|has| $ (-6 -4311))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3="first" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 154 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4="value" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 133 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 132 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 216)) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 175 (|has| $ (-6 -4310)))) (-4114 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 147)) (-2285 (((-3 |#2| #5="failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-2346 (($ $) 201 (|has| $ (-6 -4311)))) (-2347 (($ $) 211)) (-4117 (($ $ (-735)) 142) (($ $) 140)) (-2424 (($ $) 214 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1375 (($ $) 58 (-3850 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))) (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 220) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 215 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 174 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 176 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 173 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 172 (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 190 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 88) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 188)) (-3761 (((-111) $) 192)) (-3738 (((-526) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 208) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 207 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 206 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310))) (((-607 |#2|) $) 79 (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 114 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 123)) (-3327 (((-111) $ $) 131 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3936 (($ (-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 169)) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 96 (|has| |#1| (-811))) (((-526) $) 180 (|has| (-526) (-811)))) (-3637 (($ $ $) 198 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3159 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3832 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310))) (((-607 |#2|) $) 80 (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 115 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 95 (|has| |#1| (-811))) (((-526) $) 181 (|has| (-526) (-811)))) (-3638 (($ $ $) 197 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 110 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 109)) (-3856 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 225)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 128)) (-3841 (((-111) $) 124)) (-3554 (((-1106) $) 22 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4116 (($ $ (-735)) 145) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 143)) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 219) (($ $ $ (-526)) 218)) (-2351 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 162) (($ $ $ (-526)) 161)) (-2281 (((-607 |#1|) $) 93) (((-607 (-526)) $) 183)) (-2282 (((-111) |#1| $) 92) (((-111) (-526) $) 184)) (-3555 (((-1070) $) 21 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4119 ((|#2| $) 97 (|has| |#1| (-811))) (($ $ (-735)) 139) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 137)) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6="failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51) (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6#) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 171)) (-2277 (($ $ |#2|) 98 (|has| $ (-6 -4311))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 179 (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-3762 (((-111) $) 191)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 112 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) 83 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 121 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 120 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 119 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 118 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 182 (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2283 (((-607 |#2|) $) 91) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 185)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 187) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) 186) (($ $ (-1172 (-526))) 165) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3#) 138) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4#) 126)) (-3329 (((-526) $ $) 129)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-1608 (($ $ (-526)) 222) (($ $ (-1172 (-526))) 221)) (-2352 (($ $ (-526)) 164) (($ $ (-1172 (-526))) 163)) (-3955 (((-111) $) 127)) (-4110 (($ $) 151)) (-4108 (($ $) 152 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 150)) (-4112 (($ $) 149)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) |#2| $) 81 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 113 (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) 202 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515)))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 170)) (-4109 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 224) (($ $ $) 223)) (-4120 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 168) (($ (-607 $)) 167) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 136) (($ $ $) 135)) (-4274 (((-823) $) 18 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))))) (-3836 (((-607 $) $) 122)) (-3328 (((-111) $ $) 130 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-1246 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") |#1| $) 108)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 111 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 195 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2864 (((-111) $ $) 194 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3353 (((-111) $ $) 20 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2984 (((-111) $ $) 196 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2985 (((-111) $ $) 193 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-35 |#1| |#2|) (-134) (-1052) (-1052)) (T -35)) +((-1246 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| -4179 *3) (|:| -2164 *4)))))) +(-13 (-1136 |t#1| |t#2|) (-631 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))) (-10 -8 (-15 -1246 ((-3 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| |#2| (-1052))) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-145 #2=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-271 #3=(-526) #2#) . T) ((-271 |#1| |#2|) . T) ((-273 #3# #2#) . T) ((-273 |#1| |#2|) . T) ((-294 #2#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-267 #2#) . T) ((-357 #2#) . T) ((-472 #2#) . T) ((-472 |#2|) . T) ((-574 #3# #2#) . T) ((-574 |#1| |#2|) . T) ((-496 #2# #2#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-580 |#1| |#2|) . T) ((-616 #2#) . T) ((-631 #2#) . T) ((-811) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) ((-968 #2#) . T) ((-1052) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)) (|has| |#2| (-1052))) ((-1097 #2#) . T) ((-1136 |#1| |#2|) . T) ((-1159) . T) ((-1194 #2#) . T)) +((-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-37 |#2|) (-163)) (T -36)) +NIL +(-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-37 |#1|) (-134) (-163)) (T -37)) -((-2341 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163))))) -(-13 (-998) (-678 |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-3763 (((-402 |#1|) |#1|) 41)) (-3622 (((-402 |#1|) |#1|) 30) (((-402 |#1|) |#1| (-606 (-47))) 33)) (-3629 (((-111) |#1|) 56))) -(((-38 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1| (-606 (-47)))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3763 ((-402 |#1|) |#1|)) (-15 -3629 ((-111) |#1|))) (-1176 (-47))) (T -38)) -((-3629 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3763 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47)))))) -(-10 -7 (-15 -3622 ((-402 |#1|) |#1| (-606 (-47)))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3763 ((-402 |#1|) |#1|)) (-15 -3629 ((-111) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| (-391 |#2|) (-347)))) (-3377 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) NIL) (((-649 (-391 |#2|))) NIL)) (-1428 (((-391 |#2|) $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) NIL (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) NIL)) (-3038 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) NIL)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) NIL) (($ (-1200 (-391 |#2|))) 57) (($ (-1200 |#2|) |#2|) 125)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) NIL) (((-649 (-391 |#2|)) (-649 $)) NIL)) (-4203 (((-1200 $) (-1200 $)) NIL)) (-3195 (($ |#3|) NIL) (((-3 $ "failed") (-391 |#3|)) NIL (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3544 (((-606 (-606 |#1|))) NIL (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) NIL)) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) NIL)) (-1999 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3539 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-391 |#2|) (-347)))) (-1351 (($ $) NIL)) (-4145 (($) NIL (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) NIL (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) NIL (|has| (-391 |#2|) (-333))) (($ $) NIL (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) NIL (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) NIL (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) NIL)) (-4147 (((-731)) NIL)) (-4205 (((-1200 $) (-1200 $)) 102)) (-2055 (((-391 |#2|) $) NIL)) (-3941 (((-606 (-905 |#1|)) (-1117)) NIL (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) NIL (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) NIL (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) NIL)) (-2283 (((-1205) (-731)) 79)) (-3184 (((-649 (-391 |#2|))) 51)) (-3993 (((-649 (-391 |#2|))) 44)) (-3865 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 126)) (-1734 (((-649 (-391 |#2|))) 45)) (-2125 (((-649 (-391 |#2|))) 43)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 64)) (-1782 (((-1200 $)) 42)) (-3778 (((-1200 $)) 41)) (-1600 (((-111) $) NIL)) (-3766 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3956 (($) NIL (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) NIL)) (-2528 (((-1064) $) NIL)) (-2091 (((-731)) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) NIL (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) NIL)) (-2322 (((-3 |#2| "failed")) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) NIL) (((-391 |#2|)) 39)) (-3030 (((-731) $) NIL (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) NIL (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 50)) (-3553 (($) NIL (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 |#2|)) $) 58) (((-649 (-391 |#2|)) (-1200 $)) 103)) (-3996 (((-1200 (-391 |#2|)) $) NIL) (($ (-1200 (-391 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 |#2|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-391 |#2|) (-989 (-391 (-537)))) (|has| (-391 |#2|) (-347)))) (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2644 (($ $) NIL (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) NIL)) (-3654 (((-731)) NIL)) (-3735 (((-111)) 37)) (-3281 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2122 (((-1200 $)) 93)) (-3276 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2743 (((-111)) NIL)) (-2928 (($) 16 T CONST)) (-2943 (($) 26 T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 |#2|)) NIL) (($ (-391 |#2|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) NIL (|has| (-391 |#2|) (-347))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-326 |#1| |#2| |#3|) (-10 -7 (-15 -2283 ((-1205) (-731))))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) |#3|) (T -39)) -((-2283 (*1 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *2 (-1205)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1176 (-391 *5))) (-14 *7 *6)))) -(-13 (-326 |#1| |#2| |#3|) (-10 -7 (-15 -2283 ((-1205) (-731))))) -((-3117 ((|#2| |#2|) 48)) (-1823 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-2564 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-3720 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-1413 ((|#2| (-113) |#2| (-731)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-4045 (((-1113 |#2|) |#2|) 45)) (-4084 ((|#2| |#2| (-606 (-578 |#2|))) 18) ((|#2| |#2| (-606 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-40 |#1| |#2|) (-10 -7 (-15 -3117 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| (-606 |#2|))) (-15 -4084 (|#2| |#2| (-606 (-578 |#2|)))) (-15 -4045 ((-1113 |#2|) |#2|)) (IF (|has| |#1| (-807)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-989 (-537))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -3720 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1413 (|#2| (-113) |#2| (-731)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-529) (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 |#1| (-578 $)) $)) (-15 -3315 ((-1069 |#1| (-578 $)) $)) (-15 -2341 ($ (-1069 |#1| (-578 $))))))) (T -40)) -((-1413 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-731)) (-4 *5 (-435)) (-4 *5 (-807)) (-4 *5 (-989 (-537))) (-4 *5 (-529)) (-5 *1 (-40 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *5 (-578 $)) $)) (-15 -3315 ((-1069 *5 (-578 $)) $)) (-15 -2341 ($ (-1069 *5 (-578 $))))))))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-2564 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-4045 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-1113 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-578 *2))) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))) (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))) (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) (-4084 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-3117 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) -(-10 -7 (-15 -3117 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| (-606 |#2|))) (-15 -4084 (|#2| |#2| (-606 (-578 |#2|)))) (-15 -4045 ((-1113 |#2|) |#2|)) (IF (|has| |#1| (-807)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-989 (-537))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -3720 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1413 (|#2| (-113) |#2| (-731)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3622 (((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))) 23) (((-402 |#3|) |#3| (-606 (-47))) 19))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3| (-606 (-47)))) (-15 -3622 ((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))))) (-807) (-753) (-902 (-47) |#2| |#1|)) (T -41)) -((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *7 (-902 (-47) *6 *5)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *2 (-402 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-902 (-47) *6 *5))))) -(-10 -7 (-15 -3622 ((-402 |#3|) |#3| (-606 (-47)))) (-15 -3622 ((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))))) -((-3132 (((-731) |#2|) 65)) (-1829 (((-731) |#2|) 68)) (-3666 (((-606 |#2|)) 33)) (-3677 (((-731) |#2|) 67)) (-3734 (((-731) |#2|) 64)) (-1650 (((-731) |#2|) 66)) (-1236 (((-606 (-649 |#1|))) 60)) (-2596 (((-606 |#2|)) 55)) (-2145 (((-606 |#2|) |#2|) 43)) (-2034 (((-606 |#2|)) 57)) (-1708 (((-606 |#2|)) 56)) (-2796 (((-606 (-649 |#1|))) 48)) (-2102 (((-606 |#2|)) 54)) (-1360 (((-606 |#2|) |#2|) 42)) (-1508 (((-606 |#2|)) 50)) (-3691 (((-606 (-649 |#1|))) 61)) (-2014 (((-606 |#2|)) 59)) (-2122 (((-1200 |#2|) (-1200 |#2|)) 84 (|has| |#1| (-291))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3677 ((-731) |#2|)) (-15 -1829 ((-731) |#2|)) (-15 -3734 ((-731) |#2|)) (-15 -3132 ((-731) |#2|)) (-15 -1650 ((-731) |#2|)) (-15 -1508 ((-606 |#2|))) (-15 -1360 ((-606 |#2|) |#2|)) (-15 -2145 ((-606 |#2|) |#2|)) (-15 -2102 ((-606 |#2|))) (-15 -2596 ((-606 |#2|))) (-15 -1708 ((-606 |#2|))) (-15 -2034 ((-606 |#2|))) (-15 -2014 ((-606 |#2|))) (-15 -2796 ((-606 (-649 |#1|)))) (-15 -1236 ((-606 (-649 |#1|)))) (-15 -3691 ((-606 (-649 |#1|)))) (-15 -3666 ((-606 |#2|))) (IF (|has| |#1| (-291)) (-15 -2122 ((-1200 |#2|) (-1200 |#2|))) |%noBranch|)) (-529) (-401 |#1|)) (T -42)) -((-2122 (*1 *2 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-401 *3)) (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-42 *3 *4)))) (-3666 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-3691 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1236 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2796 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2014 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2034 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1708 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2596 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2102 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1360 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1508 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1650 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4))))) -(-10 -7 (-15 -3677 ((-731) |#2|)) (-15 -1829 ((-731) |#2|)) (-15 -3734 ((-731) |#2|)) (-15 -3132 ((-731) |#2|)) (-15 -1650 ((-731) |#2|)) (-15 -1508 ((-606 |#2|))) (-15 -1360 ((-606 |#2|) |#2|)) (-15 -2145 ((-606 |#2|) |#2|)) (-15 -2102 ((-606 |#2|))) (-15 -2596 ((-606 |#2|))) (-15 -1708 ((-606 |#2|))) (-15 -2034 ((-606 |#2|))) (-15 -2014 ((-606 |#2|))) (-15 -2796 ((-606 (-649 |#1|)))) (-15 -1236 ((-606 (-649 |#1|)))) (-15 -3691 ((-606 (-649 |#1|)))) (-15 -3666 ((-606 |#2|))) (IF (|has| |#1| (-291)) (-15 -2122 ((-1200 |#2|) (-1200 |#2|))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) NIL) (((-1200 (-649 |#1|))) 24)) (-2568 (((-1200 $)) 51)) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-2624 ((|#1| $) NIL)) (-4246 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| |#1| (-529)))) (-1899 (((-1113 (-905 |#1|))) NIL (|has| |#1| (-347)))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL)) (-3112 (((-1113 |#1|) $) NIL (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-1889 (((-1113 |#1|) $) NIL)) (-1855 (((-111)) 87)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) NIL)) (-3490 (((-3 $ "failed") $) 14 (|has| |#1| (-529)))) (-3705 (((-874)) 52)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) 89)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-4217 ((|#1| $) NIL)) (-3486 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| |#1| (-529)))) (-4096 (((-1113 (-905 |#1|))) NIL (|has| |#1| (-347)))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL)) (-2818 (((-1113 |#1|) $) NIL (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-4207 (((-1113 |#1|) $) NIL)) (-2987 (((-111)) 86)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) 93)) (-2077 (((-111)) 92)) (-2415 (((-111)) 94)) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) 88)) (-1922 ((|#1| $ (-537)) 54)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) 28) (((-649 |#1|) (-1200 $)) NIL)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) NIL) (((-606 (-905 |#1|))) NIL)) (-1674 (($ $ $) NIL)) (-3365 (((-111)) 84)) (-2341 (((-816) $) 69) (($ (-1200 |#1|)) 22)) (-2122 (((-1200 $)) 45)) (-3678 (((-606 (-1200 |#1|))) NIL (|has| |#1| (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) 82)) (-3127 (($ (-649 |#1|) $) 18)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) 85)) (-3530 (((-111)) 83)) (-1972 (((-111)) 81)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1084 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-401 |#1|) (-609 (-1084 |#2| |#1|)) (-10 -8 (-15 -2341 ($ (-1200 |#1|))))) (-347) (-874) (-606 (-1117)) (-1200 (-649 |#1|))) (T -43)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-14 *6 (-1200 (-649 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117)))))) -(-13 (-401 |#1|) (-609 (-1084 |#2| |#1|)) (-10 -8 (-15 -2341 ($ (-1200 |#1|))))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3619 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1658 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-4199 (($ $) NIL)) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301))) (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1543 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))))) (-1566 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-3650 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 27 (|has| $ (-6 -4301)))) (-2236 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1988 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 29 (|has| $ (-6 -4301)))) (-2476 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-1167 (-537)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1647 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-2859 (((-3 |#2| "failed") |#1| $) 37)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $ (-731)) NIL) (($ $) 24)) (-1376 (($ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 18 (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 18 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3157 (($ (-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807))) (((-537) $) 32 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1646 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1470 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807))) (((-537) $) 34 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-1285 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) 42 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2375 (($ $ (-731)) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1688 (((-606 |#1|) $) 20)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-4049 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 |#1|) $) NIL) (((-606 (-537)) $) NIL)) (-1641 (((-111) |#1| $) NIL) (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807))) (($ $ (-731)) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 23)) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3010 (((-606 |#2|) $) NIL) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 17)) (-2193 (((-111) $) 16)) (-3425 (($) 13)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first") NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value") NIL)) (-2364 (((-537) $ $) NIL)) (-1341 (($) 12) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-3282 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-3115 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (($ $ $) NIL)) (-3434 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (($ (-606 $)) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 25) (($ $ $) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2381 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") |#1| $) 44)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2282 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2258 (((-731) $) 22 (|has| $ (-6 -4300))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1045) (-1045)) (T -44)) +((-4274 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163))))) +(-13 (-1004) (-682 |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3737 (((-390 |#1|) |#1|) 41)) (-4051 (((-390 |#1|) |#1|) 30) (((-390 |#1|) |#1| (-607 (-47))) 33)) (-1247 (((-111) |#1|) 56))) +(((-38 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1| (-607 (-47)))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3737 ((-390 |#1|) |#1|)) (-15 -1247 ((-111) |#1|))) (-1181 (-47))) (T -38)) +((-1247 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-3737 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47)))))) +(-10 -7 (-15 -4051 ((-390 |#1|) |#1| (-607 (-47)))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3737 ((-390 |#1|) |#1|)) (-15 -1247 ((-111) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| (-392 |#2|) (-348)))) (-2151 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) NIL) (((-653 (-392 |#2|))) NIL)) (-3649 (((-392 |#2|) $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) NIL (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) NIL)) (-1752 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) NIL)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) NIL) (($ (-1205 (-392 |#2|))) 57) (($ (-1205 |#2|) |#2|) 125)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) NIL) (((-653 (-392 |#2|)) (-653 $)) NIL)) (-1744 (((-1205 $) (-1205 $)) NIL)) (-4161 (($ |#3|) NIL) (((-3 $ "failed") (-392 |#3|)) NIL (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-1731 (((-607 (-607 |#1|))) NIL (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) NIL)) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) NIL)) (-1750 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-2860 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-392 |#2|) (-348)))) (-3817 (($ $) NIL)) (-3133 (($) NIL (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) NIL (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) NIL (|has| (-392 |#2|) (-335))) (($ $) NIL (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) NIL (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) NIL (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) NIL)) (-3696 (((-735)) NIL)) (-1745 (((-1205 $) (-1205 $)) 102)) (-3429 (((-392 |#2|) $) NIL)) (-1732 (((-607 (-905 |#1|)) (-1123)) NIL (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) NIL (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) NIL (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) NIL)) (-1248 (((-1211) (-735)) 79)) (-1740 (((-653 (-392 |#2|))) 51)) (-1742 (((-653 (-392 |#2|))) 44)) (-2703 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 126)) (-1741 (((-653 (-392 |#2|))) 45)) (-1743 (((-653 (-392 |#2|))) 43)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 64)) (-1749 (((-1205 $)) 42)) (-4237 (((-1205 $)) 41)) (-1748 (((-111) $) NIL)) (-1747 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3764 (($) NIL (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| #3="failed")) NIL)) (-3555 (((-1070) $) NIL)) (-1758 (((-735)) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) NIL (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) NIL)) (-1735 (((-3 |#2| #3#)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) NIL) (((-392 |#2|)) 39)) (-1863 (((-735) $) NIL (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) NIL (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 50)) (-1766 (($) NIL (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 |#2|)) $) 58) (((-653 (-392 |#2|)) (-1205 $)) 103)) (-4287 (((-1205 (-392 |#2|)) $) NIL) (($ (-1205 (-392 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 |#2|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) NIL (|has| (-392 |#2|) (-348)))) (-3002 (($ $) NIL (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) NIL)) (-3423 (((-735)) NIL)) (-1755 (((-111)) 37)) (-1754 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2104 (((-1205 $)) 93)) (-2150 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1757 (((-111)) NIL)) (-2957 (($) 16 T CONST)) (-2964 (($) 26 T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 |#2|)) NIL) (($ (-392 |#2|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) NIL (|has| (-392 |#2|) (-348))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-327 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-1211) (-735))))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) |#3|) (T -39)) +((-1248 (*1 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *2 (-1211)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1181 (-392 *5))) (-14 *7 *6)))) +(-13 (-327 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-1211) (-735))))) +((-1249 ((|#2| |#2|) 48)) (-1254 ((|#2| |#2|) 120 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1253 ((|#2| |#2|) 87 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1252 ((|#2| |#2|) 88 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1255 ((|#2| (-112) |#2| (-735)) 116 (-12 (|has| |#2| (-406 |#1|)) (|has| |#1| (-436)) (|has| |#1| (-811)) (|has| |#1| (-995 (-526)))))) (-1251 (((-1117 |#2|) |#2|) 45)) (-1250 ((|#2| |#2| (-607 (-581 |#2|))) 18) ((|#2| |#2| (-607 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-40 |#1| |#2|) (-10 -7 (-15 -1249 (|#2| |#2|)) (-15 -1250 (|#2| |#2|)) (-15 -1250 (|#2| |#2| |#2|)) (-15 -1250 (|#2| |#2| (-607 |#2|))) (-15 -1250 (|#2| |#2| (-607 (-581 |#2|)))) (-15 -1251 ((-1117 |#2|) |#2|)) (IF (|has| |#1| (-811)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-995 (-526))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -1255 (|#2| (-112) |#2| (-735)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-533) (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 |#1| (-581 $)) $)) (-15 -3297 ((-1075 |#1| (-581 $)) $)) (-15 -4274 ($ (-1075 |#1| (-581 $))))))) (T -40)) +((-1255 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-735)) (-4 *5 (-436)) (-4 *5 (-811)) (-4 *5 (-995 (-526))) (-4 *5 (-533)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *5 (-581 $)) $)) (-15 -3297 ((-1075 *5 (-581 $)) $)) (-15 -4274 ($ (-1075 *5 (-581 $))))))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1251 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-1117 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))))) (-1250 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-581 *2))) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))) (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) (-1250 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) (-15 -3297 ((-1075 *4 (-581 $)) $)) (-15 -4274 ($ (-1075 *4 (-581 $))))))) (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) (-1250 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1250 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $))))))))) (-1249 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-348) (-283) (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) (-15 -3297 ((-1075 *3 (-581 $)) $)) (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) +(-10 -7 (-15 -1249 (|#2| |#2|)) (-15 -1250 (|#2| |#2|)) (-15 -1250 (|#2| |#2| |#2|)) (-15 -1250 (|#2| |#2| (-607 |#2|))) (-15 -1250 (|#2| |#2| (-607 (-581 |#2|)))) (-15 -1251 ((-1117 |#2|) |#2|)) (IF (|has| |#1| (-811)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-995 (-526))) (IF (|has| |#2| (-406 |#1|)) (PROGN (-15 -1252 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -1255 (|#2| (-112) |#2| (-735)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4051 (((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))) 23) (((-390 |#3|) |#3| (-607 (-47))) 19))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3| (-607 (-47)))) (-15 -4051 ((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))))) (-811) (-757) (-909 (-47) |#2| |#1|)) (T -41)) +((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *7 (-909 (-47) *6 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-909 (-47) *6 *5))))) +(-10 -7 (-15 -4051 ((-390 |#3|) |#3| (-607 (-47)))) (-15 -4051 ((-390 (-1117 |#3|)) (-1117 |#3|) (-607 (-47))))) +((-1259 (((-735) |#2|) 65)) (-1257 (((-735) |#2|) 68)) (-1272 (((-607 |#2|)) 33)) (-1256 (((-735) |#2|) 67)) (-1258 (((-735) |#2|) 64)) (-1260 (((-735) |#2|) 66)) (-1270 (((-607 (-653 |#1|))) 60)) (-1265 (((-607 |#2|)) 55)) (-1263 (((-607 |#2|) |#2|) 43)) (-1267 (((-607 |#2|)) 57)) (-1266 (((-607 |#2|)) 56)) (-1269 (((-607 (-653 |#1|))) 48)) (-1264 (((-607 |#2|)) 54)) (-1262 (((-607 |#2|) |#2|) 42)) (-1261 (((-607 |#2|)) 50)) (-1271 (((-607 (-653 |#1|))) 61)) (-1268 (((-607 |#2|)) 59)) (-2104 (((-1205 |#2|) (-1205 |#2|)) 84 (|has| |#1| (-292))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -1256 ((-735) |#2|)) (-15 -1257 ((-735) |#2|)) (-15 -1258 ((-735) |#2|)) (-15 -1259 ((-735) |#2|)) (-15 -1260 ((-735) |#2|)) (-15 -1261 ((-607 |#2|))) (-15 -1262 ((-607 |#2|) |#2|)) (-15 -1263 ((-607 |#2|) |#2|)) (-15 -1264 ((-607 |#2|))) (-15 -1265 ((-607 |#2|))) (-15 -1266 ((-607 |#2|))) (-15 -1267 ((-607 |#2|))) (-15 -1268 ((-607 |#2|))) (-15 -1269 ((-607 (-653 |#1|)))) (-15 -1270 ((-607 (-653 |#1|)))) (-15 -1271 ((-607 (-653 |#1|)))) (-15 -1272 ((-607 |#2|))) (IF (|has| |#1| (-292)) (-15 -2104 ((-1205 |#2|) (-1205 |#2|))) |%noBranch|)) (-533) (-403 |#1|)) (T -42)) +((-2104 (*1 *2 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-403 *3)) (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-42 *3 *4)))) (-1272 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1271 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1270 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1269 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1268 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1267 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1266 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1265 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1264 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1263 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1262 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1261 (*1 *2) (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1258 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4)))) (-1256 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) +(-10 -7 (-15 -1256 ((-735) |#2|)) (-15 -1257 ((-735) |#2|)) (-15 -1258 ((-735) |#2|)) (-15 -1259 ((-735) |#2|)) (-15 -1260 ((-735) |#2|)) (-15 -1261 ((-607 |#2|))) (-15 -1262 ((-607 |#2|) |#2|)) (-15 -1263 ((-607 |#2|) |#2|)) (-15 -1264 ((-607 |#2|))) (-15 -1265 ((-607 |#2|))) (-15 -1266 ((-607 |#2|))) (-15 -1267 ((-607 |#2|))) (-15 -1268 ((-607 |#2|))) (-15 -1269 ((-607 (-653 |#1|)))) (-15 -1270 ((-607 (-653 |#1|)))) (-15 -1271 ((-607 (-653 |#1|)))) (-15 -1272 ((-607 |#2|))) (IF (|has| |#1| (-292)) (-15 -2104 ((-1205 |#2|) (-1205 |#2|))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) NIL) (((-1205 (-653 |#1|))) 24)) (-1821 (((-1205 $)) 51)) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#1| (-533)))) (-1795 (((-3 $ #1#)) NIL (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-1819 ((|#1| $) NIL)) (-1881 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| |#1| (-533)))) (-1998 (((-1117 (-905 |#1|))) NIL (|has| |#1| (-348)))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL)) (-1797 (((-1117 |#1|) $) NIL (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1815 (((-1117 |#1|) $) NIL)) (-1809 (((-111)) 87)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) NIL)) (-3781 (((-3 $ #1#) $) 14 (|has| |#1| (-533)))) (-3406 (((-878)) 52)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) 89)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#1| (-533)))) (-1796 (((-3 $ #1#)) NIL (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-1820 ((|#1| $) NIL)) (-1882 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| |#1| (-533)))) (-2002 (((-1117 (-905 |#1|))) NIL (|has| |#1| (-348)))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL)) (-1798 (((-1117 |#1|) $) NIL (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1816 (((-1117 |#1|) $) NIL)) (-1810 (((-111)) 86)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) 93)) (-1803 (((-111)) 92)) (-1805 (((-111)) 94)) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) 88)) (-4118 ((|#1| $ (-526)) 54)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) 28) (((-653 |#1|) (-1205 $)) NIL)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) NIL) (((-607 (-905 |#1|))) NIL)) (-2655 (($ $ $) NIL)) (-1814 (((-111)) 84)) (-4274 (((-823) $) 69) (($ (-1205 |#1|)) 22)) (-2104 (((-1205 $)) 45)) (-1799 (((-607 (-1205 |#1|))) NIL (|has| |#1| (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) 82)) (-2849 (($ (-653 |#1|) $) 18)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) 85)) (-1811 (((-111)) 83)) (-1807 (((-111)) 81)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1090 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-403 |#1|) (-613 (-1090 |#2| |#1|)) (-10 -8 (-15 -4274 ($ (-1205 |#1|))))) (-348) (-878) (-607 (-1123)) (-1205 (-653 |#1|))) (T -43)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-14 *6 (-1205 (-653 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123)))))) +(-13 (-403 |#1|) (-613 (-1090 |#2| |#1|)) (-10 -8 (-15 -4274 ($ (-1205 |#1|))))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3721 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-4113 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-4115 (($ $) NIL)) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311))) (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1822 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811))))) (-3209 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-3325 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 27 (|has| $ (-6 -4311)))) (-4104 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-4107 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 29 (|has| $ (-6 -4311)))) (-4106 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-1172 (-526)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1="last" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3="first" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4="value" (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4114 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2285 (((-3 |#2| #5="failed") |#1| $) 37)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $ (-735)) NIL) (($ $) 24)) (-2424 (($ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) (((-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 18 (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 18 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-3936 (($ (-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811))) (((-526) $) 32 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3159 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3832 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811))) (((-526) $) 34 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-3856 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) 42 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4116 (($ $ (-735)) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2713 (((-607 |#1|) $) 20)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2351 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 |#1|) $) NIL) (((-607 (-526)) $) NIL)) (-2282 (((-111) |#1| $) NIL) (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811))) (($ $ (-735)) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 23)) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6="failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) #6#) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2283 (((-607 |#2|) $) NIL) (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 17)) (-3722 (((-111) $) 16)) (-3887 (($) 13)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #3#) NIL) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $ #4#) NIL)) (-3329 (((-526) $ $) NIL)) (-1499 (($) 12) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-1608 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4109 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (($ $ $) NIL)) (-4120 (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL) (($ (-607 $)) NIL) (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 25) (($ $ $) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-1246 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") |#1| $) 44)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2984 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-811)))) (-4273 (((-735) $) 22 (|has| $ (-6 -4310))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1052) (-1052)) (T -44)) NIL (-35 |#1| |#2|) -((-1538 (((-111) $) 12)) (-1612 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-391 (-537)) $) 25) (($ $ (-391 (-537))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -1538 ((-111) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-46 |#2| |#3|) (-998) (-752)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -1538 ((-111) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-46 |#1| |#2|) (-134) (-998) (-752)) (T -46)) -((-3912 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-111)))) (-3733 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-347))))) -(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (-15 -3912 (|t#1| $)) (-15 -3901 ($ $)) (-15 -2872 (|t#2| $)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -1538 ((-111) $)) (-15 -3733 ($ |t#1| |t#2|)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-6 (-163)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-529)) (-6 (-529)) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (-6 (-37 (-391 (-537)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-2652 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1656 (((-111) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3852 (((-606 (-578 $)) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1974 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-4190 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-537) $) NIL) (((-391 (-537)) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-391 (-537)))) (|:| |vec| (-1200 (-391 (-537))))) (-649 $) (-1200 $)) NIL) (((-649 (-391 (-537))) (-649 $)) NIL)) (-3195 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) 14)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-3301 (((-1069 (-537) (-578 $)) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (((-1113 $) (-1113 $) (-578 $)) NIL) (((-1113 $) (-1113 $) (-606 (-578 $))) NIL) (($ $ (-578 $)) NIL) (($ $ (-606 (-578 $))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2040 (((-1113 $) (-578 $)) NIL (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-3865 (($ $) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1930 (((-731) $) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3315 (((-1069 (-537) (-578 $)) $) NIL)) (-2529 (($ $) NIL (|has| $ (-998)))) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-160 (-363)) $) NIL)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-1069 (-537) (-578 $))) NIL)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 7 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 16)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $ $) 15) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-391 (-537))) NIL) (($ $ (-537)) NIL) (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) -(((-47) (-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $))))))) (T -47)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3195 (*1 *1 *1) (-5 *1 (-47))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-578 (-47))) (-5 *1 (-47)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-606 (-578 (-47)))) (-5 *1 (-47)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-47))) (-5 *1 (-47)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-47)))) (-5 *1 (-47))))) -(-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $)))))) -((-2330 (((-111) $ $) NIL)) (-1520 (((-606 (-1117)) $) 17)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-3936 (((-1122) $) 18)) (-2244 (((-111) $ $) NIL))) -(((-48) (-13 (-1045) (-10 -8 (-15 -1520 ((-606 (-1117)) $)) (-15 -3936 ((-1122) $))))) (T -48)) -((-1520 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-48)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-48))))) -(-13 (-1045) (-10 -8 (-15 -1520 ((-606 (-1117)) $)) (-15 -3936 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 61)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2615 (((-111) $) 20)) (-1516 (((-3 |#1| "failed") $) 23)) (-3958 ((|#1| $) 24)) (-3940 (($ $) 28)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3912 ((|#1| $) 21)) (-2695 (($ $) 50)) (-1654 (((-1100) $) NIL)) (-1611 (((-111) $) 30)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) 48)) (-4185 (($ (-606 (-537))) 49)) (-2872 (((-731) $) 31)) (-2341 (((-816) $) 64) (($ (-537)) 45) (($ |#1|) 43)) (-3500 ((|#1| $ $) 19)) (-3654 (((-731)) 47)) (-2928 (($) 32 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-583 |#1|) (-989 |#1|) (-10 -8 (-15 -3912 (|#1| $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 (|#1| $ $)) (-15 -1524 ($ (-731))) (-15 -4185 ($ (-606 (-537)))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-731) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)))) (-998) (-606 (-1117))) (T -49)) -((-3912 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) (-2695 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) (-3500 (*1 *2 *1 *1) (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-49 *3 *4)) (-14 *4 (-606 (-1117)))))) -(-13 (-583 |#1|) (-989 |#1|) (-10 -8 (-15 -3912 (|#1| $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 (|#1| $ $)) (-15 -1524 ($ (-731))) (-15 -4185 ($ (-606 (-537)))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-731) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)))) -((-2615 (((-111) (-51)) 13)) (-1516 (((-3 |#1| "failed") (-51)) 21)) (-3958 ((|#1| (-51)) 22)) (-2341 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -2341 ((-51) |#1|)) (-15 -1516 ((-3 |#1| "failed") (-51))) (-15 -2615 ((-111) (-51))) (-15 -3958 (|#1| (-51)))) (-1154)) (T -50)) -((-3958 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-111)) (-5 *1 (-50 *4)) (-4 *4 (-1154)))) (-1516 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1154))))) -(-10 -7 (-15 -2341 ((-51) |#1|)) (-15 -1516 ((-3 |#1| "failed") (-51))) (-15 -2615 ((-111) (-51))) (-15 -3958 (|#1| (-51)))) -((-2330 (((-111) $ $) NIL)) (-3011 (((-1100) (-111)) 25)) (-1404 (((-816) $) 24)) (-3833 (((-734) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2248 (((-816) $) 16)) (-1260 (((-1049) $) 14)) (-2341 (((-816) $) 32)) (-3639 (($ (-1049) (-734)) 33)) (-2244 (((-111) $ $) 18))) -(((-51) (-13 (-1045) (-10 -8 (-15 -3639 ($ (-1049) (-734))) (-15 -2248 ((-816) $)) (-15 -1404 ((-816) $)) (-15 -1260 ((-1049) $)) (-15 -3833 ((-734) $)) (-15 -3011 ((-1100) (-111)))))) (T -51)) -((-3639 (*1 *1 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-734)) (-5 *1 (-51)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-51)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-734)) (-5 *1 (-51)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1100)) (-5 *1 (-51))))) -(-13 (-1045) (-10 -8 (-15 -3639 ($ (-1049) (-734))) (-15 -2248 ((-816) $)) (-15 -1404 ((-816) $)) (-15 -1260 ((-1049) $)) (-15 -3833 ((-734) $)) (-15 -3011 ((-1100) (-111))))) -((-3127 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -3127 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-998) (-609 |#1|) (-809 |#1|)) (T -52)) -((-3127 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-609 *5)) (-4 *5 (-998)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-809 *5))))) -(-10 -7 (-15 -3127 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1850 ((|#3| |#3| (-606 (-1117))) 35)) (-2365 ((|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874)) 22) ((|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|)) (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874))) (-15 -1850 (|#3| |#3| (-606 (-1117))))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -53)) -((-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2365 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-606 (-1021 *5 *6 *2))) (-5 *4 (-874)) (-4 *5 (-1045)) (-4 *6 (-13 (-998) (-839 *5) (-807) (-580 (-845 *5)))) (-4 *2 (-13 (-414 *6) (-839 *5) (-580 (-845 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2365 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-1021 *4 *5 *2))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|)) (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874))) (-15 -1850 (|#3| |#3| (-606 (-1117))))) -((-2506 (((-111) $ (-731)) 23)) (-2720 (($ $ (-537) |#3|) 46)) (-2573 (($ $ (-537) |#4|) 50)) (-2964 ((|#3| $ (-537)) 59)) (-3661 (((-606 |#2|) $) 30)) (-1642 (((-111) $ (-731)) 25)) (-3122 (((-111) |#2| $) 54)) (-4081 (($ (-1 |#2| |#2|) $) 37)) (-1612 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2489 (((-111) $ (-731)) 24)) (-3040 (($ $ |#2|) 34)) (-3206 (((-111) (-1 (-111) |#2|) $) 19)) (-1922 ((|#2| $ (-537) (-537)) NIL) ((|#2| $ (-537) (-537) |#2|) 27)) (-2539 (((-731) (-1 (-111) |#2|) $) 28) (((-731) |#2| $) 56)) (-2494 (($ $) 33)) (-2198 ((|#4| $ (-537)) 62)) (-2341 (((-816) $) 68)) (-2030 (((-111) (-1 (-111) |#2|) $) 18)) (-2244 (((-111) $ $) 53)) (-2258 (((-731) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1| (-537) |#4|)) (-15 -2720 (|#1| |#1| (-537) |#3|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2198 (|#4| |#1| (-537))) (-15 -2964 (|#3| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2494 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1154) (-357 |#2|) (-357 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1| (-537) |#4|)) (-15 -2720 (|#1| |#1| (-537) |#3|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2198 (|#4| |#1| (-537))) (-15 -2964 (|#3| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2494 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) (-537) |#1|) 44)) (-2720 (($ $ (-537) |#2|) 42)) (-2573 (($ $ (-537) |#3|) 41)) (-3832 (($) 7 T CONST)) (-2964 ((|#2| $ (-537)) 46)) (-4091 ((|#1| $ (-537) (-537) |#1|) 43)) (-4030 ((|#1| $ (-537) (-537)) 48)) (-3661 (((-606 |#1|) $) 30)) (-2931 (((-731) $) 51)) (-3157 (($ (-731) (-731) |#1|) 57)) (-2945 (((-731) $) 50)) (-1642 (((-111) $ (-731)) 9)) (-4111 (((-537) $) 55)) (-2454 (((-537) $) 53)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 54)) (-2485 (((-537) $) 52)) (-4081 (($ (-1 |#1| |#1|) $) 34)) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) 56)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) (-537)) 49) ((|#1| $ (-537) (-537) |#1|) 47)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2198 ((|#3| $ (-537)) 45)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-55 |#1| |#2| |#3|) (-134) (-1154) (-357 |t#1|) (-357 |t#1|)) (T -55)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3157 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-731)) (-4 *3 (-1154)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1154)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-731)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-731)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1154)))) (-4030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-606 *3)))) (-2476 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-4091 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1154)) (-4 *3 (-357 *4)) (-4 *5 (-357 *4)))) (-2573 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *3 (-357 *4)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1612 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(-13 (-471 |t#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -3157 ($ (-731) (-731) |t#1|)) (-15 -3040 ($ $ |t#1|)) (-15 -4111 ((-537) $)) (-15 -3126 ((-537) $)) (-15 -2454 ((-537) $)) (-15 -2485 ((-537) $)) (-15 -2931 ((-731) $)) (-15 -2945 ((-731) $)) (-15 -1922 (|t#1| $ (-537) (-537))) (-15 -4030 (|t#1| $ (-537) (-537))) (-15 -1922 (|t#1| $ (-537) (-537) |t#1|)) (-15 -2964 (|t#2| $ (-537))) (-15 -2198 (|t#3| $ (-537))) (-15 -3661 ((-606 |t#1|) $)) (-15 -2476 (|t#1| $ (-537) (-537) |t#1|)) (-15 -4091 (|t#1| $ (-537) (-537) |t#1|)) (-15 -2720 ($ $ (-537) |t#2|)) (-15 -2573 ($ $ (-537) |t#3|)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -4081 ($ (-1 |t#1| |t#1|) $)) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2547 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1612 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -2547 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1154) (-1154)) (T -56)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-56 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -2547 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 11 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3813 (($ (-606 |#1|)) 13) (($ (-731) |#1|) 14)) (-3157 (($ (-731) |#1|) 9)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 7)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3813 ($ (-606 |#1|))) (-15 -3813 ($ (-731) |#1|)))) (-1154)) (T -57)) -((-3813 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-57 *3)))) (-3813 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-57 *3)) (-4 *3 (-1154))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3813 ($ (-606 |#1|))) (-15 -3813 ($ (-731) |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL)) (-2720 (($ $ (-537) (-57 |#1|)) NIL)) (-2573 (($ $ (-537) (-57 |#1|)) NIL)) (-3832 (($) NIL T CONST)) (-2964 (((-57 |#1|) $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-57 |#1|) $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4301))) (-1154)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4301))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 74) (((-3 $ "failed") (-1200 (-300 (-537)))) 63) (((-3 $ "failed") (-1200 (-905 (-363)))) 94) (((-3 $ "failed") (-1200 (-905 (-537)))) 84) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 52) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 39)) (-3958 (($ (-1200 (-300 (-363)))) 70) (($ (-1200 (-300 (-537)))) 59) (($ (-1200 (-905 (-363)))) 90) (($ (-1200 (-905 (-537)))) 80) (($ (-1200 (-391 (-905 (-363))))) 48) (($ (-1200 (-391 (-905 (-537))))) 32)) (-3322 (((-1205) $) 120)) (-2341 (((-816) $) 113) (($ (-606 (-314))) 103) (($ (-314)) 97) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 101) (($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659)))) 31))) -(((-59 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659))))))) (-1117)) (T -59)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659)))) (-5 *1 (-59 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659))))))) -((-3322 (((-1205) $) 53) (((-1205)) 54)) (-2341 (((-816) $) 50))) -(((-60 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -60)) -((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-60 *3)) (-14 *3 (-1117))))) -(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 144) (((-3 $ "failed") (-1200 (-300 (-537)))) 134) (((-3 $ "failed") (-1200 (-905 (-363)))) 164) (((-3 $ "failed") (-1200 (-905 (-537)))) 154) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 123) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 111)) (-3958 (($ (-1200 (-300 (-363)))) 140) (($ (-1200 (-300 (-537)))) 130) (($ (-1200 (-905 (-363)))) 160) (($ (-1200 (-905 (-537)))) 150) (($ (-1200 (-391 (-905 (-363))))) 119) (($ (-1200 (-391 (-905 (-537))))) 104)) (-3322 (((-1205) $) 97)) (-2341 (((-816) $) 91) (($ (-606 (-314))) 29) (($ (-314)) 34) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 32) (($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) 89))) -(((-61 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) (-1117)) (T -61)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) (-5 *1 (-61 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) -((-1516 (((-3 $ "failed") (-300 (-363))) 41) (((-3 $ "failed") (-300 (-537))) 46) (((-3 $ "failed") (-905 (-363))) 50) (((-3 $ "failed") (-905 (-537))) 54) (((-3 $ "failed") (-391 (-905 (-363)))) 36) (((-3 $ "failed") (-391 (-905 (-537)))) 29)) (-3958 (($ (-300 (-363))) 39) (($ (-300 (-537))) 44) (($ (-905 (-363))) 48) (($ (-905 (-537))) 52) (($ (-391 (-905 (-363)))) 34) (($ (-391 (-905 (-537)))) 26)) (-3322 (((-1205) $) 76)) (-2341 (((-816) $) 69) (($ (-606 (-314))) 61) (($ (-314)) 66) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 64) (($ (-323 (-2350 (QUOTE X)) (-2350) (-659))) 25))) -(((-62 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350) (-659)))))) (-1117)) (T -62)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350 (QUOTE X)) (-2350) (-659))) (-5 *1 (-62 *3)) (-14 *3 (-1117))))) -(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350) (-659)))))) -((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 109) (((-3 $ "failed") (-649 (-300 (-537)))) 97) (((-3 $ "failed") (-649 (-905 (-363)))) 131) (((-3 $ "failed") (-649 (-905 (-537)))) 120) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 85) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 71)) (-3958 (($ (-649 (-300 (-363)))) 105) (($ (-649 (-300 (-537)))) 93) (($ (-649 (-905 (-363)))) 127) (($ (-649 (-905 (-537)))) 116) (($ (-649 (-391 (-905 (-363))))) 81) (($ (-649 (-391 (-905 (-537))))) 64)) (-3322 (((-1205) $) 139)) (-2341 (((-816) $) 133) (($ (-606 (-314))) 28) (($ (-314)) 33) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 31) (($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659)))) 54))) -(((-63 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659))))))) (-1117)) (T -63)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659)))) (-5 *1 (-63 *3)) (-14 *3 (-1117))))) -(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659))))))) -((-1516 (((-3 $ "failed") (-300 (-363))) 59) (((-3 $ "failed") (-300 (-537))) 64) (((-3 $ "failed") (-905 (-363))) 68) (((-3 $ "failed") (-905 (-537))) 72) (((-3 $ "failed") (-391 (-905 (-363)))) 54) (((-3 $ "failed") (-391 (-905 (-537)))) 47)) (-3958 (($ (-300 (-363))) 57) (($ (-300 (-537))) 62) (($ (-905 (-363))) 66) (($ (-905 (-537))) 70) (($ (-391 (-905 (-363)))) 52) (($ (-391 (-905 (-537)))) 44)) (-3322 (((-1205) $) 81)) (-2341 (((-816) $) 75) (($ (-606 (-314))) 28) (($ (-314)) 33) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 31) (($ (-323 (-2350) (-2350 (QUOTE XC)) (-659))) 39))) -(((-64 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE XC)) (-659)))))) (-1117)) (T -64)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE XC)) (-659))) (-5 *1 (-64 *3)) (-14 *3 (-1117))))) -(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE XC)) (-659)))))) -((-3322 (((-1205) $) 63)) (-2341 (((-816) $) 57) (($ (-649 (-659))) 49) (($ (-606 (-314))) 48) (($ (-314)) 55) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 53))) -(((-65 |#1|) (-367) (-1117)) (T -65)) -NIL -(-367) -((-3322 (((-1205) $) 64)) (-2341 (((-816) $) 58) (($ (-649 (-659))) 50) (($ (-606 (-314))) 49) (($ (-314)) 52) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 55))) -(((-66 |#1|) (-367) (-1117)) (T -66)) -NIL -(-367) -((-3322 (((-1205) $) NIL) (((-1205)) 32)) (-2341 (((-816) $) NIL))) -(((-67 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -67)) -((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-67 *3)) (-14 *3 (-1117))))) -(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) -((-3322 (((-1205) $) 73)) (-2341 (((-816) $) 67) (($ (-649 (-659))) 59) (($ (-606 (-314))) 61) (($ (-314)) 64) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 58))) -(((-68 |#1|) (-367) (-1117)) (T -68)) -NIL -(-367) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 103) (((-3 $ "failed") (-1200 (-300 (-537)))) 92) (((-3 $ "failed") (-1200 (-905 (-363)))) 123) (((-3 $ "failed") (-1200 (-905 (-537)))) 113) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 81) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 68)) (-3958 (($ (-1200 (-300 (-363)))) 99) (($ (-1200 (-300 (-537)))) 88) (($ (-1200 (-905 (-363)))) 119) (($ (-1200 (-905 (-537)))) 109) (($ (-1200 (-391 (-905 (-363))))) 77) (($ (-1200 (-391 (-905 (-537))))) 61)) (-3322 (((-1205) $) 136)) (-2341 (((-816) $) 130) (($ (-606 (-314))) 125) (($ (-314)) 128) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 53) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) 54))) -(((-69 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) (-1117)) (T -69)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-69 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) -((-3322 (((-1205) $) 32) (((-1205)) 31)) (-2341 (((-816) $) 35))) -(((-70 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -70)) -((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-70 *3)) (-14 *3 (-1117))))) -(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) -((-3322 (((-1205) $) 63)) (-2341 (((-816) $) 57) (($ (-649 (-659))) 49) (($ (-606 (-314))) 51) (($ (-314)) 54) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 48))) -(((-71 |#1|) (-367) (-1117)) (T -71)) -NIL -(-367) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 125) (((-3 $ "failed") (-1200 (-300 (-537)))) 115) (((-3 $ "failed") (-1200 (-905 (-363)))) 145) (((-3 $ "failed") (-1200 (-905 (-537)))) 135) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 105) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 93)) (-3958 (($ (-1200 (-300 (-363)))) 121) (($ (-1200 (-300 (-537)))) 111) (($ (-1200 (-905 (-363)))) 141) (($ (-1200 (-905 (-537)))) 131) (($ (-1200 (-391 (-905 (-363))))) 101) (($ (-1200 (-391 (-905 (-537))))) 86)) (-3322 (((-1205) $) 78)) (-2341 (((-816) $) 27) (($ (-606 (-314))) 68) (($ (-314)) 64) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 71) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 65))) -(((-72 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -72)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-72 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 130) (((-3 $ "failed") (-1200 (-300 (-537)))) 119) (((-3 $ "failed") (-1200 (-905 (-363)))) 150) (((-3 $ "failed") (-1200 (-905 (-537)))) 140) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 108) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 95)) (-3958 (($ (-1200 (-300 (-363)))) 126) (($ (-1200 (-300 (-537)))) 115) (($ (-1200 (-905 (-363)))) 146) (($ (-1200 (-905 (-537)))) 136) (($ (-1200 (-391 (-905 (-363))))) 104) (($ (-1200 (-391 (-905 (-537))))) 88)) (-3322 (((-1205) $) 79)) (-2341 (((-816) $) 71) (($ (-606 (-314))) NIL) (($ (-314)) NIL) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) NIL) (($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659)))) 66))) -(((-73 |#1| |#2| |#3|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659))))))) (-1117) (-1117) (-1117)) (T -73)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) (-14 *5 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 134) (((-3 $ "failed") (-1200 (-300 (-537)))) 123) (((-3 $ "failed") (-1200 (-905 (-363)))) 154) (((-3 $ "failed") (-1200 (-905 (-537)))) 144) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 112) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 99)) (-3958 (($ (-1200 (-300 (-363)))) 130) (($ (-1200 (-300 (-537)))) 119) (($ (-1200 (-905 (-363)))) 150) (($ (-1200 (-905 (-537)))) 140) (($ (-1200 (-391 (-905 (-363))))) 108) (($ (-1200 (-391 (-905 (-537))))) 92)) (-3322 (((-1205) $) 83)) (-2341 (((-816) $) 75) (($ (-606 (-314))) NIL) (($ (-314)) NIL) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) NIL) (($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659)))) 70))) -(((-74 |#1| |#2| |#3|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659))))))) (-1117) (-1117) (-1117)) (T -74)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) (-14 *5 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659))))))) -((-1516 (((-3 $ "failed") (-300 (-363))) 82) (((-3 $ "failed") (-300 (-537))) 87) (((-3 $ "failed") (-905 (-363))) 91) (((-3 $ "failed") (-905 (-537))) 95) (((-3 $ "failed") (-391 (-905 (-363)))) 77) (((-3 $ "failed") (-391 (-905 (-537)))) 70)) (-3958 (($ (-300 (-363))) 80) (($ (-300 (-537))) 85) (($ (-905 (-363))) 89) (($ (-905 (-537))) 93) (($ (-391 (-905 (-363)))) 75) (($ (-391 (-905 (-537)))) 67)) (-3322 (((-1205) $) 62)) (-2341 (((-816) $) 50) (($ (-606 (-314))) 46) (($ (-314)) 56) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 54) (($ (-323 (-2350) (-2350 (QUOTE X)) (-659))) 47))) -(((-75 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) (-1117)) (T -75)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE X)) (-659))) (-5 *1 (-75 *3)) (-14 *3 (-1117))))) -(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) -((-1516 (((-3 $ "failed") (-300 (-363))) 46) (((-3 $ "failed") (-300 (-537))) 51) (((-3 $ "failed") (-905 (-363))) 55) (((-3 $ "failed") (-905 (-537))) 59) (((-3 $ "failed") (-391 (-905 (-363)))) 41) (((-3 $ "failed") (-391 (-905 (-537)))) 34)) (-3958 (($ (-300 (-363))) 44) (($ (-300 (-537))) 49) (($ (-905 (-363))) 53) (($ (-905 (-537))) 57) (($ (-391 (-905 (-363)))) 39) (($ (-391 (-905 (-537)))) 31)) (-3322 (((-1205) $) 80)) (-2341 (((-816) $) 74) (($ (-606 (-314))) 66) (($ (-314)) 71) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 69) (($ (-323 (-2350) (-2350 (QUOTE X)) (-659))) 30))) -(((-76 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) (-1117)) (T -76)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE X)) (-659))) (-5 *1 (-76 *3)) (-14 *3 (-1117))))) -(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 89) (((-3 $ "failed") (-1200 (-300 (-537)))) 78) (((-3 $ "failed") (-1200 (-905 (-363)))) 109) (((-3 $ "failed") (-1200 (-905 (-537)))) 99) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 67) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 54)) (-3958 (($ (-1200 (-300 (-363)))) 85) (($ (-1200 (-300 (-537)))) 74) (($ (-1200 (-905 (-363)))) 105) (($ (-1200 (-905 (-537)))) 95) (($ (-1200 (-391 (-905 (-363))))) 63) (($ (-1200 (-391 (-905 (-537))))) 47)) (-3322 (((-1205) $) 125)) (-2341 (((-816) $) 119) (($ (-606 (-314))) 112) (($ (-314)) 37) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 115) (($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) 38))) -(((-77 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) (-1117)) (T -77)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) (-5 *1 (-77 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 142) (((-3 $ "failed") (-1200 (-300 (-537)))) 132) (((-3 $ "failed") (-1200 (-905 (-363)))) 162) (((-3 $ "failed") (-1200 (-905 (-537)))) 152) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 122) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 110)) (-3958 (($ (-1200 (-300 (-363)))) 138) (($ (-1200 (-300 (-537)))) 128) (($ (-1200 (-905 (-363)))) 158) (($ (-1200 (-905 (-537)))) 148) (($ (-1200 (-391 (-905 (-363))))) 118) (($ (-1200 (-391 (-905 (-537))))) 103)) (-3322 (((-1205) $) 96)) (-2341 (((-816) $) 90) (($ (-606 (-314))) 81) (($ (-314)) 88) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 86) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 82))) -(((-78 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -78)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-78 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 78) (((-3 $ "failed") (-1200 (-300 (-537)))) 67) (((-3 $ "failed") (-1200 (-905 (-363)))) 98) (((-3 $ "failed") (-1200 (-905 (-537)))) 88) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 56) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 43)) (-3958 (($ (-1200 (-300 (-363)))) 74) (($ (-1200 (-300 (-537)))) 63) (($ (-1200 (-905 (-363)))) 94) (($ (-1200 (-905 (-537)))) 84) (($ (-1200 (-391 (-905 (-363))))) 52) (($ (-1200 (-391 (-905 (-537))))) 36)) (-3322 (((-1205) $) 124)) (-2341 (((-816) $) 118) (($ (-606 (-314))) 109) (($ (-314)) 115) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 113) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 35))) -(((-79 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -79)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-79 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 95) (((-3 $ "failed") (-1200 (-300 (-537)))) 84) (((-3 $ "failed") (-1200 (-905 (-363)))) 115) (((-3 $ "failed") (-1200 (-905 (-537)))) 105) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 73) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 60)) (-3958 (($ (-1200 (-300 (-363)))) 91) (($ (-1200 (-300 (-537)))) 80) (($ (-1200 (-905 (-363)))) 111) (($ (-1200 (-905 (-537)))) 101) (($ (-1200 (-391 (-905 (-363))))) 69) (($ (-1200 (-391 (-905 (-537))))) 53)) (-3322 (((-1205) $) 45)) (-2341 (((-816) $) 39) (($ (-606 (-314))) 29) (($ (-314)) 32) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 35) (($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) 30))) -(((-80 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) (-1117)) (T -80)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) (-5 *1 (-80 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) -((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 115) (((-3 $ "failed") (-649 (-300 (-537)))) 104) (((-3 $ "failed") (-649 (-905 (-363)))) 137) (((-3 $ "failed") (-649 (-905 (-537)))) 126) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 93) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 80)) (-3958 (($ (-649 (-300 (-363)))) 111) (($ (-649 (-300 (-537)))) 100) (($ (-649 (-905 (-363)))) 133) (($ (-649 (-905 (-537)))) 122) (($ (-649 (-391 (-905 (-363))))) 89) (($ (-649 (-391 (-905 (-537))))) 73)) (-3322 (((-1205) $) 63)) (-2341 (((-816) $) 50) (($ (-606 (-314))) 57) (($ (-314)) 46) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 55) (($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) 47))) -(((-81 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) (-1117)) (T -81)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) (-5 *1 (-81 *3)) (-14 *3 (-1117))))) -(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) -((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 112) (((-3 $ "failed") (-649 (-300 (-537)))) 100) (((-3 $ "failed") (-649 (-905 (-363)))) 134) (((-3 $ "failed") (-649 (-905 (-537)))) 123) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 88) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 74)) (-3958 (($ (-649 (-300 (-363)))) 108) (($ (-649 (-300 (-537)))) 96) (($ (-649 (-905 (-363)))) 130) (($ (-649 (-905 (-537)))) 119) (($ (-649 (-391 (-905 (-363))))) 84) (($ (-649 (-391 (-905 (-537))))) 67)) (-3322 (((-1205) $) 59)) (-2341 (((-816) $) 53) (($ (-606 (-314))) 47) (($ (-314)) 50) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 44) (($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) 45))) -(((-82 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) (-1117)) (T -82)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) (-5 *1 (-82 *3)) (-14 *3 (-1117))))) -(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 104) (((-3 $ "failed") (-1200 (-300 (-537)))) 93) (((-3 $ "failed") (-1200 (-905 (-363)))) 124) (((-3 $ "failed") (-1200 (-905 (-537)))) 114) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 82) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 69)) (-3958 (($ (-1200 (-300 (-363)))) 100) (($ (-1200 (-300 (-537)))) 89) (($ (-1200 (-905 (-363)))) 120) (($ (-1200 (-905 (-537)))) 110) (($ (-1200 (-391 (-905 (-363))))) 78) (($ (-1200 (-391 (-905 (-537))))) 62)) (-3322 (((-1205) $) 46)) (-2341 (((-816) $) 40) (($ (-606 (-314))) 49) (($ (-314)) 36) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 52) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) 37))) -(((-83 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) (-1117)) (T -83)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) (-5 *1 (-83 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 79) (((-3 $ "failed") (-1200 (-300 (-537)))) 68) (((-3 $ "failed") (-1200 (-905 (-363)))) 99) (((-3 $ "failed") (-1200 (-905 (-537)))) 89) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 57) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 44)) (-3958 (($ (-1200 (-300 (-363)))) 75) (($ (-1200 (-300 (-537)))) 64) (($ (-1200 (-905 (-363)))) 95) (($ (-1200 (-905 (-537)))) 85) (($ (-1200 (-391 (-905 (-363))))) 53) (($ (-1200 (-391 (-905 (-537))))) 37)) (-3322 (((-1205) $) 125)) (-2341 (((-816) $) 119) (($ (-606 (-314))) 110) (($ (-314)) 116) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 114) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) 36))) -(((-84 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) (-1117)) (T -84)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-84 *3)) (-14 *3 (-1117))))) -(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) -((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 113) (((-3 $ "failed") (-649 (-300 (-537)))) 101) (((-3 $ "failed") (-649 (-905 (-363)))) 135) (((-3 $ "failed") (-649 (-905 (-537)))) 124) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 89) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 75)) (-3958 (($ (-649 (-300 (-363)))) 109) (($ (-649 (-300 (-537)))) 97) (($ (-649 (-905 (-363)))) 131) (($ (-649 (-905 (-537)))) 120) (($ (-649 (-391 (-905 (-363))))) 85) (($ (-649 (-391 (-905 (-537))))) 68)) (-3322 (((-1205) $) 59)) (-2341 (((-816) $) 53) (($ (-606 (-314))) 43) (($ (-314)) 50) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 48) (($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659)))) 44))) -(((-85 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659))))))) (-1117)) (T -85)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659)))) (-5 *1 (-85 *3)) (-14 *3 (-1117))))) -(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659))))))) -((-3322 (((-1205) $) 44)) (-2341 (((-816) $) 38) (($ (-1200 (-659))) 92) (($ (-606 (-314))) 30) (($ (-314)) 35) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 33))) -(((-86 |#1|) (-423) (-1117)) (T -86)) -NIL -(-423) -((-1516 (((-3 $ "failed") (-300 (-363))) 47) (((-3 $ "failed") (-300 (-537))) 52) (((-3 $ "failed") (-905 (-363))) 56) (((-3 $ "failed") (-905 (-537))) 60) (((-3 $ "failed") (-391 (-905 (-363)))) 42) (((-3 $ "failed") (-391 (-905 (-537)))) 35)) (-3958 (($ (-300 (-363))) 45) (($ (-300 (-537))) 50) (($ (-905 (-363))) 54) (($ (-905 (-537))) 58) (($ (-391 (-905 (-363)))) 40) (($ (-391 (-905 (-537)))) 32)) (-3322 (((-1205) $) 90)) (-2341 (((-816) $) 84) (($ (-606 (-314))) 78) (($ (-314)) 81) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 76) (($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))) 31))) -(((-87 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))))) (-1117)) (T -87)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))) (-5 *1 (-87 *3)) (-14 *3 (-1117))))) -(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))))) -((-3866 (((-1200 (-649 |#1|)) (-649 |#1|)) 54)) (-1496 (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874)) 44)) (-2459 (((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874)) 65 (|has| |#1| (-347))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1496 ((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874))) (-15 -3866 ((-1200 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-347)) (-15 -2459 ((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874))) |%noBranch|)) (-529) (-617 |#1|)) (T -88)) -((-2459 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |minor| (-606 (-874))) (|:| -4113 *3) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-649 *4)) (-4 *5 (-617 *4)))) (-1496 (*1 *2 *3 *4) (-12 (-4 *5 (-529)) (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 (-606 (-874)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) -(-10 -7 (-15 -1496 ((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874))) (-15 -3866 ((-1200 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-347)) (-15 -2459 ((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874))) |%noBranch|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2992 ((|#1| $) 35)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-2993 ((|#1| |#1| $) 30)) (-3444 ((|#1| $) 28)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) NIL)) (-3499 (($ |#1| $) 31)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 29)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 16)) (-3425 (($) 39)) (-3731 (((-731) $) 26)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 15)) (-2341 (((-816) $) 25 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-2538 (($ (-606 |#1|)) 37)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 13 (|has| |#1| (-1045)))) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) -(((-89 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -2538 ($ (-606 |#1|))))) (-1045)) (T -89)) -((-2538 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-89 *3))))) -(-13 (-1065 |#1|) (-10 -8 (-15 -2538 ($ (-606 |#1|))))) -((-2341 (((-816) $) 12) (((-1122) $) 8))) -(((-90 |#1|) (-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (((-1122) $) 14)) (-2244 (((-111) $ $) 6))) +((-4254 (((-111) $) 12)) (-4275 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-392 (-526)) $) 25) (($ $ (-392 (-526))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4254 ((-111) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-46 |#2| |#3|) (-1004) (-756)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4254 ((-111) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-46 |#1| |#2|) (-134) (-1004) (-756)) (T -46)) +((-3487 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-3194 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) (-3193 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-348))))) +(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (-15 -3487 (|t#1| $)) (-15 -3194 ($ $)) (-15 -4264 (|t#2| $)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -4254 ((-111) $)) (-15 -3193 ($ |t#1| |t#2|)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-6 (-163)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-533)) (-6 (-533)) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (-6 (-37 (-392 (-526)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-1238 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3502 (((-111) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1636 (((-607 (-581 $)) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-1239 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-3497 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-526) $) NIL) (((-392 (-526)) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-392 (-526)))) (|:| |vec| (-1205 (-392 (-526))))) (-653 $) (-1205 $)) NIL) (((-653 (-392 (-526))) (-653 $)) NIL)) (-4161 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) 14)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3298 (((-1075 (-526) (-581 $)) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (((-1117 $) (-1117 $) (-581 $)) NIL) (((-1117 $) (-1117 $) (-607 (-581 $))) NIL) (($ $ (-581 $)) NIL) (($ $ (-607 (-581 $))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1633 (((-1117 $) (-581 $)) NIL (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2703 (($ $) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1680 (((-735) $) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-3297 (((-1075 (-526) (-581 $)) $) NIL)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-159 (-363)) $) NIL)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-1075 (-526) (-581 $))) NIL)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 7 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 16)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $ $) 15) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-392 (-526))) NIL) (($ $ (-526)) NIL) (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) +(((-47) (-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $))))))) (T -47)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) (-4161 (*1 *1 *1) (-5 *1 (-47))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-581 (-47))) (-5 *1 (-47)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-607 (-581 (-47)))) (-5 *1 (-47)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-581 (-47))) (-5 *1 (-47)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-47)))) (-5 *1 (-47))))) +(-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $)))))) +((-2865 (((-111) $ $) NIL)) (-2036 (((-607 (-1123)) $) 17)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3494 (((-1128) $) 18)) (-3353 (((-111) $ $) NIL))) +(((-48) (-13 (-1052) (-10 -8 (-15 -2036 ((-607 (-1123)) $)) (-15 -3494 ((-1128) $))))) (T -48)) +((-2036 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-48)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-48))))) +(-13 (-1052) (-10 -8 (-15 -2036 ((-607 (-1123)) $)) (-15 -3494 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 61)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2962 (((-111) $) 20)) (-3470 (((-3 |#1| "failed") $) 23)) (-3469 ((|#1| $) 24)) (-4276 (($ $) 28)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3487 ((|#1| $) 21)) (-1488 (($ $) 50)) (-3554 (((-1106) $) NIL)) (-1487 (((-111) $) 30)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) 48)) (-4260 (($ (-607 (-526))) 49)) (-4264 (((-735) $) 31)) (-4274 (((-823) $) 64) (($ (-526)) 45) (($ |#1|) 43)) (-3999 ((|#1| $ $) 19)) (-3423 (((-735)) 47)) (-2957 (($) 32 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-49 |#1| |#2|) (-13 (-588 |#1|) (-995 |#1|) (-10 -8 (-15 -3487 (|#1| $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 (|#1| $ $)) (-15 -2470 ($ (-735))) (-15 -4260 ($ (-607 (-526)))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-735) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)))) (-1004) (-607 (-1123))) (T -49)) +((-3487 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) (-3999 (*1 *2 *1 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-49 *3 *4)) (-14 *4 (-607 (-1123)))))) +(-13 (-588 |#1|) (-995 |#1|) (-10 -8 (-15 -3487 (|#1| $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 (|#1| $ $)) (-15 -2470 ($ (-735))) (-15 -4260 ($ (-607 (-526)))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-735) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)))) +((-2865 (((-111) $ $) NIL)) (-1273 (((-1106) (-111)) 25)) (-1276 (((-823) $) 24)) (-1274 (((-737) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1277 (((-823) $) 16)) (-1275 (((-1054) $) 14)) (-4274 (((-823) $) 32)) (-1278 (($ (-1054) (-737)) 33)) (-3353 (((-111) $ $) 18))) +(((-50) (-13 (-1052) (-10 -8 (-15 -1278 ($ (-1054) (-737))) (-15 -1277 ((-823) $)) (-15 -1276 ((-823) $)) (-15 -1275 ((-1054) $)) (-15 -1274 ((-737) $)) (-15 -1273 ((-1106) (-111)))))) (T -50)) +((-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1054)) (-5 *3 (-737)) (-5 *1 (-50)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-50)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-737)) (-5 *1 (-50)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1106)) (-5 *1 (-50))))) +(-13 (-1052) (-10 -8 (-15 -1278 ($ (-1054) (-737))) (-15 -1277 ((-823) $)) (-15 -1276 ((-823) $)) (-15 -1275 ((-1054) $)) (-15 -1274 ((-737) $)) (-15 -1273 ((-1106) (-111))))) +((-2962 (((-111) (-50)) 13)) (-3470 (((-3 |#1| "failed") (-50)) 21)) (-3469 ((|#1| (-50)) 22)) (-4274 (((-50) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -4274 ((-50) |#1|)) (-15 -3470 ((-3 |#1| "failed") (-50))) (-15 -2962 ((-111) (-50))) (-15 -3469 (|#1| (-50)))) (-1159)) (T -51)) +((-3469 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1159)))) (-3470 (*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1159))))) +(-10 -7 (-15 -4274 ((-50) |#1|)) (-15 -3470 ((-3 |#1| "failed") (-50))) (-15 -2962 ((-111) (-50))) (-15 -3469 (|#1| (-50)))) +((-2849 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2849 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1004) (-613 |#1|) (-813 |#1|)) (T -52)) +((-2849 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-613 *5)) (-4 *5 (-1004)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-813 *5))))) +(-10 -7 (-15 -2849 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1280 ((|#3| |#3| (-607 (-1123))) 35)) (-1279 ((|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878)) 22) ((|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878))) (-15 -1280 (|#3| |#3| (-607 (-1123))))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -53)) +((-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-1279 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-607 (-1026 *5 *6 *2))) (-5 *4 (-878)) (-4 *5 (-1052)) (-4 *6 (-13 (-1004) (-845 *5) (-811) (-584 (-849 *5)))) (-4 *2 (-13 (-406 *6) (-845 *5) (-584 (-849 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1279 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-1026 *4 *5 *2))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3|)) (-15 -1279 (|#3| (-607 (-1026 |#1| |#2| |#3|)) |#3| (-878))) (-15 -1280 (|#3| |#3| (-607 (-1123))))) +((-1244 (((-111) $ (-735)) 23)) (-1282 (($ $ (-526) |#3|) 46)) (-1281 (($ $ (-526) |#4|) 50)) (-3409 ((|#3| $ (-526)) 59)) (-2044 (((-607 |#2|) $) 30)) (-4041 (((-111) $ (-735)) 25)) (-3557 (((-111) |#2| $) 54)) (-2048 (($ (-1 |#2| |#2|) $) 37)) (-4275 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4038 (((-111) $ (-735)) 24)) (-2277 (($ $ |#2|) 34)) (-2046 (((-111) (-1 (-111) |#2|) $) 19)) (-4118 ((|#2| $ (-526) (-526)) NIL) ((|#2| $ (-526) (-526) |#2|) 27)) (-2045 (((-735) (-1 (-111) |#2|) $) 28) (((-735) |#2| $) 56)) (-3719 (($ $) 33)) (-3408 ((|#4| $ (-526)) 62)) (-4274 (((-823) $) 68)) (-2047 (((-111) (-1 (-111) |#2|) $) 18)) (-3353 (((-111) $ $) 53)) (-4273 (((-735) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1281 (|#1| |#1| (-526) |#4|)) (-15 -1282 (|#1| |#1| (-526) |#3|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -3408 (|#4| |#1| (-526))) (-15 -3409 (|#3| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3719 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1159) (-357 |#2|) (-357 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1281 (|#1| |#1| (-526) |#4|)) (-15 -1282 (|#1| |#1| (-526) |#3|)) (-15 -2044 ((-607 |#2|) |#1|)) (-15 -3408 (|#4| |#1| (-526))) (-15 -3409 (|#3| |#1| (-526))) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735))) (-15 -3719 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) (-526) |#1|) 44)) (-1282 (($ $ (-526) |#2|) 42)) (-1281 (($ $ (-526) |#3|) 41)) (-3855 (($) 7 T CONST)) (-3409 ((|#2| $ (-526)) 46)) (-1613 ((|#1| $ (-526) (-526) |#1|) 43)) (-3410 ((|#1| $ (-526) (-526)) 48)) (-2044 (((-607 |#1|) $) 30)) (-3412 (((-735) $) 51)) (-3936 (($ (-735) (-735) |#1|) 57)) (-3411 (((-735) $) 50)) (-4041 (((-111) $ (-735)) 9)) (-3416 (((-526) $) 55)) (-3414 (((-526) $) 53)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 54)) (-3413 (((-526) $) 52)) (-2048 (($ (-1 |#1| |#1|) $) 34)) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) 56)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) (-526)) 49) ((|#1| $ (-526) (-526) |#1|) 47)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-3408 ((|#3| $ (-526)) 45)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-55 |#1| |#2| |#3|) (-134) (-1159) (-357 |t#1|) (-357 |t#1|)) (T -55)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3936 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-735)) (-4 *3 (-1159)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2277 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1159)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-526)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-735)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-735)))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1159)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-607 *3)))) (-4106 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-1613 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-1282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1159)) (-4 *3 (-357 *4)) (-4 *5 (-357 *4)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) (-4 *3 (-357 *4)))) (-2048 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4275 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) +(-13 (-472 |t#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3936 ($ (-735) (-735) |t#1|)) (-15 -2277 ($ $ |t#1|)) (-15 -3416 ((-526) $)) (-15 -3415 ((-526) $)) (-15 -3414 ((-526) $)) (-15 -3413 ((-526) $)) (-15 -3412 ((-735) $)) (-15 -3411 ((-735) $)) (-15 -4118 (|t#1| $ (-526) (-526))) (-15 -3410 (|t#1| $ (-526) (-526))) (-15 -4118 (|t#1| $ (-526) (-526) |t#1|)) (-15 -3409 (|t#2| $ (-526))) (-15 -3408 (|t#3| $ (-526))) (-15 -2044 ((-607 |t#1|) $)) (-15 -4106 (|t#1| $ (-526) (-526) |t#1|)) (-15 -1613 (|t#1| $ (-526) (-526) |t#1|)) (-15 -1282 ($ $ (-526) |t#2|)) (-15 -1281 ($ $ (-526) |t#3|)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -2048 ($ (-1 |t#1| |t#1|) $)) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 11 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-1283 (($ (-607 |#1|)) 13) (($ (-735) |#1|) 14)) (-3936 (($ (-735) |#1|) 9)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 7)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-56 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1283 ($ (-607 |#1|))) (-15 -1283 ($ (-735) |#1|)))) (-1159)) (T -56)) +((-1283 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-56 *3)))) (-1283 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-56 *3)) (-4 *3 (-1159))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1283 ($ (-607 |#1|))) (-15 -1283 ($ (-735) |#1|)))) +((-4160 (((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 18)) (-4275 (((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -4160 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4275 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) (-1159) (-1159)) (T -57)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-57 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -4160 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -4275 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL)) (-1282 (($ $ (-526) (-56 |#1|)) NIL)) (-1281 (($ $ (-526) (-56 |#1|)) NIL)) (-3855 (($) NIL T CONST)) (-3409 (((-56 |#1|) $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-56 |#1|) $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-58 |#1|) (-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4311))) (-1159)) (T -58)) +NIL +(-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4311))) +((-3470 (((-3 $ #1="failed") (-299 (-363))) 41) (((-3 $ #1#) (-299 (-526))) 46) (((-3 $ #1#) (-905 (-363))) 50) (((-3 $ #1#) (-905 (-526))) 54) (((-3 $ #1#) (-392 (-905 (-363)))) 36) (((-3 $ #1#) (-392 (-905 (-526)))) 29)) (-3469 (($ (-299 (-363))) 39) (($ (-299 (-526))) 44) (($ (-905 (-363))) 48) (($ (-905 (-526))) 52) (($ (-392 (-905 (-363)))) 34) (($ (-392 (-905 (-526)))) 26)) (-3699 (((-1211) $) 76)) (-4274 (((-823) $) 69) (($ (-607 (-315))) 61) (($ (-315)) 66) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 64) (($ (-324 (-3844 (QUOTE X)) (-3844) (-663))) 25))) +(((-59 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844) (-663)))))) (-1123)) (T -59)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844 (QUOTE X)) (-3844) (-663))) (-5 *1 (-59 *3)) (-14 *3 (-1123))))) +(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844) (-663)))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 74) (((-3 $ #1#) (-1205 (-299 (-526)))) 63) (((-3 $ #1#) (-1205 (-905 (-363)))) 94) (((-3 $ #1#) (-1205 (-905 (-526)))) 84) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 52) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 39)) (-3469 (($ (-1205 (-299 (-363)))) 70) (($ (-1205 (-299 (-526)))) 59) (($ (-1205 (-905 (-363)))) 90) (($ (-1205 (-905 (-526)))) 80) (($ (-1205 (-392 (-905 (-363))))) 48) (($ (-1205 (-392 (-905 (-526))))) 32)) (-3699 (((-1211) $) 120)) (-4274 (((-823) $) 113) (($ (-607 (-315))) 103) (($ (-315)) 97) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 101) (($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663)))) 31))) +(((-60 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663))))))) (-1123)) (T -60)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663)))) (-5 *1 (-60 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3844) (-663))))))) +((-3699 (((-1211) $) 53) (((-1211)) 54)) (-4274 (((-823) $) 50))) +(((-61 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -61)) +((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-61 *3)) (-14 *3 (-1123))))) +(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 144) (((-3 $ #1#) (-1205 (-299 (-526)))) 134) (((-3 $ #1#) (-1205 (-905 (-363)))) 164) (((-3 $ #1#) (-1205 (-905 (-526)))) 154) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 123) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 111)) (-3469 (($ (-1205 (-299 (-363)))) 140) (($ (-1205 (-299 (-526)))) 130) (($ (-1205 (-905 (-363)))) 160) (($ (-1205 (-905 (-526)))) 150) (($ (-1205 (-392 (-905 (-363))))) 119) (($ (-1205 (-392 (-905 (-526))))) 104)) (-3699 (((-1211) $) 97)) (-4274 (((-823) $) 91) (($ (-607 (-315))) 29) (($ (-315)) 34) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 32) (($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) 89))) +(((-62 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) (-1123)) (T -62)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) (-5 *1 (-62 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 109) (((-3 $ #1#) (-653 (-299 (-526)))) 97) (((-3 $ #1#) (-653 (-905 (-363)))) 131) (((-3 $ #1#) (-653 (-905 (-526)))) 120) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 85) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 71)) (-3469 (($ (-653 (-299 (-363)))) 105) (($ (-653 (-299 (-526)))) 93) (($ (-653 (-905 (-363)))) 127) (($ (-653 (-905 (-526)))) 116) (($ (-653 (-392 (-905 (-363))))) 81) (($ (-653 (-392 (-905 (-526))))) 64)) (-3699 (((-1211) $) 139)) (-4274 (((-823) $) 133) (($ (-607 (-315))) 28) (($ (-315)) 33) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 31) (($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663)))) 54))) +(((-63 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663))))))) (-1123)) (T -63)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663)))) (-5 *1 (-63 *3)) (-14 *3 (-1123))))) +(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844) (-3844 (QUOTE X) (QUOTE HESS)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-299 (-363))) 59) (((-3 $ #1#) (-299 (-526))) 64) (((-3 $ #1#) (-905 (-363))) 68) (((-3 $ #1#) (-905 (-526))) 72) (((-3 $ #1#) (-392 (-905 (-363)))) 54) (((-3 $ #1#) (-392 (-905 (-526)))) 47)) (-3469 (($ (-299 (-363))) 57) (($ (-299 (-526))) 62) (($ (-905 (-363))) 66) (($ (-905 (-526))) 70) (($ (-392 (-905 (-363)))) 52) (($ (-392 (-905 (-526)))) 44)) (-3699 (((-1211) $) 81)) (-4274 (((-823) $) 75) (($ (-607 (-315))) 28) (($ (-315)) 33) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 31) (($ (-324 (-3844) (-3844 (QUOTE XC)) (-663))) 39))) +(((-64 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE XC)) (-663)))))) (-1123)) (T -64)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE XC)) (-663))) (-5 *1 (-64 *3)) (-14 *3 (-1123))))) +(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE XC)) (-663)))))) +((-3699 (((-1211) $) 63)) (-4274 (((-823) $) 57) (($ (-653 (-663))) 49) (($ (-607 (-315))) 48) (($ (-315)) 55) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 53))) +(((-65 |#1|) (-368) (-1123)) (T -65)) +NIL +(-368) +((-3699 (((-1211) $) 64)) (-4274 (((-823) $) 58) (($ (-653 (-663))) 50) (($ (-607 (-315))) 49) (($ (-315)) 52) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 55))) +(((-66 |#1|) (-368) (-1123)) (T -66)) +NIL +(-368) +((-3699 (((-1211) $) NIL) (((-1211)) 32)) (-4274 (((-823) $) NIL))) +(((-67 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -67)) +((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-67 *3)) (-14 *3 (-1123))))) +(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) +((-3699 (((-1211) $) 73)) (-4274 (((-823) $) 67) (($ (-653 (-663))) 59) (($ (-607 (-315))) 61) (($ (-315)) 64) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 58))) +(((-68 |#1|) (-368) (-1123)) (T -68)) +NIL +(-368) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 103) (((-3 $ #1#) (-1205 (-299 (-526)))) 92) (((-3 $ #1#) (-1205 (-905 (-363)))) 123) (((-3 $ #1#) (-1205 (-905 (-526)))) 113) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 81) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 68)) (-3469 (($ (-1205 (-299 (-363)))) 99) (($ (-1205 (-299 (-526)))) 88) (($ (-1205 (-905 (-363)))) 119) (($ (-1205 (-905 (-526)))) 109) (($ (-1205 (-392 (-905 (-363))))) 77) (($ (-1205 (-392 (-905 (-526))))) 61)) (-3699 (((-1211) $) 136)) (-4274 (((-823) $) 130) (($ (-607 (-315))) 125) (($ (-315)) 128) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 53) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) 54))) +(((-69 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) (-1123)) (T -69)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-69 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) +((-3699 (((-1211) $) 32) (((-1211)) 31)) (-4274 (((-823) $) 35))) +(((-70 |#1|) (-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) (-1123)) (T -70)) +((-3699 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-70 *3)) (-14 *3 (-1123))))) +(-13 (-381) (-10 -7 (-15 -3699 ((-1211))))) +((-3699 (((-1211) $) 63)) (-4274 (((-823) $) 57) (($ (-653 (-663))) 49) (($ (-607 (-315))) 51) (($ (-315)) 54) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 48))) +(((-71 |#1|) (-368) (-1123)) (T -71)) +NIL +(-368) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 125) (((-3 $ #1#) (-1205 (-299 (-526)))) 115) (((-3 $ #1#) (-1205 (-905 (-363)))) 145) (((-3 $ #1#) (-1205 (-905 (-526)))) 135) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 105) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 93)) (-3469 (($ (-1205 (-299 (-363)))) 121) (($ (-1205 (-299 (-526)))) 111) (($ (-1205 (-905 (-363)))) 141) (($ (-1205 (-905 (-526)))) 131) (($ (-1205 (-392 (-905 (-363))))) 101) (($ (-1205 (-392 (-905 (-526))))) 86)) (-3699 (((-1211) $) 78)) (-4274 (((-823) $) 27) (($ (-607 (-315))) 68) (($ (-315)) 64) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 71) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 65))) +(((-72 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -72)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-72 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-299 (-363))) 46) (((-3 $ #1#) (-299 (-526))) 51) (((-3 $ #1#) (-905 (-363))) 55) (((-3 $ #1#) (-905 (-526))) 59) (((-3 $ #1#) (-392 (-905 (-363)))) 41) (((-3 $ #1#) (-392 (-905 (-526)))) 34)) (-3469 (($ (-299 (-363))) 44) (($ (-299 (-526))) 49) (($ (-905 (-363))) 53) (($ (-905 (-526))) 57) (($ (-392 (-905 (-363)))) 39) (($ (-392 (-905 (-526)))) 31)) (-3699 (((-1211) $) 80)) (-4274 (((-823) $) 74) (($ (-607 (-315))) 66) (($ (-315)) 71) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 69) (($ (-324 (-3844) (-3844 (QUOTE X)) (-663))) 30))) +(((-73 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) (-1123)) (T -73)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE X)) (-663))) (-5 *1 (-73 *3)) (-14 *3 (-1123))))) +(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 130) (((-3 $ #1#) (-1205 (-299 (-526)))) 119) (((-3 $ #1#) (-1205 (-905 (-363)))) 150) (((-3 $ #1#) (-1205 (-905 (-526)))) 140) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 108) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 95)) (-3469 (($ (-1205 (-299 (-363)))) 126) (($ (-1205 (-299 (-526)))) 115) (($ (-1205 (-905 (-363)))) 146) (($ (-1205 (-905 (-526)))) 136) (($ (-1205 (-392 (-905 (-363))))) 104) (($ (-1205 (-392 (-905 (-526))))) 88)) (-3699 (((-1211) $) 79)) (-4274 (((-823) $) 71) (($ (-607 (-315))) NIL) (($ (-315)) NIL) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) NIL) (($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663))))))) (-1123) (-1123) (-1123)) (T -74)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE EPS)) (-3844 (QUOTE -4281)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 134) (((-3 $ #1#) (-1205 (-299 (-526)))) 123) (((-3 $ #1#) (-1205 (-905 (-363)))) 154) (((-3 $ #1#) (-1205 (-905 (-526)))) 144) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 112) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 99)) (-3469 (($ (-1205 (-299 (-363)))) 130) (($ (-1205 (-299 (-526)))) 119) (($ (-1205 (-905 (-363)))) 150) (($ (-1205 (-905 (-526)))) 140) (($ (-1205 (-392 (-905 (-363))))) 108) (($ (-1205 (-392 (-905 (-526))))) 92)) (-3699 (((-1211) $) 83)) (-4274 (((-823) $) 75) (($ (-607 (-315))) NIL) (($ (-315)) NIL) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) NIL) (($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663))))))) (-1123) (-1123) (-1123)) (T -75)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE EPS)) (-3844 (QUOTE YA) (QUOTE YB)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-299 (-363))) 82) (((-3 $ #1#) (-299 (-526))) 87) (((-3 $ #1#) (-905 (-363))) 91) (((-3 $ #1#) (-905 (-526))) 95) (((-3 $ #1#) (-392 (-905 (-363)))) 77) (((-3 $ #1#) (-392 (-905 (-526)))) 70)) (-3469 (($ (-299 (-363))) 80) (($ (-299 (-526))) 85) (($ (-905 (-363))) 89) (($ (-905 (-526))) 93) (($ (-392 (-905 (-363)))) 75) (($ (-392 (-905 (-526)))) 67)) (-3699 (((-1211) $) 62)) (-4274 (((-823) $) 50) (($ (-607 (-315))) 46) (($ (-315)) 56) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 54) (($ (-324 (-3844) (-3844 (QUOTE X)) (-663))) 47))) +(((-76 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) (-1123)) (T -76)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844) (-3844 (QUOTE X)) (-663))) (-5 *1 (-76 *3)) (-14 *3 (-1123))))) +(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844) (-3844 (QUOTE X)) (-663)))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 89) (((-3 $ #1#) (-1205 (-299 (-526)))) 78) (((-3 $ #1#) (-1205 (-905 (-363)))) 109) (((-3 $ #1#) (-1205 (-905 (-526)))) 99) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 67) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 54)) (-3469 (($ (-1205 (-299 (-363)))) 85) (($ (-1205 (-299 (-526)))) 74) (($ (-1205 (-905 (-363)))) 105) (($ (-1205 (-905 (-526)))) 95) (($ (-1205 (-392 (-905 (-363))))) 63) (($ (-1205 (-392 (-905 (-526))))) 47)) (-3699 (((-1211) $) 125)) (-4274 (((-823) $) 119) (($ (-607 (-315))) 112) (($ (-315)) 37) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 115) (($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) 38))) +(((-77 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) (-1123)) (T -77)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663)))) (-5 *1 (-77 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE XC)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 142) (((-3 $ #1#) (-1205 (-299 (-526)))) 132) (((-3 $ #1#) (-1205 (-905 (-363)))) 162) (((-3 $ #1#) (-1205 (-905 (-526)))) 152) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 122) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 110)) (-3469 (($ (-1205 (-299 (-363)))) 138) (($ (-1205 (-299 (-526)))) 128) (($ (-1205 (-905 (-363)))) 158) (($ (-1205 (-905 (-526)))) 148) (($ (-1205 (-392 (-905 (-363))))) 118) (($ (-1205 (-392 (-905 (-526))))) 103)) (-3699 (((-1211) $) 96)) (-4274 (((-823) $) 90) (($ (-607 (-315))) 81) (($ (-315)) 88) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 86) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 82))) +(((-78 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -78)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-78 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 78) (((-3 $ #1#) (-1205 (-299 (-526)))) 67) (((-3 $ #1#) (-1205 (-905 (-363)))) 98) (((-3 $ #1#) (-1205 (-905 (-526)))) 88) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 56) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 43)) (-3469 (($ (-1205 (-299 (-363)))) 74) (($ (-1205 (-299 (-526)))) 63) (($ (-1205 (-905 (-363)))) 94) (($ (-1205 (-905 (-526)))) 84) (($ (-1205 (-392 (-905 (-363))))) 52) (($ (-1205 (-392 (-905 (-526))))) 36)) (-3699 (((-1211) $) 124)) (-4274 (((-823) $) 118) (($ (-607 (-315))) 109) (($ (-315)) 115) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 113) (($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) 35))) +(((-79 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) (-1123)) (T -79)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663)))) (-5 *1 (-79 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844) (-3844 (QUOTE X)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 79) (((-3 $ #1#) (-1205 (-299 (-526)))) 68) (((-3 $ #1#) (-1205 (-905 (-363)))) 99) (((-3 $ #1#) (-1205 (-905 (-526)))) 89) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 57) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 44)) (-3469 (($ (-1205 (-299 (-363)))) 75) (($ (-1205 (-299 (-526)))) 64) (($ (-1205 (-905 (-363)))) 95) (($ (-1205 (-905 (-526)))) 85) (($ (-1205 (-392 (-905 (-363))))) 53) (($ (-1205 (-392 (-905 (-526))))) 37)) (-3699 (((-1211) $) 125)) (-4274 (((-823) $) 119) (($ (-607 (-315))) 110) (($ (-315)) 116) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 114) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) 36))) +(((-80 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) (-1123)) (T -80)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))) (-5 *1 (-80 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 95) (((-3 $ #1#) (-1205 (-299 (-526)))) 84) (((-3 $ #1#) (-1205 (-905 (-363)))) 115) (((-3 $ #1#) (-1205 (-905 (-526)))) 105) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 73) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 60)) (-3469 (($ (-1205 (-299 (-363)))) 91) (($ (-1205 (-299 (-526)))) 80) (($ (-1205 (-905 (-363)))) 111) (($ (-1205 (-905 (-526)))) 101) (($ (-1205 (-392 (-905 (-363))))) 69) (($ (-1205 (-392 (-905 (-526))))) 53)) (-3699 (((-1211) $) 45)) (-4274 (((-823) $) 39) (($ (-607 (-315))) 29) (($ (-315)) 32) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 35) (($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) 30))) +(((-81 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) (-1123)) (T -81)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) (-5 *1 (-81 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) +((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 115) (((-3 $ #1#) (-653 (-299 (-526)))) 104) (((-3 $ #1#) (-653 (-905 (-363)))) 137) (((-3 $ #1#) (-653 (-905 (-526)))) 126) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 93) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 80)) (-3469 (($ (-653 (-299 (-363)))) 111) (($ (-653 (-299 (-526)))) 100) (($ (-653 (-905 (-363)))) 133) (($ (-653 (-905 (-526)))) 122) (($ (-653 (-392 (-905 (-363))))) 89) (($ (-653 (-392 (-905 (-526))))) 73)) (-3699 (((-1211) $) 63)) (-4274 (((-823) $) 50) (($ (-607 (-315))) 57) (($ (-315)) 46) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 55) (($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) 47))) +(((-82 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) (-1123)) (T -82)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663)))) (-5 *1 (-82 *3)) (-14 *3 (-1123))))) +(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X) (QUOTE -4281)) (-3844) (-663))))))) +((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 112) (((-3 $ #1#) (-653 (-299 (-526)))) 100) (((-3 $ #1#) (-653 (-905 (-363)))) 134) (((-3 $ #1#) (-653 (-905 (-526)))) 123) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 88) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 74)) (-3469 (($ (-653 (-299 (-363)))) 108) (($ (-653 (-299 (-526)))) 96) (($ (-653 (-905 (-363)))) 130) (($ (-653 (-905 (-526)))) 119) (($ (-653 (-392 (-905 (-363))))) 84) (($ (-653 (-392 (-905 (-526))))) 67)) (-3699 (((-1211) $) 59)) (-4274 (((-823) $) 53) (($ (-607 (-315))) 47) (($ (-315)) 50) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 44) (($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) 45))) +(((-83 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) (-1123)) (T -83)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) (-5 *1 (-83 *3)) (-14 *3 (-1123))))) +(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) +((-3470 (((-3 $ #1="failed") (-1205 (-299 (-363)))) 104) (((-3 $ #1#) (-1205 (-299 (-526)))) 93) (((-3 $ #1#) (-1205 (-905 (-363)))) 124) (((-3 $ #1#) (-1205 (-905 (-526)))) 114) (((-3 $ #1#) (-1205 (-392 (-905 (-363))))) 82) (((-3 $ #1#) (-1205 (-392 (-905 (-526))))) 69)) (-3469 (($ (-1205 (-299 (-363)))) 100) (($ (-1205 (-299 (-526)))) 89) (($ (-1205 (-905 (-363)))) 120) (($ (-1205 (-905 (-526)))) 110) (($ (-1205 (-392 (-905 (-363))))) 78) (($ (-1205 (-392 (-905 (-526))))) 62)) (-3699 (((-1211) $) 46)) (-4274 (((-823) $) 40) (($ (-607 (-315))) 49) (($ (-315)) 36) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 52) (($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) 37))) +(((-84 |#1|) (-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) (-1123)) (T -84)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663)))) (-5 *1 (-84 *3)) (-14 *3 (-1123))))) +(-13 (-425) (-10 -8 (-15 -4274 ($ (-1205 (-324 (-3844 (QUOTE X)) (-3844) (-663))))))) +((-3699 (((-1211) $) 44)) (-4274 (((-823) $) 38) (($ (-1205 (-663))) 92) (($ (-607 (-315))) 30) (($ (-315)) 35) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 33))) +(((-85 |#1|) (-424) (-1123)) (T -85)) +NIL +(-424) +((-3470 (((-3 $ #1="failed") (-653 (-299 (-363)))) 113) (((-3 $ #1#) (-653 (-299 (-526)))) 101) (((-3 $ #1#) (-653 (-905 (-363)))) 135) (((-3 $ #1#) (-653 (-905 (-526)))) 124) (((-3 $ #1#) (-653 (-392 (-905 (-363))))) 89) (((-3 $ #1#) (-653 (-392 (-905 (-526))))) 75)) (-3469 (($ (-653 (-299 (-363)))) 109) (($ (-653 (-299 (-526)))) 97) (($ (-653 (-905 (-363)))) 131) (($ (-653 (-905 (-526)))) 120) (($ (-653 (-392 (-905 (-363))))) 85) (($ (-653 (-392 (-905 (-526))))) 68)) (-3699 (((-1211) $) 59)) (-4274 (((-823) $) 53) (($ (-607 (-315))) 43) (($ (-315)) 50) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 48) (($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663)))) 44))) +(((-86 |#1|) (-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663))))))) (-1123)) (T -86)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663)))) (-5 *1 (-86 *3)) (-14 *3 (-1123))))) +(-13 (-370) (-10 -8 (-15 -4274 ($ (-653 (-324 (-3844 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3844) (-663))))))) +((-3470 (((-3 $ #1="failed") (-299 (-363))) 47) (((-3 $ #1#) (-299 (-526))) 52) (((-3 $ #1#) (-905 (-363))) 56) (((-3 $ #1#) (-905 (-526))) 60) (((-3 $ #1#) (-392 (-905 (-363)))) 42) (((-3 $ #1#) (-392 (-905 (-526)))) 35)) (-3469 (($ (-299 (-363))) 45) (($ (-299 (-526))) 50) (($ (-905 (-363))) 54) (($ (-905 (-526))) 58) (($ (-392 (-905 (-363)))) 40) (($ (-392 (-905 (-526)))) 32)) (-3699 (((-1211) $) 90)) (-4274 (((-823) $) 84) (($ (-607 (-315))) 78) (($ (-315)) 81) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 76) (($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))) 31))) +(((-87 |#1|) (-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))))) (-1123)) (T -87)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663))) (-5 *1 (-87 *3)) (-14 *3 (-1123))))) +(-13 (-382) (-10 -8 (-15 -4274 ($ (-324 (-3844 (QUOTE X)) (-3844 (QUOTE -4281)) (-663)))))) +((-1285 (((-1205 (-653 |#1|)) (-653 |#1|)) 54)) (-1284 (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878)) 44)) (-1286 (((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878)) 65 (|has| |#1| (-348))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1284 ((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878))) (-15 -1285 ((-1205 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-348)) (-15 -1286 ((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878))) |%noBranch|)) (-533) (-623 |#1|)) (T -88)) +((-1286 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |minor| (-607 (-878))) (|:| -3578 *3) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-653 *4)) (-4 *5 (-623 *4)))) (-1284 (*1 *2 *3 *4) (-12 (-4 *5 (-533)) (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 (-607 (-878)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) +(-10 -7 (-15 -1284 ((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 (-607 (-878))))) |#2| (-878))) (-15 -1285 ((-1205 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-348)) (-15 -1286 ((-2 (|:| |minor| (-607 (-878))) (|:| -3578 |#2|) (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 |#2|))) |#2| (-878))) |%noBranch|)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3643 ((|#1| $) 35)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3645 ((|#1| |#1| $) 30)) (-3644 ((|#1| $) 28)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) NIL)) (-3929 (($ |#1| $) 31)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 29)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 16)) (-3887 (($) 39)) (-3642 (((-735) $) 26)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 15)) (-4274 (((-823) $) 25 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-1287 (($ (-607 |#1|)) 37)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 13 (|has| |#1| (-1052)))) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) +(((-89 |#1|) (-13 (-1071 |#1|) (-10 -8 (-15 -1287 ($ (-607 |#1|))))) (-1052)) (T -89)) +((-1287 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-89 *3))))) +(-13 (-1071 |#1|) (-10 -8 (-15 -1287 ($ (-607 |#1|))))) +((-4274 (((-823) $) 12) (((-1128) $) 8))) +(((-90 |#1|) (-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (((-1128) $) 14)) (-3353 (((-111) $ $) 6))) (((-91) (-134)) (T -91)) NIL -(-13 (-1045) (-579 (-1122))) -(((-100) . T) ((-579 (-816)) . T) ((-579 (-1122)) . T) ((-1045) . T)) -((-1352 (($ $) 10)) (-1365 (($ $) 12))) -(((-92 |#1|) (-10 -8 (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|))) (-93)) (T -92)) +(-13 (-1052) (-583 (-1128))) +(((-100) . T) ((-583 (-823)) . T) ((-583 (-1128)) . T) ((-1052) . T)) +((-3802 (($ $) 10)) (-3803 (($ $) 12))) +(((-92 |#1|) (-10 -8 (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) (-93)) (T -92)) NIL -(-10 -8 (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|))) -((-1328 (($ $) 11)) (-1300 (($ $) 10)) (-1352 (($ $) 9)) (-1365 (($ $) 8)) (-1340 (($ $) 7)) (-1314 (($ $) 6))) +(-10 -8 (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|))) +((-3800 (($ $) 11)) (-3798 (($ $) 10)) (-3802 (($ $) 9)) (-3803 (($ $) 8)) (-3801 (($ $) 7)) (-3799 (($ $) 6))) (((-93) (-134)) (T -93)) -((-1328 (*1 *1 *1) (-4 *1 (-93))) (-1300 (*1 *1 *1) (-4 *1 (-93))) (-1352 (*1 *1 *1) (-4 *1 (-93))) (-1365 (*1 *1 *1) (-4 *1 (-93))) (-1340 (*1 *1 *1) (-4 *1 (-93))) (-1314 (*1 *1 *1) (-4 *1 (-93)))) -(-13 (-10 -8 (-15 -1314 ($ $)) (-15 -1340 ($ $)) (-15 -1365 ($ $)) (-15 -1352 ($ $)) (-15 -1300 ($ $)) (-15 -1328 ($ $)))) -((-2330 (((-111) $ $) NIL)) (-3923 (((-1122) $) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-94) (-13 (-1029) (-10 -8 (-15 -3923 ((-1122) $))))) (T -94)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-94))))) -(-13 (-1029) (-10 -8 (-15 -3923 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-1390 (((-363) (-1100) (-363)) 42) (((-363) (-1100) (-1100) (-363)) 41)) (-4234 (((-363) (-363)) 33)) (-3051 (((-1205)) 36)) (-1654 (((-1100) $) NIL)) (-2439 (((-363) (-1100) (-1100)) 46) (((-363) (-1100)) 48)) (-2528 (((-1064) $) NIL)) (-1356 (((-363) (-1100) (-1100)) 47)) (-1946 (((-363) (-1100) (-1100)) 49) (((-363) (-1100)) 50)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-95) (-13 (-1045) (-10 -7 (-15 -2439 ((-363) (-1100) (-1100))) (-15 -2439 ((-363) (-1100))) (-15 -1946 ((-363) (-1100) (-1100))) (-15 -1946 ((-363) (-1100))) (-15 -1356 ((-363) (-1100) (-1100))) (-15 -3051 ((-1205))) (-15 -4234 ((-363) (-363))) (-15 -1390 ((-363) (-1100) (-363))) (-15 -1390 ((-363) (-1100) (-1100) (-363))) (-6 -4300)))) (T -95)) -((-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1946 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1356 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-3051 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-95)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95)))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95)))) (-1390 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95))))) -(-13 (-1045) (-10 -7 (-15 -2439 ((-363) (-1100) (-1100))) (-15 -2439 ((-363) (-1100))) (-15 -1946 ((-363) (-1100) (-1100))) (-15 -1946 ((-363) (-1100))) (-15 -1356 ((-363) (-1100) (-1100))) (-15 -3051 ((-1205))) (-15 -4234 ((-363) (-363))) (-15 -1390 ((-363) (-1100) (-363))) (-15 -1390 ((-363) (-1100) (-1100) (-363))) (-6 -4300))) +((-3800 (*1 *1 *1) (-4 *1 (-93))) (-3798 (*1 *1 *1) (-4 *1 (-93))) (-3802 (*1 *1 *1) (-4 *1 (-93))) (-3803 (*1 *1 *1) (-4 *1 (-93))) (-3801 (*1 *1 *1) (-4 *1 (-93))) (-3799 (*1 *1 *1) (-4 *1 (-93)))) +(-13 (-10 -8 (-15 -3799 ($ $)) (-15 -3801 ($ $)) (-15 -3803 ($ $)) (-15 -3802 ($ $)) (-15 -3798 ($ $)) (-15 -3800 ($ $)))) +((-2865 (((-111) $ $) NIL)) (-3864 (((-1128) $) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-94) (-13 (-1035) (-10 -8 (-15 -3864 ((-1128) $))))) (T -94)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-94))))) +(-13 (-1035) (-10 -8 (-15 -3864 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-1288 (((-363) (-1106) (-363)) 42) (((-363) (-1106) (-1106) (-363)) 41)) (-1289 (((-363) (-363)) 33)) (-1290 (((-1211)) 36)) (-3554 (((-1106) $) NIL)) (-1293 (((-363) (-1106) (-1106)) 46) (((-363) (-1106)) 48)) (-3555 (((-1070) $) NIL)) (-1291 (((-363) (-1106) (-1106)) 47)) (-1292 (((-363) (-1106) (-1106)) 49) (((-363) (-1106)) 50)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-95) (-13 (-1052) (-10 -7 (-15 -1293 ((-363) (-1106) (-1106))) (-15 -1293 ((-363) (-1106))) (-15 -1292 ((-363) (-1106) (-1106))) (-15 -1292 ((-363) (-1106))) (-15 -1291 ((-363) (-1106) (-1106))) (-15 -1290 ((-1211))) (-15 -1289 ((-363) (-363))) (-15 -1288 ((-363) (-1106) (-363))) (-15 -1288 ((-363) (-1106) (-1106) (-363))) (-6 -4310)))) (T -95)) +((-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1292 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1291 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1290 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-95)))) (-1289 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95)))) (-1288 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95)))) (-1288 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95))))) +(-13 (-1052) (-10 -7 (-15 -1293 ((-363) (-1106) (-1106))) (-15 -1293 ((-363) (-1106))) (-15 -1292 ((-363) (-1106) (-1106))) (-15 -1292 ((-363) (-1106))) (-15 -1291 ((-363) (-1106) (-1106))) (-15 -1290 ((-1211))) (-15 -1289 ((-363) (-363))) (-15 -1288 ((-363) (-1106) (-363))) (-15 -1288 ((-363) (-1106) (-1106) (-363))) (-6 -4310))) NIL (((-96) (-134)) (T -96)) NIL -(-13 (-10 -7 (-6 -4300) (-6 (-4302 "*")) (-6 -4301) (-6 -4297) (-6 -4295) (-6 -4294) (-6 -4293) (-6 -4298) (-6 -4292) (-6 -4291) (-6 -4290) (-6 -4289) (-6 -4288) (-6 -4296) (-6 -4299) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4287))) -((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3034 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-537))) 22)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 14)) (-2528 (((-1064) $) NIL)) (-1922 ((|#1| $ |#1|) 11)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 20)) (-2943 (($) 8 T CONST)) (-2244 (((-111) $ $) 10)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) 28) (($ $ (-731)) NIL) (($ $ (-537)) 16)) (* (($ $ $) 29))) -(((-97 |#1|) (-13 (-456) (-270 |#1| |#1|) (-10 -8 (-15 -3034 ($ (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1| (-537)))))) (-998)) (T -97)) -((-3034 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) (-3034 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-97 *3))))) -(-13 (-456) (-270 |#1| |#1|) (-10 -8 (-15 -3034 ($ (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1| (-537)))))) -((-3297 (((-402 |#2|) |#2| (-606 |#2|)) 10) (((-402 |#2|) |#2| |#2|) 11))) -(((-98 |#1| |#2|) (-10 -7 (-15 -3297 ((-402 |#2|) |#2| |#2|)) (-15 -3297 ((-402 |#2|) |#2| (-606 |#2|)))) (-13 (-435) (-141)) (-1176 |#1|)) (T -98)) -((-3297 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-13 (-435) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-98 *5 *3)))) (-3297 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-435) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-98 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -3297 ((-402 |#2|) |#2| |#2|)) (-15 -3297 ((-402 |#2|) |#2| (-606 |#2|)))) -((-2330 (((-111) $ $) 10))) -(((-99 |#1|) (-10 -8 (-15 -2330 ((-111) |#1| |#1|))) (-100)) (T -99)) -NIL -(-10 -8 (-15 -2330 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-2244 (((-111) $ $) 6))) +(-13 (-10 -7 (-6 -4310) (-6 (-4312 "*")) (-6 -4311) (-6 -4307) (-6 -4305) (-6 -4304) (-6 -4303) (-6 -4308) (-6 -4302) (-6 -4301) (-6 -4300) (-6 -4299) (-6 -4298) (-6 -4306) (-6 -4309) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4297))) +((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-1294 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-526))) 22)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 14)) (-3555 (((-1070) $) NIL)) (-4118 ((|#1| $ |#1|) 11)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 20)) (-2964 (($) 8 T CONST)) (-3353 (((-111) $ $) 10)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) 28) (($ $ (-735)) NIL) (($ $ (-526)) 16)) (* (($ $ $) 29))) +(((-97 |#1|) (-13 (-457) (-271 |#1| |#1|) (-10 -8 (-15 -1294 ($ (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1| (-526)))))) (-1004)) (T -97)) +((-1294 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) (-1294 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) (-1294 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-97 *3))))) +(-13 (-457) (-271 |#1| |#1|) (-10 -8 (-15 -1294 ($ (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1294 ($ (-1 |#1| |#1| (-526)))))) +((-1295 (((-390 |#2|) |#2| (-607 |#2|)) 10) (((-390 |#2|) |#2| |#2|) 11))) +(((-98 |#1| |#2|) (-10 -7 (-15 -1295 ((-390 |#2|) |#2| |#2|)) (-15 -1295 ((-390 |#2|) |#2| (-607 |#2|)))) (-13 (-436) (-141)) (-1181 |#1|)) (T -98)) +((-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *5 *3)))) (-1295 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -1295 ((-390 |#2|) |#2| |#2|)) (-15 -1295 ((-390 |#2|) |#2| (-607 |#2|)))) +((-2865 (((-111) $ $) 10))) +(((-99 |#1|) (-10 -8 (-15 -2865 ((-111) |#1| |#1|))) (-100)) (T -99)) +NIL +(-10 -8 (-15 -2865 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3353 (((-111) $ $) 6))) (((-100) (-134)) (T -100)) -((-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) (-2244 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111))))) -(-13 (-10 -8 (-15 -2244 ((-111) $ $)) (-15 -2330 ((-111) $ $)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 13 (|has| $ (-6 -4301)))) (-3271 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2980 (($ $ $) NIL (|has| $ (-6 -4301)))) (-3091 (($ $ (-606 |#1|)) 15)) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 11)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 17)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1740 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2156 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|)) 35)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 10)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 9)) (-3425 (($) 16)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2508 (($ (-731) |#1|) 19)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-101 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2508 ($ (-731) |#1|)) (-15 -3091 ($ $ (-606 |#1|))) (-15 -1740 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1740 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|))))) (-1045)) (T -101)) -((-2508 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-101 *3)) (-4 *3 (-1045)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) (-1740 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1045)))) (-1740 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-606 *2) *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2508 ($ (-731) |#1|)) (-15 -3091 ($ $ (-606 |#1|))) (-15 -1740 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1740 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|))))) -((-3765 ((|#3| |#2| |#2|) 29)) (-1799 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4302 "*"))))) (-2403 ((|#3| |#2| |#2|) 30)) (-3715 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4302 "*")))))) -(((-102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3765 (|#3| |#2| |#2|)) (-15 -2403 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4302 "*"))) (PROGN (-15 -1799 (|#1| |#2| |#2|)) (-15 -3715 (|#1| |#2|))) |%noBranch|)) (-998) (-1176 |#1|) (-647 |#1| |#4| |#5|) (-357 |#1|) (-357 |#1|)) (T -102)) -((-3715 (*1 *2 *3) (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) (-4 *4 (-647 *2 *5 *6)))) (-1799 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) (-4 *4 (-647 *2 *5 *6)))) (-2403 (*1 *2 *3 *3) (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)))) (-3765 (*1 *2 *3 *3) (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) -(-10 -7 (-15 -3765 (|#3| |#2| |#2|)) (-15 -2403 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4302 "*"))) (PROGN (-15 -1799 (|#1| |#2| |#2|)) (-15 -3715 (|#1| |#2|))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2220 (((-606 (-1117))) 33)) (-3083 (((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117)) 35)) (-2244 (((-111) $ $) NIL))) -(((-103) (-13 (-1045) (-10 -7 (-15 -2220 ((-606 (-1117)))) (-15 -3083 ((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117))) (-6 -4300)))) (T -103)) -((-2220 (*1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-103)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210))))) (-5 *1 (-103))))) -(-13 (-1045) (-10 -7 (-15 -2220 ((-606 (-1117)))) (-15 -3083 ((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117))) (-6 -4300))) -((-2753 (($ (-606 |#2|)) 11))) -(((-104 |#1| |#2|) (-10 -8 (-15 -2753 (|#1| (-606 |#2|)))) (-105 |#2|) (-1154)) (T -104)) -NIL -(-10 -8 (-15 -2753 (|#1| (-606 |#2|)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-105 |#1|) (-134) (-1154)) (T -105)) -((-2753 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-105 *3)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) (-3499 (*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) -(-13 (-471 |t#1|) (-10 -8 (-6 -4301) (-15 -2753 ($ (-606 |t#1|))) (-15 -1599 (|t#1| $)) (-15 -3499 ($ |t#1| $)) (-15 -2783 (|t#1| $)))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 2) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-2398 (($ (-391 (-537))) 9)) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) -(((-106) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 2) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2398 ($ (-391 (-537))))))) (T -106)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 2)) (-5 *1 (-106)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106))))) -(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 2) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2398 ($ (-391 (-537)))))) -((-1813 (((-606 (-918)) $) 14)) (-3923 (((-1117) $) 10)) (-2341 (((-816) $) 23)) (-3279 (($ (-1117) (-606 (-918))) 15))) -(((-107) (-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-606 (-918)) $)) (-15 -3279 ($ (-1117) (-606 (-918))))))) (T -107)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-107)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-606 (-918))) (-5 *1 (-107)))) (-3279 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-107))))) -(-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-606 (-918)) $)) (-15 -3279 ($ (-1117) (-606 (-918)))))) -((-2330 (((-111) $ $) NIL)) (-3160 (((-1064) $ (-1064)) 24)) (-1898 (($ $ (-1100)) 17)) (-2012 (((-3 (-1064) "failed") $) 23)) (-2151 (((-1064) $) 21)) (-2612 (((-1064) $ (-1064)) 26)) (-2299 (((-1064) $) 25)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) 16)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1338 (($ $) 18)) (-2244 (((-111) $ $) NIL))) -(((-108) (-13 (-348 (-372) (-1064)) (-10 -8 (-15 -2012 ((-3 (-1064) "failed") $)) (-15 -2299 ((-1064) $)) (-15 -2612 ((-1064) $ (-1064)))))) (T -108)) -((-2012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-108)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-108)))) (-2612 (*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-108))))) -(-13 (-348 (-372) (-1064)) (-10 -8 (-15 -2012 ((-3 (-1064) "failed") $)) (-15 -2299 ((-1064) $)) (-15 -2612 ((-1064) $ (-1064))))) -((-2330 (((-111) $ $) NIL)) (-3284 (($ $) NIL)) (-1435 (($ $ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-111) (-807)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-111) $ (-1167 (-537)) (-111)) NIL (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2355 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-4091 (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) NIL)) (-2299 (((-537) (-111) $ (-537)) NIL (|has| (-111) (-1045))) (((-537) (-111) $) NIL (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) NIL)) (-3661 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-2681 (($ $ $) NIL)) (-3679 (($ $) NIL)) (-3897 (($ $ $) NIL)) (-3157 (($ (-731) (-111)) 8)) (-1810 (($ $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL)) (-1470 (($ $ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3703 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL)) (-4081 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ (-111) $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-111) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-3040 (($ $ (-111)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (($ $ (-1167 (-537))) NIL) (((-111) $ (-537)) NIL) (((-111) $ (-537) (-111)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2539 (((-731) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045)))) (((-731) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) NIL)) (-3434 (($ (-606 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-2341 (((-816) $) NIL)) (-3272 (($ (-731) (-111)) 9)) (-2030 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3319 (($ $ $) NIL)) (-1512 (($ $ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-1501 (($ $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-109) (-13 (-122) (-10 -8 (-15 -3272 ($ (-731) (-111)))))) (T -109)) -((-3272 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-111)) (-5 *1 (-109))))) -(-13 (-122) (-10 -8 (-15 -3272 ($ (-731) (-111))))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-110 |#1| |#2|) (-134) (-998) (-998)) (T -110)) -NIL -(-13 (-609 |t#1|) (-1004 |t#2|) (-10 -7 (-6 -4295) (-6 -4294))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-1004 |#2|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3284 (($ $) 10)) (-1435 (($ $ $) 15)) (-3300 (($) 7 T CONST)) (-2288 (($ $) 6)) (-3151 (((-731)) 24)) (-1618 (($) 30)) (-2681 (($ $ $) 13)) (-3679 (($ $) 9)) (-3897 (($ $ $) 16)) (-1810 (($ $ $) 17)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2334 (((-874) $) 29)) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 28)) (-1408 (($ $ $) 20)) (-2528 (((-1064) $) NIL)) (-2221 (($) 8 T CONST)) (-4058 (($ $ $) 21)) (-3996 (((-513) $) 36)) (-2341 (((-816) $) 39)) (-3319 (($ $ $) 11)) (-1512 (($ $ $) 14)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 19)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 22)) (-1501 (($ $ $) 12))) -(((-111) (-13 (-807) (-352) (-622) (-920) (-580 (-513)) (-10 -8 (-15 -3300 ($) -2787) (-15 -2221 ($) -2787) (-15 -1435 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -2288 ($ $))))) (T -111)) -((-3300 (*1 *1) (-5 *1 (-111))) (-2221 (*1 *1) (-5 *1 (-111))) (-1435 (*1 *1 *1 *1) (-5 *1 (-111))) (-1810 (*1 *1 *1 *1) (-5 *1 (-111))) (-3897 (*1 *1 *1 *1) (-5 *1 (-111))) (-2288 (*1 *1 *1) (-5 *1 (-111)))) -(-13 (-807) (-352) (-622) (-920) (-580 (-513)) (-10 -8 (-15 -3300 ($) -2787) (-15 -2221 ($) -2787) (-15 -1435 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -2288 ($ $)))) -((-3146 (((-3 (-1 |#1| (-606 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-606 |#1|))) 11) (((-3 |#1| "failed") (-113) (-606 |#1|)) 21)) (-1954 (((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-606 (-1 |#1| (-606 |#1|)))) 26)) (-2655 (((-113) |#1|) 56 (|has| |#1| (-807)))) (-1375 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-807))))) -(((-112 |#1|) (-10 -7 (-15 -3146 ((-3 |#1| "failed") (-113) (-606 |#1|))) (-15 -3146 ((-113) (-113) (-1 |#1| (-606 |#1|)))) (-15 -3146 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3146 ((-3 (-1 |#1| (-606 |#1|)) "failed") (-113))) (-15 -1954 ((-113) (-113) (-606 (-1 |#1| (-606 |#1|))))) (-15 -1954 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1954 ((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113))) (IF (|has| |#1| (-807)) (PROGN (-15 -2655 ((-113) |#1|)) (-15 -1375 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1045)) (T -112)) -((-1375 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1045)) (-4 *2 (-807)) (-5 *1 (-112 *2)))) (-2655 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-807)) (-4 *3 (-1045)))) (-1954 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-1 *4 (-606 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1045)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 (-1 *4 (-606 *4)))) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-606 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1045)))) (-3146 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-606 *4))) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-606 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1045))))) -(-10 -7 (-15 -3146 ((-3 |#1| "failed") (-113) (-606 |#1|))) (-15 -3146 ((-113) (-113) (-1 |#1| (-606 |#1|)))) (-15 -3146 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3146 ((-3 (-1 |#1| (-606 |#1|)) "failed") (-113))) (-15 -1954 ((-113) (-113) (-606 (-1 |#1| (-606 |#1|))))) (-15 -1954 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1954 ((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113))) (IF (|has| |#1| (-807)) (PROGN (-15 -2655 ((-113) |#1|)) (-15 -1375 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) 72) (($ $ (-731)) 30)) (-4258 (((-111) $) 32)) (-4038 (($ $ (-1100) (-734)) 26)) (-3635 (($ $ (-44 (-1100) (-734))) 15)) (-1507 (((-3 (-734) "failed") $ (-1100)) 25)) (-1813 (((-44 (-1100) (-734)) $) 14)) (-3979 (($ (-1117)) 17) (($ (-1117) (-731)) 22)) (-3227 (((-111) $) 31)) (-2811 (((-111) $) 33)) (-3923 (((-1117) $) 8)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3215 (((-111) $ (-1117)) 10)) (-4255 (($ $ (-1 (-513) (-606 (-513)))) 52) (((-3 (-1 (-513) (-606 (-513))) "failed") $) 56)) (-2528 (((-1064) $) NIL)) (-3313 (((-111) $ (-1100)) 29)) (-3896 (($ $ (-1 (-111) $ $)) 35)) (-2356 (((-3 (-1 (-816) (-606 (-816))) "failed") $) 54) (($ $ (-1 (-816) (-606 (-816)))) 41) (($ $ (-1 (-816) (-816))) 43)) (-3384 (($ $ (-1100)) 45)) (-2494 (($ $) 63)) (-3493 (($ $ (-1 (-111) $ $)) 36)) (-2341 (((-816) $) 48)) (-3945 (($ $ (-1100)) 27)) (-4010 (((-3 (-731) "failed") $) 58)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 71)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 79))) -(((-113) (-13 (-807) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-44 (-1100) (-734)) $)) (-15 -2494 ($ $)) (-15 -3979 ($ (-1117))) (-15 -3979 ($ (-1117) (-731))) (-15 -4010 ((-3 (-731) "failed") $)) (-15 -3227 ((-111) $)) (-15 -4258 ((-111) $)) (-15 -2811 ((-111) $)) (-15 -3073 ((-731) $)) (-15 -3073 ($ $ (-731))) (-15 -3896 ($ $ (-1 (-111) $ $))) (-15 -3493 ($ $ (-1 (-111) $ $))) (-15 -2356 ((-3 (-1 (-816) (-606 (-816))) "failed") $)) (-15 -2356 ($ $ (-1 (-816) (-606 (-816))))) (-15 -2356 ($ $ (-1 (-816) (-816)))) (-15 -4255 ($ $ (-1 (-513) (-606 (-513))))) (-15 -4255 ((-3 (-1 (-513) (-606 (-513))) "failed") $)) (-15 -3215 ((-111) $ (-1117))) (-15 -3313 ((-111) $ (-1100))) (-15 -3945 ($ $ (-1100))) (-15 -3384 ($ $ (-1100))) (-15 -1507 ((-3 (-734) "failed") $ (-1100))) (-15 -4038 ($ $ (-1100) (-734))) (-15 -3635 ($ $ (-44 (-1100) (-734))))))) (T -113)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113)))) (-2494 (*1 *1 *1) (-5 *1 (-113))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) (-3979 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *1 (-113)))) (-4010 (*1 *2 *1) (|partial| -12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-3493 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-2356 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-816))) (-5 *1 (-113)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) (-4255 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3313 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-1507 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-734)) (-5 *1 (-113)))) (-4038 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-734)) (-5 *1 (-113)))) (-3635 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) -(-13 (-807) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-44 (-1100) (-734)) $)) (-15 -2494 ($ $)) (-15 -3979 ($ (-1117))) (-15 -3979 ($ (-1117) (-731))) (-15 -4010 ((-3 (-731) "failed") $)) (-15 -3227 ((-111) $)) (-15 -4258 ((-111) $)) (-15 -2811 ((-111) $)) (-15 -3073 ((-731) $)) (-15 -3073 ($ $ (-731))) (-15 -3896 ($ $ (-1 (-111) $ $))) (-15 -3493 ($ $ (-1 (-111) $ $))) (-15 -2356 ((-3 (-1 (-816) (-606 (-816))) "failed") $)) (-15 -2356 ($ $ (-1 (-816) (-606 (-816))))) (-15 -2356 ($ $ (-1 (-816) (-816)))) (-15 -4255 ($ $ (-1 (-513) (-606 (-513))))) (-15 -4255 ((-3 (-1 (-513) (-606 (-513))) "failed") $)) (-15 -3215 ((-111) $ (-1117))) (-15 -3313 ((-111) $ (-1100))) (-15 -3945 ($ $ (-1100))) (-15 -3384 ($ $ (-1100))) (-15 -1507 ((-3 (-734) "failed") $ (-1100))) (-15 -4038 ($ $ (-1100) (-734))) (-15 -3635 ($ $ (-44 (-1100) (-734)))))) -((-1396 (((-537) |#2|) 37))) -(((-114 |#1| |#2|) (-10 -7 (-15 -1396 ((-537) |#2|))) (-13 (-347) (-989 (-391 (-537)))) (-1176 |#1|)) (T -114)) -((-1396 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-989 (-391 *2)))) (-5 *2 (-537)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -1396 ((-537) |#2|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) NIL)) (-2089 (((-537) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-1098 (-537)) $) NIL)) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) -(((-115 |#1|) (-822 |#1|) (-537)) (T -115)) -NIL -(-822 |#1|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-115 |#1|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-115 |#1|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-115 |#1|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-115 |#1|) (-989 (-537))))) (-3958 (((-115 |#1|) $) NIL) (((-1117) $) NIL (|has| (-115 |#1|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-115 |#1|) (-989 (-537)))) (((-537) $) NIL (|has| (-115 |#1|) (-989 (-537))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-115 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-115 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-115 |#1|))) (|:| |vec| (-1200 (-115 |#1|)))) (-649 $) (-1200 $)) NIL) (((-649 (-115 |#1|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-115 |#1|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-115 |#1|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-115 |#1|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-115 |#1|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-115 |#1|) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-115 |#1|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-115 |#1|) (-807)))) (-3889 (($ $ $) NIL (|has| (-115 |#1|) (-807)))) (-1612 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-115 |#1|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-115 |#1|) (-291)))) (-3830 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-115 |#1|)) (-606 (-115 |#1|))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-278 (-115 |#1|))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-606 (-278 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-606 (-1117)) (-606 (-115 |#1|))) NIL (|has| (-115 |#1|) (-495 (-1117) (-115 |#1|)))) (($ $ (-1117) (-115 |#1|)) NIL (|has| (-115 |#1|) (-495 (-1117) (-115 |#1|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-270 (-115 |#1|) (-115 |#1|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-115 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-115 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-731)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-115 |#1|) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-115 |#1|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-115 |#1|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-115 |#1|) (-580 (-513)))) (((-363) $) NIL (|has| (-115 |#1|) (-973))) (((-210) $) NIL (|has| (-115 |#1|) (-973)))) (-4225 (((-164 (-391 (-537))) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-115 |#1|)) NIL) (($ (-1117)) NIL (|has| (-115 |#1|) (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-862))) (|has| (-115 |#1|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) NIL)) (-2209 (($ $) NIL (|has| (-115 |#1|) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-115 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-115 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-731)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2340 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) -(((-116 |#1|) (-13 (-945 (-115 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537)) (T -116)) -((-4150 (*1 *2 *1 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-537)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-116 *3)) (-14 *3 (-537)))) (-4000 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-537)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-116 *3)) (-14 *3 *2)))) -(-13 (-945 (-115 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) -((-2476 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2570 (((-606 $) $) 27)) (-3868 (((-111) $ $) 32)) (-3122 (((-111) |#2| $) 36)) (-3583 (((-606 |#2|) $) 22)) (-3862 (((-111) $) 16)) (-1922 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3335 (((-111) $) 45)) (-2341 (((-816) $) 41)) (-2804 (((-606 $) $) 28)) (-2244 (((-111) $ $) 34)) (-2258 (((-731) $) 43))) -(((-117 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2476 (|#1| |#1| "right" |#1|)) (-15 -2476 (|#1| |#1| "left" |#1|)) (-15 -1922 (|#1| |#1| "right")) (-15 -1922 (|#1| |#1| "left")) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3583 ((-606 |#2|) |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2258 ((-731) |#1|))) (-118 |#2|) (-1154)) (T -117)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2476 (|#1| |#1| "right" |#1|)) (-15 -2476 (|#1| |#1| "left" |#1|)) (-15 -1922 (|#1| |#1| "right")) (-15 -1922 (|#1| |#1| "left")) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3583 ((-606 |#2|) |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2258 ((-731) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) (($ $ "left" $) 55 (|has| $ (-6 -4301))) (($ $ "right" $) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3278 (($ $) 57)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3267 (($ $) 59)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-118 |#1|) (-134) (-1154)) (T -118)) -((-3267 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-2980 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-3271 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) -(-13 (-962 |t#1|) (-10 -8 (-15 -3267 ($ $)) (-15 -1922 ($ $ "left")) (-15 -3278 ($ $)) (-15 -1922 ($ $ "right")) (IF (|has| $ (-6 -4301)) (PROGN (-15 -2476 ($ $ "left" $)) (-15 -2980 ($ $ $)) (-15 -2476 ($ $ "right" $)) (-15 -3271 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-4277 (((-111) |#1|) 24)) (-2389 (((-731) (-731)) 23) (((-731)) 22)) (-1391 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) -(((-119 |#1|) (-10 -7 (-15 -1391 ((-111) |#1|)) (-15 -1391 ((-111) |#1| (-111))) (-15 -2389 ((-731))) (-15 -2389 ((-731) (-731))) (-15 -4277 ((-111) |#1|))) (-1176 (-537))) (T -119)) -((-4277 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-2389 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-1391 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) -(-10 -7 (-15 -1391 ((-111) |#1|)) (-15 -1391 ((-111) |#1| (-111))) (-15 -2389 ((-731))) (-15 -2389 ((-731) (-731))) (-15 -4277 ((-111) |#1|))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 15)) (-3763 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-3271 (($ $ $) 18 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 20 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 17)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 23)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 19)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1613 (($ |#1| $) 24)) (-3499 (($ |#1| $) 10)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 8)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2622 (($ (-606 |#1|)) 12)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2622 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)) (-15 -1613 ($ |#1| $)) (-15 -3763 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-807)) (T -120)) -((-2622 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-120 *3)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-807))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2622 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)) (-15 -1613 ($ |#1| $)) (-15 -3763 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3284 (($ $) 13)) (-3679 (($ $) 11)) (-3897 (($ $ $) 23)) (-1810 (($ $ $) 21)) (-1512 (($ $ $) 19)) (-1501 (($ $ $) 17))) -(((-121 |#1|) (-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|))) (-122)) (T -121)) -NIL -(-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-3284 (($ $) 103)) (-1435 (($ $ $) 25)) (-1279 (((-1205) $ (-537) (-537)) 66 (|has| $ (-6 -4301)))) (-2450 (((-111) $) 98 (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-1543 (($ $) 102 (-12 (|has| (-111) (-807)) (|has| $ (-6 -4301)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4301)))) (-1566 (($ $) 97 (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-2506 (((-111) $ (-731)) 37)) (-2476 (((-111) $ (-1167 (-537)) (-111)) 88 (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) 54 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4300)))) (-3832 (($) 38 T CONST)) (-4146 (($ $) 100 (|has| $ (-6 -4301)))) (-3289 (($ $) 90)) (-3221 (($ $) 68 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4300))) (($ (-111) $) 69 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-4091 (((-111) $ (-537) (-111)) 53 (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) 55)) (-2299 (((-537) (-111) $ (-537)) 95 (|has| (-111) (-1045))) (((-537) (-111) $) 94 (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) 93)) (-3661 (((-606 (-111)) $) 45 (|has| $ (-6 -4300)))) (-2681 (($ $ $) 26)) (-3679 (($ $) 30)) (-3897 (($ $ $) 28)) (-3157 (($ (-731) (-111)) 77)) (-1810 (($ $ $) 29)) (-1642 (((-111) $ (-731)) 36)) (-1659 (((-537) $) 63 (|has| (-537) (-807)))) (-2444 (($ $ $) 13)) (-1470 (($ $ $) 96 (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-3703 (((-606 (-111)) $) 46 (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 62 (|has| (-537) (-807)))) (-3889 (($ $ $) 14)) (-4081 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-2489 (((-111) $ (-731)) 35)) (-1654 (((-1100) $) 9)) (-4049 (($ $ $ (-537)) 87) (($ (-111) $ (-537)) 86)) (-1270 (((-606 (-537)) $) 60)) (-1641 (((-111) (-537) $) 59)) (-2528 (((-1064) $) 10)) (-3188 (((-111) $) 64 (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-3040 (($ $ (-111)) 65 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) 52 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) 50 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) 49 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) 31)) (-2700 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) 58)) (-2193 (((-111) $) 34)) (-3425 (($) 33)) (-1922 (($ $ (-1167 (-537))) 83) (((-111) $ (-537)) 57) (((-111) $ (-537) (-111)) 56)) (-1856 (($ $ (-1167 (-537))) 85) (($ $ (-537)) 84)) (-2539 (((-731) (-111) $) 47 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) 99 (|has| $ (-6 -4301)))) (-2494 (($ $) 32)) (-3996 (((-513) $) 67 (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) 76)) (-3434 (($ (-606 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-2341 (((-816) $) 11)) (-2030 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4300)))) (-3319 (($ $ $) 27)) (-1512 (($ $ $) 105)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-1501 (($ $ $) 104)) (-2258 (((-731) $) 39 (|has| $ (-6 -4300))))) +((-2865 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) (-3353 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111))))) +(-13 (-10 -8 (-15 -3353 ((-111) $ $)) (-15 -2865 ((-111) $ $)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 13 (|has| $ (-6 -4311)))) (-1330 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1298 (($ $ (-607 |#1|)) 15)) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 11)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 17)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1297 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1296 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|)) 35)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 10)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 9)) (-3887 (($) 16)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1299 (($ (-735) |#1|) 19)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-101 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -1299 ($ (-735) |#1|)) (-15 -1298 ($ $ (-607 |#1|))) (-15 -1297 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1297 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|))))) (-1052)) (T -101)) +((-1299 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-101 *3)) (-4 *3 (-1052)))) (-1298 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1052)))) (-1297 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) (-1296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2)))) (-1296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-607 *2) *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -1299 ($ (-735) |#1|)) (-15 -1298 ($ $ (-607 |#1|))) (-15 -1297 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1297 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1296 ($ $ |#1| (-1 (-607 |#1|) |#1| |#1| |#1|))))) +((-1300 ((|#3| |#2| |#2|) 29)) (-1302 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4312 #1="*"))))) (-1301 ((|#3| |#2| |#2|) 30)) (-1303 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4312 #1#)))))) +(((-102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1300 (|#3| |#2| |#2|)) (-15 -1301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4312 "*"))) (PROGN (-15 -1302 (|#1| |#2| |#2|)) (-15 -1303 (|#1| |#2|))) |%noBranch|)) (-1004) (-1181 |#1|) (-650 |#1| |#4| |#5|) (-357 |#1|) (-357 |#1|)) (T -102)) +((-1303 (*1 *2 *3) (-12 (|has| *2 (-6 (-4312 #1="*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) (-4 *4 (-650 *2 *5 *6)))) (-1302 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4312 #1#))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) (-4 *4 (-650 *2 *5 *6)))) (-1301 (*1 *2 *3 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)))) (-1300 (*1 *2 *3 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) +(-10 -7 (-15 -1300 (|#3| |#2| |#2|)) (-15 -1301 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4312 "*"))) (PROGN (-15 -1302 (|#1| |#2| |#2|)) (-15 -1303 (|#1| |#2|))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-1305 (((-607 (-1123))) 33)) (-1304 (((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123)) 35)) (-3353 (((-111) $ $) NIL))) +(((-103) (-13 (-1052) (-10 -7 (-15 -1305 ((-607 (-1123)))) (-15 -1304 ((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123))) (-6 -4310)))) (T -103)) +((-1305 (*1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-103)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211))))) (-5 *1 (-103))))) +(-13 (-1052) (-10 -7 (-15 -1305 ((-607 (-1123)))) (-15 -1304 ((-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) (|:| |singularities| (-1101 (-211)))) (-1123))) (-6 -4310))) +((-1308 (($ (-607 |#2|)) 11))) +(((-104 |#1| |#2|) (-10 -8 (-15 -1308 (|#1| (-607 |#2|)))) (-105 |#2|) (-1159)) (T -104)) +NIL +(-10 -8 (-15 -1308 (|#1| (-607 |#2|)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-105 |#1|) (-134) (-1159)) (T -105)) +((-1308 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-105 *3)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) (-3929 (*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) (-1306 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) +(-13 (-472 |t#1|) (-10 -8 (-6 -4311) (-15 -1308 ($ (-607 |t#1|))) (-15 -1307 (|t#1| $)) (-15 -3929 ($ |t#1| $)) (-15 -1306 (|t#1| $)))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 2) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2117 (($ (-392 (-526))) 9)) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) +(((-106) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 2) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2117 ($ (-392 (-526))))))) (T -106)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 2)) (-5 *1 (-106)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106))))) +(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 2) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2117 ($ (-392 (-526)))))) +((-1325 (((-607 (-924)) $) 14)) (-3864 (((-1123) $) 10)) (-4274 (((-823) $) 23)) (-1309 (($ (-1123) (-607 (-924))) 15))) +(((-107) (-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-607 (-924)) $)) (-15 -1309 ($ (-1123) (-607 (-924))))))) (T -107)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-107)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-607 (-924))) (-5 *1 (-107)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-107))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-607 (-924)) $)) (-15 -1309 ($ (-1123) (-607 (-924)))))) +((-2865 (((-111) $ $) NIL)) (-1789 (((-1070) $ (-1070)) 24)) (-1793 (($ $ (-1106)) 17)) (-3941 (((-3 (-1070) "failed") $) 23)) (-1790 (((-1070) $) 21)) (-1310 (((-1070) $ (-1070)) 26)) (-3738 (((-1070) $) 25)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) 16)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-1792 (($ $) 18)) (-3353 (((-111) $ $) NIL))) +(((-108) (-13 (-350 (-373) (-1070)) (-10 -8 (-15 -3941 ((-3 (-1070) "failed") $)) (-15 -3738 ((-1070) $)) (-15 -1310 ((-1070) $ (-1070)))))) (T -108)) +((-3941 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-1310 (*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108))))) +(-13 (-350 (-373) (-1070)) (-10 -8 (-15 -3941 ((-3 (-1070) "failed") $)) (-15 -3738 ((-1070) $)) (-15 -1310 ((-1070) $ (-1070))))) +((-2865 (((-111) $ $) NIL)) (-3639 (($ $) NIL)) (-3635 (($ $ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-111) (-811)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-111) $ (-1172 (-526)) (-111)) NIL (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-3725 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-1613 (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) NIL)) (-3738 (((-526) (-111) $ (-526)) NIL (|has| (-111) (-1052))) (((-526) (-111) $) NIL (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) NIL)) (-2044 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3156 (($ $ $) NIL)) (-3636 (($ $) NIL)) (-1337 (($ $ $) NIL)) (-3936 (($ (-735) (-111)) 8)) (-1338 (($ $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL)) (-3832 (($ $ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2480 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL)) (-2048 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ (-111) $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-111) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2277 (($ $ (-111)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (($ $ (-1172 (-526))) NIL) (((-111) $ (-526)) NIL) (((-111) $ (-526) (-111)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2045 (((-735) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052)))) (((-735) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) NIL)) (-4120 (($ (-607 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-4274 (((-823) $) NIL)) (-1866 (($ (-735) (-111)) 9)) (-2047 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3155 (($ $ $) NIL)) (-3641 (($ $ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-3640 (($ $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-109) (-13 (-122) (-10 -8 (-15 -1866 ($ (-735) (-111)))))) (T -109)) +((-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-111)) (-5 *1 (-109))))) +(-13 (-122) (-10 -8 (-15 -1866 ($ (-735) (-111))))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-110 |#1| |#2|) (-134) (-1004) (-1004)) (T -110)) +NIL +(-13 (-613 |t#1|) (-1010 |t#2|) (-10 -7 (-6 -4305) (-6 -4304))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-1010 |#2|) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3639 (($ $) 10)) (-3635 (($ $ $) 15)) (-1313 (($) 7 T CONST)) (-1311 (($ $) 6)) (-3433 (((-735)) 24)) (-3294 (($) 30)) (-3156 (($ $ $) 13)) (-3636 (($ $) 9)) (-1337 (($ $ $) 16)) (-1338 (($ $ $) 17)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2102 (((-878) $) 29)) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 28)) (-3157 (($ $ $) 20)) (-3555 (((-1070) $) NIL)) (-1312 (($) 8 T CONST)) (-3158 (($ $ $) 21)) (-4287 (((-515) $) 36)) (-4274 (((-823) $) 39)) (-3155 (($ $ $) 11)) (-3641 (($ $ $) 14)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 19)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 22)) (-3640 (($ $ $) 12))) +(((-111) (-13 (-811) (-353) (-627) (-926) (-584 (-515)) (-10 -8 (-15 -1313 ($) -4268) (-15 -1312 ($) -4268) (-15 -3635 ($ $ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1311 ($ $))))) (T -111)) +((-1313 (*1 *1) (-5 *1 (-111))) (-1312 (*1 *1) (-5 *1 (-111))) (-3635 (*1 *1 *1 *1) (-5 *1 (-111))) (-1338 (*1 *1 *1 *1) (-5 *1 (-111))) (-1337 (*1 *1 *1 *1) (-5 *1 (-111))) (-1311 (*1 *1 *1) (-5 *1 (-111)))) +(-13 (-811) (-353) (-627) (-926) (-584 (-515)) (-10 -8 (-15 -1313 ($) -4268) (-15 -1312 ($) -4268) (-15 -3635 ($ $ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1311 ($ $)))) +((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) 72) (($ $ (-735)) 30)) (-1322 (((-111) $) 32)) (-1315 (($ $ (-1106) (-737)) 26)) (-1314 (($ $ (-44 (-1106) (-737))) 15)) (-3141 (((-3 (-737) "failed") $ (-1106)) 25)) (-1325 (((-44 (-1106) (-737)) $) 14)) (-2307 (($ (-1123)) 17) (($ (-1123) (-735)) 22)) (-1323 (((-111) $) 31)) (-1321 (((-111) $) 33)) (-3864 (((-1123) $) 8)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2930 (((-111) $ (-1123)) 10)) (-1318 (($ $ (-1 (-515) (-607 (-515)))) 52) (((-3 (-1 (-515) (-607 (-515))) "failed") $) 56)) (-3555 (((-1070) $) NIL)) (-1317 (((-111) $ (-1106)) 29)) (-1320 (($ $ (-1 (-111) $ $)) 35)) (-3939 (((-3 (-1 (-823) (-607 (-823))) "failed") $) 54) (($ $ (-1 (-823) (-607 (-823)))) 41) (($ $ (-1 (-823) (-823))) 43)) (-1316 (($ $ (-1106)) 45)) (-3719 (($ $) 63)) (-1319 (($ $ (-1 (-111) $ $)) 36)) (-4274 (((-823) $) 48)) (-3092 (($ $ (-1106)) 27)) (-1324 (((-3 (-735) "failed") $) 58)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 71)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 79))) +(((-112) (-13 (-811) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-44 (-1106) (-737)) $)) (-15 -3719 ($ $)) (-15 -2307 ($ (-1123))) (-15 -2307 ($ (-1123) (-735))) (-15 -1324 ((-3 (-735) "failed") $)) (-15 -1323 ((-111) $)) (-15 -1322 ((-111) $)) (-15 -1321 ((-111) $)) (-15 -1553 ((-735) $)) (-15 -1553 ($ $ (-735))) (-15 -1320 ($ $ (-1 (-111) $ $))) (-15 -1319 ($ $ (-1 (-111) $ $))) (-15 -3939 ((-3 (-1 (-823) (-607 (-823))) "failed") $)) (-15 -3939 ($ $ (-1 (-823) (-607 (-823))))) (-15 -3939 ($ $ (-1 (-823) (-823)))) (-15 -1318 ($ $ (-1 (-515) (-607 (-515))))) (-15 -1318 ((-3 (-1 (-515) (-607 (-515))) "failed") $)) (-15 -2930 ((-111) $ (-1123))) (-15 -1317 ((-111) $ (-1106))) (-15 -3092 ($ $ (-1106))) (-15 -1316 ($ $ (-1106))) (-15 -3141 ((-3 (-737) "failed") $ (-1106))) (-15 -1315 ($ $ (-1106) (-737))) (-15 -1314 ($ $ (-44 (-1106) (-737))))))) (T -112)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112)))) (-3719 (*1 *1 *1) (-5 *1 (-112))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) (-2307 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *1 (-112)))) (-1324 (*1 *2 *1) (|partial| -12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112)))) (-1319 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-823))) (-5 *1 (-112)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) (-1318 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-112)))) (-1317 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-112)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) (-3141 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-737)) (-5 *1 (-112)))) (-1315 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-737)) (-5 *1 (-112)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) +(-13 (-811) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -1325 ((-44 (-1106) (-737)) $)) (-15 -3719 ($ $)) (-15 -2307 ($ (-1123))) (-15 -2307 ($ (-1123) (-735))) (-15 -1324 ((-3 (-735) "failed") $)) (-15 -1323 ((-111) $)) (-15 -1322 ((-111) $)) (-15 -1321 ((-111) $)) (-15 -1553 ((-735) $)) (-15 -1553 ($ $ (-735))) (-15 -1320 ($ $ (-1 (-111) $ $))) (-15 -1319 ($ $ (-1 (-111) $ $))) (-15 -3939 ((-3 (-1 (-823) (-607 (-823))) "failed") $)) (-15 -3939 ($ $ (-1 (-823) (-607 (-823))))) (-15 -3939 ($ $ (-1 (-823) (-823)))) (-15 -1318 ($ $ (-1 (-515) (-607 (-515))))) (-15 -1318 ((-3 (-1 (-515) (-607 (-515))) "failed") $)) (-15 -2930 ((-111) $ (-1123))) (-15 -1317 ((-111) $ (-1106))) (-15 -3092 ($ $ (-1106))) (-15 -1316 ($ $ (-1106))) (-15 -3141 ((-3 (-737) "failed") $ (-1106))) (-15 -1315 ($ $ (-1106) (-737))) (-15 -1314 ($ $ (-44 (-1106) (-737)))))) +((-2821 (((-3 (-1 |#1| (-607 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-607 |#1|))) 11) (((-3 |#1| "failed") (-112) (-607 |#1|)) 21)) (-1326 (((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-607 (-1 |#1| (-607 |#1|)))) 26)) (-1327 (((-112) |#1|) 56 (|has| |#1| (-811)))) (-1328 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-811))))) +(((-113 |#1|) (-10 -7 (-15 -2821 ((-3 |#1| "failed") (-112) (-607 |#1|))) (-15 -2821 ((-112) (-112) (-1 |#1| (-607 |#1|)))) (-15 -2821 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2821 ((-3 (-1 |#1| (-607 |#1|)) "failed") (-112))) (-15 -1326 ((-112) (-112) (-607 (-1 |#1| (-607 |#1|))))) (-15 -1326 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1326 ((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112))) (IF (|has| |#1| (-811)) (PROGN (-15 -1327 ((-112) |#1|)) (-15 -1328 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1052)) (T -113)) +((-1328 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-113 *2)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-113 *3)) (-4 *3 (-811)) (-4 *3 (-1052)))) (-1326 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-1 *4 (-607 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1052)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-1326 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 (-1 *4 (-607 *4)))) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-607 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1052)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-607 *4))) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) (-2821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-607 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1052))))) +(-10 -7 (-15 -2821 ((-3 |#1| "failed") (-112) (-607 |#1|))) (-15 -2821 ((-112) (-112) (-1 |#1| (-607 |#1|)))) (-15 -2821 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2821 ((-3 (-1 |#1| (-607 |#1|)) "failed") (-112))) (-15 -1326 ((-112) (-112) (-607 (-1 |#1| (-607 |#1|))))) (-15 -1326 ((-112) (-112) (-1 |#1| |#1|))) (-15 -1326 ((-3 (-607 (-1 |#1| (-607 |#1|))) "failed") (-112))) (IF (|has| |#1| (-811)) (PROGN (-15 -1327 ((-112) |#1|)) (-15 -1328 ((-3 |#1| "failed") (-112)))) |%noBranch|)) +((-1329 (((-526) |#2|) 37))) +(((-114 |#1| |#2|) (-10 -7 (-15 -1329 ((-526) |#2|))) (-13 (-348) (-995 (-392 (-526)))) (-1181 |#1|)) (T -114)) +((-1329 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-995 (-392 *2)))) (-5 *2 (-526)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -1329 ((-526) |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2907 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) NIL)) (-2908 (((-526) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-1101 (-526)) $) NIL)) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) +(((-115 |#1|) (-829 |#1|) (-526)) (T -115)) +NIL +(-829 |#1|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-115 |#1|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-115 |#1|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-115 |#1|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-115 |#1|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-115 |#1|) (-995 (-526))))) (-3469 (((-115 |#1|) $) NIL) (((-1123) $) NIL (|has| (-115 |#1|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-115 |#1|) (-995 (-526)))) (((-526) $) NIL (|has| (-115 |#1|) (-995 (-526))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-115 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-115 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-115 |#1|))) (|:| |vec| (-1205 (-115 |#1|)))) (-653 $) (-1205 $)) NIL) (((-653 (-115 |#1|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-115 |#1|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-115 |#1|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-115 |#1|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-115 |#1|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-115 |#1|) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-115 |#1|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-115 |#1|) (-811)))) (-3638 (($ $ $) NIL (|has| (-115 |#1|) (-811)))) (-4275 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-115 |#1|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-115 |#1|) (-292)))) (-3427 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-115 |#1|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-115 |#1|)) (-607 (-115 |#1|))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-278 (-115 |#1|))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-607 (-278 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-294 (-115 |#1|)))) (($ $ (-607 (-1123)) (-607 (-115 |#1|))) NIL (|has| (-115 |#1|) (-496 (-1123) (-115 |#1|)))) (($ $ (-1123) (-115 |#1|)) NIL (|has| (-115 |#1|) (-496 (-1123) (-115 |#1|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-271 (-115 |#1|) (-115 |#1|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-115 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-115 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-735)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-115 |#1|) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-115 |#1|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-115 |#1|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-115 |#1|) (-584 (-515)))) (((-363) $) NIL (|has| (-115 |#1|) (-977))) (((-211) $) NIL (|has| (-115 |#1|) (-977)))) (-2911 (((-165 (-392 (-526))) $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-115 |#1|)) NIL) (($ (-1123)) NIL (|has| (-115 |#1|) (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-869))) (|has| (-115 |#1|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) NIL)) (-3702 (($ $) NIL (|has| (-115 |#1|) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-115 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-115 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-115 |#1|) (-859 (-1123)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-735)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-115 |#1|) (-811)))) (-4265 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) +(((-116 |#1|) (-13 (-950 (-115 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526)) (T -116)) +((-4088 (*1 *2 *1 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-526)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-116 *3)) (-14 *3 (-526)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-526)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-116 *3)) (-14 *3 *2)))) +(-13 (-950 (-115 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) +((-4106 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3331 (((-607 $) $) 27)) (-3327 (((-111) $ $) 32)) (-3557 (((-111) |#2| $) 36)) (-3330 (((-607 |#2|) $) 22)) (-3841 (((-111) $) 16)) (-4118 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3955 (((-111) $) 45)) (-4274 (((-823) $) 41)) (-3836 (((-607 $) $) 28)) (-3353 (((-111) $ $) 34)) (-4273 (((-735) $) 43))) +(((-117 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4106 (|#1| |#1| "right" |#1|)) (-15 -4106 (|#1| |#1| "left" |#1|)) (-15 -4118 (|#1| |#1| "right")) (-15 -4118 (|#1| |#1| "left")) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3330 ((-607 |#2|) |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -4273 ((-735) |#1|))) (-118 |#2|) (-1159)) (T -117)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4106 (|#1| |#1| "right" |#1|)) (-15 -4106 (|#1| |#1| "left" |#1|)) (-15 -4118 (|#1| |#1| "right")) (-15 -4118 (|#1| |#1| "left")) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3330 ((-607 |#2|) |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -3557 ((-111) |#2| |#1|)) (-15 -4273 ((-735) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 52 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) (($ $ "left" $) 55 (|has| $ (-6 -4311))) (($ $ "right" $) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3434 (($ $) 57)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3435 (($ $) 59)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-118 |#1|) (-134) (-1159)) (T -118)) +((-3435 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-3434 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-1331 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) (-1330 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) +(-13 (-968 |t#1|) (-10 -8 (-15 -3435 ($ $)) (-15 -4118 ($ $ "left")) (-15 -3434 ($ $)) (-15 -4118 ($ $ "right")) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4106 ($ $ "left" $)) (-15 -1331 ($ $ $)) (-15 -4106 ($ $ "right" $)) (-15 -1330 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-1334 (((-111) |#1|) 24)) (-1333 (((-735) (-735)) 23) (((-735)) 22)) (-1332 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) +(((-119 |#1|) (-10 -7 (-15 -1332 ((-111) |#1|)) (-15 -1332 ((-111) |#1| (-111))) (-15 -1333 ((-735))) (-15 -1333 ((-735) (-735))) (-15 -1334 ((-111) |#1|))) (-1181 (-526))) (T -119)) +((-1334 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1333 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1332 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) (-1332 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) +(-10 -7 (-15 -1332 ((-111) |#1|)) (-15 -1332 ((-111) |#1| (-111))) (-15 -1333 ((-735))) (-15 -1333 ((-735) (-735))) (-15 -1334 ((-111) |#1|))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 15)) (-3737 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-1330 (($ $ $) 18 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 20 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 17)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 23)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 19)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1335 (($ |#1| $) 24)) (-3929 (($ |#1| $) 10)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 8)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1336 (($ (-607 |#1|)) 12)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1336 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)) (-15 -1335 ($ |#1| $)) (-15 -3737 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-811)) (T -120)) +((-1336 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-120 *3)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) (-3737 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-811))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1336 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)) (-15 -1335 ($ |#1| $)) (-15 -3737 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3639 (($ $) 13)) (-3636 (($ $) 11)) (-1337 (($ $ $) 23)) (-1338 (($ $ $) 21)) (-3641 (($ $ $) 19)) (-3640 (($ $ $) 17))) +(((-121 |#1|) (-10 -8 (-15 -1337 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) (-122)) (T -121)) +NIL +(-10 -8 (-15 -1337 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3639 (($ $) 103)) (-3635 (($ $ $) 25)) (-2276 (((-1211) $ (-526) (-526)) 66 (|has| $ (-6 -4311)))) (-1824 (((-111) $) 98 (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-1822 (($ $) 102 (-12 (|has| (-111) (-811)) (|has| $ (-6 -4311)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4311)))) (-3209 (($ $) 97 (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-1244 (((-111) $ (-735)) 37)) (-4106 (((-111) $ (-1172 (-526)) (-111)) 88 (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) 54 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4310)))) (-3855 (($) 38 T CONST)) (-2346 (($ $) 100 (|has| $ (-6 -4311)))) (-2347 (($ $) 90)) (-1375 (($ $) 68 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4310))) (($ (-111) $) 69 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-1613 (((-111) $ (-526) (-111)) 53 (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) 55)) (-3738 (((-526) (-111) $ (-526)) 95 (|has| (-111) (-1052))) (((-526) (-111) $) 94 (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) 93)) (-2044 (((-607 (-111)) $) 45 (|has| $ (-6 -4310)))) (-3156 (($ $ $) 26)) (-3636 (($ $) 30)) (-1337 (($ $ $) 28)) (-3936 (($ (-735) (-111)) 77)) (-1338 (($ $ $) 29)) (-4041 (((-111) $ (-735)) 36)) (-2278 (((-526) $) 63 (|has| (-526) (-811)))) (-3637 (($ $ $) 13)) (-3832 (($ $ $) 96 (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-2480 (((-607 (-111)) $) 46 (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 62 (|has| (-526) (-811)))) (-3638 (($ $ $) 14)) (-2048 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-4038 (((-111) $ (-735)) 35)) (-3554 (((-1106) $) 9)) (-2351 (($ $ $ (-526)) 87) (($ (-111) $ (-526)) 86)) (-2281 (((-607 (-526)) $) 60)) (-2282 (((-111) (-526) $) 59)) (-3555 (((-1070) $) 10)) (-4119 (((-111) $) 64 (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-2277 (($ $ (-111)) 65 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) 52 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) 50 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) 49 (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) 31)) (-2280 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) 58)) (-3722 (((-111) $) 34)) (-3887 (($) 33)) (-4118 (($ $ (-1172 (-526))) 83) (((-111) $ (-526)) 57) (((-111) $ (-526) (-111)) 56)) (-2352 (($ $ (-1172 (-526))) 85) (($ $ (-526)) 84)) (-2045 (((-735) (-111) $) 47 (-12 (|has| (-111) (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) 99 (|has| $ (-6 -4311)))) (-3719 (($ $) 32)) (-4287 (((-515) $) 67 (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) 76)) (-4120 (($ (-607 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-4274 (((-823) $) 11)) (-2047 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4310)))) (-3155 (($ $ $) 27)) (-3641 (($ $ $) 105)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-3640 (($ $ $) 104)) (-4273 (((-735) $) 39 (|has| $ (-6 -4310))))) (((-122) (-134)) (T -122)) -((-3679 (*1 *1 *1) (-4 *1 (-122))) (-1810 (*1 *1 *1 *1) (-4 *1 (-122))) (-3897 (*1 *1 *1 *1) (-4 *1 (-122))) (-3319 (*1 *1 *1 *1) (-4 *1 (-122))) (-2681 (*1 *1 *1 *1) (-4 *1 (-122))) (-1435 (*1 *1 *1 *1) (-4 *1 (-122)))) -(-13 (-807) (-622) (-19 (-111)) (-10 -8 (-15 -3679 ($ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -1435 ($ $ $)))) -(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 #0=(-111)) . T) ((-580 (-513)) |has| (-111) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))) ((-612 #0#) . T) ((-622) . T) ((-19 #0#) . T) ((-807) . T) ((-1045) . T) ((-1154) . T)) -((-4081 (($ (-1 |#2| |#2|) $) 22)) (-2494 (($ $) 16)) (-2258 (((-731) $) 24))) -(((-123 |#1| |#2|) (-10 -8 (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2494 (|#1| |#1|))) (-124 |#2|) (-1045)) (T -123)) -NIL -(-10 -8 (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2494 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) (($ $ "left" $) 55 (|has| $ (-6 -4301))) (($ $ "right" $) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3278 (($ $) 57)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 60)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3267 (($ $) 59)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-124 |#1|) (-134) (-1045)) (T -124)) -((-2913 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1045))))) -(-13 (-118 |t#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2913 ($ $ |t#1| $)))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-118 |#1|) . T) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 15)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 19 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 20 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 18 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 21)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ |#1| $) 10)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 8)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 17)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1466 (($ (-606 |#1|)) 12)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4301) (-15 -1466 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)))) (-807)) (T -125)) -((-1466 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-125 *3)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-807))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4301) (-15 -1466 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 24)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 26 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 30 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 28 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 20)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 15)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 19)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 21)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 18)) (-3425 (($) 11)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1923 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 10 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -1923 ($ |#1|)) (-15 -1923 ($ $ |#1| $)))) (-1045)) (T -126)) -((-1923 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045)))) (-1923 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045))))) -(-13 (-124 |#1|) (-10 -8 (-15 -1923 ($ |#1|)) (-15 -1923 ($ $ |#1| $)))) -((-2330 (((-111) $ $) NIL (|has| (-128) (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-807)))) (-1543 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-128) (-807))))) (-1566 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-128) $ (-537) (-128)) NIL (|has| $ (-6 -4301))) (((-128) $ (-1167 (-537)) (-128)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-2355 (($ (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4300))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-128) $ (-537) (-128)) NIL (|has| $ (-6 -4301)))) (-4030 (((-128) $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) (-128)) $) NIL) (((-537) (-128) $) NIL (|has| (-128) (-1045))) (((-537) (-128) $ (-537)) NIL (|has| (-128) (-1045)))) (-3661 (((-606 (-128)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-128)) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-128) (-807)))) (-1470 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-807)))) (-3703 (((-606 (-128)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-128) (-807)))) (-4081 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| (-128) (-1045)))) (-4049 (($ (-128) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| (-128) (-1045)))) (-3188 (((-128) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-3040 (($ $ (-128)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-128)))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-278 (-128))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-606 (-128)) (-606 (-128))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-3010 (((-606 (-128)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-128) $ (-537) (-128)) NIL) (((-128) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300))) (((-731) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-128) (-580 (-513))))) (-2350 (($ (-606 (-128))) NIL)) (-3434 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| (-128) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2244 (((-111) $ $) NIL (|has| (-128) (-1045)))) (-2282 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-127) (-19 (-128))) (T -127)) -NIL -(-19 (-128)) -((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 12) (((-731) $) 9) (($ (-731)) 8)) (-4271 (($ (-731)) 7)) (-3775 (($ $ $) 16)) (-1976 (($ $ $) 15)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 14))) -(((-128) (-13 (-807) (-579 (-731)) (-10 -8 (-15 -4271 ($ (-731))) (-15 -2341 ($ (-731))) (-15 -1976 ($ $ $)) (-15 -3775 ($ $ $))))) (T -128)) -((-4271 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) (-1976 (*1 *1 *1 *1) (-5 *1 (-128))) (-3775 (*1 *1 *1 *1) (-5 *1 (-128)))) -(-13 (-807) (-579 (-731)) (-10 -8 (-15 -4271 ($ (-731))) (-15 -2341 ($ (-731))) (-15 -1976 ($ $ $)) (-15 -3775 ($ $ $)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15))) +((-3636 (*1 *1 *1) (-4 *1 (-122))) (-1338 (*1 *1 *1 *1) (-4 *1 (-122))) (-1337 (*1 *1 *1 *1) (-4 *1 (-122))) (-3155 (*1 *1 *1 *1) (-4 *1 (-122))) (-3156 (*1 *1 *1 *1) (-4 *1 (-122))) (-3635 (*1 *1 *1 *1) (-4 *1 (-122)))) +(-13 (-811) (-627) (-19 (-111)) (-10 -8 (-15 -3636 ($ $)) (-15 -1338 ($ $ $)) (-15 -1337 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3635 ($ $ $)))) +(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 #1=(-111)) . T) ((-584 (-515)) |has| (-111) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))) ((-616 #1#) . T) ((-627) . T) ((-19 #1#) . T) ((-811) . T) ((-1052) . T) ((-1159) . T)) +((-2048 (($ (-1 |#2| |#2|) $) 22)) (-3719 (($ $) 16)) (-4273 (((-735) $) 24))) +(((-123 |#1| |#2|) (-10 -8 (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -3719 (|#1| |#1|))) (-124 |#2|) (-1052)) (T -123)) +NIL +(-10 -8 (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -3719 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 52 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) (($ $ #2="left" $) 55 (|has| $ (-6 -4311))) (($ $ #3="right" $) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3434 (($ $) 57)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 60)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3435 (($ $) 59)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-124 |#1|) (-134) (-1052)) (T -124)) +((-1339 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1052))))) +(-13 (-118 |t#1|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -1339 ($ $ |t#1| $)))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-118 |#1|) . T) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 15)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 19 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 20 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 18 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 21)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ |#1| $) 10)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 8)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 17)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1340 (($ (-607 |#1|)) 12)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4311) (-15 -1340 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)))) (-811)) (T -125)) +((-1340 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-125 *3)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-811))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4311) (-15 -1340 ($ (-607 |#1|))) (-15 -3929 ($ |#1| $)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 24)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) 26 (|has| $ (-6 -4311)))) (-1330 (($ $ $) 30 (|has| $ (-6 -4311)))) (-1331 (($ $ $) 28 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 20)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1339 (($ $ |#1| $) 15)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 19)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 21)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 18)) (-3887 (($) 11)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1341 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 10 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -1341 ($ |#1|)) (-15 -1341 ($ $ |#1| $)))) (-1052)) (T -126)) +((-1341 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052)))) (-1341 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052))))) +(-13 (-124 |#1|) (-10 -8 (-15 -1341 ($ |#1|)) (-15 -1341 ($ $ |#1| $)))) +((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 12) (((-735) $) 9) (($ (-735)) 8)) (-1344 (($ (-735)) 7)) (-1342 (($ $ $) 16)) (-1343 (($ $ $) 15)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 14))) +(((-127) (-13 (-811) (-583 (-735)) (-10 -8 (-15 -1344 ($ (-735))) (-15 -4274 ($ (-735))) (-15 -1343 ($ $ $)) (-15 -1342 ($ $ $))))) (T -127)) +((-1344 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) (-1343 (*1 *1 *1 *1) (-5 *1 (-127))) (-1342 (*1 *1 *1 *1) (-5 *1 (-127)))) +(-13 (-811) (-583 (-735)) (-10 -8 (-15 -1344 ($ (-735))) (-15 -4274 ($ (-735))) (-15 -1343 ($ $ $)) (-15 -1342 ($ $ $)))) +((-2865 (((-111) $ $) NIL (|has| (-127) (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) (-127) (-127)) $) NIL) (((-111) $) NIL (|has| (-127) (-811)))) (-1822 (($ (-1 (-111) (-127) (-127)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-127) (-811))))) (-3209 (($ (-1 (-111) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-127) $ (-526) (-127)) NIL (|has| $ (-6 -4311))) (((-127) $ (-1172 (-526)) (-127)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-3725 (($ (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052)))) (($ (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4310))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-127) $ (-526) (-127)) NIL (|has| $ (-6 -4311)))) (-3410 (((-127) $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) (-127)) $) NIL) (((-526) (-127) $) NIL (|has| (-127) (-1052))) (((-526) (-127) $ (-526)) NIL (|has| (-127) (-1052)))) (-2044 (((-607 (-127)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-127)) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-127) (-811)))) (-3832 (($ (-1 (-111) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-811)))) (-2480 (((-607 (-127)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-127) (-811)))) (-2048 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| (-127) (-1052)))) (-2351 (($ (-127) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| (-127) (-1052)))) (-4119 (((-127) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-127) "failed") (-1 (-111) (-127)) $) NIL)) (-2277 (($ $ (-127)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-127)))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-278 (-127))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052)))) (($ $ (-607 (-127)) (-607 (-127))) NIL (-12 (|has| (-127) (-294 (-127))) (|has| (-127) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-2283 (((-607 (-127)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-127) $ (-526) (-127)) NIL) (((-127) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310))) (((-735) (-127) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-127) (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-127) (-584 (-515))))) (-3844 (($ (-607 (-127))) NIL)) (-4120 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| (-127) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-127)) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-127) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-127) (-811)))) (-3353 (((-111) $ $) NIL (|has| (-127) (-1052)))) (-2984 (((-111) $ $) NIL (|has| (-127) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-127) (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-128) (-19 (-127))) (T -128)) +NIL +(-19 (-127)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15))) (((-129) (-134)) (T -129)) -((-3418 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(-13 (-23) (-10 -8 (-15 -3418 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-3219 (((-1205) $ (-731)) 19)) (-2299 (((-731) $) 20)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +((-1345 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(-13 (-23) (-10 -8 (-15 -1345 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-1346 (((-1211) $ (-735)) 19)) (-3738 (((-735) $) 20)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) (((-130) (-134)) (T -130)) -((-2299 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-731)))) (-3219 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-731)) (-5 *2 (-1205))))) -(-13 (-807) (-10 -8 (-15 -2299 ((-731) $)) (-15 -3219 ((-1205) $ (-731))))) -(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 34)) (-1656 (((-111) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-731) "failed") $) 40)) (-3958 (((-731) $) 38)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3697 (((-111)) 41)) (-2598 (((-111) (-111)) 43)) (-3344 (((-111) $) 24)) (-1582 (((-111) $) 37)) (-2341 (((-816) $) 22) (($ (-731)) 14)) (-2928 (($) 12 T CONST)) (-2943 (($) 11 T CONST)) (-2906 (($ (-731)) 15)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 25)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 26)) (-2329 (((-3 $ "failed") $ $) 30)) (-2318 (($ $ $) 28)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL) (($ $ $) 36)) (* (($ (-731) $) 33) (($ (-874) $) NIL) (($ $ $) 31))) -(((-131) (-13 (-807) (-23) (-687) (-989 (-731)) (-10 -8 (-6 (-4302 "*")) (-15 -2329 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2906 ($ (-731))) (-15 -3344 ((-111) $)) (-15 -1582 ((-111) $)) (-15 -3697 ((-111))) (-15 -2598 ((-111) (-111)))))) (T -131)) -((-2329 (*1 *1 *1 *1) (|partial| -5 *1 (-131))) (** (*1 *1 *1 *1) (-5 *1 (-131))) (-2906 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-131)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-3697 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(-13 (-807) (-23) (-687) (-989 (-731)) (-10 -8 (-6 (-4302 "*")) (-15 -2329 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2906 ($ (-731))) (-15 -3344 ((-111) $)) (-15 -1582 ((-111) $)) (-15 -3697 ((-111))) (-15 -2598 ((-111) (-111))))) -((-2192 (((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|)) 14)) (-1612 (((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)) 18))) -(((-132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2192 ((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|))) (-15 -1612 ((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)))) (-537) (-731) (-163) (-163)) (T -132)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8))))) -(-10 -7 (-15 -2192 ((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|))) (-15 -1612 ((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)))) -((-2330 (((-111) $ $) NIL)) (-3540 (($ (-606 |#3|)) 40)) (-3660 (($ $) 99) (($ $ (-537) (-537)) 98)) (-3832 (($) 17)) (-1516 (((-3 |#3| "failed") $) 60)) (-3958 ((|#3| $) NIL)) (-4048 (($ $ (-606 (-537))) 100)) (-2178 (((-606 |#3|) $) 36)) (-3705 (((-731) $) 44)) (-3371 (($ $ $) 93)) (-1758 (($) 43)) (-1654 (((-1100) $) NIL)) (-1534 (($) 16)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $) 46) ((|#3| $ (-537)) 47) ((|#3| $ (-537) (-537)) 48) ((|#3| $ (-537) (-537) (-537)) 49) ((|#3| $ (-537) (-537) (-537) (-537)) 50) ((|#3| $ (-606 (-537))) 52)) (-2872 (((-731) $) 45)) (-2352 (($ $ (-537) $ (-537)) 94) (($ $ (-537) (-537)) 96)) (-2341 (((-816) $) 67) (($ |#3|) 68) (($ (-225 |#2| |#3|)) 75) (($ (-1084 |#2| |#3|)) 78) (($ (-606 |#3|)) 53) (($ (-606 $)) 58)) (-2928 (($) 69 T CONST)) (-2943 (($) 70 T CONST)) (-2244 (((-111) $ $) 80)) (-2329 (($ $) 86) (($ $ $) 84)) (-2318 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-537)) 89) (($ (-537) $) 88) (($ $ $) 95))) -(((-133 |#1| |#2| |#3|) (-13 (-448 |#3| (-731)) (-453 (-537) (-731)) (-10 -8 (-15 -2341 ($ (-225 |#2| |#3|))) (-15 -2341 ($ (-1084 |#2| |#3|))) (-15 -2341 ($ (-606 |#3|))) (-15 -2341 ($ (-606 $))) (-15 -3705 ((-731) $)) (-15 -1922 (|#3| $)) (-15 -1922 (|#3| $ (-537))) (-15 -1922 (|#3| $ (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-606 (-537)))) (-15 -3371 ($ $ $)) (-15 * ($ $ $)) (-15 -2352 ($ $ (-537) $ (-537))) (-15 -2352 ($ $ (-537) (-537))) (-15 -3660 ($ $)) (-15 -3660 ($ $ (-537) (-537))) (-15 -4048 ($ $ (-606 (-537)))) (-15 -1534 ($)) (-15 -1758 ($)) (-15 -2178 ((-606 |#3|) $)) (-15 -3540 ($ (-606 |#3|))) (-15 -3832 ($)))) (-537) (-731) (-163)) (T -133)) -((-3371 (*1 *1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1084 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-133 *3 *4 *5))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 *2) (-4 *5 (-163)))) (-1922 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-133 *3 *4 *2)) (-14 *3 (-537)) (-14 *4 (-731)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-537))) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 (-537)) (-14 *5 (-731)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2352 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-2352 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-3660 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-4048 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-1534 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-1758 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-606 *5)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)))) (-3832 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163))))) -(-13 (-448 |#3| (-731)) (-453 (-537) (-731)) (-10 -8 (-15 -2341 ($ (-225 |#2| |#3|))) (-15 -2341 ($ (-1084 |#2| |#3|))) (-15 -2341 ($ (-606 |#3|))) (-15 -2341 ($ (-606 $))) (-15 -3705 ((-731) $)) (-15 -1922 (|#3| $)) (-15 -1922 (|#3| $ (-537))) (-15 -1922 (|#3| $ (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-606 (-537)))) (-15 -3371 ($ $ $)) (-15 * ($ $ $)) (-15 -2352 ($ $ (-537) $ (-537))) (-15 -2352 ($ $ (-537) (-537))) (-15 -3660 ($ $)) (-15 -3660 ($ $ (-537) (-537))) (-15 -4048 ($ $ (-606 (-537)))) (-15 -1534 ($)) (-15 -1758 ($)) (-15 -2178 ((-606 |#3|) $)) (-15 -3540 ($ (-606 |#3|))) (-15 -3832 ($)))) -((-2341 (((-816) $) 7))) -(((-134) (-579 (-816))) (T -134)) -NIL -(-579 (-816)) -((-2330 (((-111) $ $) NIL)) (-2099 (($) 15 T CONST)) (-1750 (($) NIL (|has| (-138) (-352)))) (-4221 (($ $ $) 17) (($ $ (-138)) NIL) (($ (-138) $) NIL)) (-2969 (($ $ $) NIL)) (-3495 (((-111) $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| (-138) (-352)))) (-1272 (($) NIL) (($ (-606 (-138))) NIL)) (-3435 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3026 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (($ (-138) $) 51 (|has| $ (-6 -4300)))) (-2355 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1618 (($) NIL (|has| (-138) (-352)))) (-3661 (((-606 (-138)) $) 60 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-2444 (((-138) $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 26 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3889 (((-138) $) NIL (|has| (-138) (-807)))) (-4081 (($ (-1 (-138) (-138)) $) 59 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 55)) (-2602 (($) 16 T CONST)) (-2334 (((-874) $) NIL (|has| (-138) (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 29)) (-2783 (((-138) $) 52)) (-3499 (($ (-138) $) 50)) (-2009 (($ (-874)) NIL (|has| (-138) (-352)))) (-3718 (($) 14 T CONST)) (-2528 (((-1064) $) NIL)) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-1599 (((-138) $) 53)) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 48)) (-3670 (($) 13 T CONST)) (-2867 (($ $ $) 31) (($ $ (-138)) NIL)) (-1341 (($ (-606 (-138))) NIL) (($) NIL)) (-2539 (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-1100) $) 36) (((-513) $) NIL (|has| (-138) (-580 (-513)))) (((-606 (-138)) $) 34)) (-2350 (($ (-606 (-138))) NIL)) (-1583 (($ $) 32 (|has| (-138) (-352)))) (-2341 (((-816) $) 46)) (-3220 (($ (-1100)) 12) (($ (-606 (-138))) 43)) (-1627 (((-731) $) NIL)) (-3575 (($) 49) (($ (-606 (-138))) NIL)) (-2753 (($ (-606 (-138))) NIL)) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2645 (($) 19 T CONST)) (-2663 (($) 18 T CONST)) (-2244 (((-111) $ $) 22)) (-2258 (((-731) $) 47 (|has| $ (-6 -4300))))) -(((-135) (-13 (-1045) (-580 (-1100)) (-409 (-138)) (-580 (-606 (-138))) (-10 -8 (-15 -3220 ($ (-1100))) (-15 -3220 ($ (-606 (-138)))) (-15 -3670 ($) -2787) (-15 -3718 ($) -2787) (-15 -2099 ($) -2787) (-15 -2602 ($) -2787) (-15 -2663 ($) -2787) (-15 -2645 ($) -2787)))) (T -135)) -((-3220 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-135)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-606 (-138))) (-5 *1 (-135)))) (-3670 (*1 *1) (-5 *1 (-135))) (-3718 (*1 *1) (-5 *1 (-135))) (-2099 (*1 *1) (-5 *1 (-135))) (-2602 (*1 *1) (-5 *1 (-135))) (-2663 (*1 *1) (-5 *1 (-135))) (-2645 (*1 *1) (-5 *1 (-135)))) -(-13 (-1045) (-580 (-1100)) (-409 (-138)) (-580 (-606 (-138))) (-10 -8 (-15 -3220 ($ (-1100))) (-15 -3220 ($ (-606 (-138)))) (-15 -3670 ($) -2787) (-15 -3718 ($) -2787) (-15 -2099 ($) -2787) (-15 -2602 ($) -2787) (-15 -2663 ($) -2787) (-15 -2645 ($) -2787))) -((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1246 ((|#1| |#3|) 9)) (-4067 ((|#3| |#3|) 15))) -(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-529) (-945 |#1|) (-357 |#2|)) (T -136)) -((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-357 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-136 *3 *4 *2)) (-4 *2 (-357 *4)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-357 *4))))) -(-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2967 (($ $ $) 8)) (-2871 (($ $) 7)) (-2360 (($ $ $) 6))) +((-3738 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-735)))) (-1346 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-735)) (-5 *2 (-1211))))) +(-13 (-811) (-10 -8 (-15 -3738 ((-735) $)) (-15 -1346 ((-1211) $ (-735))))) +(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 34)) (-3502 (((-111) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-735) "failed") $) 40)) (-3469 (((-735) $) 38)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1348 (((-111)) 41)) (-1347 (((-111) (-111)) 43)) (-2830 (((-111) $) 24)) (-1349 (((-111) $) 37)) (-4274 (((-823) $) 22) (($ (-735)) 14)) (-2957 (($) 12 T CONST)) (-2964 (($) 11 T CONST)) (-1350 (($ (-735)) 15)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 25)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 26)) (-4156 (((-3 $ "failed") $ $) 30)) (-4158 (($ $ $) 28)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL) (($ $ $) 36)) (* (($ (-735) $) 33) (($ (-878) $) NIL) (($ $ $) 31))) +(((-131) (-13 (-811) (-23) (-691) (-995 (-735)) (-10 -8 (-6 (-4312 "*")) (-15 -4156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-735))) (-15 -2830 ((-111) $)) (-15 -1349 ((-111) $)) (-15 -1348 ((-111))) (-15 -1347 ((-111) (-111)))))) (T -131)) +((-4156 (*1 *1 *1 *1) (|partial| -5 *1 (-131))) (** (*1 *1 *1 *1) (-5 *1 (-131))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-131)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1348 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1347 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(-13 (-811) (-23) (-691) (-995 (-735)) (-10 -8 (-6 (-4312 "*")) (-15 -4156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1350 ($ (-735))) (-15 -2830 ((-111) $)) (-15 -1349 ((-111) $)) (-15 -1348 ((-111))) (-15 -1347 ((-111) (-111))))) +((-2865 (((-111) $ $) NIL)) (-1351 (($ (-607 |#3|)) 40)) (-3733 (($ $) 99) (($ $ (-526) (-526)) 98)) (-3855 (($) 17)) (-3470 (((-3 |#3| "failed") $) 60)) (-3469 ((|#3| $) NIL)) (-1355 (($ $ (-607 (-526))) 100)) (-1352 (((-607 |#3|) $) 36)) (-3406 (((-735) $) 44)) (-4261 (($ $ $) 93)) (-1353 (($) 43)) (-3554 (((-1106) $) NIL)) (-1354 (($) 16)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $) 46) ((|#3| $ (-526)) 47) ((|#3| $ (-526) (-526)) 48) ((|#3| $ (-526) (-526) (-526)) 49) ((|#3| $ (-526) (-526) (-526) (-526)) 50) ((|#3| $ (-607 (-526))) 52)) (-4264 (((-735) $) 45)) (-2081 (($ $ (-526) $ (-526)) 94) (($ $ (-526) (-526)) 96)) (-4274 (((-823) $) 67) (($ |#3|) 68) (($ (-225 |#2| |#3|)) 75) (($ (-1090 |#2| |#3|)) 78) (($ (-607 |#3|)) 53) (($ (-607 $)) 58)) (-2957 (($) 69 T CONST)) (-2964 (($) 70 T CONST)) (-3353 (((-111) $ $) 80)) (-4156 (($ $) 86) (($ $ $) 84)) (-4158 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-526)) 89) (($ (-526) $) 88) (($ $ $) 95))) +(((-132 |#1| |#2| |#3|) (-13 (-449 |#3| (-735)) (-454 (-526) (-735)) (-10 -8 (-15 -4274 ($ (-225 |#2| |#3|))) (-15 -4274 ($ (-1090 |#2| |#3|))) (-15 -4274 ($ (-607 |#3|))) (-15 -4274 ($ (-607 $))) (-15 -3406 ((-735) $)) (-15 -4118 (|#3| $)) (-15 -4118 (|#3| $ (-526))) (-15 -4118 (|#3| $ (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-607 (-526)))) (-15 -4261 ($ $ $)) (-15 * ($ $ $)) (-15 -2081 ($ $ (-526) $ (-526))) (-15 -2081 ($ $ (-526) (-526))) (-15 -3733 ($ $)) (-15 -3733 ($ $ (-526) (-526))) (-15 -1355 ($ $ (-607 (-526)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-607 |#3|) $)) (-15 -1351 ($ (-607 |#3|))) (-15 -3855 ($)))) (-526) (-735) (-163)) (T -132)) +((-4261 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1090 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 *2) (-4 *5 (-163)))) (-4118 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-526)) (-14 *4 (-735)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-735)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-526))) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-526)) (-14 *5 (-735)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-2081 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-2081 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-3733 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) (-4 *5 (-163)))) (-1355 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1354 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-1353 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-607 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1351 (*1 *1 *2) (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 (-735)))) (-3855 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) +(-13 (-449 |#3| (-735)) (-454 (-526) (-735)) (-10 -8 (-15 -4274 ($ (-225 |#2| |#3|))) (-15 -4274 ($ (-1090 |#2| |#3|))) (-15 -4274 ($ (-607 |#3|))) (-15 -4274 ($ (-607 $))) (-15 -3406 ((-735) $)) (-15 -4118 (|#3| $)) (-15 -4118 (|#3| $ (-526))) (-15 -4118 (|#3| $ (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-526) (-526) (-526) (-526))) (-15 -4118 (|#3| $ (-607 (-526)))) (-15 -4261 ($ $ $)) (-15 * ($ $ $)) (-15 -2081 ($ $ (-526) $ (-526))) (-15 -2081 ($ $ (-526) (-526))) (-15 -3733 ($ $)) (-15 -3733 ($ $ (-526) (-526))) (-15 -1355 ($ $ (-607 (-526)))) (-15 -1354 ($)) (-15 -1353 ($)) (-15 -1352 ((-607 |#3|) $)) (-15 -1351 ($ (-607 |#3|))) (-15 -3855 ($)))) +((-2474 (((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-4275 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18))) +(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|))) (-15 -4275 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-526) (-735) (-163) (-163)) (T -133)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) +(-10 -7 (-15 -2474 ((-132 |#1| |#2| |#4|) (-607 |#4|) (-132 |#1| |#2| |#3|))) (-15 -4275 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) +((-4274 (((-823) $) 7))) +(((-134) (-583 (-823))) (T -134)) +NIL +(-583 (-823)) +((-2865 (((-111) $ $) NIL)) (-3746 (($) 15 T CONST)) (-1897 (($) NIL (|has| (-138) (-353)))) (-3546 (($ $ $) 17) (($ $ (-138)) NIL) (($ (-138) $) NIL)) (-3548 (($ $ $) NIL)) (-3547 (((-111) $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| (-138) (-353)))) (-3551 (($) NIL) (($ (-607 (-138))) NIL)) (-1607 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3724 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (($ (-138) $) 51 (|has| $ (-6 -4310)))) (-3725 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3294 (($) NIL (|has| (-138) (-353)))) (-2044 (((-607 (-138)) $) 60 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3637 (((-138) $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 26 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3638 (((-138) $) NIL (|has| (-138) (-811)))) (-2048 (($ (-1 (-138) (-138)) $) 59 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 55)) (-3748 (($) 16 T CONST)) (-2102 (((-878) $) NIL (|has| (-138) (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 29)) (-1306 (((-138) $) 52)) (-3929 (($ (-138) $) 50)) (-2461 (($ (-878)) NIL (|has| (-138) (-353)))) (-1358 (($) 14 T CONST)) (-3555 (((-1070) $) NIL)) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-1307 (((-138) $) 53)) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 48)) (-1359 (($) 13 T CONST)) (-3549 (($ $ $) 31) (($ $ (-138)) NIL)) (-1499 (($ (-607 (-138))) NIL) (($) NIL)) (-2045 (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-1106) $) 36) (((-515) $) NIL (|has| (-138) (-584 (-515)))) (((-607 (-138)) $) 34)) (-3844 (($ (-607 (-138))) NIL)) (-1898 (($ $) 32 (|has| (-138) (-353)))) (-4274 (((-823) $) 46)) (-1360 (($ (-1106)) 12) (($ (-607 (-138))) 43)) (-1899 (((-735) $) NIL)) (-3552 (($) 49) (($ (-607 (-138))) NIL)) (-1308 (($ (-607 (-138))) NIL)) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1356 (($) 19 T CONST)) (-1357 (($) 18 T CONST)) (-3353 (((-111) $ $) 22)) (-4273 (((-735) $) 47 (|has| $ (-6 -4310))))) +(((-135) (-13 (-1052) (-584 (-1106)) (-411 (-138)) (-584 (-607 (-138))) (-10 -8 (-15 -1360 ($ (-1106))) (-15 -1360 ($ (-607 (-138)))) (-15 -1359 ($) -4268) (-15 -1358 ($) -4268) (-15 -3746 ($) -4268) (-15 -3748 ($) -4268) (-15 -1357 ($) -4268) (-15 -1356 ($) -4268)))) (T -135)) +((-1360 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-135)))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-607 (-138))) (-5 *1 (-135)))) (-1359 (*1 *1) (-5 *1 (-135))) (-1358 (*1 *1) (-5 *1 (-135))) (-3746 (*1 *1) (-5 *1 (-135))) (-3748 (*1 *1) (-5 *1 (-135))) (-1357 (*1 *1) (-5 *1 (-135))) (-1356 (*1 *1) (-5 *1 (-135)))) +(-13 (-1052) (-584 (-1106)) (-411 (-138)) (-584 (-607 (-138))) (-10 -8 (-15 -1360 ($ (-1106))) (-15 -1360 ($ (-607 (-138)))) (-15 -1359 ($) -4268) (-15 -1358 ($) -4268) (-15 -3746 ($) -4268) (-15 -3748 ($) -4268) (-15 -1357 ($) -4268) (-15 -1356 ($) -4268))) +((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4058 ((|#1| |#3|) 9)) (-4059 ((|#3| |#3|) 15))) +(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-533) (-950 |#1|) (-357 |#2|)) (T -136)) +((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-357 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-136 *3 *4 *2)) (-4 *2 (-357 *4)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-357 *4))))) +(-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1394 (($ $ $) 8)) (-1392 (($ $) 7)) (-3399 (($ $ $) 6))) (((-137) (-134)) (T -137)) -((-2967 (*1 *1 *1 *1) (-4 *1 (-137))) (-2871 (*1 *1 *1) (-4 *1 (-137))) (-2360 (*1 *1 *1 *1) (-4 *1 (-137)))) -(-13 (-10 -8 (-15 -2360 ($ $ $)) (-15 -2871 ($ $)) (-15 -2967 ($ $ $)))) -((-2330 (((-111) $ $) NIL)) (-1917 (((-111) $) 30)) (-2099 (($ $) 43)) (-2308 (($) 17)) (-3151 (((-731)) 10)) (-1618 (($) 16)) (-3649 (($) 18)) (-4074 (((-731) $) 14)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2260 (((-111) $) 32)) (-2602 (($ $) 44)) (-2334 (((-874) $) 15)) (-1654 (((-1100) $) 38)) (-2009 (($ (-874)) 13)) (-1268 (((-111) $) 28)) (-2528 (((-1064) $) NIL)) (-3343 (($) 19)) (-2486 (((-111) $) 26)) (-2341 (((-816) $) 21)) (-2816 (($ (-731)) 11) (($ (-1100)) 42)) (-1436 (((-111) $) 36)) (-3683 (((-111) $) 34)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 7)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) -(((-138) (-13 (-801) (-10 -8 (-15 -4074 ((-731) $)) (-15 -2816 ($ (-731))) (-15 -2816 ($ (-1100))) (-15 -2308 ($)) (-15 -3649 ($)) (-15 -3343 ($)) (-15 -2099 ($ $)) (-15 -2602 ($ $)) (-15 -2486 ((-111) $)) (-15 -1268 ((-111) $)) (-15 -3683 ((-111) $)) (-15 -1917 ((-111) $)) (-15 -2260 ((-111) $)) (-15 -1436 ((-111) $))))) (T -138)) -((-4074 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-138)))) (-2816 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-138)))) (-2816 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-138)))) (-2308 (*1 *1) (-5 *1 (-138))) (-3649 (*1 *1) (-5 *1 (-138))) (-3343 (*1 *1) (-5 *1 (-138))) (-2099 (*1 *1 *1) (-5 *1 (-138))) (-2602 (*1 *1 *1) (-5 *1 (-138))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(-13 (-801) (-10 -8 (-15 -4074 ((-731) $)) (-15 -2816 ($ (-731))) (-15 -2816 ($ (-1100))) (-15 -2308 ($)) (-15 -3649 ($)) (-15 -3343 ($)) (-15 -2099 ($ $)) (-15 -2602 ($ $)) (-15 -2486 ((-111) $)) (-15 -1268 ((-111) $)) (-15 -3683 ((-111) $)) (-15 -1917 ((-111) $)) (-15 -2260 ((-111) $)) (-15 -1436 ((-111) $)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-2644 (((-3 $ "failed") $) 33)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +((-1394 (*1 *1 *1 *1) (-4 *1 (-137))) (-1392 (*1 *1 *1) (-4 *1 (-137))) (-3399 (*1 *1 *1 *1) (-4 *1 (-137)))) +(-13 (-10 -8 (-15 -3399 ($ $ $)) (-15 -1392 ($ $)) (-15 -1394 ($ $ $)))) +((-2865 (((-111) $ $) NIL)) (-1363 (((-111) $) 30)) (-3746 (($ $) 43)) (-1549 (($) 17)) (-3433 (((-735)) 10)) (-3294 (($) 16)) (-2876 (($) 18)) (-1369 (((-735) $) 14)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1362 (((-111) $) 32)) (-3748 (($ $) 44)) (-2102 (((-878) $) 15)) (-3554 (((-1106) $) 38)) (-2461 (($ (-878)) 13)) (-1365 (((-111) $) 28)) (-3555 (((-1070) $) NIL)) (-1367 (($) 19)) (-1366 (((-111) $) 26)) (-4274 (((-823) $) 21)) (-1368 (($ (-735)) 11) (($ (-1106)) 42)) (-1361 (((-111) $) 36)) (-1364 (((-111) $) 34)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 7)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) +(((-138) (-13 (-805) (-10 -8 (-15 -1369 ((-735) $)) (-15 -1368 ($ (-735))) (-15 -1368 ($ (-1106))) (-15 -1549 ($)) (-15 -2876 ($)) (-15 -1367 ($)) (-15 -3746 ($ $)) (-15 -3748 ($ $)) (-15 -1366 ((-111) $)) (-15 -1365 ((-111) $)) (-15 -1364 ((-111) $)) (-15 -1363 ((-111) $)) (-15 -1362 ((-111) $)) (-15 -1361 ((-111) $))))) (T -138)) +((-1369 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-138)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-138)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-138)))) (-1549 (*1 *1) (-5 *1 (-138))) (-2876 (*1 *1) (-5 *1 (-138))) (-1367 (*1 *1) (-5 *1 (-138))) (-3746 (*1 *1 *1) (-5 *1 (-138))) (-3748 (*1 *1 *1) (-5 *1 (-138))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(-13 (-805) (-10 -8 (-15 -1369 ((-735) $)) (-15 -1368 ($ (-735))) (-15 -1368 ($ (-1106))) (-15 -1549 ($)) (-15 -2876 ($)) (-15 -1367 ($)) (-15 -3746 ($ $)) (-15 -3748 ($ $)) (-15 -1366 ((-111) $)) (-15 -1365 ((-111) $)) (-15 -1364 ((-111) $)) (-15 -1363 ((-111) $)) (-15 -1362 ((-111) $)) (-15 -1361 ((-111) $)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3002 (((-3 $ "failed") $) 33)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) (((-139) (-134)) (T -139)) -((-2644 (*1 *1 *1) (|partial| -4 *1 (-139)))) -(-13 (-998) (-10 -8 (-15 -2644 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2736 ((|#1| (-649 |#1|) |#1|) 19))) -(((-140 |#1|) (-10 -7 (-15 -2736 (|#1| (-649 |#1|) |#1|))) (-163)) (T -140)) -((-2736 (*1 *2 *3 *2) (-12 (-5 *3 (-649 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2))))) -(-10 -7 (-15 -2736 (|#1| (-649 |#1|) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +((-3002 (*1 *1 *1) (|partial| -4 *1 (-139)))) +(-13 (-1004) (-10 -8 (-15 -3002 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2667 ((|#1| (-653 |#1|) |#1|) 19))) +(((-140 |#1|) (-10 -7 (-15 -2667 (|#1| (-653 |#1|) |#1|))) (-163)) (T -140)) +((-2667 (*1 *2 *3 *2) (-12 (-5 *3 (-653 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2))))) +(-10 -7 (-15 -2667 (|#1| (-653 |#1|) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) (((-141) (-134)) (T -141)) NIL -(-13 (-998)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1911 (((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731)) 70)) (-2722 (((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|) 52)) (-3859 (((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4093 ((|#1| |#3| |#3|) 40)) (-4116 ((|#3| |#3| (-391 |#2|) (-391 |#2|)) 19)) (-1719 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|) 49))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3859 ((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2722 ((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|)) (-15 -1911 ((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731))) (-15 -4093 (|#1| |#3| |#3|)) (-15 -4116 (|#3| |#3| (-391 |#2|) (-391 |#2|))) (-15 -1719 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|))) (-1158) (-1176 |#1|) (-1176 (-391 |#2|))) (T -142)) -((-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-391 *5)) (|:| |c2| (-391 *5)) (|:| |deg| (-731)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5))))) (-4116 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-391 *5)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1176 *3)))) (-4093 (*1 *2 *3 *3) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-1158)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-391 *6)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *6))) (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-731)) (-4 *7 (-1176 *3)))) (-2722 (*1 *2 *3) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |radicand| (-391 *5)) (|:| |deg| (-731)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5))))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -3449 (-391 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) -(-10 -7 (-15 -3859 ((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2722 ((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|)) (-15 -1911 ((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731))) (-15 -4093 (|#1| |#3| |#3|)) (-15 -4116 (|#3| |#3| (-391 |#2|) (-391 |#2|))) (-15 -1719 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|))) -((-2022 (((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)) 32))) -(((-143 |#1| |#2|) (-10 -7 (-15 -2022 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)))) (-522) (-157 |#1|)) (T -143)) -((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) (-4 *5 (-157 *4)) (-4 *4 (-522)) (-5 *1 (-143 *4 *5))))) -(-10 -7 (-15 -2022 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)))) -((-1936 (($ (-1 (-111) |#2|) $) 29)) (-3221 (($ $) 36)) (-2355 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3206 (((-111) (-1 (-111) |#2|) $) 16)) (-2539 (((-731) (-1 (-111) |#2|) $) 14) (((-731) |#2| $) NIL)) (-2030 (((-111) (-1 (-111) |#2|) $) 15)) (-2258 (((-731) $) 11))) -(((-144 |#1| |#2|) (-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) (-145 |#2|) (-1154)) (T -144)) -NIL -(-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-1936 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 41 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300))) (($ |#1| $) 42 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 40 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 49)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-145 |#1|) (-134) (-1154)) (T -145)) -((-2350 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-145 *3)))) (-1266 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-3195 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-3195 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) (-4 *3 (-1154)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) (-4 *3 (-1154)))) (-3195 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-2355 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-3221 (*1 *1 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) (-4 *2 (-1045))))) -(-13 (-471 |t#1|) (-10 -8 (-15 -2350 ($ (-606 |t#1|))) (-15 -1266 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4300)) (PROGN (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2355 ($ (-1 (-111) |t#1|) $)) (-15 -1936 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2355 ($ |t#1| $)) (-15 -3221 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 86)) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-606 (-874))) 56)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1363 (($ (-874)) 47)) (-1839 (((-131)) 23)) (-2341 (((-816) $) 69) (($ (-537)) 45) (($ |#2|) 46)) (-3500 ((|#2| $ (-606 (-874))) 59)) (-3654 (((-731)) 20)) (-2928 (($) 40 T CONST)) (-2943 (($) 43 T CONST)) (-2244 (((-111) $ $) 26)) (-2340 (($ $ |#2|) NIL)) (-2329 (($ $) 34) (($ $ $) 32)) (-2318 (($ $ $) 30)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-146 |#1| |#2| |#3|) (-13 (-998) (-37 |#2|) (-1207 |#2|) (-10 -8 (-15 -1363 ($ (-874))) (-15 -3733 ($ |#2| (-606 (-874)))) (-15 -3500 (|#2| $ (-606 (-874)))) (-15 -3490 ((-3 $ "failed") $)))) (-874) (-347) (-946 |#1| |#2|)) (T -146)) -((-3490 (*1 *1 *1) (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-874)) (-4 *3 (-347)) (-14 *4 (-946 *2 *3)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-347)) (-14 *5 (-946 *3 *4)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-874))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) (-4 *2 (-347)) (-14 *5 (-946 *4 *2)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-874))) (-4 *2 (-347)) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) (-14 *5 (-946 *4 *2))))) -(-13 (-998) (-37 |#2|) (-1207 |#2|) (-10 -8 (-15 -1363 ($ (-874))) (-15 -3733 ($ |#2| (-606 (-874)))) (-15 -3500 (|#2| $ (-606 (-874)))) (-15 -3490 ((-3 $ "failed") $)))) -((-2857 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210)) 38)) (-3647 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537))) 63) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880)) 64)) (-1644 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210))))) 67) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210)))) 66) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537))) 58) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880)) 59))) -(((-147) (-10 -7 (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -2857 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210))))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))))))) (T -147)) -((-1644 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 (-210))))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)) (-5 *3 (-606 (-896 (-210)))))) (-2857 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-210)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 *4)))) (|:| |xValues| (-1040 *4)) (|:| |yValues| (-1040 *4)))) (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 *4)))))) (-3647 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-1644 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147))))) -(-10 -7 (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -2857 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210))))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210))))))) -((-2907 (((-606 (-160 |#2|)) |#1| |#2|) 45))) -(((-148 |#1| |#2|) (-10 -7 (-15 -2907 ((-606 (-160 |#2|)) |#1| |#2|))) (-1176 (-160 (-537))) (-13 (-347) (-805))) (T -148)) -((-2907 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-160 *4))) (-5 *1 (-148 *3 *4)) (-4 *3 (-1176 (-160 (-537)))) (-4 *4 (-13 (-347) (-805)))))) -(-10 -7 (-15 -2907 ((-606 (-160 |#2|)) |#1| |#2|))) -((-2330 (((-111) $ $) NIL)) (-3664 (($) 15)) (-3093 (($) 14)) (-3782 (((-874)) 22)) (-1654 (((-1100) $) NIL)) (-1826 (((-537) $) 19)) (-2528 (((-1064) $) NIL)) (-3250 (($) 16)) (-3053 (($ (-537)) 23)) (-2341 (((-816) $) 29)) (-3884 (($) 17)) (-2244 (((-111) $ $) 13)) (-2318 (($ $ $) 11)) (* (($ (-874) $) 21) (($ (-210) $) 8))) -(((-149) (-13 (-25) (-10 -8 (-15 * ($ (-874) $)) (-15 * ($ (-210) $)) (-15 -2318 ($ $ $)) (-15 -3093 ($)) (-15 -3664 ($)) (-15 -3250 ($)) (-15 -3884 ($)) (-15 -1826 ((-537) $)) (-15 -3782 ((-874))) (-15 -3053 ($ (-537)))))) (T -149)) -((-2318 (*1 *1 *1 *1) (-5 *1 (-149))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-149)))) (-3093 (*1 *1) (-5 *1 (-149))) (-3664 (*1 *1) (-5 *1 (-149))) (-3250 (*1 *1) (-5 *1 (-149))) (-3884 (*1 *1) (-5 *1 (-149))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) (-3782 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-149))))) -(-13 (-25) (-10 -8 (-15 * ($ (-874) $)) (-15 * ($ (-210) $)) (-15 -2318 ($ $ $)) (-15 -3093 ($)) (-15 -3664 ($)) (-15 -3250 ($)) (-15 -3884 ($)) (-15 -1826 ((-537) $)) (-15 -3782 ((-874))) (-15 -3053 ($ (-537))))) -((-2600 ((|#2| |#2| (-1038 |#2|)) 88) ((|#2| |#2| (-1117)) 68)) (-3371 ((|#2| |#2| (-1038 |#2|)) 87) ((|#2| |#2| (-1117)) 67)) (-2967 ((|#2| |#2| |#2|) 27)) (-3979 (((-113) (-113)) 99)) (-3013 ((|#2| (-606 |#2|)) 117)) (-4232 ((|#2| (-606 |#2|)) 135)) (-1386 ((|#2| (-606 |#2|)) 125)) (-1995 ((|#2| |#2|) 123)) (-1456 ((|#2| (-606 |#2|)) 111)) (-2426 ((|#2| (-606 |#2|)) 112)) (-2801 ((|#2| (-606 |#2|)) 133)) (-2939 ((|#2| |#2| (-1117)) 56) ((|#2| |#2|) 55)) (-2871 ((|#2| |#2|) 23)) (-2360 ((|#2| |#2| |#2|) 26)) (-2336 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-150 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2360 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2939 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1038 |#2|))) (-15 -3371 (|#2| |#2| (-1117))) (-15 -3371 (|#2| |#2| (-1038 |#2|))) (-15 -1995 (|#2| |#2|)) (-15 -2801 (|#2| (-606 |#2|))) (-15 -1386 (|#2| (-606 |#2|))) (-15 -4232 (|#2| (-606 |#2|))) (-15 -1456 (|#2| (-606 |#2|))) (-15 -2426 (|#2| (-606 |#2|))) (-15 -3013 (|#2| (-606 |#2|)))) (-13 (-807) (-529)) (-414 |#1|)) (T -150)) -((-3013 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1995 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-3371 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)))) (-3371 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2939 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2871 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2967 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *4)) (-4 *4 (-414 *3)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-150 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2360 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2939 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1038 |#2|))) (-15 -3371 (|#2| |#2| (-1117))) (-15 -3371 (|#2| |#2| (-1038 |#2|))) (-15 -1995 (|#2| |#2|)) (-15 -2801 (|#2| (-606 |#2|))) (-15 -1386 (|#2| (-606 |#2|))) (-15 -4232 (|#2| (-606 |#2|))) (-15 -1456 (|#2| (-606 |#2|))) (-15 -2426 (|#2| (-606 |#2|))) (-15 -3013 (|#2| (-606 |#2|)))) -((-2814 ((|#1| |#1| |#1|) 53)) (-4117 ((|#1| |#1| |#1|) 50)) (-2967 ((|#1| |#1| |#1|) 44)) (-3211 ((|#1| |#1|) 35)) (-1419 ((|#1| |#1| (-606 |#1|)) 43)) (-2871 ((|#1| |#1|) 37)) (-2360 ((|#1| |#1| |#1|) 40))) -(((-151 |#1|) (-10 -7 (-15 -2360 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1419 (|#1| |#1| (-606 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|))) (-522)) (T -151)) -((-2814 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-4117 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-2967 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-3211 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-1419 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-522)) (-5 *1 (-151 *2)))) (-2871 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) -(-10 -7 (-15 -2360 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1419 (|#1| |#1| (-606 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|))) -((-2600 (($ $ (-1117)) 12) (($ $ (-1038 $)) 11)) (-3371 (($ $ (-1117)) 10) (($ $ (-1038 $)) 9)) (-2967 (($ $ $) 8)) (-2939 (($ $) 14) (($ $ (-1117)) 13)) (-2871 (($ $) 7)) (-2360 (($ $ $) 6))) +(-13 (-1004)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-1372 (((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735)) 70)) (-1371 (((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|) 52)) (-1370 (((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1373 ((|#1| |#3| |#3|) 40)) (-4086 ((|#3| |#3| (-392 |#2|) (-392 |#2|)) 19)) (-1374 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|) 49))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1371 ((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|)) (-15 -1372 ((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735))) (-15 -1373 (|#1| |#3| |#3|)) (-15 -4086 (|#3| |#3| (-392 |#2|) (-392 |#2|))) (-15 -1374 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|))) (-1164) (-1181 |#1|) (-1181 (-392 |#2|))) (T -142)) +((-1374 (*1 *2 *3 *3) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-392 *5)) (|:| |c2| (-392 *5)) (|:| |deg| (-735)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5))))) (-4086 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-392 *5)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1181 *3)))) (-1373 (*1 *2 *3 *3) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-1164)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *6)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *6))) (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-735)) (-4 *7 (-1181 *3)))) (-1371 (*1 *2 *3) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |radicand| (-392 *5)) (|:| |deg| (-735)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -4270 (-392 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) +(-10 -7 (-15 -1370 ((-2 (|:| -4270 (-392 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1371 ((-3 (-2 (|:| |radicand| (-392 |#2|)) (|:| |deg| (-735))) "failed") |#3|)) (-15 -1372 ((-2 (|:| -2462 (-735)) (|:| -4270 (-392 |#2|)) (|:| |radicand| |#2|)) (-392 |#2|) (-735))) (-15 -1373 (|#1| |#3| |#3|)) (-15 -4086 (|#3| |#3| (-392 |#2|) (-392 |#2|))) (-15 -1374 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| |deg| (-735))) |#3| |#3|))) +((-3004 (((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)) 32))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3004 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)))) (-525) (-157 |#1|)) (T -143)) +((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-157 *4)) (-4 *4 (-525)) (-5 *1 (-143 *4 *5))))) +(-10 -7 (-15 -3004 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)))) +((-4032 (($ (-1 (-111) |#2|) $) 29)) (-1375 (($ $) 36)) (-3725 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-2046 (((-111) (-1 (-111) |#2|) $) 16)) (-2045 (((-735) (-1 (-111) |#2|) $) 14) (((-735) |#2| $) NIL)) (-2047 (((-111) (-1 (-111) |#2|) $) 15)) (-4273 (((-735) $) 11))) +(((-144 |#1| |#2|) (-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) (-145 |#2|) (-1159)) (T -144)) +NIL +(-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-4032 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 41 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310))) (($ |#1| $) 42 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 40 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 49)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-145 |#1|) (-134) (-1159)) (T -145)) +((-3844 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-145 *3)))) (-1376 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-4161 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-4161 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) (-4 *3 (-1159)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) (-4 *3 (-1159)))) (-4161 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)))) (-3725 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-1375 (*1 *1 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) (-4 *2 (-1052))))) +(-13 (-472 |t#1|) (-10 -8 (-15 -3844 ($ (-607 |t#1|))) (-15 -1376 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4310)) (PROGN (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3725 ($ (-1 (-111) |t#1|) $)) (-15 -4032 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4161 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3725 ($ |t#1| $)) (-15 -1375 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 86)) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-607 (-878))) 56)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1377 (($ (-878)) 47)) (-4230 (((-131)) 23)) (-4274 (((-823) $) 69) (($ (-526)) 45) (($ |#2|) 46)) (-3999 ((|#2| $ (-607 (-878))) 59)) (-3423 (((-735)) 20)) (-2957 (($) 40 T CONST)) (-2964 (($) 43 T CONST)) (-3353 (((-111) $ $) 26)) (-4265 (($ $ |#2|) NIL)) (-4156 (($ $) 34) (($ $ $) 32)) (-4158 (($ $ $) 30)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-146 |#1| |#2| |#3|) (-13 (-1004) (-37 |#2|) (-1213 |#2|) (-10 -8 (-15 -1377 ($ (-878))) (-15 -3193 ($ |#2| (-607 (-878)))) (-15 -3999 (|#2| $ (-607 (-878)))) (-15 -3781 ((-3 $ "failed") $)))) (-878) (-348) (-952 |#1| |#2|)) (T -146)) +((-3781 (*1 *1 *1) (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-878)) (-4 *3 (-348)) (-14 *4 (-952 *2 *3)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-348)) (-14 *5 (-952 *3 *4)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) (-4 *2 (-348)) (-14 *5 (-952 *4 *2)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-878))) (-4 *2 (-348)) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) (-14 *5 (-952 *4 *2))))) +(-13 (-1004) (-37 |#2|) (-1213 |#2|) (-10 -8 (-15 -1377 ($ (-878))) (-15 -3193 ($ |#2| (-607 (-878)))) (-15 -3999 (|#2| $ (-607 (-878)))) (-15 -3781 ((-3 $ "failed") $)))) +((-1379 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211)) 38)) (-1378 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526))) 63) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884)) 64)) (-1541 (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211))))) 67) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211)))) 66) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526))) 58) (((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884)) 59))) +(((-147) (-10 -7 (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1379 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211))))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))))))) (T -147)) +((-1541 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 (-211))))))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)) (-5 *3 (-607 (-902 (-211)))))) (-1379 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-211)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 *4)))) (|:| |xValues| (-1041 *4)) (|:| |yValues| (-1041 *4)))) (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 *4)))))) (-1378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1541 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147))))) +(-10 -7 (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884))) (-15 -1378 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-884) (-392 (-526)) (-392 (-526)))) (-15 -1379 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211)))) (-211) (-211) (-211) (-211))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-902 (-211))))) (-15 -1541 ((-2 (|:| |brans| (-607 (-607 (-902 (-211))))) (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211)))) (-607 (-607 (-902 (-211))))))) +((-1432 (((-607 (-159 |#2|)) |#1| |#2|) 45))) +(((-148 |#1| |#2|) (-10 -7 (-15 -1432 ((-607 (-159 |#2|)) |#1| |#2|))) (-1181 (-159 (-526))) (-13 (-348) (-809))) (T -148)) +((-1432 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-159 *4))) (-5 *1 (-148 *3 *4)) (-4 *3 (-1181 (-159 (-526)))) (-4 *4 (-13 (-348) (-809)))))) +(-10 -7 (-15 -1432 ((-607 (-159 |#2|)) |#1| |#2|))) +((-2865 (((-111) $ $) NIL)) (-1383 (($) 15)) (-1384 (($) 14)) (-1380 (((-878)) 22)) (-3554 (((-1106) $) NIL)) (-3256 (((-526) $) 19)) (-3555 (((-1070) $) NIL)) (-1382 (($) 16)) (-3255 (($ (-526)) 23)) (-4274 (((-823) $) 29)) (-1381 (($) 17)) (-3353 (((-111) $ $) 13)) (-4158 (($ $ $) 11)) (* (($ (-878) $) 21) (($ (-211) $) 8))) +(((-149) (-13 (-25) (-10 -8 (-15 * ($ (-878) $)) (-15 * ($ (-211) $)) (-15 -4158 ($ $ $)) (-15 -1384 ($)) (-15 -1383 ($)) (-15 -1382 ($)) (-15 -1381 ($)) (-15 -3256 ((-526) $)) (-15 -1380 ((-878))) (-15 -3255 ($ (-526)))))) (T -149)) +((-4158 (*1 *1 *1 *1) (-5 *1 (-149))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-149)))) (-1384 (*1 *1) (-5 *1 (-149))) (-1383 (*1 *1) (-5 *1 (-149))) (-1382 (*1 *1) (-5 *1 (-149))) (-1381 (*1 *1) (-5 *1 (-149))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) (-1380 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-149))))) +(-13 (-25) (-10 -8 (-15 * ($ (-878) $)) (-15 * ($ (-211) $)) (-15 -4158 ($ $ $)) (-15 -1384 ($)) (-15 -1383 ($)) (-15 -1382 ($)) (-15 -1381 ($)) (-15 -3256 ((-526) $)) (-15 -1380 ((-878))) (-15 -3255 ($ (-526))))) +((-1397 ((|#2| |#2| (-1044 |#2|)) 88) ((|#2| |#2| (-1123)) 68)) (-4261 ((|#2| |#2| (-1044 |#2|)) 87) ((|#2| |#2| (-1123)) 67)) (-1394 ((|#2| |#2| |#2|) 27)) (-2307 (((-112) (-112)) 99)) (-1391 ((|#2| (-607 |#2|)) 117)) (-1388 ((|#2| (-607 |#2|)) 135)) (-1387 ((|#2| (-607 |#2|)) 125)) (-1385 ((|#2| |#2|) 123)) (-1389 ((|#2| (-607 |#2|)) 111)) (-1390 ((|#2| (-607 |#2|)) 112)) (-1386 ((|#2| (-607 |#2|)) 133)) (-1398 ((|#2| |#2| (-1123)) 56) ((|#2| |#2|) 55)) (-1392 ((|#2| |#2|) 23)) (-3399 ((|#2| |#2| |#2|) 26)) (-2306 (((-111) (-112)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1398 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1044 |#2|))) (-15 -4261 (|#2| |#2| (-1123))) (-15 -4261 (|#2| |#2| (-1044 |#2|))) (-15 -1385 (|#2| |#2|)) (-15 -1386 (|#2| (-607 |#2|))) (-15 -1387 (|#2| (-607 |#2|))) (-15 -1388 (|#2| (-607 |#2|))) (-15 -1389 (|#2| (-607 |#2|))) (-15 -1390 (|#2| (-607 |#2|))) (-15 -1391 (|#2| (-607 |#2|)))) (-13 (-811) (-533)) (-406 |#1|)) (T -150)) +((-1391 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-811) (-533))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-4261 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)))) (-4261 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1398 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) (-4 *2 (-406 *4)))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-1394 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-3399 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *4)) (-4 *4 (-406 *3)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-150 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2| |#2|)) (-15 -1394 (|#2| |#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1398 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1123))) (-15 -1397 (|#2| |#2| (-1044 |#2|))) (-15 -4261 (|#2| |#2| (-1123))) (-15 -4261 (|#2| |#2| (-1044 |#2|))) (-15 -1385 (|#2| |#2|)) (-15 -1386 (|#2| (-607 |#2|))) (-15 -1387 (|#2| (-607 |#2|))) (-15 -1388 (|#2| (-607 |#2|))) (-15 -1389 (|#2| (-607 |#2|))) (-15 -1390 (|#2| (-607 |#2|))) (-15 -1391 (|#2| (-607 |#2|)))) +((-1396 ((|#1| |#1| |#1|) 53)) (-1395 ((|#1| |#1| |#1|) 50)) (-1394 ((|#1| |#1| |#1|) 44)) (-3190 ((|#1| |#1|) 35)) (-1393 ((|#1| |#1| (-607 |#1|)) 43)) (-1392 ((|#1| |#1|) 37)) (-3399 ((|#1| |#1| |#1|) 40))) +(((-151 |#1|) (-10 -7 (-15 -3399 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1393 (|#1| |#1| (-607 |#1|))) (-15 -3190 (|#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|))) (-525)) (T -151)) +((-1396 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1394 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-3190 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-1393 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-525)) (-5 *1 (-151 *2)))) (-1392 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) (-3399 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) +(-10 -7 (-15 -3399 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1393 (|#1| |#1| (-607 |#1|))) (-15 -3190 (|#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|))) +((-1397 (($ $ (-1123)) 12) (($ $ (-1044 $)) 11)) (-4261 (($ $ (-1123)) 10) (($ $ (-1044 $)) 9)) (-1394 (($ $ $) 8)) (-1398 (($ $) 14) (($ $ (-1123)) 13)) (-1392 (($ $) 7)) (-3399 (($ $ $) 6))) (((-152) (-134)) (T -152)) -((-2939 (*1 *1 *1) (-4 *1 (-152))) (-2939 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) (-3371 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152))))) -(-13 (-137) (-10 -8 (-15 -2939 ($ $)) (-15 -2939 ($ $ (-1117))) (-15 -2600 ($ $ (-1117))) (-15 -2600 ($ $ (-1038 $))) (-15 -3371 ($ $ (-1117))) (-15 -3371 ($ $ (-1038 $))))) +((-1398 (*1 *1 *1) (-4 *1 (-152))) (-1398 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) (-4261 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) (-4261 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152))))) +(-13 (-137) (-10 -8 (-15 -1398 ($ $)) (-15 -1398 ($ $ (-1123))) (-15 -1397 ($ $ (-1123))) (-15 -1397 ($ $ (-1044 $))) (-15 -4261 ($ $ (-1123))) (-15 -4261 ($ $ (-1044 $))))) (((-137) . T)) -((-2330 (((-111) $ $) NIL)) (-3860 (($ (-537)) 13) (($ $ $) 14)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 17)) (-2244 (((-111) $ $) 9))) -(((-153) (-13 (-1045) (-10 -8 (-15 -3860 ($ (-537))) (-15 -3860 ($ $ $))))) (T -153)) -((-3860 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-153)))) (-3860 (*1 *1 *1 *1) (-5 *1 (-153)))) -(-13 (-1045) (-10 -8 (-15 -3860 ($ (-537))) (-15 -3860 ($ $ $)))) -((-3979 (((-113) (-1117)) 97))) -(((-154) (-10 -7 (-15 -3979 ((-113) (-1117))))) (T -154)) -((-3979 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-113)) (-5 *1 (-154))))) -(-10 -7 (-15 -3979 ((-113) (-1117)))) -((-2413 ((|#3| |#3|) 19))) -(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -2413 (|#3| |#3|))) (-998) (-1176 |#1|) (-1176 |#2|)) (T -155)) -((-2413 (*1 *2 *2) (-12 (-4 *3 (-998)) (-4 *4 (-1176 *3)) (-5 *1 (-155 *3 *4 *2)) (-4 *2 (-1176 *4))))) -(-10 -7 (-15 -2413 (|#3| |#3|))) -((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 217)) (-1428 ((|#2| $) 96)) (-1403 (($ $) 247)) (-1247 (($ $) 241)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 40)) (-1378 (($ $) 245)) (-4270 (($ $) 239)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 139)) (-3563 (($ $ $) 222)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 155) (((-649 |#2|) (-649 $)) 149)) (-3195 (($ (-1113 |#2|)) 119) (((-3 $ "failed") (-391 (-1113 |#2|))) NIL)) (-3490 (((-3 $ "failed") $) 209)) (-2484 (((-3 (-391 (-537)) "failed") $) 199)) (-1797 (((-111) $) 194)) (-2616 (((-391 (-537)) $) 197)) (-3705 (((-874)) 89)) (-3539 (($ $ $) 224)) (-4087 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3338 (($) 236)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 186) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 191)) (-2055 ((|#2| $) 94)) (-3199 (((-1113 |#2|) $) 121)) (-1612 (($ (-1 |#2| |#2|) $) 102)) (-2180 (($ $) 238)) (-3183 (((-1113 |#2|) $) 120)) (-3865 (($ $) 202)) (-2629 (($) 97)) (-1319 (((-402 (-1113 $)) (-1113 $)) 88)) (-3370 (((-402 (-1113 $)) (-1113 $)) 57)) (-3515 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4185 (($ $) 237)) (-1930 (((-731) $) 219)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 229)) (-2067 ((|#2| (-1200 $)) NIL) ((|#2|) 91)) (-3456 (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-2529 (((-1113 |#2|)) 114)) (-1389 (($ $) 246)) (-1234 (($ $) 240)) (-1484 (((-1200 |#2|) $ (-1200 $)) 128) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 110) (((-649 |#2|) (-1200 $)) NIL)) (-3996 (((-1200 |#2|) $) NIL) (($ (-1200 |#2|)) NIL) (((-1113 |#2|) $) NIL) (($ (-1113 |#2|)) NIL) (((-845 (-537)) $) 177) (((-845 (-363)) $) 181) (((-160 (-363)) $) 167) (((-160 (-210)) $) 162) (((-513) $) 173)) (-1978 (($ $) 98)) (-2341 (((-816) $) 138) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-391 (-537))) NIL) (($ $) NIL)) (-2736 (((-1113 |#2|) $) 23)) (-3654 (((-731)) 100)) (-1475 (($ $) 250)) (-1328 (($ $) 244)) (-1453 (($ $) 248)) (-1300 (($ $) 242)) (-2449 ((|#2| $) 233)) (-1465 (($ $) 249)) (-1314 (($ $) 243)) (-2209 (($ $) 157)) (-2244 (((-111) $ $) 104)) (-2263 (((-111) $ $) 193)) (-2329 (($ $) 106) (($ $ $) NIL)) (-2318 (($ $ $) 105)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-391 (-537))) 267) (($ $ $) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL))) -(((-156 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -2341 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-160 (-210)) |#1|)) (-15 -3996 ((-160 (-363)) |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3338 (|#1|)) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -4087 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2449 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1978 (|#1| |#1|)) (-15 -2629 (|#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3195 ((-3 |#1| "failed") (-391 (-1113 |#2|)))) (-15 -3183 ((-1113 |#2|) |#1|)) (-15 -3996 (|#1| (-1113 |#2|))) (-15 -3195 (|#1| (-1113 |#2|))) (-15 -2529 ((-1113 |#2|))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -2736 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2055 (|#2| |#1|)) (-15 -1428 (|#2| |#1|)) (-15 -3705 ((-874))) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-157 |#2|) (-163)) (T -156)) -((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-3705 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-874)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-2067 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) (-2529 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 *4)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4))))) -(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -2341 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-160 (-210)) |#1|)) (-15 -3996 ((-160 (-363)) |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3338 (|#1|)) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -4087 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2449 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1978 (|#1| |#1|)) (-15 -2629 (|#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3195 ((-3 |#1| "failed") (-391 (-1113 |#2|)))) (-15 -3183 ((-1113 |#2|) |#1|)) (-15 -3996 (|#1| (-1113 |#2|))) (-15 -3195 (|#1| (-1113 |#2|))) (-15 -2529 ((-1113 |#2|))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -2736 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2055 (|#2| |#1|)) (-15 -1428 (|#2| |#1|)) (-15 -3705 ((-874))) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3377 (($ $) 92 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-4017 (((-111) $) 94 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-1403 (($ $) 225 (|has| |#1| (-1139)))) (-1247 (($ $) 208 (|has| |#1| (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 239 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-1395 (($ $) 111 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-2414 (((-402 $) $) 112 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3633 (($ $) 238 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 242 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-4099 (((-111) $ $) 102 (|has| |#1| (-291)))) (-3151 (((-731)) 85 (|has| |#1| (-352)))) (-1378 (($ $) 224 (|has| |#1| (-1139)))) (-4270 (($ $) 209 (|has| |#1| (-1139)))) (-1429 (($ $) 223 (|has| |#1| (-1139)))) (-1273 (($ $) 210 (|has| |#1| (-1139)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 163)) (-3958 (((-537) $) 167 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 165 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 162)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-333)))) (-3563 (($ $ $) 106 (|has| |#1| (-291)))) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 159) (((-649 |#1|) (-649 $)) 158)) (-3195 (($ (-1113 |#1|)) 155) (((-3 $ "failed") (-391 (-1113 |#1|))) 152 (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 250)) (-2484 (((-3 (-391 (-537)) "failed") $) 243 (|has| |#1| (-522)))) (-1797 (((-111) $) 245 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 244 (|has| |#1| (-522)))) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| |#1| (-352)))) (-3539 (($ $ $) 105 (|has| |#1| (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| |#1| (-291)))) (-4145 (($) 146 (|has| |#1| (-333)))) (-2974 (((-111) $) 147 (|has| |#1| (-333)))) (-2642 (($ $ (-731)) 138 (|has| |#1| (-333))) (($ $) 137 (|has| |#1| (-333)))) (-2639 (((-111) $) 113 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-4087 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1007)) (|has| |#1| (-1139))))) (-3338 (($) 235 (|has| |#1| (-1139)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 258 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 257 (|has| |#1| (-839 (-363))))) (-4231 (((-874) $) 149 (|has| |#1| (-333))) (((-793 (-874)) $) 135 (|has| |#1| (-333)))) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 237 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2055 ((|#1| $) 49)) (-2824 (((-3 $ "failed") $) 139 (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| |#1| (-291)))) (-3199 (((-1113 |#1|) $) 42 (|has| |#1| (-347)))) (-2444 (($ $ $) 204 (|has| |#1| (-807)))) (-3889 (($ $ $) 203 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 259)) (-2334 (((-874) $) 87 (|has| |#1| (-352)))) (-2180 (($ $) 232 (|has| |#1| (-1139)))) (-3183 (((-1113 |#1|) $) 153)) (-2183 (($ (-606 $)) 98 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (($ $ $) 97 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 114 (|has| |#1| (-347)))) (-3956 (($) 140 (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| |#1| (-352)))) (-2629 (($) 254)) (-3656 ((|#1| $) 251)) (-2528 (((-1064) $) 10)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-2211 (($ (-606 $)) 96 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (($ $ $) 95 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 241 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) 240 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3622 (((-402 $) $) 110 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| |#1| (-291)))) (-3515 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 90 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| |#1| (-291)))) (-4185 (($ $) 233 (|has| |#1| (-1139)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 265 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 263 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 262 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 261 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 260 (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) 103 (|has| |#1| (-291)))) (-1922 (($ $ |#1|) 266 (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| |#1| (-291)))) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-3030 (((-731) $) 148 (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) 136 (|has| |#1| (-333)))) (-3456 (($ $ (-1 |#1| |#1|) (-731)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-606 (-1117)) (-606 (-731))) 127 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 128 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 129 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 130 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 132 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))))) (($ $) 134 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347)))))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-347)))) (-2529 (((-1113 |#1|)) 156)) (-1441 (($ $) 222 (|has| |#1| (-1139)))) (-1286 (($ $) 211 (|has| |#1| (-1139)))) (-3553 (($) 145 (|has| |#1| (-333)))) (-1415 (($ $) 221 (|has| |#1| (-1139)))) (-1259 (($ $) 212 (|has| |#1| (-1139)))) (-1389 (($ $) 220 (|has| |#1| (-1139)))) (-1234 (($ $) 213 (|has| |#1| (-1139)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60) (((-1113 |#1|) $) 168) (($ (-1113 |#1|)) 154) (((-845 (-537)) $) 256 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 255 (|has| |#1| (-580 (-845 (-363))))) (((-160 (-363)) $) 207 (|has| |#1| (-973))) (((-160 (-210)) $) 206 (|has| |#1| (-973))) (((-513) $) 205 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 253)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (-1533 (-3319 (|has| $ (-139)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (|has| |#1| (-333))))) (-4161 (($ |#1| |#1|) 252)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 84 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537)))))) (($ $) 89 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-2644 (($ $) 141 (|has| |#1| (-333))) (((-3 $ "failed") $) 41 (-1533 (-3319 (|has| $ (-139)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (|has| |#1| (-139))))) (-2736 (((-1113 |#1|) $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-1475 (($ $) 231 (|has| |#1| (-1139)))) (-1328 (($ $) 219 (|has| |#1| (-1139)))) (-3276 (((-111) $ $) 93 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-1453 (($ $) 230 (|has| |#1| (-1139)))) (-1300 (($ $) 218 (|has| |#1| (-1139)))) (-1495 (($ $) 229 (|has| |#1| (-1139)))) (-1352 (($ $) 217 (|has| |#1| (-1139)))) (-2449 ((|#1| $) 247 (|has| |#1| (-1139)))) (-4141 (($ $) 228 (|has| |#1| (-1139)))) (-1365 (($ $) 216 (|has| |#1| (-1139)))) (-1485 (($ $) 227 (|has| |#1| (-1139)))) (-1340 (($ $) 215 (|has| |#1| (-1139)))) (-1465 (($ $) 226 (|has| |#1| (-1139)))) (-1314 (($ $) 214 (|has| |#1| (-1139)))) (-2209 (($ $) 248 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#1| |#1|) (-731)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-606 (-1117)) (-606 (-731))) 123 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 124 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 125 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 126 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 131 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))))) (($ $) 133 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347)))))) (-2293 (((-111) $ $) 201 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 200 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 202 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 199 (|has| |#1| (-807)))) (-2340 (($ $ $) 118 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-391 (-537))) 236 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139)))) (($ $ $) 234 (|has| |#1| (-1139))) (($ $ (-537)) 115 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-391 (-537)) $) 117 (|has| |#1| (-347))) (($ $ (-391 (-537))) 116 (|has| |#1| (-347))))) +((-2865 (((-111) $ $) NIL)) (-1399 (($ (-526)) 13) (($ $ $) 14)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 17)) (-3353 (((-111) $ $) 9))) +(((-153) (-13 (-1052) (-10 -8 (-15 -1399 ($ (-526))) (-15 -1399 ($ $ $))))) (T -153)) +((-1399 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-153)))) (-1399 (*1 *1 *1 *1) (-5 *1 (-153)))) +(-13 (-1052) (-10 -8 (-15 -1399 ($ (-526))) (-15 -1399 ($ $ $)))) +((-2307 (((-112) (-1123)) 97))) +(((-154) (-10 -7 (-15 -2307 ((-112) (-1123))))) (T -154)) +((-2307 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-154))))) +(-10 -7 (-15 -2307 ((-112) (-1123)))) +((-1631 ((|#3| |#3|) 19))) +(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1631 (|#3| |#3|))) (-1004) (-1181 |#1|) (-1181 |#2|)) (T -155)) +((-1631 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-1181 *3)) (-5 *1 (-155 *3 *4 *2)) (-4 *2 (-1181 *4))))) +(-10 -7 (-15 -1631 (|#3| |#3|))) +((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 217)) (-3649 ((|#2| $) 96)) (-3806 (($ $) 247)) (-3961 (($ $) 241)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 40)) (-3804 (($ $) 245)) (-3960 (($ $) 239)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 139)) (-2861 (($ $ $) 222)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 155) (((-653 |#2|) (-653 $)) 149)) (-4161 (($ (-1117 |#2|)) 119) (((-3 $ "failed") (-392 (-1117 |#2|))) NIL)) (-3781 (((-3 $ "failed") $) 209)) (-3324 (((-3 (-392 (-526)) "failed") $) 199)) (-3323 (((-111) $) 194)) (-3322 (((-392 (-526)) $) 197)) (-3406 (((-878)) 89)) (-2860 (($ $ $) 224)) (-1400 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3949 (($) 236)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 186) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 191)) (-3429 ((|#2| $) 94)) (-2106 (((-1117 |#2|) $) 121)) (-4275 (($ (-1 |#2| |#2|) $) 102)) (-4259 (($ $) 238)) (-3379 (((-1117 |#2|) $) 120)) (-2703 (($ $) 202)) (-1402 (($) 97)) (-3005 (((-390 (-1117 $)) (-1117 $)) 88)) (-3006 (((-390 (-1117 $)) (-1117 $)) 57)) (-3780 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4260 (($ $) 237)) (-1680 (((-735) $) 219)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 229)) (-4076 ((|#2| (-1205 $)) NIL) ((|#2|) 91)) (-4129 (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-3499 (((-1117 |#2|)) 114)) (-3805 (($ $) 246)) (-3956 (($ $) 240)) (-3537 (((-1205 |#2|) $ (-1205 $)) 128) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 110) (((-653 |#2|) (-1205 $)) NIL)) (-4287 (((-1205 |#2|) $) NIL) (($ (-1205 |#2|)) NIL) (((-1117 |#2|) $) NIL) (($ (-1117 |#2|)) NIL) (((-849 (-526)) $) 177) (((-849 (-363)) $) 181) (((-159 (-363)) $) 167) (((-159 (-211)) $) 162) (((-515) $) 173)) (-3309 (($ $) 98)) (-4274 (((-823) $) 138) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-392 (-526))) NIL) (($ $) NIL)) (-2667 (((-1117 |#2|) $) 23)) (-3423 (((-735)) 100)) (-3812 (($ $) 250)) (-3800 (($ $) 244)) (-3810 (($ $) 248)) (-3798 (($ $) 242)) (-2289 ((|#2| $) 233)) (-3811 (($ $) 249)) (-3799 (($ $) 243)) (-3702 (($ $) 157)) (-3353 (((-111) $ $) 104)) (-2985 (((-111) $ $) 193)) (-4156 (($ $) 106) (($ $ $) NIL)) (-4158 (($ $ $) 105)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-392 (-526))) 267) (($ $ $) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL))) +(((-156 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4274 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-159 (-211)) |#1|)) (-15 -4287 ((-159 (-363)) |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3949 (|#1|)) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -1400 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3309 (|#1| |#1|)) (-15 -1402 (|#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4161 ((-3 |#1| "failed") (-392 (-1117 |#2|)))) (-15 -3379 ((-1117 |#2|) |#1|)) (-15 -4287 (|#1| (-1117 |#2|))) (-15 -4161 (|#1| (-1117 |#2|))) (-15 -3499 ((-1117 |#2|))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -2667 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -3429 (|#2| |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3406 ((-878))) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-157 |#2|) (-163)) (T -156)) +((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-3406 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-878)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-4076 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) (-3499 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 *4)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4))))) +(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4274 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-159 (-211)) |#1|)) (-15 -4287 ((-159 (-363)) |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3949 (|#1|)) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -1400 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2289 (|#2| |#1|)) (-15 -3702 (|#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3309 (|#1| |#1|)) (-15 -1402 (|#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4161 ((-3 |#1| "failed") (-392 (-1117 |#2|)))) (-15 -3379 ((-1117 |#2|) |#1|)) (-15 -4287 (|#1| (-1117 |#2|))) (-15 -4161 (|#1| (-1117 |#2|))) (-15 -3499 ((-1117 |#2|))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -2667 ((-1117 |#2|) |#1|)) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -3429 (|#2| |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3406 ((-878))) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-2151 (($ $) 92 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-2149 (((-111) $) 94 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-3806 (($ $) 225 (|has| |#1| (-1145)))) (-3961 (($ $) 208 (|has| |#1| (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 239 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4093 (($ $) 111 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-4286 (((-390 $) $) 112 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-3337 (($ $) 238 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 242 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-1681 (((-111) $ $) 102 (|has| |#1| (-292)))) (-3433 (((-735)) 85 (|has| |#1| (-353)))) (-3804 (($ $) 224 (|has| |#1| (-1145)))) (-3960 (($ $) 209 (|has| |#1| (-1145)))) (-3808 (($ $) 223 (|has| |#1| (-1145)))) (-3959 (($ $) 210 (|has| |#1| (-1145)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 163)) (-3469 (((-526) $) 167 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 165 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 162)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-335)))) (-2861 (($ $ $) 106 (|has| |#1| (-292)))) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 159) (((-653 |#1|) (-653 $)) 158)) (-4161 (($ (-1117 |#1|)) 155) (((-3 $ "failed") (-392 (-1117 |#1|))) 152 (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 250)) (-3324 (((-3 (-392 (-526)) "failed") $) 243 (|has| |#1| (-525)))) (-3323 (((-111) $) 245 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 244 (|has| |#1| (-525)))) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| |#1| (-353)))) (-2860 (($ $ $) 105 (|has| |#1| (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| |#1| (-292)))) (-3133 (($) 146 (|has| |#1| (-335)))) (-1772 (((-111) $) 147 (|has| |#1| (-335)))) (-1862 (($ $ (-735)) 138 (|has| |#1| (-335))) (($ $) 137 (|has| |#1| (-335)))) (-4045 (((-111) $) 113 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1400 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1145))))) (-3949 (($) 235 (|has| |#1| (-1145)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 258 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 257 (|has| |#1| (-845 (-363))))) (-4090 (((-878) $) 149 (|has| |#1| (-335))) (((-796 (-878)) $) 135 (|has| |#1| (-335)))) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 237 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3429 ((|#1| $) 49)) (-3763 (((-3 $ "failed") $) 139 (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| |#1| (-292)))) (-2106 (((-1117 |#1|) $) 42 (|has| |#1| (-348)))) (-3637 (($ $ $) 204 (|has| |#1| (-811)))) (-3638 (($ $ $) 203 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 259)) (-2102 (((-878) $) 87 (|has| |#1| (-353)))) (-4259 (($ $) 232 (|has| |#1| (-1145)))) (-3379 (((-1117 |#1|) $) 153)) (-1989 (($ (-607 $)) 98 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (($ $ $) 97 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 114 (|has| |#1| (-348)))) (-3764 (($) 140 (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| |#1| (-353)))) (-1402 (($) 254)) (-3966 ((|#1| $) 251)) (-3555 (((-1070) $) 10)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3457 (($ (-607 $)) 96 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (($ $ $) 95 (-3850 (|has| |#1| (-292)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 241 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) 240 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4051 (((-390 $) $) 110 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| |#1| (-292)))) (-3780 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 90 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| |#1| (-292)))) (-4260 (($ $) 233 (|has| |#1| (-1145)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 265 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 263 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 262 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 261 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 260 (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) 103 (|has| |#1| (-292)))) (-4118 (($ $ |#1|) 266 (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| |#1| (-292)))) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-1863 (((-735) $) 148 (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) 136 (|has| |#1| (-335)))) (-4129 (($ $ (-1 |#1| |#1|) (-735)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-607 (-1123)) (-607 (-735))) 127 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 128 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 129 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 130 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 132 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))))) (($ $) 134 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348)))))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-348)))) (-3499 (((-1117 |#1|)) 156)) (-3809 (($ $) 222 (|has| |#1| (-1145)))) (-3958 (($ $) 211 (|has| |#1| (-1145)))) (-1766 (($) 145 (|has| |#1| (-335)))) (-3807 (($ $) 221 (|has| |#1| (-1145)))) (-3957 (($ $) 212 (|has| |#1| (-1145)))) (-3805 (($ $) 220 (|has| |#1| (-1145)))) (-3956 (($ $) 213 (|has| |#1| (-1145)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60) (((-1117 |#1|) $) 168) (($ (-1117 |#1|)) 154) (((-849 (-526)) $) 256 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 255 (|has| |#1| (-584 (-849 (-363))))) (((-159 (-363)) $) 207 (|has| |#1| (-977))) (((-159 (-211)) $) 206 (|has| |#1| (-977))) (((-515) $) 205 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 253)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (-3850 (-3155 (|has| $ (-139)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (|has| |#1| (-335))))) (-1401 (($ |#1| |#1|) 252)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 84 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526)))))) (($ $) 89 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3002 (($ $) 141 (|has| |#1| (-335))) (((-3 $ "failed") $) 41 (-3850 (-3155 (|has| $ (-139)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))) (|has| |#1| (-139))))) (-2667 (((-1117 |#1|) $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-3812 (($ $) 231 (|has| |#1| (-1145)))) (-3800 (($ $) 219 (|has| |#1| (-1145)))) (-2150 (((-111) $ $) 93 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869)))))) (-3810 (($ $) 230 (|has| |#1| (-1145)))) (-3798 (($ $) 218 (|has| |#1| (-1145)))) (-3814 (($ $) 229 (|has| |#1| (-1145)))) (-3802 (($ $) 217 (|has| |#1| (-1145)))) (-2289 ((|#1| $) 247 (|has| |#1| (-1145)))) (-3815 (($ $) 228 (|has| |#1| (-1145)))) (-3803 (($ $) 216 (|has| |#1| (-1145)))) (-3813 (($ $) 227 (|has| |#1| (-1145)))) (-3801 (($ $) 215 (|has| |#1| (-1145)))) (-3811 (($ $) 226 (|has| |#1| (-1145)))) (-3799 (($ $) 214 (|has| |#1| (-1145)))) (-3702 (($ $) 248 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#1| |#1|) (-735)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-607 (-1123)) (-607 (-735))) 123 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 124 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 125 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 126 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 131 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))))) (($ $) 133 (-3850 (-3155 (|has| |#1| (-348)) (|has| |#1| (-219))) (|has| |#1| (-219)) (-3155 (|has| |#1| (-219)) (|has| |#1| (-348)))))) (-2863 (((-111) $ $) 201 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 200 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 202 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 199 (|has| |#1| (-811)))) (-4265 (($ $ $) 118 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-392 (-526))) 236 (-12 (|has| |#1| (-960)) (|has| |#1| (-1145)))) (($ $ $) 234 (|has| |#1| (-1145))) (($ $ (-526)) 115 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-392 (-526)) $) 117 (|has| |#1| (-348))) (($ $ (-392 (-526))) 116 (|has| |#1| (-348))))) (((-157 |#1|) (-134) (-163)) (T -157)) -((-2055 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-2629 (*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-4161 (*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1139)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1007)) (-4 *3 (-1139)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537)))))) -(-13 (-685 |t#1| (-1113 |t#1|)) (-395 |t#1|) (-216 |t#1|) (-322 |t#1|) (-384 |t#1|) (-837 |t#1|) (-361 |t#1|) (-163) (-10 -8 (-6 -4161) (-15 -2629 ($)) (-15 -1978 ($ $)) (-15 -4161 ($ |t#1| |t#1|)) (-15 -3656 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -2055 (|t#1| $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-6 -4299)) (-6 -4299) |%noBranch|) (IF (|has| |t#1| (-6 -4296)) (-6 -4296) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-6 (-580 (-160 (-210)))) (-6 (-580 (-160 (-363))))) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1139)) (PROGN (-6 (-1139)) (-15 -2449 (|t#1| $)) (IF (|has| |t#1| (-954)) (-6 (-954)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -4087 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-862)) (IF (|has| |t#1| (-291)) (-6 (-862)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-37 |#1|) . T) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-34) |has| |#1| (-1139)) ((-93) |has| |#1| (-1139)) ((-100) . T) ((-110 #0# #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-333)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-160 (-210))) |has| |#1| (-973)) ((-580 (-160 (-363))) |has| |#1| (-973)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-580 #1=(-1113 |#1|)) . T) ((-216 |#1|) . T) ((-218) -1533 (|has| |#1| (-333)) (|has| |#1| (-218))) ((-228) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-268) |has| |#1| (-1139)) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-291) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-347) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-386) |has| |#1| (-333)) ((-352) -1533 (|has| |#1| (-352)) (|has| |#1| (-333))) ((-333) |has| |#1| (-333)) ((-354 |#1| #1#) . T) ((-393 |#1| #1#) . T) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-474) |has| |#1| (-1139)) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-609 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-678 |#1|) . T) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-685 |#1| #1#) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-862) -12 (|has| |#1| (-291)) (|has| |#1| (-862))) ((-873) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-954) -12 (|has| |#1| (-954)) (|has| |#1| (-1139))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-333)) ((-1139) |has| |#1| (-1139)) ((-1142) |has| |#1| (-1139)) ((-1154) . T) ((-1158) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) -((-3622 (((-402 |#2|) |#2|) 63))) -(((-158 |#1| |#2|) (-10 -7 (-15 -3622 ((-402 |#2|) |#2|))) (-291) (-1176 (-160 |#1|))) (T -158)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-158 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) -(-10 -7 (-15 -3622 ((-402 |#2|) |#2|))) -((-1612 (((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)) 14))) -(((-159 |#1| |#2|) (-10 -7 (-15 -1612 ((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)))) (-163) (-163)) (T -159)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-160 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-5 *2 (-160 *6)) (-5 *1 (-159 *5 *6))))) -(-10 -7 (-15 -1612 ((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-3623 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-1428 ((|#1| $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-1139)))) (-1247 (($ $) NIL (|has| |#1| (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-1395 (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-2414 (((-402 $) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3633 (($ $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-291)))) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-1378 (($ $) NIL (|has| |#1| (-1139)))) (-4270 (($ $) NIL (|has| |#1| (-1139)))) (-1429 (($ $) NIL (|has| |#1| (-1139)))) (-1273 (($ $) NIL (|has| |#1| (-1139)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-291)))) (-2664 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3195 (($ (-1113 |#1|)) NIL) (((-3 $ "failed") (-391 (-1113 |#1|))) NIL (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 13)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-291)))) (-4145 (($) NIL (|has| |#1| (-333)))) (-2974 (((-111) $) NIL (|has| |#1| (-333)))) (-2642 (($ $ (-731)) NIL (|has| |#1| (-333))) (($ $) NIL (|has| |#1| (-333)))) (-2639 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-4087 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#1| (-1139))))) (-3338 (($) NIL (|has| |#1| (-1139)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#1| (-839 (-363))))) (-4231 (((-874) $) NIL (|has| |#1| (-333))) (((-793 (-874)) $) NIL (|has| |#1| (-333)))) (-2836 (((-111) $) 35)) (-2590 (($ $ (-537)) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2055 ((|#1| $) 46)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-291)))) (-3199 (((-1113 |#1|) $) NIL (|has| |#1| (-347)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-2180 (($ $) NIL (|has| |#1| (-1139)))) (-3183 (((-1113 |#1|) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-291))) (($ $ $) NIL (|has| |#1| (-291)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3956 (($) NIL (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2629 (($) NIL)) (-3656 ((|#1| $) 15)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-291)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-291))) (($ $ $) NIL (|has| |#1| (-291)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3622 (((-402 $) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-291)))) (-3515 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 47 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-291)))) (-4185 (($ $) NIL (|has| |#1| (-1139)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) NIL (|has| |#1| (-291)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-291)))) (-2067 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2529 (((-1113 |#1|)) NIL)) (-1441 (($ $) NIL (|has| |#1| (-1139)))) (-1286 (($ $) NIL (|has| |#1| (-1139)))) (-3553 (($) NIL (|has| |#1| (-333)))) (-1415 (($ $) NIL (|has| |#1| (-1139)))) (-1259 (($ $) NIL (|has| |#1| (-1139)))) (-1389 (($ $) NIL (|has| |#1| (-1139)))) (-1234 (($ $) NIL (|has| |#1| (-1139)))) (-1484 (((-1200 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL) (((-1113 |#1|) $) NIL) (($ (-1113 |#1|)) NIL) (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (((-160 (-363)) $) NIL (|has| |#1| (-973))) (((-160 (-210)) $) NIL (|has| |#1| (-973))) (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) 45)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-333))))) (-4161 (($ |#1| |#1|) 37)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) 36) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-2644 (($ $) NIL (|has| |#1| (-333))) (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-2736 (((-1113 |#1|) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL)) (-1475 (($ $) NIL (|has| |#1| (-1139)))) (-1328 (($ $) NIL (|has| |#1| (-1139)))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-1453 (($ $) NIL (|has| |#1| (-1139)))) (-1300 (($ $) NIL (|has| |#1| (-1139)))) (-1495 (($ $) NIL (|has| |#1| (-1139)))) (-1352 (($ $) NIL (|has| |#1| (-1139)))) (-2449 ((|#1| $) NIL (|has| |#1| (-1139)))) (-4141 (($ $) NIL (|has| |#1| (-1139)))) (-1365 (($ $) NIL (|has| |#1| (-1139)))) (-1485 (($ $) NIL (|has| |#1| (-1139)))) (-1340 (($ $) NIL (|has| |#1| (-1139)))) (-1465 (($ $) NIL (|has| |#1| (-1139)))) (-1314 (($ $) NIL (|has| |#1| (-1139)))) (-2209 (($ $) NIL (|has| |#1| (-1007)))) (-2928 (($) 28 T CONST)) (-2943 (($) 30 T CONST)) (-1379 (((-1100) $) 23 (|has| |#1| (-788))) (((-1100) $ (-111)) 25 (|has| |#1| (-788))) (((-1205) (-782) $) 26 (|has| |#1| (-788))) (((-1205) (-782) $ (-111)) 27 (|has| |#1| (-788)))) (-4230 (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 39)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-391 (-537))) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139)))) (($ $ $) NIL (|has| |#1| (-1139))) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))))) -(((-160 |#1|) (-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-163)) (T -160)) -NIL -(-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) -((-3996 (((-845 |#1|) |#3|) 22))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -3996 ((-845 |#1|) |#3|))) (-1045) (-13 (-580 (-845 |#1|)) (-163)) (-157 |#2|)) (T -161)) -((-3996 (*1 *2 *3) (-12 (-4 *5 (-13 (-580 *2) (-163))) (-5 *2 (-845 *4)) (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1045)) (-4 *3 (-157 *5))))) -(-10 -7 (-15 -3996 ((-845 |#1|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-3380 (((-111) $) 9)) (-1762 (((-111) $ (-111)) 11)) (-3157 (($) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2494 (($ $) 13)) (-2341 (((-816) $) 17)) (-4179 (((-111) $) 8)) (-2337 (((-111) $ (-111)) 10)) (-2244 (((-111) $ $) NIL))) -(((-162) (-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -4179 ((-111) $)) (-15 -3380 ((-111) $)) (-15 -2337 ((-111) $ (-111))) (-15 -1762 ((-111) $ (-111))) (-15 -2494 ($ $))))) (T -162)) -((-3157 (*1 *1) (-5 *1 (-162))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-2337 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1762 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-2494 (*1 *1 *1) (-5 *1 (-162)))) -(-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -4179 ((-111) $)) (-15 -3380 ((-111) $)) (-15 -2337 ((-111) $ (-111))) (-15 -1762 ((-111) $ (-111))) (-15 -2494 ($ $)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +((-3429 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1402 (*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1401 (*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-3702 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1145)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1013)) (-4 *3 (-1145)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526)))))) +(-13 (-689 |t#1| (-1117 |t#1|)) (-397 |t#1|) (-217 |t#1|) (-323 |t#1|) (-385 |t#1|) (-843 |t#1|) (-362 |t#1|) (-163) (-10 -8 (-6 -1401) (-15 -1402 ($)) (-15 -3309 ($ $)) (-15 -1401 ($ |t#1| |t#1|)) (-15 -3966 (|t#1| $)) (-15 -3965 (|t#1| $)) (-15 -3429 (|t#1| $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-292)) (-6 (-292)) |%noBranch|) (IF (|has| |t#1| (-6 -4309)) (-6 -4309) |%noBranch|) (IF (|has| |t#1| (-6 -4306)) (-6 -4306) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-6 (-584 (-159 (-211)))) (-6 (-584 (-159 (-363))))) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1145)) (PROGN (-6 (-1145)) (-15 -2289 (|t#1| $)) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -1400 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-869)) (IF (|has| |t#1| (-292)) (-6 (-869)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-37 |#1|) . T) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-34) |has| |#1| (-1145)) ((-93) |has| |#1| (-1145)) ((-100) . T) ((-110 #1# #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-335)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-159 (-211))) |has| |#1| (-977)) ((-584 (-159 (-363))) |has| |#1| (-977)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-584 #2=(-1117 |#1|)) . T) ((-217 |#1|) . T) ((-219) -3850 (|has| |#1| (-335)) (|has| |#1| (-219))) ((-229) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-269) |has| |#1| (-1145)) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-292) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-348) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-387) |has| |#1| (-335)) ((-353) -3850 (|has| |#1| (-335)) (|has| |#1| (-353))) ((-335) |has| |#1| (-335)) ((-355 |#1| #2#) . T) ((-395 |#1| #2#) . T) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-475) |has| |#1| (-1145)) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-613 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-682 |#1|) . T) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-689 |#1| #2#) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-869) -12 (|has| |#1| (-292)) (|has| |#1| (-869))) ((-880) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (|has| |#1| (-292))) ((-960) -12 (|has| |#1| (-960)) (|has| |#1| (-1145))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-335)) ((-1145) |has| |#1| (-1145)) ((-1148) |has| |#1| (-1145)) ((-1159) . T) ((-1164) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)) (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) +((-4051 (((-390 |#2|) |#2|) 63))) +(((-158 |#1| |#2|) (-10 -7 (-15 -4051 ((-390 |#2|) |#2|))) (-292) (-1181 (-159 |#1|))) (T -158)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-158 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) +(-10 -7 (-15 -4051 ((-390 |#2|) |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-1877 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) NIL)) (-3649 ((|#1| $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-1145)))) (-3961 (($ $) NIL (|has| |#1| (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4093 (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-4286 (((-390 $) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-3337 (($ $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-292)))) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3804 (($ $) NIL (|has| |#1| (-1145)))) (-3960 (($ $) NIL (|has| |#1| (-1145)))) (-3808 (($ $) NIL (|has| |#1| (-1145)))) (-3959 (($ $) NIL (|has| |#1| (-1145)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-335)))) (-2861 (($ $ $) NIL (|has| |#1| (-292)))) (-1876 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4161 (($ (-1117 |#1|)) NIL) (((-3 $ "failed") (-392 (-1117 |#1|))) NIL (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 13)) (-3324 (((-3 (-392 (-526)) #3="failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-292)))) (-3133 (($) NIL (|has| |#1| (-335)))) (-1772 (((-111) $) NIL (|has| |#1| (-335)))) (-1862 (($ $ (-735)) NIL (|has| |#1| (-335))) (($ $) NIL (|has| |#1| (-335)))) (-4045 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1400 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1145))))) (-3949 (($) NIL (|has| |#1| (-1145)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#1| (-845 (-363))))) (-4090 (((-878) $) NIL (|has| |#1| (-335))) (((-796 (-878)) $) NIL (|has| |#1| (-335)))) (-2471 (((-111) $) 35)) (-3311 (($ $ (-526)) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145))))) (-3429 ((|#1| $) 46)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #4="failed") (-607 $) $) NIL (|has| |#1| (-292)))) (-2106 (((-1117 |#1|) $) NIL (|has| |#1| (-348)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-4259 (($ $) NIL (|has| |#1| (-1145)))) (-3379 (((-1117 |#1|) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-292))) (($ $ $) NIL (|has| |#1| (-292)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3764 (($) NIL (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-1402 (($) NIL)) (-3966 ((|#1| $) 15)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-292)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-292))) (($ $ $) NIL (|has| |#1| (-292)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-292)) (|has| |#1| (-869))))) (-4051 (((-390 $) $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-292)))) (-3780 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 47 (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-292)))) (-4260 (($ $) NIL (|has| |#1| (-1145)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) NIL (|has| |#1| (-292)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-292)))) (-4076 ((|#1| (-1205 $)) NIL) ((|#1|) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) NIL (|has| |#1| (-335)))) (-4129 (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3499 (((-1117 |#1|)) NIL)) (-3809 (($ $) NIL (|has| |#1| (-1145)))) (-3958 (($ $) NIL (|has| |#1| (-1145)))) (-1766 (($) NIL (|has| |#1| (-335)))) (-3807 (($ $) NIL (|has| |#1| (-1145)))) (-3957 (($ $) NIL (|has| |#1| (-1145)))) (-3805 (($ $) NIL (|has| |#1| (-1145)))) (-3956 (($ $) NIL (|has| |#1| (-1145)))) (-3537 (((-1205 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL) (((-1117 |#1|) $) NIL) (($ (-1117 |#1|)) NIL) (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (((-159 (-363)) $) NIL (|has| |#1| (-977))) (((-159 (-211)) $) NIL (|has| |#1| (-977))) (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) 45)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-335))))) (-1401 (($ |#1| |#1|) 37)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) 36) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3002 (($ $) NIL (|has| |#1| (-335))) (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-2667 (((-1117 |#1|) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL)) (-3812 (($ $) NIL (|has| |#1| (-1145)))) (-3800 (($ $) NIL (|has| |#1| (-1145)))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-292)) (|has| |#1| (-869))) (|has| |#1| (-533))))) (-3810 (($ $) NIL (|has| |#1| (-1145)))) (-3798 (($ $) NIL (|has| |#1| (-1145)))) (-3814 (($ $) NIL (|has| |#1| (-1145)))) (-3802 (($ $) NIL (|has| |#1| (-1145)))) (-2289 ((|#1| $) NIL (|has| |#1| (-1145)))) (-3815 (($ $) NIL (|has| |#1| (-1145)))) (-3803 (($ $) NIL (|has| |#1| (-1145)))) (-3813 (($ $) NIL (|has| |#1| (-1145)))) (-3801 (($ $) NIL (|has| |#1| (-1145)))) (-3811 (($ $) NIL (|has| |#1| (-1145)))) (-3799 (($ $) NIL (|has| |#1| (-1145)))) (-3702 (($ $) NIL (|has| |#1| (-1013)))) (-2957 (($) 28 T CONST)) (-2964 (($) 30 T CONST)) (-2803 (((-1106) $) 23 (|has| |#1| (-785))) (((-1106) $ (-111)) 25 (|has| |#1| (-785))) (((-1211) (-787) $) 26 (|has| |#1| (-785))) (((-1211) (-787) $ (-111)) 27 (|has| |#1| (-785)))) (-2969 (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 39)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-392 (-526))) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1145)))) (($ $ $) NIL (|has| |#1| (-1145))) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))))) +(((-159 |#1|) (-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) (-163)) (T -159)) +NIL +(-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) +((-4275 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14))) +(((-160 |#1| |#2|) (-10 -7 (-15 -4275 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-163) (-163)) (T -160)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-5 *2 (-159 *6)) (-5 *1 (-160 *5 *6))))) +(-10 -7 (-15 -4275 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) +((-4287 (((-849 |#1|) |#3|) 22))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -4287 ((-849 |#1|) |#3|))) (-1052) (-13 (-584 (-849 |#1|)) (-163)) (-157 |#2|)) (T -161)) +((-4287 (*1 *2 *3) (-12 (-4 *5 (-13 (-584 *2) (-163))) (-5 *2 (-849 *4)) (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1052)) (-4 *3 (-157 *5))))) +(-10 -7 (-15 -4287 ((-849 |#1|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-1404 (((-111) $) 9)) (-1403 (((-111) $ (-111)) 11)) (-3936 (($) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3719 (($ $) 13)) (-4274 (((-823) $) 17)) (-4024 (((-111) $) 8)) (-4180 (((-111) $ (-111)) 10)) (-3353 (((-111) $ $) NIL))) +(((-162) (-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4024 ((-111) $)) (-15 -1404 ((-111) $)) (-15 -4180 ((-111) $ (-111))) (-15 -1403 ((-111) $ (-111))) (-15 -3719 ($ $))))) (T -162)) +((-3936 (*1 *1) (-5 *1 (-162))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-4180 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1403 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-3719 (*1 *1 *1) (-5 *1 (-162)))) +(-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4024 ((-111) $)) (-15 -1404 ((-111) $)) (-15 -4180 ((-111) $ (-111))) (-15 -1403 ((-111) $ (-111))) (-15 -3719 ($ $)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) (((-163) (-134)) (T -163)) NIL -(-13 (-998) (-110 $ $) (-10 -7 (-6 (-4302 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#1| $) 75)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3192 (($ $) 19)) (-2788 (($ |#1| (-1098 |#1|)) 48)) (-3490 (((-3 $ "failed") $) 117)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2170 (((-1098 |#1|) $) 82)) (-1329 (((-1098 |#1|) $) 79)) (-4023 (((-1098 |#1|) $) 80)) (-2836 (((-111) $) NIL)) (-1515 (((-1098 |#1|) $) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-1540 (($ $ (-537)) 91)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3657 (((-1098 |#1|) $) 89)) (-3260 (((-1098 (-391 |#1|)) $) 14)) (-4225 (($ (-391 |#1|)) 17) (($ |#1| (-1098 |#1|) (-1098 |#1|)) 38)) (-1577 (($ $) 93)) (-2341 (((-816) $) 127) (($ (-537)) 51) (($ |#1|) 52) (($ (-391 |#1|)) 36) (($ (-391 (-537))) NIL) (($ $) NIL)) (-3654 (((-731)) 64)) (-3276 (((-111) $ $) NIL)) (-1948 (((-1098 (-391 |#1|)) $) 18)) (-2928 (($) 25 T CONST)) (-2943 (($) 28 T CONST)) (-2244 (((-111) $ $) 35)) (-2340 (($ $ $) 115)) (-2329 (($ $) 106) (($ $ $) 103)) (-2318 (($ $ $) 101)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-391 |#1|) $) 111) (($ $ (-391 |#1|)) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL))) -(((-164 |#1|) (-13 (-37 |#1|) (-37 (-391 |#1|)) (-347) (-10 -8 (-15 -4225 ($ (-391 |#1|))) (-15 -4225 ($ |#1| (-1098 |#1|) (-1098 |#1|))) (-15 -2788 ($ |#1| (-1098 |#1|))) (-15 -1329 ((-1098 |#1|) $)) (-15 -4023 ((-1098 |#1|) $)) (-15 -2170 ((-1098 |#1|) $)) (-15 -1874 (|#1| $)) (-15 -3192 ($ $)) (-15 -1948 ((-1098 (-391 |#1|)) $)) (-15 -3260 ((-1098 (-391 |#1|)) $)) (-15 -1515 ((-1098 |#1|) $)) (-15 -3657 ((-1098 |#1|) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) (-291)) (T -164)) -((-4225 (*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-291)) (-5 *1 (-164 *3)))) (-4225 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) (-2788 (*1 *1 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1874 (*1 *2 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1577 (*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291))))) -(-13 (-37 |#1|) (-37 (-391 |#1|)) (-347) (-10 -8 (-15 -4225 ($ (-391 |#1|))) (-15 -4225 ($ |#1| (-1098 |#1|) (-1098 |#1|))) (-15 -2788 ($ |#1| (-1098 |#1|))) (-15 -1329 ((-1098 |#1|) $)) (-15 -4023 ((-1098 |#1|) $)) (-15 -2170 ((-1098 |#1|) $)) (-15 -1874 (|#1| $)) (-15 -3192 ($ $)) (-15 -1948 ((-1098 (-391 |#1|)) $)) (-15 -3260 ((-1098 (-391 |#1|)) $)) (-15 -1515 ((-1098 |#1|) $)) (-15 -3657 ((-1098 |#1|) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) -((-3969 (($ (-107) $) 13)) (-3124 (((-3 (-107) "failed") (-1117) $) 12)) (-2341 (((-816) $) 16)) (-3452 (((-606 (-107)) $) 8))) -(((-165) (-13 (-579 (-816)) (-10 -8 (-15 -3452 ((-606 (-107)) $)) (-15 -3969 ($ (-107) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $))))) (T -165)) -((-3452 (*1 *2 *1) (-12 (-5 *2 (-606 (-107))) (-5 *1 (-165)))) (-3969 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-165)))) (-3124 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-165))))) -(-13 (-579 (-816)) (-10 -8 (-15 -3452 ((-606 (-107)) $)) (-15 -3969 ($ (-107) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)))) -((-3028 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 40)) (-3947 (((-896 |#1|) (-896 |#1|)) 19)) (-2517 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 36)) (-3791 (((-896 |#1|) (-896 |#1|)) 17)) (-2501 (((-896 |#1|) (-896 |#1|)) 25)) (-3440 (((-896 |#1|) (-896 |#1|)) 24)) (-3881 (((-896 |#1|) (-896 |#1|)) 23)) (-2056 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 37)) (-1542 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 35)) (-2322 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 34)) (-2264 (((-896 |#1|) (-896 |#1|)) 18)) (-1867 (((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|) 43)) (-1517 (((-896 |#1|) (-896 |#1|)) 8)) (-2234 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 39)) (-2451 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 38))) -(((-166 |#1|) (-10 -7 (-15 -1517 ((-896 |#1|) (-896 |#1|))) (-15 -3791 ((-896 |#1|) (-896 |#1|))) (-15 -2264 ((-896 |#1|) (-896 |#1|))) (-15 -3947 ((-896 |#1|) (-896 |#1|))) (-15 -3881 ((-896 |#1|) (-896 |#1|))) (-15 -3440 ((-896 |#1|) (-896 |#1|))) (-15 -2501 ((-896 |#1|) (-896 |#1|))) (-15 -2322 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1542 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2517 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2056 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2451 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2234 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -3028 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1867 ((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|))) (-13 (-347) (-1139) (-954))) (T -166)) -((-1867 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2234 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2451 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2056 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2517 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-1542 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3))))) -(-10 -7 (-15 -1517 ((-896 |#1|) (-896 |#1|))) (-15 -3791 ((-896 |#1|) (-896 |#1|))) (-15 -2264 ((-896 |#1|) (-896 |#1|))) (-15 -3947 ((-896 |#1|) (-896 |#1|))) (-15 -3881 ((-896 |#1|) (-896 |#1|))) (-15 -3440 ((-896 |#1|) (-896 |#1|))) (-15 -2501 ((-896 |#1|) (-896 |#1|))) (-15 -2322 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1542 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2517 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2056 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2451 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2234 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -3028 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1867 ((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|))) -((-2736 ((|#2| |#3|) 27))) -(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2736 (|#2| |#3|))) (-163) (-1176 |#1|) (-685 |#1| |#2|)) (T -167)) -((-2736 (*1 *2 *3) (-12 (-4 *4 (-163)) (-4 *2 (-1176 *4)) (-5 *1 (-167 *4 *2 *3)) (-4 *3 (-685 *4 *2))))) -(-10 -7 (-15 -2736 (|#2| |#3|))) -((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 47 (|has| (-905 |#2|) (-839 |#1|))))) -(((-168 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-905 |#2|) (-839 |#1|)) (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) |%noBranch|)) (-1045) (-13 (-839 |#1|) (-163)) (-157 |#2|)) (T -168)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *3 (-157 *6)) (-4 (-905 *6) (-839 *5)) (-4 *6 (-13 (-839 *5) (-163))) (-5 *1 (-168 *5 *6 *3))))) -(-10 -7 (IF (|has| (-905 |#2|) (-839 |#1|)) (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) |%noBranch|)) -((-3854 (((-606 |#1|) (-606 |#1|) |#1|) 38)) (-4036 (((-606 |#1|) |#1| (-606 |#1|)) 19)) (-3747 (((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|)) 33) ((|#1| (-606 |#1|) (-606 |#1|)) 31))) -(((-169 |#1|) (-10 -7 (-15 -4036 ((-606 |#1|) |#1| (-606 |#1|))) (-15 -3747 (|#1| (-606 |#1|) (-606 |#1|))) (-15 -3747 ((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|))) (-15 -3854 ((-606 |#1|) (-606 |#1|) |#1|))) (-291)) (T -169)) -((-3854 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3)))) (-3747 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-606 *4))) (-5 *2 (-606 *4)) (-4 *4 (-291)) (-5 *1 (-169 *4)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-169 *2)) (-4 *2 (-291)))) (-4036 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) -(-10 -7 (-15 -4036 ((-606 |#1|) |#1| (-606 |#1|))) (-15 -3747 (|#1| (-606 |#1|) (-606 |#1|))) (-15 -3747 ((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|))) (-15 -3854 ((-606 |#1|) (-606 |#1|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-170) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $))))) (T -170)) -((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-170)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-170))))) -(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $)))) -((-1610 (((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|) 61)) (-3145 ((|#1| |#1|) 54)) (-2853 (((-160 |#1|) |#2|) 84)) (-1909 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3712 ((|#2| |#2|) 83)) (-3410 (((-402 |#2|) |#2| |#1|) 113) (((-402 |#2|) |#2| |#1| (-111)) 81)) (-2055 ((|#1| |#2|) 112)) (-4112 ((|#2| |#2|) 119)) (-3622 (((-402 |#2|) |#2|) 134) (((-402 |#2|) |#2| |#1|) 32) (((-402 |#2|) |#2| |#1| (-111)) 133)) (-3291 (((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|) 132) (((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111)) 76)) (-2907 (((-606 (-160 |#1|)) |#2| |#1|) 40) (((-606 (-160 |#1|)) |#2|) 41))) -(((-171 |#1| |#2|) (-10 -7 (-15 -2907 ((-606 (-160 |#1|)) |#2|)) (-15 -2907 ((-606 (-160 |#1|)) |#2| |#1|)) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111))) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|)) (-15 -3622 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3622 ((-402 |#2|) |#2| |#1|)) (-15 -3622 ((-402 |#2|) |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -2055 (|#1| |#2|)) (-15 -3410 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3410 ((-402 |#2|) |#2| |#1|)) (-15 -3712 (|#2| |#2|)) (-15 -1909 (|#1| |#2| |#1|)) (-15 -1909 (|#1| |#2|)) (-15 -2853 ((-160 |#1|) |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -1610 ((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|))) (-13 (-347) (-805)) (-1176 (-160 |#1|))) (T -171)) -((-1610 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-2 (|:| |start| *3) (|:| -3415 (-402 *3)))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3145 (*1 *2 *2) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-2853 (*1 *2 *3) (-12 (-5 *2 (-160 *4)) (-5 *1 (-171 *4 *3)) (-4 *4 (-13 (-347) (-805))) (-4 *3 (-1176 *2)))) (-1909 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-1909 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) (-4 *2 (-1176 (-160 *3))))) (-3410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-2055 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) (-4 *2 (-1176 (-160 *3))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3622 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *4)))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-347) (-805))) (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *5)))) (-5 *1 (-171 *5 *3)) (-4 *3 (-1176 (-160 *5))))) (-2907 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) -(-10 -7 (-15 -2907 ((-606 (-160 |#1|)) |#2|)) (-15 -2907 ((-606 (-160 |#1|)) |#2| |#1|)) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111))) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|)) (-15 -3622 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3622 ((-402 |#2|) |#2| |#1|)) (-15 -3622 ((-402 |#2|) |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -2055 (|#1| |#2|)) (-15 -3410 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3410 ((-402 |#2|) |#2| |#1|)) (-15 -3712 (|#2| |#2|)) (-15 -1909 (|#1| |#2| |#1|)) (-15 -1909 (|#1| |#2|)) (-15 -2853 ((-160 |#1|) |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -1610 ((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|))) -((-2032 (((-3 |#2| "failed") |#2|) 14)) (-2404 (((-731) |#2|) 16)) (-3565 ((|#2| |#2| |#2|) 18))) -(((-172 |#1| |#2|) (-10 -7 (-15 -2032 ((-3 |#2| "failed") |#2|)) (-15 -2404 ((-731) |#2|)) (-15 -3565 (|#2| |#2| |#2|))) (-1154) (-635 |#1|)) (T -172)) -((-3565 (*1 *2 *2 *2) (-12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-1154)) (-5 *2 (-731)) (-5 *1 (-172 *4 *3)) (-4 *3 (-635 *4)))) (-2032 (*1 *2 *2) (|partial| -12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3))))) -(-10 -7 (-15 -2032 ((-3 |#2| "failed") |#2|)) (-15 -2404 ((-731) |#2|)) (-15 -3565 (|#2| |#2| |#2|))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2689 (((-1117) $) 10)) (-2341 (((-816) $) 17)) (-2920 (((-606 (-1122)) $) 12)) (-2244 (((-111) $ $) 15))) -(((-173) (-13 (-1045) (-10 -8 (-15 -2689 ((-1117) $)) (-15 -2920 ((-606 (-1122)) $))))) (T -173)) -((-2689 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-173)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-173))))) -(-13 (-1045) (-10 -8 (-15 -2689 ((-1117) $)) (-15 -2920 ((-606 (-1122)) $)))) -((-1860 ((|#2| |#2|) 28)) (-3928 (((-111) |#2|) 19)) (-3645 (((-300 |#1|) |#2|) 12)) (-3656 (((-300 |#1|) |#2|) 14)) (-2523 ((|#2| |#2| (-1117)) 68) ((|#2| |#2|) 69)) (-3082 (((-160 (-300 |#1|)) |#2|) 10)) (-2435 ((|#2| |#2| (-1117)) 65) ((|#2| |#2|) 59))) -(((-174 |#1| |#2|) (-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -3645 ((-300 |#1|) |#2|)) (-15 -3656 ((-300 |#1|) |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3082 ((-160 (-300 |#1|)) |#2|))) (-13 (-529) (-807) (-989 (-537))) (-13 (-27) (-1139) (-414 (-160 |#1|)))) (T -174)) -((-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-160 (-300 *4))) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-111)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2435 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) (-2523 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3))))))) -(-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -3645 ((-300 |#1|) |#2|)) (-15 -3656 ((-300 |#1|) |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3082 ((-160 (-300 |#1|)) |#2|))) -((-3438 (((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|))) 24)) (-2341 (((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))) 33))) -(((-175 |#1|) (-10 -7 (-15 -3438 ((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|)))) (-15 -2341 ((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))))) (-163)) (T -175)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) (-5 *2 (-1200 (-649 (-391 (-905 *4))))) (-5 *1 (-175 *4)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) (-5 *2 (-1200 (-649 (-905 *4)))) (-5 *1 (-175 *4))))) -(-10 -7 (-15 -3438 ((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|)))) (-15 -2341 ((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))))) -((-2335 (((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 66)) (-2157 (((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537))) 75)) (-2112 (((-1119 (-391 (-537))) (-537)) 40)) (-1462 (((-1119 (-391 (-537))) (-537)) 52)) (-4116 (((-391 (-537)) (-1119 (-391 (-537)))) 62)) (-3442 (((-1119 (-391 (-537))) (-537)) 32)) (-2768 (((-1119 (-391 (-537))) (-537)) 48)) (-4249 (((-1119 (-391 (-537))) (-537)) 46)) (-3049 (((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 60)) (-1577 (((-1119 (-391 (-537))) (-537)) 25)) (-3196 (((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 64)) (-3314 (((-1119 (-391 (-537))) (-537)) 30)) (-3578 (((-1119 (-391 (-537))) (-606 (-537))) 72))) -(((-176) (-10 -7 (-15 -1577 ((-1119 (-391 (-537))) (-537))) (-15 -2112 ((-1119 (-391 (-537))) (-537))) (-15 -3442 ((-1119 (-391 (-537))) (-537))) (-15 -3314 ((-1119 (-391 (-537))) (-537))) (-15 -4249 ((-1119 (-391 (-537))) (-537))) (-15 -2768 ((-1119 (-391 (-537))) (-537))) (-15 -1462 ((-1119 (-391 (-537))) (-537))) (-15 -3196 ((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3049 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -4116 ((-391 (-537)) (-1119 (-391 (-537))))) (-15 -2335 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3578 ((-1119 (-391 (-537))) (-606 (-537)))) (-15 -2157 ((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537)))))) (T -176)) -((-2157 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-2335 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-176)))) (-3049 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-176)))) (-1462 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-2768 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-4249 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-3314 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-2112 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-1577 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(-10 -7 (-15 -1577 ((-1119 (-391 (-537))) (-537))) (-15 -2112 ((-1119 (-391 (-537))) (-537))) (-15 -3442 ((-1119 (-391 (-537))) (-537))) (-15 -3314 ((-1119 (-391 (-537))) (-537))) (-15 -4249 ((-1119 (-391 (-537))) (-537))) (-15 -2768 ((-1119 (-391 (-537))) (-537))) (-15 -1462 ((-1119 (-391 (-537))) (-537))) (-15 -3196 ((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3049 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -4116 ((-391 (-537)) (-1119 (-391 (-537))))) (-15 -2335 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3578 ((-1119 (-391 (-537))) (-606 (-537)))) (-15 -2157 ((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537))))) -((-3769 (((-402 (-1113 (-537))) (-537)) 28)) (-2001 (((-606 (-1113 (-537))) (-537)) 23)) (-1443 (((-1113 (-537)) (-537)) 21))) -(((-177) (-10 -7 (-15 -2001 ((-606 (-1113 (-537))) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -3769 ((-402 (-1113 (-537))) (-537))))) (T -177)) -((-3769 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-177)) (-5 *3 (-537)))) (-2001 (*1 *2 *3) (-12 (-5 *2 (-606 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) -(-10 -7 (-15 -2001 ((-606 (-1113 (-537))) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -3769 ((-402 (-1113 (-537))) (-537)))) -((-2881 (((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 105)) (-2718 (((-606 (-1100)) (-1098 (-210))) NIL)) (-3417 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 81)) (-3326 (((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210)))) NIL)) (-3908 (((-606 (-1100)) (-606 (-210))) NIL)) (-2148 (((-210) (-1040 (-800 (-210)))) 24)) (-1590 (((-210) (-1040 (-800 (-210)))) 25)) (-3516 (((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 98)) (-3107 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 42)) (-2442 (((-1100) (-210)) NIL)) (-4158 (((-1100) (-606 (-1100))) 20)) (-1359 (((-986) (-1117) (-1117) (-986)) 13))) -(((-178) (-10 -7 (-15 -3417 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3107 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3516 ((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -4158 ((-1100) (-606 (-1100)))) (-15 -1359 ((-986) (-1117) (-1117) (-986))))) (T -178)) -((-1359 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-178)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-178)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-178)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-178)))) (-3326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-178)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-178)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-178)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-178))))) -(-10 -7 (-15 -3417 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3107 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3516 ((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -4158 ((-1100) (-606 (-1100)))) (-15 -1359 ((-986) (-1117) (-1117) (-986)))) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 55) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 32) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-179) (-747)) (T -179)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 60) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-180) (-747)) (T -180)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 69) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-181) (-747)) (T -181)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 56) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 34) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-182) (-747)) (T -182)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 67) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 38) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-183) (-747)) (T -183)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 73) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 36) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-184) (-747)) (T -184)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 80) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 44) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-185) (-747)) (T -185)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 70) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-186) (-747)) (T -186)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 66)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 32)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-187) (-747)) (T -187)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 63)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 34)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-188) (-747)) (T -188)) -NIL -(-747) -((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 90) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 78) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-189) (-747)) (T -189)) -NIL -(-747) -((-3143 (((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 85)) (-2083 (((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 42)) (-2279 (((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 73))) -(((-190) (-10 -7 (-15 -3143 ((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2279 ((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2083 ((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -190)) -((-2083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-537)) (-5 *1 (-190)))) (-2279 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-190)))) (-3143 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -4157 (-113)) (|:| |w| (-210)))) (-5 *1 (-190))))) -(-10 -7 (-15 -3143 ((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2279 ((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2083 ((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) -((-2490 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 39)) (-3108 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 130)) (-2701 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210)))) 89)) (-2179 (((-363) (-649 (-300 (-210)))) 113)) (-2302 (((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117))) 110)) (-3777 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 30)) (-2045 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 43)) (-4116 (((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210)))) 102)) (-2446 (((-363) (-363) (-606 (-363))) 107) (((-363) (-363) (-363)) 105)) (-4248 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 36))) -(((-191) (-10 -7 (-15 -2446 ((-363) (-363) (-363))) (-15 -2446 ((-363) (-363) (-606 (-363)))) (-15 -2179 ((-363) (-649 (-300 (-210))))) (-15 -2302 ((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117)))) (-15 -4116 ((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210))))) (-15 -2701 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210))))) (-15 -3108 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2490 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2045 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -4248 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3777 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -191)) -((-3777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-191)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-191)))) (-4116 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-300 (-210)))) (-5 *3 (-606 (-1117))) (-5 *4 (-1200 (-300 (-210)))) (-5 *1 (-191)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) (-5 *2 (-649 (-300 (-210)))) (-5 *1 (-191)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-363))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2446 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-191))))) -(-10 -7 (-15 -2446 ((-363) (-363) (-363))) (-15 -2446 ((-363) (-363) (-606 (-363)))) (-15 -2179 ((-363) (-649 (-300 (-210))))) (-15 -2302 ((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117)))) (-15 -4116 ((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210))))) (-15 -2701 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210))))) (-15 -3108 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2490 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2045 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -4248 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3777 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 64)) (-2244 (((-111) $ $) NIL))) -(((-192) (-760)) (T -192)) -NIL -(-760) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 62)) (-2244 (((-111) $ $) NIL))) -(((-193) (-760)) (T -193)) -NIL -(-760) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 66)) (-2244 (((-111) $ $) NIL))) -(((-194) (-760)) (T -194)) -NIL -(-760) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 46)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 75)) (-2244 (((-111) $ $) NIL))) -(((-195) (-760)) (T -195)) -NIL -(-760) -((-2163 (((-606 (-1117)) (-1117) (-731)) 23)) (-2560 (((-300 (-210)) (-300 (-210))) 31)) (-3767 (((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 74)) (-1461 (((-111) (-210) (-210) (-606 (-300 (-210)))) 45))) -(((-196) (-10 -7 (-15 -2163 ((-606 (-1117)) (-1117) (-731))) (-15 -2560 ((-300 (-210)) (-300 (-210)))) (-15 -1461 ((-111) (-210) (-210) (-606 (-300 (-210))))) (-15 -3767 ((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))))) (T -196)) -((-3767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-111)) (-5 *1 (-196)))) (-1461 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-606 (-300 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-196)))) (-2560 (*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-196)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-196)) (-5 *3 (-1117))))) -(-10 -7 (-15 -2163 ((-606 (-1117)) (-1117) (-731))) (-15 -2560 ((-300 (-210)) (-300 (-210)))) (-15 -1461 ((-111) (-210) (-210) (-606 (-300 (-210))))) (-15 -3767 ((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))))) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 26)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 57)) (-2244 (((-111) $ $) NIL))) -(((-197) (-848)) (T -197)) -NIL -(-848) -((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) NIL)) (-2244 (((-111) $ $) NIL))) -(((-198) (-848)) (T -198)) -NIL -(-848) -((-2330 (((-111) $ $) NIL)) (-2476 ((|#2| $ (-731) |#2|) 11)) (-3157 (($) 8)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#2| $ (-731)) 10)) (-2341 (((-816) $) 18)) (-2244 (((-111) $ $) 13))) -(((-199 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -1922 (|#2| $ (-731))) (-15 -2476 (|#2| $ (-731) |#2|)))) (-874) (-1045)) (T -199)) -((-3157 (*1 *1) (-12 (-5 *1 (-199 *2 *3)) (-14 *2 (-874)) (-4 *3 (-1045)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *2 (-1045)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)) (-4 *2 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -1922 (|#2| $ (-731))) (-15 -2476 (|#2| $ (-731) |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3404 (((-1205) $) 36) (((-1205) $ (-874) (-874)) 38)) (-1922 (($ $ (-942)) 19) (((-230 (-1100)) $ (-1117)) 15)) (-2356 (((-1205) $) 34)) (-2341 (((-816) $) 31) (($ (-606 |#1|)) 8)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $ $) 27)) (-2318 (($ $ $) 22))) -(((-200 |#1|) (-13 (-1045) (-10 -8 (-15 -1922 ($ $ (-942))) (-15 -1922 ((-230 (-1100)) $ (-1117))) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2341 ($ (-606 |#1|))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -3404 ((-1205) $ (-874) (-874))))) (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))) (T -200)) -((-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-942)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-230 (-1100))) (-5 *1 (-200 *4)) (-4 *4 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ *3)) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-200 *2)) (-4 *2 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2329 (*1 *1 *1 *1) (-12 (-5 *1 (-200 *2)) (-4 *2 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))) (-5 *1 (-200 *3)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $))))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $))))))) (-3404 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-200 *4)) (-4 *4 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $)))))))) -(-13 (-1045) (-10 -8 (-15 -1922 ($ $ (-942))) (-15 -1922 ((-230 (-1100)) $ (-1117))) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2341 ($ (-606 |#1|))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -3404 ((-1205) $ (-874) (-874))))) -((-2310 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2310 (|#2| |#4| (-1 |#2| |#2|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -201)) -((-2310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-347)) (-4 *6 (-1176 (-391 *2))) (-4 *2 (-1176 *5)) (-5 *1 (-201 *5 *2 *6 *3)) (-4 *3 (-326 *5 *2 *6))))) -(-10 -7 (-15 -2310 (|#2| |#4| (-1 |#2| |#2|)))) -((-3982 ((|#2| |#2| (-731) |#2|) 42)) (-3475 ((|#2| |#2| (-731) |#2|) 38)) (-3149 (((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|)))) 57)) (-3752 (((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|) 53)) (-3224 (((-111) |#2|) 50)) (-3159 (((-402 |#2|) |#2|) 77)) (-3622 (((-402 |#2|) |#2|) 76)) (-4243 ((|#2| |#2| (-731) |#2|) 36)) (-2715 (((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111)) 69))) -(((-202 |#1| |#2|) (-10 -7 (-15 -3622 ((-402 |#2|) |#2|)) (-15 -3159 ((-402 |#2|) |#2|)) (-15 -2715 ((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111))) (-15 -3752 ((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|)) (-15 -3149 ((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))))) (-15 -4243 (|#2| |#2| (-731) |#2|)) (-15 -3475 (|#2| |#2| (-731) |#2|)) (-15 -3982 (|#2| |#2| (-731) |#2|)) (-15 -3224 ((-111) |#2|))) (-333) (-1176 |#1|)) (T -202)) -((-3224 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-3982 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-3475 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-4243 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *5)))) (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *2 (-606 *5)) (-5 *1 (-202 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *3)))) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-202 *5 *3)) (-4 *3 (-1176 *5)))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -3622 ((-402 |#2|) |#2|)) (-15 -3159 ((-402 |#2|) |#2|)) (-15 -2715 ((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111))) (-15 -3752 ((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|)) (-15 -3149 ((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))))) (-15 -4243 (|#2| |#2| (-731) |#2|)) (-15 -3475 (|#2| |#2| (-731) |#2|)) (-15 -3982 (|#2| |#2| (-731) |#2|)) (-15 -3224 ((-111) |#2|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-1966 (($ (-391 (-537))) 9)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 10) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) -(((-203) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 10) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -1966 ($ (-391 (-537))))))) (T -203)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 10)) (-5 *1 (-203)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203))))) -(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 10) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -1966 ($ (-391 (-537)))))) -((-3092 (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100)) 28) (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|))) 24)) (-3582 (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)) 17))) -(((-204 |#1| |#2|) (-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)))) (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100))) (-15 -3582 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -204)) -((-3582 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1117)) (-5 *6 (-111)) (-4 *7 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-1139) (-912) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *7 *3)) (-5 *5 (-800 *3)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-800 *3))) (-5 *5 (-1100)) (-4 *3 (-13 (-1139) (-912) (-29 *6))) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *6 *3)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-800 *3))) (-4 *3 (-13 (-1139) (-912) (-29 *5))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *5 *3))))) -(-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)))) (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100))) (-15 -3582 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)))) -((-3092 (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)) 46) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|))))) 43) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100)) 47) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|)))) 20))) -(((-205 |#1|) (-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (T -205)) -((-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-800 (-391 (-905 *6))))) (-5 *5 (-1100)) (-5 *3 (-391 (-905 *6))) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *6)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-800 (-391 (-905 *5))))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *5)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1038 (-800 (-300 *6)))) (-5 *5 (-1100)) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *6)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1038 (-800 (-300 *5)))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *5))))) -(-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)))) -((-3195 (((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|)) 21)) (-1905 (((-606 (-300 |#2|)) (-300 |#2|) (-874)) 42))) -(((-206 |#1| |#2|) (-10 -7 (-15 -3195 ((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|))) (-15 -1905 ((-606 (-300 |#2|)) (-300 |#2|) (-874)))) (-998) (-13 (-529) (-807))) (T -206)) -((-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *6 (-13 (-529) (-807))) (-5 *2 (-606 (-300 *6))) (-5 *1 (-206 *5 *6)) (-5 *3 (-300 *6)) (-4 *5 (-998)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-2 (|:| -2990 (-1113 *4)) (|:| |deg| (-874)))) (-5 *1 (-206 *4 *5)) (-5 *3 (-1113 *4)) (-4 *5 (-13 (-529) (-807)))))) -(-10 -7 (-15 -3195 ((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|))) (-15 -1905 ((-606 (-300 |#2|)) (-300 |#2|) (-874)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3259 ((|#1| $) NIL)) (-2992 ((|#1| $) 25)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3641 (($ $) NIL)) (-4146 (($ $) 31)) (-2993 ((|#1| |#1| $) NIL)) (-3444 ((|#1| $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3845 (((-731) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) NIL)) (-2224 ((|#1| |#1| $) 28)) (-2941 ((|#1| |#1| $) 30)) (-3499 (($ |#1| $) NIL)) (-2545 (((-731) $) 27)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1424 ((|#1| $) NIL)) (-1771 ((|#1| $) 26)) (-3919 ((|#1| $) 24)) (-1599 ((|#1| $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2051 ((|#1| |#1| $) NIL)) (-2193 (((-111) $) 9)) (-3425 (($) NIL)) (-4198 ((|#1| $) NIL)) (-3966 (($) NIL) (($ (-606 |#1|)) 16)) (-3731 (((-731) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-1921 ((|#1| $) 13)) (-2753 (($ (-606 |#1|)) NIL)) (-4247 ((|#1| $) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-207 |#1|) (-13 (-238 |#1|) (-10 -8 (-15 -3966 ($ (-606 |#1|))))) (-1045)) (T -207)) -((-3966 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-207 *3))))) -(-13 (-238 |#1|) (-10 -8 (-15 -3966 ($ (-606 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3933 (($ (-300 |#1|)) 23)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2615 (((-111) $) NIL)) (-1516 (((-3 (-300 |#1|) "failed") $) NIL)) (-3958 (((-300 |#1|) $) NIL)) (-3940 (($ $) 31)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1612 (($ (-1 (-300 |#1|) (-300 |#1|)) $) NIL)) (-3912 (((-300 |#1|) $) NIL)) (-2695 (($ $) 30)) (-1654 (((-1100) $) NIL)) (-1611 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) NIL)) (-1928 (($ $) 32)) (-2872 (((-537) $) NIL)) (-2341 (((-816) $) 57) (($ (-537)) NIL) (($ (-300 |#1|)) NIL)) (-3500 (((-300 |#1|) $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 25 T CONST)) (-2943 (($) 50 T CONST)) (-2244 (((-111) $ $) 28)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 19)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 24) (($ (-300 |#1|) $) 18))) -(((-208 |#1| |#2|) (-13 (-583 (-300 |#1|)) (-989 (-300 |#1|)) (-10 -8 (-15 -3912 ((-300 |#1|) $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 ((-300 |#1|) $ $)) (-15 -1524 ($ (-731))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -1612 ($ (-1 (-300 |#1|) (-300 |#1|)) $)) (-15 -3933 ($ (-300 |#1|))) (-15 -1928 ($ $)))) (-13 (-998) (-807)) (-606 (-1117))) (T -208)) -((-3912 (*1 *2 *1) (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2695 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117))))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117))))) (-3500 (*1 *2 *1 *1) (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-300 *3) (-300 *3))) (-4 *3 (-13 (-998) (-807))) (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-300 *3)) (-4 *3 (-13 (-998) (-807))) (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117)))))) -(-13 (-583 (-300 |#1|)) (-989 (-300 |#1|)) (-10 -8 (-15 -3912 ((-300 |#1|) $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 ((-300 |#1|) $ $)) (-15 -1524 ($ (-731))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -1612 ($ (-1 (-300 |#1|) (-300 |#1|)) $)) (-15 -3933 ($ (-300 |#1|))) (-15 -1928 ($ $)))) -((-1738 (((-111) (-1100)) 22)) (-2063 (((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111)) 32)) (-2714 (((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)) 73) (((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111)) 74))) -(((-209 |#1| |#2|) (-10 -7 (-15 -1738 ((-111) (-1100))) (-15 -2063 ((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-29 |#1|))) (T -209)) -((-2714 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1113 *6)) (-5 *4 (-800 *6)) (-4 *6 (-13 (-1139) (-29 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-209 *5 *6)))) (-2714 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1117)) (-5 *5 (-800 *7)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *7 (-13 (-1139) (-29 *6))) (-5 *1 (-209 *6 *7)))) (-2063 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-800 *4)) (-5 *3 (-578 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1139) (-29 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-209 *6 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-111)) (-5 *1 (-209 *4 *5)) (-4 *5 (-13 (-1139) (-29 *4)))))) -(-10 -7 (-15 -1738 ((-111) (-1100))) (-15 -2063 ((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 89)) (-1874 (((-537) $) 99)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) NIL)) (-1403 (($ $) 77)) (-1247 (($ $) 65)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) 56)) (-4099 (((-111) $ $) NIL)) (-1378 (($ $) 75)) (-4270 (($ $) 63)) (-2537 (((-537) $) 116)) (-1429 (($ $) 80)) (-1273 (($ $) 67)) (-3832 (($) NIL T CONST)) (-3981 (($ $) NIL)) (-1516 (((-3 (-537) "failed") $) 115) (((-3 (-391 (-537)) "failed") $) 112)) (-3958 (((-537) $) 113) (((-391 (-537)) $) 110)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 92)) (-1292 (((-391 (-537)) $ (-731)) 108) (((-391 (-537)) $ (-731) (-731)) 107)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 29) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-3797 (((-111) $) NIL)) (-3338 (($) 39)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-4231 (((-537) $) 35)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (($ $) NIL)) (-2840 (((-111) $) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) 53) (($) 34 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3889 (($ $ $) 52) (($) 33 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 27)) (-3959 (($ $) 30)) (-1970 (($ $) 57)) (-2180 (($ $) 62)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3964 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL) (((-537) $) 90)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL)) (-3830 (($ $) NIL)) (-2851 (($ (-537) (-537)) NIL) (($ (-537) (-537) (-874)) 100)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 28)) (-3270 (($) 38)) (-4185 (($ $) 61)) (-1930 (((-731) $) NIL)) (-1754 (((-1100) (-1100)) 8)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-3456 (($ $ (-731)) NIL) (($ $) 93)) (-1398 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-1441 (($ $) 78)) (-1286 (($ $) 68)) (-1415 (($ $) 79)) (-1259 (($ $) 66)) (-1389 (($ $) 76)) (-1234 (($ $) 64)) (-3996 (((-363) $) 104) (((-210) $) 101) (((-845 (-363)) $) NIL) (((-513) $) 45)) (-2341 (((-816) $) 42) (($ (-537)) 60) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-537)) 60) (($ (-391 (-537))) NIL)) (-3654 (((-731)) NIL)) (-3903 (($ $) NIL)) (-3272 (((-874)) 32) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1605 (((-874)) 25)) (-1475 (($ $) 83)) (-1328 (($ $) 71) (($ $ $) 109)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 81)) (-1300 (($ $) 69)) (-1495 (($ $) 86)) (-1352 (($ $) 74)) (-4141 (($ $) 84)) (-1365 (($ $) 72)) (-1485 (($ $) 85)) (-1340 (($ $) 73)) (-1465 (($ $) 82)) (-1314 (($ $) 70)) (-2209 (($ $) 117)) (-2928 (($) 36 T CONST)) (-2943 (($) 37 T CONST)) (-1379 (((-1100) $) 19) (((-1100) $ (-111)) 21) (((-1205) (-782) $) 22) (((-1205) (-782) $ (-111)) 23)) (-2247 (($ $) 96)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2611 (($ $ $) 98)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 54)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 46)) (-2340 (($ $ $) 87) (($ $ (-537)) 55)) (-2329 (($ $) 47) (($ $ $) 49)) (-2318 (($ $ $) 48)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 58) (($ $ (-391 (-537))) 129) (($ $ $) 59)) (* (($ (-874) $) 31) (($ (-731) $) NIL) (($ (-537) $) 51) (($ $ $) 50) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-210) (-13 (-388) (-218) (-788) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -3270 ($)) (-15 -2528 ((-537) $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -1328 ($ $ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1754 ((-1100) (-1100))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731)))))) (T -210)) -((** (*1 *1 *1 *1) (-5 *1 (-210))) (-2340 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) (-3270 (*1 *1) (-5 *1 (-210))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) (-3959 (*1 *1 *1) (-5 *1 (-210))) (-1970 (*1 *1 *1) (-5 *1 (-210))) (-1328 (*1 *1 *1 *1) (-5 *1 (-210))) (-2247 (*1 *1 *1) (-5 *1 (-210))) (-2611 (*1 *1 *1 *1) (-5 *1 (-210))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-210)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) (-1292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210))))) -(-13 (-388) (-218) (-788) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -3270 ($)) (-15 -2528 ((-537) $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -1328 ($ $ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1754 ((-1100) (-1100))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))))) -((-3548 (((-160 (-210)) (-731) (-160 (-210))) 11) (((-210) (-731) (-210)) 12)) (-2286 (((-160 (-210)) (-160 (-210))) 13) (((-210) (-210)) 14)) (-1331 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 19) (((-210) (-210) (-210)) 22)) (-1593 (((-160 (-210)) (-160 (-210))) 25) (((-210) (-210)) 24)) (-3288 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 43) (((-210) (-210) (-210)) 35)) (-1961 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 48) (((-210) (-210) (-210)) 45)) (-2354 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 15) (((-210) (-210) (-210)) 16)) (-1716 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 17) (((-210) (-210) (-210)) 18)) (-2147 (((-160 (-210)) (-160 (-210))) 60) (((-210) (-210)) 59)) (-3502 (((-210) (-210)) 54) (((-160 (-210)) (-160 (-210))) 58)) (-2247 (((-160 (-210)) (-160 (-210))) 8) (((-210) (-210)) 9)) (-2611 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 30) (((-210) (-210) (-210)) 26))) -(((-211) (-10 -7 (-15 -2247 ((-210) (-210))) (-15 -2247 ((-160 (-210)) (-160 (-210)))) (-15 -2611 ((-210) (-210) (-210))) (-15 -2611 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -2286 ((-210) (-210))) (-15 -2286 ((-160 (-210)) (-160 (-210)))) (-15 -1593 ((-210) (-210))) (-15 -1593 ((-160 (-210)) (-160 (-210)))) (-15 -3548 ((-210) (-731) (-210))) (-15 -3548 ((-160 (-210)) (-731) (-160 (-210)))) (-15 -2354 ((-210) (-210) (-210))) (-15 -2354 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3288 ((-210) (-210) (-210))) (-15 -3288 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1716 ((-210) (-210) (-210))) (-15 -1716 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1961 ((-210) (-210) (-210))) (-15 -1961 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3502 ((-160 (-210)) (-160 (-210)))) (-15 -3502 ((-210) (-210))) (-15 -2147 ((-210) (-210))) (-15 -2147 ((-160 (-210)) (-160 (-210)))) (-15 -1331 ((-210) (-210) (-210))) (-15 -1331 ((-160 (-210)) (-160 (-210)) (-160 (-210)))))) (T -211)) -((-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-160 (-210))) (-5 *3 (-731)) (-5 *1 (-211)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-210)) (-5 *3 (-731)) (-5 *1 (-211)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2611 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2611 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211))))) -(-10 -7 (-15 -2247 ((-210) (-210))) (-15 -2247 ((-160 (-210)) (-160 (-210)))) (-15 -2611 ((-210) (-210) (-210))) (-15 -2611 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -2286 ((-210) (-210))) (-15 -2286 ((-160 (-210)) (-160 (-210)))) (-15 -1593 ((-210) (-210))) (-15 -1593 ((-160 (-210)) (-160 (-210)))) (-15 -3548 ((-210) (-731) (-210))) (-15 -3548 ((-160 (-210)) (-731) (-160 (-210)))) (-15 -2354 ((-210) (-210) (-210))) (-15 -2354 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3288 ((-210) (-210) (-210))) (-15 -3288 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1716 ((-210) (-210) (-210))) (-15 -1716 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1961 ((-210) (-210) (-210))) (-15 -1961 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3502 ((-160 (-210)) (-160 (-210)))) (-15 -3502 ((-210) (-210))) (-15 -2147 ((-210) (-210))) (-15 -2147 ((-160 (-210)) (-160 (-210)))) (-15 -1331 ((-210) (-210) (-210))) (-15 -1331 ((-160 (-210)) (-160 (-210)) (-160 (-210))))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) NIL)) (-2417 (($ $ $) NIL)) (-3660 (($ (-1200 |#1|)) NIL) (($ $) NIL)) (-1825 (($ |#1| |#1| |#1|) 32)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) NIL)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-1200 |#1|)) NIL)) (-2573 (($ $ (-537) (-1200 |#1|)) NIL)) (-3190 (($ |#1| |#1| |#1|) 31)) (-3110 (($ (-731) |#1|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) NIL (|has| |#1| (-291)))) (-2964 (((-1200 |#1|) $ (-537)) NIL)) (-3551 (($ |#1|) 30)) (-1354 (($ |#1|) 29)) (-2927 (($ |#1|) 28)) (-3705 (((-731) $) NIL (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) NIL (|has| |#1| (-529)))) (-2630 (((-606 (-1200 |#1|)) $) NIL (|has| |#1| (-529)))) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) NIL (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#1|))) 11)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) NIL (|has| |#1| (-347)))) (-4237 (($) 12)) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) NIL (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-1200 |#1|) $ (-537)) NIL)) (-2341 (($ (-1200 |#1|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-1200 |#1|) $ (-1200 |#1|)) 15) (((-1200 |#1|) (-1200 |#1|) $) NIL) (((-896 |#1|) $ (-896 |#1|)) 20)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-212 |#1|) (-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 * ((-896 |#1|) $ (-896 |#1|))) (-15 -4237 ($)) (-15 -2927 ($ |#1|)) (-15 -1354 ($ |#1|)) (-15 -3551 ($ |#1|)) (-15 -3190 ($ |#1| |#1| |#1|)) (-15 -1825 ($ |#1| |#1| |#1|)))) (-13 (-347) (-1139))) (T -212)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139))) (-5 *1 (-212 *3)))) (-4237 (*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-2927 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-1354 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-3551 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-3190 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-1825 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) -(-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 * ((-896 |#1|) $ (-896 |#1|))) (-15 -4237 ($)) (-15 -2927 ($ |#1|)) (-15 -1354 ($ |#1|)) (-15 -3551 ($ |#1|)) (-15 -3190 ($ |#1| |#1| |#1|)) (-15 -1825 ($ |#1| |#1| |#1|)))) -((-3435 (($ (-1 (-111) |#2|) $) 16)) (-3026 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-1341 (($) NIL) (($ (-606 |#2|)) 11)) (-2244 (((-111) $ $) 23))) -(((-213 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-214 |#2|) (-1045)) (T -213)) -NIL -(-10 -8 (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-214 |#1|) (-134) (-1045)) (T -214)) -NIL -(-13 (-220 |t#1|)) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) 11) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) 19) (($ $ (-731)) NIL) (($ $) 16)) (-4230 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-731)) 14) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL))) -(((-215 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1117))) (-15 -4230 (|#1| |#1| (-606 (-1117)))) (-15 -4230 (|#1| |#1| (-1117) (-731))) (-15 -4230 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|)))) (-216 |#2|) (-998)) (T -215)) -NIL -(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1117))) (-15 -4230 (|#1| |#1| (-606 (-1117)))) (-15 -4230 (|#1| |#1| (-1117) (-731))) (-15 -4230 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-731)) 49) (($ $ (-606 (-1117)) (-606 (-731))) 42 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 41 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 40 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 39 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 37 (|has| |#1| (-218))) (($ $) 35 (|has| |#1| (-218)))) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-731)) 47) (($ $ (-606 (-1117)) (-606 (-731))) 46 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 45 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 44 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 43 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 38 (|has| |#1| (-218))) (($ $) 36 (|has| |#1| (-218)))) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-216 |#1|) (-134) (-998)) (T -216)) -((-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) (-4 *4 (-998)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) (-4 *4 (-998))))) -(-13 (-998) (-10 -8 (-15 -3456 ($ $ (-1 |t#1| |t#1|))) (-15 -3456 ($ $ (-1 |t#1| |t#1|) (-731))) (-15 -4230 ($ $ (-1 |t#1| |t#1|))) (-15 -4230 ($ $ (-1 |t#1| |t#1|) (-731))) (IF (|has| |t#1| (-218)) (-6 (-218)) |%noBranch|) (IF (|has| |t#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-218) |has| |#1| (-218)) ((-609 $) . T) ((-687) . T) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-3456 (($ $) NIL) (($ $ (-731)) 10)) (-4230 (($ $) 8) (($ $ (-731)) 12))) -(((-217 |#1|) (-10 -8 (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1|))) (-218)) (T -217)) -NIL -(-10 -8 (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $) 36) (($ $ (-731)) 34)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 35) (($ $ (-731)) 33)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-218) (-134)) (T -218)) -((-3456 (*1 *1 *1) (-4 *1 (-218))) (-4230 (*1 *1 *1) (-4 *1 (-218))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731))))) -(-13 (-998) (-10 -8 (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1341 (($) 12) (($ (-606 |#2|)) NIL)) (-2494 (($ $) 14)) (-2350 (($ (-606 |#2|)) 10)) (-2341 (((-816) $) 21))) -(((-219 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2494 (|#1| |#1|))) (-220 |#2|) (-1045)) (T -219)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2494 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-220 |#1|) (-134) (-1045)) (T -220)) -((-1341 (*1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1045)))) (-1341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-220 *3)))) (-3026 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-220 *2)) (-4 *2 (-1045)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) (-4 *3 (-1045)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) (-4 *3 (-1045))))) -(-13 (-105 |t#1|) (-145 |t#1|) (-10 -8 (-15 -1341 ($)) (-15 -1341 ($ (-606 |t#1|))) (IF (|has| $ (-6 -4300)) (PROGN (-15 -3026 ($ |t#1| $)) (-15 -3026 ($ (-1 (-111) |t#1|) $)) (-15 -3435 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2468 (((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537)))) 27))) -(((-221) (-10 -7 (-15 -2468 ((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537))))))) (T -221)) -((-2468 (*1 *2 *3) (-12 (-5 *3 (-278 (-905 (-537)))) (-5 *2 (-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731)))))) (-5 *1 (-221))))) -(-10 -7 (-15 -2468 ((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537)))))) -((-3151 (((-731)) 51)) (-2053 (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) 49) (((-649 |#3|) (-649 $)) 41) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-1839 (((-131)) 57)) (-3456 (($ $ (-1 |#3| |#3|) (-731)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (($ |#3|) NIL) (((-816) $) NIL) (($ (-537)) 12) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 15)) (-2340 (($ $ |#3|) 54))) -(((-222 |#1| |#2| |#3|) (-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|)) (-15 -3654 ((-731))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -3151 ((-731))) (-15 -2340 (|#1| |#1| |#3|)) (-15 -1839 ((-131))) (-15 -2341 ((-1200 |#3|) |#1|))) (-223 |#2| |#3|) (-731) (-1154)) (T -222)) -((-1839 (*1 *2) (-12 (-14 *4 (-731)) (-4 *5 (-1154)) (-5 *2 (-131)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) (-3151 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) (-3654 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5))))) -(-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|)) (-15 -3654 ((-731))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -3151 ((-731))) (-15 -2340 (|#1| |#1| |#3|)) (-15 -1839 ((-131))) (-15 -2341 ((-1200 |#3|) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#2| (-1045)))) (-1656 (((-111) $) 72 (|has| |#2| (-129)))) (-3492 (($ (-874)) 125 (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2169 (($ $ $) 121 (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) 8)) (-3151 (((-731)) 107 (|has| |#2| (-352)))) (-2537 (((-537) $) 119 (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) 52 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-1516 (((-3 (-537) "failed") $) 67 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) 64 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1045)))) (-3958 (((-537) $) 68 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) 65 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) 60 (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) 106 (-3319 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 105 (-3319 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 104 (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) 103 (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) 79 (|has| |#2| (-687)))) (-1618 (($) 110 (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 51)) (-3797 (((-111) $) 117 (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) 30 (|has| $ (-6 -4300)))) (-2836 (((-111) $) 81 (|has| |#2| (-687)))) (-2840 (((-111) $) 118 (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 116 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-3703 (((-606 |#2|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 115 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-4081 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 35)) (-2334 (((-874) $) 109 (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2009 (($ (-874)) 108 (|has| |#2| (-352)))) (-2528 (((-1064) $) 21 (|has| |#2| (-1045)))) (-3188 ((|#2| $) 42 (|has| (-537) (-807)))) (-3040 (($ $ |#2|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 26 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 23 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ (-537) |#2|) 50) ((|#2| $ (-537)) 49)) (-3416 ((|#2| $ $) 124 (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) 126)) (-1839 (((-131)) 123 (|has| |#2| (-347)))) (-3456 (($ $) 98 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) 96 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) 94 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) 93 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) 92 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) 91 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) 84 (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4300))) (((-731) |#2| $) 28 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-1200 |#2|) $) 127) (($ (-537)) 66 (-1533 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) 63 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) 62 (|has| |#2| (-1045))) (((-816) $) 18 (|has| |#2| (-579 (-816))))) (-3654 (((-731)) 102 (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4300)))) (-2209 (($ $) 120 (|has| |#2| (-805)))) (-2928 (($) 71 (|has| |#2| (-129)) CONST)) (-2943 (($) 82 (|has| |#2| (-687)) CONST)) (-4230 (($ $) 97 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) 95 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) 90 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) 89 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) 88 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) 87 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) 86 (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-998)))) (-2293 (((-111) $ $) 113 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2271 (((-111) $ $) 112 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2244 (((-111) $ $) 20 (|has| |#2| (-1045)))) (-2282 (((-111) $ $) 114 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2263 (((-111) $ $) 111 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2340 (($ $ |#2|) 122 (|has| |#2| (-347)))) (-2329 (($ $ $) 100 (|has| |#2| (-998))) (($ $) 99 (|has| |#2| (-998)))) (-2318 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-731)) 80 (|has| |#2| (-687))) (($ $ (-874)) 77 (|has| |#2| (-687)))) (* (($ (-537) $) 101 (|has| |#2| (-998))) (($ $ $) 78 (|has| |#2| (-687))) (($ $ |#2|) 76 (|has| |#2| (-687))) (($ |#2| $) 75 (|has| |#2| (-687))) (($ (-731) $) 73 (|has| |#2| (-129))) (($ (-874) $) 70 (|has| |#2| (-25)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-223 |#1| |#2|) (-134) (-731) (-1154)) (T -223)) -((-3668 (*1 *1 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1154)) (-4 *1 (-223 *3 *4)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-223 *3 *4)) (-4 *4 (-998)) (-4 *4 (-1154)))) (-3416 (*1 *2 *1 *1) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687))))) -(-13 (-570 (-537) |t#2|) (-579 (-1200 |t#2|)) (-10 -8 (-6 -4300) (-15 -3668 ($ (-1200 |t#2|))) (IF (|has| |t#2| (-1045)) (-6 (-395 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-998)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-216 |t#2|)) (-6 (-361 |t#2|)) (-15 -3492 ($ (-874))) (-15 -3416 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-687)) (PROGN (-6 (-687)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#2| (-163)) (PROGN (-6 (-37 |t#2|)) (-6 (-163))) |%noBranch|) (IF (|has| |t#2| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-753)) (-6 (-753)) |%noBranch|) (IF (|has| |t#2| (-347)) (-6 (-1207 |t#2|)) |%noBranch|))) -(((-21) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-23) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-25) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-110 $ $) |has| |#2| (-163)) ((-129) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-579 (-816))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-579 (-1200 |#2|)) . T) ((-163) |has| |#2| (-163)) ((-216 |#2|) |has| |#2| (-998)) ((-218) -12 (|has| |#2| (-218)) (|has| |#2| (-998))) ((-270 #0=(-537) |#2|) . T) ((-272 #0# |#2|) . T) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-352) |has| |#2| (-352)) ((-361 |#2|) |has| |#2| (-998)) ((-395 |#2|) |has| |#2| (-1045)) ((-471 |#2|) . T) ((-570 #0# |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-609 |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-609 $) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-602 (-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998))) ((-602 |#2|) |has| |#2| (-998)) ((-678 |#2|) -1533 (|has| |#2| (-347)) (|has| |#2| (-163))) ((-687) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-687)) (|has| |#2| (-163))) ((-751) |has| |#2| (-805)) ((-752) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-753) |has| |#2| (-753)) ((-754) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-755) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-805) |has| |#2| (-805)) ((-807) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-853 (-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998))) ((-989 (-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045))) ((-989 (-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) ((-989 |#2|) |has| |#2| (-1045)) ((-1004 |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-1004 $) |has| |#2| (-163)) ((-998) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-1005) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-1057) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-687)) (|has| |#2| (-163))) ((-1045) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1154) . T) ((-1207 |#2|) |has| |#2| (-347))) -((-2547 (((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 21)) (-3195 ((|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 23)) (-1612 (((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)) 18))) -(((-224 |#1| |#2| |#3|) (-10 -7 (-15 -2547 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -3195 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -1612 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) (-731) (-1154) (-1154)) (T -224)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-5 *2 (-225 *5 *7)) (-5 *1 (-224 *5 *6 *7)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) (-4 *6 (-1154)) (-4 *2 (-1154)) (-5 *1 (-224 *5 *6 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-731)) (-4 *7 (-1154)) (-4 *5 (-1154)) (-5 *2 (-225 *6 *5)) (-5 *1 (-224 *6 *7 *5))))) -(-10 -7 (-15 -2547 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -3195 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -1612 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) -((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) 56 (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) 60 (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) 17)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) 27 (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) 53 (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 51)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) 15 (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 20 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) 50 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 41)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) 21)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) 18)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) 10) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) 13 (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) 35 (|has| |#2| (-129)) CONST)) (-2943 (($) 38 (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) 26 (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 58 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) 44 (|has| |#2| (-687))) (($ $ |#2|) 42 (|has| |#2| (-687))) (($ |#2| $) 43 (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-225 |#1| |#2|) (-223 |#1| |#2|) (-731) (-1154)) (T -225)) -NIL -(-223 |#1| |#2|) -((-3358 (((-537) (-606 (-1100))) 24) (((-537) (-1100)) 19)) (-2672 (((-1205) (-606 (-1100))) 29) (((-1205) (-1100)) 28)) (-4003 (((-1100)) 14)) (-2456 (((-1100) (-537) (-1100)) 16)) (-2184 (((-606 (-1100)) (-606 (-1100)) (-537) (-1100)) 25) (((-1100) (-1100) (-537) (-1100)) 23)) (-1792 (((-606 (-1100)) (-606 (-1100))) 13) (((-606 (-1100)) (-1100)) 11))) -(((-226) (-10 -7 (-15 -1792 ((-606 (-1100)) (-1100))) (-15 -1792 ((-606 (-1100)) (-606 (-1100)))) (-15 -4003 ((-1100))) (-15 -2456 ((-1100) (-537) (-1100))) (-15 -2184 ((-1100) (-1100) (-537) (-1100))) (-15 -2184 ((-606 (-1100)) (-606 (-1100)) (-537) (-1100))) (-15 -2672 ((-1205) (-1100))) (-15 -2672 ((-1205) (-606 (-1100)))) (-15 -3358 ((-537) (-1100))) (-15 -3358 ((-537) (-606 (-1100)))))) (T -226)) -((-3358 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-537)) (-5 *1 (-226)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-226)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1205)) (-5 *1 (-226)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-226)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-606 (-1100))) (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *1 (-226)))) (-2184 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) (-2456 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) (-4003 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-226)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)))) (-1792 (*1 *2 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)) (-5 *3 (-1100))))) -(-10 -7 (-15 -1792 ((-606 (-1100)) (-1100))) (-15 -1792 ((-606 (-1100)) (-606 (-1100)))) (-15 -4003 ((-1100))) (-15 -2456 ((-1100) (-537) (-1100))) (-15 -2184 ((-1100) (-1100) (-537) (-1100))) (-15 -2184 ((-606 (-1100)) (-606 (-1100)) (-537) (-1100))) (-15 -2672 ((-1205) (-1100))) (-15 -2672 ((-1205) (-606 (-1100)))) (-15 -3358 ((-537) (-1100))) (-15 -3358 ((-537) (-606 (-1100))))) -((** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 16)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ (-391 (-537)) $) 23) (($ $ (-391 (-537))) NIL))) -(((-227 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-228)) (T -227)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 37)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 41)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 38)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ (-391 (-537)) $) 40) (($ $ (-391 (-537))) 39))) -(((-228) (-134)) (T -228)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-537)))) (-3865 (*1 *1 *1) (-4 *1 (-228)))) -(-13 (-274) (-37 (-391 (-537))) (-10 -8 (-15 ** ($ $ (-537))) (-15 -3865 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-274) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-687) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-4199 (($ $) 57)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-4133 (($ $ $) 53 (|has| $ (-6 -4301)))) (-3173 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-1720 (($ $) 56)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-2480 (($ $) 55)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 59)) (-2876 (($ $) 58)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3115 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-229 |#1|) (-134) (-1154)) (T -229)) -((-2375 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-1720 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-3173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) -(-13 (-962 |t#1|) (-10 -8 (-15 -2375 (|t#1| $)) (-15 -2876 ($ $)) (-15 -4199 ($ $)) (-15 -1720 ($ $)) (-15 -2480 ($ $)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3115 ($ $ $)) (-15 -4133 ($ $ $)) (-15 -3173 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) 10 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $) NIL) (($ $ (-731)) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) 7 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) NIL) ((|#1| $ (-537) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-731) $ "count") 16)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2267 (($ (-606 |#1|)) 22)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (($ (-606 |#1|)) 17) (((-606 |#1|) $) 18) (((-816) $) 21 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 14 (|has| $ (-6 -4300))))) -(((-230 |#1|) (-13 (-627 |#1|) (-10 -8 (-15 -2341 ($ (-606 |#1|))) (-15 -2341 ((-606 |#1|) $)) (-15 -2267 ($ (-606 |#1|))) (-15 -1922 ($ $ "unique")) (-15 -1922 ($ $ "sort")) (-15 -1922 ((-731) $ "count")))) (-807)) (T -230)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-731)) (-5 *1 (-230 *4)) (-4 *4 (-807))))) -(-13 (-627 |#1|) (-10 -8 (-15 -2341 ($ (-606 |#1|))) (-15 -2341 ((-606 |#1|) $)) (-15 -2267 ($ (-606 |#1|))) (-15 -1922 ($ $ "unique")) (-15 -1922 ($ $ "sort")) (-15 -1922 ((-731) $ "count")))) -((-2940 (((-3 (-731) "failed") |#1| |#1| (-731)) 27))) -(((-231 |#1|) (-10 -7 (-15 -2940 ((-3 (-731) "failed") |#1| |#1| (-731)))) (-13 (-687) (-352) (-10 -7 (-15 ** (|#1| |#1| (-537)))))) (T -231)) -((-2940 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-731)) (-4 *3 (-13 (-687) (-352) (-10 -7 (-15 ** (*3 *3 (-537)))))) (-5 *1 (-231 *3))))) -(-10 -7 (-15 -2940 ((-3 (-731) "failed") |#1| |#1| (-731)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) NIL)) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-225 (-2258 |#1|) (-731)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-225 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-225 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-225 (-2258 |#1|) (-731)) (-225 (-2258 |#1|) (-731))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-225 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-225 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-232 |#1| |#2|) (-13 (-902 |#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998)) (T -232)) -((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-232 *3 *4)) (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) -(-13 (-902 |#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) -((-2330 (((-111) $ $) NIL)) (-1401 (((-1205) $) 15)) (-3804 (((-173) $) 9)) (-3659 (($ (-173)) 10)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 13))) -(((-233) (-13 (-1045) (-10 -8 (-15 -3804 ((-173) $)) (-15 -3659 ($ (-173))) (-15 -1401 ((-1205) $))))) (T -233)) -((-3804 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-233)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-173)) (-5 *1 (-233)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-233))))) -(-13 (-1045) (-10 -8 (-15 -3804 ((-173) $)) (-15 -3659 ($ (-173))) (-15 -1401 ((-1205) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3492 (($ (-874)) NIL (|has| |#4| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#4| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#4| (-352)))) (-2537 (((-537) $) NIL (|has| |#4| (-805)))) (-2476 ((|#4| $ (-537) |#4|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1045))) (((-3 (-537) "failed") $) NIL (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-3958 ((|#4| $) NIL (|has| |#4| (-1045))) (((-537) $) NIL (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-2053 (((-2 (|:| -2756 (-649 |#4|)) (|:| |vec| (-1200 |#4|))) (-649 $) (-1200 $)) NIL (|has| |#4| (-998))) (((-649 |#4|) (-649 $)) NIL (|has| |#4| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-1618 (($) NIL (|has| |#4| (-352)))) (-4091 ((|#4| $ (-537) |#4|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#4| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#4| (-805)))) (-3661 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-2840 (((-111) $) NIL (|has| |#4| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-3703 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-4081 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#4| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#4| (-352)))) (-2528 (((-1064) $) NIL)) (-3188 ((|#4| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#4|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-3010 (((-606 |#4|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#4| $ (-537) |#4|) NIL) ((|#4| $ (-537)) 12)) (-3416 ((|#4| $ $) NIL (|has| |#4| (-998)))) (-3668 (($ (-1200 |#4|)) NIL)) (-1839 (((-131)) NIL (|has| |#4| (-347)))) (-3456 (($ $ (-1 |#4| |#4|) (-731)) NIL (|has| |#4| (-998))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998)))) (($ $) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998))))) (-2539 (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#4|) $) NIL) (((-816) $) NIL) (($ |#4|) NIL (|has| |#4| (-1045))) (($ (-537)) NIL (-1533 (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045))) (|has| |#4| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-3654 (((-731)) NIL (|has| |#4| (-998)))) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#4| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) CONST)) (-4230 (($ $ (-1 |#4| |#4|) (-731)) NIL (|has| |#4| (-998))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998)))) (($ $) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998))))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2263 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2340 (($ $ |#4|) NIL (|has| |#4| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (* (($ |#2| $) 14) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-687))) (($ |#4| $) NIL (|has| |#4| (-687))) (($ $ $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-234 |#1| |#2| |#3| |#4|) (-13 (-223 |#1| |#4|) (-609 |#2|) (-609 |#3|)) (-874) (-998) (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-609 |#2|)) (T -234)) -NIL -(-13 (-223 |#1| |#4|) (-609 |#2|) (-609 |#3|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3492 (($ (-874)) NIL (|has| |#3| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#3| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#3| (-352)))) (-2537 (((-537) $) NIL (|has| |#3| (-805)))) (-2476 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1045))) (((-3 (-537) "failed") $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-3958 ((|#3| $) NIL (|has| |#3| (-1045))) (((-537) $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-2053 (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) NIL (|has| |#3| (-998))) (((-649 |#3|) (-649 $)) NIL (|has| |#3| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-1618 (($) NIL (|has| |#3| (-352)))) (-4091 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#3| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#3| (-805)))) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-2840 (((-111) $) NIL (|has| |#3| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#3| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#3| (-352)))) (-2528 (((-1064) $) NIL)) (-3188 ((|#3| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#3|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3010 (((-606 |#3|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) |#3|) NIL) ((|#3| $ (-537)) 11)) (-3416 ((|#3| $ $) NIL (|has| |#3| (-998)))) (-3668 (($ (-1200 |#3|)) NIL)) (-1839 (((-131)) NIL (|has| |#3| (-347)))) (-3456 (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998))))) (-2539 (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300))) (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (((-816) $) NIL) (($ |#3|) NIL (|has| |#3| (-1045))) (($ (-537)) NIL (-1533 (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (|has| |#3| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-3654 (((-731)) NIL (|has| |#3| (-998)))) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#3| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) CONST)) (-4230 (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998))))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2263 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (* (($ |#2| $) 13) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-687))) (($ |#3| $) NIL (|has| |#3| (-687))) (($ $ $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-235 |#1| |#2| |#3|) (-13 (-223 |#1| |#3|) (-609 |#2|)) (-731) (-998) (-609 |#2|)) (T -235)) -NIL -(-13 (-223 |#1| |#3|) (-609 |#2|)) -((-2766 (((-606 (-731)) $) 47) (((-606 (-731)) $ |#3|) 50)) (-3073 (((-731) $) 49) (((-731) $ |#3|) 52)) (-1696 (($ $) 65)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4231 (((-731) $ |#3|) 39) (((-731) $) 36)) (-2441 (((-1 $ (-731)) |#3|) 15) (((-1 $ (-731)) $) 77)) (-1299 ((|#4| $) 58)) (-2518 (((-111) $) 56)) (-3744 (($ $) 64)) (-4116 (($ $ (-606 (-278 $))) 97) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-606 |#4|) (-606 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-606 |#4|) (-606 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-606 |#3|) (-606 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-606 |#3|) (-606 |#2|)) 84)) (-3456 (($ $ |#4|) NIL) (($ $ (-606 |#4|)) NIL) (($ $ |#4| (-731)) NIL) (($ $ (-606 |#4|) (-606 (-731))) NIL) (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4170 (((-606 |#3|) $) 75)) (-2872 ((|#5| $) NIL) (((-731) $ |#4|) NIL) (((-606 (-731)) $ (-606 |#4|)) NIL) (((-731) $ |#3|) 44)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-391 (-537))) NIL) (($ $) NIL))) -(((-236 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#3| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#3| |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -1299 (|#4| |#1|)) (-15 -2518 ((-111) |#1|)) (-15 -3073 ((-731) |#1| |#3|)) (-15 -2766 ((-606 (-731)) |#1| |#3|)) (-15 -3073 ((-731) |#1|)) (-15 -2766 ((-606 (-731)) |#1|)) (-15 -2872 ((-731) |#1| |#3|)) (-15 -4231 ((-731) |#1|)) (-15 -4231 ((-731) |#1| |#3|)) (-15 -4170 ((-606 |#3|) |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#3|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 |#4|))) (-15 -2872 ((-731) |#1| |#4|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 (|#5| |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#4| (-731))) (-15 -3456 (|#1| |#1| (-606 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-237 |#2| |#3| |#4| |#5|) (-998) (-807) (-250 |#3|) (-753)) (T -236)) -NIL -(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#3| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#3| |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -1299 (|#4| |#1|)) (-15 -2518 ((-111) |#1|)) (-15 -3073 ((-731) |#1| |#3|)) (-15 -2766 ((-606 (-731)) |#1| |#3|)) (-15 -3073 ((-731) |#1|)) (-15 -2766 ((-606 (-731)) |#1|)) (-15 -2872 ((-731) |#1| |#3|)) (-15 -4231 ((-731) |#1|)) (-15 -4231 ((-731) |#1| |#3|)) (-15 -4170 ((-606 |#3|) |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#3|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 |#4|))) (-15 -2872 ((-731) |#1| |#4|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 (|#5| |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#4| (-731))) (-15 -3456 (|#1| |#1| (-606 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2766 (((-606 (-731)) $) 212) (((-606 (-731)) $ |#2|) 210)) (-3073 (((-731) $) 211) (((-731) $ |#2|) 209)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-1696 (($ $) 205)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133) ((|#2| $) 218)) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| |#4| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ |#2|) 215) (((-731) $) 214)) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#4|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-1883 ((|#4| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#4| |#4|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-2441 (((-1 $ (-731)) |#2|) 217) (((-1 $ (-731)) $) 204 (|has| |#1| (-218)))) (-1310 (((-3 |#3| "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-1299 ((|#3| $) 207)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-2518 (((-111) $) 208)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-3744 (($ $) 206)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 $)) 202 (|has| |#1| (-218))) (($ $ |#2| |#1|) 201 (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 |#1|)) 200 (|has| |#1| (-218)))) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37) (($ $) 236 (|has| |#1| (-218))) (($ $ (-731)) 234 (|has| |#1| (-218))) (($ $ (-1117)) 232 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 231 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 230 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 229 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-4170 (((-606 |#2|) $) 216)) (-2872 ((|#4| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127) (((-731) $ |#2|) 213)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#4|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33) (($ $) 235 (|has| |#1| (-218))) (($ $ (-731)) 233 (|has| |#1| (-218))) (($ $ (-1117)) 228 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 227 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 226 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 225 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-237 |#1| |#2| |#3| |#4|) (-134) (-998) (-807) (-250 |t#2|) (-753)) (T -237)) -((-2441 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *4 *3 *5 *6)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 *4)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2766 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) (-3073 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-111)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-4 *2 (-250 *4)))) (-3744 (*1 *1 *1) (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-250 *3)) (-4 *5 (-753)))) (-1696 (*1 *1 *1) (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-250 *3)) (-4 *5 (-753)))) (-2441 (*1 *2 *1) (-12 (-4 *3 (-218)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *3 *4 *5 *6))))) -(-13 (-902 |t#1| |t#4| |t#3|) (-216 |t#1|) (-989 |t#2|) (-10 -8 (-15 -2441 ((-1 $ (-731)) |t#2|)) (-15 -4170 ((-606 |t#2|) $)) (-15 -4231 ((-731) $ |t#2|)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $ |t#2|)) (-15 -2766 ((-606 (-731)) $)) (-15 -3073 ((-731) $)) (-15 -2766 ((-606 (-731)) $ |t#2|)) (-15 -3073 ((-731) $ |t#2|)) (-15 -2518 ((-111) $)) (-15 -1299 (|t#3| $)) (-15 -3744 ($ $)) (-15 -1696 ($ $)) (IF (|has| |t#1| (-218)) (PROGN (-6 (-495 |t#2| |t#1|)) (-6 (-495 |t#2| $)) (-6 (-293 $)) (-15 -2441 ((-1 $ (-731)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#4|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#2| |#1|) |has| |#1| (-218)) ((-495 |#2| $) |has| |#1| (-218)) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-902 |#1| |#4| |#3|) . T) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#2|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3259 ((|#1| $) 54)) (-2992 ((|#1| $) 44)) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3641 (($ $) 60)) (-4146 (($ $) 48)) (-2993 ((|#1| |#1| $) 46)) (-3444 ((|#1| $) 45)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3845 (((-731) $) 61)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-2224 ((|#1| |#1| $) 52)) (-2941 ((|#1| |#1| $) 51)) (-3499 (($ |#1| $) 40)) (-2545 (((-731) $) 55)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1424 ((|#1| $) 62)) (-1771 ((|#1| $) 50)) (-3919 ((|#1| $) 49)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2051 ((|#1| |#1| $) 58)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-4198 ((|#1| $) 59)) (-3966 (($) 57) (($ (-606 |#1|)) 56)) (-3731 (((-731) $) 43)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-1921 ((|#1| $) 53)) (-2753 (($ (-606 |#1|)) 42)) (-4247 ((|#1| $) 63)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-238 |#1|) (-134) (-1154)) (T -238)) -((-3966 (*1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-238 *3)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-238 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-2224 (*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-2941 (*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(-13 (-1065 |t#1|) (-947 |t#1|) (-10 -8 (-15 -3966 ($)) (-15 -3966 ($ (-606 |t#1|))) (-15 -2545 ((-731) $)) (-15 -3259 (|t#1| $)) (-15 -1921 (|t#1| $)) (-15 -2224 (|t#1| |t#1| $)) (-15 -2941 (|t#1| |t#1| $)) (-15 -1771 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -4146 ($ $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-947 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1065 |#1|) . T) ((-1154) . T)) -((-1406 (((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))) 139)) (-3426 (((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363))) 160) (((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 158) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 163) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 159) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 150) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 149) (((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363))) 129) (((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247))) 127) (((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363))) 128) (((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 125)) (-3390 (((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363))) 162) (((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 161) (((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 165) (((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 164) (((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 152) (((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 151) (((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363))) 135) (((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247))) 134) (((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363))) 133) (((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 132) (((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363))) 100) (((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 99) (((-1201) (-1 (-210) (-210)) (-1040 (-363))) 96) (((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247))) 95))) -(((-239) (-10 -7 (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -1406 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210)))))) (T -239)) -((-1406 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *3 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239))))) -(-10 -7 (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -1406 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))))) -((-3390 (((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))) 96))) -(((-240 |#1| |#2|) (-10 -7 (-15 -3390 ((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))))) (-13 (-529) (-807) (-989 (-537))) (-414 |#1|)) (T -240)) -((-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-1117)) (-5 *5 (-606 (-247))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-1201)) (-5 *1 (-240 *6 *7))))) -(-10 -7 (-15 -3390 ((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))))) -((-3542 (((-537) (-537)) 50)) (-1357 (((-537) (-537)) 51)) (-4104 (((-210) (-210)) 52)) (-1836 (((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210))) 49)) (-3776 (((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111)) 47))) -(((-241) (-10 -7 (-15 -3776 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111))) (-15 -1836 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -3542 ((-537) (-537))) (-15 -1357 ((-537) (-537))) (-15 -4104 ((-210) (-210))))) (T -241)) -((-4104 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-241)))) (-1357 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241)))) (-1836 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) (-5 *2 (-1202)) (-5 *1 (-241)))) (-3776 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) (-5 *5 (-111)) (-5 *2 (-1202)) (-5 *1 (-241))))) -(-10 -7 (-15 -3776 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111))) (-15 -1836 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -3542 ((-537) (-537))) (-15 -1357 ((-537) (-537))) (-15 -4104 ((-210) (-210)))) -((-2341 (((-1038 (-363)) (-1038 (-300 |#1|))) 16))) -(((-242 |#1|) (-10 -7 (-15 -2341 ((-1038 (-363)) (-1038 (-300 |#1|))))) (-13 (-807) (-529) (-580 (-363)))) (T -242)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-1038 (-300 *4))) (-4 *4 (-13 (-807) (-529) (-580 (-363)))) (-5 *2 (-1038 (-363))) (-5 *1 (-242 *4))))) -(-10 -7 (-15 -2341 ((-1038 (-363)) (-1038 (-300 |#1|))))) -((-3426 (((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))) 71) (((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 70) (((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363))) 61) (((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 60) (((-1077 (-210)) (-832 |#1|) (-1038 (-363))) 52) (((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247))) 51)) (-3390 (((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363))) 74) (((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 73) (((-1202) |#1| (-1038 (-363)) (-1038 (-363))) 64) (((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 63) (((-1202) (-832 |#1|) (-1038 (-363))) 56) (((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247))) 55) (((-1201) (-830 |#1|) (-1038 (-363))) 43) (((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247))) 42) (((-1201) |#1| (-1038 (-363))) 35) (((-1201) |#1| (-1038 (-363)) (-606 (-247))) 34))) -(((-243 |#1|) (-10 -7 (-15 -3390 ((-1201) |#1| (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) |#1| (-1038 (-363)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))))) (-13 (-580 (-513)) (-1045))) (T -243)) -((-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *5)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *6)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *5)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-830 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045)))))) -(-10 -7 (-15 -3390 ((-1201) |#1| (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) |#1| (-1038 (-363)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))))) -((-3390 (((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247))) 23) (((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210))) 24) (((-1201) (-606 (-896 (-210))) (-606 (-247))) 16) (((-1201) (-606 (-896 (-210)))) 17) (((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247))) 20) (((-1201) (-606 (-210)) (-606 (-210))) 21))) -(((-244) (-10 -7 (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247)))) (-15 -3390 ((-1201) (-606 (-896 (-210))))) (-15 -3390 ((-1201) (-606 (-896 (-210))) (-606 (-247)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247)))))) (T -244)) -((-3390 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1202)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1201)) (-5 *1 (-244))))) -(-10 -7 (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247)))) (-15 -3390 ((-1201) (-606 (-896 (-210))))) (-15 -3390 ((-1201) (-606 (-896 (-210))) (-606 (-247)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247))))) -((-3937 (((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 26)) (-3590 (((-874) (-606 (-247)) (-874)) 53)) (-1811 (((-874) (-606 (-247)) (-874)) 52)) (-1547 (((-606 (-363)) (-606 (-247)) (-606 (-363))) 69)) (-2425 (((-363) (-606 (-247)) (-363)) 58)) (-3237 (((-874) (-606 (-247)) (-874)) 54)) (-3567 (((-111) (-606 (-247)) (-111)) 28)) (-1334 (((-1100) (-606 (-247)) (-1100)) 20)) (-1924 (((-1100) (-606 (-247)) (-1100)) 27)) (-2308 (((-1077 (-210)) (-606 (-247))) 47)) (-1751 (((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363)))) 41)) (-2164 (((-827) (-606 (-247)) (-827)) 33)) (-3496 (((-827) (-606 (-247)) (-827)) 34)) (-2658 (((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210)))) 64)) (-1724 (((-111) (-606 (-247)) (-111)) 16)) (-3922 (((-111) (-606 (-247)) (-111)) 15))) -(((-245) (-10 -7 (-15 -3922 ((-111) (-606 (-247)) (-111))) (-15 -1724 ((-111) (-606 (-247)) (-111))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ((-1100) (-606 (-247)) (-1100))) (-15 -1924 ((-1100) (-606 (-247)) (-1100))) (-15 -3567 ((-111) (-606 (-247)) (-111))) (-15 -2164 ((-827) (-606 (-247)) (-827))) (-15 -3496 ((-827) (-606 (-247)) (-827))) (-15 -1751 ((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363))))) (-15 -1811 ((-874) (-606 (-247)) (-874))) (-15 -3590 ((-874) (-606 (-247)) (-874))) (-15 -2308 ((-1077 (-210)) (-606 (-247)))) (-15 -3237 ((-874) (-606 (-247)) (-874))) (-15 -2425 ((-363) (-606 (-247)) (-363))) (-15 -2658 ((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210))))) (-15 -1547 ((-606 (-363)) (-606 (-247)) (-606 (-363)))))) (T -245)) -((-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-363))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2658 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2425 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3237 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-245)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1811 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3496 (*1 *2 *3 *2) (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2164 (*1 *2 *3 *2) (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3567 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1924 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1334 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3937 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1724 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) -(-10 -7 (-15 -3922 ((-111) (-606 (-247)) (-111))) (-15 -1724 ((-111) (-606 (-247)) (-111))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ((-1100) (-606 (-247)) (-1100))) (-15 -1924 ((-1100) (-606 (-247)) (-1100))) (-15 -3567 ((-111) (-606 (-247)) (-111))) (-15 -2164 ((-827) (-606 (-247)) (-827))) (-15 -3496 ((-827) (-606 (-247)) (-827))) (-15 -1751 ((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363))))) (-15 -1811 ((-874) (-606 (-247)) (-874))) (-15 -3590 ((-874) (-606 (-247)) (-874))) (-15 -2308 ((-1077 (-210)) (-606 (-247)))) (-15 -3237 ((-874) (-606 (-247)) (-874))) (-15 -2425 ((-363) (-606 (-247)) (-363))) (-15 -2658 ((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210))))) (-15 -1547 ((-606 (-363)) (-606 (-247)) (-606 (-363))))) -((-2026 (((-3 |#1| "failed") (-606 (-247)) (-1117)) 17))) -(((-246 |#1|) (-10 -7 (-15 -2026 ((-3 |#1| "failed") (-606 (-247)) (-1117)))) (-1154)) (T -246)) -((-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *1 (-246 *2)) (-4 *2 (-1154))))) -(-10 -7 (-15 -2026 ((-3 |#1| "failed") (-606 (-247)) (-1117)))) -((-2330 (((-111) $ $) NIL)) (-3937 (($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 15)) (-3590 (($ (-874)) 76)) (-1811 (($ (-874)) 75)) (-1397 (($ (-606 (-363))) 82)) (-2425 (($ (-363)) 58)) (-3237 (($ (-874)) 77)) (-3567 (($ (-111)) 23)) (-1334 (($ (-1100)) 18)) (-1924 (($ (-1100)) 19)) (-2308 (($ (-1077 (-210))) 71)) (-1751 (($ (-606 (-1040 (-363)))) 67)) (-2133 (($ (-606 (-1040 (-363)))) 59) (($ (-606 (-1040 (-391 (-537))))) 66)) (-1439 (($ (-363)) 29) (($ (-827)) 33)) (-1290 (((-111) (-606 $) (-1117)) 91)) (-2026 (((-3 (-51) "failed") (-606 $) (-1117)) 93)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3316 (($ (-363)) 34) (($ (-827)) 35)) (-1484 (($ (-1 (-896 (-210)) (-896 (-210)))) 57)) (-2658 (($ (-1 (-896 (-210)) (-896 (-210)))) 78)) (-1913 (($ (-1 (-210) (-210))) 39) (($ (-1 (-210) (-210) (-210))) 43) (($ (-1 (-210) (-210) (-210) (-210))) 47)) (-2341 (((-816) $) 87)) (-1644 (($ (-111)) 24) (($ (-606 (-1040 (-363)))) 52)) (-3922 (($ (-111)) 25)) (-2244 (((-111) $ $) 89))) -(((-247) (-13 (-1045) (-10 -8 (-15 -3922 ($ (-111))) (-15 -1644 ($ (-111))) (-15 -3937 ($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ($ (-1100))) (-15 -1924 ($ (-1100))) (-15 -3567 ($ (-111))) (-15 -1644 ($ (-606 (-1040 (-363))))) (-15 -1484 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1439 ($ (-363))) (-15 -1439 ($ (-827))) (-15 -3316 ($ (-363))) (-15 -3316 ($ (-827))) (-15 -1913 ($ (-1 (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210) (-210)))) (-15 -2425 ($ (-363))) (-15 -2133 ($ (-606 (-1040 (-363))))) (-15 -2133 ($ (-606 (-1040 (-391 (-537)))))) (-15 -1751 ($ (-606 (-1040 (-363))))) (-15 -2308 ($ (-1077 (-210)))) (-15 -1811 ($ (-874))) (-15 -3590 ($ (-874))) (-15 -3237 ($ (-874))) (-15 -2658 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1397 ($ (-606 (-363)))) (-15 -2026 ((-3 (-51) "failed") (-606 $) (-1117))) (-15 -1290 ((-111) (-606 $) (-1117)))))) (T -247)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *1 (-247)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) (-3567 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-247)))) (-2425 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-391 (-537))))) (-5 *1 (-247)))) (-1751 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-247)))) (-1811 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-247)))) (-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-51)) (-5 *1 (-247)))) (-1290 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-111)) (-5 *1 (-247))))) -(-13 (-1045) (-10 -8 (-15 -3922 ($ (-111))) (-15 -1644 ($ (-111))) (-15 -3937 ($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ($ (-1100))) (-15 -1924 ($ (-1100))) (-15 -3567 ($ (-111))) (-15 -1644 ($ (-606 (-1040 (-363))))) (-15 -1484 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1439 ($ (-363))) (-15 -1439 ($ (-827))) (-15 -3316 ($ (-363))) (-15 -3316 ($ (-827))) (-15 -1913 ($ (-1 (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210) (-210)))) (-15 -2425 ($ (-363))) (-15 -2133 ($ (-606 (-1040 (-363))))) (-15 -2133 ($ (-606 (-1040 (-391 (-537)))))) (-15 -1751 ($ (-606 (-1040 (-363))))) (-15 -2308 ($ (-1077 (-210)))) (-15 -1811 ($ (-874))) (-15 -3590 ($ (-874))) (-15 -3237 ($ (-874))) (-15 -2658 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1397 ($ (-606 (-363)))) (-15 -2026 ((-3 (-51) "failed") (-606 $) (-1117))) (-15 -1290 ((-111) (-606 $) (-1117))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ |#2|) NIL)) (-3073 (((-731) $) NIL) (((-731) $ |#2|) NIL)) (-3757 (((-606 |#3|) $) NIL)) (-3588 (((-1113 $) $ |#3|) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#3|)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1069 |#1| |#2|) "failed") $) 21)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1069 |#1| |#2|) $) NIL)) (-4086 (($ $ $ |#3|) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#3|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 |#3|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))))) (-4231 (((-731) $ |#2|) NIL) (((-731) $) 10)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) |#3|) NIL) (($ (-1113 $) |#3|) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) NIL)) (-1883 (((-509 |#3|) $) NIL) (((-731) $ |#3|) NIL) (((-606 (-731)) $ (-606 |#3|)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#3|) (-509 |#3|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) |#2|) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 |#3| "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-606 |#3|) (-606 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-606 |#3|) (-606 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 $)) NIL (|has| |#1| (-218))) (($ $ |#2| |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ |#3|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#3|) NIL) (($ $ (-606 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 |#2|) $) NIL)) (-2872 (((-509 |#3|) $) NIL) (((-731) $ |#3|) NIL) (((-606 (-731)) $ (-606 |#3|)) NIL) (((-731) $ |#2|) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ |#3|) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1069 |#1| |#2|)) 30) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ |#3|) NIL) (($ $ (-606 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-248 |#1| |#2| |#3|) (-13 (-237 |#1| |#2| |#3| (-509 |#3|)) (-989 (-1069 |#1| |#2|))) (-998) (-807) (-250 |#2|)) (T -248)) -NIL -(-13 (-237 |#1| |#2| |#3| (-509 |#3|)) (-989 (-1069 |#1| |#2|))) -((-3073 (((-731) $) 30)) (-1516 (((-3 |#2| "failed") $) 17)) (-3958 ((|#2| $) 27)) (-3456 (($ $) 12) (($ $ (-731)) 15)) (-2341 (((-816) $) 26) (($ |#2|) 10)) (-2244 (((-111) $ $) 20)) (-2263 (((-111) $ $) 29))) -(((-249 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3073 ((-731) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-250 |#2|) (-807)) (T -249)) -NIL -(-10 -8 (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3073 ((-731) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-3073 (((-731) $) 22)) (-1890 ((|#1| $) 23)) (-1516 (((-3 |#1| "failed") $) 27)) (-3958 ((|#1| $) 26)) (-4231 (((-731) $) 24)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-2441 (($ |#1| (-731)) 25)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $) 21) (($ $ (-731)) 20)) (-2341 (((-816) $) 11) (($ |#1|) 28)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) -(((-250 |#1|) (-134) (-807)) (T -250)) -((-2341 (*1 *1 *2) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-250 *3)) (-4 *3 (-807))))) -(-13 (-807) (-989 |t#1|) (-10 -8 (-15 -2441 ($ |t#1| (-731))) (-15 -4231 ((-731) $)) (-15 -1890 (|t#1| $)) (-15 -3073 ((-731) $)) (-15 -3456 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -2341 ($ |t#1|)))) -(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-989 |#1|) . T) ((-1045) . T)) -((-3757 (((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 41)) (-2163 (((-606 (-1117)) (-300 (-210)) (-731)) 80)) (-1648 (((-3 (-300 (-210)) "failed") (-300 (-210))) 51)) (-2740 (((-300 (-210)) (-300 (-210))) 67)) (-3329 (((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 26)) (-3591 (((-111) (-606 (-300 (-210)))) 84)) (-3169 (((-111) (-300 (-210))) 24)) (-3427 (((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) 106)) (-1805 (((-606 (-300 (-210))) (-606 (-300 (-210)))) 88)) (-2020 (((-606 (-300 (-210))) (-606 (-300 (-210)))) 86)) (-1280 (((-649 (-210)) (-606 (-300 (-210))) (-731)) 95)) (-1952 (((-111) (-300 (-210))) 20) (((-111) (-606 (-300 (-210)))) 85)) (-3869 (((-606 (-210)) (-606 (-800 (-210))) (-210)) 14)) (-1288 (((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 101)) (-3810 (((-986) (-1117) (-986)) 34))) -(((-251) (-10 -7 (-15 -3869 ((-606 (-210)) (-606 (-800 (-210))) (-210))) (-15 -3329 ((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1648 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -2740 ((-300 (-210)) (-300 (-210)))) (-15 -3591 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-300 (-210)))) (-15 -1280 ((-649 (-210)) (-606 (-300 (-210))) (-731))) (-15 -2020 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -1805 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -3169 ((-111) (-300 (-210)))) (-15 -3757 ((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2163 ((-606 (-1117)) (-300 (-210)) (-731))) (-15 -3810 ((-986) (-1117) (-986))) (-15 -1288 ((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -3427 ((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))))) (T -251)) -((-3427 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *2 (-606 (-1100))) (-5 *1 (-251)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-363)) (-5 *1 (-251)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-251)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) (-5 *1 (-251)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-251)))) (-1648 (*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-251)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *1 (-251)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-800 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 *4)) (-5 *1 (-251))))) -(-10 -7 (-15 -3869 ((-606 (-210)) (-606 (-800 (-210))) (-210))) (-15 -3329 ((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1648 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -2740 ((-300 (-210)) (-300 (-210)))) (-15 -3591 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-300 (-210)))) (-15 -1280 ((-649 (-210)) (-606 (-300 (-210))) (-731))) (-15 -2020 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -1805 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -3169 ((-111) (-300 (-210)))) (-15 -3757 ((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2163 ((-606 (-1117)) (-300 (-210)) (-731))) (-15 -3810 ((-986) (-1117) (-986))) (-15 -1288 ((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -3427 ((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))))) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 44)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 26) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-252) (-796)) (T -252)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 58) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 54)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 34) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 36)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-253) (-796)) (T -253)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 76) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 73)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 44) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 55)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-254) (-796)) (T -254)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 50)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 31) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-255) (-796)) (T -255)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 50)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 28) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-256) (-796)) (T -256)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 73)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 28) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-257) (-796)) (T -257)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 77)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 25) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-258) (-796)) (T -258)) -NIL -(-796) -((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2382 (((-606 (-537)) $) 19)) (-2872 (((-731) $) 17)) (-2341 (((-816) $) 23) (($ (-606 (-537))) 15)) (-3606 (($ (-731)) 20)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 9)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 11))) -(((-259) (-13 (-807) (-10 -8 (-15 -2341 ($ (-606 (-537)))) (-15 -2872 ((-731) $)) (-15 -2382 ((-606 (-537)) $)) (-15 -3606 ($ (-731)))))) (T -259)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-259)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-259))))) -(-13 (-807) (-10 -8 (-15 -2341 ($ (-606 (-537)))) (-15 -2872 ((-731) $)) (-15 -2382 ((-606 (-537)) $)) (-15 -3606 ($ (-731))))) -((-1403 ((|#2| |#2|) 77)) (-1247 ((|#2| |#2|) 65)) (-2994 (((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-1378 ((|#2| |#2|) 75)) (-4270 ((|#2| |#2|) 63)) (-1429 ((|#2| |#2|) 79)) (-1273 ((|#2| |#2|) 67)) (-3338 ((|#2|) 46)) (-3979 (((-113) (-113)) 95)) (-2180 ((|#2| |#2|) 61)) (-2968 (((-111) |#2|) 134)) (-4276 ((|#2| |#2|) 181)) (-2098 ((|#2| |#2|) 157)) (-3197 ((|#2|) 59)) (-1269 ((|#2|) 58)) (-2826 ((|#2| |#2|) 177)) (-1544 ((|#2| |#2|) 153)) (-2226 ((|#2| |#2|) 185)) (-3600 ((|#2| |#2|) 161)) (-1382 ((|#2| |#2|) 149)) (-1437 ((|#2| |#2|) 151)) (-4137 ((|#2| |#2|) 187)) (-1591 ((|#2| |#2|) 163)) (-3100 ((|#2| |#2|) 183)) (-1335 ((|#2| |#2|) 159)) (-3275 ((|#2| |#2|) 179)) (-1235 ((|#2| |#2|) 155)) (-1237 ((|#2| |#2|) 193)) (-2863 ((|#2| |#2|) 169)) (-2013 ((|#2| |#2|) 189)) (-2794 ((|#2| |#2|) 165)) (-3894 ((|#2| |#2|) 197)) (-2792 ((|#2| |#2|) 173)) (-1364 ((|#2| |#2|) 199)) (-1980 ((|#2| |#2|) 175)) (-1373 ((|#2| |#2|) 195)) (-1657 ((|#2| |#2|) 171)) (-3603 ((|#2| |#2|) 191)) (-3323 ((|#2| |#2|) 167)) (-4185 ((|#2| |#2|) 62)) (-1441 ((|#2| |#2|) 80)) (-1286 ((|#2| |#2|) 68)) (-1415 ((|#2| |#2|) 78)) (-1259 ((|#2| |#2|) 66)) (-1389 ((|#2| |#2|) 76)) (-1234 ((|#2| |#2|) 64)) (-2336 (((-111) (-113)) 93)) (-1475 ((|#2| |#2|) 83)) (-1328 ((|#2| |#2|) 71)) (-1453 ((|#2| |#2|) 81)) (-1300 ((|#2| |#2|) 69)) (-1495 ((|#2| |#2|) 85)) (-1352 ((|#2| |#2|) 73)) (-4141 ((|#2| |#2|) 86)) (-1365 ((|#2| |#2|) 74)) (-1485 ((|#2| |#2|) 84)) (-1340 ((|#2| |#2|) 72)) (-1465 ((|#2| |#2|) 82)) (-1314 ((|#2| |#2|) 70))) -(((-260 |#1| |#2|) (-10 -7 (-15 -4185 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1340 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -3338 (|#2|)) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -1269 (|#2|)) (-15 -3197 (|#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1980 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -1237 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2994 ((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2968 ((-111) |#2|))) (-13 (-807) (-529)) (-13 (-414 |#1|) (-954))) (T -260)) -((-2968 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *3)) (-4 *3 (-13 (-414 *4) (-954))))) (-2994 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-606 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-414 *4) (-954))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-260 *4 *2)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1237 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3603 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2826 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1980 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1235 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3197 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-1269 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *4)) (-4 *4 (-13 (-414 *3) (-954))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *5)) (-4 *5 (-13 (-414 *4) (-954))))) (-3338 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954)))))) -(-10 -7 (-15 -4185 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1340 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -3338 (|#2|)) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -1269 (|#2|)) (-15 -3197 (|#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1980 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -1237 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2994 ((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2968 ((-111) |#2|))) -((-2096 (((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117)) 135)) (-1784 ((|#2| (-391 (-537)) |#2|) 51)) (-1815 ((|#2| |#2| (-578 |#2|)) 128)) (-3021 (((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117)) 127)) (-2408 ((|#2| |#2| (-1117)) 20) ((|#2| |#2|) 23)) (-2477 ((|#2| |#2| (-1117)) 141) ((|#2| |#2|) 139))) -(((-261 |#1| |#2|) (-10 -7 (-15 -2477 (|#2| |#2|)) (-15 -2477 (|#2| |#2| (-1117))) (-15 -3021 ((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117))) (-15 -2408 (|#2| |#2|)) (-15 -2408 (|#2| |#2| (-1117))) (-15 -2096 ((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117))) (-15 -1815 (|#2| |#2| (-578 |#2|))) (-15 -1784 (|#2| (-391 (-537)) |#2|))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -261)) -((-1784 (*1 *2 *3 *2) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)))) (-2096 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-1117)) (-4 *2 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *5 *2)))) (-2408 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-3021 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-606 (-578 *3))) (|:| |vals| (-606 *3)))) (-5 *1 (-261 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2477 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) -(-10 -7 (-15 -2477 (|#2| |#2|)) (-15 -2477 (|#2| |#2| (-1117))) (-15 -3021 ((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117))) (-15 -2408 (|#2| |#2|)) (-15 -2408 (|#2| |#2| (-1117))) (-15 -2096 ((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117))) (-15 -1815 (|#2| |#2| (-578 |#2|))) (-15 -1784 (|#2| (-391 (-537)) |#2|))) -((-3303 (((-3 |#3| "failed") |#3|) 110)) (-1403 ((|#3| |#3|) 131)) (-2838 (((-3 |#3| "failed") |#3|) 82)) (-1247 ((|#3| |#3|) 121)) (-2268 (((-3 |#3| "failed") |#3|) 58)) (-1378 ((|#3| |#3|) 129)) (-2515 (((-3 |#3| "failed") |#3|) 46)) (-4270 ((|#3| |#3|) 119)) (-2223 (((-3 |#3| "failed") |#3|) 112)) (-1429 ((|#3| |#3|) 133)) (-2213 (((-3 |#3| "failed") |#3|) 84)) (-1273 ((|#3| |#3|) 123)) (-1252 (((-3 |#3| "failed") |#3| (-731)) 36)) (-2197 (((-3 |#3| "failed") |#3|) 74)) (-2180 ((|#3| |#3|) 118)) (-3909 (((-3 |#3| "failed") |#3|) 44)) (-4185 ((|#3| |#3|) 117)) (-2775 (((-3 |#3| "failed") |#3|) 113)) (-1441 ((|#3| |#3|) 134)) (-1693 (((-3 |#3| "failed") |#3|) 85)) (-1286 ((|#3| |#3|) 124)) (-1348 (((-3 |#3| "failed") |#3|) 111)) (-1415 ((|#3| |#3|) 132)) (-1257 (((-3 |#3| "failed") |#3|) 83)) (-1259 ((|#3| |#3|) 122)) (-2075 (((-3 |#3| "failed") |#3|) 60)) (-1389 ((|#3| |#3|) 130)) (-2709 (((-3 |#3| "failed") |#3|) 48)) (-1234 ((|#3| |#3|) 120)) (-2054 (((-3 |#3| "failed") |#3|) 66)) (-1475 ((|#3| |#3|) 137)) (-1801 (((-3 |#3| "failed") |#3|) 104)) (-1328 ((|#3| |#3|) 142)) (-4069 (((-3 |#3| "failed") |#3|) 62)) (-1453 ((|#3| |#3|) 135)) (-3217 (((-3 |#3| "failed") |#3|) 50)) (-1300 ((|#3| |#3|) 125)) (-2815 (((-3 |#3| "failed") |#3|) 70)) (-1495 ((|#3| |#3|) 139)) (-2754 (((-3 |#3| "failed") |#3|) 54)) (-1352 ((|#3| |#3|) 127)) (-2000 (((-3 |#3| "failed") |#3|) 72)) (-4141 ((|#3| |#3|) 140)) (-3387 (((-3 |#3| "failed") |#3|) 56)) (-1365 ((|#3| |#3|) 128)) (-3074 (((-3 |#3| "failed") |#3|) 68)) (-1485 ((|#3| |#3|) 138)) (-4195 (((-3 |#3| "failed") |#3|) 107)) (-1340 ((|#3| |#3|) 143)) (-3653 (((-3 |#3| "failed") |#3|) 64)) (-1465 ((|#3| |#3|) 136)) (-2378 (((-3 |#3| "failed") |#3|) 52)) (-1314 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-391 (-537))) 40 (|has| |#1| (-347))))) -(((-262 |#1| |#2| |#3|) (-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) (-37 (-391 (-537))) (-1191 |#1|) (-1162 |#1| |#2|)) (T -262)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) (-4 *5 (-1191 *4)) (-5 *1 (-262 *4 *5 *2)) (-4 *2 (-1162 *4 *5)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4))))) -(-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) -((-3303 (((-3 |#3| "failed") |#3|) 66)) (-1403 ((|#3| |#3|) 129)) (-2838 (((-3 |#3| "failed") |#3|) 50)) (-1247 ((|#3| |#3|) 117)) (-2268 (((-3 |#3| "failed") |#3|) 62)) (-1378 ((|#3| |#3|) 127)) (-2515 (((-3 |#3| "failed") |#3|) 46)) (-4270 ((|#3| |#3|) 115)) (-2223 (((-3 |#3| "failed") |#3|) 70)) (-1429 ((|#3| |#3|) 131)) (-2213 (((-3 |#3| "failed") |#3|) 54)) (-1273 ((|#3| |#3|) 119)) (-1252 (((-3 |#3| "failed") |#3| (-731)) 35)) (-2197 (((-3 |#3| "failed") |#3|) 44)) (-2180 ((|#3| |#3|) 104)) (-3909 (((-3 |#3| "failed") |#3|) 42)) (-4185 ((|#3| |#3|) 114)) (-2775 (((-3 |#3| "failed") |#3|) 72)) (-1441 ((|#3| |#3|) 132)) (-1693 (((-3 |#3| "failed") |#3|) 56)) (-1286 ((|#3| |#3|) 120)) (-1348 (((-3 |#3| "failed") |#3|) 68)) (-1415 ((|#3| |#3|) 130)) (-1257 (((-3 |#3| "failed") |#3|) 52)) (-1259 ((|#3| |#3|) 118)) (-2075 (((-3 |#3| "failed") |#3|) 64)) (-1389 ((|#3| |#3|) 128)) (-2709 (((-3 |#3| "failed") |#3|) 48)) (-1234 ((|#3| |#3|) 116)) (-2054 (((-3 |#3| "failed") |#3|) 74)) (-1475 ((|#3| |#3|) 135)) (-1801 (((-3 |#3| "failed") |#3|) 58)) (-1328 ((|#3| |#3|) 123)) (-4069 (((-3 |#3| "failed") |#3|) 105)) (-1453 ((|#3| |#3|) 133)) (-3217 (((-3 |#3| "failed") |#3|) 94)) (-1300 ((|#3| |#3|) 121)) (-2815 (((-3 |#3| "failed") |#3|) 109)) (-1495 ((|#3| |#3|) 137)) (-2754 (((-3 |#3| "failed") |#3|) 101)) (-1352 ((|#3| |#3|) 125)) (-2000 (((-3 |#3| "failed") |#3|) 110)) (-4141 ((|#3| |#3|) 138)) (-3387 (((-3 |#3| "failed") |#3|) 103)) (-1365 ((|#3| |#3|) 126)) (-3074 (((-3 |#3| "failed") |#3|) 76)) (-1485 ((|#3| |#3|) 136)) (-4195 (((-3 |#3| "failed") |#3|) 60)) (-1340 ((|#3| |#3|) 124)) (-3653 (((-3 |#3| "failed") |#3|) 106)) (-1465 ((|#3| |#3|) 134)) (-2378 (((-3 |#3| "failed") |#3|) 97)) (-1314 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-391 (-537))) 40 (|has| |#1| (-347))))) -(((-263 |#1| |#2| |#3| |#4|) (-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) (-37 (-391 (-537))) (-1160 |#1|) (-1183 |#1| |#2|) (-936 |#2|)) (T -263)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) (-4 *5 (-1160 *4)) (-5 *1 (-263 *4 *5 *2 *6)) (-4 *2 (-1183 *4 *5)) (-4 *6 (-936 *5)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4))))) -(-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) -((-3263 (((-111) $) 19)) (-1615 (((-173) $) 7)) (-4242 (((-3 (-1117) "failed") $) 14)) (-2735 (((-3 (-606 $) "failed") $) NIL)) (-2448 (((-3 (-1117) "failed") $) 21)) (-1305 (((-3 (-1049) "failed") $) 17)) (-2162 (((-111) $) 15)) (-2341 (((-816) $) NIL)) (-1759 (((-111) $) 9))) -(((-264) (-13 (-579 (-816)) (-10 -8 (-15 -1615 ((-173) $)) (-15 -2162 ((-111) $)) (-15 -1305 ((-3 (-1049) "failed") $)) (-15 -3263 ((-111) $)) (-15 -2448 ((-3 (-1117) "failed") $)) (-15 -1759 ((-111) $)) (-15 -4242 ((-3 (-1117) "failed") $)) (-15 -2735 ((-3 (-606 $) "failed") $))))) (T -264)) -((-1615 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-264)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-1305 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-264)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-2448 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-4242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) (-2735 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-264))) (-5 *1 (-264))))) -(-13 (-579 (-816)) (-10 -8 (-15 -1615 ((-173) $)) (-15 -2162 ((-111) $)) (-15 -1305 ((-3 (-1049) "failed") $)) (-15 -3263 ((-111) $)) (-15 -2448 ((-3 (-1117) "failed") $)) (-15 -1759 ((-111) $)) (-15 -4242 ((-3 (-1117) "failed") $)) (-15 -2735 ((-3 (-606 $) "failed") $)))) -((-1936 (($ (-1 (-111) |#2|) $) 24)) (-3221 (($ $) 36)) (-3026 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-2355 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-1646 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4049 (($ |#2| $ (-537)) 20) (($ $ $ (-537)) 22)) (-1856 (($ $ (-537)) 11) (($ $ (-1167 (-537))) 14)) (-3115 (($ $ |#2|) 30) (($ $ $) NIL)) (-3434 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-606 $)) NIL))) -(((-265 |#1| |#2|) (-10 -8 (-15 -1646 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3221 (|#1| |#1|))) (-266 |#2|) (-1154)) (T -265)) -NIL -(-10 -8 (-15 -1646 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3221 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 85)) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 83 (|has| |#1| (-1045)))) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1045)))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-1646 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-3499 (($ |#1| $ (-537)) 88) (($ $ $ (-537)) 87)) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3282 (($ $ (-537)) 91) (($ $ (-1167 (-537))) 90)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3115 (($ $ |#1|) 93) (($ $ $) 92)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-266 |#1|) (-134) (-1154)) (T -266)) -((-3115 (*1 *1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3499 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3499 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-1646 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3026 (*1 *1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-1646 (*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-807))))) -(-13 (-612 |t#1|) (-10 -8 (-6 -4301) (-15 -3115 ($ $ |t#1|)) (-15 -3115 ($ $ $)) (-15 -3282 ($ $ (-537))) (-15 -3282 ($ $ (-1167 (-537)))) (-15 -3026 ($ (-1 (-111) |t#1|) $)) (-15 -3499 ($ |t#1| $ (-537))) (-15 -3499 ($ $ $ (-537))) (-15 -1646 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3435 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3026 ($ |t#1| $)) (-15 -1376 ($ $))) |%noBranch|) (IF (|has| |t#1| (-807)) (-15 -1646 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +(-13 (-1004) (-110 $ $) (-10 -7 (-6 (-4312 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-1792 (($ $) 6))) +(((-164) (-134)) (T -164)) +((-1792 (*1 *1 *1) (-4 *1 (-164)))) +(-13 (-10 -8 (-15 -1792 ($ $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#1| $) 75)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-1409 (($ $) 19)) (-1413 (($ |#1| (-1101 |#1|)) 48)) (-3781 (((-3 $ "failed") $) 117)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-1410 (((-1101 |#1|) $) 82)) (-1412 (((-1101 |#1|) $) 79)) (-1411 (((-1101 |#1|) $) 80)) (-2471 (((-111) $) NIL)) (-1406 (((-1101 |#1|) $) 88)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-4087 (($ $ (-526)) 91)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1405 (((-1101 |#1|) $) 89)) (-1407 (((-1101 (-392 |#1|)) $) 14)) (-2911 (($ (-392 |#1|)) 17) (($ |#1| (-1101 |#1|) (-1101 |#1|)) 38)) (-3191 (($ $) 93)) (-4274 (((-823) $) 127) (($ (-526)) 51) (($ |#1|) 52) (($ (-392 |#1|)) 36) (($ (-392 (-526))) NIL) (($ $) NIL)) (-3423 (((-735)) 64)) (-2150 (((-111) $ $) NIL)) (-1408 (((-1101 (-392 |#1|)) $) 18)) (-2957 (($) 25 T CONST)) (-2964 (($) 28 T CONST)) (-3353 (((-111) $ $) 35)) (-4265 (($ $ $) 115)) (-4156 (($ $) 106) (($ $ $) 103)) (-4158 (($ $ $) 101)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-392 |#1|) $) 111) (($ $ (-392 |#1|)) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL))) +(((-165 |#1|) (-13 (-37 |#1|) (-37 (-392 |#1|)) (-348) (-10 -8 (-15 -2911 ($ (-392 |#1|))) (-15 -2911 ($ |#1| (-1101 |#1|) (-1101 |#1|))) (-15 -1413 ($ |#1| (-1101 |#1|))) (-15 -1412 ((-1101 |#1|) $)) (-15 -1411 ((-1101 |#1|) $)) (-15 -1410 ((-1101 |#1|) $)) (-15 -3426 (|#1| $)) (-15 -1409 ($ $)) (-15 -1408 ((-1101 (-392 |#1|)) $)) (-15 -1407 ((-1101 (-392 |#1|)) $)) (-15 -1406 ((-1101 |#1|) $)) (-15 -1405 ((-1101 |#1|) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) (-292)) (T -165)) +((-2911 (*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-292)) (-5 *1 (-165 *3)))) (-2911 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) (-1413 (*1 *1 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-3426 (*1 *2 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) (-1409 (*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) (-3191 (*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292))))) +(-13 (-37 |#1|) (-37 (-392 |#1|)) (-348) (-10 -8 (-15 -2911 ($ (-392 |#1|))) (-15 -2911 ($ |#1| (-1101 |#1|) (-1101 |#1|))) (-15 -1413 ($ |#1| (-1101 |#1|))) (-15 -1412 ((-1101 |#1|) $)) (-15 -1411 ((-1101 |#1|) $)) (-15 -1410 ((-1101 |#1|) $)) (-15 -3426 (|#1| $)) (-15 -1409 ($ $)) (-15 -1408 ((-1101 (-392 |#1|)) $)) (-15 -1407 ((-1101 (-392 |#1|)) $)) (-15 -1406 ((-1101 |#1|) $)) (-15 -1405 ((-1101 |#1|) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) +((-1414 (($ (-107) $) 13)) (-3534 (((-3 (-107) "failed") (-1123) $) 12)) (-4274 (((-823) $) 16)) (-1415 (((-607 (-107)) $) 8))) +(((-166) (-13 (-583 (-823)) (-10 -8 (-15 -1415 ((-607 (-107)) $)) (-15 -1414 ($ (-107) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $))))) (T -166)) +((-1415 (*1 *2 *1) (-12 (-5 *2 (-607 (-107))) (-5 *1 (-166)))) (-1414 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-166)))) (-3534 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-166))))) +(-13 (-583 (-823)) (-10 -8 (-15 -1415 ((-607 (-107)) $)) (-15 -1414 ($ (-107) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)))) +((-1428 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 40)) (-1419 (((-902 |#1|) (-902 |#1|)) 19)) (-1424 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 36)) (-1417 (((-902 |#1|) (-902 |#1|)) 17)) (-1422 (((-902 |#1|) (-902 |#1|)) 25)) (-1421 (((-902 |#1|) (-902 |#1|)) 24)) (-1420 (((-902 |#1|) (-902 |#1|)) 23)) (-1425 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 37)) (-1423 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 35)) (-1735 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 34)) (-1418 (((-902 |#1|) (-902 |#1|)) 18)) (-1429 (((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|) 43)) (-1416 (((-902 |#1|) (-902 |#1|)) 8)) (-1427 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 39)) (-1426 (((-1 (-902 |#1|) (-902 |#1|)) |#1|) 38))) +(((-167 |#1|) (-10 -7 (-15 -1416 ((-902 |#1|) (-902 |#1|))) (-15 -1417 ((-902 |#1|) (-902 |#1|))) (-15 -1418 ((-902 |#1|) (-902 |#1|))) (-15 -1419 ((-902 |#1|) (-902 |#1|))) (-15 -1420 ((-902 |#1|) (-902 |#1|))) (-15 -1421 ((-902 |#1|) (-902 |#1|))) (-15 -1422 ((-902 |#1|) (-902 |#1|))) (-15 -1735 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1423 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1424 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1425 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1426 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1427 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1428 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1429 ((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|))) (-13 (-348) (-1145) (-960))) (T -167)) +((-1429 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1428 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1424 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1735 (*1 *2 *3) (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) (-4 *3 (-13 (-348) (-1145) (-960))))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1419 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) (-5 *1 (-167 *3))))) +(-10 -7 (-15 -1416 ((-902 |#1|) (-902 |#1|))) (-15 -1417 ((-902 |#1|) (-902 |#1|))) (-15 -1418 ((-902 |#1|) (-902 |#1|))) (-15 -1419 ((-902 |#1|) (-902 |#1|))) (-15 -1420 ((-902 |#1|) (-902 |#1|))) (-15 -1421 ((-902 |#1|) (-902 |#1|))) (-15 -1422 ((-902 |#1|) (-902 |#1|))) (-15 -1735 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1423 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1424 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1425 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1426 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1427 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1428 ((-1 (-902 |#1|) (-902 |#1|)) |#1|)) (-15 -1429 ((-1 (-902 |#1|) (-902 |#1|)) |#1| |#1|))) +((-2667 ((|#2| |#3|) 27))) +(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#2| |#3|))) (-163) (-1181 |#1|) (-689 |#1| |#2|)) (T -168)) +((-2667 (*1 *2 *3) (-12 (-4 *4 (-163)) (-4 *2 (-1181 *4)) (-5 *1 (-168 *4 *2 *3)) (-4 *3 (-689 *4 *2))))) +(-10 -7 (-15 -2667 (|#2| |#3|))) +((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 47 (|has| (-905 |#2|) (-845 |#1|))))) +(((-169 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-905 |#2|) (-845 |#1|)) (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) |%noBranch|)) (-1052) (-13 (-845 |#1|) (-163)) (-157 |#2|)) (T -169)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *3 (-157 *6)) (-4 (-905 *6) (-845 *5)) (-4 *6 (-13 (-845 *5) (-163))) (-5 *1 (-169 *5 *6 *3))))) +(-10 -7 (IF (|has| (-905 |#2|) (-845 |#1|)) (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) |%noBranch|)) +((-1431 (((-607 |#1|) (-607 |#1|) |#1|) 38)) (-1430 (((-607 |#1|) |#1| (-607 |#1|)) 19)) (-2170 (((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|)) 33) ((|#1| (-607 |#1|) (-607 |#1|)) 31))) +(((-170 |#1|) (-10 -7 (-15 -1430 ((-607 |#1|) |#1| (-607 |#1|))) (-15 -2170 (|#1| (-607 |#1|) (-607 |#1|))) (-15 -2170 ((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|))) (-15 -1431 ((-607 |#1|) (-607 |#1|) |#1|))) (-292)) (T -170)) +((-1431 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3)))) (-2170 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-607 *4))) (-5 *2 (-607 *4)) (-4 *4 (-292)) (-5 *1 (-170 *4)))) (-2170 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-170 *2)) (-4 *2 (-292)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) +(-10 -7 (-15 -1430 ((-607 |#1|) |#1| (-607 |#1|))) (-15 -2170 (|#1| (-607 |#1|) (-607 |#1|))) (-15 -2170 ((-607 |#1|) (-607 (-607 |#1|)) (-607 |#1|))) (-15 -1431 ((-607 |#1|) (-607 |#1|) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-171) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $))))) (T -171)) +((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-171)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-171))))) +(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $)))) +((-1440 (((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|) 61)) (-1439 ((|#1| |#1|) 54)) (-1438 (((-159 |#1|) |#2|) 84)) (-1437 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1436 ((|#2| |#2|) 83)) (-1435 (((-390 |#2|) |#2| |#1|) 113) (((-390 |#2|) |#2| |#1| (-111)) 81)) (-3429 ((|#1| |#2|) 112)) (-1434 ((|#2| |#2|) 119)) (-4051 (((-390 |#2|) |#2|) 134) (((-390 |#2|) |#2| |#1|) 32) (((-390 |#2|) |#2| |#1| (-111)) 133)) (-1433 (((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|) 132) (((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111)) 76)) (-1432 (((-607 (-159 |#1|)) |#2| |#1|) 40) (((-607 (-159 |#1|)) |#2|) 41))) +(((-172 |#1| |#2|) (-10 -7 (-15 -1432 ((-607 (-159 |#1|)) |#2|)) (-15 -1432 ((-607 (-159 |#1|)) |#2| |#1|)) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111))) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|)) (-15 -4051 ((-390 |#2|) |#2| |#1| (-111))) (-15 -4051 ((-390 |#2|) |#2| |#1|)) (-15 -4051 ((-390 |#2|) |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3429 (|#1| |#2|)) (-15 -1435 ((-390 |#2|) |#2| |#1| (-111))) (-15 -1435 ((-390 |#2|) |#2| |#1|)) (-15 -1436 (|#2| |#2|)) (-15 -1437 (|#1| |#2| |#1|)) (-15 -1437 (|#1| |#2|)) (-15 -1438 ((-159 |#1|) |#2|)) (-15 -1439 (|#1| |#1|)) (-15 -1440 ((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|))) (-13 (-348) (-809)) (-1181 (-159 |#1|))) (T -172)) +((-1440 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-2 (|:| |start| *3) (|:| -2736 (-390 *3)))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1439 (*1 *2 *2) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-172 *4 *3)) (-4 *4 (-13 (-348) (-809))) (-4 *3 (-1181 *2)))) (-1437 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1437 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) (-4 *2 (-1181 (-159 *3))))) (-1435 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-3429 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) (-4 *3 (-1181 (-159 *2))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) (-4 *2 (-1181 (-159 *3))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-4051 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1433 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *4)))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1433 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-348) (-809))) (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *5)))) (-5 *1 (-172 *5 *3)) (-4 *3 (-1181 (-159 *5))))) (-1432 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) (-1432 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) +(-10 -7 (-15 -1432 ((-607 (-159 |#1|)) |#2|)) (-15 -1432 ((-607 (-159 |#1|)) |#2| |#1|)) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2| (-111))) (-15 -1433 ((-607 (-2 (|:| -2736 (-607 |#2|)) (|:| -1632 |#1|))) |#2| |#2|)) (-15 -4051 ((-390 |#2|) |#2| |#1| (-111))) (-15 -4051 ((-390 |#2|) |#2| |#1|)) (-15 -4051 ((-390 |#2|) |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3429 (|#1| |#2|)) (-15 -1435 ((-390 |#2|) |#2| |#1| (-111))) (-15 -1435 ((-390 |#2|) |#2| |#1|)) (-15 -1436 (|#2| |#2|)) (-15 -1437 (|#1| |#2| |#1|)) (-15 -1437 (|#1| |#2|)) (-15 -1438 ((-159 |#1|) |#2|)) (-15 -1439 (|#1| |#1|)) (-15 -1440 ((-2 (|:| |start| |#2|) (|:| -2736 (-390 |#2|))) |#2|))) +((-1441 (((-3 |#2| "failed") |#2|) 14)) (-1442 (((-735) |#2|) 16)) (-1443 ((|#2| |#2| |#2|) 18))) +(((-173 |#1| |#2|) (-10 -7 (-15 -1441 ((-3 |#2| "failed") |#2|)) (-15 -1442 ((-735) |#2|)) (-15 -1443 (|#2| |#2| |#2|))) (-1159) (-639 |#1|)) (T -173)) +((-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-1159)) (-5 *2 (-735)) (-5 *1 (-173 *4 *3)) (-4 *3 (-639 *4)))) (-1441 (*1 *2 *2) (|partial| -12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) +(-10 -7 (-15 -1441 ((-3 |#2| "failed") |#2|)) (-15 -1442 ((-735) |#2|)) (-15 -1443 (|#2| |#2| |#2|))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1445 (((-1123) $) 10)) (-4274 (((-823) $) 17)) (-1444 (((-607 (-1128)) $) 12)) (-3353 (((-111) $ $) 15))) +(((-174) (-13 (-1052) (-10 -8 (-15 -1445 ((-1123) $)) (-15 -1444 ((-607 (-1128)) $))))) (T -174)) +((-1445 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-174)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-174))))) +(-13 (-1052) (-10 -8 (-15 -1445 ((-1123) $)) (-15 -1444 ((-607 (-1128)) $)))) +((-3964 ((|#2| |#2|) 28)) (-3967 (((-111) |#2|) 19)) (-3965 (((-299 |#1|) |#2|) 12)) (-3966 (((-299 |#1|) |#2|) 14)) (-3962 ((|#2| |#2| (-1123)) 68) ((|#2| |#2|) 69)) (-3968 (((-159 (-299 |#1|)) |#2|) 10)) (-3963 ((|#2| |#2| (-1123)) 65) ((|#2| |#2|) 59))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3965 ((-299 |#1|) |#2|)) (-15 -3966 ((-299 |#1|) |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3968 ((-159 (-299 |#1|)) |#2|))) (-13 (-533) (-811) (-995 (-526))) (-13 (-27) (-1145) (-406 (-159 |#1|)))) (T -175)) +((-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-159 (-299 *4))) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-111)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3966 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) (-3962 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3))))))) +(-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3965 ((-299 |#1|) |#2|)) (-15 -3966 ((-299 |#1|) |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3968 ((-159 (-299 |#1|)) |#2|))) +((-1446 (((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|))) 24)) (-4274 (((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))) 33))) +(((-176 |#1|) (-10 -7 (-15 -1446 ((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|)))) (-15 -4274 ((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))))) (-163)) (T -176)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) (-5 *2 (-1205 (-653 (-392 (-905 *4))))) (-5 *1 (-176 *4)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) (-5 *2 (-1205 (-653 (-905 *4)))) (-5 *1 (-176 *4))))) +(-10 -7 (-15 -1446 ((-1205 (-653 (-905 |#1|))) (-1205 (-653 |#1|)))) (-15 -4274 ((-1205 (-653 (-392 (-905 |#1|)))) (-1205 (-653 |#1|))))) +((-1454 (((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 66)) (-1456 (((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526))) 75)) (-1447 (((-1125 (-392 (-526))) (-526)) 40)) (-4173 (((-1125 (-392 (-526))) (-526)) 52)) (-4086 (((-392 (-526)) (-1125 (-392 (-526)))) 62)) (-1448 (((-1125 (-392 (-526))) (-526)) 32)) (-1451 (((-1125 (-392 (-526))) (-526)) 48)) (-1450 (((-1125 (-392 (-526))) (-526)) 46)) (-1453 (((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 60)) (-3191 (((-1125 (-392 (-526))) (-526)) 25)) (-1452 (((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526)))) 64)) (-1449 (((-1125 (-392 (-526))) (-526)) 30)) (-1455 (((-1125 (-392 (-526))) (-607 (-526))) 72))) +(((-177) (-10 -7 (-15 -3191 ((-1125 (-392 (-526))) (-526))) (-15 -1447 ((-1125 (-392 (-526))) (-526))) (-15 -1448 ((-1125 (-392 (-526))) (-526))) (-15 -1449 ((-1125 (-392 (-526))) (-526))) (-15 -1450 ((-1125 (-392 (-526))) (-526))) (-15 -1451 ((-1125 (-392 (-526))) (-526))) (-15 -4173 ((-1125 (-392 (-526))) (-526))) (-15 -1452 ((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1453 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -4086 ((-392 (-526)) (-1125 (-392 (-526))))) (-15 -1454 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1455 ((-1125 (-392 (-526))) (-607 (-526)))) (-15 -1456 ((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526)))))) (T -177)) +((-1456 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1454 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) (-1453 (*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) (-4173 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1451 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1449 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(-10 -7 (-15 -3191 ((-1125 (-392 (-526))) (-526))) (-15 -1447 ((-1125 (-392 (-526))) (-526))) (-15 -1448 ((-1125 (-392 (-526))) (-526))) (-15 -1449 ((-1125 (-392 (-526))) (-526))) (-15 -1450 ((-1125 (-392 (-526))) (-526))) (-15 -1451 ((-1125 (-392 (-526))) (-526))) (-15 -4173 ((-1125 (-392 (-526))) (-526))) (-15 -1452 ((-392 (-526)) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1453 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -4086 ((-392 (-526)) (-1125 (-392 (-526))))) (-15 -1454 ((-1125 (-392 (-526))) (-1125 (-392 (-526))) (-1125 (-392 (-526))))) (-15 -1455 ((-1125 (-392 (-526))) (-607 (-526)))) (-15 -1456 ((-1125 (-392 (-526))) (-607 (-526)) (-607 (-526))))) +((-1458 (((-390 (-1117 (-526))) (-526)) 28)) (-1457 (((-607 (-1117 (-526))) (-526)) 23)) (-3101 (((-1117 (-526)) (-526)) 21))) +(((-178) (-10 -7 (-15 -1457 ((-607 (-1117 (-526))) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -1458 ((-390 (-1117 (-526))) (-526))))) (T -178)) +((-1458 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526)))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-178)) (-5 *3 (-526)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-607 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) +(-10 -7 (-15 -1457 ((-607 (-1117 (-526))) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -1458 ((-390 (-1117 (-526))) (-526)))) +((-1644 (((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 105)) (-1665 (((-607 (-1106)) (-1101 (-211))) NIL)) (-1459 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 81)) (-1642 (((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211)))) NIL)) (-1664 (((-607 (-1106)) (-607 (-211))) NIL)) (-1666 (((-211) (-1041 (-803 (-211)))) 24)) (-1667 (((-211) (-1041 (-803 (-211)))) 25)) (-1461 (((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 98)) (-1460 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 42)) (-1662 (((-1106) (-211)) NIL)) (-2868 (((-1106) (-607 (-1106))) 20)) (-1462 (((-992) (-1123) (-1123) (-992)) 13))) +(((-179) (-10 -7 (-15 -1459 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1460 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1461 ((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -2868 ((-1106) (-607 (-1106)))) (-15 -1462 ((-992) (-1123) (-1123) (-992))))) (T -179)) +((-1462 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-179)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-179)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-179)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-179)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-179)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-179)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-179)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-179))))) +(-10 -7 (-15 -1459 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1460 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1461 ((-363) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -2868 ((-1106) (-607 (-1106)))) (-15 -1462 ((-992) (-1123) (-1123) (-992)))) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 55) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 32) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-180) (-751)) (T -180)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 60) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-181) (-751)) (T -181)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 69) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-182) (-751)) (T -182)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 56) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 34) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-183) (-751)) (T -183)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 67) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 38) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-184) (-751)) (T -184)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 73) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 36) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-185) (-751)) (T -185)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 80) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 44) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-186) (-751)) (T -186)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 70) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-187) (-751)) (T -187)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 66)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 32)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-188) (-751)) (T -188)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 63)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 34)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-189) (-751)) (T -189)) +NIL +(-751) +((-2865 (((-111) $ $) NIL)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 90) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 78) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-190) (-751)) (T -190)) +NIL +(-751) +((-1463 (((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 85)) (-1465 (((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 42)) (-1464 (((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 73))) +(((-191) (-10 -7 (-15 -1463 ((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1464 ((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1465 ((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -191)) +((-1465 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-526)) (-5 *1 (-191)))) (-1464 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-191)))) (-1463 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2805 (-112)) (|:| |w| (-211)))) (-5 *1 (-191))))) +(-10 -7 (-15 -1463 ((-3 (-2 (|:| -2805 (-112)) (|:| |w| (-211))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1464 ((-3 (-607 (-211)) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1465 ((-526) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) +((-1470 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 39)) (-1469 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 130)) (-1468 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211)))) 89)) (-1467 (((-363) (-653 (-299 (-211)))) 113)) (-2421 (((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123))) 110)) (-1473 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 30)) (-1471 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 43)) (-4086 (((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211)))) 102)) (-1466 (((-363) (-363) (-607 (-363))) 107) (((-363) (-363) (-363)) 105)) (-1472 (((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 36))) +(((-192) (-10 -7 (-15 -1466 ((-363) (-363) (-363))) (-15 -1466 ((-363) (-363) (-607 (-363)))) (-15 -1467 ((-363) (-653 (-299 (-211))))) (-15 -2421 ((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123)))) (-15 -4086 ((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211))))) (-15 -1468 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211))))) (-15 -1469 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1470 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1471 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1472 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1473 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -192)) +((-1473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-192)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-192)))) (-4086 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 (-299 (-211)))) (-5 *3 (-607 (-1123))) (-5 *4 (-1205 (-299 (-211)))) (-5 *1 (-192)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) (-5 *2 (-653 (-299 (-211)))) (-5 *1 (-192)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1466 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-363))) (-5 *2 (-363)) (-5 *1 (-192)))) (-1466 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-192))))) +(-10 -7 (-15 -1466 ((-363) (-363) (-363))) (-15 -1466 ((-363) (-363) (-607 (-363)))) (-15 -1467 ((-363) (-653 (-299 (-211))))) (-15 -2421 ((-653 (-299 (-211))) (-1205 (-299 (-211))) (-607 (-1123)))) (-15 -4086 ((-653 (-299 (-211))) (-653 (-299 (-211))) (-607 (-1123)) (-1205 (-299 (-211))))) (-15 -1468 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-653 (-299 (-211))))) (-15 -1469 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1470 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1471 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1472 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1473 ((-363) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 64)) (-3353 (((-111) $ $) NIL))) +(((-193) (-764)) (T -193)) +NIL +(-764) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 41)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 62)) (-3353 (((-111) $ $) NIL))) +(((-194) (-764)) (T -194)) +NIL +(-764) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 40)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 66)) (-3353 (((-111) $ $) NIL))) +(((-195) (-764)) (T -195)) +NIL +(-764) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 46)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 75)) (-3353 (((-111) $ $) NIL))) +(((-196) (-764)) (T -196)) +NIL +(-764) +((-4251 (((-607 (-1123)) (-1123) (-735)) 23)) (-1474 (((-299 (-211)) (-299 (-211))) 31)) (-1476 (((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 74)) (-1475 (((-111) (-211) (-211) (-607 (-299 (-211)))) 45))) +(((-197) (-10 -7 (-15 -4251 ((-607 (-1123)) (-1123) (-735))) (-15 -1474 ((-299 (-211)) (-299 (-211)))) (-15 -1475 ((-111) (-211) (-211) (-607 (-299 (-211))))) (-15 -1476 ((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))))) (T -197)) +((-1476 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-111)) (-5 *1 (-197)))) (-1475 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-607 (-299 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-197)))) (-1474 (*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-197)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-197)) (-5 *3 (-1123))))) +(-10 -7 (-15 -4251 ((-607 (-1123)) (-1123) (-735))) (-15 -1474 ((-299 (-211)) (-299 (-211)))) (-15 -1475 ((-111) (-211) (-211) (-607 (-299 (-211))))) (-15 -1476 ((-111) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))))) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 26)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 57)) (-3353 (((-111) $ $) NIL))) +(((-198) (-854)) (T -198)) +NIL +(-854) +((-2865 (((-111) $ $) NIL)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) NIL)) (-3353 (((-111) $ $) NIL))) +(((-199) (-854)) (T -199)) +NIL +(-854) +((-2865 (((-111) $ $) NIL)) (-4106 ((|#2| $ (-735) |#2|) 11)) (-3936 (($) 8)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#2| $ (-735)) 10)) (-4274 (((-823) $) 18)) (-3353 (((-111) $ $) 13))) +(((-200 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4118 (|#2| $ (-735))) (-15 -4106 (|#2| $ (-735) |#2|)))) (-878) (-1052)) (T -200)) +((-3936 (*1 *1) (-12 (-5 *1 (-200 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1052)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *2 (-1052)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)) (-4 *2 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -3936 ($)) (-15 -4118 (|#2| $ (-735))) (-15 -4106 (|#2| $ (-735) |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2063 (((-1211) $) 36) (((-1211) $ (-878) (-878)) 38)) (-4118 (($ $ (-948)) 19) (((-231 (-1106)) $ (-1123)) 15)) (-3939 (((-1211) $) 34)) (-4274 (((-823) $) 31) (($ (-607 |#1|)) 8)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $ $) 27)) (-4158 (($ $ $) 22))) +(((-201 |#1|) (-13 (-1052) (-10 -8 (-15 -4118 ($ $ (-948))) (-15 -4118 ((-231 (-1106)) $ (-1123))) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4274 ($ (-607 |#1|))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -2063 ((-1211) $ (-878) (-878))))) (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))) (T -201)) +((-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-231 (-1106))) (-5 *1 (-201 *4)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ *3)) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4156 (*1 *1 *1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $))))) (-5 *1 (-201 *3)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $))))))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $))))))) (-2063 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-201 *4)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) (-15 -2063 (*2 $)))))))) +(-13 (-1052) (-10 -8 (-15 -4118 ($ $ (-948))) (-15 -4118 ((-231 (-1106)) $ (-1123))) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4274 ($ (-607 |#1|))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -2063 ((-1211) $ (-878) (-878))))) +((-1477 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -202)) +((-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-348)) (-4 *6 (-1181 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-202 *5 *2 *6 *3)) (-4 *3 (-327 *5 *2 *6))))) +(-10 -7 (-15 -1477 (|#2| |#4| (-1 |#2| |#2|)))) +((-1481 ((|#2| |#2| (-735) |#2|) 42)) (-1480 ((|#2| |#2| (-735) |#2|) 38)) (-2427 (((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|)))) 57)) (-1479 (((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|) 53)) (-1482 (((-111) |#2|) 50)) (-4052 (((-390 |#2|) |#2|) 77)) (-4051 (((-390 |#2|) |#2|) 76)) (-2428 ((|#2| |#2| (-735) |#2|) 36)) (-1478 (((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111)) 69))) +(((-203 |#1| |#2|) (-10 -7 (-15 -4051 ((-390 |#2|) |#2|)) (-15 -4052 ((-390 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111))) (-15 -1479 ((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|)) (-15 -2427 ((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))))) (-15 -2428 (|#2| |#2| (-735) |#2|)) (-15 -1480 (|#2| |#2| (-735) |#2|)) (-15 -1481 (|#2| |#2| (-735) |#2|)) (-15 -1482 ((-111) |#2|))) (-335) (-1181 |#1|)) (T -203)) +((-1482 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-1481 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-1480 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-2428 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *5)))) (-4 *5 (-1181 *4)) (-4 *4 (-335)) (-5 *2 (-607 *5)) (-5 *1 (-203 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *3)))) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-203 *5 *3)) (-4 *3 (-1181 *5)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -4051 ((-390 |#2|) |#2|)) (-15 -4052 ((-390 |#2|) |#2|)) (-15 -1478 ((-2 (|:| |cont| |#1|) (|:| -2736 (-607 (-2 (|:| |irr| |#2|) (|:| -2456 (-526)))))) |#2| (-111))) (-15 -1479 ((-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))) |#2|)) (-15 -2427 ((-607 |#2|) (-607 (-2 (|:| |deg| (-735)) (|:| -2872 |#2|))))) (-15 -2428 (|#2| |#2| (-735) |#2|)) (-15 -1480 (|#2| |#2| (-735) |#2|)) (-15 -1481 (|#2| |#2| (-735) |#2|)) (-15 -1482 ((-111) |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-1483 (($ (-392 (-526))) 9)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 10) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) +(((-204) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 10) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -1483 ($ (-392 (-526))))))) (T -204)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 10)) (-5 *1 (-204)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204))))) +(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 10) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -1483 ($ (-392 (-526)))))) +((-4131 (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)) (-1106)) 28) (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|))) 24)) (-1484 (((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)) 17))) +(((-205 |#1| |#2|) (-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)))) (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|)) (-1106))) (-15 -1484 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -205)) +((-1484 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1123)) (-5 *6 (-111)) (-4 *7 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-1145) (-919) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-205 *7 *3)) (-5 *5 (-803 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-803 *3))) (-5 *5 (-1106)) (-4 *3 (-13 (-1145) (-919) (-29 *6))) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-205 *6 *3)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-803 *3))) (-4 *3 (-13 (-1145) (-919) (-29 *5))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-205 *5 *3))))) +(-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1044 (-803 |#2|)))) (-15 -4131 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1044 (-803 |#2|)) (-1106))) (-15 -1484 ((-3 (|:| |f1| (-803 |#2|)) (|:| |f2| (-607 (-803 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1123) (-803 |#2|) (-803 |#2|) (-111)))) +((-4131 (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)) 46) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|))))) 43) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106)) 47) (((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|)))) 20))) +(((-206 |#1|) (-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (T -206)) +((-4131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-803 (-392 (-905 *6))))) (-5 *5 (-1106)) (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-206 *6)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-803 (-392 (-905 *5))))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *5)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1044 (-803 (-299 *6)))) (-5 *5 (-1106)) (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *6)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1044 (-803 (-299 *5)))) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-206 *5))))) +(-10 -7 (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-299 |#1|))) (-1106))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))))) (-15 -4131 ((-3 (|:| |f1| (-803 (-299 |#1|))) (|:| |f2| (-607 (-803 (-299 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-392 (-905 |#1|)) (-1044 (-803 (-392 (-905 |#1|)))) (-1106)))) +((-4161 (((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|)) 21)) (-4280 (((-607 (-299 |#2|)) (-299 |#2|) (-878)) 42))) +(((-207 |#1| |#2|) (-10 -7 (-15 -4161 ((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|))) (-15 -4280 ((-607 (-299 |#2|)) (-299 |#2|) (-878)))) (-1004) (-13 (-533) (-811))) (T -207)) +((-4280 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *6 (-13 (-533) (-811))) (-5 *2 (-607 (-299 *6))) (-5 *1 (-207 *5 *6)) (-5 *3 (-299 *6)) (-4 *5 (-1004)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2096 (-1117 *4)) (|:| |deg| (-878)))) (-5 *1 (-207 *4 *5)) (-5 *3 (-1117 *4)) (-4 *5 (-13 (-533) (-811)))))) +(-10 -7 (-15 -4161 ((-2 (|:| -2096 (-1117 |#1|)) (|:| |deg| (-878))) (-1117 |#1|))) (-15 -4280 ((-607 (-299 |#2|)) (-299 |#2|) (-878)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1526 ((|#1| $) NIL)) (-3643 ((|#1| $) 25)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3302 (($ $) NIL)) (-2346 (($ $) 31)) (-3645 ((|#1| |#1| $) NIL)) (-3644 ((|#1| $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-4152 (((-735) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) NIL)) (-1524 ((|#1| |#1| $) 28)) (-1523 ((|#1| |#1| $) 30)) (-3929 (($ |#1| $) NIL)) (-2900 (((-735) $) 27)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3301 ((|#1| $) NIL)) (-1522 ((|#1| $) 26)) (-1521 ((|#1| $) 24)) (-1307 ((|#1| $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3304 ((|#1| |#1| $) NIL)) (-3722 (((-111) $) 9)) (-3887 (($) NIL)) (-3303 ((|#1| $) NIL)) (-1527 (($) NIL) (($ (-607 |#1|)) 16)) (-3642 (((-735) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1525 ((|#1| $) 13)) (-1308 (($ (-607 |#1|)) NIL)) (-3300 ((|#1| $) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-208 |#1|) (-13 (-239 |#1|) (-10 -8 (-15 -1527 ($ (-607 |#1|))))) (-1052)) (T -208)) +((-1527 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-208 *3))))) +(-13 (-239 |#1|) (-10 -8 (-15 -1527 ($ (-607 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1486 (($ (-299 |#1|)) 23)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2962 (((-111) $) NIL)) (-3470 (((-3 (-299 |#1|) "failed") $) NIL)) (-3469 (((-299 |#1|) $) NIL)) (-4276 (($ $) 31)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4275 (($ (-1 (-299 |#1|) (-299 |#1|)) $) NIL)) (-3487 (((-299 |#1|) $) NIL)) (-1488 (($ $) 30)) (-3554 (((-1106) $) NIL)) (-1487 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) NIL)) (-1485 (($ $) 32)) (-4264 (((-526) $) NIL)) (-4274 (((-823) $) 57) (($ (-526)) NIL) (($ (-299 |#1|)) NIL)) (-3999 (((-299 |#1|) $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 25 T CONST)) (-2964 (($) 50 T CONST)) (-3353 (((-111) $ $) 28)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 19)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 24) (($ (-299 |#1|) $) 18))) +(((-209 |#1| |#2|) (-13 (-588 (-299 |#1|)) (-995 (-299 |#1|)) (-10 -8 (-15 -3487 ((-299 |#1|) $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 ((-299 |#1|) $ $)) (-15 -2470 ($ (-735))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4275 ($ (-1 (-299 |#1|) (-299 |#1|)) $)) (-15 -1486 ($ (-299 |#1|))) (-15 -1485 ($ $)))) (-13 (-1004) (-811)) (-607 (-1123))) (T -209)) +((-3487 (*1 *2 *1) (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123))))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123))))) (-3999 (*1 *2 *1 *1) (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) (-14 *4 (-607 (-1123))))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-299 *3) (-299 *3))) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-299 *3)) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) (-1485 (*1 *1 *1) (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) (-14 *3 (-607 (-1123)))))) +(-13 (-588 (-299 |#1|)) (-995 (-299 |#1|)) (-10 -8 (-15 -3487 ((-299 |#1|) $)) (-15 -1488 ($ $)) (-15 -4276 ($ $)) (-15 -3999 ((-299 |#1|) $ $)) (-15 -2470 ($ (-735))) (-15 -1487 ((-111) $)) (-15 -2962 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4275 ($ (-1 (-299 |#1|) (-299 |#1|)) $)) (-15 -1486 ($ (-299 |#1|))) (-15 -1485 ($ $)))) +((-1489 (((-111) (-1106)) 22)) (-1490 (((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111)) 32)) (-1491 (((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)) 73) (((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111)) 74))) +(((-210 |#1| |#2|) (-10 -7 (-15 -1489 ((-111) (-1106))) (-15 -1490 ((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-29 |#1|))) (T -210)) +((-1491 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1117 *6)) (-5 *4 (-803 *6)) (-4 *6 (-13 (-1145) (-29 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-210 *5 *6)))) (-1491 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1123)) (-5 *5 (-803 *7)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *7 (-13 (-1145) (-29 *6))) (-5 *1 (-210 *6 *7)))) (-1490 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-803 *4)) (-5 *3 (-581 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1145) (-29 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-210 *6 *4)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) (-5 *1 (-210 *4 *5)) (-4 *5 (-13 (-1145) (-29 *4)))))) +(-10 -7 (-15 -1489 ((-111) (-1106))) (-15 -1490 ((-3 (-803 |#2|) "failed") (-581 |#2|) |#2| (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-905 |#1|) (-1123) (-803 |#2|) (-803 |#2|) (-111))) (-15 -1491 ((-3 (-111) "failed") (-1117 |#2|) (-803 |#2|) (-803 |#2|) (-111)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 89)) (-3426 (((-526) $) 99)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) NIL)) (-3806 (($ $) 77)) (-3961 (($ $) 65)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) 56)) (-1681 (((-111) $ $) NIL)) (-3804 (($ $) 75)) (-3960 (($ $) 63)) (-3945 (((-526) $) 116)) (-3808 (($ $) 80)) (-3959 (($ $) 67)) (-3855 (($) NIL T CONST)) (-3424 (($ $) NIL)) (-3470 (((-3 (-526) #1="failed") $) 115) (((-3 (-392 (-526)) #1#) $) 112)) (-3469 (((-526) $) 113) (((-392 (-526)) $) 110)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 92)) (-1836 (((-392 (-526)) $ (-735)) 108) (((-392 (-526)) $ (-735) (-735)) 107)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 29) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-3500 (((-111) $) NIL)) (-3949 (($) 39)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-4090 (((-526) $) 35)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (($ $) NIL)) (-3501 (((-111) $) 88)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-3637 (($ $ $) 53) (($) 34 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-3638 (($ $ $) 52) (($) 33 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 27)) (-1835 (($ $) 30)) (-1834 (($ $) 57)) (-4259 (($ $) 62)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-1865 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL) (((-526) $) 90)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL)) (-3427 (($ $) NIL)) (-3566 (($ (-526) (-526)) NIL) (($ (-526) (-526) (-878)) 100)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 28)) (-1833 (($) 38)) (-4260 (($ $) 61)) (-1680 (((-735) $) NIL)) (-1492 (((-1106) (-1106)) 8)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-4129 (($ $ (-735)) NIL) (($ $) 93)) (-1864 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3809 (($ $) 78)) (-3958 (($ $) 68)) (-3807 (($ $) 79)) (-3957 (($ $) 66)) (-3805 (($ $) 76)) (-3956 (($ $) 64)) (-4287 (((-363) $) 104) (((-211) $) 101) (((-849 (-363)) $) NIL) (((-515) $) 45)) (-4274 (((-823) $) 42) (($ (-526)) 60) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-526)) 60) (($ (-392 (-526))) NIL)) (-3423 (((-735)) NIL)) (-3428 (($ $) NIL)) (-1866 (((-878)) 32) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-2994 (((-878)) 25)) (-3812 (($ $) 83)) (-3800 (($ $) 71) (($ $ $) 109)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 81)) (-3798 (($ $) 69)) (-3814 (($ $) 86)) (-3802 (($ $) 74)) (-3815 (($ $) 84)) (-3803 (($ $) 72)) (-3813 (($ $) 85)) (-3801 (($ $) 73)) (-3811 (($ $) 82)) (-3799 (($ $) 70)) (-3702 (($ $) 117)) (-2957 (($) 36 T CONST)) (-2964 (($) 37 T CONST)) (-2803 (((-1106) $) 19) (((-1106) $ (-111)) 21) (((-1211) (-787) $) 22) (((-1211) (-787) $ (-111)) 23)) (-3706 (($ $) 96)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3703 (($ $ $) 98)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 54)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 46)) (-4265 (($ $ $) 87) (($ $ (-526)) 55)) (-4156 (($ $) 47) (($ $ $) 49)) (-4158 (($ $ $) 48)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 58) (($ $ (-392 (-526))) 129) (($ $ $) 59)) (* (($ (-878) $) 31) (($ (-735) $) NIL) (($ (-526) $) 51) (($ $ $) 50) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-211) (-13 (-389) (-219) (-785) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -1833 ($)) (-15 -3555 ((-526) $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -3800 ($ $ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -1492 ((-1106) (-1106))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735)))))) (T -211)) +((** (*1 *1 *1 *1) (-5 *1 (-211))) (-4265 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) (-1833 (*1 *1) (-5 *1 (-211))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) (-1835 (*1 *1 *1) (-5 *1 (-211))) (-1834 (*1 *1 *1) (-5 *1 (-211))) (-3800 (*1 *1 *1 *1) (-5 *1 (-211))) (-3706 (*1 *1 *1) (-5 *1 (-211))) (-3703 (*1 *1 *1 *1) (-5 *1 (-211))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-211)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) (-1836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211))))) +(-13 (-389) (-219) (-785) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -1833 ($)) (-15 -3555 ((-526) $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -3800 ($ $ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -1492 ((-1106) (-1106))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))))) +((-3705 (((-159 (-211)) (-735) (-159 (-211))) 11) (((-211) (-735) (-211)) 12)) (-1493 (((-159 (-211)) (-159 (-211))) 13) (((-211) (-211)) 14)) (-1494 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 19) (((-211) (-211) (-211)) 22)) (-3704 (((-159 (-211)) (-159 (-211))) 25) (((-211) (-211)) 24)) (-3708 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 43) (((-211) (-211) (-211)) 35)) (-3710 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 48) (((-211) (-211) (-211)) 45)) (-3707 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 15) (((-211) (-211) (-211)) 16)) (-3709 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 17) (((-211) (-211) (-211)) 18)) (-3712 (((-159 (-211)) (-159 (-211))) 60) (((-211) (-211)) 59)) (-3711 (((-211) (-211)) 54) (((-159 (-211)) (-159 (-211))) 58)) (-3706 (((-159 (-211)) (-159 (-211))) 8) (((-211) (-211)) 9)) (-3703 (((-159 (-211)) (-159 (-211)) (-159 (-211))) 30) (((-211) (-211) (-211)) 26))) +(((-212) (-10 -7 (-15 -3706 ((-211) (-211))) (-15 -3706 ((-159 (-211)) (-159 (-211)))) (-15 -3703 ((-211) (-211) (-211))) (-15 -3703 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -1493 ((-211) (-211))) (-15 -1493 ((-159 (-211)) (-159 (-211)))) (-15 -3704 ((-211) (-211))) (-15 -3704 ((-159 (-211)) (-159 (-211)))) (-15 -3705 ((-211) (-735) (-211))) (-15 -3705 ((-159 (-211)) (-735) (-159 (-211)))) (-15 -3707 ((-211) (-211) (-211))) (-15 -3707 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3708 ((-211) (-211) (-211))) (-15 -3708 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3709 ((-211) (-211) (-211))) (-15 -3709 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3710 ((-211) (-211) (-211))) (-15 -3710 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3711 ((-159 (-211)) (-159 (-211)))) (-15 -3711 ((-211) (-211))) (-15 -3712 ((-211) (-211))) (-15 -3712 ((-159 (-211)) (-159 (-211)))) (-15 -1494 ((-211) (-211) (-211))) (-15 -1494 ((-159 (-211)) (-159 (-211)) (-159 (-211)))))) (T -212)) +((-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-211))) (-5 *3 (-735)) (-5 *1 (-212)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *2 (-211)) (-5 *3 (-735)) (-5 *1 (-212)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212))))) +(-10 -7 (-15 -3706 ((-211) (-211))) (-15 -3706 ((-159 (-211)) (-159 (-211)))) (-15 -3703 ((-211) (-211) (-211))) (-15 -3703 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -1493 ((-211) (-211))) (-15 -1493 ((-159 (-211)) (-159 (-211)))) (-15 -3704 ((-211) (-211))) (-15 -3704 ((-159 (-211)) (-159 (-211)))) (-15 -3705 ((-211) (-735) (-211))) (-15 -3705 ((-159 (-211)) (-735) (-159 (-211)))) (-15 -3707 ((-211) (-211) (-211))) (-15 -3707 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3708 ((-211) (-211) (-211))) (-15 -3708 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3709 ((-211) (-211) (-211))) (-15 -3709 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3710 ((-211) (-211) (-211))) (-15 -3710 ((-159 (-211)) (-159 (-211)) (-159 (-211)))) (-15 -3711 ((-159 (-211)) (-159 (-211)))) (-15 -3711 ((-211) (-211))) (-15 -3712 ((-211) (-211))) (-15 -3712 ((-159 (-211)) (-159 (-211)))) (-15 -1494 ((-211) (-211) (-211))) (-15 -1494 ((-159 (-211)) (-159 (-211)) (-159 (-211))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) NIL)) (-2400 (($ $ $) NIL)) (-3733 (($ (-1205 |#1|)) NIL) (($ $) NIL)) (-4192 (($ |#1| |#1| |#1|) 32)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) NIL)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-1205 |#1|)) NIL)) (-1281 (($ $ (-526) (-1205 |#1|)) NIL)) (-4166 (($ |#1| |#1| |#1|) 31)) (-3652 (($ (-735) |#1|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) NIL (|has| |#1| (-292)))) (-3409 (((-1205 |#1|) $ (-526)) NIL)) (-1495 (($ |#1|) 30)) (-1496 (($ |#1|) 29)) (-1497 (($ |#1|) 28)) (-3406 (((-735) $) NIL (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) NIL (|has| |#1| (-533)))) (-3404 (((-607 (-1205 |#1|)) $) NIL (|has| |#1| (-533)))) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) NIL (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#1|))) 11)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) NIL (|has| |#1| (-348)))) (-1498 (($) 12)) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) NIL (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-1205 |#1|) $ (-526)) NIL)) (-4274 (($ (-1205 |#1|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-1205 |#1|) $ (-1205 |#1|)) 15) (((-1205 |#1|) (-1205 |#1|) $) NIL) (((-902 |#1|) $ (-902 |#1|)) 20)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-213 |#1|) (-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 * ((-902 |#1|) $ (-902 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4192 ($ |#1| |#1| |#1|)))) (-13 (-348) (-1145))) (T -213)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145))) (-5 *1 (-213 *3)))) (-1498 (*1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1497 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1496 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-1495 (*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-4166 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) (-4192 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) +(-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 * ((-902 |#1|) $ (-902 |#1|))) (-15 -1498 ($)) (-15 -1497 ($ |#1|)) (-15 -1496 ($ |#1|)) (-15 -1495 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4192 ($ |#1| |#1| |#1|)))) +((-1607 (($ (-1 (-111) |#2|) $) 16)) (-3724 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-1499 (($) NIL) (($ (-607 |#2|)) 11)) (-3353 (((-111) $ $) 23))) +(((-214 |#1| |#2|) (-10 -8 (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-215 |#2|) (-1052)) (T -214)) +NIL +(-10 -8 (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-215 |#1|) (-134) (-1052)) (T -215)) +NIL +(-13 (-221 |t#1|)) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) 11) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) 19) (($ $ (-735)) NIL) (($ $) 16)) (-2969 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-735)) 14) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL))) +(((-216 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1123))) (-15 -2969 (|#1| |#1| (-607 (-1123)))) (-15 -2969 (|#1| |#1| (-1123) (-735))) (-15 -2969 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|)))) (-217 |#2|) (-1004)) (T -216)) +NIL +(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1123))) (-15 -2969 (|#1| |#1| (-607 (-1123)))) (-15 -2969 (|#1| |#1| (-1123) (-735))) (-15 -2969 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2969 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-735)) 49) (($ $ (-607 (-1123)) (-607 (-735))) 42 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 41 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 40 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 39 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 37 (|has| |#1| (-219))) (($ $) 35 (|has| |#1| (-219)))) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-735)) 47) (($ $ (-607 (-1123)) (-607 (-735))) 46 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 45 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 44 (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 43 (|has| |#1| (-859 (-1123)))) (($ $ (-735)) 38 (|has| |#1| (-219))) (($ $) 36 (|has| |#1| (-219)))) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-217 |#1|) (-134) (-1004)) (T -217)) +((-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004))))) +(-13 (-1004) (-10 -8 (-15 -4129 ($ $ (-1 |t#1| |t#1|))) (-15 -4129 ($ $ (-1 |t#1| |t#1|) (-735))) (-15 -2969 ($ $ (-1 |t#1| |t#1|))) (-15 -2969 ($ $ (-1 |t#1| |t#1|) (-735))) (IF (|has| |t#1| (-219)) (-6 (-219)) |%noBranch|) (IF (|has| |t#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-219) |has| |#1| (-219)) ((-613 $) . T) ((-691) . T) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-4129 (($ $) NIL) (($ $ (-735)) 10)) (-2969 (($ $) 8) (($ $ (-735)) 12))) +(((-218 |#1|) (-10 -8 (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1|))) (-219)) (T -218)) +NIL +(-10 -8 (-15 -2969 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-735))) (-15 -2969 (|#1| |#1|)) (-15 -4129 (|#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $) 36) (($ $ (-735)) 34)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 35) (($ $ (-735)) 33)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-219) (-134)) (T -219)) +((-4129 (*1 *1 *1) (-4 *1 (-219))) (-2969 (*1 *1 *1) (-4 *1 (-219))) (-4129 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) (-2969 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735))))) +(-13 (-1004) (-10 -8 (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-1499 (($) 12) (($ (-607 |#2|)) NIL)) (-3719 (($ $) 14)) (-3844 (($ (-607 |#2|)) 10)) (-4274 (((-823) $) 21))) +(((-220 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -3719 (|#1| |#1|))) (-221 |#2|) (-1052)) (T -220)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -1499 (|#1| (-607 |#2|))) (-15 -1499 (|#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -3719 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-221 |#1|) (-134) (-1052)) (T -221)) +((-1499 (*1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1052)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-221 *3)))) (-3724 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-221 *2)) (-4 *2 (-1052)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) (-4 *3 (-1052)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) (-4 *3 (-1052))))) +(-13 (-105 |t#1|) (-145 |t#1|) (-10 -8 (-15 -1499 ($)) (-15 -1499 ($ (-607 |t#1|))) (IF (|has| $ (-6 -4310)) (PROGN (-15 -3724 ($ |t#1| $)) (-15 -3724 ($ (-1 (-111) |t#1|) $)) (-15 -1607 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-1500 (((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526)))) 27))) +(((-222) (-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526))))))) (T -222)) +((-1500 (*1 *2 *3) (-12 (-5 *3 (-278 (-905 (-526)))) (-5 *2 (-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735)))))) (-5 *1 (-222))))) +(-10 -7 (-15 -1500 ((-2 (|:| |varOrder| (-607 (-1123))) (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) (|:| |hom| (-607 (-1205 (-735))))) (-278 (-905 (-526)))))) +((-3433 (((-735)) 51)) (-2331 (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) 49) (((-653 |#3|) (-653 $)) 41) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-4230 (((-131)) 57)) (-4129 (($ $ (-1 |#3| |#3|) (-735)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (($ |#3|) NIL) (((-823) $) NIL) (($ (-526)) 12) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 15)) (-4265 (($ $ |#3|) 54))) +(((-223 |#1| |#2| |#3|) (-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|)) (-15 -3423 ((-735))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -3433 ((-735))) (-15 -4265 (|#1| |#1| |#3|)) (-15 -4230 ((-131))) (-15 -4274 ((-1205 |#3|) |#1|))) (-224 |#2| |#3|) (-735) (-1159)) (T -223)) +((-4230 (*1 *2) (-12 (-14 *4 (-735)) (-4 *5 (-1159)) (-5 *2 (-131)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5)))) (-3433 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5)))) (-3423 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) (-4 *3 (-224 *4 *5))))) +(-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|)) (-15 -3423 ((-735))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -3433 ((-735))) (-15 -4265 (|#1| |#1| |#3|)) (-15 -4230 ((-131))) (-15 -4274 ((-1205 |#3|) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#2| (-1052)))) (-3502 (((-111) $) 72 (|has| |#2| (-129)))) (-4029 (($ (-878)) 125 (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-2702 (($ $ $) 121 (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) 8)) (-3433 (((-735)) 107 (|has| |#2| (-353)))) (-3945 (((-526) $) 119 (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) 52 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 67 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) 64 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1052)))) (-3469 (((-526) $) 68 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) 65 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) 60 (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) 106 (-3155 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 105 (-3155 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 104 (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) 103 (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) 79 (|has| |#2| (-691)))) (-3294 (($) 110 (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 51)) (-3500 (((-111) $) 117 (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) 30 (|has| $ (-6 -4310)))) (-2471 (((-111) $) 81 (|has| |#2| (-691)))) (-3501 (((-111) $) 118 (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 116 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2480 (((-607 |#2|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 115 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2048 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 35)) (-2102 (((-878) $) 109 (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-2461 (($ (-878)) 108 (|has| |#2| (-353)))) (-3555 (((-1070) $) 21 (|has| |#2| (-1052)))) (-4119 ((|#2| $) 42 (|has| (-526) (-811)))) (-2277 (($ $ |#2|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 26 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 23 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ (-526) |#2|) 50) ((|#2| $ (-526)) 49)) (-4155 ((|#2| $ $) 124 (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) 126)) (-4230 (((-131)) 123 (|has| |#2| (-348)))) (-4129 (($ $) 98 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) 96 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) 94 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) 93 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) 92 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) 91 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) 84 (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4310))) (((-735) |#2| $) 28 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-1205 |#2|) $) 127) (($ (-526)) 66 (-3850 (-3155 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) 63 (-3155 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) 62 (|has| |#2| (-1052))) (((-823) $) 18 (|has| |#2| (-583 (-823))))) (-3423 (((-735)) 102 (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4310)))) (-3702 (($ $) 120 (|has| |#2| (-809)))) (-2957 (($) 71 (|has| |#2| (-129)) CONST)) (-2964 (($) 82 (|has| |#2| (-691)) CONST)) (-2969 (($ $) 97 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) 95 (-3155 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) 90 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) 89 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) 88 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) 87 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) 86 (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1004)))) (-2863 (((-111) $ $) 113 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2864 (((-111) $ $) 112 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-3353 (((-111) $ $) 20 (|has| |#2| (-1052)))) (-2984 (((-111) $ $) 114 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-2985 (((-111) $ $) 111 (-3850 (|has| |#2| (-809)) (|has| |#2| (-757))))) (-4265 (($ $ |#2|) 122 (|has| |#2| (-348)))) (-4156 (($ $ $) 100 (|has| |#2| (-1004))) (($ $) 99 (|has| |#2| (-1004)))) (-4158 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-735)) 80 (|has| |#2| (-691))) (($ $ (-878)) 77 (|has| |#2| (-691)))) (* (($ (-526) $) 101 (|has| |#2| (-1004))) (($ $ $) 78 (|has| |#2| (-691))) (($ $ |#2|) 76 (|has| |#2| (-691))) (($ |#2| $) 75 (|has| |#2| (-691))) (($ (-735) $) 73 (|has| |#2| (-129))) (($ (-878) $) 70 (|has| |#2| (-25)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-224 |#1| |#2|) (-134) (-735) (-1159)) (T -224)) +((-1501 (*1 *1 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1159)) (-4 *1 (-224 *3 *4)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-224 *3 *4)) (-4 *4 (-1004)) (-4 *4 (-1159)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691))))) +(-13 (-574 (-526) |t#2|) (-583 (-1205 |t#2|)) (-10 -8 (-6 -4310) (-15 -1501 ($ (-1205 |t#2|))) (IF (|has| |t#2| (-1052)) (-6 (-397 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1004)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-217 |t#2|)) (-6 (-362 |t#2|)) (-15 -4029 ($ (-878))) (-15 -4155 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-691)) (PROGN (-6 (-691)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#2| (-163)) (PROGN (-6 (-37 |t#2|)) (-6 (-163))) |%noBranch|) (IF (|has| |t#2| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |t#2| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-348)) (-6 (-1213 |t#2|)) |%noBranch|))) +(((-21) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-23) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-25) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-110 $ $) |has| |#2| (-163)) ((-129) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-583 (-823)) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-583 (-823))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-583 (-1205 |#2|)) . T) ((-163) |has| |#2| (-163)) ((-217 |#2|) |has| |#2| (-1004)) ((-219) -12 (|has| |#2| (-219)) (|has| |#2| (-1004))) ((-271 #1=(-526) |#2|) . T) ((-273 #1# |#2|) . T) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-353) |has| |#2| (-353)) ((-362 |#2|) |has| |#2| (-1004)) ((-397 |#2|) |has| |#2| (-1052)) ((-472 |#2|) . T) ((-574 #1# |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-613 |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-613 $) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-606 (-526)) -12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004))) ((-606 |#2|) |has| |#2| (-1004)) ((-682 |#2|) -3850 (|has| |#2| (-348)) (|has| |#2| (-163))) ((-691) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-691)) (|has| |#2| (-163))) ((-755) |has| |#2| (-809)) ((-756) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-757) |has| |#2| (-757)) ((-758) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-761) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-809) |has| |#2| (-809)) ((-811) -3850 (|has| |#2| (-809)) (|has| |#2| (-757))) ((-859 (-1123)) -12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004))) ((-995 (-392 (-526))) -12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052))) ((-995 (-526)) -12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) ((-995 |#2|) |has| |#2| (-1052)) ((-1010 |#2|) -3850 (|has| |#2| (-1004)) (|has| |#2| (-348)) (|has| |#2| (-163))) ((-1010 $) |has| |#2| (-163)) ((-1004) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-1011) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-163))) ((-1063) -3850 (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-691)) (|has| |#2| (-163))) ((-1052) -3850 (|has| |#2| (-1052)) (|has| |#2| (-1004)) (|has| |#2| (-809)) (|has| |#2| (-757)) (|has| |#2| (-691)) (|has| |#2| (-353)) (|has| |#2| (-348)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1159) . T) ((-1213 |#2|) |has| |#2| (-348))) +((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) 56 (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) 60 (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) 17)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) 27 (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) 53 (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 51)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) 15 (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 20 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) 50 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 41)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) 21)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) 18)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) 10) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) 13 (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) 35 (|has| |#2| (-129)) CONST)) (-2964 (($) 38 (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) 26 (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 58 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) 44 (|has| |#2| (-691))) (($ $ |#2|) 42 (|has| |#2| (-691))) (($ |#2| $) 43 (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-225 |#1| |#2|) (-224 |#1| |#2|) (-735) (-1159)) (T -225)) +NIL +(-224 |#1| |#2|) +((-4160 (((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 21)) (-4161 ((|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 23)) (-4275 (((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)) 18))) +(((-226 |#1| |#2| |#3|) (-10 -7 (-15 -4160 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4161 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4275 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) (-735) (-1159) (-1159)) (T -226)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-5 *2 (-225 *5 *7)) (-5 *1 (-226 *5 *6 *7)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) (-4 *2 (-1159)) (-5 *1 (-226 *5 *6 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-735)) (-4 *7 (-1159)) (-4 *5 (-1159)) (-5 *2 (-225 *6 *5)) (-5 *1 (-226 *6 *7 *5))))) +(-10 -7 (-15 -4160 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4161 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -4275 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) +((-1505 (((-526) (-607 (-1106))) 24) (((-526) (-1106)) 19)) (-1504 (((-1211) (-607 (-1106))) 29) (((-1211) (-1106)) 28)) (-1502 (((-1106)) 14)) (-1503 (((-1106) (-526) (-1106)) 16)) (-4091 (((-607 (-1106)) (-607 (-1106)) (-526) (-1106)) 25) (((-1106) (-1106) (-526) (-1106)) 23)) (-2915 (((-607 (-1106)) (-607 (-1106))) 13) (((-607 (-1106)) (-1106)) 11))) +(((-227) (-10 -7 (-15 -2915 ((-607 (-1106)) (-1106))) (-15 -2915 ((-607 (-1106)) (-607 (-1106)))) (-15 -1502 ((-1106))) (-15 -1503 ((-1106) (-526) (-1106))) (-15 -4091 ((-1106) (-1106) (-526) (-1106))) (-15 -4091 ((-607 (-1106)) (-607 (-1106)) (-526) (-1106))) (-15 -1504 ((-1211) (-1106))) (-15 -1504 ((-1211) (-607 (-1106)))) (-15 -1505 ((-526) (-1106))) (-15 -1505 ((-526) (-607 (-1106)))))) (T -227)) +((-1505 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-526)) (-5 *1 (-227)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-227)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1211)) (-5 *1 (-227)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-227)))) (-4091 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-607 (-1106))) (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *1 (-227)))) (-4091 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) (-1502 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-227)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)) (-5 *3 (-1106))))) +(-10 -7 (-15 -2915 ((-607 (-1106)) (-1106))) (-15 -2915 ((-607 (-1106)) (-607 (-1106)))) (-15 -1502 ((-1106))) (-15 -1503 ((-1106) (-526) (-1106))) (-15 -4091 ((-1106) (-1106) (-526) (-1106))) (-15 -4091 ((-607 (-1106)) (-607 (-1106)) (-526) (-1106))) (-15 -1504 ((-1211) (-1106))) (-15 -1504 ((-1211) (-607 (-1106)))) (-15 -1505 ((-526) (-1106))) (-15 -1505 ((-526) (-607 (-1106))))) +((** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 16)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ (-392 (-526)) $) 23) (($ $ (-392 (-526))) NIL))) +(((-228 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-229)) (T -228)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 37)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 41)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 38)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ (-392 (-526)) $) 40) (($ $ (-392 (-526))) 39))) +(((-229) (-134)) (T -229)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-526)))) (-2703 (*1 *1 *1) (-4 *1 (-229)))) +(-13 (-275) (-37 (-392 (-526))) (-10 -8 (-15 ** ($ $ (-526))) (-15 -2703 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-275) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-691) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4115 (($ $) 57)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-1507 (($ $ $) 53 (|has| $ (-6 -4311)))) (-1506 (($ $ $) 52 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-1509 (($ $) 56)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-1508 (($ $) 55)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 59)) (-3491 (($ $) 58)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4109 (($ $ $) 54 (|has| $ (-6 -4311)))) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-230 |#1|) (-134) (-1159)) (T -230)) +((-4116 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1509 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1507 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) (-1506 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) +(-13 (-968 |t#1|) (-10 -8 (-15 -4116 (|t#1| $)) (-15 -3491 ($ $)) (-15 -4115 ($ $)) (-15 -1509 ($ $)) (-15 -1508 ($ $)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4109 ($ $ $)) (-15 -1507 ($ $ $)) (-15 -1506 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) 10 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $) NIL) (($ $ (-735)) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) 7 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) NIL) ((|#1| $ (-526) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-735) $ "count") 16)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-1510 (($ (-607 |#1|)) 22)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (($ (-607 |#1|)) 17) (((-607 |#1|) $) 18) (((-823) $) 21 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 14 (|has| $ (-6 -4310))))) +(((-231 |#1|) (-13 (-631 |#1|) (-10 -8 (-15 -4274 ($ (-607 |#1|))) (-15 -4274 ((-607 |#1|) $)) (-15 -1510 ($ (-607 |#1|))) (-15 -4118 ($ $ "unique")) (-15 -4118 ($ $ "sort")) (-15 -4118 ((-735) $ "count")))) (-811)) (T -231)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-231 *3)) (-4 *3 (-811)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-735)) (-5 *1 (-231 *4)) (-4 *4 (-811))))) +(-13 (-631 |#1|) (-10 -8 (-15 -4274 ($ (-607 |#1|))) (-15 -4274 ((-607 |#1|) $)) (-15 -1510 ($ (-607 |#1|))) (-15 -4118 ($ $ "unique")) (-15 -4118 ($ $ "sort")) (-15 -4118 ((-735) $ "count")))) +((-1511 (((-3 (-735) "failed") |#1| |#1| (-735)) 27))) +(((-232 |#1|) (-10 -7 (-15 -1511 ((-3 (-735) "failed") |#1| |#1| (-735)))) (-13 (-691) (-353) (-10 -7 (-15 ** (|#1| |#1| (-526)))))) (T -232)) +((-1511 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-735)) (-4 *3 (-13 (-691) (-353) (-10 -7 (-15 ** (*3 *3 (-526)))))) (-5 *1 (-232 *3))))) +(-10 -7 (-15 -1511 ((-3 (-735) "failed") |#1| |#1| (-735)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) NIL)) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-225 (-4273 |#1|) (-735)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-225 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-225 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-225 (-4273 |#1|) (-735)) (-225 (-4273 |#1|) (-735))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-225 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-225 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-233 |#1| |#2|) (-13 (-909 |#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004)) (T -233)) +((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-233 *3 *4)) (-14 *3 (-607 (-1123))) (-4 *4 (-1004))))) +(-13 (-909 |#2| (-225 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) +((-2865 (((-111) $ $) NIL)) (-1512 (((-1211) $) 15)) (-1514 (((-174) $) 9)) (-1513 (($ (-174)) 10)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 13))) +(((-234) (-13 (-1052) (-10 -8 (-15 -1514 ((-174) $)) (-15 -1513 ($ (-174))) (-15 -1512 ((-1211) $))))) (T -234)) +((-1514 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-234)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-174)) (-5 *1 (-234)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-234))))) +(-13 (-1052) (-10 -8 (-15 -1514 ((-174) $)) (-15 -1513 ($ (-174))) (-15 -1512 ((-1211) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4029 (($ (-878)) NIL (|has| |#4| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#4| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#4| (-353)))) (-3945 (((-526) $) NIL (|has| |#4| (-809)))) (-4106 ((|#4| $ (-526) |#4|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1052))) (((-3 (-526) #1#) $) NIL (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-3469 ((|#4| $) NIL (|has| |#4| (-1052))) (((-526) $) NIL (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-2331 (((-2 (|:| -1676 (-653 |#4|)) (|:| |vec| (-1205 |#4|))) (-653 $) (-1205 $)) NIL (|has| |#4| (-1004))) (((-653 |#4|) (-653 $)) NIL (|has| |#4| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-3294 (($) NIL (|has| |#4| (-353)))) (-1613 ((|#4| $ (-526) |#4|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#4| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#4| (-809)))) (-2044 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-3501 (((-111) $) NIL (|has| |#4| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2480 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2048 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#4| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#4| (-353)))) (-3555 (((-1070) $) NIL)) (-4119 ((|#4| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#4|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2283 (((-607 |#4|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#4| $ (-526) |#4|) NIL) ((|#4| $ (-526)) 12)) (-4155 ((|#4| $ $) NIL (|has| |#4| (-1004)))) (-1501 (($ (-1205 |#4|)) NIL)) (-4230 (((-131)) NIL (|has| |#4| (-348)))) (-4129 (($ $ (-1 |#4| |#4|) (-735)) NIL (|has| |#4| (-1004))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004)))) (($ $) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))))) (-2045 (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#4|) $) NIL) (((-823) $) NIL) (($ |#4|) NIL (|has| |#4| (-1052))) (($ (-526)) NIL (-3850 (-12 (|has| |#4| (-995 (-526))) (|has| |#4| (-1052))) (|has| |#4| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#4| (-995 (-392 (-526)))) (|has| |#4| (-1052))))) (-3423 (((-735)) NIL (|has| |#4| (-1004)))) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#4| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) CONST)) (-2969 (($ $ (-1 |#4| |#4|) (-735)) NIL (|has| |#4| (-1004))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004)))) (($ $) NIL (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-2985 (((-111) $ $) NIL (-3850 (|has| |#4| (-757)) (|has| |#4| (-809))))) (-4265 (($ $ |#4|) NIL (|has| |#4| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (* (($ |#2| $) 14) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-691))) (($ |#4| $) NIL (|has| |#4| (-691))) (($ $ $) NIL (-3850 (-12 (|has| |#4| (-219)) (|has| |#4| (-1004))) (-12 (|has| |#4| (-606 (-526))) (|has| |#4| (-1004))) (|has| |#4| (-691)) (-12 (|has| |#4| (-859 (-1123))) (|has| |#4| (-1004)))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-235 |#1| |#2| |#3| |#4|) (-13 (-224 |#1| |#4|) (-613 |#2|) (-613 |#3|)) (-878) (-1004) (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-613 |#2|)) (T -235)) +NIL +(-13 (-224 |#1| |#4|) (-613 |#2|) (-613 |#3|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4029 (($ (-878)) NIL (|has| |#3| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#3| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#3| (-353)))) (-3945 (((-526) $) NIL (|has| |#3| (-809)))) (-4106 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1052))) (((-3 (-526) #1#) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-3469 ((|#3| $) NIL (|has| |#3| (-1052))) (((-526) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-2331 (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) NIL (|has| |#3| (-1004))) (((-653 |#3|) (-653 $)) NIL (|has| |#3| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-3294 (($) NIL (|has| |#3| (-353)))) (-1613 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#3| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#3| (-809)))) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-3501 (((-111) $) NIL (|has| |#3| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#3| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#3| (-353)))) (-3555 (((-1070) $) NIL)) (-4119 ((|#3| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#3|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2283 (((-607 |#3|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) |#3|) NIL) ((|#3| $ (-526)) 11)) (-4155 ((|#3| $ $) NIL (|has| |#3| (-1004)))) (-1501 (($ (-1205 |#3|)) NIL)) (-4230 (((-131)) NIL (|has| |#3| (-348)))) (-4129 (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))))) (-2045 (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310))) (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (((-823) $) NIL) (($ |#3|) NIL (|has| |#3| (-1052))) (($ (-526)) NIL (-3850 (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (|has| |#3| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052))))) (-3423 (((-735)) NIL (|has| |#3| (-1004)))) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#3| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) CONST)) (-2969 (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2985 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (* (($ |#2| $) 13) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-691))) (($ |#3| $) NIL (|has| |#3| (-691))) (($ $ $) NIL (-3850 (-12 (|has| |#3| (-219)) (|has| |#3| (-1004))) (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004))) (|has| |#3| (-691)) (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-236 |#1| |#2| |#3|) (-13 (-224 |#1| |#3|) (-613 |#2|)) (-735) (-1004) (-613 |#2|)) (T -236)) +NIL +(-13 (-224 |#1| |#3|) (-613 |#2|)) +((-1519 (((-607 (-735)) $) 47) (((-607 (-735)) $ |#3|) 50)) (-1553 (((-735) $) 49) (((-735) $ |#3|) 52)) (-1515 (($ $) 65)) (-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4090 (((-735) $ |#3|) 39) (((-735) $) 36)) (-1554 (((-1 $ (-735)) |#3|) 15) (((-1 $ (-735)) $) 77)) (-1517 ((|#4| $) 58)) (-1518 (((-111) $) 56)) (-1516 (($ $) 64)) (-4086 (($ $ (-607 (-278 $))) 97) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-607 |#4|) (-607 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-607 |#4|) (-607 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-607 |#3|) (-607 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-607 |#3|) (-607 |#2|)) 84)) (-4129 (($ $ |#4|) NIL) (($ $ (-607 |#4|)) NIL) (($ $ |#4| (-735)) NIL) (($ $ (-607 |#4|) (-607 (-735))) NIL) (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1520 (((-607 |#3|) $) 75)) (-4264 ((|#5| $) NIL) (((-735) $ |#4|) NIL) (((-607 (-735)) $ (-607 |#4|)) NIL) (((-735) $ |#3|) 44)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-392 (-526))) NIL) (($ $) NIL))) +(((-237 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#3| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#3| |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1517 (|#4| |#1|)) (-15 -1518 ((-111) |#1|)) (-15 -1553 ((-735) |#1| |#3|)) (-15 -1519 ((-607 (-735)) |#1| |#3|)) (-15 -1553 ((-735) |#1|)) (-15 -1519 ((-607 (-735)) |#1|)) (-15 -4264 ((-735) |#1| |#3|)) (-15 -4090 ((-735) |#1|)) (-15 -4090 ((-735) |#1| |#3|)) (-15 -1520 ((-607 |#3|) |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#3|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 |#4|))) (-15 -4264 ((-735) |#1| |#4|)) (-15 -3470 ((-3 |#4| #1#) |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 (|#5| |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4129 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#4| (-735))) (-15 -4129 (|#1| |#1| (-607 |#4|))) (-15 -4129 (|#1| |#1| |#4|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-238 |#2| |#3| |#4| |#5|) (-1004) (-811) (-251 |#3|) (-757)) (T -237)) +NIL +(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#3| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#3|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#3| |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1516 (|#1| |#1|)) (-15 -1517 (|#4| |#1|)) (-15 -1518 ((-111) |#1|)) (-15 -1553 ((-735) |#1| |#3|)) (-15 -1519 ((-607 (-735)) |#1| |#3|)) (-15 -1553 ((-735) |#1|)) (-15 -1519 ((-607 (-735)) |#1|)) (-15 -4264 ((-735) |#1| |#3|)) (-15 -4090 ((-735) |#1|)) (-15 -4090 ((-735) |#1| |#3|)) (-15 -1520 ((-607 |#3|) |#1|)) (-15 -1554 ((-1 |#1| (-735)) |#3|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 |#4|))) (-15 -4264 ((-735) |#1| |#4|)) (-15 -3470 ((-3 |#4| #1#) |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 (|#5| |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4129 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#4| (-735))) (-15 -4129 (|#1| |#1| (-607 |#4|))) (-15 -4129 (|#1| |#1| |#4|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1519 (((-607 (-735)) $) 212) (((-607 (-735)) $ |#2|) 210)) (-1553 (((-735) $) 211) (((-735) $ |#2|) 209)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-1515 (($ $) 205)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133) ((|#2| $) 218)) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| |#4| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ |#2|) 215) (((-735) $) 214)) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#4|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3120 ((|#4| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#4| |#4|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-1554 (((-1 $ (-735)) |#2|) 217) (((-1 $ (-735)) $) 204 (|has| |#1| (-219)))) (-3385 (((-3 |#3| #3="failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1517 ((|#3| $) 207)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-1518 (((-111) $) 208)) (-3123 (((-3 (-607 $) #3#) $) 112)) (-3122 (((-3 (-607 $) #3#) $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) 111)) (-1516 (($ $) 206)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 $)) 202 (|has| |#1| (-219))) (($ $ |#2| |#1|) 201 (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 |#1|)) 200 (|has| |#1| (-219)))) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37) (($ $) 236 (|has| |#1| (-219))) (($ $ (-735)) 234 (|has| |#1| (-219))) (($ $ (-1123)) 232 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 231 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 230 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 229 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1520 (((-607 |#2|) $) 216)) (-4264 ((|#4| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127) (((-735) $ |#2|) 213)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#4|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33) (($ $) 235 (|has| |#1| (-219))) (($ $ (-735)) 233 (|has| |#1| (-219))) (($ $ (-1123)) 228 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 227 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 226 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 225 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-238 |#1| |#2| |#3| |#4|) (-134) (-1004) (-811) (-251 |t#2|) (-757)) (T -238)) +((-1554 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *4 *3 *5 *6)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 *4)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1519 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) (-1553 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-111)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-238 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-4 *2 (-251 *4)))) (-1516 (*1 *1 *1) (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-251 *3)) (-4 *5 (-757)))) (-1515 (*1 *1 *1) (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-251 *3)) (-4 *5 (-757)))) (-1554 (*1 *2 *1) (-12 (-4 *3 (-219)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *3 *4 *5 *6))))) +(-13 (-909 |t#1| |t#4| |t#3|) (-217 |t#1|) (-995 |t#2|) (-10 -8 (-15 -1554 ((-1 $ (-735)) |t#2|)) (-15 -1520 ((-607 |t#2|) $)) (-15 -4090 ((-735) $ |t#2|)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $ |t#2|)) (-15 -1519 ((-607 (-735)) $)) (-15 -1553 ((-735) $)) (-15 -1519 ((-607 (-735)) $ |t#2|)) (-15 -1553 ((-735) $ |t#2|)) (-15 -1518 ((-111) $)) (-15 -1517 (|t#3| $)) (-15 -1516 ($ $)) (-15 -1515 ($ $)) (IF (|has| |t#1| (-219)) (PROGN (-6 (-496 |t#2| |t#1|)) (-6 (-496 |t#2| $)) (-6 (-294 $)) (-15 -1554 ((-1 $ (-735)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#4|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#2| |#1|) |has| |#1| (-219)) ((-496 |#2| $) |has| |#1| (-219)) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-909 |#1| |#4| |#3|) . T) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#2|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1526 ((|#1| $) 54)) (-3643 ((|#1| $) 44)) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3302 (($ $) 60)) (-2346 (($ $) 48)) (-3645 ((|#1| |#1| $) 46)) (-3644 ((|#1| $) 45)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-4152 (((-735) $) 61)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-1524 ((|#1| |#1| $) 52)) (-1523 ((|#1| |#1| $) 51)) (-3929 (($ |#1| $) 40)) (-2900 (((-735) $) 55)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-3301 ((|#1| $) 62)) (-1522 ((|#1| $) 50)) (-1521 ((|#1| $) 49)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3304 ((|#1| |#1| $) 58)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3303 ((|#1| $) 59)) (-1527 (($) 57) (($ (-607 |#1|)) 56)) (-3642 (((-735) $) 43)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1525 ((|#1| $) 53)) (-1308 (($ (-607 |#1|)) 42)) (-3300 ((|#1| $) 63)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-239 |#1|) (-134) (-1159)) (T -239)) +((-1527 (*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1527 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-239 *3)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1524 (*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1523 (*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) (-2346 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(-13 (-1071 |t#1|) (-953 |t#1|) (-10 -8 (-15 -1527 ($)) (-15 -1527 ($ (-607 |t#1|))) (-15 -2900 ((-735) $)) (-15 -1526 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -1524 (|t#1| |t#1| $)) (-15 -1523 (|t#1| |t#1| $)) (-15 -1522 (|t#1| $)) (-15 -1521 (|t#1| $)) (-15 -2346 ($ $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-953 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1071 |#1|) . T) ((-1159) . T)) +((-1528 (((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))) 71) (((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 70) (((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363))) 61) (((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 60) (((-1083 (-211)) (-838 |#1|) (-1044 (-363))) 52) (((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246))) 51)) (-1535 (((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363))) 74) (((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 73) (((-1209) |#1| (-1044 (-363)) (-1044 (-363))) 64) (((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246))) 63) (((-1209) (-838 |#1|) (-1044 (-363))) 56) (((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246))) 55) (((-1208) (-836 |#1|) (-1044 (-363))) 43) (((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246))) 42) (((-1208) |#1| (-1044 (-363))) 35) (((-1208) |#1| (-1044 (-363)) (-607 (-246))) 34))) +(((-240 |#1|) (-10 -7 (-15 -1535 ((-1208) |#1| (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) |#1| (-1044 (-363)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))))) (-13 (-584 (-515)) (-1052))) (T -240)) +((-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *5)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *5)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-836 *5)) (-5 *4 (-1044 (-363))) (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *5)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-836 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *6)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052)))))) +(-10 -7 (-15 -1535 ((-1208) |#1| (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) |#1| (-1044 (-363)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 |#1|) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 |#1|) (-1044 (-363)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) |#1| (-1044 (-363)) (-1044 (-363)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 |#1|) (-1044 (-363)) (-1044 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 |#1|) (-1044 (-363)) (-1044 (-363))))) +((-1529 (((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))) 139)) (-1528 (((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363))) 160) (((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 158) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 163) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 159) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 150) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 149) (((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363))) 129) (((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246))) 127) (((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363))) 128) (((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 125)) (-1535 (((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363))) 162) (((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 161) (((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 165) (((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 164) (((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363))) 152) (((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246))) 151) (((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363))) 135) (((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246))) 134) (((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363))) 133) (((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 132) (((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363))) 100) (((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246))) 99) (((-1208) (-1 (-211) (-211)) (-1041 (-363))) 96) (((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246))) 95))) +(((-241) (-10 -7 (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1529 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211)))))) (T -241)) +((-1529 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *3 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) (-5 *1 (-241)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241))))) +(-10 -7 (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-1 (-211) (-211)) (-1041 (-363)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1208) (-836 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-838 (-1 (-211) (-211))) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-363)) (-1041 (-363)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1535 ((-1209) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)) (-607 (-246)))) (-15 -1528 ((-1083 (-211)) (-841 (-1 (-211) (-211) (-211))) (-1041 (-363)) (-1041 (-363)))) (-15 -1529 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))))) +((-1535 (((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))) 96))) +(((-242 |#1| |#2|) (-10 -7 (-15 -1535 ((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))))) (-13 (-533) (-811) (-995 (-526))) (-406 |#1|)) (T -242)) +((-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-1123)) (-5 *5 (-607 (-246))) (-4 *7 (-406 *6)) (-4 *6 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-1208)) (-5 *1 (-242 *6 *7))))) +(-10 -7 (-15 -1535 ((-1208) (-278 |#2|) (-1123) (-1123) (-607 (-246))))) +((-1532 (((-526) (-526)) 50)) (-1533 (((-526) (-526)) 51)) (-1534 (((-211) (-211)) 52)) (-1531 (((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211))) 49)) (-1530 (((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111)) 47))) +(((-243) (-10 -7 (-15 -1530 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111))) (-15 -1531 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -1532 ((-526) (-526))) (-15 -1533 ((-526) (-526))) (-15 -1534 ((-211) (-211))))) (T -243)) +((-1534 (*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-243)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243)))) (-1531 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) (-5 *2 (-1209)) (-5 *1 (-243)))) (-1530 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) (-5 *5 (-111)) (-5 *2 (-1209)) (-5 *1 (-243))))) +(-10 -7 (-15 -1530 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)) (-111))) (-15 -1531 ((-1209) (-1 (-159 (-211)) (-159 (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -1532 ((-526) (-526))) (-15 -1533 ((-526) (-526))) (-15 -1534 ((-211) (-211)))) +((-4274 (((-1044 (-363)) (-1044 (-299 |#1|))) 16))) +(((-244 |#1|) (-10 -7 (-15 -4274 ((-1044 (-363)) (-1044 (-299 |#1|))))) (-13 (-811) (-533) (-584 (-363)))) (T -244)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-1044 (-299 *4))) (-4 *4 (-13 (-811) (-533) (-584 (-363)))) (-5 *2 (-1044 (-363))) (-5 *1 (-244 *4))))) +(-10 -7 (-15 -4274 ((-1044 (-363)) (-1044 (-299 |#1|))))) +((-1535 (((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246))) 23) (((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211))) 24) (((-1208) (-607 (-902 (-211))) (-607 (-246))) 16) (((-1208) (-607 (-902 (-211)))) 17) (((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246))) 20) (((-1208) (-607 (-211)) (-607 (-211))) 21))) +(((-245) (-10 -7 (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246)))) (-15 -1535 ((-1208) (-607 (-902 (-211))))) (-15 -1535 ((-1208) (-607 (-902 (-211))) (-607 (-246)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246)))))) (T -245)) +((-1535 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1209)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-245)))) (-1535 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1208)) (-5 *1 (-245))))) +(-10 -7 (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1208) (-607 (-211)) (-607 (-211)) (-607 (-246)))) (-15 -1535 ((-1208) (-607 (-902 (-211))))) (-15 -1535 ((-1208) (-607 (-902 (-211))) (-607 (-246)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)))) (-15 -1535 ((-1209) (-607 (-211)) (-607 (-211)) (-607 (-211)) (-607 (-246))))) +((-2865 (((-111) $ $) NIL)) (-4200 (($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 15)) (-1548 (($ (-878)) 76)) (-1547 (($ (-878)) 75)) (-1868 (($ (-607 (-363))) 82)) (-1551 (($ (-363)) 58)) (-1550 (($ (-878)) 77)) (-1544 (($ (-111)) 23)) (-4202 (($ (-1106)) 18)) (-1543 (($ (-1106)) 19)) (-1549 (($ (-1083 (-211))) 71)) (-2026 (($ (-607 (-1041 (-363)))) 67)) (-1537 (($ (-607 (-1041 (-363)))) 59) (($ (-607 (-1041 (-392 (-526))))) 66)) (-1540 (($ (-363)) 29) (($ (-833)) 33)) (-1536 (((-111) (-607 $) (-1123)) 91)) (-1552 (((-3 (-50) "failed") (-607 $) (-1123)) 93)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1539 (($ (-363)) 34) (($ (-833)) 35)) (-3537 (($ (-1 (-902 (-211)) (-902 (-211)))) 57)) (-2319 (($ (-1 (-902 (-211)) (-902 (-211)))) 78)) (-1538 (($ (-1 (-211) (-211))) 39) (($ (-1 (-211) (-211) (-211))) 43) (($ (-1 (-211) (-211) (-211) (-211))) 47)) (-4274 (((-823) $) 87)) (-1541 (($ (-111)) 24) (($ (-607 (-1041 (-363)))) 52)) (-2021 (($ (-111)) 25)) (-3353 (((-111) $ $) 89))) +(((-246) (-13 (-1052) (-10 -8 (-15 -2021 ($ (-111))) (-15 -1541 ($ (-111))) (-15 -4200 ($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ($ (-1106))) (-15 -1543 ($ (-1106))) (-15 -1544 ($ (-111))) (-15 -1541 ($ (-607 (-1041 (-363))))) (-15 -3537 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1540 ($ (-363))) (-15 -1540 ($ (-833))) (-15 -1539 ($ (-363))) (-15 -1539 ($ (-833))) (-15 -1538 ($ (-1 (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211) (-211)))) (-15 -1551 ($ (-363))) (-15 -1537 ($ (-607 (-1041 (-363))))) (-15 -1537 ($ (-607 (-1041 (-392 (-526)))))) (-15 -2026 ($ (-607 (-1041 (-363))))) (-15 -1549 ($ (-1083 (-211)))) (-15 -1547 ($ (-878))) (-15 -1548 ($ (-878))) (-15 -1550 ($ (-878))) (-15 -2319 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1868 ($ (-607 (-363)))) (-15 -1552 ((-3 (-50) "failed") (-607 $) (-1123))) (-15 -1536 ((-111) (-607 $) (-1123)))))) (T -246)) +((-2021 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *1 (-246)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1540 (*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-246)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-246)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-392 (-526))))) (-5 *1 (-246)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-246)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-246)))) (-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-50)) (-5 *1 (-246)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-111)) (-5 *1 (-246))))) +(-13 (-1052) (-10 -8 (-15 -2021 ($ (-111))) (-15 -1541 ($ (-111))) (-15 -4200 ($ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ($ (-1106))) (-15 -1543 ($ (-1106))) (-15 -1544 ($ (-111))) (-15 -1541 ($ (-607 (-1041 (-363))))) (-15 -3537 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1540 ($ (-363))) (-15 -1540 ($ (-833))) (-15 -1539 ($ (-363))) (-15 -1539 ($ (-833))) (-15 -1538 ($ (-1 (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211)))) (-15 -1538 ($ (-1 (-211) (-211) (-211) (-211)))) (-15 -1551 ($ (-363))) (-15 -1537 ($ (-607 (-1041 (-363))))) (-15 -1537 ($ (-607 (-1041 (-392 (-526)))))) (-15 -2026 ($ (-607 (-1041 (-363))))) (-15 -1549 ($ (-1083 (-211)))) (-15 -1547 ($ (-878))) (-15 -1548 ($ (-878))) (-15 -1550 ($ (-878))) (-15 -2319 ($ (-1 (-902 (-211)) (-902 (-211))))) (-15 -1868 ($ (-607 (-363)))) (-15 -1552 ((-3 (-50) "failed") (-607 $) (-1123))) (-15 -1536 ((-111) (-607 $) (-1123))))) +((-4200 (((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 26)) (-1548 (((-878) (-607 (-246)) (-878)) 53)) (-1547 (((-878) (-607 (-246)) (-878)) 52)) (-4170 (((-607 (-363)) (-607 (-246)) (-607 (-363))) 69)) (-1551 (((-363) (-607 (-246)) (-363)) 58)) (-1550 (((-878) (-607 (-246)) (-878)) 54)) (-1544 (((-111) (-607 (-246)) (-111)) 28)) (-4202 (((-1106) (-607 (-246)) (-1106)) 20)) (-1543 (((-1106) (-607 (-246)) (-1106)) 27)) (-1549 (((-1083 (-211)) (-607 (-246))) 47)) (-2026 (((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363)))) 41)) (-1545 (((-833) (-607 (-246)) (-833)) 33)) (-1546 (((-833) (-607 (-246)) (-833)) 34)) (-2319 (((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211)))) 64)) (-1542 (((-111) (-607 (-246)) (-111)) 16)) (-2021 (((-111) (-607 (-246)) (-111)) 15))) +(((-247) (-10 -7 (-15 -2021 ((-111) (-607 (-246)) (-111))) (-15 -1542 ((-111) (-607 (-246)) (-111))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ((-1106) (-607 (-246)) (-1106))) (-15 -1543 ((-1106) (-607 (-246)) (-1106))) (-15 -1544 ((-111) (-607 (-246)) (-111))) (-15 -1545 ((-833) (-607 (-246)) (-833))) (-15 -1546 ((-833) (-607 (-246)) (-833))) (-15 -2026 ((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363))))) (-15 -1547 ((-878) (-607 (-246)) (-878))) (-15 -1548 ((-878) (-607 (-246)) (-878))) (-15 -1549 ((-1083 (-211)) (-607 (-246)))) (-15 -1550 ((-878) (-607 (-246)) (-878))) (-15 -1551 ((-363) (-607 (-246)) (-363))) (-15 -2319 ((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211))))) (-15 -4170 ((-607 (-363)) (-607 (-246)) (-607 (-363)))))) (T -247)) +((-4170 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-363))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1551 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1550 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-247)))) (-1548 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2026 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1546 (*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1544 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1543 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-4202 (*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-1542 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(-10 -7 (-15 -2021 ((-111) (-607 (-246)) (-111))) (-15 -1542 ((-111) (-607 (-246)) (-111))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) (-607 (-246)) (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4202 ((-1106) (-607 (-246)) (-1106))) (-15 -1543 ((-1106) (-607 (-246)) (-1106))) (-15 -1544 ((-111) (-607 (-246)) (-111))) (-15 -1545 ((-833) (-607 (-246)) (-833))) (-15 -1546 ((-833) (-607 (-246)) (-833))) (-15 -2026 ((-607 (-1041 (-363))) (-607 (-246)) (-607 (-1041 (-363))))) (-15 -1547 ((-878) (-607 (-246)) (-878))) (-15 -1548 ((-878) (-607 (-246)) (-878))) (-15 -1549 ((-1083 (-211)) (-607 (-246)))) (-15 -1550 ((-878) (-607 (-246)) (-878))) (-15 -1551 ((-363) (-607 (-246)) (-363))) (-15 -2319 ((-1 (-902 (-211)) (-902 (-211))) (-607 (-246)) (-1 (-902 (-211)) (-902 (-211))))) (-15 -4170 ((-607 (-363)) (-607 (-246)) (-607 (-363))))) +((-1552 (((-3 |#1| "failed") (-607 (-246)) (-1123)) 17))) +(((-248 |#1|) (-10 -7 (-15 -1552 ((-3 |#1| "failed") (-607 (-246)) (-1123)))) (-1159)) (T -248)) +((-1552 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *1 (-248 *2)) (-4 *2 (-1159))))) +(-10 -7 (-15 -1552 ((-3 |#1| "failed") (-607 (-246)) (-1123)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ |#2|) NIL)) (-1553 (((-735) $) NIL) (((-735) $ |#2|) NIL)) (-3384 (((-607 |#3|) $) NIL)) (-3386 (((-1117 $) $ |#3|) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#3|)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1075 |#1| |#2|) #2#) $) 21)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1075 |#1| |#2|) $) NIL)) (-4075 (($ $ $ |#3|) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#3|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 |#3|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))))) (-4090 (((-735) $ |#2|) NIL) (((-735) $) 10)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) |#3|) NIL) (($ (-1117 $) |#3|) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) NIL)) (-3120 (((-512 |#3|) $) NIL) (((-735) $ |#3|) NIL) (((-607 (-735)) $ (-607 |#3|)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#3|) (-512 |#3|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) |#2|) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 |#3| #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-607 |#3|) (-607 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-607 |#3|) (-607 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 $)) NIL (|has| |#1| (-219))) (($ $ |#2| |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 |#2|) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ |#3|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#3|) NIL) (($ $ (-607 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 |#2|) $) NIL)) (-4264 (((-512 |#3|) $) NIL) (((-735) $ |#3|) NIL) (((-607 (-735)) $ (-607 |#3|)) NIL) (((-735) $ |#2|) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ |#3|) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1075 |#1| |#2|)) 30) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ |#3|) NIL) (($ $ (-607 |#3|)) NIL) (($ $ |#3| (-735)) NIL) (($ $ (-607 |#3|) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-249 |#1| |#2| |#3|) (-13 (-238 |#1| |#2| |#3| (-512 |#3|)) (-995 (-1075 |#1| |#2|))) (-1004) (-811) (-251 |#2|)) (T -249)) +NIL +(-13 (-238 |#1| |#2| |#3| (-512 |#3|)) (-995 (-1075 |#1| |#2|))) +((-1553 (((-735) $) 30)) (-3470 (((-3 |#2| "failed") $) 17)) (-3469 ((|#2| $) 27)) (-4129 (($ $) 12) (($ $ (-735)) 15)) (-4274 (((-823) $) 26) (($ |#2|) 10)) (-3353 (((-111) $ $) 20)) (-2985 (((-111) $ $) 29))) +(((-250 |#1| |#2|) (-10 -8 (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -1553 ((-735) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| "failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-251 |#2|) (-811)) (T -250)) +NIL +(-10 -8 (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -1553 ((-735) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| "failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-1553 (((-735) $) 22)) (-4150 ((|#1| $) 23)) (-3470 (((-3 |#1| "failed") $) 27)) (-3469 ((|#1| $) 26)) (-4090 (((-735) $) 24)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-1554 (($ |#1| (-735)) 25)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $) 21) (($ $ (-735)) 20)) (-4274 (((-823) $) 11) (($ |#1|) 28)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) +(((-251 |#1|) (-134) (-811)) (T -251)) +((-4274 (*1 *1 *2) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-1554 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-251 *3)) (-4 *3 (-811))))) +(-13 (-811) (-995 |t#1|) (-10 -8 (-15 -1554 ($ |t#1| (-735))) (-15 -4090 ((-735) $)) (-15 -4150 (|t#1| $)) (-15 -1553 ((-735) $)) (-15 -4129 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -4274 ($ |t#1|)))) +(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-995 |#1|) . T) ((-1052) . T)) +((-3384 (((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 41)) (-4251 (((-607 (-1123)) (-299 (-211)) (-735)) 80)) (-1557 (((-3 (-299 (-211)) "failed") (-299 (-211))) 51)) (-1558 (((-299 (-211)) (-299 (-211))) 67)) (-1556 (((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 26)) (-1559 (((-111) (-607 (-299 (-211)))) 84)) (-1563 (((-111) (-299 (-211))) 24)) (-1565 (((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) 106)) (-1562 (((-607 (-299 (-211))) (-607 (-299 (-211)))) 88)) (-1561 (((-607 (-299 (-211))) (-607 (-299 (-211)))) 86)) (-1560 (((-653 (-211)) (-607 (-299 (-211))) (-735)) 95)) (-3227 (((-111) (-299 (-211))) 20) (((-111) (-607 (-299 (-211)))) 85)) (-1555 (((-607 (-211)) (-607 (-803 (-211))) (-211)) 14)) (-1653 (((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 101)) (-1564 (((-992) (-1123) (-992)) 34))) +(((-252) (-10 -7 (-15 -1555 ((-607 (-211)) (-607 (-803 (-211))) (-211))) (-15 -1556 ((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -1557 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1558 ((-299 (-211)) (-299 (-211)))) (-15 -1559 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-299 (-211)))) (-15 -1560 ((-653 (-211)) (-607 (-299 (-211))) (-735))) (-15 -1561 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1562 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1563 ((-111) (-299 (-211)))) (-15 -3384 ((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4251 ((-607 (-1123)) (-299 (-211)) (-735))) (-15 -1564 ((-992) (-1123) (-992))) (-15 -1653 ((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -1565 ((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))))) (T -252)) +((-1565 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *2 (-607 (-1106))) (-5 *1 (-252)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-363)) (-5 *1 (-252)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-252)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) (-5 *1 (-252)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) (-1558 (*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-252)))) (-1557 (*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-252)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *1 (-252)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-803 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 *4)) (-5 *1 (-252))))) +(-10 -7 (-15 -1555 ((-607 (-211)) (-607 (-803 (-211))) (-211))) (-15 -1556 ((-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -1557 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1558 ((-299 (-211)) (-299 (-211)))) (-15 -1559 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-607 (-299 (-211))))) (-15 -3227 ((-111) (-299 (-211)))) (-15 -1560 ((-653 (-211)) (-607 (-299 (-211))) (-735))) (-15 -1561 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1562 ((-607 (-299 (-211))) (-607 (-299 (-211))))) (-15 -1563 ((-111) (-299 (-211)))) (-15 -3384 ((-607 (-1123)) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4251 ((-607 (-1123)) (-299 (-211)) (-735))) (-15 -1564 ((-992) (-1123) (-992))) (-15 -1653 ((-363) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -1565 ((-607 (-1106)) (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))))) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 44)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 26) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-253) (-800)) (T -253)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 58) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 54)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 34) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 36)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-254) (-800)) (T -254)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 76) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 73)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 44) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 55)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-255) (-800)) (T -255)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 50)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 31) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-256) (-800)) (T -256)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 50)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 28) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-257) (-800)) (T -257)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 73)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 28) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-258) (-800)) (T -258)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 77)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 25) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-259) (-800)) (T -259)) +NIL +(-800) +((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1567 (((-607 (-526)) $) 19)) (-4264 (((-735) $) 17)) (-4274 (((-823) $) 23) (($ (-607 (-526))) 15)) (-1566 (($ (-735)) 20)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 9)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 11))) +(((-260) (-13 (-811) (-10 -8 (-15 -4274 ($ (-607 (-526)))) (-15 -4264 ((-735) $)) (-15 -1567 ((-607 (-526)) $)) (-15 -1566 ($ (-735)))))) (T -260)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-260)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-260))))) +(-13 (-811) (-10 -8 (-15 -4274 ($ (-607 (-526)))) (-15 -4264 ((-735) $)) (-15 -1567 ((-607 (-526)) $)) (-15 -1566 ($ (-735))))) +((-3806 ((|#2| |#2|) 77)) (-3961 ((|#2| |#2|) 65)) (-1596 (((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-3804 ((|#2| |#2|) 75)) (-3960 ((|#2| |#2|) 63)) (-3808 ((|#2| |#2|) 79)) (-3959 ((|#2| |#2|) 67)) (-3949 ((|#2|) 46)) (-2307 (((-112) (-112)) 95)) (-4259 ((|#2| |#2|) 61)) (-1597 (((-111) |#2|) 134)) (-1586 ((|#2| |#2|) 181)) (-1574 ((|#2| |#2|) 157)) (-1569 ((|#2|) 59)) (-1568 ((|#2|) 58)) (-1584 ((|#2| |#2|) 177)) (-1572 ((|#2| |#2|) 153)) (-1588 ((|#2| |#2|) 185)) (-1576 ((|#2| |#2|) 161)) (-1571 ((|#2| |#2|) 149)) (-1570 ((|#2| |#2|) 151)) (-1589 ((|#2| |#2|) 187)) (-1577 ((|#2| |#2|) 163)) (-1587 ((|#2| |#2|) 183)) (-1575 ((|#2| |#2|) 159)) (-1585 ((|#2| |#2|) 179)) (-1573 ((|#2| |#2|) 155)) (-1592 ((|#2| |#2|) 193)) (-1580 ((|#2| |#2|) 169)) (-1590 ((|#2| |#2|) 189)) (-1578 ((|#2| |#2|) 165)) (-1594 ((|#2| |#2|) 197)) (-1582 ((|#2| |#2|) 173)) (-1595 ((|#2| |#2|) 199)) (-1583 ((|#2| |#2|) 175)) (-1593 ((|#2| |#2|) 195)) (-1581 ((|#2| |#2|) 171)) (-1591 ((|#2| |#2|) 191)) (-1579 ((|#2| |#2|) 167)) (-4260 ((|#2| |#2|) 62)) (-3809 ((|#2| |#2|) 80)) (-3958 ((|#2| |#2|) 68)) (-3807 ((|#2| |#2|) 78)) (-3957 ((|#2| |#2|) 66)) (-3805 ((|#2| |#2|) 76)) (-3956 ((|#2| |#2|) 64)) (-2306 (((-111) (-112)) 93)) (-3812 ((|#2| |#2|) 83)) (-3800 ((|#2| |#2|) 71)) (-3810 ((|#2| |#2|) 81)) (-3798 ((|#2| |#2|) 69)) (-3814 ((|#2| |#2|) 85)) (-3802 ((|#2| |#2|) 73)) (-3815 ((|#2| |#2|) 86)) (-3803 ((|#2| |#2|) 74)) (-3813 ((|#2| |#2|) 84)) (-3801 ((|#2| |#2|) 72)) (-3811 ((|#2| |#2|) 82)) (-3799 ((|#2| |#2|) 70))) +(((-261 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3949 (|#2|)) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1568 (|#2|)) (-15 -1569 (|#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 ((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -1597 ((-111) |#2|))) (-13 (-811) (-533)) (-13 (-406 |#1|) (-960))) (T -261)) +((-1597 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *3)) (-4 *3 (-13 (-406 *4) (-960))))) (-1596 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-607 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-406 *4) (-960))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-261 *4 *2)))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-1569 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-1568 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *4)) (-4 *4 (-13 (-406 *3) (-960))))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *5)) (-4 *5 (-13 (-406 *4) (-960))))) (-3949 (*1 *2) (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) (-4 *3 (-13 (-811) (-533))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960))))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-406 *3) (-960)))))) +(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3949 (|#2|)) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1568 (|#2|)) (-15 -1569 (|#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 ((-3 |#2| "failed") |#2| (-607 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -1597 ((-111) |#2|))) +((-1600 (((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123)) 135)) (-1602 ((|#2| (-392 (-526)) |#2|) 51)) (-1601 ((|#2| |#2| (-581 |#2|)) 128)) (-1598 (((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123)) 127)) (-1599 ((|#2| |#2| (-1123)) 20) ((|#2| |#2|) 23)) (-2661 ((|#2| |#2| (-1123)) 141) ((|#2| |#2|) 139))) +(((-262 |#1| |#2|) (-10 -7 (-15 -2661 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1123))) (-15 -1598 ((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123))) (-15 -1599 (|#2| |#2|)) (-15 -1599 (|#2| |#2| (-1123))) (-15 -1600 ((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123))) (-15 -1601 (|#2| |#2| (-581 |#2|))) (-15 -1602 (|#2| (-392 (-526)) |#2|))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -262)) +((-1602 (*1 *2 *3 *2) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-1601 (*1 *2 *2 *3) (-12 (-5 *3 (-581 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)))) (-1600 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-1123)) (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *5 *2)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-607 (-581 *3))) (|:| |vals| (-607 *3)))) (-5 *1 (-262 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) +(-10 -7 (-15 -2661 (|#2| |#2|)) (-15 -2661 (|#2| |#2| (-1123))) (-15 -1598 ((-2 (|:| |func| |#2|) (|:| |kers| (-607 (-581 |#2|))) (|:| |vals| (-607 |#2|))) |#2| (-1123))) (-15 -1599 (|#2| |#2|)) (-15 -1599 (|#2| |#2| (-1123))) (-15 -1600 ((-3 |#2| "failed") (-607 (-581 |#2|)) |#2| (-1123))) (-15 -1601 (|#2| |#2| (-581 |#2|))) (-15 -1602 (|#2| (-392 (-526)) |#2|))) +((-3275 (((-3 |#3| #1="failed") |#3|) 110)) (-3806 ((|#3| |#3|) 131)) (-3263 (((-3 |#3| #1#) |#3|) 82)) (-3961 ((|#3| |#3|) 121)) (-3273 (((-3 |#3| #1#) |#3|) 58)) (-3804 ((|#3| |#3|) 129)) (-3261 (((-3 |#3| #1#) |#3|) 46)) (-3960 ((|#3| |#3|) 119)) (-3277 (((-3 |#3| #1#) |#3|) 112)) (-3808 ((|#3| |#3|) 133)) (-3265 (((-3 |#3| #1#) |#3|) 84)) (-3959 ((|#3| |#3|) 123)) (-3258 (((-3 |#3| #1#) |#3| (-735)) 36)) (-3260 (((-3 |#3| #1#) |#3|) 74)) (-4259 ((|#3| |#3|) 118)) (-3259 (((-3 |#3| #1#) |#3|) 44)) (-4260 ((|#3| |#3|) 117)) (-3278 (((-3 |#3| #1#) |#3|) 113)) (-3809 ((|#3| |#3|) 134)) (-3266 (((-3 |#3| #1#) |#3|) 85)) (-3958 ((|#3| |#3|) 124)) (-3276 (((-3 |#3| #1#) |#3|) 111)) (-3807 ((|#3| |#3|) 132)) (-3264 (((-3 |#3| #1#) |#3|) 83)) (-3957 ((|#3| |#3|) 122)) (-3274 (((-3 |#3| #1#) |#3|) 60)) (-3805 ((|#3| |#3|) 130)) (-3262 (((-3 |#3| #1#) |#3|) 48)) (-3956 ((|#3| |#3|) 120)) (-3281 (((-3 |#3| #1#) |#3|) 66)) (-3812 ((|#3| |#3|) 137)) (-3269 (((-3 |#3| #1#) |#3|) 104)) (-3800 ((|#3| |#3|) 142)) (-3279 (((-3 |#3| #1#) |#3|) 62)) (-3810 ((|#3| |#3|) 135)) (-3267 (((-3 |#3| #1#) |#3|) 50)) (-3798 ((|#3| |#3|) 125)) (-3283 (((-3 |#3| #1#) |#3|) 70)) (-3814 ((|#3| |#3|) 139)) (-3271 (((-3 |#3| #1#) |#3|) 54)) (-3802 ((|#3| |#3|) 127)) (-3284 (((-3 |#3| #1#) |#3|) 72)) (-3815 ((|#3| |#3|) 140)) (-3272 (((-3 |#3| #1#) |#3|) 56)) (-3803 ((|#3| |#3|) 128)) (-3282 (((-3 |#3| #1#) |#3|) 68)) (-3813 ((|#3| |#3|) 138)) (-3270 (((-3 |#3| #1#) |#3|) 107)) (-3801 ((|#3| |#3|) 143)) (-3280 (((-3 |#3| #1#) |#3|) 64)) (-3811 ((|#3| |#3|) 136)) (-3268 (((-3 |#3| #1#) |#3|) 52)) (-3799 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-392 (-526))) 40 (|has| |#1| (-348))))) +(((-263 |#1| |#2| |#3|) (-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) (-37 (-392 (-526))) (-1198 |#1|) (-1169 |#1| |#2|)) (T -263)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1198 *4)) (-5 *1 (-263 *4 *5 *2)) (-4 *2 (-1169 *4 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) (-4 *2 (-1169 *3 *4))))) +(-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) +((-3275 (((-3 |#3| #1="failed") |#3|) 66)) (-3806 ((|#3| |#3|) 129)) (-3263 (((-3 |#3| #1#) |#3|) 50)) (-3961 ((|#3| |#3|) 117)) (-3273 (((-3 |#3| #1#) |#3|) 62)) (-3804 ((|#3| |#3|) 127)) (-3261 (((-3 |#3| #1#) |#3|) 46)) (-3960 ((|#3| |#3|) 115)) (-3277 (((-3 |#3| #1#) |#3|) 70)) (-3808 ((|#3| |#3|) 131)) (-3265 (((-3 |#3| #1#) |#3|) 54)) (-3959 ((|#3| |#3|) 119)) (-3258 (((-3 |#3| #1#) |#3| (-735)) 35)) (-3260 (((-3 |#3| #1#) |#3|) 44)) (-4259 ((|#3| |#3|) 104)) (-3259 (((-3 |#3| #1#) |#3|) 42)) (-4260 ((|#3| |#3|) 114)) (-3278 (((-3 |#3| #1#) |#3|) 72)) (-3809 ((|#3| |#3|) 132)) (-3266 (((-3 |#3| #1#) |#3|) 56)) (-3958 ((|#3| |#3|) 120)) (-3276 (((-3 |#3| #1#) |#3|) 68)) (-3807 ((|#3| |#3|) 130)) (-3264 (((-3 |#3| #1#) |#3|) 52)) (-3957 ((|#3| |#3|) 118)) (-3274 (((-3 |#3| #1#) |#3|) 64)) (-3805 ((|#3| |#3|) 128)) (-3262 (((-3 |#3| #1#) |#3|) 48)) (-3956 ((|#3| |#3|) 116)) (-3281 (((-3 |#3| #1#) |#3|) 74)) (-3812 ((|#3| |#3|) 135)) (-3269 (((-3 |#3| #1#) |#3|) 58)) (-3800 ((|#3| |#3|) 123)) (-3279 (((-3 |#3| #1#) |#3|) 105)) (-3810 ((|#3| |#3|) 133)) (-3267 (((-3 |#3| #1#) |#3|) 94)) (-3798 ((|#3| |#3|) 121)) (-3283 (((-3 |#3| #1#) |#3|) 109)) (-3814 ((|#3| |#3|) 137)) (-3271 (((-3 |#3| #1#) |#3|) 101)) (-3802 ((|#3| |#3|) 125)) (-3284 (((-3 |#3| #1#) |#3|) 110)) (-3815 ((|#3| |#3|) 138)) (-3272 (((-3 |#3| #1#) |#3|) 103)) (-3803 ((|#3| |#3|) 126)) (-3282 (((-3 |#3| #1#) |#3|) 76)) (-3813 ((|#3| |#3|) 136)) (-3270 (((-3 |#3| #1#) |#3|) 60)) (-3801 ((|#3| |#3|) 124)) (-3280 (((-3 |#3| #1#) |#3|) 106)) (-3811 ((|#3| |#3|) 134)) (-3268 (((-3 |#3| #1#) |#3|) 97)) (-3799 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-392 (-526))) 40 (|has| |#1| (-348))))) +(((-264 |#1| |#2| |#3| |#4|) (-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) (-37 (-392 (-526))) (-1167 |#1|) (-1190 |#1| |#2|) (-942 |#2|)) (T -264)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1167 *4)) (-5 *1 (-264 *4 *5 *2 *6)) (-4 *2 (-1190 *4 *5)) (-4 *6 (-942 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4))))) +(-13 (-942 |#3|) (-10 -7 (IF (|has| |#1| (-348)) (-15 ** (|#3| |#3| (-392 (-526)))) |%noBranch|) (-15 -4260 (|#3| |#3|)) (-15 -4259 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3956 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3957 (|#3| |#3|)) (-15 -3959 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3799 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3803 (|#3| |#3|)) (-15 -3804 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3806 (|#3| |#3|)) (-15 -3807 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3810 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3812 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)))) +((-3152 (((-111) $) 19)) (-1606 (((-174) $) 7)) (-3891 (((-3 (-1123) "failed") $) 14)) (-3890 (((-3 (-607 $) "failed") $) NIL)) (-1604 (((-3 (-1123) "failed") $) 21)) (-1605 (((-3 (-1054) "failed") $) 17)) (-4269 (((-111) $) 15)) (-4274 (((-823) $) NIL)) (-1603 (((-111) $) 9))) +(((-265) (-13 (-583 (-823)) (-10 -8 (-15 -1606 ((-174) $)) (-15 -4269 ((-111) $)) (-15 -1605 ((-3 (-1054) "failed") $)) (-15 -3152 ((-111) $)) (-15 -1604 ((-3 (-1123) "failed") $)) (-15 -1603 ((-111) $)) (-15 -3891 ((-3 (-1123) "failed") $)) (-15 -3890 ((-3 (-607 $) "failed") $))))) (T -265)) +((-1606 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-265)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-1605 (*1 *2 *1) (|partial| -12 (-5 *2 (-1054)) (-5 *1 (-265)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-1604 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) (-3891 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) (-3890 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-265))) (-5 *1 (-265))))) +(-13 (-583 (-823)) (-10 -8 (-15 -1606 ((-174) $)) (-15 -4269 ((-111) $)) (-15 -1605 ((-3 (-1054) "failed") $)) (-15 -3152 ((-111) $)) (-15 -1604 ((-3 (-1123) "failed") $)) (-15 -1603 ((-111) $)) (-15 -3891 ((-3 (-1123) "failed") $)) (-15 -3890 ((-3 (-607 $) "failed") $)))) +((-4032 (($ (-1 (-111) |#2|) $) 24)) (-1375 (($ $) 36)) (-3724 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-3725 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-3159 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2351 (($ |#2| $ (-526)) 20) (($ $ $ (-526)) 22)) (-2352 (($ $ (-526)) 11) (($ $ (-1172 (-526))) 14)) (-4109 (($ $ |#2|) 30) (($ $ $) NIL)) (-4120 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-607 $)) NIL))) +(((-266 |#1| |#2|) (-10 -8 (-15 -3159 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -1375 (|#1| |#1|))) (-267 |#2|) (-1159)) (T -266)) +NIL +(-10 -8 (-15 -3159 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4032 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3725 (|#1| |#2| |#1|)) (-15 -1375 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 85)) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 83 (|has| |#1| (-1052)))) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1052)))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3159 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3929 (($ |#1| $ (-526)) 88) (($ $ $ (-526)) 87)) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-1608 (($ $ (-526)) 91) (($ $ (-1172 (-526))) 90)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4109 (($ $ |#1|) 93) (($ $ $) 92)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-267 |#1|) (-134) (-1159)) (T -267)) +((-4109 (*1 *1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3929 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-267 *2)) (-4 *2 (-1159)))) (-3929 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3159 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) (-3724 (*1 *1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-811))))) +(-13 (-616 |t#1|) (-10 -8 (-6 -4311) (-15 -4109 ($ $ |t#1|)) (-15 -4109 ($ $ $)) (-15 -1608 ($ $ (-526))) (-15 -1608 ($ $ (-1172 (-526)))) (-15 -3724 ($ (-1 (-111) |t#1|) $)) (-15 -3929 ($ |t#1| $ (-526))) (-15 -3929 ($ $ $ (-526))) (-15 -3159 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -1607 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3724 ($ |t#1| $)) (-15 -2424 ($ $))) |%noBranch|) (IF (|has| |t#1| (-811)) (-15 -3159 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) ((** (($ $ $) 10))) -(((-267 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-268)) (T -267)) +(((-268 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-269)) (T -268)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2180 (($ $) 6)) (-4185 (($ $) 7)) (** (($ $ $) 8))) -(((-268) (-134)) (T -268)) -((** (*1 *1 *1 *1) (-4 *1 (-268))) (-4185 (*1 *1 *1) (-4 *1 (-268))) (-2180 (*1 *1 *1) (-4 *1 (-268)))) -(-13 (-10 -8 (-15 -2180 ($ $)) (-15 -4185 ($ $)) (-15 ** ($ $ $)))) -((-3980 (((-606 (-1098 |#1|)) (-1098 |#1|) |#1|) 35)) (-2613 ((|#2| |#2| |#1|) 38)) (-4181 ((|#2| |#2| |#1|) 40)) (-2462 ((|#2| |#2| |#1|) 39))) -(((-269 |#1| |#2|) (-10 -7 (-15 -2613 (|#2| |#2| |#1|)) (-15 -2462 (|#2| |#2| |#1|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3980 ((-606 (-1098 |#1|)) (-1098 |#1|) |#1|))) (-347) (-1191 |#1|)) (T -269)) -((-3980 (*1 *2 *3 *4) (-12 (-4 *4 (-347)) (-5 *2 (-606 (-1098 *4))) (-5 *1 (-269 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-1191 *4)))) (-4181 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3)))) (-2462 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3)))) (-2613 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) -(-10 -7 (-15 -2613 (|#2| |#2| |#1|)) (-15 -2462 (|#2| |#2| |#1|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3980 ((-606 (-1098 |#1|)) (-1098 |#1|) |#1|))) -((-1922 ((|#2| $ |#1|) 6))) -(((-270 |#1| |#2|) (-134) (-1045) (-1154)) (T -270)) -((-1922 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154))))) -(-13 (-10 -8 (-15 -1922 (|t#2| $ |t#1|)))) -((-4091 ((|#3| $ |#2| |#3|) 12)) (-4030 ((|#3| $ |#2|) 10))) -(((-271 |#1| |#2| |#3|) (-10 -8 (-15 -4091 (|#3| |#1| |#2| |#3|)) (-15 -4030 (|#3| |#1| |#2|))) (-272 |#2| |#3|) (-1045) (-1154)) (T -271)) -NIL -(-10 -8 (-15 -4091 (|#3| |#1| |#2| |#3|)) (-15 -4030 (|#3| |#1| |#2|))) -((-2476 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4301)))) (-4091 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 11)) (-1922 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-272 |#1| |#2|) (-134) (-1045) (-1154)) (T -272)) -((-1922 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-4091 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154))))) -(-13 (-270 |t#1| |t#2|) (-10 -8 (-15 -1922 (|t#2| $ |t#1| |t#2|)) (-15 -4030 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -2476 (|t#2| $ |t#1| |t#2|)) (-15 -4091 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-270 |#1| |#2|) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 35)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 40)) (-3377 (($ $) 38)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) 33)) (-3195 (($ |#2| |#3|) 19)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 ((|#3| $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 20)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2048 (((-3 $ "failed") $ $) NIL)) (-1930 (((-731) $) 34)) (-1922 ((|#2| $ |#2|) 42)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 24)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 29 T CONST)) (-2943 (($) 36 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 37))) -(((-273 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-291) (-10 -8 (-15 -2084 (|#3| $)) (-15 -2341 (|#2| $)) (-15 -3195 ($ |#2| |#3|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)) (-15 -1922 (|#2| $ |#2|)))) (-163) (-1176 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -273)) -((-3490 (*1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2084 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-273 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1176 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3195 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-273 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1176 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3865 (*1 *1 *1) (-12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1922 (*1 *2 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1176 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-291) (-10 -8 (-15 -2084 (|#3| $)) (-15 -2341 (|#2| $)) (-15 -3195 ($ |#2| |#3|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)) (-15 -1922 (|#2| $ |#2|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-274) (-134)) (T -274)) -NIL -(-13 (-998) (-110 $ $) (-10 -7 (-6 -4293))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-4043 (($ (-1117) (-1117) (-1049) $) 17)) (-2774 (($ (-1117) (-606 (-918)) $) 22)) (-3446 (((-606 (-1031)) $) 10)) (-3511 (((-3 (-1049) "failed") (-1117) (-1117) $) 16)) (-1417 (((-3 (-606 (-918)) "failed") (-1117) $) 21)) (-3425 (($) 7)) (-1997 (($) 23)) (-2341 (((-816) $) 27)) (-4090 (($) 24))) -(((-275) (-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3446 ((-606 (-1031)) $)) (-15 -3511 ((-3 (-1049) "failed") (-1117) (-1117) $)) (-15 -4043 ($ (-1117) (-1117) (-1049) $)) (-15 -1417 ((-3 (-606 (-918)) "failed") (-1117) $)) (-15 -2774 ($ (-1117) (-606 (-918)) $)) (-15 -1997 ($)) (-15 -4090 ($))))) (T -275)) -((-3425 (*1 *1) (-5 *1 (-275))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-606 (-1031))) (-5 *1 (-275)))) (-3511 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-275)))) (-4043 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-275)))) (-1417 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-606 (-918))) (-5 *1 (-275)))) (-2774 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-275)))) (-1997 (*1 *1) (-5 *1 (-275))) (-4090 (*1 *1) (-5 *1 (-275)))) -(-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3446 ((-606 (-1031)) $)) (-15 -3511 ((-3 (-1049) "failed") (-1117) (-1117) $)) (-15 -4043 ($ (-1117) (-1117) (-1049) $)) (-15 -1417 ((-3 (-606 (-918)) "failed") (-1117) $)) (-15 -2774 ($ (-1117) (-606 (-918)) $)) (-15 -1997 ($)) (-15 -4090 ($)))) -((-2182 (((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))) 85)) (-3294 (((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|)))) 80) (((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731)) 38)) (-3087 (((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))) 82)) (-2648 (((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|)))) 62)) (-4075 (((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|)))) 61)) (-2736 (((-905 |#1|) (-649 (-391 (-905 |#1|)))) 50) (((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117)) 51))) -(((-276 |#1|) (-10 -7 (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117))) (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))))) (-15 -4075 ((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|))))) (-15 -2648 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|))))) (-15 -2182 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|))))) (-15 -3087 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))))) (-435)) (T -276)) -((-3087 (*1 *2 *3) (-12 (-4 *4 (-435)) (-5 *2 (-606 (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 *4)))))))) (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4)))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-435)) (-5 *2 (-606 (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 *4)))))))) (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4)))))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 *4)))) (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5)))))) (-3294 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-391 (-905 *6)) (-1107 (-1117) (-905 *6)))) (-5 *5 (-731)) (-4 *6 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *6))))) (-5 *1 (-276 *6)) (-5 *4 (-649 (-391 (-905 *6)))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5)))))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-4 *4 (-435)) (-5 *2 (-606 (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4))))) (-5 *1 (-276 *4)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-276 *4)) (-4 *4 (-435)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-905 *5)))) (-5 *4 (-1117)) (-5 *2 (-905 *5)) (-5 *1 (-276 *5)) (-4 *5 (-435))))) -(-10 -7 (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117))) (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))))) (-15 -4075 ((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|))))) (-15 -2648 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|))))) (-15 -2182 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|))))) (-15 -3087 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))))) -((-1612 (((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)) 14))) -(((-277 |#1| |#2|) (-10 -7 (-15 -1612 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) (-1154) (-1154)) (T -277)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-278 *6)) (-5 *1 (-277 *5 *6))))) -(-10 -7 (-15 -1612 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-2413 (($ $) 12)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1519 (($ $ $) 94 (|has| |#1| (-286)))) (-3832 (($) NIL (-1533 (|has| |#1| (-21)) (|has| |#1| (-687))) CONST)) (-2795 (($ $) 50 (|has| |#1| (-21)))) (-3373 (((-3 $ "failed") $) 61 (|has| |#1| (-687)))) (-2880 ((|#1| $) 11)) (-3490 (((-3 $ "failed") $) 59 (|has| |#1| (-687)))) (-2836 (((-111) $) NIL (|has| |#1| (-687)))) (-1612 (($ (-1 |#1| |#1|) $) 14)) (-2869 ((|#1| $) 10)) (-2497 (($ $) 49 (|has| |#1| (-21)))) (-3831 (((-3 $ "failed") $) 60 (|has| |#1| (-687)))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3865 (($ $) 63 (-1533 (|has| |#1| (-347)) (|has| |#1| (-456))))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-4171 (((-606 $) $) 84 (|has| |#1| (-529)))) (-4116 (($ $ $) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 $)) 28 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-1117) |#1|) 17 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 21 (|has| |#1| (-495 (-1117) |#1|)))) (-3056 (($ |#1| |#1|) 9)) (-1839 (((-131)) 89 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 86 (|has| |#1| (-853 (-1117))))) (-1978 (($ $ $) NIL (|has| |#1| (-456)))) (-1674 (($ $ $) NIL (|has| |#1| (-456)))) (-2341 (($ (-537)) NIL (|has| |#1| (-998))) (((-111) $) 36 (|has| |#1| (-1045))) (((-816) $) 35 (|has| |#1| (-1045)))) (-3654 (((-731)) 66 (|has| |#1| (-998)))) (-2928 (($) 46 (|has| |#1| (-21)) CONST)) (-2943 (($) 56 (|has| |#1| (-687)) CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117))))) (-2244 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 91 (-1533 (|has| |#1| (-347)) (|has| |#1| (-456))))) (-2329 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2318 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-537)) NIL (|has| |#1| (-456))) (($ $ (-731)) NIL (|has| |#1| (-687))) (($ $ (-874)) NIL (|has| |#1| (-1057)))) (* (($ $ |#1|) 54 (|has| |#1| (-1057))) (($ |#1| $) 53 (|has| |#1| (-1057))) (($ $ $) 52 (|has| |#1| (-1057))) (($ (-537) $) 69 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-25))))) -(((-278 |#1|) (-13 (-1154) (-10 -8 (-15 -2244 ($ |#1| |#1|)) (-15 -3056 ($ |#1| |#1|)) (-15 -2413 ($ $)) (-15 -2869 (|#1| $)) (-15 -2880 (|#1| $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-495 (-1117) |#1|)) (-6 (-495 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-579 (-111))) (IF (|has| |#1| (-293 |#1|)) (PROGN (-15 -4116 ($ $ $)) (-15 -4116 ($ $ (-606 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2318 ($ |#1| $)) (-15 -2318 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2497 ($ $)) (-15 -2795 ($ $)) (-15 -2329 ($ |#1| $)) (-15 -2329 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-687)) (PROGN (-6 (-687)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-456)) (PROGN (-6 (-456)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-6 (-998)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|) (IF (|has| |#1| (-529)) (-15 -4171 ((-606 $) $)) |%noBranch|) (IF (|has| |#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-1207 |#1|)) (-15 -2340 ($ $ $)) (-15 -3865 ($ $))) |%noBranch|) (IF (|has| |#1| (-286)) (-15 -1519 ($ $ $)) |%noBranch|))) (-1154)) (T -278)) -((-2244 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-3056 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2869 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2880 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *2 (-293 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)) (-5 *1 (-278 *2)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *3))) (-4 *3 (-293 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) (-2318 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) (-2318 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2329 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-3831 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154)))) (-3373 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-606 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-529)) (-4 *3 (-1154)))) (-1519 (*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-286)) (-4 *2 (-1154)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) (-2340 (*1 *1 *1 *1) (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) (-3865 (*1 *1 *1) (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154)))))) -(-13 (-1154) (-10 -8 (-15 -2244 ($ |#1| |#1|)) (-15 -3056 ($ |#1| |#1|)) (-15 -2413 ($ $)) (-15 -2869 (|#1| $)) (-15 -2880 (|#1| $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-495 (-1117) |#1|)) (-6 (-495 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-579 (-111))) (IF (|has| |#1| (-293 |#1|)) (PROGN (-15 -4116 ($ $ $)) (-15 -4116 ($ $ (-606 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2318 ($ |#1| $)) (-15 -2318 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2497 ($ $)) (-15 -2795 ($ $)) (-15 -2329 ($ |#1| $)) (-15 -2329 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-687)) (PROGN (-6 (-687)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-456)) (PROGN (-6 (-456)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-6 (-998)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|) (IF (|has| |#1| (-529)) (-15 -4171 ((-606 $) $)) |%noBranch|) (IF (|has| |#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-1207 |#1|)) (-15 -2340 ($ $ $)) (-15 -3865 ($ $))) |%noBranch|) (IF (|has| |#1| (-286)) (-15 -1519 ($ $ $)) |%noBranch|))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-279 |#1| |#2|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045)) (T -279)) -NIL -(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) -((-3927 (((-296) (-1100) (-606 (-1100))) 16) (((-296) (-1100) (-1100)) 15) (((-296) (-606 (-1100))) 14) (((-296) (-1100)) 12))) -(((-280) (-10 -7 (-15 -3927 ((-296) (-1100))) (-15 -3927 ((-296) (-606 (-1100)))) (-15 -3927 ((-296) (-1100) (-1100))) (-15 -3927 ((-296) (-1100) (-606 (-1100)))))) (T -280)) -((-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1100))) (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280))))) -(-10 -7 (-15 -3927 ((-296) (-1100))) (-15 -3927 ((-296) (-606 (-1100)))) (-15 -3927 ((-296) (-1100) (-1100))) (-15 -3927 ((-296) (-1100) (-606 (-1100))))) -((-1612 ((|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)) 18))) -(((-281 |#1| |#2|) (-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)))) (-286) (-1154)) (T -281)) -((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1100)) (-5 *5 (-578 *6)) (-4 *6 (-286)) (-4 *2 (-1154)) (-5 *1 (-281 *6 *2))))) -(-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)))) -((-1612 ((|#2| (-1 |#2| |#1|) (-578 |#1|)) 17))) -(((-282 |#1| |#2|) (-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-578 |#1|)))) (-286) (-286)) (T -282)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-578 *5)) (-4 *5 (-286)) (-4 *2 (-286)) (-5 *1 (-282 *5 *2))))) -(-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-578 |#1|)))) -((-2887 (((-111) (-210)) 10))) -(((-283 |#1| |#2|) (-10 -7 (-15 -2887 ((-111) (-210)))) (-210) (-210)) (T -283)) -((-2887 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-283 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2887 ((-111) (-210)))) -((-3753 (((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210)))) 93)) (-2881 (((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210)))) 107) (((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210)))) 61)) (-2718 (((-606 (-1100)) (-1098 (-210))) NIL)) (-3326 (((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210)))) 58)) (-4226 (((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210)))) 49)) (-3908 (((-606 (-1100)) (-606 (-210))) NIL)) (-2148 (((-210) (-1040 (-800 (-210)))) 25)) (-1590 (((-210) (-1040 (-800 (-210)))) 26)) (-2706 (((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 54)) (-2442 (((-1100) (-210)) NIL))) -(((-284) (-10 -7 (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -2706 ((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -3753 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -4226 ((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))))) (T -284)) -((-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-284)))) (-4226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284)))) (-2881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-2881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-3326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-111)) (-5 *1 (-284)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284))))) -(-10 -7 (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -2706 ((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -3753 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -4226 ((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210))))) -((-3852 (((-606 (-578 $)) $) 30)) (-1519 (($ $ (-278 $)) 81) (($ $ (-606 (-278 $))) 123) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) 113)) (-3958 (((-578 $) $) 112)) (-3886 (($ $) 19) (($ (-606 $)) 56)) (-3350 (((-606 (-113)) $) 38)) (-3979 (((-113) (-113)) 91)) (-2353 (((-111) $) 131)) (-1612 (($ (-1 $ $) (-578 $)) 89)) (-2765 (((-3 (-578 $) "failed") $) 93)) (-3381 (($ (-113) $) 61) (($ (-113) (-606 $)) 100)) (-3215 (((-111) $ (-113)) 117) (((-111) $ (-1117)) 116)) (-2545 (((-731) $) 46)) (-2482 (((-111) $ $) 59) (((-111) $ (-1117)) 51)) (-2977 (((-111) $) 129)) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) 121) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 84) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) 69) (($ $ (-1117) (-1 $ $)) 75) (($ $ (-606 (-113)) (-606 (-1 $ $))) 83) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 85) (($ $ (-113) (-1 $ (-606 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-1922 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-606 $)) 109)) (-2190 (($ $) 53) (($ $ $) 119)) (-1822 (($ $) 17) (($ (-606 $)) 55)) (-2336 (((-111) (-113)) 22))) -(((-285 |#1|) (-10 -8 (-15 -2353 ((-111) |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2482 ((-111) |#1| (-1117))) (-15 -2482 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#1| |#1|) (-578 |#1|))) (-15 -3381 (|#1| (-113) (-606 |#1|))) (-15 -3381 (|#1| (-113) |#1|)) (-15 -3215 ((-111) |#1| (-1117))) (-15 -3215 ((-111) |#1| (-113))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3350 ((-606 (-113)) |#1|)) (-15 -3852 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2545 ((-731) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -3886 (|#1| (-606 |#1|))) (-15 -3886 (|#1| |#1|)) (-15 -1822 (|#1| (-606 |#1|))) (-15 -1822 (|#1| |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|))) (-286)) (T -285)) -((-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-285 *3)) (-4 *3 (-286)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-285 *4)) (-4 *4 (-286))))) -(-10 -8 (-15 -2353 ((-111) |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2482 ((-111) |#1| (-1117))) (-15 -2482 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#1| |#1|) (-578 |#1|))) (-15 -3381 (|#1| (-113) (-606 |#1|))) (-15 -3381 (|#1| (-113) |#1|)) (-15 -3215 ((-111) |#1| (-1117))) (-15 -3215 ((-111) |#1| (-113))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3350 ((-606 (-113)) |#1|)) (-15 -3852 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2545 ((-731) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -3886 (|#1| (-606 |#1|))) (-15 -3886 (|#1| |#1|)) (-15 -1822 (|#1| (-606 |#1|))) (-15 -1822 (|#1| |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|))) -((-2330 (((-111) $ $) 7)) (-3852 (((-606 (-578 $)) $) 44)) (-1519 (($ $ (-278 $)) 56) (($ $ (-606 (-278 $))) 55) (($ $ (-606 (-578 $)) (-606 $)) 54)) (-1516 (((-3 (-578 $) "failed") $) 69)) (-3958 (((-578 $) $) 68)) (-3886 (($ $) 51) (($ (-606 $)) 50)) (-3350 (((-606 (-113)) $) 43)) (-3979 (((-113) (-113)) 42)) (-2353 (((-111) $) 22 (|has| $ (-989 (-537))))) (-2040 (((-1113 $) (-578 $)) 25 (|has| $ (-998)))) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1612 (($ (-1 $ $) (-578 $)) 36)) (-2765 (((-3 (-578 $) "failed") $) 46)) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 45)) (-3381 (($ (-113) $) 38) (($ (-113) (-606 $)) 37)) (-3215 (((-111) $ (-113)) 40) (((-111) $ (-1117)) 39)) (-2545 (((-731) $) 47)) (-2528 (((-1064) $) 10)) (-2482 (((-111) $ $) 35) (((-111) $ (-1117)) 34)) (-2977 (((-111) $) 23 (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) 67) (($ $ (-606 (-578 $)) (-606 $)) 66) (($ $ (-606 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-606 $) (-606 $)) 62) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 33) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 32) (($ $ (-1117) (-1 $ (-606 $))) 31) (($ $ (-1117) (-1 $ $)) 30) (($ $ (-606 (-113)) (-606 (-1 $ $))) 29) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 28) (($ $ (-113) (-1 $ (-606 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-1922 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-606 $)) 57)) (-2190 (($ $) 49) (($ $ $) 48)) (-2529 (($ $) 24 (|has| $ (-998)))) (-2341 (((-816) $) 11) (($ (-578 $)) 70)) (-1822 (($ $) 53) (($ (-606 $)) 52)) (-2336 (((-111) (-113)) 41)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) -(((-286) (-134)) (T -286)) -((-1922 (*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *1))) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-578 *1))) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1822 (*1 *1 *1) (-4 *1 (-286))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) (-3886 (*1 *1 *1) (-4 *1 (-286))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) (-2190 (*1 *1 *1) (-4 *1 (-286))) (-2190 (*1 *1 *1 *1) (-4 *1 (-286))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-731)))) (-2765 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-286)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-606 (-113))))) (-3979 (*1 *2 *2) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-2336 (*1 *2 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) (-3381 (*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-3381 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1612 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-578 *1)) (-4 *1 (-286)))) (-2482 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-111)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-998)) (-4 *1 (-286)) (-5 *2 (-1113 *1)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-998)) (-4 *1 (-286)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111))))) -(-13 (-807) (-989 (-578 $)) (-495 (-578 $) $) (-293 $) (-10 -8 (-15 -1922 ($ (-113) $)) (-15 -1922 ($ (-113) $ $)) (-15 -1922 ($ (-113) $ $ $)) (-15 -1922 ($ (-113) $ $ $ $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -1519 ($ $ (-278 $))) (-15 -1519 ($ $ (-606 (-278 $)))) (-15 -1519 ($ $ (-606 (-578 $)) (-606 $))) (-15 -1822 ($ $)) (-15 -1822 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -2190 ($ $)) (-15 -2190 ($ $ $)) (-15 -2545 ((-731) $)) (-15 -2765 ((-3 (-578 $) "failed") $)) (-15 -3576 ((-606 (-578 $)) $)) (-15 -3852 ((-606 (-578 $)) $)) (-15 -3350 ((-606 (-113)) $)) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (-15 -3381 ($ (-113) $)) (-15 -3381 ($ (-113) (-606 $))) (-15 -1612 ($ (-1 $ $) (-578 $))) (-15 -2482 ((-111) $ $)) (-15 -2482 ((-111) $ (-1117))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-1117) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-1117) (-1 $ $))) (-15 -4116 ($ $ (-606 (-113)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-113)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-113) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-998)) (PROGN (-15 -2040 ((-1113 $) (-578 $))) (-15 -2529 ($ $))) |%noBranch|) (IF (|has| $ (-989 (-537))) (PROGN (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $))) |%noBranch|))) -(((-100) . T) ((-579 (-816)) . T) ((-293 $) . T) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-807) . T) ((-989 (-578 $)) . T) ((-1045) . T)) -((-1887 (((-606 |#1|) (-606 |#1|)) 10))) -(((-287 |#1|) (-10 -7 (-15 -1887 ((-606 |#1|) (-606 |#1|)))) (-805)) (T -287)) -((-1887 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-805)) (-5 *1 (-287 *3))))) -(-10 -7 (-15 -1887 ((-606 |#1|) (-606 |#1|)))) -((-1612 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 17))) -(((-288 |#1| |#2|) (-10 -7 (-15 -1612 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-998) (-998)) (T -288)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-649 *6)) (-5 *1 (-288 *5 *6))))) -(-10 -7 (-15 -1612 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) -((-3055 (((-1200 (-300 (-363))) (-1200 (-300 (-210)))) 105)) (-2231 (((-1040 (-800 (-210))) (-1040 (-800 (-363)))) 40)) (-2718 (((-606 (-1100)) (-1098 (-210))) 87)) (-3608 (((-300 (-363)) (-905 (-210))) 50)) (-2618 (((-210) (-905 (-210))) 46)) (-2036 (((-1100) (-363)) 169)) (-2440 (((-800 (-210)) (-800 (-363))) 34)) (-2065 (((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210)))) 143)) (-1968 (((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) 181) (((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) 179)) (-2756 (((-649 (-210)) (-606 (-210)) (-731)) 14)) (-2401 (((-1200 (-659)) (-606 (-210))) 94)) (-3908 (((-606 (-1100)) (-606 (-210))) 75)) (-2496 (((-3 (-300 (-210)) "failed") (-300 (-210))) 120)) (-2887 (((-111) (-210) (-1040 (-800 (-210)))) 109)) (-3464 (((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) 198)) (-2148 (((-210) (-1040 (-800 (-210)))) 107)) (-1590 (((-210) (-1040 (-800 (-210)))) 108)) (-4187 (((-210) (-391 (-537))) 27)) (-2368 (((-1100) (-363)) 73)) (-3934 (((-210) (-363)) 17)) (-1288 (((-363) (-1200 (-300 (-210)))) 154)) (-1728 (((-300 (-210)) (-300 (-363))) 23)) (-2530 (((-391 (-537)) (-300 (-210))) 53)) (-3351 (((-300 (-391 (-537))) (-300 (-210))) 69)) (-2060 (((-300 (-363)) (-300 (-210))) 98)) (-3171 (((-210) (-300 (-210))) 54)) (-3671 (((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) 64)) (-2567 (((-1040 (-800 (-210))) (-1040 (-800 (-210)))) 61)) (-2442 (((-1100) (-210)) 72)) (-1530 (((-659) (-210)) 90)) (-3907 (((-391 (-537)) (-210)) 55)) (-2551 (((-300 (-363)) (-210)) 49)) (-3996 (((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363))))) 43)) (-3434 (((-986) (-606 (-986))) 165) (((-986) (-986) (-986)) 162)) (-1748 (((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-289) (-10 -7 (-15 -3934 ((-210) (-363))) (-15 -1728 ((-300 (-210)) (-300 (-363)))) (-15 -2440 ((-800 (-210)) (-800 (-363)))) (-15 -2231 ((-1040 (-800 (-210))) (-1040 (-800 (-363))))) (-15 -3996 ((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363)))))) (-15 -3907 ((-391 (-537)) (-210))) (-15 -2530 ((-391 (-537)) (-300 (-210)))) (-15 -3171 ((-210) (-300 (-210)))) (-15 -2496 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -1288 ((-363) (-1200 (-300 (-210))))) (-15 -2065 ((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210))))) (-15 -3351 ((-300 (-391 (-537))) (-300 (-210)))) (-15 -2567 ((-1040 (-800 (-210))) (-1040 (-800 (-210))))) (-15 -3671 ((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-15 -1530 ((-659) (-210))) (-15 -2401 ((-1200 (-659)) (-606 (-210)))) (-15 -2060 ((-300 (-363)) (-300 (-210)))) (-15 -3055 ((-1200 (-300 (-363))) (-1200 (-300 (-210))))) (-15 -2887 ((-111) (-210) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -2368 ((-1100) (-363))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3434 ((-986) (-986) (-986))) (-15 -3434 ((-986) (-606 (-986)))) (-15 -2036 ((-1100) (-363))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))))) (-15 -1748 ((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3464 ((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -3608 ((-300 (-363)) (-905 (-210)))) (-15 -2618 ((-210) (-905 (-210)))) (-15 -2551 ((-300 (-363)) (-210))) (-15 -4187 ((-210) (-391 (-537)))) (-15 -2756 ((-649 (-210)) (-606 (-210)) (-731))))) (T -289)) -((-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) (-5 *1 (-289)))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-391 (-537))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-210)) (-5 *1 (-289)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *2 (-986)) (-5 *1 (-289)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-606 (-986))) (-5 *2 (-986)) (-5 *1 (-289)))) (-3434 (*1 *2 *2 *2) (-12 (-5 *2 (-986)) (-5 *1 (-289)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-1040 (-800 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-289)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-1200 (-300 (-363)))) (-5 *1 (-289)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1200 (-659))) (-5 *1 (-289)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-659)) (-5 *1 (-289)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *2 (-606 (-210))) (-5 *1 (-289)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-391 (-537)))) (-5 *1 (-289)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537)))) (-5 *1 (-289)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-289)))) (-2496 (*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-289)))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-391 (-537))) (-5 *1 (-289)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-391 (-537))) (-5 *1 (-289)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-606 (-1040 (-800 (-363))))) (-5 *2 (-606 (-1040 (-800 (-210))))) (-5 *1 (-289)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-363)))) (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-800 (-363))) (-5 *2 (-800 (-210))) (-5 *1 (-289)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-300 (-363))) (-5 *2 (-300 (-210))) (-5 *1 (-289)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-289))))) -(-10 -7 (-15 -3934 ((-210) (-363))) (-15 -1728 ((-300 (-210)) (-300 (-363)))) (-15 -2440 ((-800 (-210)) (-800 (-363)))) (-15 -2231 ((-1040 (-800 (-210))) (-1040 (-800 (-363))))) (-15 -3996 ((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363)))))) (-15 -3907 ((-391 (-537)) (-210))) (-15 -2530 ((-391 (-537)) (-300 (-210)))) (-15 -3171 ((-210) (-300 (-210)))) (-15 -2496 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -1288 ((-363) (-1200 (-300 (-210))))) (-15 -2065 ((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210))))) (-15 -3351 ((-300 (-391 (-537))) (-300 (-210)))) (-15 -2567 ((-1040 (-800 (-210))) (-1040 (-800 (-210))))) (-15 -3671 ((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-15 -1530 ((-659) (-210))) (-15 -2401 ((-1200 (-659)) (-606 (-210)))) (-15 -2060 ((-300 (-363)) (-300 (-210)))) (-15 -3055 ((-1200 (-300 (-363))) (-1200 (-300 (-210))))) (-15 -2887 ((-111) (-210) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -2368 ((-1100) (-363))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3434 ((-986) (-986) (-986))) (-15 -3434 ((-986) (-606 (-986)))) (-15 -2036 ((-1100) (-363))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))))) (-15 -1748 ((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3464 ((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -3608 ((-300 (-363)) (-905 (-210)))) (-15 -2618 ((-210) (-905 (-210)))) (-15 -2551 ((-300 (-363)) (-210))) (-15 -4187 ((-210) (-391 (-537)))) (-15 -2756 ((-649 (-210)) (-606 (-210)) (-731)))) -((-4099 (((-111) $ $) 11)) (-3563 (($ $ $) 15)) (-3539 (($ $ $) 14)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 44)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 53)) (-2211 (($ $ $) 21) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3515 (((-3 $ "failed") $ $) 17)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 46))) -(((-290 |#1|) (-10 -8 (-15 -2581 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -3663 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3663 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4099 ((-111) |#1| |#1|)) (-15 -4245 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -4121 ((-2 (|:| -3449 (-606 |#1|)) (|:| -1524 |#1|)) (-606 |#1|))) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) (-291)) (T -290)) -NIL -(-10 -8 (-15 -2581 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -3663 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3663 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4099 ((-111) |#1| |#1|)) (-15 -4245 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -4121 ((-2 (|:| -3449 (-606 |#1|)) (|:| -1524 |#1|)) (-606 |#1|))) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-291) (-134)) (T -291)) -((-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-111)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-731)))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-291)))) (-3539 (*1 *1 *1 *1) (-4 *1 (-291))) (-3563 (*1 *1 *1 *1) (-4 *1 (-291))) (-3663 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-291)))) (-3663 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-291)))) (-2581 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-291))))) -(-13 (-873) (-10 -8 (-15 -4099 ((-111) $ $)) (-15 -1930 ((-731) $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3663 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -3663 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2581 ((-3 (-606 $) "failed") (-606 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-4116 (($ $ (-606 |#2|) (-606 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-278 |#2|)) 11) (($ $ (-606 (-278 |#2|))) NIL))) -(((-292 |#1| |#2|) (-10 -8 (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|)))) (-293 |#2|) (-1045)) (T -292)) -NIL -(-10 -8 (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|)))) -((-4116 (($ $ (-606 |#1|) (-606 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-278 |#1|)) 11) (($ $ (-606 (-278 |#1|))) 10))) -(((-293 |#1|) (-134) (-1045)) (T -293)) -((-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *3))) (-4 *1 (-293 *3)) (-4 *3 (-1045))))) -(-13 (-495 |t#1| |t#1|) (-10 -8 (-15 -4116 ($ $ (-278 |t#1|))) (-15 -4116 ($ $ (-606 (-278 |t#1|)))))) -(((-495 |#1| |#1|) . T)) -((-4116 ((|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))) 25))) -(((-294 |#1|) (-10 -7 (-15 -4116 (|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))))) (-37 (-391 (-537)))) (T -294)) -((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-537))) (-5 *4 (-1119 (-391 (-537)))) (-5 *1 (-294 *2)) (-4 *2 (-37 (-391 (-537))))))) -(-10 -7 (-15 -4116 (|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-295) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $))))) (T -295)) -((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-295))))) -(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 9))) -(((-296) (-1045)) (T -296)) -NIL -(-1045) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 62)) (-1874 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1186 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-1185 |#2| |#3| |#4|) "failed") $) 25)) (-3958 (((-1186 |#1| |#2| |#3| |#4|) $) NIL) (((-1117) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-537) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-1185 |#2| |#3| |#4|) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-1186 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1200 (-1186 |#1| |#2| |#3| |#4|)))) (-649 $) (-1200 $)) NIL) (((-649 (-1186 |#1| |#2| |#3| |#4|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-1186 |#1| |#2| |#3| |#4|) $) 21)) (-2824 (((-3 $ "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-3889 (($ $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-1612 (($ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) $) NIL)) (-2027 (((-3 (-800 |#2|) "failed") $) 78)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-291)))) (-3830 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-1186 |#1| |#2| |#3| |#4|)) (-606 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-278 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-606 (-278 (-1186 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-606 (-1117)) (-606 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-495 (-1117) (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-1117) (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-495 (-1117) (-1186 |#1| |#2| |#3| |#4|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-270 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) (-731)) NIL) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-1186 |#1| |#2| |#3| |#4|) $) 17)) (-3996 (((-845 (-537)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-513)))) (((-363) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-973))) (((-210) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1186 |#1| |#2| |#3| |#4|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-1186 |#1| |#2| |#3| |#4|)) 29) (($ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (($ (-1185 |#2| |#3| |#4|)) 36)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1186 |#1| |#2| |#3| |#4|) (-862))) (|has| (-1186 |#1| |#2| |#3| |#4|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-2928 (($) 41 T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) (-731)) NIL) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2340 (($ $ $) 34) (($ (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) 31)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-1186 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1186 |#1| |#2| |#3| |#4|)) NIL))) -(((-297 |#1| |#2| |#3| |#4|) (-13 (-945 (-1186 |#1| |#2| |#3| |#4|)) (-989 (-1185 |#2| |#3| |#4|)) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2341 ($ (-1185 |#2| |#3| |#4|))))) (-13 (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -297)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1185 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4) (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *1 (-297 *3 *4 *5 *6)))) (-2027 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-800 *4)) (-5 *1 (-297 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) -(-13 (-945 (-1186 |#1| |#2| |#3| |#4|)) (-989 (-1185 |#2| |#3| |#4|)) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2341 ($ (-1185 |#2| |#3| |#4|))))) -((-1612 (((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)) 13))) -(((-298 |#1| |#2|) (-10 -7 (-15 -1612 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) (-807) (-807)) (T -298)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-5 *2 (-300 *6)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -1612 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) -((-3815 (((-51) |#2| (-278 |#2|) (-731)) 33) (((-51) |#2| (-278 |#2|)) 24) (((-51) |#2| (-731)) 28) (((-51) |#2|) 25) (((-51) (-1117)) 21)) (-2411 (((-51) |#2| (-278 |#2|) (-391 (-537))) 51) (((-51) |#2| (-278 |#2|)) 48) (((-51) |#2| (-391 (-537))) 50) (((-51) |#2|) 49) (((-51) (-1117)) 47)) (-3839 (((-51) |#2| (-278 |#2|) (-391 (-537))) 46) (((-51) |#2| (-278 |#2|)) 43) (((-51) |#2| (-391 (-537))) 45) (((-51) |#2|) 44) (((-51) (-1117)) 42)) (-3827 (((-51) |#2| (-278 |#2|) (-537)) 39) (((-51) |#2| (-278 |#2|)) 35) (((-51) |#2| (-537)) 38) (((-51) |#2|) 36) (((-51) (-1117)) 34))) -(((-299 |#1| |#2|) (-10 -7 (-15 -3815 ((-51) (-1117))) (-15 -3815 ((-51) |#2|)) (-15 -3815 ((-51) |#2| (-731))) (-15 -3815 ((-51) |#2| (-278 |#2|))) (-15 -3815 ((-51) |#2| (-278 |#2|) (-731))) (-15 -3827 ((-51) (-1117))) (-15 -3827 ((-51) |#2|)) (-15 -3827 ((-51) |#2| (-537))) (-15 -3827 ((-51) |#2| (-278 |#2|))) (-15 -3827 ((-51) |#2| (-278 |#2|) (-537))) (-15 -3839 ((-51) (-1117))) (-15 -3839 ((-51) |#2|)) (-15 -3839 ((-51) |#2| (-391 (-537)))) (-15 -3839 ((-51) |#2| (-278 |#2|))) (-15 -3839 ((-51) |#2| (-278 |#2|) (-391 (-537)))) (-15 -2411 ((-51) (-1117))) (-15 -2411 ((-51) |#2|)) (-15 -2411 ((-51) |#2| (-391 (-537)))) (-15 -2411 ((-51) |#2| (-278 |#2|))) (-15 -2411 ((-51) |#2| (-278 |#2|) (-391 (-537))))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -299)) -((-2411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2411 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3827 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 *5) (-602 *5))) (-5 *5 (-537)) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *5 (-13 (-435) (-807) (-989 *4) (-602 *4))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-731)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4)))))) -(-10 -7 (-15 -3815 ((-51) (-1117))) (-15 -3815 ((-51) |#2|)) (-15 -3815 ((-51) |#2| (-731))) (-15 -3815 ((-51) |#2| (-278 |#2|))) (-15 -3815 ((-51) |#2| (-278 |#2|) (-731))) (-15 -3827 ((-51) (-1117))) (-15 -3827 ((-51) |#2|)) (-15 -3827 ((-51) |#2| (-537))) (-15 -3827 ((-51) |#2| (-278 |#2|))) (-15 -3827 ((-51) |#2| (-278 |#2|) (-537))) (-15 -3839 ((-51) (-1117))) (-15 -3839 ((-51) |#2|)) (-15 -3839 ((-51) |#2| (-391 (-537)))) (-15 -3839 ((-51) |#2| (-278 |#2|))) (-15 -3839 ((-51) |#2| (-278 |#2|) (-391 (-537)))) (-15 -2411 ((-51) (-1117))) (-15 -2411 ((-51) |#2|)) (-15 -2411 ((-51) |#2| (-391 (-537)))) (-15 -2411 ((-51) |#2| (-278 |#2|))) (-15 -2411 ((-51) |#2| (-278 |#2|) (-391 (-537))))) -((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) $ (-1117)) NIL (|has| |#1| (-529))) (((-606 $) $) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $)) NIL (|has| |#1| (-529))) (((-606 $) (-905 $)) NIL (|has| |#1| (-529)))) (-2652 (($ $ (-1117)) NIL (|has| |#1| (-529))) (($ $) NIL (|has| |#1| (-529))) (($ (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (($ (-1113 $)) NIL (|has| |#1| (-529))) (($ (-905 $)) NIL (|has| |#1| (-529)))) (-1656 (((-111) $) 27 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-3757 (((-606 (-1117)) $) 351)) (-3588 (((-391 (-1113 $)) $ (-578 $)) NIL (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3852 (((-606 (-578 $)) $) NIL)) (-1403 (($ $) 161 (|has| |#1| (-529)))) (-1247 (($ $) 137 (|has| |#1| (-529)))) (-2600 (($ $ (-1038 $)) 222 (|has| |#1| (-529))) (($ $ (-1117)) 218 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) 368) (($ $ (-606 (-578 $)) (-606 $)) 412)) (-1649 (((-402 (-1113 $)) (-1113 $)) 295 (-12 (|has| |#1| (-435)) (|has| |#1| (-529))))) (-1395 (($ $) NIL (|has| |#1| (-529)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-529)))) (-3633 (($ $) NIL (|has| |#1| (-529)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1378 (($ $) 157 (|has| |#1| (-529)))) (-4270 (($ $) 133 (|has| |#1| (-529)))) (-1702 (($ $ (-537)) 72 (|has| |#1| (-529)))) (-1429 (($ $) 165 (|has| |#1| (-529)))) (-1273 (($ $) 141 (|has| |#1| (-529)))) (-3832 (($) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))) CONST)) (-1974 (((-606 $) $ (-1117)) NIL (|has| |#1| (-529))) (((-606 $) $) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $)) NIL (|has| |#1| (-529))) (((-606 $) (-905 $)) NIL (|has| |#1| (-529)))) (-4190 (($ $ (-1117)) NIL (|has| |#1| (-529))) (($ $) NIL (|has| |#1| (-529))) (($ (-1113 $) (-1117)) 124 (|has| |#1| (-529))) (($ (-1113 $)) NIL (|has| |#1| (-529))) (($ (-905 $)) NIL (|has| |#1| (-529)))) (-1516 (((-3 (-578 $) "failed") $) 17) (((-3 (-1117) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-905 |#1|)) "failed") $) NIL (|has| |#1| (-529))) (((-3 (-905 |#1|) "failed") $) NIL (|has| |#1| (-998))) (((-3 (-391 (-537)) "failed") $) 46 (-1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-578 $) $) 11) (((-1117) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-905 |#1|)) $) NIL (|has| |#1| (-529))) (((-905 |#1|) $) NIL (|has| |#1| (-998))) (((-391 (-537)) $) 306 (-1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) NIL (|has| |#1| (-529)))) (-2053 (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 117 (|has| |#1| (-998))) (((-649 |#1|) (-649 $)) 107 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (-3195 (($ $) 89 (|has| |#1| (-529)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (-3539 (($ $ $) NIL (|has| |#1| (-529)))) (-3371 (($ $ (-1038 $)) 226 (|has| |#1| (-529))) (($ $ (-1117)) 224 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-529)))) (-2639 (((-111) $) NIL (|has| |#1| (-529)))) (-3548 (($ $ $) 192 (|has| |#1| (-529)))) (-3338 (($) 127 (|has| |#1| (-529)))) (-2967 (($ $ $) 212 (|has| |#1| (-529)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 374 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 381 (|has| |#1| (-839 (-363))))) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) 267)) (-2836 (((-111) $) 25 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-2868 (($ $) 71 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 84 (|has| |#1| (-998)))) (-3594 (((-111) $) 64 (|has| |#1| (-529)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-529)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-529)))) (-2040 (((-1113 $) (-578 $)) 268 (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) 408)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2180 (($ $) 131 (|has| |#1| (-529)))) (-2126 (($ $) 237 (|has| |#1| (-529)))) (-2183 (($ (-606 $)) NIL (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) 49)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) 413)) (-3898 (((-3 (-606 $) "failed") $) NIL (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) NIL (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 416 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 420 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) NIL (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) NIL (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) NIL (|has| |#1| (-998)))) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) 53)) (-3865 (($ $) NIL (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-1509 (($ $ (-1117)) 241 (|has| |#1| (-529))) (($ $ (-1038 $)) 243 (|has| |#1| (-529)))) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 43)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 288 (|has| |#1| (-529)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-2939 (($ $ (-1117)) 216 (|has| |#1| (-529))) (($ $) 214 (|has| |#1| (-529)))) (-2871 (($ $) 208 (|has| |#1| (-529)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 293 (-12 (|has| |#1| (-435)) (|has| |#1| (-529))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-529))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-529)))) (-4185 (($ $) 129 (|has| |#1| (-529)))) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) 407) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) 361) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1117)) NIL (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-580 (-513)))) (($ $) NIL (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 349 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-113)) (-606 $) (-1117)) 348 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ $)) NIL (|has| |#1| (-998)))) (-1930 (((-731) $) NIL (|has| |#1| (-529)))) (-4218 (($ $) 229 (|has| |#1| (-529)))) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-2190 (($ $) NIL) (($ $ $) NIL)) (-4256 (($ $) 239 (|has| |#1| (-529)))) (-1593 (($ $) 190 (|has| |#1| (-529)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-998))) (($ $ (-1117)) NIL (|has| |#1| (-998)))) (-2395 (($ $) 73 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 86 (|has| |#1| (-529)))) (-2529 (($ $) 304 (|has| $ (-998)))) (-1441 (($ $) 167 (|has| |#1| (-529)))) (-1286 (($ $) 143 (|has| |#1| (-529)))) (-1415 (($ $) 163 (|has| |#1| (-529)))) (-1259 (($ $) 139 (|has| |#1| (-529)))) (-1389 (($ $) 159 (|has| |#1| (-529)))) (-1234 (($ $) 135 (|has| |#1| (-529)))) (-3996 (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (($ (-402 $)) NIL (|has| |#1| (-529))) (((-513) $) 346 (|has| |#1| (-580 (-513))))) (-1978 (($ $ $) NIL (|has| |#1| (-456)))) (-1674 (($ $ $) NIL (|has| |#1| (-456)))) (-2341 (((-816) $) 406) (($ (-578 $)) 397) (($ (-1117)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-529))) (($ (-47)) 299 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (($ (-1069 |#1| (-578 $))) 88 (|has| |#1| (-998))) (($ (-391 |#1|)) NIL (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) NIL (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) NIL (|has| |#1| (-529))) (($ (-391 (-905 |#1|))) NIL (|has| |#1| (-529))) (($ (-905 |#1|)) NIL (|has| |#1| (-998))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-529)) (|has| |#1| (-989 (-391 (-537)))))) (($ (-537)) 34 (-1533 (|has| |#1| (-989 (-537))) (|has| |#1| (-998))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL (|has| |#1| (-998)))) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2360 (($ $ $) 210 (|has| |#1| (-529)))) (-3288 (($ $ $) 196 (|has| |#1| (-529)))) (-1961 (($ $ $) 200 (|has| |#1| (-529)))) (-2354 (($ $ $) 194 (|has| |#1| (-529)))) (-1716 (($ $ $) 198 (|has| |#1| (-529)))) (-2336 (((-111) (-113)) 9)) (-1475 (($ $) 173 (|has| |#1| (-529)))) (-1328 (($ $) 149 (|has| |#1| (-529)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 169 (|has| |#1| (-529)))) (-1300 (($ $) 145 (|has| |#1| (-529)))) (-1495 (($ $) 177 (|has| |#1| (-529)))) (-1352 (($ $) 153 (|has| |#1| (-529)))) (-2688 (($ (-1117) $) NIL) (($ (-1117) $ $) NIL) (($ (-1117) $ $ $) NIL) (($ (-1117) $ $ $ $) NIL) (($ (-1117) (-606 $)) NIL)) (-2147 (($ $) 204 (|has| |#1| (-529)))) (-3502 (($ $) 202 (|has| |#1| (-529)))) (-4141 (($ $) 179 (|has| |#1| (-529)))) (-1365 (($ $) 155 (|has| |#1| (-529)))) (-1485 (($ $) 175 (|has| |#1| (-529)))) (-1340 (($ $) 151 (|has| |#1| (-529)))) (-1465 (($ $) 171 (|has| |#1| (-529)))) (-1314 (($ $) 147 (|has| |#1| (-529)))) (-2209 (($ $) 182 (|has| |#1| (-529)))) (-2928 (($) 20 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) CONST)) (-2175 (($ $) 233 (|has| |#1| (-529)))) (-2943 (($) 22 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))) CONST)) (-2247 (($ $) 184 (|has| |#1| (-529))) (($ $ $) 186 (|has| |#1| (-529)))) (-2637 (($ $) 231 (|has| |#1| (-529)))) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-998))) (($ $ (-1117)) NIL (|has| |#1| (-998)))) (-3191 (($ $) 235 (|has| |#1| (-529)))) (-2611 (($ $ $) 188 (|has| |#1| (-529)))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 81)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 80)) (-2340 (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 98 (|has| |#1| (-529))) (($ $ $) 42 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2329 (($ $ $) 40 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ $) 29 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-2318 (($ $ $) 38 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (** (($ $ $) 66 (|has| |#1| (-529))) (($ $ (-391 (-537))) 301 (|has| |#1| (-529))) (($ $ (-537)) 76 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529)))) (($ $ (-731)) 74 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057)))) (($ $ (-874)) 78 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (* (($ (-391 (-537)) $) NIL (|has| |#1| (-529))) (($ $ (-391 (-537))) NIL (|has| |#1| (-529))) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))) (($ $ $) 36 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057)))) (($ (-537) $) 32 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ (-731) $) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ (-874) $) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))))) -(((-300 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-529)) (PROGN (-6 (-29 |#1|)) (-6 (-1139)) (-6 (-152)) (-6 (-592)) (-6 (-1081)) (-15 -3195 ($ $)) (-15 -3594 ((-111) $)) (-15 -1702 ($ $ (-537))) (IF (|has| |#1| (-435)) (PROGN (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1649 ((-402 (-1113 $)) (-1113 $)))) |%noBranch|) (IF (|has| |#1| (-989 (-537))) (-6 (-989 (-47))) |%noBranch|)) |%noBranch|))) (-807)) (T -300)) -((-3195 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-529)) (-4 *2 (-807)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-3370 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) (-1649 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807))))) -(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-529)) (PROGN (-6 (-29 |#1|)) (-6 (-1139)) (-6 (-152)) (-6 (-592)) (-6 (-1081)) (-15 -3195 ($ $)) (-15 -3594 ((-111) $)) (-15 -1702 ($ $ (-537))) (IF (|has| |#1| (-435)) (PROGN (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1649 ((-402 (-1113 $)) (-1113 $)))) |%noBranch|) (IF (|has| |#1| (-989 (-537))) (-6 (-989 (-47))) |%noBranch|)) |%noBranch|))) -((-3561 (((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)) 88) (((-51) |#2| (-113) (-278 |#2|) (-278 |#2|)) 84) (((-51) |#2| (-113) (-278 |#2|) |#2|) 86) (((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|) 87) (((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|))) 80) (((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|)) 82) (((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|)) 83) (((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|))) 81) (((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|)) 89) (((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|)) 85))) -(((-301 |#1| |#2|) (-10 -7 (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)))) (-13 (-807) (-529) (-580 (-513))) (-414 |#1|)) (T -301)) -((-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-5 *6 (-606 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *3)))) (-3561 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *3)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *3)))) (-3561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *5)))) (-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-113))) (-5 *6 (-606 (-278 *8))) (-4 *8 (-414 *7)) (-5 *5 (-278 *8)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *8)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 (-278 *8))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *8)) (-5 *6 (-606 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *8)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-606 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-278 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *5 *6))))) -(-10 -7 (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)))) -((-3182 (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100)) 46) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537)) 47) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100)) 43) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537)) 44)) (-1487 (((-1 (-210) (-210)) (-210)) 45))) -(((-302) (-10 -7 (-15 -1487 ((-1 (-210) (-210)) (-210))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100))))) (T -302)) -((-3182 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *8 (-1100)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *7 (-1100)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-302)) (-5 *3 (-210))))) -(-10 -7 (-15 -1487 ((-1 (-210) (-210)) (-210))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 25)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 20)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 32)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) 16)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) NIL) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-2749 (((-391 (-537)) $) 17)) (-3431 (($ (-1185 |#1| |#2| |#3|)) 11)) (-3283 (((-1185 |#1| |#2| |#3|) $) 12)) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 10)) (-2341 (((-816) $) 38) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 30)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) NIL)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 27)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 33)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-303 |#1| |#2| |#3|) (-13 (-1181 |#1|) (-752) (-10 -8 (-15 -3431 ($ (-1185 |#1| |#2| |#3|))) (-15 -3283 ((-1185 |#1| |#2| |#3|) $)) (-15 -2749 ((-391 (-537)) $)))) (-13 (-347) (-807)) (-1117) |#1|) (T -303)) -((-3431 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-303 *3 *4 *5)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4 *5)) (-5 *1 (-303 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-303 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3)))) -(-13 (-1181 |#1|) (-752) (-10 -8 (-15 -3431 ($ (-1185 |#1| |#2| |#3|))) (-15 -3283 ((-1185 |#1| |#2| |#3|) $)) (-15 -2749 ((-391 (-537)) $)))) -((-2590 (((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731)) 24)) (-2180 (((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)) 28))) -(((-304 |#1|) (-10 -7 (-15 -2590 ((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731))) (-15 -2180 ((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)))) (-529)) (T -304)) -((-2180 (*1 *2 *3) (-12 (-5 *3 (-402 *4)) (-4 *4 (-529)) (-5 *2 (-606 (-2 (|:| -3449 (-731)) (|:| |logand| *4)))) (-5 *1 (-304 *4)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *5)) (-4 *5 (-529)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *5) (|:| |radicand| (-606 *5)))) (-5 *1 (-304 *5)) (-5 *4 (-731))))) -(-10 -7 (-15 -2590 ((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731))) (-15 -2180 ((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)))) -((-3757 (((-606 |#2|) (-1113 |#4|)) 43)) (-1673 ((|#3| (-537)) 46)) (-3528 (((-1113 |#4|) (-1113 |#3|)) 30)) (-1420 (((-1113 |#4|) (-1113 |#4|) (-537)) 56)) (-1937 (((-1113 |#3|) (-1113 |#4|)) 21)) (-2872 (((-606 (-731)) (-1113 |#4|) (-606 |#2|)) 40)) (-1991 (((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|)) 35))) -(((-305 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1991 ((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|))) (-15 -2872 ((-606 (-731)) (-1113 |#4|) (-606 |#2|))) (-15 -3757 ((-606 |#2|) (-1113 |#4|))) (-15 -1937 ((-1113 |#3|) (-1113 |#4|))) (-15 -3528 ((-1113 |#4|) (-1113 |#3|))) (-15 -1420 ((-1113 |#4|) (-1113 |#4|) (-537))) (-15 -1673 (|#3| (-537)))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|)) (T -305)) -((-1673 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-998)) (-5 *1 (-305 *4 *5 *2 *6)) (-4 *6 (-902 *2 *4 *5)))) (-1420 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 *7)) (-5 *3 (-537)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *1 (-305 *4 *5 *6 *7)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-1113 *6)) (-4 *6 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-1113 *7)) (-5 *1 (-305 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-305 *4 *5 *6 *7)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-606 *5)) (-5 *1 (-305 *4 *5 *6 *7)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *8)) (-5 *4 (-606 *6)) (-4 *6 (-807)) (-4 *8 (-902 *7 *5 *6)) (-4 *5 (-753)) (-4 *7 (-998)) (-5 *2 (-606 (-731))) (-5 *1 (-305 *5 *6 *7 *8)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 *8)) (-4 *7 (-807)) (-4 *8 (-998)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-5 *2 (-1113 *8)) (-5 *1 (-305 *6 *7 *8 *9))))) -(-10 -7 (-15 -1991 ((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|))) (-15 -2872 ((-606 (-731)) (-1113 |#4|) (-606 |#2|))) (-15 -3757 ((-606 |#2|) (-1113 |#4|))) (-15 -1937 ((-1113 |#3|) (-1113 |#4|))) (-15 -3528 ((-1113 |#4|) (-1113 |#3|))) (-15 -1420 ((-1113 |#4|) (-1113 |#4|) (-537))) (-15 -1673 (|#3| (-537)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 14)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $) 18)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1361 (((-537) $ (-537)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-3572 (($ (-1 |#1| |#1|) $) NIL)) (-2191 (($ (-1 (-537) (-537)) $) 10)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) NIL (|has| (-537) (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-3500 (((-537) |#1| $) NIL)) (-2928 (($) 15 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 21 (|has| |#1| (-807)))) (-2329 (($ $) 11) (($ $ $) 20)) (-2318 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL) (($ (-537) |#1|) 19))) -(((-306 |#1|) (-13 (-21) (-678 (-537)) (-307 |#1| (-537)) (-10 -7 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) (-1045)) (T -306)) -NIL -(-13 (-21) (-678 (-537)) (-307 |#1| (-537)) (-10 -7 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 27)) (-3418 (((-3 $ "failed") $ $) 19)) (-3151 (((-731) $) 28)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 32)) (-3958 ((|#1| $) 31)) (-4125 ((|#1| $ (-537)) 25)) (-1361 ((|#2| $ (-537)) 26)) (-3572 (($ (-1 |#1| |#1|) $) 22)) (-2191 (($ (-1 |#2| |#2|) $) 23)) (-1654 (((-1100) $) 9)) (-1962 (($ $ $) 21 (|has| |#2| (-752)))) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ |#1|) 33)) (-3500 ((|#2| |#1| $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ |#2| |#1|) 29))) -(((-307 |#1| |#2|) (-134) (-1045) (-129)) (T -307)) -((-2318 (*1 *1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) (-5 *2 (-731)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))))) (-1361 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-307 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-129)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-307 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1045)))) (-3500 (*1 *2 *3 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) (-2191 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)) (-4 *3 (-752))))) -(-13 (-129) (-989 |t#1|) (-10 -8 (-15 -2318 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3151 ((-731) $)) (-15 -1525 ((-606 (-2 (|:| |gen| |t#1|) (|:| -4185 |t#2|))) $)) (-15 -1361 (|t#2| $ (-537))) (-15 -4125 (|t#1| $ (-537))) (-15 -3500 (|t#2| |t#1| $)) (-15 -2191 ($ (-1 |t#2| |t#2|) $)) (-15 -3572 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-752)) (-15 -1962 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-989 |#1|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1361 (((-731) $ (-537)) NIL)) (-3572 (($ (-1 |#1| |#1|) $) NIL)) (-2191 (($ (-1 (-731) (-731)) $) NIL)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) NIL (|has| (-731) (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-3500 (((-731) |#1| $) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-731) |#1|) NIL))) -(((-308 |#1|) (-307 |#1| (-731)) (-1045)) (T -308)) -NIL -(-307 |#1| (-731)) -((-1351 (($ $) 53)) (-3240 (($ $ |#2| |#3| $) 14)) (-2199 (($ (-1 |#3| |#3|) $) 35)) (-3876 (((-111) $) 27)) (-3890 ((|#2| $) 29)) (-3515 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1835 ((|#2| $) 49)) (-3459 (((-606 |#2|) $) 38)) (-1345 (($ $ $ (-731)) 23)) (-2340 (($ $ |#2|) 42))) -(((-309 |#1| |#2| |#3|) (-10 -8 (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1345 (|#1| |#1| |#1| (-731))) (-15 -3240 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2199 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2340 (|#1| |#1| |#2|))) (-310 |#2| |#3|) (-998) (-752)) (T -309)) -NIL -(-10 -8 (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1345 (|#1| |#1| |#1| (-731))) (-15 -3240 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2199 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2340 (|#1| |#1| |#2|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 88 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 86 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 85)) (-3958 (((-537) $) 89 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 87 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 84)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 73 (|has| |#1| (-435)))) (-3240 (($ $ |#1| |#2| $) 77)) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 80)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59)) (-1883 ((|#2| $) 79)) (-2199 (($ (-1 |#2| |#2|) $) 78)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 83)) (-3890 ((|#1| $) 82)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-1835 ((|#1| $) 74 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45) (($ (-391 (-537))) 55 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 81)) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 76 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-310 |#1| |#2|) (-134) (-998) (-752)) (T -310)) -((-3876 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-111)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-606 *3)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-2199 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-3240 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-1345 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *3 (-163)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-529)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)) (-4 *2 (-435)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-435))))) -(-13 (-46 |t#1| |t#2|) (-395 |t#1|) (-10 -8 (-15 -3876 ((-111) $)) (-15 -3890 (|t#1| $)) (-15 -3459 ((-606 |t#1|) $)) (-15 -2668 ((-731) $)) (-15 -1883 (|t#2| $)) (-15 -2199 ($ (-1 |t#2| |t#2|) $)) (-15 -3240 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-163)) (-15 -1345 ($ $ $ (-731))) |%noBranch|) (IF (|has| |t#1| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -1835 (|t#1| $)) (-15 -1351 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-395 |#1|) . T) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2932 (((-111) (-111)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3598 (($ $ (-537)) NIL)) (-1446 (((-731) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1903 (($ (-606 |#1|)) NIL)) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-311 |#1|) (-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) (-1154)) (T -311)) -((-1903 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-311 *3)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-311 *3)) (-4 *3 (-1154))))) -(-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) -((-1276 (((-111) $) 42)) (-2860 (((-731)) 22)) (-1428 ((|#2| $) 46) (($ $ (-874)) 103)) (-3151 (((-731)) 98)) (-3447 (($ (-1200 |#2|)) 20)) (-3870 (((-111) $) 115)) (-2055 ((|#2| $) 48) (($ $ (-874)) 101)) (-3199 (((-1113 |#2|) $) NIL) (((-1113 $) $ (-874)) 95)) (-1671 (((-1113 |#2|) $) 83)) (-2728 (((-1113 |#2|) $) 80) (((-3 (-1113 |#2|) "failed") $ $) 77)) (-2841 (($ $ (-1113 |#2|)) 53)) (-2685 (((-793 (-874))) 28) (((-874)) 43)) (-1839 (((-131)) 25)) (-2872 (((-793 (-874)) $) 30) (((-874) $) 117)) (-3254 (($) 109)) (-1484 (((-1200 |#2|) $) NIL) (((-649 |#2|) (-1200 $)) 39)) (-2644 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3042 (((-111) $) 41))) -(((-312 |#1| |#2|) (-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -3151 ((-731))) (-15 -2644 (|#1| |#1|)) (-15 -2728 ((-3 (-1113 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1113 |#2|) |#1|)) (-15 -1671 ((-1113 |#2|) |#1|)) (-15 -2841 (|#1| |#1| (-1113 |#2|))) (-15 -3870 ((-111) |#1|)) (-15 -3254 (|#1|)) (-15 -1428 (|#1| |#1| (-874))) (-15 -2055 (|#1| |#1| (-874))) (-15 -3199 ((-1113 |#1|) |#1| (-874))) (-15 -1428 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -2872 ((-874) |#1|)) (-15 -2685 ((-874))) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -2860 ((-731))) (-15 -2685 ((-793 (-874)))) (-15 -2872 ((-793 (-874)) |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|)) (-15 -1839 ((-131)))) (-313 |#2|) (-347)) (T -312)) -((-1839 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-131)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-793 (-874))) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2860 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-874)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-3151 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4))))) -(-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -3151 ((-731))) (-15 -2644 (|#1| |#1|)) (-15 -2728 ((-3 (-1113 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1113 |#2|) |#1|)) (-15 -1671 ((-1113 |#2|) |#1|)) (-15 -2841 (|#1| |#1| (-1113 |#2|))) (-15 -3870 ((-111) |#1|)) (-15 -3254 (|#1|)) (-15 -1428 (|#1| |#1| (-874))) (-15 -2055 (|#1| |#1| (-874))) (-15 -3199 ((-1113 |#1|) |#1| (-874))) (-15 -1428 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -2872 ((-874) |#1|)) (-15 -2685 ((-874))) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -2860 ((-731))) (-15 -2685 ((-793 (-874)))) (-15 -2872 ((-793 (-874)) |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|)) (-15 -1839 ((-131)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1276 (((-111) $) 91)) (-2860 (((-731)) 87)) (-1428 ((|#1| $) 137) (($ $ (-874)) 134 (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 119 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3151 (((-731)) 109 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 98)) (-3958 ((|#1| $) 97)) (-3447 (($ (-1200 |#1|)) 143)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-352)))) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 106 (|has| |#1| (-352)))) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4145 (($) 121 (|has| |#1| (-352)))) (-2974 (((-111) $) 122 (|has| |#1| (-352)))) (-2642 (($ $ (-731)) 84 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) 83 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) 68)) (-4231 (((-874) $) 124 (|has| |#1| (-352))) (((-793 (-874)) $) 81 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) 30)) (-3522 (($) 132 (|has| |#1| (-352)))) (-3870 (((-111) $) 131 (|has| |#1| (-352)))) (-2055 ((|#1| $) 138) (($ $ (-874)) 135 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) 110 (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-3199 (((-1113 |#1|) $) 142) (((-1113 $) $ (-874)) 136 (|has| |#1| (-352)))) (-2334 (((-874) $) 107 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) 128 (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) 127 (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) 126 (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) 129 (|has| |#1| (-352)))) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 111 (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 108 (|has| |#1| (-352)))) (-2933 (((-111) $) 90)) (-2528 (((-1064) $) 10)) (-1524 (($) 130 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 118 (|has| |#1| (-352)))) (-3622 (((-402 $) $) 71)) (-2685 (((-793 (-874))) 88) (((-874)) 140)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-731) $) 123 (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) 82 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) 96)) (-3456 (($ $) 115 (|has| |#1| (-352))) (($ $ (-731)) 113 (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) 89) (((-874) $) 139)) (-2529 (((-1113 |#1|)) 141)) (-3553 (($) 120 (|has| |#1| (-352)))) (-3254 (($) 133 (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 145) (((-649 |#1|) (-1200 $)) 144)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 117 (|has| |#1| (-352)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 99)) (-2644 (($ $) 116 (|has| |#1| (-352))) (((-3 $ "failed") $) 80 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 147) (((-1200 $) (-874)) 146)) (-3276 (((-111) $ $) 37)) (-3042 (((-111) $) 92)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-1791 (($ $) 86 (|has| |#1| (-352))) (($ $ (-731)) 85 (|has| |#1| (-352)))) (-4230 (($ $) 114 (|has| |#1| (-352))) (($ $ (-731)) 112 (|has| |#1| (-352)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62) (($ $ |#1|) 95)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-313 |#1|) (-134) (-347)) (T -313)) -((-2122 (*1 *2) (-12 (-4 *3 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *3)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *4)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-313 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-4 *1 (-313 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) (-2529 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) (-2685 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) (-3199 (*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-4 *4 (-352)) (-4 *4 (-347)) (-5 *2 (-1113 *1)) (-4 *1 (-313 *4)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) (-1428 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) (-3254 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-3522 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-111)))) (-1524 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-352)) (-4 *1 (-313 *3)) (-4 *3 (-347)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3)))) (-2728 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3))))) -(-13 (-1218 |t#1|) (-989 |t#1|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -2122 ((-1200 $) (-874))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3199 ((-1113 |t#1|) $)) (-15 -2529 ((-1113 |t#1|))) (-15 -2685 ((-874))) (-15 -2872 ((-874) $)) (-15 -2055 (|t#1| $)) (-15 -1428 (|t#1| $)) (IF (|has| |t#1| (-352)) (PROGN (-6 (-333)) (-15 -3199 ((-1113 $) $ (-874))) (-15 -2055 ($ $ (-874))) (-15 -1428 ($ $ (-874))) (-15 -3254 ($)) (-15 -3522 ($)) (-15 -3870 ((-111) $)) (-15 -1524 ($)) (-15 -2841 ($ $ (-1113 |t#1|))) (-15 -1671 ((-1113 |t#1|) $)) (-15 -2728 ((-1113 |t#1|) $)) (-15 -2728 ((-3 (-1113 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-218) |has| |#1| (-352)) ((-228) . T) ((-274) . T) ((-291) . T) ((-1218 |#1|) . T) ((-347) . T) ((-386) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-352) |has| |#1| (-352)) ((-333) |has| |#1| (-352)) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-352)) ((-1158) . T) ((-1207 |#1|) . T)) -((-2330 (((-111) $ $) NIL)) (-1710 (($ (-1116) $) 88)) (-3214 (($) 77)) (-3098 (((-1064) (-1064)) 11)) (-2751 (($) 78)) (-2562 (($) 90) (($ (-300 (-659))) 98) (($ (-300 (-661))) 94) (($ (-300 (-654))) 102) (($ (-300 (-363))) 109) (($ (-300 (-537))) 105) (($ (-300 (-160 (-363)))) 113)) (-1919 (($ (-1116) $) 89)) (-2138 (($ (-606 (-816))) 79)) (-2875 (((-1205) $) 75)) (-2076 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1366 (($ (-1064)) 51)) (-2586 (((-1049) $) 25)) (-1993 (($ (-1038 (-905 (-537))) $) 85) (($ (-1038 (-905 (-537))) (-905 (-537)) $) 86)) (-2998 (($ (-1064)) 87)) (-1869 (($ (-1116) $) 115) (($ (-1116) $ $) 116)) (-2394 (($ (-1117) (-606 (-1117))) 76)) (-2275 (($ (-1100)) 82) (($ (-606 (-1100))) 80)) (-2341 (((-816) $) 118)) (-3360 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $) 44)) (-4173 (($ (-1100)) 187)) (-1546 (($ (-606 $)) 114)) (-2893 (($ (-1117) (-1100)) 120) (($ (-1117) (-300 (-661))) 160) (($ (-1117) (-300 (-659))) 161) (($ (-1117) (-300 (-654))) 162) (($ (-1117) (-649 (-661))) 123) (($ (-1117) (-649 (-659))) 126) (($ (-1117) (-649 (-654))) 129) (($ (-1117) (-1200 (-661))) 132) (($ (-1117) (-1200 (-659))) 135) (($ (-1117) (-1200 (-654))) 138) (($ (-1117) (-649 (-300 (-661)))) 141) (($ (-1117) (-649 (-300 (-659)))) 144) (($ (-1117) (-649 (-300 (-654)))) 147) (($ (-1117) (-1200 (-300 (-661)))) 150) (($ (-1117) (-1200 (-300 (-659)))) 153) (($ (-1117) (-1200 (-300 (-654)))) 156) (($ (-1117) (-606 (-905 (-537))) (-300 (-661))) 157) (($ (-1117) (-606 (-905 (-537))) (-300 (-659))) 158) (($ (-1117) (-606 (-905 (-537))) (-300 (-654))) 159) (($ (-1117) (-300 (-537))) 184) (($ (-1117) (-300 (-363))) 185) (($ (-1117) (-300 (-160 (-363)))) 186) (($ (-1117) (-649 (-300 (-537)))) 165) (($ (-1117) (-649 (-300 (-363)))) 168) (($ (-1117) (-649 (-300 (-160 (-363))))) 171) (($ (-1117) (-1200 (-300 (-537)))) 174) (($ (-1117) (-1200 (-300 (-363)))) 177) (($ (-1117) (-1200 (-300 (-160 (-363))))) 180) (($ (-1117) (-606 (-905 (-537))) (-300 (-537))) 181) (($ (-1117) (-606 (-905 (-537))) (-300 (-363))) 182) (($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363)))) 183)) (-2244 (((-111) $ $) NIL))) -(((-314) (-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -1993 ($ (-1038 (-905 (-537))) $)) (-15 -1993 ($ (-1038 (-905 (-537))) (-905 (-537)) $)) (-15 -1710 ($ (-1116) $)) (-15 -1919 ($ (-1116) $)) (-15 -1366 ($ (-1064))) (-15 -2998 ($ (-1064))) (-15 -2275 ($ (-1100))) (-15 -2275 ($ (-606 (-1100)))) (-15 -4173 ($ (-1100))) (-15 -2562 ($)) (-15 -2562 ($ (-300 (-659)))) (-15 -2562 ($ (-300 (-661)))) (-15 -2562 ($ (-300 (-654)))) (-15 -2562 ($ (-300 (-363)))) (-15 -2562 ($ (-300 (-537)))) (-15 -2562 ($ (-300 (-160 (-363))))) (-15 -1869 ($ (-1116) $)) (-15 -1869 ($ (-1116) $ $)) (-15 -2893 ($ (-1117) (-1100))) (-15 -2893 ($ (-1117) (-300 (-661)))) (-15 -2893 ($ (-1117) (-300 (-659)))) (-15 -2893 ($ (-1117) (-300 (-654)))) (-15 -2893 ($ (-1117) (-649 (-661)))) (-15 -2893 ($ (-1117) (-649 (-659)))) (-15 -2893 ($ (-1117) (-649 (-654)))) (-15 -2893 ($ (-1117) (-1200 (-661)))) (-15 -2893 ($ (-1117) (-1200 (-659)))) (-15 -2893 ($ (-1117) (-1200 (-654)))) (-15 -2893 ($ (-1117) (-649 (-300 (-661))))) (-15 -2893 ($ (-1117) (-649 (-300 (-659))))) (-15 -2893 ($ (-1117) (-649 (-300 (-654))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-661))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-659))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-654))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-661)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-659)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-654)))) (-15 -2893 ($ (-1117) (-300 (-537)))) (-15 -2893 ($ (-1117) (-300 (-363)))) (-15 -2893 ($ (-1117) (-300 (-160 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-537))))) (-15 -2893 ($ (-1117) (-649 (-300 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-537))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-363))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-537)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-363)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363))))) (-15 -1546 ($ (-606 $))) (-15 -3214 ($)) (-15 -2751 ($)) (-15 -2138 ($ (-606 (-816)))) (-15 -2394 ($ (-1117) (-606 (-1117)))) (-15 -2076 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3360 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $)) (-15 -2875 ((-1205) $)) (-15 -2586 ((-1049) $)) (-15 -3098 ((-1064) (-1064)))))) (T -314)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-314)))) (-1993 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *1 (-314)))) (-1993 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *3 (-905 (-537))) (-5 *1 (-314)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1919 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-314)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314)))) (-2562 (*1 *1) (-5 *1 (-314))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-1869 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1869 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-661)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-659)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-654)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-661)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-659)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-654)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-537))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-363))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-537)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-160 (-363))))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-537)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-160 (-363))))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-537))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-363))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-314)))) (-3214 (*1 *1) (-5 *1 (-314))) (-2751 (*1 *1) (-5 *1 (-314))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-314)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-314)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-314)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-314)) (|:| |elseClause| (-314)))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 (-314))) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 (-314)))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 (-314)))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816))))) (-5 *1 (-314)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-314)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-314)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) -(-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -1993 ($ (-1038 (-905 (-537))) $)) (-15 -1993 ($ (-1038 (-905 (-537))) (-905 (-537)) $)) (-15 -1710 ($ (-1116) $)) (-15 -1919 ($ (-1116) $)) (-15 -1366 ($ (-1064))) (-15 -2998 ($ (-1064))) (-15 -2275 ($ (-1100))) (-15 -2275 ($ (-606 (-1100)))) (-15 -4173 ($ (-1100))) (-15 -2562 ($)) (-15 -2562 ($ (-300 (-659)))) (-15 -2562 ($ (-300 (-661)))) (-15 -2562 ($ (-300 (-654)))) (-15 -2562 ($ (-300 (-363)))) (-15 -2562 ($ (-300 (-537)))) (-15 -2562 ($ (-300 (-160 (-363))))) (-15 -1869 ($ (-1116) $)) (-15 -1869 ($ (-1116) $ $)) (-15 -2893 ($ (-1117) (-1100))) (-15 -2893 ($ (-1117) (-300 (-661)))) (-15 -2893 ($ (-1117) (-300 (-659)))) (-15 -2893 ($ (-1117) (-300 (-654)))) (-15 -2893 ($ (-1117) (-649 (-661)))) (-15 -2893 ($ (-1117) (-649 (-659)))) (-15 -2893 ($ (-1117) (-649 (-654)))) (-15 -2893 ($ (-1117) (-1200 (-661)))) (-15 -2893 ($ (-1117) (-1200 (-659)))) (-15 -2893 ($ (-1117) (-1200 (-654)))) (-15 -2893 ($ (-1117) (-649 (-300 (-661))))) (-15 -2893 ($ (-1117) (-649 (-300 (-659))))) (-15 -2893 ($ (-1117) (-649 (-300 (-654))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-661))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-659))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-654))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-661)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-659)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-654)))) (-15 -2893 ($ (-1117) (-300 (-537)))) (-15 -2893 ($ (-1117) (-300 (-363)))) (-15 -2893 ($ (-1117) (-300 (-160 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-537))))) (-15 -2893 ($ (-1117) (-649 (-300 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-537))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-363))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-537)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-363)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363))))) (-15 -1546 ($ (-606 $))) (-15 -3214 ($)) (-15 -2751 ($)) (-15 -2138 ($ (-606 (-816)))) (-15 -2394 ($ (-1117) (-606 (-1117)))) (-15 -2076 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3360 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $)) (-15 -2875 ((-1205) $)) (-15 -2586 ((-1049) $)) (-15 -3098 ((-1064) (-1064))))) -((-2330 (((-111) $ $) NIL)) (-2280 (((-111) $) 11)) (-4270 (($ |#1|) 8)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1234 (($ |#1|) 9)) (-2341 (((-816) $) 17)) (-2449 ((|#1| $) 12)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 19))) -(((-315 |#1|) (-13 (-807) (-10 -8 (-15 -4270 ($ |#1|)) (-15 -1234 ($ |#1|)) (-15 -2280 ((-111) $)) (-15 -2449 (|#1| $)))) (-807)) (T -315)) -((-4270 (*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) (-1234 (*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-315 *3)) (-4 *3 (-807)))) (-2449 (*1 *2 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807))))) -(-13 (-807) (-10 -8 (-15 -4270 ($ |#1|)) (-15 -1234 ($ |#1|)) (-15 -2280 ((-111) $)) (-15 -2449 (|#1| $)))) -((-3667 (((-314) (-1117) (-905 (-537))) 23)) (-3154 (((-314) (-1117) (-905 (-537))) 27)) (-1775 (((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537)))) 26) (((-314) (-1117) (-905 (-537)) (-905 (-537))) 24)) (-1479 (((-314) (-1117) (-905 (-537))) 31))) -(((-316) (-10 -7 (-15 -3667 ((-314) (-1117) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-905 (-537)) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537))))) (-15 -3154 ((-314) (-1117) (-905 (-537)))) (-15 -1479 ((-314) (-1117) (-905 (-537)))))) (T -316)) -((-1479 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1038 (-905 (-537)))) (-5 *2 (-314)) (-5 *1 (-316)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316))))) -(-10 -7 (-15 -3667 ((-314) (-1117) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-905 (-537)) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537))))) (-15 -3154 ((-314) (-1117) (-905 (-537)))) (-15 -1479 ((-314) (-1117) (-905 (-537))))) -((-1612 (((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)) 33))) -(((-317 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 ((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-347) (-1176 |#5|) (-1176 (-391 |#6|)) (-326 |#5| |#6| |#7|)) (T -317)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-320 *5 *6 *7 *8)) (-4 *5 (-347)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *9 (-347)) (-4 *10 (-1176 *9)) (-4 *11 (-1176 (-391 *10))) (-5 *2 (-320 *9 *10 *11 *12)) (-5 *1 (-317 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-326 *9 *10 *11))))) -(-10 -7 (-15 -1612 ((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)))) -((-2315 (((-111) $) 14))) -(((-318 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2315 ((-111) |#1|))) (-319 |#2| |#3| |#4| |#5|) (-347) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -318)) -NIL -(-10 -8 (-15 -2315 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3195 (($ $) 26)) (-2315 (((-111) $) 25)) (-1654 (((-1100) $) 9)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 32)) (-2528 (((-1064) $) 10)) (-1524 (((-3 |#4| "failed") $) 24)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-537)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20))) -(((-319 |#1| |#2| |#3| |#4|) (-134) (-347) (-1176 |t#1|) (-1176 (-391 |t#2|)) (-326 |t#1| |t#2| |t#3|)) (T -319)) -((-3754 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-397 *4 (-391 *4) *5 *6)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-397 *4 (-391 *4) *5 *6)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-4 *3 (-347)) (-4 *1 (-319 *3 *4 *5 *6)))) (-1636 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *3 *4 *5 *2)) (-4 *2 (-326 *3 *4 *5)))) (-1636 (*1 *1 *2 *2) (-12 (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) (-4 *1 (-319 *2 *3 *4 *5)) (-4 *5 (-326 *2 *3 *4)))) (-1636 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-537)) (-4 *2 (-347)) (-4 *4 (-1176 *2)) (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *2 *4 *5 *6)) (-4 *6 (-326 *2 *4 *5)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-2 (|:| -3119 (-397 *4 (-391 *4) *5 *6)) (|:| |principalPart| *6))))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) (-4 *5 (-326 *2 *3 *4)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-111)))) (-1524 (*1 *2 *1) (|partial| -12 (-4 *1 (-319 *3 *4 *5 *2)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *2 (-326 *3 *4 *5)))) (-1636 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-347)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-4 *1 (-319 *4 *3 *5 *2)) (-4 *2 (-326 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3754 ((-397 |t#2| (-391 |t#2|) |t#3| |t#4|) $)) (-15 -1636 ($ (-397 |t#2| (-391 |t#2|) |t#3| |t#4|))) (-15 -1636 ($ |t#4|)) (-15 -1636 ($ |t#1| |t#1|)) (-15 -1636 ($ |t#1| |t#1| (-537))) (-15 -4035 ((-2 (|:| -3119 (-397 |t#2| (-391 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3195 ($ $)) (-15 -2315 ((-111) $)) (-15 -1524 ((-3 |t#4| "failed") $)) (-15 -1636 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ $) 33)) (-2315 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2285 (((-1200 |#4|) $) 125)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 31)) (-2528 (((-1064) $) NIL)) (-1524 (((-3 |#4| "failed") $) 36)) (-2427 (((-1200 |#4|) $) 118)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-537)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2341 (((-816) $) 17)) (-2928 (($) 14 T CONST)) (-2244 (((-111) $ $) 20)) (-2329 (($ $) 27) (($ $ $) NIL)) (-2318 (($ $ $) 25)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 23))) -(((-320 |#1| |#2| |#3| |#4|) (-13 (-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2427 ((-1200 |#4|) $)) (-15 -2285 ((-1200 |#4|) $)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -320)) -((-2427 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *6 (-326 *3 *4 *5)))) (-2285 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *6 (-326 *3 *4 *5))))) -(-13 (-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2427 ((-1200 |#4|) $)) (-15 -2285 ((-1200 |#4|) $)))) -((-4116 (($ $ (-1117) |#2|) NIL) (($ $ (-606 (-1117)) (-606 |#2|)) 20) (($ $ (-606 (-278 |#2|))) 15) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-606 |#2|) (-606 |#2|)) NIL)) (-1922 (($ $ |#2|) 11))) -(((-321 |#1| |#2|) (-10 -8 (-15 -1922 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1117) |#2|))) (-322 |#2|) (-1045)) (T -321)) -NIL -(-10 -8 (-15 -1922 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1117) |#2|))) -((-1612 (($ (-1 |#1| |#1|) $) 6)) (-4116 (($ $ (-1117) |#1|) 17 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 16 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-278 |#1|))) 15 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 14 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-293 |#1|))) (($ $ (-606 |#1|) (-606 |#1|)) 12 (|has| |#1| (-293 |#1|)))) (-1922 (($ $ |#1|) 11 (|has| |#1| (-270 |#1| |#1|))))) -(((-322 |#1|) (-134) (-1045)) (T -322)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1045))))) -(-13 (-10 -8 (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-270 |t#1| |t#1|)) (-6 (-270 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-293 |t#1|)) (-6 (-293 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495 (-1117) |t#1|)) (-6 (-495 (-1117) |t#1|)) |%noBranch|))) -(((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) NIL)) (-3088 (((-111)) 91) (((-111) (-111)) 92)) (-3852 (((-606 (-578 $)) $) NIL)) (-1403 (($ $) NIL)) (-1247 (($ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-3633 (($ $) NIL)) (-1378 (($ $) NIL)) (-4270 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-300 |#3|)) 71) (((-3 $ "failed") (-1117)) 97) (((-3 $ "failed") (-300 (-537))) 59 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-391 (-905 (-537)))) 65 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-905 (-537))) 60 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-300 (-363))) 89 (|has| |#3| (-989 (-363)))) (((-3 $ "failed") (-391 (-905 (-363)))) 83 (|has| |#3| (-989 (-363)))) (((-3 $ "failed") (-905 (-363))) 78 (|has| |#3| (-989 (-363))))) (-3958 (((-578 $) $) NIL) ((|#3| $) NIL) (($ (-300 |#3|)) 72) (($ (-1117)) 98) (($ (-300 (-537))) 61 (|has| |#3| (-989 (-537)))) (($ (-391 (-905 (-537)))) 66 (|has| |#3| (-989 (-537)))) (($ (-905 (-537))) 62 (|has| |#3| (-989 (-537)))) (($ (-300 (-363))) 90 (|has| |#3| (-989 (-363)))) (($ (-391 (-905 (-363)))) 84 (|has| |#3| (-989 (-363)))) (($ (-905 (-363))) 80 (|has| |#3| (-989 (-363))))) (-3490 (((-3 $ "failed") $) NIL)) (-3338 (($) 10)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-2040 (((-1113 $) (-578 $)) NIL (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-1970 (($ $) 94)) (-2180 (($ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) 93) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-4185 (($ $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL)) (-2529 (($ $) NIL (|has| $ (-998)))) (-1389 (($ $) NIL)) (-1234 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ |#3|) NIL) (($ (-537)) NIL) (((-300 |#3|) $) 96)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) NIL)) (-1328 (($ $) NIL)) (-1300 (($ $) NIL)) (-1314 (($ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) 95 T CONST)) (-2943 (($) 24 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) -(((-323 |#1| |#2| |#3|) (-13 (-286) (-37 |#3|) (-989 |#3|) (-853 (-1117)) (-10 -8 (-15 -3958 ($ (-300 |#3|))) (-15 -1516 ((-3 $ "failed") (-300 |#3|))) (-15 -3958 ($ (-1117))) (-15 -1516 ((-3 $ "failed") (-1117))) (-15 -2341 ((-300 |#3|) $)) (IF (|has| |#3| (-989 (-537))) (PROGN (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537))))) |%noBranch|) (IF (|has| |#3| (-989 (-363))) (PROGN (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -2209 ($ $)) (-15 -3633 ($ $)) (-15 -4185 ($ $)) (-15 -2180 ($ $)) (-15 -1970 ($ $)) (-15 -4270 ($ $)) (-15 -1234 ($ $)) (-15 -1247 ($ $)) (-15 -1300 ($ $)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1378 ($ $)) (-15 -1389 ($ $)) (-15 -1403 ($ $)) (-15 -3338 ($)) (-15 -3757 ((-606 (-1117)) $)) (-15 -3088 ((-111))) (-15 -3088 ((-111) (-111))))) (-606 (-1117)) (-606 (-1117)) (-371)) (T -323)) -((-3958 (*1 *1 *2) (-12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-300 *5)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-2209 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-4185 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-4270 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1234 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1300 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1378 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1403 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3338 (*1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-323 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-371)))) (-3088 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371))))) -(-13 (-286) (-37 |#3|) (-989 |#3|) (-853 (-1117)) (-10 -8 (-15 -3958 ($ (-300 |#3|))) (-15 -1516 ((-3 $ "failed") (-300 |#3|))) (-15 -3958 ($ (-1117))) (-15 -1516 ((-3 $ "failed") (-1117))) (-15 -2341 ((-300 |#3|) $)) (IF (|has| |#3| (-989 (-537))) (PROGN (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537))))) |%noBranch|) (IF (|has| |#3| (-989 (-363))) (PROGN (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -2209 ($ $)) (-15 -3633 ($ $)) (-15 -4185 ($ $)) (-15 -2180 ($ $)) (-15 -1970 ($ $)) (-15 -4270 ($ $)) (-15 -1234 ($ $)) (-15 -1247 ($ $)) (-15 -1300 ($ $)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1378 ($ $)) (-15 -1389 ($ $)) (-15 -1403 ($ $)) (-15 -3338 ($)) (-15 -3757 ((-606 (-1117)) $)) (-15 -3088 ((-111))) (-15 -3088 ((-111) (-111))))) -((-1612 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-324 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|))) (-1158) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-1158) (-1176 |#5|) (-1176 (-391 |#6|)) (-326 |#5| |#6| |#7|)) (T -324)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1158)) (-4 *8 (-1158)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *9 (-1176 *8)) (-4 *2 (-326 *8 *9 *10)) (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-326 *5 *6 *7)) (-4 *10 (-1176 (-391 *9)))))) -(-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|))) -((-1783 (((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) $) 38)) (-3447 (($ (-1200 (-391 |#3|)) (-1200 $)) NIL) (($ (-1200 (-391 |#3|))) NIL) (($ (-1200 |#3|) |#3|) 161)) (-4203 (((-1200 $) (-1200 $)) 145)) (-3544 (((-606 (-606 |#2|))) 119)) (-1949 (((-111) |#2| |#2|) 73)) (-1351 (($ $) 139)) (-4147 (((-731)) 31)) (-4205 (((-1200 $) (-1200 $)) 198)) (-3941 (((-606 (-905 |#2|)) (-1117)) 110)) (-1600 (((-111) $) 158)) (-3766 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-1787 (((-3 |#3| "failed")) 50)) (-2091 (((-731)) 170)) (-1922 ((|#2| $ |#2| |#2|) 132)) (-2322 (((-3 |#3| "failed")) 68)) (-3456 (($ $ (-1 (-391 |#3|) (-391 |#3|)) (-731)) NIL) (($ $ (-1 (-391 |#3|) (-391 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-3559 (((-1200 $) (-1200 $)) 151)) (-3450 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2743 (((-111)) 33))) -(((-325 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3544 ((-606 (-606 |#2|)))) (-15 -3941 ((-606 (-905 |#2|)) (-1117))) (-15 -3450 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -2322 ((-3 |#3| "failed"))) (-15 -1922 (|#2| |#1| |#2| |#2|)) (-15 -1351 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3766 ((-111) |#1| |#3|)) (-15 -3766 ((-111) |#1| |#2|)) (-15 -3447 (|#1| (-1200 |#3|) |#3|)) (-15 -1783 ((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4203 ((-1200 |#1|) (-1200 |#1|))) (-15 -4205 ((-1200 |#1|) (-1200 |#1|))) (-15 -3559 ((-1200 |#1|) (-1200 |#1|))) (-15 -3766 ((-111) |#1|)) (-15 -1600 ((-111) |#1|)) (-15 -1949 ((-111) |#2| |#2|)) (-15 -2743 ((-111))) (-15 -2091 ((-731))) (-15 -4147 ((-731))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)) (-731))) (-15 -3447 (|#1| (-1200 (-391 |#3|)))) (-15 -3447 (|#1| (-1200 (-391 |#3|)) (-1200 |#1|)))) (-326 |#2| |#3| |#4|) (-1158) (-1176 |#2|) (-1176 (-391 |#3|))) (T -325)) -((-4147 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-2091 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-2743 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-111)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-1949 (*1 *2 *3 *3) (-12 (-4 *3 (-1158)) (-4 *5 (-1176 *3)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-111)) (-5 *1 (-325 *4 *3 *5 *6)) (-4 *4 (-326 *3 *5 *6)))) (-2322 (*1 *2) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) (-4 *3 (-326 *4 *2 *5)))) (-1787 (*1 *2) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) (-4 *3 (-326 *4 *2 *5)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-606 (-905 *5))) (-5 *1 (-325 *4 *5 *6 *7)) (-4 *4 (-326 *5 *6 *7)))) (-3544 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-606 (-606 *4))) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6))))) -(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3544 ((-606 (-606 |#2|)))) (-15 -3941 ((-606 (-905 |#2|)) (-1117))) (-15 -3450 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -2322 ((-3 |#3| "failed"))) (-15 -1922 (|#2| |#1| |#2| |#2|)) (-15 -1351 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3766 ((-111) |#1| |#3|)) (-15 -3766 ((-111) |#1| |#2|)) (-15 -3447 (|#1| (-1200 |#3|) |#3|)) (-15 -1783 ((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4203 ((-1200 |#1|) (-1200 |#1|))) (-15 -4205 ((-1200 |#1|) (-1200 |#1|))) (-15 -3559 ((-1200 |#1|) (-1200 |#1|))) (-15 -3766 ((-111) |#1|)) (-15 -1600 ((-111) |#1|)) (-15 -1949 ((-111) |#2| |#2|)) (-15 -2743 ((-111))) (-15 -2091 ((-731))) (-15 -4147 ((-731))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)) (-731))) (-15 -3447 (|#1| (-1200 (-391 |#3|)))) (-15 -3447 (|#1| (-1200 (-391 |#3|)) (-1200 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 193)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (|has| (-391 |#2|) (-347)))) (-3377 (($ $) 92 (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) 94 (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) 44) (((-649 (-391 |#2|))) 59)) (-1428 (((-391 |#2|) $) 50)) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 111 (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) 112 (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) 102 (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) 85 (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) 210)) (-3038 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) 163)) (-3958 (((-537) $) 167 (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) 165 (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) 162)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) 46) (($ (-1200 (-391 |#2|))) 62) (($ (-1200 |#2|) |#2|) 192)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) 106 (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) 51) (((-649 (-391 |#2|)) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) 159) (((-649 (-391 |#2|)) (-649 $)) 158)) (-4203 (((-1200 $) (-1200 $)) 198)) (-3195 (($ |#3|) 155) (((-3 $ "failed") (-391 |#3|)) 152 (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3544 (((-606 (-606 |#1|))) 179 (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) 214)) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) 207)) (-1999 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-3539 (($ $ $) 105 (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| (-391 |#2|) (-347)))) (-1351 (($ $) 185)) (-4145 (($) 146 (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) 147 (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) 138 (|has| (-391 |#2|) (-333))) (($ $) 137 (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) 113 (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) 149 (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) 135 (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) 30)) (-4147 (((-731)) 217)) (-4205 (((-1200 $) (-1200 $)) 199)) (-2055 (((-391 |#2|) $) 49)) (-3941 (((-606 (-905 |#1|)) (-1117)) 180 (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) 139 (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) 42 (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) 87 (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) 153)) (-2183 (($ (-606 $)) 98 (|has| (-391 |#2|) (-347))) (($ $ $) 97 (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) 9)) (-3184 (((-649 (-391 |#2|))) 194)) (-3993 (((-649 (-391 |#2|))) 196)) (-3865 (($ $) 114 (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 190)) (-1734 (((-649 (-391 |#2|))) 195)) (-2125 (((-649 (-391 |#2|))) 197)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 191)) (-1782 (((-1200 $)) 203)) (-3778 (((-1200 $)) 204)) (-1600 (((-111) $) 202)) (-3766 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3956 (($) 140 (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) 182)) (-2528 (((-1064) $) 10)) (-2091 (((-731)) 216)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) 96 (|has| (-391 |#2|) (-347))) (($ $ $) 95 (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) 110 (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) 90 (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) 103 (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) 184)) (-2322 (((-3 |#2| "failed")) 183)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) 45) (((-391 |#2|)) 58)) (-3030 (((-731) $) 148 (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) 136 (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) 120 (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) 119 (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-606 (-1117)) (-606 (-731))) 127 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117) (-731)) 128 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-606 (-1117))) 129 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117)) 130 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-731)) 132 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) 134 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) 151 (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 156)) (-3553 (($) 145 (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) 48) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) 47) (((-1200 (-391 |#2|)) $) 64) (((-649 (-391 |#2|)) (-1200 $)) 63)) (-3996 (((-1200 (-391 |#2|)) $) 61) (($ (-1200 (-391 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) 200)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 |#2|)) 35) (($ (-391 (-537))) 84 (-1533 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-989 (-391 (-537)))))) (($ $) 89 (|has| (-391 |#2|) (-347)))) (-2644 (($ $) 141 (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) 41 (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) 43)) (-3654 (((-731)) 28)) (-3735 (((-111)) 213)) (-3281 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2122 (((-1200 $)) 65)) (-3276 (((-111) $ $) 93 (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2743 (((-111)) 215)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) 122 (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) 121 (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) 123 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117) (-731)) 124 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-606 (-1117))) 125 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117)) 126 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-731)) 131 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) 133 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 118 (|has| (-391 |#2|) (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 115 (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 |#2|)) 37) (($ (-391 |#2|) $) 36) (($ (-391 (-537)) $) 117 (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) 116 (|has| (-391 |#2|) (-347))))) -(((-326 |#1| |#2| |#3|) (-134) (-1158) (-1176 |t#1|) (-1176 (-391 |t#2|))) (T -326)) -((-4147 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) (-2091 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) (-2743 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1949 (*1 *2 *3 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3735 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3281 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3281 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-2205 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-1853 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1999 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1999 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-3778 (*1 *2) (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) (-1782 (*1 *2) (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-4205 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-2125 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-3993 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-1734 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-3184 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4))))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4))))) (-2921 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-2 (|:| |num| (-649 *5)) (|:| |den| *5))))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))))) (-1922 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))))) (-2322 (*1 *2) (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3)))) (-1787 (*1 *2) (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3)))) (-3450 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-1158)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-326 *4 *5 *6)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *4 (-347)) (-5 *2 (-606 (-905 *4))))) (-3544 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *3 (-352)) (-5 *2 (-606 (-606 *3)))))) -(-13 (-685 (-391 |t#2|) |t#3|) (-10 -8 (-15 -4147 ((-731))) (-15 -2091 ((-731))) (-15 -2743 ((-111))) (-15 -1949 ((-111) |t#1| |t#1|)) (-15 -3735 ((-111))) (-15 -3281 ((-111) |t#1|)) (-15 -3281 ((-111) |t#2|)) (-15 -2205 ((-111))) (-15 -3038 ((-111) |t#1|)) (-15 -3038 ((-111) |t#2|)) (-15 -1853 ((-111))) (-15 -1999 ((-111) |t#1|)) (-15 -1999 ((-111) |t#2|)) (-15 -3778 ((-1200 $))) (-15 -1782 ((-1200 $))) (-15 -1600 ((-111) $)) (-15 -3766 ((-111) $)) (-15 -3559 ((-1200 $) (-1200 $))) (-15 -4205 ((-1200 $) (-1200 $))) (-15 -4203 ((-1200 $) (-1200 $))) (-15 -2125 ((-649 (-391 |t#2|)))) (-15 -3993 ((-649 (-391 |t#2|)))) (-15 -1734 ((-649 (-391 |t#2|)))) (-15 -3184 ((-649 (-391 |t#2|)))) (-15 -1783 ((-2 (|:| |num| (-1200 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3447 ($ (-1200 |t#2|) |t#2|)) (-15 -3984 ((-2 (|:| |num| (-1200 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2921 ($ (-1200 |t#2|) |t#2|)) (-15 -3307 ((-2 (|:| |num| (-649 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3766 ((-111) $ |t#1|)) (-15 -3766 ((-111) $ |t#2|)) (-15 -3456 ($ $ (-1 |t#2| |t#2|))) (-15 -1351 ($ $)) (-15 -1922 (|t#1| $ |t#1| |t#1|)) (-15 -2322 ((-3 |t#2| "failed"))) (-15 -1787 ((-3 |t#2| "failed"))) (-15 -3450 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-347)) (-15 -3941 ((-606 (-905 |t#1|)) (-1117))) |%noBranch|) (IF (|has| |t#1| (-352)) (-15 -3544 ((-606 (-606 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-37 #1=(-391 |#2|)) . T) ((-37 $) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-100) . T) ((-110 #0# #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-139))) ((-141) |has| (-391 |#2|) (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 |#3|) . T) ((-216 #1#) |has| (-391 |#2|) (-347)) ((-218) -1533 (|has| (-391 |#2|) (-333)) (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347)))) ((-228) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-274) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-291) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-347) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-386) |has| (-391 |#2|) (-333)) ((-352) -1533 (|has| (-391 |#2|) (-352)) (|has| (-391 |#2|) (-333))) ((-333) |has| (-391 |#2|) (-333)) ((-354 #1# |#3|) . T) ((-393 #1# |#3|) . T) ((-361 #1#) . T) ((-395 #1#) . T) ((-435) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-529) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-609 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-609 #1#) . T) ((-609 $) . T) ((-602 #1#) . T) ((-602 (-537)) |has| (-391 |#2|) (-602 (-537))) ((-678 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-678 #1#) . T) ((-678 $) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-685 #1# |#3|) . T) ((-687) . T) ((-853 (-1117)) -12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) ((-873) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-989 (-391 (-537))) |has| (-391 |#2|) (-989 (-391 (-537)))) ((-989 #1#) . T) ((-989 (-537)) |has| (-391 |#2|) (-989 (-537))) ((-1004 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-1004 #1#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| (-391 |#2|) (-333)) ((-1158) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) -(((-327 |#1| |#2|) (-13 (-313 (-863 |#1|)) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-874) (-874)) (T -327)) -((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-327 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874))))) -(-13 (-313 (-863 |#1|)) (-10 -7 (-15 -1267 ((-911 (-1064)))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 46)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 43 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 115)) (-3958 ((|#1| $) 86)) (-3447 (($ (-1200 |#1|)) 104)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 98 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 130 (|has| |#1| (-352)))) (-2974 (((-111) $) 49 (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) 47 (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 132 (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 90) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 140 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 147)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 71 (|has| |#1| (-352)))) (-2933 (((-111) $) 118)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) 44)) (-1524 (($) 128 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 93 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) 67) (((-874)) 68)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) 131 (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) 125 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) 96)) (-3553 (($) 129 (|has| |#1| (-352)))) (-3254 (($) 137 (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 59) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 143) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 75)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 139)) (-2122 (((-1200 $)) 117) (((-1200 $) (-874)) 73)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 32 T CONST)) (-2943 (($) 19 T CONST)) (-1791 (($ $) 81 (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 48)) (-2340 (($ $ $) 145) (($ $ |#1|) 146)) (-2329 (($ $) 127) (($ $ $) NIL)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) 149) (($ $ (-731)) 150) (($ $ (-537)) 148)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 77) (($ $ $) 76) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) -(((-328 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-333) (-1113 |#1|)) (T -328)) -((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-328 *3 *4)) (-4 *3 (-333)) (-14 *4 (-1113 *3))))) -(-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-329 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-333) (-874)) (T -329)) -((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-329 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) -(-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) -((-1322 (((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 42)) (-2409 (((-911 (-1064)) (-1113 |#1|)) 85)) (-3634 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|)) 78)) (-2387 (((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 86)) (-3394 (((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874)) 13)) (-2443 (((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)) 18))) -(((-330 |#1|) (-10 -7 (-15 -2409 ((-911 (-1064)) (-1113 |#1|))) (-15 -3634 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|))) (-15 -2387 ((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -1322 ((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -3394 ((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874))) (-15 -2443 ((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)))) (-333)) (T -330)) -((-2443 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-3 (-1113 *4) (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064))))))) (-5 *1 (-330 *4)) (-4 *4 (-333)))) (-3394 (*1 *2 *3) (|partial| -12 (-5 *3 (-874)) (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-5 *1 (-330 *4)) (-4 *4 (-333)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-731)) (-5 *1 (-330 *4)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-649 *4)) (-5 *1 (-330 *4)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-5 *1 (-330 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-911 (-1064))) (-5 *1 (-330 *4))))) -(-10 -7 (-15 -2409 ((-911 (-1064)) (-1113 |#1|))) (-15 -3634 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|))) (-15 -2387 ((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -1322 ((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -3394 ((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874))) (-15 -2443 ((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)))) -((-2341 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -2341 (|#3| |#1|)) (-15 -2341 (|#1| |#3|))) (-313 |#2|) (-333) (-313 |#2|)) (T -331)) -((-2341 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *2 *4 *3)) (-4 *3 (-313 *4)))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *3 *4 *2)) (-4 *3 (-313 *4))))) -(-10 -7 (-15 -2341 (|#3| |#1|)) (-15 -2341 (|#1| |#3|))) -((-2974 (((-111) $) 52)) (-4231 (((-793 (-874)) $) 21) (((-874) $) 53)) (-2824 (((-3 $ "failed") $) 16)) (-3956 (($) 9)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 95)) (-3030 (((-3 (-731) "failed") $ $) 73) (((-731) $) 61)) (-3456 (($ $ (-731)) NIL) (($ $) 8)) (-3553 (($) 46)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 34)) (-2644 (((-3 $ "failed") $) 40) (($ $) 39))) -(((-332 |#1|) (-10 -8 (-15 -4231 ((-874) |#1|)) (-15 -3030 ((-731) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3553 (|#1|)) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -2644 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3030 ((-3 (-731) "failed") |#1| |#1|)) (-15 -4231 ((-793 (-874)) |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) (-333)) (T -332)) -NIL -(-10 -8 (-15 -4231 ((-874) |#1|)) (-15 -3030 ((-731) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3553 (|#1|)) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -2644 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3030 ((-3 (-731) "failed") |#1| |#1|)) (-15 -4231 ((-793 (-874)) |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1387 (((-1127 (-874) (-731)) (-537)) 90)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3151 (((-731)) 100)) (-3832 (($) 17 T CONST)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 103)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4145 (($) 88)) (-2974 (((-111) $) 87)) (-2642 (($ $) 76) (($ $ (-731)) 75)) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 78) (((-874) $) 85)) (-2836 (((-111) $) 30)) (-2824 (((-3 $ "failed") $) 99)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2334 (((-874) $) 102)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 98 T CONST)) (-2009 (($ (-874)) 101)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 91)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 77) (((-731) $) 86)) (-3456 (($ $ (-731)) 96) (($ $) 94)) (-3553 (($) 89)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 92)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-2644 (((-3 $ "failed") $) 79) (($ $) 93)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-731)) 97) (($ $) 95)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) -(((-333) (-134)) (T -333)) -((-2644 (*1 *1 *1) (-4 *1 (-333))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-333)) (-5 *2 (-1200 *1)))) (-3570 (*1 *2) (-12 (-4 *1 (-333)) (-5 *2 (-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))))) (-1387 (*1 *2 *3) (-12 (-4 *1 (-333)) (-5 *3 (-537)) (-5 *2 (-1127 (-874) (-731))))) (-3553 (*1 *1) (-4 *1 (-333))) (-4145 (*1 *1) (-4 *1 (-333))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-111)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-731)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-874)))) (-3242 (*1 *2) (-12 (-4 *1 (-333)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-386) (-352) (-1093) (-218) (-10 -8 (-15 -2644 ($ $)) (-15 -2466 ((-3 (-1200 $) "failed") (-649 $))) (-15 -3570 ((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537)))))) (-15 -1387 ((-1127 (-874) (-731)) (-537))) (-15 -3553 ($)) (-15 -4145 ($)) (-15 -2974 ((-111) $)) (-15 -3030 ((-731) $)) (-15 -4231 ((-874) $)) (-15 -3242 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-579 (-816)) . T) ((-163) . T) ((-218) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-386) . T) ((-352) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) . T) ((-1158) . T)) -((-3337 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|) 53)) (-3778 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))) 51))) -(((-334 |#1| |#2| |#3|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|))) (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $)))) (-1176 |#1|) (-393 |#1| |#2|)) (T -334)) -((-3337 (*1 *2 *3) (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3778 (*1 *2) (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) -(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064)))))) NIL)) (-2469 (((-649 (-863 |#1|))) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) -(((-335 |#1| |#2|) (-13 (-313 (-863 |#1|)) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 (-863 |#1|)))) (-15 -1322 ((-731))))) (-874) (-874)) (T -335)) -((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 (-863 *3)) (|:| -2009 (-1064)))))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 (-863 *3))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874))))) -(-13 (-313 (-863 |#1|)) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 (-863 |#1|)))) (-15 -1322 ((-731))))) -((-2330 (((-111) $ $) 62)) (-1656 (((-111) $) 75)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) 93) (($ $ (-874)) 91 (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 149 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) 90)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) 163 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 113)) (-3958 ((|#1| $) 92)) (-3447 (($ (-1200 |#1|)) 59)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 159 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 150 (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 99 (|has| |#1| (-352)))) (-3870 (((-111) $) 176 (|has| |#1| (-352)))) (-2055 ((|#1| $) 95) (($ $ (-874)) 94 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 190) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 135 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) 74 (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) 71 (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) 83 (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) 70 (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 193)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 138 (|has| |#1| (-352)))) (-2933 (((-111) $) 109)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 84)) (-2469 (((-649 |#1|)) 88)) (-1524 (($) 97 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 151 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) 152)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) 63)) (-2529 (((-1113 |#1|)) 153)) (-3553 (($) 134 (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 107) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 125) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 58)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 157)) (-2122 (((-1200 $)) 173) (((-1200 $) (-874)) 102)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 30 T CONST)) (-2943 (($) 22 T CONST)) (-1791 (($ $) 108 (|has| |#1| (-352))) (($ $ (-731)) 100 (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 184)) (-2340 (($ $ $) 105) (($ $ |#1|) 106)) (-2329 (($ $) 178) (($ $ $) 182)) (-2318 (($ $ $) 180)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 139)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 187) (($ $ $) 143) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) -(((-336 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) (-333) (-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (T -336)) -((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) *2)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))))))) -(-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) NIL)) (-2469 (((-649 |#1|)) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-337 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) (-333) (-874)) (T -337)) -((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874)))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) -(-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) -(((-338 |#1| |#2|) (-313 (-863 |#1|)) (-874) (-874)) (T -338)) -NIL -(-313 (-863 |#1|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 120 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) 140 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 93)) (-3958 ((|#1| $) 90)) (-3447 (($ (-1200 |#1|)) 85)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 82 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 42 (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 121 (|has| |#1| (-352)))) (-3870 (((-111) $) 74 (|has| |#1| (-352)))) (-2055 ((|#1| $) 39) (($ $ (-874)) 43 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 65) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 97 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 95 (|has| |#1| (-352)))) (-2933 (((-111) $) 142)) (-2528 (((-1064) $) NIL)) (-1524 (($) 36 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 115 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) 139)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) 59)) (-2529 (((-1113 |#1|)) 88)) (-3553 (($) 126 (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 53) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 138) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 87)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 144)) (-2122 (((-1200 $)) 109) (((-1200 $) (-874)) 49)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 111 T CONST)) (-2943 (($) 32 T CONST)) (-1791 (($ $) 68 (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 107)) (-2340 (($ $ $) 99) (($ $ |#1|) 100)) (-2329 (($ $) 80) (($ $ $) 105)) (-2318 (($ $ $) 103)) (** (($ $ (-874)) NIL) (($ $ (-731)) 44) (($ $ (-537)) 130)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 78) (($ $ $) 56) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-339 |#1| |#2|) (-313 |#1|) (-333) (-1113 |#1|)) (T -339)) -NIL -(-313 |#1|) -((-1865 ((|#1| (-1113 |#2|)) 52))) -(((-340 |#1| |#2|) (-10 -7 (-15 -1865 (|#1| (-1113 |#2|)))) (-13 (-386) (-10 -7 (-15 -2341 (|#1| |#2|)) (-15 -2334 ((-874) |#1|)) (-15 -2122 ((-1200 |#1|) (-874))) (-15 -1791 (|#1| |#1|)))) (-333)) (T -340)) -((-1865 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-4 *2 (-13 (-386) (-10 -7 (-15 -2341 (*2 *4)) (-15 -2334 ((-874) *2)) (-15 -2122 ((-1200 *2) (-874))) (-15 -1791 (*2 *2))))) (-5 *1 (-340 *2 *4))))) -(-10 -7 (-15 -1865 (|#1| (-1113 |#2|)))) -((-2791 (((-911 (-1113 |#1|)) (-1113 |#1|)) 36)) (-1618 (((-1113 |#1|) (-874) (-874)) 113) (((-1113 |#1|) (-874)) 112)) (-2974 (((-111) (-1113 |#1|)) 84)) (-1640 (((-874) (-874)) 71)) (-1324 (((-874) (-874)) 74)) (-4029 (((-874) (-874)) 69)) (-3870 (((-111) (-1113 |#1|)) 88)) (-3331 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 101)) (-3466 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 104)) (-2820 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 103)) (-2525 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 102)) (-1833 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 98)) (-1604 (((-1113 |#1|) (-1113 |#1|)) 62)) (-3991 (((-1113 |#1|) (-874)) 107)) (-4182 (((-1113 |#1|) (-874)) 110)) (-3222 (((-1113 |#1|) (-874)) 109)) (-1623 (((-1113 |#1|) (-874)) 108)) (-1317 (((-1113 |#1|) (-874)) 105))) -(((-341 |#1|) (-10 -7 (-15 -2974 ((-111) (-1113 |#1|))) (-15 -3870 ((-111) (-1113 |#1|))) (-15 -4029 ((-874) (-874))) (-15 -1640 ((-874) (-874))) (-15 -1324 ((-874) (-874))) (-15 -1317 ((-1113 |#1|) (-874))) (-15 -3991 ((-1113 |#1|) (-874))) (-15 -1623 ((-1113 |#1|) (-874))) (-15 -3222 ((-1113 |#1|) (-874))) (-15 -4182 ((-1113 |#1|) (-874))) (-15 -1833 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3331 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2525 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2820 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3466 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -1618 ((-1113 |#1|) (-874))) (-15 -1618 ((-1113 |#1|) (-874) (-874))) (-15 -1604 ((-1113 |#1|) (-1113 |#1|))) (-15 -2791 ((-911 (-1113 |#1|)) (-1113 |#1|)))) (-333)) (T -341)) -((-2791 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-911 (-1113 *4))) (-5 *1 (-341 *4)) (-5 *3 (-1113 *4)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-1618 (*1 *2 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3466 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-2820 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-2525 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-3331 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-1833 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) -(-10 -7 (-15 -2974 ((-111) (-1113 |#1|))) (-15 -3870 ((-111) (-1113 |#1|))) (-15 -4029 ((-874) (-874))) (-15 -1640 ((-874) (-874))) (-15 -1324 ((-874) (-874))) (-15 -1317 ((-1113 |#1|) (-874))) (-15 -3991 ((-1113 |#1|) (-874))) (-15 -1623 ((-1113 |#1|) (-874))) (-15 -3222 ((-1113 |#1|) (-874))) (-15 -4182 ((-1113 |#1|) (-874))) (-15 -1833 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3331 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2525 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2820 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3466 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -1618 ((-1113 |#1|) (-874))) (-15 -1618 ((-1113 |#1|) (-874) (-874))) (-15 -1604 ((-1113 |#1|) (-1113 |#1|))) (-15 -2791 ((-911 (-1113 |#1|)) (-1113 |#1|)))) -((-2022 (((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|) 34))) -(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|))) (-333) (-1176 |#1|) (-1176 |#2|)) (T -342)) -((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *1 (-342 *4 *5 *3))))) -(-10 -7 (-15 -2022 ((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-343 |#1| |#2|) (-313 |#1|) (-333) (-874)) (T -343)) -NIL -(-313 |#1|) -((-3759 (((-111) (-606 (-905 |#1|))) 34)) (-2597 (((-606 (-905 |#1|)) (-606 (-905 |#1|))) 46)) (-3362 (((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|))) 41))) -(((-344 |#1| |#2|) (-10 -7 (-15 -3759 ((-111) (-606 (-905 |#1|)))) (-15 -3362 ((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|)))) (-15 -2597 ((-606 (-905 |#1|)) (-606 (-905 |#1|))))) (-435) (-606 (-1117))) (T -344)) -((-2597 (*1 *2 *2) (-12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) (-3362 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-111)) (-5 *1 (-344 *4 *5)) (-14 *5 (-606 (-1117)))))) -(-10 -7 (-15 -3759 ((-111) (-606 (-905 |#1|)))) (-15 -3362 ((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|)))) (-15 -2597 ((-606 (-905 |#1|)) (-606 (-905 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) 15)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-537) $ (-537)) NIL)) (-3572 (($ (-1 |#1| |#1|) $) 32)) (-1325 (($ (-1 (-537) (-537)) $) 24)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 26)) (-2528 (((-1064) $) NIL)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $) 28)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 38) (($ |#1|) NIL)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ |#1| (-537)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-345 |#1|) (-13 (-456) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-537))) (-15 -3151 ((-731) $)) (-15 -1628 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-537) (-537)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $)))) (-1045)) (T -345)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-1628 (*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-537) (-537))) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-345 *3)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-537))))) (-5 *1 (-345 *3)) (-4 *3 (-1045))))) -(-13 (-456) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-537))) (-15 -3151 ((-731) $)) (-15 -1628 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-537) (-537)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $)))) -((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 13)) (-3377 (($ $) 14)) (-2414 (((-402 $) $) 30)) (-2639 (((-111) $) 26)) (-3865 (($ $) 19)) (-2211 (($ $ $) 23) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) 31)) (-3515 (((-3 $ "failed") $ $) 22)) (-1930 (((-731) $) 25)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 35)) (-3276 (((-111) $ $) 16)) (-2340 (($ $ $) 33))) -(((-346 |#1|) (-10 -8 (-15 -2340 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) (-347)) (T -346)) -NIL -(-10 -8 (-15 -2340 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) -(((-347) (-134)) (T -347)) -((-2340 (*1 *1 *1 *1) (-4 *1 (-347)))) -(-13 (-291) (-1158) (-228) (-10 -8 (-15 -2340 ($ $ $)) (-6 -4298) (-6 -4292))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-2330 (((-111) $ $) 7)) (-3160 ((|#2| $ |#2|) 13)) (-1898 (($ $ (-1100)) 18)) (-2151 ((|#2| $) 14)) (-3309 (($ |#1|) 20) (($ |#1| (-1100)) 19)) (-3923 ((|#1| $) 16)) (-1654 (((-1100) $) 9)) (-3216 (((-1100) $) 15)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-1338 (($ $) 17)) (-2244 (((-111) $ $) 6))) -(((-348 |#1| |#2|) (-134) (-1045) (-1045)) (T -348)) -((-3309 (*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3309 (*1 *1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *1 (-348 *2 *4)) (-4 *2 (-1045)) (-4 *4 (-1045)))) (-1898 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1338 (*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-1100)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3160 (*1 *2 *1 *2) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -3309 ($ |t#1|)) (-15 -3309 ($ |t#1| (-1100))) (-15 -1898 ($ $ (-1100))) (-15 -1338 ($ $)) (-15 -3923 (|t#1| $)) (-15 -3216 ((-1100) $)) (-15 -2151 (|t#2| $)) (-15 -3160 (|t#2| $ |t#2|)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3160 ((|#1| $ |#1|) 30)) (-1898 (($ $ (-1100)) 22)) (-2012 (((-3 |#1| "failed") $) 29)) (-2151 ((|#1| $) 27)) (-3309 (($ (-372)) 21) (($ (-372) (-1100)) 20)) (-3923 (((-372) $) 24)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) 25)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 19)) (-1338 (($ $) 23)) (-2244 (((-111) $ $) 18))) -(((-349 |#1|) (-13 (-348 (-372) |#1|) (-10 -8 (-15 -2012 ((-3 |#1| "failed") $)))) (-1045)) (T -349)) -((-2012 (*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1045))))) -(-13 (-348 (-372) |#1|) (-10 -8 (-15 -2012 ((-3 |#1| "failed") $)))) -((-3822 (((-1200 (-649 |#2|)) (-1200 $)) 61)) (-4263 (((-649 |#2|) (-1200 $)) 120)) (-2624 ((|#2| $) 32)) (-4246 (((-649 |#2|) $ (-1200 $)) 123)) (-3800 (((-3 $ "failed") $) 75)) (-4260 ((|#2| $) 35)) (-3112 (((-1113 |#2|) $) 83)) (-2503 ((|#2| (-1200 $)) 106)) (-1889 (((-1113 |#2|) $) 28)) (-1855 (((-111)) 100)) (-3447 (($ (-1200 |#2|) (-1200 $)) 113)) (-3490 (((-3 $ "failed") $) 79)) (-2186 (((-111)) 95)) (-1684 (((-111)) 90)) (-3468 (((-111)) 53)) (-3699 (((-649 |#2|) (-1200 $)) 118)) (-4217 ((|#2| $) 31)) (-3486 (((-649 |#2|) $ (-1200 $)) 122)) (-3820 (((-3 $ "failed") $) 73)) (-3408 ((|#2| $) 34)) (-2818 (((-1113 |#2|) $) 82)) (-2757 ((|#2| (-1200 $)) 104)) (-4207 (((-1113 |#2|) $) 26)) (-2987 (((-111)) 99)) (-2631 (((-111)) 92)) (-2077 (((-111)) 51)) (-2415 (((-111)) 87)) (-3162 (((-111)) 101)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) 111)) (-3365 (((-111)) 97)) (-3678 (((-606 (-1200 |#2|))) 86)) (-2510 (((-111)) 98)) (-3750 (((-111)) 96)) (-3530 (((-111)) 46)) (-1972 (((-111)) 102))) -(((-350 |#1| |#2|) (-10 -8 (-15 -3112 ((-1113 |#2|) |#1|)) (-15 -2818 ((-1113 |#2|) |#1|)) (-15 -3678 ((-606 (-1200 |#2|)))) (-15 -3800 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 -1684 ((-111))) (-15 -2631 ((-111))) (-15 -2186 ((-111))) (-15 -2077 ((-111))) (-15 -3468 ((-111))) (-15 -2415 ((-111))) (-15 -1972 ((-111))) (-15 -3162 ((-111))) (-15 -1855 ((-111))) (-15 -2987 ((-111))) (-15 -3530 ((-111))) (-15 -2510 ((-111))) (-15 -3750 ((-111))) (-15 -3365 ((-111))) (-15 -1889 ((-1113 |#2|) |#1|)) (-15 -4207 ((-1113 |#2|) |#1|)) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4260 (|#2| |#1|)) (-15 -3408 (|#2| |#1|)) (-15 -2624 (|#2| |#1|)) (-15 -4217 (|#2| |#1|)) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|)))) (-351 |#2|) (-163)) (T -350)) -((-3365 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3750 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2510 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3530 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2987 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3162 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1972 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2415 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3468 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2077 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2186 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2631 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1684 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3678 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-606 (-1200 *4))) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4))))) -(-10 -8 (-15 -3112 ((-1113 |#2|) |#1|)) (-15 -2818 ((-1113 |#2|) |#1|)) (-15 -3678 ((-606 (-1200 |#2|)))) (-15 -3800 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 -1684 ((-111))) (-15 -2631 ((-111))) (-15 -2186 ((-111))) (-15 -2077 ((-111))) (-15 -3468 ((-111))) (-15 -2415 ((-111))) (-15 -1972 ((-111))) (-15 -3162 ((-111))) (-15 -1855 ((-111))) (-15 -2987 ((-111))) (-15 -3530 ((-111))) (-15 -2510 ((-111))) (-15 -3750 ((-111))) (-15 -3365 ((-111))) (-15 -1889 ((-1113 |#2|) |#1|)) (-15 -4207 ((-1113 |#2|) |#1|)) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4260 (|#2| |#1|)) (-15 -3408 (|#2| |#1|)) (-15 -2624 (|#2| |#1|)) (-15 -4217 (|#2| |#1|)) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1397 (((-3 $ "failed")) 37 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) 78)) (-2568 (((-1200 $)) 81)) (-3832 (($) 17 T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 40 (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) 38 (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) 65)) (-2624 ((|#1| $) 74)) (-4246 (((-649 |#1|) $ (-1200 $)) 76)) (-3800 (((-3 $ "failed") $) 45 (|has| |#1| (-529)))) (-2541 (($ $ (-874)) 28)) (-4260 ((|#1| $) 72)) (-3112 (((-1113 |#1|) $) 42 (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) 67)) (-1889 (((-1113 |#1|) $) 63)) (-1855 (((-111)) 57)) (-3447 (($ (-1200 |#1|) (-1200 $)) 69)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-529)))) (-3705 (((-874)) 80)) (-3364 (((-111)) 54)) (-1891 (($ $ (-874)) 33)) (-2186 (((-111)) 50)) (-1684 (((-111)) 48)) (-3468 (((-111)) 52)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 41 (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) 39 (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) 66)) (-4217 ((|#1| $) 75)) (-3486 (((-649 |#1|) $ (-1200 $)) 77)) (-3820 (((-3 $ "failed") $) 46 (|has| |#1| (-529)))) (-3060 (($ $ (-874)) 29)) (-3408 ((|#1| $) 73)) (-2818 (((-1113 |#1|) $) 43 (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) 68)) (-4207 (((-1113 |#1|) $) 64)) (-2987 (((-111)) 58)) (-1654 (((-1100) $) 9)) (-2631 (((-111)) 49)) (-2077 (((-111)) 51)) (-2415 (((-111)) 53)) (-2528 (((-1064) $) 10)) (-3162 (((-111)) 56)) (-1484 (((-1200 |#1|) $ (-1200 $)) 71) (((-649 |#1|) (-1200 $) (-1200 $)) 70)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) 79)) (-1674 (($ $ $) 25)) (-3365 (((-111)) 62)) (-2341 (((-816) $) 11)) (-3678 (((-606 (-1200 |#1|))) 44 (|has| |#1| (-529)))) (-3727 (($ $ $ $) 26)) (-2510 (((-111)) 60)) (-3212 (($ $ $) 24)) (-3750 (((-111)) 61)) (-3530 (((-111)) 59)) (-1972 (((-111)) 55)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-351 |#1|) (-134) (-163)) (T -351)) -((-2568 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-351 *3)))) (-3705 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-874)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))))) (-3486 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-1200 *4)))) (-1484 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) (-4 *1 (-351 *4)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3)))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3)))) (-3365 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3750 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2510 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3530 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2987 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1855 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3162 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1972 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3364 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2415 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3468 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2077 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2186 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2631 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1684 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3490 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3820 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3800 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3678 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-606 (-1200 *3))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-1113 *3)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-1113 *3)))) (-3324 (*1 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) (-4 *1 (-351 *3)))) (-2472 (*1 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) (-4 *1 (-351 *3)))) (-1652 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) (-2649 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) (-1397 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) -(-13 (-705 |t#1|) (-10 -8 (-15 -2568 ((-1200 $))) (-15 -3705 ((-874))) (-15 -4183 ((-606 (-905 |t#1|)) (-1200 $))) (-15 -3822 ((-1200 (-649 |t#1|)) (-1200 $))) (-15 -3486 ((-649 |t#1|) $ (-1200 $))) (-15 -4246 ((-649 |t#1|) $ (-1200 $))) (-15 -4217 (|t#1| $)) (-15 -2624 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -4260 (|t#1| $)) (-15 -1484 ((-1200 |t#1|) $ (-1200 $))) (-15 -1484 ((-649 |t#1|) (-1200 $) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|) (-1200 $))) (-15 -2757 (|t#1| (-1200 $))) (-15 -2503 (|t#1| (-1200 $))) (-15 -3699 ((-649 |t#1|) (-1200 $))) (-15 -4263 ((-649 |t#1|) (-1200 $))) (-15 -4207 ((-1113 |t#1|) $)) (-15 -1889 ((-1113 |t#1|) $)) (-15 -3365 ((-111))) (-15 -3750 ((-111))) (-15 -2510 ((-111))) (-15 -3530 ((-111))) (-15 -2987 ((-111))) (-15 -1855 ((-111))) (-15 -3162 ((-111))) (-15 -1972 ((-111))) (-15 -3364 ((-111))) (-15 -2415 ((-111))) (-15 -3468 ((-111))) (-15 -2077 ((-111))) (-15 -2186 ((-111))) (-15 -2631 ((-111))) (-15 -1684 ((-111))) (IF (|has| |t#1| (-529)) (PROGN (-15 -3490 ((-3 $ "failed") $)) (-15 -3820 ((-3 $ "failed") $)) (-15 -3800 ((-3 $ "failed") $)) (-15 -3678 ((-606 (-1200 |t#1|)))) (-15 -2818 ((-1113 |t#1|) $)) (-15 -3112 ((-1113 |t#1|) $)) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -1652 ((-3 $ "failed"))) (-15 -2649 ((-3 $ "failed"))) (-15 -1397 ((-3 $ "failed"))) (-6 -4297)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-705 |#1|) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-3151 (((-731)) 16)) (-1618 (($) 13)) (-2334 (((-874) $) 14)) (-1654 (((-1100) $) 9)) (-2009 (($ (-874)) 15)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-352) (-134)) (T -352)) -((-3151 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-731)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-352)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-874)))) (-1618 (*1 *1) (-4 *1 (-352)))) -(-13 (-1045) (-10 -8 (-15 -3151 ((-731))) (-15 -2009 ($ (-874))) (-15 -2334 ((-874) $)) (-15 -1618 ($)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-3623 (((-649 |#2|) (-1200 $)) 40)) (-3447 (($ (-1200 |#2|) (-1200 $)) 34)) (-2664 (((-649 |#2|) $ (-1200 $)) 42)) (-2067 ((|#2| (-1200 $)) 13)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) 25))) -(((-353 |#1| |#2| |#3|) (-10 -8 (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) (-354 |#2| |#3|) (-163) (-1176 |#2|)) (T -353)) -NIL -(-10 -8 (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3623 (((-649 |#1|) (-1200 $)) 44)) (-1428 ((|#1| $) 50)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46)) (-2664 (((-649 |#1|) $ (-1200 $)) 51)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2067 ((|#1| (-1200 $)) 45)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-2644 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-354 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -354)) -((-3705 (*1 *2) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-874)))) (-2664 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *4)))) (-1484 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) (-4 *1 (-354 *4 *5)) (-4 *5 (-1176 *4)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *2 *4)) (-4 *4 (-1176 *2)) (-4 *2 (-163)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *3 (-347)) (-4 *2 (-1176 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -3705 ((-874))) (-15 -2664 ((-649 |t#1|) $ (-1200 $))) (-15 -1428 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -1484 ((-1200 |t#1|) $ (-1200 $))) (-15 -1484 ((-649 |t#1|) (-1200 $) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|) (-1200 $))) (-15 -2067 (|t#1| (-1200 $))) (-15 -3623 ((-649 |t#1|) (-1200 $))) (-15 -2736 (|t#2| $)) (IF (|has| |t#1| (-347)) (-15 -3199 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2547 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3195 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1612 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-355 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1154) (-357 |#1|) (-1154) (-357 |#3|)) (T -355)) -((-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-4 *2 (-357 *5)) (-5 *1 (-355 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-355 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *2 (-357 *6)) (-5 *1 (-355 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2450 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-1543 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-1566 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3289 (($ $) 25)) (-2299 (((-537) (-1 (-111) |#2|) $) NIL) (((-537) |#2| $) 11) (((-537) |#2| $ (-537)) NIL)) (-1470 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-356 |#1| |#2|) (-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1566 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-357 |#2|) (-1154)) (T -356)) -NIL -(-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1566 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-357 |#1|) (-134) (-1154)) (T -357)) -((-1470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-2450 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-2299 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-807)) (-5 *2 (-111)))) (-1241 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-4146 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)))) (-1543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-1543 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807))))) -(-13 (-612 |t#1|) (-10 -8 (-6 -4300) (-15 -1470 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3289 ($ $)) (-15 -1566 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -2450 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -2299 ((-537) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2299 ((-537) |t#1| $)) (-15 -2299 ((-537) |t#1| $ (-537)))) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-6 (-807)) (-15 -1470 ($ $ $)) (-15 -1566 ($ $)) (-15 -2450 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -1241 ($ $ $ (-537))) (-15 -4146 ($ $)) (-15 -1543 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-807)) (-15 -1543 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 32)) (-1233 (($ $ (-731)) 33)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3139 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 36)) (-2177 (($ $) 34)) (-2896 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 37)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-4116 (($ $ |#1| $) 31) (($ $ (-606 |#1|) (-606 $)) 30)) (-2872 (((-731) $) 38)) (-2350 (($ $ $) 29)) (-2341 (((-816) $) 11) (($ |#1|) 41) (((-1214 |#1| |#2|) $) 40) (((-1223 |#1| |#2|) $) 39)) (-3449 ((|#2| (-1223 |#1| |#2|) $) 42)) (-2928 (($) 18 T CONST)) (-4071 (($ (-633 |#1|)) 35)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#2|) 28 (|has| |#2| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-358 |#1| |#2|) (-134) (-807) (-163)) (T -358)) -((-3449 (*1 *2 *3 *1) (-12 (-5 *3 (-1223 *4 *2)) (-4 *1 (-358 *4 *2)) (-4 *4 (-807)) (-4 *2 (-163)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-1214 *3 *4)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-1223 *3 *4)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-731)))) (-2896 (*1 *2 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3139 (*1 *2 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-4 *1 (-358 *3 *4)) (-4 *4 (-163)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-1233 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-606 *3)))) (-4116 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *1)) (-4 *1 (-358 *4 *5)) (-4 *4 (-807)) (-4 *5 (-163))))) -(-13 (-597 |t#2|) (-10 -8 (-15 -3449 (|t#2| (-1223 |t#1| |t#2|) $)) (-15 -2341 ($ |t#1|)) (-15 -2341 ((-1214 |t#1| |t#2|) $)) (-15 -2341 ((-1223 |t#1| |t#2|) $)) (-15 -2872 ((-731) $)) (-15 -2896 ((-1223 |t#1| |t#2|) (-1223 |t#1| |t#2|) $)) (-15 -3139 ((-1223 |t#1| |t#2|) (-1223 |t#1| |t#2|) $)) (-15 -4071 ($ (-633 |t#1|))) (-15 -2177 ($ $)) (-15 -1233 ($ $ (-731))) (-15 -2163 ((-606 |t#1|) $)) (-15 -4116 ($ $ |t#1| $)) (-15 -4116 ($ $ (-606 |t#1|) (-606 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-597 |#2|) . T) ((-678 |#2|) . T) ((-1004 |#2|) . T) ((-1045) . T)) -((-1262 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-2464 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-2062 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) -(((-359 |#1| |#2|) (-10 -7 (-15 -2464 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2062 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1262 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1154) (-13 (-357 |#1|) (-10 -7 (-6 -4301)))) (T -359)) -((-1262 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))))) (-2062 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))))) (-2464 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) -(-10 -7 (-15 -2464 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2062 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1262 (|#2| (-1 (-111) |#1| |#1|) |#2|))) -((-2053 (((-649 |#2|) (-649 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 22) (((-649 (-537)) (-649 $)) 14))) -(((-360 |#1| |#2|) (-10 -8 (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 |#2|) (-649 |#1|)))) (-361 |#2|) (-998)) (T -360)) -NIL -(-10 -8 (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 |#2|) (-649 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2053 (((-649 |#1|) (-649 $)) 34) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 33) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 41 (|has| |#1| (-602 (-537)))) (((-649 (-537)) (-649 $)) 40 (|has| |#1| (-602 (-537))))) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-361 |#1|) (-134) (-998)) (T -361)) -NIL -(-13 (-602 |t#1|) (-10 -7 (IF (|has| |t#1| (-602 (-537))) (-6 (-602 (-537))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-3773 (((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|) 51) (((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|) 50) (((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|) 47) (((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|) 41)) (-3019 (((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|) 30) (((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|) 18))) -(((-362 |#1|) (-10 -7 (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3019 ((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3019 ((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|))) (-13 (-347) (-805))) (T -362)) -((-3019 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-160 *5)))) (-5 *1 (-362 *5)) (-4 *5 (-13 (-347) (-805))))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 (-160 (-537)))))) (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 (-160 (-537))))))) (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805)))))) -(-10 -7 (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3019 ((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3019 ((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-1874 (((-537) $) 55)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) 110)) (-1403 (($ $) 82)) (-1247 (($ $) 71)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) 44)) (-4099 (((-111) $ $) NIL)) (-1378 (($ $) 80)) (-4270 (($ $) 69)) (-2537 (((-537) $) 64)) (-3879 (($ $ (-537)) 62)) (-1429 (($ $) NIL)) (-1273 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-3981 (($ $) 112)) (-1516 (((-3 (-537) "failed") $) 189) (((-3 (-391 (-537)) "failed") $) 185)) (-3958 (((-537) $) 187) (((-391 (-537)) $) 183)) (-3563 (($ $ $) NIL)) (-1597 (((-537) $ $) 102)) (-3490 (((-3 $ "failed") $) 114)) (-1292 (((-391 (-537)) $ (-731)) 190) (((-391 (-537)) $ (-731) (-731)) 182)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 73) (((-874) (-874)) 98 (|has| $ (-6 -4291)))) (-3797 (((-111) $) 106)) (-3338 (($) 40)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-2989 (((-1205) (-731)) 152)) (-2900 (((-1205)) 157) (((-1205) (-731)) 158)) (-3488 (((-1205)) 159) (((-1205) (-731)) 160)) (-1752 (((-1205)) 155) (((-1205) (-731)) 156)) (-4231 (((-537) $) 58)) (-2836 (((-111) $) 104)) (-2590 (($ $ (-537)) NIL)) (-2477 (($ $) 48)) (-2055 (($ $) NIL)) (-2840 (((-111) $) 35)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3889 (($ $ $) NIL) (($) 99 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 17)) (-3959 (($) 87) (($ $) 92)) (-1970 (($) 91) (($ $) 93)) (-2180 (($ $) 83)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 116)) (-3964 (((-874) (-537)) 43 (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) 53)) (-3830 (($ $) 109)) (-2851 (($ (-537) (-537)) 107) (($ (-537) (-537) (-874)) 108)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 19)) (-3270 (($) 94)) (-4185 (($ $) 79)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-874)) 100) (((-874) (-874)) 101 (|has| $ (-6 -4291)))) (-3456 (($ $ (-731)) NIL) (($ $) 115)) (-1398 (((-874) (-537)) 47 (|has| $ (-6 -4291)))) (-1441 (($ $) NIL)) (-1286 (($ $) NIL)) (-1415 (($ $) NIL)) (-1259 (($ $) NIL)) (-1389 (($ $) 81)) (-1234 (($ $) 70)) (-3996 (((-363) $) 175) (((-210) $) 177) (((-845 (-363)) $) NIL) (((-1100) $) 162) (((-513) $) 173) (($ (-210)) 181)) (-2341 (((-816) $) 164) (($ (-537)) 186) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-537)) 186) (($ (-391 (-537))) NIL) (((-210) $) 178)) (-3654 (((-731)) NIL)) (-3903 (($ $) 111)) (-3272 (((-874)) 54) (((-874) (-874)) 66 (|has| $ (-6 -4291)))) (-1605 (((-874)) 103)) (-1475 (($ $) 86)) (-1328 (($ $) 46) (($ $ $) 52)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 84)) (-1300 (($ $) 37)) (-1495 (($ $) NIL)) (-1352 (($ $) NIL)) (-4141 (($ $) NIL)) (-1365 (($ $) NIL)) (-1485 (($ $) NIL)) (-1340 (($ $) NIL)) (-1465 (($ $) 85)) (-1314 (($ $) 49)) (-2209 (($ $) 51)) (-2928 (($) 34 T CONST)) (-2943 (($) 38 T CONST)) (-1379 (((-1100) $) 27) (((-1100) $ (-111)) 29) (((-1205) (-782) $) 30) (((-1205) (-782) $ (-111)) 31)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 39)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 42)) (-2340 (($ $ $) 45) (($ $ (-537)) 41)) (-2329 (($ $) 36) (($ $ $) 50)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) 67) (($ $ (-731)) NIL) (($ $ (-537)) 88) (($ $ (-391 (-537))) 125) (($ $ $) 117)) (* (($ (-874) $) 65) (($ (-731) $) NIL) (($ (-537) $) 68) (($ $ $) 60) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-363) (-13 (-388) (-218) (-580 (-1100)) (-788) (-579 (-210)) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -2477 ($ $)) (-15 -1597 ((-537) $ $)) (-15 -3879 ($ $ (-537))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))) (-15 -3959 ($)) (-15 -1970 ($)) (-15 -3270 ($)) (-15 -1328 ($ $ $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -3996 ($ (-210))) (-15 -3488 ((-1205))) (-15 -3488 ((-1205) (-731))) (-15 -1752 ((-1205))) (-15 -1752 ((-1205) (-731))) (-15 -2900 ((-1205))) (-15 -2900 ((-1205) (-731))) (-15 -2989 ((-1205) (-731))) (-6 -4291) (-6 -4283)))) (T -363)) -((** (*1 *1 *1 *1) (-5 *1 (-363))) (-2340 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-2477 (*1 *1 *1) (-5 *1 (-363))) (-1597 (*1 *2 *1 *1) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) (-1292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) (-3959 (*1 *1) (-5 *1 (-363))) (-1970 (*1 *1) (-5 *1 (-363))) (-3270 (*1 *1) (-5 *1 (-363))) (-1328 (*1 *1 *1 *1) (-5 *1 (-363))) (-3959 (*1 *1 *1) (-5 *1 (-363))) (-1970 (*1 *1 *1) (-5 *1 (-363))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-363)))) (-3488 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-1752 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-2900 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363))))) -(-13 (-388) (-218) (-580 (-1100)) (-788) (-579 (-210)) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -2477 ($ $)) (-15 -1597 ((-537) $ $)) (-15 -3879 ($ $ (-537))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))) (-15 -3959 ($)) (-15 -1970 ($)) (-15 -3270 ($)) (-15 -1328 ($ $ $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -3996 ($ (-210))) (-15 -3488 ((-1205))) (-15 -3488 ((-1205) (-731))) (-15 -1752 ((-1205))) (-15 -1752 ((-1205) (-731))) (-15 -2900 ((-1205))) (-15 -2900 ((-1205) (-731))) (-15 -2989 ((-1205) (-731))) (-6 -4291) (-6 -4283))) -((-1895 (((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|) 46) (((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|) 45) (((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|) 42) (((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|) 36)) (-1931 (((-606 |#1|) (-391 (-905 (-537))) |#1|) 20) (((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|) 30))) -(((-364 |#1|) (-10 -7 (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|)) (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|)) (-15 -1931 ((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|)) (-15 -1931 ((-606 |#1|) (-391 (-905 (-537))) |#1|))) (-13 (-805) (-347))) (T -364)) -((-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1931 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 *5))) (-5 *1 (-364 *5)) (-4 *5 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 (-537))))) (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 (-537)))))) (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347)))))) -(-10 -7 (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|)) (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|)) (-15 -1931 ((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|)) (-15 -1931 ((-606 |#1|) (-391 (-905 (-537))) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 26)) (-3958 ((|#2| $) 28)) (-3940 (($ $) NIL)) (-2668 (((-731) $) 10)) (-1645 (((-606 $) $) 20)) (-1538 (((-111) $) NIL)) (-2367 (($ |#2| |#1|) 18)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3901 ((|#2| $) 15)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 45) (($ |#2|) 27)) (-3459 (((-606 |#1|) $) 17)) (-3500 ((|#1| $ |#2|) 47)) (-2928 (($) 29 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-365 |#1| |#2|) (-13 (-366 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-998) (-807)) (T -365)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807))))) -(-13 (-366 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 44)) (-3958 ((|#2| $) 43)) (-3940 (($ $) 30)) (-2668 (((-731) $) 34)) (-1645 (((-606 $) $) 35)) (-1538 (((-111) $) 38)) (-2367 (($ |#2| |#1|) 39)) (-1612 (($ (-1 |#1| |#1|) $) 40)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3901 ((|#2| $) 33)) (-3912 ((|#1| $) 32)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ |#2|) 45)) (-3459 (((-606 |#1|) $) 36)) (-3500 ((|#1| $ |#2|) 41)) (-2928 (($) 18 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-366 |#1| |#2|) (-134) (-998) (-1045)) (T -366)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)))) (-2367 (*1 *1 *2 *3) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-111)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *3)))) (-1645 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-366 *3 *4)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-731)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045))))) -(-13 (-110 |t#1| |t#1|) (-989 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3500 (|t#1| $ |t#2|)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -2367 ($ |t#2| |t#1|)) (-15 -1538 ((-111) $)) (-15 -1820 ((-606 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3459 ((-606 |t#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (-15 -3901 (|t#2| $)) (-15 -3912 (|t#1| $)) (-15 -2370 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3940 ($ $)) (IF (|has| |t#1| (-163)) (-6 (-678 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) |has| |#1| (-163)) ((-989 |#2|) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-649 (-659))) 14) (($ (-606 (-314))) 13) (($ (-314)) 12) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 11))) -(((-367) (-134)) (T -367)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-659))) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-367))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-649 (-659)))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))))) -(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) -((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 21) (((-3 $ "failed") (-649 (-300 (-537)))) 19) (((-3 $ "failed") (-649 (-905 (-363)))) 17) (((-3 $ "failed") (-649 (-905 (-537)))) 15) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 13) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 11)) (-3958 (($ (-649 (-300 (-363)))) 22) (($ (-649 (-300 (-537)))) 20) (($ (-649 (-905 (-363)))) 18) (($ (-649 (-905 (-537)))) 16) (($ (-649 (-391 (-905 (-363))))) 14) (($ (-649 (-391 (-905 (-537))))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) +((-4259 (($ $) 6)) (-4260 (($ $) 7)) (** (($ $ $) 8))) +(((-269) (-134)) (T -269)) +((** (*1 *1 *1 *1) (-4 *1 (-269))) (-4260 (*1 *1 *1) (-4 *1 (-269))) (-4259 (*1 *1 *1) (-4 *1 (-269)))) +(-13 (-10 -8 (-15 -4259 ($ $)) (-15 -4260 ($ $)) (-15 ** ($ $ $)))) +((-1612 (((-607 (-1101 |#1|)) (-1101 |#1|) |#1|) 35)) (-1609 ((|#2| |#2| |#1|) 38)) (-1611 ((|#2| |#2| |#1|) 40)) (-1610 ((|#2| |#2| |#1|) 39))) +(((-270 |#1| |#2|) (-10 -7 (-15 -1609 (|#2| |#2| |#1|)) (-15 -1610 (|#2| |#2| |#1|)) (-15 -1611 (|#2| |#2| |#1|)) (-15 -1612 ((-607 (-1101 |#1|)) (-1101 |#1|) |#1|))) (-348) (-1198 |#1|)) (T -270)) +((-1612 (*1 *2 *3 *4) (-12 (-4 *4 (-348)) (-5 *2 (-607 (-1101 *4))) (-5 *1 (-270 *4 *5)) (-5 *3 (-1101 *4)) (-4 *5 (-1198 *4)))) (-1611 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3)))) (-1610 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3)))) (-1609 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) +(-10 -7 (-15 -1609 (|#2| |#2| |#1|)) (-15 -1610 (|#2| |#2| |#1|)) (-15 -1611 (|#2| |#2| |#1|)) (-15 -1612 ((-607 (-1101 |#1|)) (-1101 |#1|) |#1|))) +((-4118 ((|#2| $ |#1|) 6))) +(((-271 |#1| |#2|) (-134) (-1052) (-1159)) (T -271)) +((-4118 (*1 *2 *1 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159))))) +(-13 (-10 -8 (-15 -4118 (|t#2| $ |t#1|)))) +((-1613 ((|#3| $ |#2| |#3|) 12)) (-3410 ((|#3| $ |#2|) 10))) +(((-272 |#1| |#2| |#3|) (-10 -8 (-15 -1613 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|))) (-273 |#2| |#3|) (-1052) (-1159)) (T -272)) +NIL +(-10 -8 (-15 -1613 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|))) +((-4106 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4311)))) (-1613 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 11)) (-4118 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-273 |#1| |#2|) (-134) (-1052) (-1159)) (T -273)) +((-4118 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-3410 (*1 *2 *1 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-1613 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159))))) +(-13 (-271 |t#1| |t#2|) (-10 -8 (-15 -4118 (|t#2| $ |t#1| |t#2|)) (-15 -3410 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4106 (|t#2| $ |t#1| |t#2|)) (-15 -1613 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-271 |#1| |#2|) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 35)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 40)) (-2151 (($ $) 38)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) 33)) (-4161 (($ |#2| |#3|) 19)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 ((|#3| $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 20)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2463 (((-3 $ "failed") $ $) NIL)) (-1680 (((-735) $) 34)) (-4118 ((|#2| $ |#2|) 42)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 24)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 29 T CONST)) (-2964 (($) 36 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 37))) +(((-274 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-292) (-10 -8 (-15 -2909 (|#3| $)) (-15 -4274 (|#2| $)) (-15 -4161 ($ |#2| |#3|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)) (-15 -4118 (|#2| $ |#2|)))) (-163) (-1181 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -274)) +((-3781 (*1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2909 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-274 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1181 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4161 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-274 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1181 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2703 (*1 *1 *1) (-12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4118 (*1 *2 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1181 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) +(-13 (-292) (-10 -8 (-15 -2909 (|#3| $)) (-15 -4274 (|#2| $)) (-15 -4161 ($ |#2| |#3|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)) (-15 -4118 (|#2| $ |#2|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-275) (-134)) (T -275)) +NIL +(-13 (-1004) (-110 $ $) (-10 -7 (-6 -4303))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-1618 (($ (-1123) (-1123) (-1054) $) 17)) (-1616 (($ (-1123) (-607 (-924)) $) 22)) (-1620 (((-607 (-1037)) $) 10)) (-1619 (((-3 (-1054) "failed") (-1123) (-1123) $) 16)) (-1617 (((-3 (-607 (-924)) "failed") (-1123) $) 21)) (-3887 (($) 7)) (-1615 (($) 23)) (-4274 (((-823) $) 27)) (-1614 (($) 24))) +(((-276) (-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -1620 ((-607 (-1037)) $)) (-15 -1619 ((-3 (-1054) "failed") (-1123) (-1123) $)) (-15 -1618 ($ (-1123) (-1123) (-1054) $)) (-15 -1617 ((-3 (-607 (-924)) "failed") (-1123) $)) (-15 -1616 ($ (-1123) (-607 (-924)) $)) (-15 -1615 ($)) (-15 -1614 ($))))) (T -276)) +((-3887 (*1 *1) (-5 *1 (-276))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-607 (-1037))) (-5 *1 (-276)))) (-1619 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-276)))) (-1618 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-276)))) (-1617 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-607 (-924))) (-5 *1 (-276)))) (-1616 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-276)))) (-1615 (*1 *1) (-5 *1 (-276))) (-1614 (*1 *1) (-5 *1 (-276)))) +(-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -1620 ((-607 (-1037)) $)) (-15 -1619 ((-3 (-1054) "failed") (-1123) (-1123) $)) (-15 -1618 ($ (-1123) (-1123) (-1054) $)) (-15 -1617 ((-3 (-607 (-924)) "failed") (-1123) $)) (-15 -1616 ($ (-1123) (-607 (-924)) $)) (-15 -1615 ($)) (-15 -1614 ($)))) +((-1624 (((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))) 85)) (-1623 (((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|)))) 80) (((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735)) 38)) (-1625 (((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))) 82)) (-1622 (((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|)))) 62)) (-1621 (((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|)))) 61)) (-2667 (((-905 |#1|) (-653 (-392 (-905 |#1|)))) 50) (((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123)) 51))) +(((-277 |#1|) (-10 -7 (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123))) (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))))) (-15 -1621 ((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|))))) (-15 -1622 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|))))) (-15 -1624 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|))))) (-15 -1625 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))))) (-436)) (T -277)) +((-1625 (*1 *2 *3) (-12 (-4 *4 (-436)) (-5 *2 (-607 (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 *4)))))))) (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4)))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-436)) (-5 *2 (-607 (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 *4)))))))) (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4)))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 *4)))) (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) (-5 *4 (-653 (-392 (-905 *5)))))) (-1623 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-392 (-905 *6)) (-1113 (-1123) (-905 *6)))) (-5 *5 (-735)) (-4 *6 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *6))))) (-5 *1 (-277 *6)) (-5 *4 (-653 (-392 (-905 *6)))))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) (-5 *4 (-653 (-392 (-905 *5)))))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-4 *4 (-436)) (-5 *2 (-607 (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4))))) (-5 *1 (-277 *4)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-277 *4)) (-4 *4 (-436)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-905 *5)))) (-5 *4 (-1123)) (-5 *2 (-905 *5)) (-5 *1 (-277 *5)) (-4 *5 (-436))))) +(-10 -7 (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))) (-1123))) (-15 -2667 ((-905 |#1|) (-653 (-392 (-905 |#1|))))) (-15 -1621 ((-607 (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (-653 (-392 (-905 |#1|))))) (-15 -1622 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|))) (-653 (-392 (-905 |#1|))) (-735) (-735))) (-15 -1623 ((-607 (-653 (-392 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|)))))) (-653 (-392 (-905 |#1|))))) (-15 -1624 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |geneigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|))))) (-15 -1625 ((-607 (-2 (|:| |eigval| (-3 (-392 (-905 |#1|)) (-1113 (-1123) (-905 |#1|)))) (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 |#1|))))))) (-653 (-392 (-905 |#1|)))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-1631 (($ $) 12)) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1640 (($ $ $) 94 (|has| |#1| (-283)))) (-3855 (($) NIL (-3850 (|has| |#1| (-21)) (|has| |#1| (-691))) CONST)) (-1629 (($ $) 50 (|has| |#1| (-21)))) (-1627 (((-3 $ "failed") $) 61 (|has| |#1| (-691)))) (-3842 ((|#1| $) 11)) (-3781 (((-3 $ "failed") $) 59 (|has| |#1| (-691)))) (-2471 (((-111) $) NIL (|has| |#1| (-691)))) (-4275 (($ (-1 |#1| |#1|) $) 14)) (-3843 ((|#1| $) 10)) (-1630 (($ $) 49 (|has| |#1| (-21)))) (-1628 (((-3 $ "failed") $) 60 (|has| |#1| (-691)))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2703 (($ $) 63 (-3850 (|has| |#1| (-348)) (|has| |#1| (-457))))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1626 (((-607 $) $) 84 (|has| |#1| (-533)))) (-4086 (($ $ $) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 $)) 28 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-1123) |#1|) 17 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 21 (|has| |#1| (-496 (-1123) |#1|)))) (-3539 (($ |#1| |#1|) 9)) (-4230 (((-131)) 89 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) 86 (|has| |#1| (-859 (-1123))))) (-3309 (($ $ $) NIL (|has| |#1| (-457)))) (-2655 (($ $ $) NIL (|has| |#1| (-457)))) (-4274 (($ (-526)) NIL (|has| |#1| (-1004))) (((-111) $) 36 (|has| |#1| (-1052))) (((-823) $) 35 (|has| |#1| (-1052)))) (-3423 (((-735)) 66 (|has| |#1| (-1004)))) (-2957 (($) 46 (|has| |#1| (-21)) CONST)) (-2964 (($) 56 (|has| |#1| (-691)) CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123))))) (-3353 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 91 (-3850 (|has| |#1| (-348)) (|has| |#1| (-457))))) (-4156 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4158 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-526)) NIL (|has| |#1| (-457))) (($ $ (-735)) NIL (|has| |#1| (-691))) (($ $ (-878)) NIL (|has| |#1| (-1063)))) (* (($ $ |#1|) 54 (|has| |#1| (-1063))) (($ |#1| $) 53 (|has| |#1| (-1063))) (($ $ $) 52 (|has| |#1| (-1063))) (($ (-526) $) 69 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-25))))) +(((-278 |#1|) (-13 (-1159) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -3539 ($ |#1| |#1|)) (-15 -1631 ($ $)) (-15 -3843 (|#1| $)) (-15 -3842 (|#1| $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-496 (-1123) |#1|)) (-6 (-496 (-1123) |#1|)) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-583 (-111))) (IF (|has| |#1| (-294 |#1|)) (PROGN (-15 -4086 ($ $ $)) (-15 -4086 ($ $ (-607 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4158 ($ |#1| $)) (-15 -4158 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1630 ($ $)) (-15 -1629 ($ $)) (-15 -4156 ($ |#1| $)) (-15 -4156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-691)) (PROGN (-6 (-691)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-457)) (PROGN (-6 (-457)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -1626 ((-607 $) $)) |%noBranch|) (IF (|has| |#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-1213 |#1|)) (-15 -4265 ($ $ $)) (-15 -2703 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -1640 ($ $ $)) |%noBranch|))) (-1159)) (T -278)) +((-3353 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3539 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-1631 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3843 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-3842 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) (-4086 (*1 *1 *1 *1) (-12 (-4 *2 (-294 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)) (-5 *1 (-278 *2)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *3))) (-4 *3 (-294 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) (-1630 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-1629 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-4156 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) (-1628 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159)))) (-1627 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-607 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-533)) (-4 *3 (-1159)))) (-1640 (*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-283)) (-4 *2 (-1159)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) (-4265 (*1 *1 *1 *1) (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) (-2703 (*1 *1 *1) (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159)))))) +(-13 (-1159) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -3539 ($ |#1| |#1|)) (-15 -1631 ($ $)) (-15 -3843 (|#1| $)) (-15 -3842 (|#1| $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-496 (-1123) |#1|)) (-6 (-496 (-1123) |#1|)) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-583 (-111))) (IF (|has| |#1| (-294 |#1|)) (PROGN (-15 -4086 ($ $ $)) (-15 -4086 ($ $ (-607 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4158 ($ |#1| $)) (-15 -4158 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1630 ($ $)) (-15 -1629 ($ $)) (-15 -4156 ($ |#1| $)) (-15 -4156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-691)) (PROGN (-6 (-691)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-457)) (PROGN (-6 (-457)) (-15 -1628 ((-3 $ "failed") $)) (-15 -1627 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -1626 ((-607 $) $)) |%noBranch|) (IF (|has| |#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-1213 |#1|)) (-15 -4265 ($ $ $)) (-15 -2703 ($ $))) |%noBranch|) (IF (|has| |#1| (-283)) (-15 -1640 ($ $ $)) |%noBranch|))) +((-4275 (((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)) 14))) +(((-279 |#1| |#2|) (-10 -7 (-15 -4275 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) (-1159) (-1159)) (T -279)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-278 *6)) (-5 *1 (-279 *5 *6))))) +(-10 -7 (-15 -4275 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-280 |#1| |#2|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052)) (T -280)) +NIL +(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) +((-1632 (((-296) (-1106) (-607 (-1106))) 16) (((-296) (-1106) (-1106)) 15) (((-296) (-607 (-1106))) 14) (((-296) (-1106)) 12))) +(((-281) (-10 -7 (-15 -1632 ((-296) (-1106))) (-15 -1632 ((-296) (-607 (-1106)))) (-15 -1632 ((-296) (-1106) (-1106))) (-15 -1632 ((-296) (-1106) (-607 (-1106)))))) (T -281)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1106))) (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-296)) (-5 *1 (-281)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281))))) +(-10 -7 (-15 -1632 ((-296) (-1106))) (-15 -1632 ((-296) (-607 (-1106)))) (-15 -1632 ((-296) (-1106) (-1106))) (-15 -1632 ((-296) (-1106) (-607 (-1106))))) +((-1636 (((-607 (-581 $)) $) 30)) (-1640 (($ $ (-278 $)) 81) (($ $ (-607 (-278 $))) 123) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-3470 (((-3 (-581 $) "failed") $) 113)) (-3469 (((-581 $) $) 112)) (-2870 (($ $) 19) (($ (-607 $)) 56)) (-1635 (((-607 (-112)) $) 38)) (-2307 (((-112) (-112)) 91)) (-2973 (((-111) $) 131)) (-4275 (($ (-1 $ $) (-581 $)) 89)) (-1638 (((-3 (-581 $) "failed") $) 93)) (-2288 (($ (-112) $) 61) (($ (-112) (-607 $)) 100)) (-2930 (((-111) $ (-112)) 117) (((-111) $ (-1123)) 116)) (-2900 (((-735) $) 46)) (-1634 (((-111) $ $) 59) (((-111) $ (-1123)) 51)) (-2974 (((-111) $) 129)) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) 121) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 84) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) 69) (($ $ (-1123) (-1 $ $)) 75) (($ $ (-607 (-112)) (-607 (-1 $ $))) 83) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 85) (($ $ (-112) (-1 $ (-607 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-4118 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-607 $)) 109)) (-1639 (($ $) 53) (($ $ $) 119)) (-2887 (($ $) 17) (($ (-607 $)) 55)) (-2306 (((-111) (-112)) 22))) +(((-282 |#1|) (-10 -8 (-15 -2973 ((-111) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -1634 ((-111) |#1| (-1123))) (-15 -1634 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#1| |#1|) (-581 |#1|))) (-15 -2288 (|#1| (-112) (-607 |#1|))) (-15 -2288 (|#1| (-112) |#1|)) (-15 -2930 ((-111) |#1| (-1123))) (-15 -2930 ((-111) |#1| (-112))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1635 ((-607 (-112)) |#1|)) (-15 -1636 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -2900 ((-735) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2870 (|#1| (-607 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -2887 (|#1| (-607 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) "failed") |#1|))) (-283)) (T -282)) +((-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-282 *4)) (-4 *4 (-283))))) +(-10 -8 (-15 -2973 ((-111) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -1634 ((-111) |#1| (-1123))) (-15 -1634 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#1| |#1|) (-581 |#1|))) (-15 -2288 (|#1| (-112) (-607 |#1|))) (-15 -2288 (|#1| (-112) |#1|)) (-15 -2930 ((-111) |#1| (-1123))) (-15 -2930 ((-111) |#1| (-112))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1635 ((-607 (-112)) |#1|)) (-15 -1636 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -2900 ((-735) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2870 (|#1| (-607 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -2887 (|#1| (-607 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) "failed") |#1|))) +((-2865 (((-111) $ $) 7)) (-1636 (((-607 (-581 $)) $) 44)) (-1640 (($ $ (-278 $)) 56) (($ $ (-607 (-278 $))) 55) (($ $ (-607 (-581 $)) (-607 $)) 54)) (-3470 (((-3 (-581 $) "failed") $) 69)) (-3469 (((-581 $) $) 68)) (-2870 (($ $) 51) (($ (-607 $)) 50)) (-1635 (((-607 (-112)) $) 43)) (-2307 (((-112) (-112)) 42)) (-2973 (((-111) $) 22 (|has| $ (-995 (-526))))) (-1633 (((-1117 $) (-581 $)) 25 (|has| $ (-1004)))) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-4275 (($ (-1 $ $) (-581 $)) 36)) (-1638 (((-3 (-581 $) "failed") $) 46)) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 45)) (-2288 (($ (-112) $) 38) (($ (-112) (-607 $)) 37)) (-2930 (((-111) $ (-112)) 40) (((-111) $ (-1123)) 39)) (-2900 (((-735) $) 47)) (-3555 (((-1070) $) 10)) (-1634 (((-111) $ $) 35) (((-111) $ (-1123)) 34)) (-2974 (((-111) $) 23 (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) 67) (($ $ (-607 (-581 $)) (-607 $)) 66) (($ $ (-607 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-607 $) (-607 $)) 62) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 33) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 32) (($ $ (-1123) (-1 $ (-607 $))) 31) (($ $ (-1123) (-1 $ $)) 30) (($ $ (-607 (-112)) (-607 (-1 $ $))) 29) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 28) (($ $ (-112) (-1 $ (-607 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-4118 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-607 $)) 57)) (-1639 (($ $) 49) (($ $ $) 48)) (-3499 (($ $) 24 (|has| $ (-1004)))) (-4274 (((-823) $) 11) (($ (-581 $)) 70)) (-2887 (($ $) 53) (($ (-607 $)) 52)) (-2306 (((-111) (-112)) 41)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) +(((-283) (-134)) (T -283)) +((-4118 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *1))) (-4 *1 (-283)))) (-1640 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-581 *1))) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-2887 (*1 *1 *1) (-4 *1 (-283))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) (-2870 (*1 *1 *1) (-4 *1 (-283))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) (-1639 (*1 *1 *1) (-4 *1 (-283))) (-1639 (*1 *1 *1 *1) (-4 *1 (-283))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-735)))) (-1638 (*1 *2 *1) (|partial| -12 (-5 *2 (-581 *1)) (-4 *1 (-283)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-607 (-112))))) (-2307 (*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-2306 (*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) (-2288 (*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) (-4275 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-581 *1)) (-4 *1 (-283)))) (-1634 (*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-111)))) (-1634 (*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-581 *1)) (-4 *1 (-1004)) (-4 *1 (-283)) (-5 *2 (-1117 *1)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-1004)) (-4 *1 (-283)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111))))) +(-13 (-811) (-995 (-581 $)) (-496 (-581 $) $) (-294 $) (-10 -8 (-15 -4118 ($ (-112) $)) (-15 -4118 ($ (-112) $ $)) (-15 -4118 ($ (-112) $ $ $)) (-15 -4118 ($ (-112) $ $ $ $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -1640 ($ $ (-278 $))) (-15 -1640 ($ $ (-607 (-278 $)))) (-15 -1640 ($ $ (-607 (-581 $)) (-607 $))) (-15 -2887 ($ $)) (-15 -2887 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -1639 ($ $)) (-15 -1639 ($ $ $)) (-15 -2900 ((-735) $)) (-15 -1638 ((-3 (-581 $) "failed") $)) (-15 -1637 ((-607 (-581 $)) $)) (-15 -1636 ((-607 (-581 $)) $)) (-15 -1635 ((-607 (-112)) $)) (-15 -2307 ((-112) (-112))) (-15 -2306 ((-111) (-112))) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (-15 -2288 ($ (-112) $)) (-15 -2288 ($ (-112) (-607 $))) (-15 -4275 ($ (-1 $ $) (-581 $))) (-15 -1634 ((-111) $ $)) (-15 -1634 ((-111) $ (-1123))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-1123) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-1123) (-1 $ $))) (-15 -4086 ($ $ (-607 (-112)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-112)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-112) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-1004)) (PROGN (-15 -1633 ((-1117 $) (-581 $))) (-15 -3499 ($ $))) |%noBranch|) (IF (|has| $ (-995 (-526))) (PROGN (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $))) |%noBranch|))) +(((-100) . T) ((-583 (-823)) . T) ((-294 $) . T) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-811) . T) ((-995 (-581 $)) . T) ((-1052) . T)) +((-4275 ((|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)) 18))) +(((-284 |#1| |#2|) (-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)))) (-283) (-1159)) (T -284)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1106)) (-5 *5 (-581 *6)) (-4 *6 (-283)) (-4 *2 (-1159)) (-5 *1 (-284 *6 *2))))) +(-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-1106) (-581 |#1|)))) +((-4275 ((|#2| (-1 |#2| |#1|) (-581 |#1|)) 17))) +(((-285 |#1| |#2|) (-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-581 |#1|)))) (-283) (-283)) (T -285)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-581 *5)) (-4 *5 (-283)) (-4 *2 (-283)) (-5 *1 (-285 *5 *2))))) +(-10 -7 (-15 -4275 (|#2| (-1 |#2| |#1|) (-581 |#1|)))) +((-1643 (((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211)))) 93)) (-1644 (((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211)))) 107) (((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211)))) 61)) (-1665 (((-607 (-1106)) (-1101 (-211))) NIL)) (-1642 (((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211)))) 58)) (-1645 (((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211)))) 49)) (-1664 (((-607 (-1106)) (-607 (-211))) NIL)) (-1666 (((-211) (-1041 (-803 (-211)))) 25)) (-1667 (((-211) (-1041 (-803 (-211)))) 26)) (-1641 (((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 54)) (-1662 (((-1106) (-211)) NIL))) +(((-286) (-10 -7 (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1641 ((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1643 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1645 ((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))))) (T -286)) +((-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-286)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286)))) (-1644 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1644 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) (-1642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-111)) (-5 *1 (-286)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286))))) +(-10 -7 (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -1641 ((-111) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -1642 ((-607 (-211)) (-299 (-211)) (-1123) (-1041 (-803 (-211))))) (-15 -1643 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-299 (-211)) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1644 ((-1101 (-211)) (-1205 (-299 (-211))) (-607 (-1123)) (-1041 (-803 (-211))))) (-15 -1645 ((-607 (-211)) (-905 (-392 (-526))) (-1123) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211))))) +((-2075 (((-111) (-211)) 10))) +(((-287 |#1| |#2|) (-10 -7 (-15 -2075 ((-111) (-211)))) (-211) (-211)) (T -287)) +((-2075 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-287 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2075 ((-111) (-211)))) +((-1661 (((-1205 (-299 (-363))) (-1205 (-299 (-211)))) 105)) (-1649 (((-1041 (-803 (-211))) (-1041 (-803 (-363)))) 40)) (-1665 (((-607 (-1106)) (-1101 (-211))) 87)) (-1672 (((-299 (-363)) (-905 (-211))) 50)) (-1673 (((-211) (-905 (-211))) 46)) (-1668 (((-1106) (-363)) 169)) (-1648 (((-803 (-211)) (-803 (-363))) 34)) (-1654 (((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211)))) 143)) (-1669 (((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) 181) (((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) 179)) (-1676 (((-653 (-211)) (-607 (-211)) (-735)) 14)) (-1659 (((-1205 (-663)) (-607 (-211))) 94)) (-1664 (((-607 (-1106)) (-607 (-211))) 75)) (-2955 (((-3 (-299 (-211)) "failed") (-299 (-211))) 120)) (-2075 (((-111) (-211) (-1041 (-803 (-211)))) 109)) (-1671 (((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) 198)) (-1666 (((-211) (-1041 (-803 (-211)))) 107)) (-1667 (((-211) (-1041 (-803 (-211)))) 108)) (-1675 (((-211) (-392 (-526))) 27)) (-1663 (((-1106) (-363)) 73)) (-1646 (((-211) (-363)) 17)) (-1653 (((-363) (-1205 (-299 (-211)))) 154)) (-1647 (((-299 (-211)) (-299 (-363))) 23)) (-1651 (((-392 (-526)) (-299 (-211))) 53)) (-1655 (((-299 (-392 (-526))) (-299 (-211))) 69)) (-1660 (((-299 (-363)) (-299 (-211))) 98)) (-1652 (((-211) (-299 (-211))) 54)) (-1657 (((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) 64)) (-1656 (((-1041 (-803 (-211))) (-1041 (-803 (-211)))) 61)) (-1662 (((-1106) (-211)) 72)) (-1658 (((-663) (-211)) 90)) (-1650 (((-392 (-526)) (-211)) 55)) (-1674 (((-299 (-363)) (-211)) 49)) (-4287 (((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363))))) 43)) (-4120 (((-992) (-607 (-992))) 165) (((-992) (-992) (-992)) 162)) (-1670 (((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-288) (-10 -7 (-15 -1646 ((-211) (-363))) (-15 -1647 ((-299 (-211)) (-299 (-363)))) (-15 -1648 ((-803 (-211)) (-803 (-363)))) (-15 -1649 ((-1041 (-803 (-211))) (-1041 (-803 (-363))))) (-15 -4287 ((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363)))))) (-15 -1650 ((-392 (-526)) (-211))) (-15 -1651 ((-392 (-526)) (-299 (-211)))) (-15 -1652 ((-211) (-299 (-211)))) (-15 -2955 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1653 ((-363) (-1205 (-299 (-211))))) (-15 -1654 ((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211))))) (-15 -1655 ((-299 (-392 (-526))) (-299 (-211)))) (-15 -1656 ((-1041 (-803 (-211))) (-1041 (-803 (-211))))) (-15 -1657 ((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-15 -1658 ((-663) (-211))) (-15 -1659 ((-1205 (-663)) (-607 (-211)))) (-15 -1660 ((-299 (-363)) (-299 (-211)))) (-15 -1661 ((-1205 (-299 (-363))) (-1205 (-299 (-211))))) (-15 -2075 ((-111) (-211) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1663 ((-1106) (-363))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -4120 ((-992) (-992) (-992))) (-15 -4120 ((-992) (-607 (-992)))) (-15 -1668 ((-1106) (-363))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))))) (-15 -1670 ((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1671 ((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -1672 ((-299 (-363)) (-905 (-211)))) (-15 -1673 ((-211) (-905 (-211)))) (-15 -1674 ((-299 (-363)) (-211))) (-15 -1675 ((-211) (-392 (-526)))) (-15 -1676 ((-653 (-211)) (-607 (-211)) (-735))))) (T -288)) +((-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-211))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) (-5 *1 (-288)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-392 (-526))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *2 (-992)) (-5 *1 (-288)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-607 (-992))) (-5 *2 (-992)) (-5 *1 (-288)))) (-4120 (*1 *2 *2 *2) (-12 (-5 *2 (-992)) (-5 *1 (-288)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-288)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1041 (-803 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-288)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-1205 (-299 (-363)))) (-5 *1 (-288)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1205 (-663))) (-5 *1 (-288)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-663)) (-5 *1 (-288)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *2 (-607 (-211))) (-5 *1 (-288)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-392 (-526)))) (-5 *1 (-288)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526)))) (-5 *1 (-288)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-288)))) (-2955 (*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-288)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-211)) (-5 *1 (-288)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-392 (-526))) (-5 *1 (-288)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-392 (-526))) (-5 *1 (-288)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-607 (-1041 (-803 (-363))))) (-5 *2 (-607 (-1041 (-803 (-211))))) (-5 *1 (-288)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-363)))) (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-803 (-363))) (-5 *2 (-803 (-211))) (-5 *1 (-288)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-299 (-363))) (-5 *2 (-299 (-211))) (-5 *1 (-288)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-288))))) +(-10 -7 (-15 -1646 ((-211) (-363))) (-15 -1647 ((-299 (-211)) (-299 (-363)))) (-15 -1648 ((-803 (-211)) (-803 (-363)))) (-15 -1649 ((-1041 (-803 (-211))) (-1041 (-803 (-363))))) (-15 -4287 ((-607 (-1041 (-803 (-211)))) (-607 (-1041 (-803 (-363)))))) (-15 -1650 ((-392 (-526)) (-211))) (-15 -1651 ((-392 (-526)) (-299 (-211)))) (-15 -1652 ((-211) (-299 (-211)))) (-15 -2955 ((-3 (-299 (-211)) "failed") (-299 (-211)))) (-15 -1653 ((-363) (-1205 (-299 (-211))))) (-15 -1654 ((-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526))) (-1205 (-299 (-211))))) (-15 -1655 ((-299 (-392 (-526))) (-299 (-211)))) (-15 -1656 ((-1041 (-803 (-211))) (-1041 (-803 (-211))))) (-15 -1657 ((-607 (-211)) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-15 -1658 ((-663) (-211))) (-15 -1659 ((-1205 (-663)) (-607 (-211)))) (-15 -1660 ((-299 (-363)) (-299 (-211)))) (-15 -1661 ((-1205 (-299 (-363))) (-1205 (-299 (-211))))) (-15 -2075 ((-111) (-211) (-1041 (-803 (-211))))) (-15 -1662 ((-1106) (-211))) (-15 -1663 ((-1106) (-363))) (-15 -1664 ((-607 (-1106)) (-607 (-211)))) (-15 -1665 ((-607 (-1106)) (-1101 (-211)))) (-15 -1666 ((-211) (-1041 (-803 (-211))))) (-15 -1667 ((-211) (-1041 (-803 (-211))))) (-15 -4120 ((-992) (-992) (-992))) (-15 -4120 ((-992) (-607 (-992)))) (-15 -1668 ((-1106) (-363))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))))) (-15 -1669 ((-992) (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))))) (-15 -1670 ((-992) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1671 ((-992) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -1672 ((-299 (-363)) (-905 (-211)))) (-15 -1673 ((-211) (-905 (-211)))) (-15 -1674 ((-299 (-363)) (-211))) (-15 -1675 ((-211) (-392 (-526)))) (-15 -1676 ((-653 (-211)) (-607 (-211)) (-735)))) +((-1677 (((-607 |#1|) (-607 |#1|)) 10))) +(((-289 |#1|) (-10 -7 (-15 -1677 ((-607 |#1|) (-607 |#1|)))) (-809)) (T -289)) +((-1677 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-809)) (-5 *1 (-289 *3))))) +(-10 -7 (-15 -1677 ((-607 |#1|) (-607 |#1|)))) +((-4275 (((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)) 17))) +(((-290 |#1| |#2|) (-10 -7 (-15 -4275 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) (-1004) (-1004)) (T -290)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-653 *6)) (-5 *1 (-290 *5 *6))))) +(-10 -7 (-15 -4275 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) +((-1681 (((-111) $ $) 11)) (-2861 (($ $ $) 15)) (-2860 (($ $ $) 14)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 44)) (-1678 (((-3 (-607 $) "failed") (-607 $) $) 53)) (-3457 (($ $ $) 21) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3780 (((-3 $ "failed") $ $) 17)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 46))) +(((-291 |#1|) (-10 -8 (-15 -1678 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -1679 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1679 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -1681 ((-111) |#1| |#1|)) (-15 -3040 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -3041 ((-2 (|:| -4270 (-607 |#1|)) (|:| -2470 |#1|)) (-607 |#1|))) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) (-292)) (T -291)) +NIL +(-10 -8 (-15 -1678 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -1679 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1679 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -1681 ((-111) |#1| |#1|)) (-15 -3040 ((-3 (-607 |#1|) "failed") (-607 |#1|) |#1|)) (-15 -3041 ((-2 (|:| -4270 (-607 |#1|)) (|:| -2470 |#1|)) (-607 |#1|))) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) "failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-292) (-134)) (T -292)) +((-1681 (*1 *2 *1 *1) (-12 (-4 *1 (-292)) (-5 *2 (-111)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-292)) (-5 *2 (-735)))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-292)))) (-2860 (*1 *1 *1 *1) (-4 *1 (-292))) (-2861 (*1 *1 *1 *1) (-4 *1 (-292))) (-1679 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-292)))) (-1679 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-292)))) (-1678 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-292))))) +(-13 (-880) (-10 -8 (-15 -1681 ((-111) $ $)) (-15 -1680 ((-735) $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -1679 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -1679 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1678 ((-3 (-607 $) "failed") (-607 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-4086 (($ $ (-607 |#2|) (-607 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-278 |#2|)) 11) (($ $ (-607 (-278 |#2|))) NIL))) +(((-293 |#1| |#2|) (-10 -8 (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|)))) (-294 |#2|) (-1052)) (T -293)) +NIL +(-10 -8 (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|)))) +((-4086 (($ $ (-607 |#1|) (-607 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-278 |#1|)) 11) (($ $ (-607 (-278 |#1|))) 10))) +(((-294 |#1|) (-134) (-1052)) (T -294)) +((-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *3))) (-4 *1 (-294 *3)) (-4 *3 (-1052))))) +(-13 (-496 |t#1| |t#1|) (-10 -8 (-15 -4086 ($ $ (-278 |t#1|))) (-15 -4086 ($ $ (-607 (-278 |t#1|)))))) +(((-496 |#1| |#1|) . T)) +((-4086 ((|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))) 25))) +(((-295 |#1|) (-10 -7 (-15 -4086 (|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))))) (-37 (-392 (-526)))) (T -295)) +((-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-526))) (-5 *4 (-1125 (-392 (-526)))) (-5 *1 (-295 *2)) (-4 *2 (-37 (-392 (-526))))))) +(-10 -7 (-15 -4086 (|#1| (-1 |#1| (-526)) (-1125 (-392 (-526)))))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 9))) +(((-296) (-1052)) (T -296)) +NIL +(-1052) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-297) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $))))) (T -297)) +((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-297))))) +(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 62)) (-3426 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1192 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-1186 |#2| |#3| |#4|) #2#) $) 25)) (-3469 (((-1192 |#1| |#2| |#3| |#4|) $) NIL) (((-1123) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-526) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-526)))) (((-1186 |#2| |#3| |#4|) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-1192 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1205 (-1192 |#1| |#2| |#3| |#4|)))) (-653 $) (-1205 $)) NIL) (((-653 (-1192 |#1| |#2| |#3| |#4|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-1192 |#1| |#2| |#3| |#4|) $) 21)) (-3763 (((-3 $ "failed") $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-3638 (($ $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-4275 (($ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) $) NIL)) (-4102 (((-3 (-803 |#2|) "failed") $) 78)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-292)))) (-3427 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-1192 |#1| |#2| |#3| |#4|)) (-607 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-278 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-607 (-278 (-1192 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-294 (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-607 (-1123)) (-607 (-1192 |#1| |#2| |#3| |#4|))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-496 (-1123) (-1192 |#1| |#2| |#3| |#4|)))) (($ $ (-1123) (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-496 (-1123) (-1192 |#1| |#2| |#3| |#4|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-1192 |#1| |#2| |#3| |#4|)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-271 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) (-735)) NIL) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-1192 |#1| |#2| |#3| |#4|) $) 17)) (-4287 (((-849 (-526)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-584 (-515)))) (((-363) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-977))) (((-211) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3| |#4|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-1192 |#1| |#2| |#3| |#4|)) 29) (($ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-995 (-1123)))) (($ (-1186 |#2| |#3| |#4|)) 36)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3| |#4|) (-869))) (|has| (-1192 |#1| |#2| |#3| |#4|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-1192 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-784)))) (-2957 (($) 41 T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-219))) (($ $ (-1123)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-859 (-1123)))) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) (-735)) NIL) (($ $ (-1 (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-1192 |#1| |#2| |#3| |#4|) (-811)))) (-4265 (($ $ $) 34) (($ (-1192 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2| |#3| |#4|)) 31)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-1192 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1192 |#1| |#2| |#3| |#4|)) NIL))) +(((-298 |#1| |#2| |#3| |#4|) (-13 (-950 (-1192 |#1| |#2| |#3| |#4|)) (-995 (-1186 |#2| |#3| |#4|)) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4274 ($ (-1186 |#2| |#3| |#4|))))) (-13 (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -298)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1186 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4) (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *1 (-298 *3 *4 *5 *6)))) (-4102 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-803 *4)) (-5 *1 (-298 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) +(-13 (-950 (-1192 |#1| |#2| |#3| |#4|)) (-995 (-1186 |#2| |#3| |#4|)) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4274 ($ (-1186 |#2| |#3| |#4|))))) +((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) $ (-1123)) NIL (|has| |#1| (-533))) (((-607 $) $) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $)) NIL (|has| |#1| (-533))) (((-607 $) (-905 $)) NIL (|has| |#1| (-533)))) (-1238 (($ $ (-1123)) NIL (|has| |#1| (-533))) (($ $) NIL (|has| |#1| (-533))) (($ (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (($ (-1117 $)) NIL (|has| |#1| (-533))) (($ (-905 $)) NIL (|has| |#1| (-533)))) (-3502 (((-111) $) 27 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-3384 (((-607 (-1123)) $) 351)) (-3386 (((-392 (-1117 $)) $ (-581 $)) NIL (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1636 (((-607 (-581 $)) $) NIL)) (-3806 (($ $) 161 (|has| |#1| (-533)))) (-3961 (($ $) 137 (|has| |#1| (-533)))) (-1397 (($ $ (-1044 $)) 222 (|has| |#1| (-533))) (($ $ (-1123)) 218 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) 368) (($ $ (-607 (-581 $)) (-607 $)) 412)) (-3007 (((-390 (-1117 $)) (-1117 $)) 295 (-12 (|has| |#1| (-436)) (|has| |#1| (-533))))) (-4093 (($ $) NIL (|has| |#1| (-533)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-533)))) (-3337 (($ $) NIL (|has| |#1| (-533)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3804 (($ $) 157 (|has| |#1| (-533)))) (-3960 (($ $) 133 (|has| |#1| (-533)))) (-1682 (($ $ (-526)) 72 (|has| |#1| (-533)))) (-3808 (($ $) 165 (|has| |#1| (-533)))) (-3959 (($ $) 141 (|has| |#1| (-533)))) (-3855 (($) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))) CONST)) (-1239 (((-607 $) $ (-1123)) NIL (|has| |#1| (-533))) (((-607 $) $) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $) (-1123)) NIL (|has| |#1| (-533))) (((-607 $) (-1117 $)) NIL (|has| |#1| (-533))) (((-607 $) (-905 $)) NIL (|has| |#1| (-533)))) (-3497 (($ $ (-1123)) NIL (|has| |#1| (-533))) (($ $) NIL (|has| |#1| (-533))) (($ (-1117 $) (-1123)) 124 (|has| |#1| (-533))) (($ (-1117 $)) NIL (|has| |#1| (-533))) (($ (-905 $)) NIL (|has| |#1| (-533)))) (-3470 (((-3 (-581 $) #1="failed") $) 17) (((-3 (-1123) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-47) #1#) $) 323 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (((-3 (-526) #1#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-905 |#1|)) #1#) $) NIL (|has| |#1| (-533))) (((-3 (-905 |#1|) #1#) $) NIL (|has| |#1| (-1004))) (((-3 (-392 (-526)) #1#) $) 46 (-3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-581 $) $) 11) (((-1123) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-905 |#1|)) $) NIL (|has| |#1| (-533))) (((-905 |#1|) $) NIL (|has| |#1| (-1004))) (((-392 (-526)) $) 306 (-3850 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) NIL (|has| |#1| (-533)))) (-2331 (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 117 (|has| |#1| (-1004))) (((-653 |#1|) (-653 $)) 107 (|has| |#1| (-1004))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (-4161 (($ $) 89 (|has| |#1| (-533)))) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (-2860 (($ $ $) NIL (|has| |#1| (-533)))) (-4261 (($ $ (-1044 $)) 226 (|has| |#1| (-533))) (($ $ (-1123)) 224 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-533)))) (-4045 (((-111) $) NIL (|has| |#1| (-533)))) (-3705 (($ $ $) 192 (|has| |#1| (-533)))) (-3949 (($) 127 (|has| |#1| (-533)))) (-1394 (($ $ $) 212 (|has| |#1| (-533)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 374 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 381 (|has| |#1| (-845 (-363))))) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) 267)) (-2471 (((-111) $) 25 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3296 (($ $) 71 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 84 (|has| |#1| (-1004)))) (-1683 (((-111) $) 64 (|has| |#1| (-533)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-533)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-533)))) (-1633 (((-1117 $) (-581 $)) 268 (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) 408)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-4259 (($ $) 131 (|has| |#1| (-533)))) (-2310 (($ $) 237 (|has| |#1| (-533)))) (-1989 (($ (-607 $)) NIL (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) 49)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) 413)) (-3123 (((-3 (-607 $) #3="failed") $) NIL (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) #3#) $) NIL (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) #3#) $) 416 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $) NIL (|has| |#1| (-1063))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-112)) NIL (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) #3#) $ (-1123)) NIL (|has| |#1| (-1004)))) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) 53)) (-2703 (($ $) NIL (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-3132 (($ $ (-1123)) 241 (|has| |#1| (-533))) (($ $ (-1044 $)) 243 (|has| |#1| (-533)))) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 43)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 288 (|has| |#1| (-533)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-1398 (($ $ (-1123)) 216 (|has| |#1| (-533))) (($ $) 214 (|has| |#1| (-533)))) (-1392 (($ $) 208 (|has| |#1| (-533)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 293 (-12 (|has| |#1| (-436)) (|has| |#1| (-533))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-533))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-533)))) (-4260 (($ $) 129 (|has| |#1| (-533)))) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) 407) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) 361) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1123)) NIL (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-584 (-515)))) (($ $) NIL (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 349 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-112)) (-607 $) (-1123)) 348 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ $)) NIL (|has| |#1| (-1004)))) (-1680 (((-735) $) NIL (|has| |#1| (-533)))) (-2308 (($ $) 229 (|has| |#1| (-533)))) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-2309 (($ $) 239 (|has| |#1| (-533)))) (-3704 (($ $) 190 (|has| |#1| (-533)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-1004))) (($ $ (-1123)) NIL (|has| |#1| (-1004)))) (-3295 (($ $) 73 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 86 (|has| |#1| (-533)))) (-3499 (($ $) 304 (|has| $ (-1004)))) (-3809 (($ $) 167 (|has| |#1| (-533)))) (-3958 (($ $) 143 (|has| |#1| (-533)))) (-3807 (($ $) 163 (|has| |#1| (-533)))) (-3957 (($ $) 139 (|has| |#1| (-533)))) (-3805 (($ $) 159 (|has| |#1| (-533)))) (-3956 (($ $) 135 (|has| |#1| (-533)))) (-4287 (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (($ (-390 $)) NIL (|has| |#1| (-533))) (((-515) $) 346 (|has| |#1| (-584 (-515))))) (-3309 (($ $ $) NIL (|has| |#1| (-457)))) (-2655 (($ $ $) NIL (|has| |#1| (-457)))) (-4274 (((-823) $) 406) (($ (-581 $)) 397) (($ (-1123)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-533))) (($ (-47)) 299 (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) (($ (-1075 |#1| (-581 $))) 88 (|has| |#1| (-1004))) (($ (-392 |#1|)) NIL (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) NIL (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) NIL (|has| |#1| (-533))) (($ (-392 (-905 |#1|))) NIL (|has| |#1| (-533))) (($ (-905 |#1|)) NIL (|has| |#1| (-1004))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-533)) (|has| |#1| (-995 (-392 (-526)))))) (($ (-526)) 34 (-3850 (|has| |#1| (-995 (-526))) (|has| |#1| (-1004))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL (|has| |#1| (-1004)))) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-3399 (($ $ $) 210 (|has| |#1| (-533)))) (-3708 (($ $ $) 196 (|has| |#1| (-533)))) (-3710 (($ $ $) 200 (|has| |#1| (-533)))) (-3707 (($ $ $) 194 (|has| |#1| (-533)))) (-3709 (($ $ $) 198 (|has| |#1| (-533)))) (-2306 (((-111) (-112)) 9)) (-3812 (($ $) 173 (|has| |#1| (-533)))) (-3800 (($ $) 149 (|has| |#1| (-533)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 169 (|has| |#1| (-533)))) (-3798 (($ $) 145 (|has| |#1| (-533)))) (-3814 (($ $) 177 (|has| |#1| (-533)))) (-3802 (($ $) 153 (|has| |#1| (-533)))) (-1890 (($ (-1123) $) NIL) (($ (-1123) $ $) NIL) (($ (-1123) $ $ $) NIL) (($ (-1123) $ $ $ $) NIL) (($ (-1123) (-607 $)) NIL)) (-3712 (($ $) 204 (|has| |#1| (-533)))) (-3711 (($ $) 202 (|has| |#1| (-533)))) (-3815 (($ $) 179 (|has| |#1| (-533)))) (-3803 (($ $) 155 (|has| |#1| (-533)))) (-3813 (($ $) 175 (|has| |#1| (-533)))) (-3801 (($ $) 151 (|has| |#1| (-533)))) (-3811 (($ $) 171 (|has| |#1| (-533)))) (-3799 (($ $) 147 (|has| |#1| (-533)))) (-3702 (($ $) 182 (|has| |#1| (-533)))) (-2957 (($) 20 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) CONST)) (-2312 (($ $) 233 (|has| |#1| (-533)))) (-2964 (($) 22 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))) CONST)) (-3706 (($ $) 184 (|has| |#1| (-533))) (($ $ $) 186 (|has| |#1| (-533)))) (-2313 (($ $) 231 (|has| |#1| (-533)))) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-1004))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-1004))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-1004))) (($ $ (-1123)) NIL (|has| |#1| (-1004)))) (-2311 (($ $) 235 (|has| |#1| (-533)))) (-3703 (($ $ $) 188 (|has| |#1| (-533)))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 81)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 80)) (-4265 (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 98 (|has| |#1| (-533))) (($ $ $) 42 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-4156 (($ $ $) 40 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ $) 29 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (-4158 (($ $ $) 38 (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))))) (** (($ $ $) 66 (|has| |#1| (-533))) (($ $ (-392 (-526))) 301 (|has| |#1| (-533))) (($ $ (-526)) 76 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533)))) (($ $ (-735)) 74 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063)))) (($ $ (-878)) 78 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063))))) (* (($ (-392 (-526)) $) NIL (|has| |#1| (-533))) (($ $ (-392 (-526))) NIL (|has| |#1| (-533))) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))) (($ $ $) 36 (-3850 (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) (|has| |#1| (-1063)))) (($ (-526) $) 32 (-3850 (|has| |#1| (-21)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ (-735) $) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))) (($ (-878) $) NIL (-3850 (|has| |#1| (-25)) (-12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))))))) +(((-299 |#1|) (-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-533)) (PROGN (-6 (-29 |#1|)) (-6 (-1145)) (-6 (-152)) (-6 (-597)) (-6 (-1087)) (-15 -4161 ($ $)) (-15 -1683 ((-111) $)) (-15 -1682 ($ $ (-526))) (IF (|has| |#1| (-436)) (PROGN (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3007 ((-390 (-1117 $)) (-1117 $)))) |%noBranch|) (IF (|has| |#1| (-995 (-526))) (-6 (-995 (-47))) |%noBranch|)) |%noBranch|))) (-811)) (T -299)) +((-4161 (*1 *1 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-533)) (-4 *2 (-811)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) (-3007 (*1 *2 *3) (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811))))) +(-13 (-406 |#1|) (-10 -8 (IF (|has| |#1| (-533)) (PROGN (-6 (-29 |#1|)) (-6 (-1145)) (-6 (-152)) (-6 (-597)) (-6 (-1087)) (-15 -4161 ($ $)) (-15 -1683 ((-111) $)) (-15 -1682 ($ $ (-526))) (IF (|has| |#1| (-436)) (PROGN (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3007 ((-390 (-1117 $)) (-1117 $)))) |%noBranch|) (IF (|has| |#1| (-995 (-526))) (-6 (-995 (-47))) |%noBranch|)) |%noBranch|))) +((-4275 (((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)) 13))) +(((-300 |#1| |#2|) (-10 -7 (-15 -4275 ((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)))) (-811) (-811)) (T -300)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-299 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-5 *2 (-299 *6)) (-5 *1 (-300 *5 *6))))) +(-10 -7 (-15 -4275 ((-299 |#2|) (-1 |#2| |#1|) (-299 |#1|)))) +((-4048 (((-50) |#2| (-278 |#2|) (-735)) 33) (((-50) |#2| (-278 |#2|)) 24) (((-50) |#2| (-735)) 28) (((-50) |#2|) 25) (((-50) (-1123)) 21)) (-4137 (((-50) |#2| (-278 |#2|) (-392 (-526))) 51) (((-50) |#2| (-278 |#2|)) 48) (((-50) |#2| (-392 (-526))) 50) (((-50) |#2|) 49) (((-50) (-1123)) 47)) (-4100 (((-50) |#2| (-278 |#2|) (-392 (-526))) 46) (((-50) |#2| (-278 |#2|)) 43) (((-50) |#2| (-392 (-526))) 45) (((-50) |#2|) 44) (((-50) (-1123)) 42)) (-4097 (((-50) |#2| (-278 |#2|) (-526)) 39) (((-50) |#2| (-278 |#2|)) 35) (((-50) |#2| (-526)) 38) (((-50) |#2|) 36) (((-50) (-1123)) 34))) +(((-301 |#1| |#2|) (-10 -7 (-15 -4048 ((-50) (-1123))) (-15 -4048 ((-50) |#2|)) (-15 -4048 ((-50) |#2| (-735))) (-15 -4048 ((-50) |#2| (-278 |#2|))) (-15 -4048 ((-50) |#2| (-278 |#2|) (-735))) (-15 -4097 ((-50) (-1123))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-526))) (-15 -4097 ((-50) |#2| (-278 |#2|))) (-15 -4097 ((-50) |#2| (-278 |#2|) (-526))) (-15 -4100 ((-50) (-1123))) (-15 -4100 ((-50) |#2|)) (-15 -4100 ((-50) |#2| (-392 (-526)))) (-15 -4100 ((-50) |#2| (-278 |#2|))) (-15 -4100 ((-50) |#2| (-278 |#2|) (-392 (-526)))) (-15 -4137 ((-50) (-1123))) (-15 -4137 ((-50) |#2|)) (-15 -4137 ((-50) |#2| (-392 (-526)))) (-15 -4137 ((-50) |#2| (-278 |#2|))) (-15 -4137 ((-50) |#2| (-278 |#2|) (-392 (-526))))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -301)) +((-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4137 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4100 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 *5) (-606 *5))) (-5 *5 (-526)) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *5 (-13 (-436) (-811) (-995 *4) (-606 *4))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-735)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *6 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-4048 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4)))))) +(-10 -7 (-15 -4048 ((-50) (-1123))) (-15 -4048 ((-50) |#2|)) (-15 -4048 ((-50) |#2| (-735))) (-15 -4048 ((-50) |#2| (-278 |#2|))) (-15 -4048 ((-50) |#2| (-278 |#2|) (-735))) (-15 -4097 ((-50) (-1123))) (-15 -4097 ((-50) |#2|)) (-15 -4097 ((-50) |#2| (-526))) (-15 -4097 ((-50) |#2| (-278 |#2|))) (-15 -4097 ((-50) |#2| (-278 |#2|) (-526))) (-15 -4100 ((-50) (-1123))) (-15 -4100 ((-50) |#2|)) (-15 -4100 ((-50) |#2| (-392 (-526)))) (-15 -4100 ((-50) |#2| (-278 |#2|))) (-15 -4100 ((-50) |#2| (-278 |#2|) (-392 (-526)))) (-15 -4137 ((-50) (-1123))) (-15 -4137 ((-50) |#2|)) (-15 -4137 ((-50) |#2| (-392 (-526)))) (-15 -4137 ((-50) |#2| (-278 |#2|))) (-15 -4137 ((-50) |#2| (-278 |#2|) (-392 (-526))))) +((-1684 (((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)) 88) (((-50) |#2| (-112) (-278 |#2|) (-278 |#2|)) 84) (((-50) |#2| (-112) (-278 |#2|) |#2|) 86) (((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|) 87) (((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|))) 80) (((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|)) 82) (((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|)) 83) (((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|))) 81) (((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|)) 89) (((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|)) 85))) +(((-302 |#1| |#2|) (-10 -7 (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)))) (-13 (-811) (-533) (-584 (-515))) (-406 |#1|)) (T -302)) +((-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-5 *6 (-607 *3)) (-4 *3 (-406 *7)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *3)))) (-1684 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *3)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *3)))) (-1684 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *5)) (-5 *4 (-112)) (-4 *5 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *5)))) (-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-112))) (-5 *6 (-607 (-278 *8))) (-4 *8 (-406 *7)) (-5 *5 (-278 *8)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *8)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 (-278 *8))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *8)) (-5 *6 (-607 *8)) (-4 *8 (-406 *7)) (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *7 *8)))) (-1684 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-607 *7)) (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *6 *7)))) (-1684 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-278 *6)) (-5 *4 (-112)) (-4 *6 (-406 *5)) (-4 *5 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) (-5 *1 (-302 *5 *6))))) +(-10 -7 (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-607 (-278 |#2|)) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 |#2|))) (-15 -1684 ((-50) (-607 |#2|) (-607 (-112)) (-278 |#2|) (-607 (-278 |#2|)))) (-15 -1684 ((-50) (-278 |#2|) (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) |#2|)) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-278 |#2|))) (-15 -1684 ((-50) |#2| (-112) (-278 |#2|) (-607 |#2|)))) +((-1686 (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106)) 46) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526)) 47) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106)) 43) (((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526)) 44)) (-1685 (((-1 (-211) (-211)) (-211)) 45))) +(((-303) (-10 -7 (-15 -1685 ((-1 (-211) (-211)) (-211))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106))))) (T -303)) +((-1686 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-211)) (-5 *7 (-526)) (-5 *8 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-211)) (-5 *7 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-526)) (-5 *7 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1686 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-303)) (-5 *3 (-211))))) +(-10 -7 (-15 -1685 ((-1 (-211) (-211)) (-211))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-1 (-211) (-211)) (-526) (-1106))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526))) (-15 -1686 ((-1155 (-886)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-211) (-526) (-1106)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 25)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 20)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 32)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) 16)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) NIL) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1687 (((-392 (-526)) $) 17)) (-3393 (($ (-1186 |#1| |#2| |#3|)) 11)) (-2462 (((-1186 |#1| |#2| |#3|) $) 12)) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 10)) (-4274 (((-823) $) 38) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 30)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) NIL)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 27)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 33)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-304 |#1| |#2| |#3|) (-13 (-1188 |#1|) (-756) (-10 -8 (-15 -3393 ($ (-1186 |#1| |#2| |#3|))) (-15 -2462 ((-1186 |#1| |#2| |#3|) $)) (-15 -1687 ((-392 (-526)) $)))) (-13 (-348) (-811)) (-1123) |#1|) (T -304)) +((-3393 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-304 *3 *4 *5)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4 *5)) (-5 *1 (-304 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-304 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3)))) +(-13 (-1188 |#1|) (-756) (-10 -8 (-15 -3393 ($ (-1186 |#1| |#2| |#3|))) (-15 -2462 ((-1186 |#1| |#2| |#3|) $)) (-15 -1687 ((-392 (-526)) $)))) +((-3311 (((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735)) 24)) (-4259 (((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)) 28))) +(((-305 |#1|) (-10 -7 (-15 -3311 ((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735))) (-15 -4259 ((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)))) (-533)) (T -305)) +((-4259 (*1 *2 *3) (-12 (-5 *3 (-390 *4)) (-4 *4 (-533)) (-5 *2 (-607 (-2 (|:| -4270 (-735)) (|:| |logand| *4)))) (-5 *1 (-305 *4)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-390 *5)) (-4 *5 (-533)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *5) (|:| |radicand| (-607 *5)))) (-5 *1 (-305 *5)) (-5 *4 (-735))))) +(-10 -7 (-15 -3311 ((-2 (|:| -2462 (-735)) (|:| -4270 |#1|) (|:| |radicand| (-607 |#1|))) (-390 |#1|) (-735))) (-15 -4259 ((-607 (-2 (|:| -4270 (-735)) (|:| |logand| |#1|))) (-390 |#1|)))) +((-3384 (((-607 |#2|) (-1117 |#4|)) 43)) (-1692 ((|#3| (-526)) 46)) (-1690 (((-1117 |#4|) (-1117 |#3|)) 30)) (-1691 (((-1117 |#4|) (-1117 |#4|) (-526)) 56)) (-1689 (((-1117 |#3|) (-1117 |#4|)) 21)) (-4264 (((-607 (-735)) (-1117 |#4|) (-607 |#2|)) 40)) (-1688 (((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|)) 35))) +(((-306 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1688 ((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|))) (-15 -4264 ((-607 (-735)) (-1117 |#4|) (-607 |#2|))) (-15 -3384 ((-607 |#2|) (-1117 |#4|))) (-15 -1689 ((-1117 |#3|) (-1117 |#4|))) (-15 -1690 ((-1117 |#4|) (-1117 |#3|))) (-15 -1691 ((-1117 |#4|) (-1117 |#4|) (-526))) (-15 -1692 (|#3| (-526)))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|)) (T -306)) +((-1692 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1004)) (-5 *1 (-306 *4 *5 *2 *6)) (-4 *6 (-909 *2 *4 *5)))) (-1691 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *7)) (-5 *3 (-526)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *1 (-306 *4 *5 *6 *7)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1117 *6)) (-4 *6 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-1117 *7)) (-5 *1 (-306 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-306 *4 *5 *6 *7)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *2 (-607 *5)) (-5 *1 (-306 *4 *5 *6 *7)))) (-4264 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *8)) (-5 *4 (-607 *6)) (-4 *6 (-811)) (-4 *8 (-909 *7 *5 *6)) (-4 *5 (-757)) (-4 *7 (-1004)) (-5 *2 (-607 (-735))) (-5 *1 (-306 *5 *6 *7 *8)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-1117 *8)) (-5 *1 (-306 *6 *7 *8 *9))))) +(-10 -7 (-15 -1688 ((-1117 |#3|) (-1117 |#4|) (-607 |#2|) (-607 |#3|))) (-15 -4264 ((-607 (-735)) (-1117 |#4|) (-607 |#2|))) (-15 -3384 ((-607 |#2|) (-1117 |#4|))) (-15 -1689 ((-1117 |#3|) (-1117 |#4|))) (-15 -1690 ((-1117 |#4|) (-1117 |#3|))) (-15 -1691 ((-1117 |#4|) (-1117 |#4|) (-526))) (-15 -1692 (|#3| (-526)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 14)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $) 18)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-1695 (((-526) $ (-526)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2340 (($ (-1 |#1| |#1|) $) NIL)) (-1694 (($ (-1 (-526) (-526)) $) 10)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) NIL (|has| (-526) (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-3999 (((-526) |#1| $) NIL)) (-2957 (($) 15 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 21 (|has| |#1| (-811)))) (-4156 (($ $) 11) (($ $ $) 20)) (-4158 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL) (($ (-526) |#1|) 19))) +(((-307 |#1|) (-13 (-21) (-682 (-526)) (-308 |#1| (-526)) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1052)) (T -307)) +NIL +(-13 (-21) (-682 (-526)) (-308 |#1| (-526)) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 27)) (-1345 (((-3 $ "failed") $ $) 19)) (-3433 (((-735) $) 28)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 32)) (-3469 ((|#1| $) 31)) (-2737 ((|#1| $ (-526)) 25)) (-1695 ((|#2| $ (-526)) 26)) (-2340 (($ (-1 |#1| |#1|) $) 22)) (-1694 (($ (-1 |#2| |#2|) $) 23)) (-3554 (((-1106) $) 9)) (-1693 (($ $ $) 21 (|has| |#2| (-756)))) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ |#1|) 33)) (-3999 ((|#2| |#1| $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4158 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ |#2| |#1|) 29))) +(((-308 |#1| |#2|) (-134) (-1052) (-129)) (T -308)) +((-4158 (*1 *1 *2 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-735)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-308 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-129)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-308 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1052)))) (-3999 (*1 *2 *3 *1) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) (-1694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) (-1693 (*1 *1 *1 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)) (-4 *3 (-756))))) +(-13 (-129) (-995 |t#1|) (-10 -8 (-15 -4158 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3433 ((-735) $)) (-15 -4092 ((-607 (-2 (|:| |gen| |t#1|) (|:| -4260 |t#2|))) $)) (-15 -1695 (|t#2| $ (-526))) (-15 -2737 (|t#1| $ (-526))) (-15 -3999 (|t#2| |t#1| $)) (-15 -1694 ($ (-1 |t#2| |t#2|) $)) (-15 -2340 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-756)) (-15 -1693 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-995 |#1|) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-1695 (((-735) $ (-526)) NIL)) (-2340 (($ (-1 |#1| |#1|) $) NIL)) (-1694 (($ (-1 (-735) (-735)) $) NIL)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) NIL (|has| (-735) (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-3999 (((-735) |#1| $) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-735) |#1|) NIL))) +(((-309 |#1|) (-308 |#1| (-735)) (-1052)) (T -309)) +NIL +(-308 |#1| (-735)) +((-3817 (($ $) 53)) (-1697 (($ $ |#2| |#3| $) 14)) (-1698 (($ (-1 |#3| |#3|) $) 35)) (-1892 (((-111) $) 27)) (-1891 ((|#2| $) 29)) (-3780 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3117 ((|#2| $) 49)) (-4136 (((-607 |#2|) $) 38)) (-1696 (($ $ $ (-735)) 23)) (-4265 (($ $ |#2|) 42))) +(((-310 |#1| |#2| |#3|) (-10 -8 (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-735))) (-15 -1697 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1698 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4265 (|#1| |#1| |#2|))) (-311 |#2| |#3|) (-1004) (-756)) (T -310)) +NIL +(-10 -8 (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-735))) (-15 -1697 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1698 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4265 (|#1| |#1| |#2|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 88 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 86 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 85)) (-3469 (((-526) $) 89 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 87 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 84)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 73 (|has| |#1| (-436)))) (-1697 (($ $ |#1| |#2| $) 77)) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 80)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59)) (-3120 ((|#2| $) 79)) (-1698 (($ (-1 |#2| |#2|) $) 78)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 83)) (-1891 ((|#1| $) 82)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-3117 ((|#1| $) 74 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45) (($ (-392 (-526))) 55 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 81)) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 76 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-311 |#1| |#2|) (-134) (-1004) (-756)) (T -311)) +((-1892 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-607 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-1697 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) (-1696 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *3 (-163)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-533)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-436))))) +(-13 (-46 |t#1| |t#2|) (-397 |t#1|) (-10 -8 (-15 -1892 ((-111) $)) (-15 -1891 (|t#1| $)) (-15 -4136 ((-607 |t#1|) $)) (-15 -2479 ((-735) $)) (-15 -3120 (|t#2| $)) (-15 -1698 ($ (-1 |t#2| |t#2|) $)) (-15 -1697 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-163)) (-15 -1696 ($ $ $ (-735))) |%noBranch|) (IF (|has| |t#1| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3117 (|t#1| $)) (-15 -3817 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-397 |#1|) . T) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-2083 (((-111) (-111)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2084 (($ $ (-526)) NIL)) (-2085 (((-735) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-607 |#1|)) NIL)) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-312 |#1|) (-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) (-1159)) (T -312)) +((-2086 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-312 *3)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-312 *3)) (-4 *3 (-1159))))) +(-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) +((-4249 (((-111) $) 42)) (-4246 (((-735)) 22)) (-3649 ((|#2| $) 46) (($ $ (-878)) 103)) (-3433 (((-735)) 98)) (-1887 (($ (-1205 |#2|)) 20)) (-2103 (((-111) $) 115)) (-3429 ((|#2| $) 48) (($ $ (-878)) 101)) (-2106 (((-1117 |#2|) $) NIL) (((-1117 $) $ (-878)) 95)) (-1700 (((-1117 |#2|) $) 83)) (-1699 (((-1117 |#2|) $) 80) (((-3 (-1117 |#2|) "failed") $ $) 77)) (-1701 (($ $ (-1117 |#2|)) 53)) (-4247 (((-796 (-878))) 28) (((-878)) 43)) (-4230 (((-131)) 25)) (-4264 (((-796 (-878)) $) 30) (((-878) $) 117)) (-1702 (($) 109)) (-3537 (((-1205 |#2|) $) NIL) (((-653 |#2|) (-1205 $)) 39)) (-3002 (($ $) NIL) (((-3 $ "failed") $) 86)) (-4250 (((-111) $) 41))) +(((-313 |#1| |#2|) (-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3433 ((-735))) (-15 -3002 (|#1| |#1|)) (-15 -1699 ((-3 (-1117 |#2|) "failed") |#1| |#1|)) (-15 -1699 ((-1117 |#2|) |#1|)) (-15 -1700 ((-1117 |#2|) |#1|)) (-15 -1701 (|#1| |#1| (-1117 |#2|))) (-15 -2103 ((-111) |#1|)) (-15 -1702 (|#1|)) (-15 -3649 (|#1| |#1| (-878))) (-15 -3429 (|#1| |#1| (-878))) (-15 -2106 ((-1117 |#1|) |#1| (-878))) (-15 -3649 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -4264 ((-878) |#1|)) (-15 -4247 ((-878))) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -4246 ((-735))) (-15 -4247 ((-796 (-878)))) (-15 -4264 ((-796 (-878)) |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|)) (-15 -4230 ((-131)))) (-314 |#2|) (-348)) (T -313)) +((-4230 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-131)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4247 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-796 (-878))) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4246 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-4247 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-878)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) (-3433 (*1 *2) (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4))))) +(-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3433 ((-735))) (-15 -3002 (|#1| |#1|)) (-15 -1699 ((-3 (-1117 |#2|) "failed") |#1| |#1|)) (-15 -1699 ((-1117 |#2|) |#1|)) (-15 -1700 ((-1117 |#2|) |#1|)) (-15 -1701 (|#1| |#1| (-1117 |#2|))) (-15 -2103 ((-111) |#1|)) (-15 -1702 (|#1|)) (-15 -3649 (|#1| |#1| (-878))) (-15 -3429 (|#1| |#1| (-878))) (-15 -2106 ((-1117 |#1|) |#1| (-878))) (-15 -3649 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -4264 ((-878) |#1|)) (-15 -4247 ((-878))) (-15 -2106 ((-1117 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -4246 ((-735))) (-15 -4247 ((-796 (-878)))) (-15 -4264 ((-796 (-878)) |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|)) (-15 -4230 ((-131)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4249 (((-111) $) 91)) (-4246 (((-735)) 87)) (-3649 ((|#1| $) 137) (($ $ (-878)) 134 (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 119 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3433 (((-735)) 109 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 98)) (-3469 ((|#1| $) 97)) (-1887 (($ (-1205 |#1|)) 143)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-353)))) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 106 (|has| |#1| (-353)))) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-3133 (($) 121 (|has| |#1| (-353)))) (-1772 (((-111) $) 122 (|has| |#1| (-353)))) (-1862 (($ $ (-735)) 84 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) 83 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) 68)) (-4090 (((-878) $) 124 (|has| |#1| (-353))) (((-796 (-878)) $) 81 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) 30)) (-2105 (($) 132 (|has| |#1| (-353)))) (-2103 (((-111) $) 131 (|has| |#1| (-353)))) (-3429 ((|#1| $) 138) (($ $ (-878)) 135 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) 110 (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2106 (((-1117 |#1|) $) 142) (((-1117 $) $ (-878)) 136 (|has| |#1| (-353)))) (-2102 (((-878) $) 107 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) 128 (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) 127 (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) 126 (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) 129 (|has| |#1| (-353)))) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 111 (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 108 (|has| |#1| (-353)))) (-4248 (((-111) $) 90)) (-3555 (((-1070) $) 10)) (-2470 (($) 130 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 118 (|has| |#1| (-353)))) (-4051 (((-390 $) $) 71)) (-4247 (((-796 (-878))) 88) (((-878)) 140)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-735) $) 123 (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) 82 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) 96)) (-4129 (($ $) 115 (|has| |#1| (-353))) (($ $ (-735)) 113 (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) 89) (((-878) $) 139)) (-3499 (((-1117 |#1|)) 141)) (-1766 (($) 120 (|has| |#1| (-353)))) (-1702 (($) 133 (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 145) (((-653 |#1|) (-1205 $)) 144)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 117 (|has| |#1| (-353)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 99)) (-3002 (($ $) 116 (|has| |#1| (-353))) (((-3 $ "failed") $) 80 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 147) (((-1205 $) (-878)) 146)) (-2150 (((-111) $ $) 37)) (-4250 (((-111) $) 92)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-4245 (($ $) 86 (|has| |#1| (-353))) (($ $ (-735)) 85 (|has| |#1| (-353)))) (-2969 (($ $) 114 (|has| |#1| (-353))) (($ $ (-735)) 112 (|has| |#1| (-353)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62) (($ $ |#1|) 95)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-314 |#1|) (-134) (-348)) (T -314)) +((-2104 (*1 *2) (-12 (-4 *3 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *3)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *4)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-314 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-4 *1 (-314 *3)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) (-3499 (*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) (-4247 (*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) (-2106 (*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-4 *4 (-353)) (-4 *4 (-348)) (-5 *2 (-1117 *1)) (-4 *1 (-314 *4)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) (-1702 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-2105 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-111)))) (-2470 (*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-353)) (-4 *1 (-314 *3)) (-4 *3 (-348)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3)))) (-1699 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) +(-13 (-1223 |t#1|) (-995 |t#1|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -2104 ((-1205 $) (-878))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -2106 ((-1117 |t#1|) $)) (-15 -3499 ((-1117 |t#1|))) (-15 -4247 ((-878))) (-15 -4264 ((-878) $)) (-15 -3429 (|t#1| $)) (-15 -3649 (|t#1| $)) (IF (|has| |t#1| (-353)) (PROGN (-6 (-335)) (-15 -2106 ((-1117 $) $ (-878))) (-15 -3429 ($ $ (-878))) (-15 -3649 ($ $ (-878))) (-15 -1702 ($)) (-15 -2105 ($)) (-15 -2103 ((-111) $)) (-15 -2470 ($)) (-15 -1701 ($ $ (-1117 |t#1|))) (-15 -1700 ((-1117 |t#1|) $)) (-15 -1699 ((-1117 |t#1|) $)) (-15 -1699 ((-3 (-1117 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-219) |has| |#1| (-353)) ((-229) . T) ((-275) . T) ((-292) . T) ((-1223 |#1|) . T) ((-348) . T) ((-387) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-353) |has| |#1| (-353)) ((-335) |has| |#1| (-353)) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-353)) ((-1164) . T) ((-1213 |#1|) . T)) +((-2865 (((-111) $ $) NIL)) (-1720 (($ (-1122) $) 88)) (-1711 (($) 77)) (-1703 (((-1070) (-1070)) 11)) (-1710 (($) 78)) (-1714 (($) 90) (($ (-299 (-663))) 98) (($ (-299 (-665))) 94) (($ (-299 (-658))) 102) (($ (-299 (-363))) 109) (($ (-299 (-526))) 105) (($ (-299 (-159 (-363)))) 113)) (-1719 (($ (-1122) $) 89)) (-1709 (($ (-607 (-823))) 79)) (-1705 (((-1211) $) 75)) (-1707 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1718 (($ (-1070)) 51)) (-1704 (((-1054) $) 25)) (-1721 (($ (-1044 (-905 (-526))) $) 85) (($ (-1044 (-905 (-526))) (-905 (-526)) $) 86)) (-1717 (($ (-1070)) 87)) (-1713 (($ (-1122) $) 115) (($ (-1122) $ $) 116)) (-1708 (($ (-1123) (-607 (-1123))) 76)) (-1716 (($ (-1106)) 82) (($ (-607 (-1106))) 80)) (-4274 (((-823) $) 118)) (-1706 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $) 44)) (-1715 (($ (-1106)) 187)) (-1712 (($ (-607 $)) 114)) (-2883 (($ (-1123) (-1106)) 120) (($ (-1123) (-299 (-665))) 160) (($ (-1123) (-299 (-663))) 161) (($ (-1123) (-299 (-658))) 162) (($ (-1123) (-653 (-665))) 123) (($ (-1123) (-653 (-663))) 126) (($ (-1123) (-653 (-658))) 129) (($ (-1123) (-1205 (-665))) 132) (($ (-1123) (-1205 (-663))) 135) (($ (-1123) (-1205 (-658))) 138) (($ (-1123) (-653 (-299 (-665)))) 141) (($ (-1123) (-653 (-299 (-663)))) 144) (($ (-1123) (-653 (-299 (-658)))) 147) (($ (-1123) (-1205 (-299 (-665)))) 150) (($ (-1123) (-1205 (-299 (-663)))) 153) (($ (-1123) (-1205 (-299 (-658)))) 156) (($ (-1123) (-607 (-905 (-526))) (-299 (-665))) 157) (($ (-1123) (-607 (-905 (-526))) (-299 (-663))) 158) (($ (-1123) (-607 (-905 (-526))) (-299 (-658))) 159) (($ (-1123) (-299 (-526))) 184) (($ (-1123) (-299 (-363))) 185) (($ (-1123) (-299 (-159 (-363)))) 186) (($ (-1123) (-653 (-299 (-526)))) 165) (($ (-1123) (-653 (-299 (-363)))) 168) (($ (-1123) (-653 (-299 (-159 (-363))))) 171) (($ (-1123) (-1205 (-299 (-526)))) 174) (($ (-1123) (-1205 (-299 (-363)))) 177) (($ (-1123) (-1205 (-299 (-159 (-363))))) 180) (($ (-1123) (-607 (-905 (-526))) (-299 (-526))) 181) (($ (-1123) (-607 (-905 (-526))) (-299 (-363))) 182) (($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363)))) 183)) (-3353 (((-111) $ $) NIL))) +(((-315) (-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -1721 ($ (-1044 (-905 (-526))) $)) (-15 -1721 ($ (-1044 (-905 (-526))) (-905 (-526)) $)) (-15 -1720 ($ (-1122) $)) (-15 -1719 ($ (-1122) $)) (-15 -1718 ($ (-1070))) (-15 -1717 ($ (-1070))) (-15 -1716 ($ (-1106))) (-15 -1716 ($ (-607 (-1106)))) (-15 -1715 ($ (-1106))) (-15 -1714 ($)) (-15 -1714 ($ (-299 (-663)))) (-15 -1714 ($ (-299 (-665)))) (-15 -1714 ($ (-299 (-658)))) (-15 -1714 ($ (-299 (-363)))) (-15 -1714 ($ (-299 (-526)))) (-15 -1714 ($ (-299 (-159 (-363))))) (-15 -1713 ($ (-1122) $)) (-15 -1713 ($ (-1122) $ $)) (-15 -2883 ($ (-1123) (-1106))) (-15 -2883 ($ (-1123) (-299 (-665)))) (-15 -2883 ($ (-1123) (-299 (-663)))) (-15 -2883 ($ (-1123) (-299 (-658)))) (-15 -2883 ($ (-1123) (-653 (-665)))) (-15 -2883 ($ (-1123) (-653 (-663)))) (-15 -2883 ($ (-1123) (-653 (-658)))) (-15 -2883 ($ (-1123) (-1205 (-665)))) (-15 -2883 ($ (-1123) (-1205 (-663)))) (-15 -2883 ($ (-1123) (-1205 (-658)))) (-15 -2883 ($ (-1123) (-653 (-299 (-665))))) (-15 -2883 ($ (-1123) (-653 (-299 (-663))))) (-15 -2883 ($ (-1123) (-653 (-299 (-658))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-665))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-663))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-658))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-665)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-663)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-658)))) (-15 -2883 ($ (-1123) (-299 (-526)))) (-15 -2883 ($ (-1123) (-299 (-363)))) (-15 -2883 ($ (-1123) (-299 (-159 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-526))))) (-15 -2883 ($ (-1123) (-653 (-299 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-526))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-363))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-526)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-363)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363))))) (-15 -1712 ($ (-607 $))) (-15 -1711 ($)) (-15 -1710 ($)) (-15 -1709 ($ (-607 (-823)))) (-15 -1708 ($ (-1123) (-607 (-1123)))) (-15 -1707 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1706 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $)) (-15 -1705 ((-1211) $)) (-15 -1704 ((-1054) $)) (-15 -1703 ((-1070) (-1070)))))) (T -315)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-315)))) (-1721 (*1 *1 *2 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *1 (-315)))) (-1721 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *3 (-905 (-526))) (-5 *1 (-315)))) (-1720 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1719 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315)))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-315)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315)))) (-1714 (*1 *1) (-5 *1 (-315))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-315)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-1713 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-665)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-663)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-658)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-665)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-663)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-658)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-665))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-663))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-658))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-526))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-363))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-526)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-159 (-363))))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-526)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-363)))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-159 (-363))))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-526))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-363))) (-5 *1 (-315)))) (-2883 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-159 (-363)))) (-5 *1 (-315)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-315)))) (-1711 (*1 *1) (-5 *1 (-315))) (-1710 (*1 *1) (-5 *1 (-315))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-315)))) (-1708 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-315)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-315)))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| (-315)) (|:| |elseClause| (-315)))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 (-315))) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 (-315)))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 (-315)))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823))))) (-5 *1 (-315)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-315)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) +(-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -1721 ($ (-1044 (-905 (-526))) $)) (-15 -1721 ($ (-1044 (-905 (-526))) (-905 (-526)) $)) (-15 -1720 ($ (-1122) $)) (-15 -1719 ($ (-1122) $)) (-15 -1718 ($ (-1070))) (-15 -1717 ($ (-1070))) (-15 -1716 ($ (-1106))) (-15 -1716 ($ (-607 (-1106)))) (-15 -1715 ($ (-1106))) (-15 -1714 ($)) (-15 -1714 ($ (-299 (-663)))) (-15 -1714 ($ (-299 (-665)))) (-15 -1714 ($ (-299 (-658)))) (-15 -1714 ($ (-299 (-363)))) (-15 -1714 ($ (-299 (-526)))) (-15 -1714 ($ (-299 (-159 (-363))))) (-15 -1713 ($ (-1122) $)) (-15 -1713 ($ (-1122) $ $)) (-15 -2883 ($ (-1123) (-1106))) (-15 -2883 ($ (-1123) (-299 (-665)))) (-15 -2883 ($ (-1123) (-299 (-663)))) (-15 -2883 ($ (-1123) (-299 (-658)))) (-15 -2883 ($ (-1123) (-653 (-665)))) (-15 -2883 ($ (-1123) (-653 (-663)))) (-15 -2883 ($ (-1123) (-653 (-658)))) (-15 -2883 ($ (-1123) (-1205 (-665)))) (-15 -2883 ($ (-1123) (-1205 (-663)))) (-15 -2883 ($ (-1123) (-1205 (-658)))) (-15 -2883 ($ (-1123) (-653 (-299 (-665))))) (-15 -2883 ($ (-1123) (-653 (-299 (-663))))) (-15 -2883 ($ (-1123) (-653 (-299 (-658))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-665))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-663))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-658))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-665)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-663)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-658)))) (-15 -2883 ($ (-1123) (-299 (-526)))) (-15 -2883 ($ (-1123) (-299 (-363)))) (-15 -2883 ($ (-1123) (-299 (-159 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-526))))) (-15 -2883 ($ (-1123) (-653 (-299 (-363))))) (-15 -2883 ($ (-1123) (-653 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-526))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-363))))) (-15 -2883 ($ (-1123) (-1205 (-299 (-159 (-363)))))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-526)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-363)))) (-15 -2883 ($ (-1123) (-607 (-905 (-526))) (-299 (-159 (-363))))) (-15 -1712 ($ (-607 $))) (-15 -1711 ($)) (-15 -1710 ($)) (-15 -1709 ($ (-607 (-823)))) (-15 -1708 ($ (-1123) (-607 (-1123)))) (-15 -1707 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1706 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1122)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3722 (-111)) (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) (|:| |blockBranch| (-607 $)) (|:| |commentBranch| (-607 (-1106))) (|:| |callBranch| (-1106)) (|:| |forBranch| (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) (|:| -3494 $))) (|:| |labelBranch| (-1070)) (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 $))) (|:| |commonBranch| (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) (|:| |printBranch| (-607 (-823)))) $)) (-15 -1705 ((-1211) $)) (-15 -1704 ((-1054) $)) (-15 -1703 ((-1070) (-1070))))) +((-2865 (((-111) $ $) NIL)) (-1722 (((-111) $) 11)) (-3960 (($ |#1|) 8)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3956 (($ |#1|) 9)) (-4274 (((-823) $) 17)) (-2289 ((|#1| $) 12)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 19))) +(((-316 |#1|) (-13 (-811) (-10 -8 (-15 -3960 ($ |#1|)) (-15 -3956 ($ |#1|)) (-15 -1722 ((-111) $)) (-15 -2289 (|#1| $)))) (-811)) (T -316)) +((-3960 (*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) (-3956 (*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-316 *3)) (-4 *3 (-811)))) (-2289 (*1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811))))) +(-13 (-811) (-10 -8 (-15 -3960 ($ |#1|)) (-15 -3956 ($ |#1|)) (-15 -1722 ((-111) $)) (-15 -2289 (|#1| $)))) +((-1723 (((-315) (-1123) (-905 (-526))) 23)) (-1724 (((-315) (-1123) (-905 (-526))) 27)) (-2378 (((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526)))) 26) (((-315) (-1123) (-905 (-526)) (-905 (-526))) 24)) (-1725 (((-315) (-1123) (-905 (-526))) 31))) +(((-317) (-10 -7 (-15 -1723 ((-315) (-1123) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-905 (-526)) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526))))) (-15 -1724 ((-315) (-1123) (-905 (-526)))) (-15 -1725 ((-315) (-1123) (-905 (-526)))))) (T -317)) +((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1044 (-905 (-526)))) (-5 *2 (-315)) (-5 *1 (-317)))) (-2378 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) +(-10 -7 (-15 -1723 ((-315) (-1123) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-905 (-526)) (-905 (-526)))) (-15 -2378 ((-315) (-1123) (-1044 (-905 (-526))) (-1044 (-905 (-526))))) (-15 -1724 ((-315) (-1123) (-905 (-526)))) (-15 -1725 ((-315) (-1123) (-905 (-526))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ $) 33)) (-1728 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-1726 (((-1205 |#4|) $) 125)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 31)) (-3555 (((-1070) $) NIL)) (-2470 (((-3 |#4| "failed") $) 36)) (-1727 (((-1205 |#4|) $) 118)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-526)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4274 (((-823) $) 17)) (-2957 (($) 14 T CONST)) (-3353 (((-111) $ $) 20)) (-4156 (($ $) 27) (($ $ $) NIL)) (-4158 (($ $ $) 25)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 23))) +(((-318 |#1| |#2| |#3| |#4|) (-13 (-321 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1727 ((-1205 |#4|) $)) (-15 -1726 ((-1205 |#4|) $)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -318)) +((-1727 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5)))) (-1726 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) +(-13 (-321 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1727 ((-1205 |#4|) $)) (-15 -1726 ((-1205 |#4|) $)))) +((-4275 (((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)) 33))) +(((-319 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 ((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-348) (-1181 |#5|) (-1181 (-392 |#6|)) (-327 |#5| |#6| |#7|)) (T -319)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-318 *5 *6 *7 *8)) (-4 *5 (-348)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *9 (-348)) (-4 *10 (-1181 *9)) (-4 *11 (-1181 (-392 *10))) (-5 *2 (-318 *9 *10 *11 *12)) (-5 *1 (-319 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-327 *9 *10 *11))))) +(-10 -7 (-15 -4275 ((-318 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-318 |#1| |#2| |#3| |#4|)))) +((-1728 (((-111) $) 14))) +(((-320 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1728 ((-111) |#1|))) (-321 |#2| |#3| |#4| |#5|) (-348) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -320)) +NIL +(-10 -8 (-15 -1728 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4161 (($ $) 26)) (-1728 (((-111) $) 25)) (-3554 (((-1106) $) 9)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 32)) (-3555 (((-1070) $) 10)) (-2470 (((-3 |#4| "failed") $) 24)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-526)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20))) +(((-321 |#1| |#2| |#3| |#4|) (-134) (-348) (-1181 |t#1|) (-1181 (-392 |t#2|)) (-327 |t#1| |t#2| |t#3|)) (T -321)) +((-2068 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-398 *4 (-392 *4) *5 *6)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-398 *4 (-392 *4) *5 *6)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-4 *3 (-348)) (-4 *1 (-321 *3 *4 *5 *6)))) (-1729 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *3 *4 *5 *2)) (-4 *2 (-327 *3 *4 *5)))) (-1729 (*1 *1 *2 *2) (-12 (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) (-4 *1 (-321 *2 *3 *4 *5)) (-4 *5 (-327 *2 *3 *4)))) (-1729 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-526)) (-4 *2 (-348)) (-4 *4 (-1181 *2)) (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *2 *4 *5 *6)) (-4 *6 (-327 *2 *4 *5)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-2 (|:| -2386 (-398 *4 (-392 *4) *5 *6)) (|:| |principalPart| *6))))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) (-4 *5 (-327 *2 *3 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-111)))) (-2470 (*1 *2 *1) (|partial| -12 (-4 *1 (-321 *3 *4 *5 *2)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *2 (-327 *3 *4 *5)))) (-1729 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-348)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-4 *1 (-321 *4 *3 *5 *2)) (-4 *2 (-327 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2068 ((-398 |t#2| (-392 |t#2|) |t#3| |t#4|) $)) (-15 -1729 ($ (-398 |t#2| (-392 |t#2|) |t#3| |t#4|))) (-15 -1729 ($ |t#4|)) (-15 -1729 ($ |t#1| |t#1|)) (-15 -1729 ($ |t#1| |t#1| (-526))) (-15 -3754 ((-2 (|:| -2386 (-398 |t#2| (-392 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4161 ($ $)) (-15 -1728 ((-111) $)) (-15 -2470 ((-3 |t#4| "failed") $)) (-15 -1729 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-4086 (($ $ (-1123) |#2|) NIL) (($ $ (-607 (-1123)) (-607 |#2|)) 20) (($ $ (-607 (-278 |#2|))) 15) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-607 |#2|) (-607 |#2|)) NIL)) (-4118 (($ $ |#2|) 11))) +(((-322 |#1| |#2|) (-10 -8 (-15 -4118 (|#1| |#1| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1123) |#2|))) (-323 |#2|) (-1052)) (T -322)) +NIL +(-10 -8 (-15 -4118 (|#1| |#1| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1123) |#2|))) +((-4275 (($ (-1 |#1| |#1|) $) 6)) (-4086 (($ $ (-1123) |#1|) 17 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 16 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-607 (-278 |#1|))) 15 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 14 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-294 |#1|))) (($ $ (-607 |#1|) (-607 |#1|)) 12 (|has| |#1| (-294 |#1|)))) (-4118 (($ $ |#1|) 11 (|has| |#1| (-271 |#1| |#1|))))) +(((-323 |#1|) (-134) (-1052)) (T -323)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1052))))) +(-13 (-10 -8 (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-271 |t#1| |t#1|)) (-6 (-271 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-294 |t#1|)) (-6 (-294 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496 (-1123) |t#1|)) (-6 (-496 (-1123) |t#1|)) |%noBranch|))) +(((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) NIL)) (-1730 (((-111)) 91) (((-111) (-111)) 92)) (-1636 (((-607 (-581 $)) $) NIL)) (-3806 (($ $) NIL)) (-3961 (($ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-3337 (($ $) NIL)) (-3804 (($ $) NIL)) (-3960 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-299 |#3|)) 71) (((-3 $ "failed") (-1123)) 97) (((-3 $ "failed") (-299 (-526))) 59 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-392 (-905 (-526)))) 65 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-905 (-526))) 60 (|has| |#3| (-995 (-526)))) (((-3 $ "failed") (-299 (-363))) 89 (|has| |#3| (-995 (-363)))) (((-3 $ "failed") (-392 (-905 (-363)))) 83 (|has| |#3| (-995 (-363)))) (((-3 $ "failed") (-905 (-363))) 78 (|has| |#3| (-995 (-363))))) (-3469 (((-581 $) $) NIL) ((|#3| $) NIL) (($ (-299 |#3|)) 72) (($ (-1123)) 98) (($ (-299 (-526))) 61 (|has| |#3| (-995 (-526)))) (($ (-392 (-905 (-526)))) 66 (|has| |#3| (-995 (-526)))) (($ (-905 (-526))) 62 (|has| |#3| (-995 (-526)))) (($ (-299 (-363))) 90 (|has| |#3| (-995 (-363)))) (($ (-392 (-905 (-363)))) 84 (|has| |#3| (-995 (-363)))) (($ (-905 (-363))) 80 (|has| |#3| (-995 (-363))))) (-3781 (((-3 $ "failed") $) NIL)) (-3949 (($) 10)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-1633 (((-1117 $) (-581 $)) NIL (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1834 (($ $) 94)) (-4259 (($ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) 93) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4260 (($ $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-3805 (($ $) NIL)) (-3956 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ |#3|) NIL) (($ (-526)) NIL) (((-299 |#3|) $) 96)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) NIL)) (-3800 (($ $) NIL)) (-3798 (($ $) NIL)) (-3799 (($ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) 95 T CONST)) (-2964 (($) 24 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) +(((-324 |#1| |#2| |#3|) (-13 (-283) (-37 |#3|) (-995 |#3|) (-859 (-1123)) (-10 -8 (-15 -3469 ($ (-299 |#3|))) (-15 -3470 ((-3 $ "failed") (-299 |#3|))) (-15 -3469 ($ (-1123))) (-15 -3470 ((-3 $ "failed") (-1123))) (-15 -4274 ((-299 |#3|) $)) (IF (|has| |#3| (-995 (-526))) (PROGN (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526))))) |%noBranch|) (IF (|has| |#3| (-995 (-363))) (PROGN (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -3702 ($ $)) (-15 -3337 ($ $)) (-15 -4260 ($ $)) (-15 -4259 ($ $)) (-15 -1834 ($ $)) (-15 -3960 ($ $)) (-15 -3956 ($ $)) (-15 -3961 ($ $)) (-15 -3798 ($ $)) (-15 -3799 ($ $)) (-15 -3800 ($ $)) (-15 -3804 ($ $)) (-15 -3805 ($ $)) (-15 -3806 ($ $)) (-15 -3949 ($)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1730 ((-111))) (-15 -1730 ((-111) (-111))))) (-607 (-1123)) (-607 (-1123)) (-372)) (T -324)) +((-3469 (*1 *1 *2) (-12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) (-14 *4 (-607 *2)) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) (-14 *4 (-607 *2)) (-4 *5 (-372)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-299 *5)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-3702 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-4260 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-4259 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-1834 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3949 (*1 *1) (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) (-4 *4 (-372)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-324 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-372)))) (-1730 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372))))) +(-13 (-283) (-37 |#3|) (-995 |#3|) (-859 (-1123)) (-10 -8 (-15 -3469 ($ (-299 |#3|))) (-15 -3470 ((-3 $ "failed") (-299 |#3|))) (-15 -3469 ($ (-1123))) (-15 -3470 ((-3 $ "failed") (-1123))) (-15 -4274 ((-299 |#3|) $)) (IF (|has| |#3| (-995 (-526))) (PROGN (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526))))) |%noBranch|) (IF (|has| |#3| (-995 (-363))) (PROGN (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -3702 ($ $)) (-15 -3337 ($ $)) (-15 -4260 ($ $)) (-15 -4259 ($ $)) (-15 -1834 ($ $)) (-15 -3960 ($ $)) (-15 -3956 ($ $)) (-15 -3961 ($ $)) (-15 -3798 ($ $)) (-15 -3799 ($ $)) (-15 -3800 ($ $)) (-15 -3804 ($ $)) (-15 -3805 ($ $)) (-15 -3806 ($ $)) (-15 -3949 ($)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1730 ((-111))) (-15 -1730 ((-111) (-111))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) +(((-325 |#1| |#2|) (-314 (-865 |#1|)) (-878) (-878)) (T -325)) +NIL +(-314 (-865 |#1|)) +((-1739 (((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) $) 38)) (-1887 (($ (-1205 (-392 |#3|)) (-1205 $)) NIL) (($ (-1205 (-392 |#3|))) NIL) (($ (-1205 |#3|) |#3|) 161)) (-1744 (((-1205 $) (-1205 $)) 145)) (-1731 (((-607 (-607 |#2|))) 119)) (-1756 (((-111) |#2| |#2|) 73)) (-3817 (($ $) 139)) (-3696 (((-735)) 31)) (-1745 (((-1205 $) (-1205 $)) 198)) (-1732 (((-607 (-905 |#2|)) (-1123)) 110)) (-1748 (((-111) $) 158)) (-1747 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-1734 (((-3 |#3| "failed")) 50)) (-1758 (((-735)) 170)) (-4118 ((|#2| $ |#2| |#2|) 132)) (-1735 (((-3 |#3| "failed")) 68)) (-4129 (($ $ (-1 (-392 |#3|) (-392 |#3|)) (-735)) NIL) (($ $ (-1 (-392 |#3|) (-392 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-1746 (((-1205 $) (-1205 $)) 151)) (-1733 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1757 (((-111)) 33))) +(((-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1731 ((-607 (-607 |#2|)))) (-15 -1732 ((-607 (-905 |#2|)) (-1123))) (-15 -1733 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -1735 ((-3 |#3| "failed"))) (-15 -4118 (|#2| |#1| |#2| |#2|)) (-15 -3817 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1747 ((-111) |#1| |#3|)) (-15 -1747 ((-111) |#1| |#2|)) (-15 -1887 (|#1| (-1205 |#3|) |#3|)) (-15 -1739 ((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1744 ((-1205 |#1|) (-1205 |#1|))) (-15 -1745 ((-1205 |#1|) (-1205 |#1|))) (-15 -1746 ((-1205 |#1|) (-1205 |#1|))) (-15 -1747 ((-111) |#1|)) (-15 -1748 ((-111) |#1|)) (-15 -1756 ((-111) |#2| |#2|)) (-15 -1757 ((-111))) (-15 -1758 ((-735))) (-15 -3696 ((-735))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)) (-735))) (-15 -1887 (|#1| (-1205 (-392 |#3|)))) (-15 -1887 (|#1| (-1205 (-392 |#3|)) (-1205 |#1|)))) (-327 |#2| |#3| |#4|) (-1164) (-1181 |#2|) (-1181 (-392 |#3|))) (T -326)) +((-3696 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1758 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1757 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-111)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) (-1756 (*1 *2 *3 *3) (-12 (-4 *3 (-1164)) (-4 *5 (-1181 *3)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-111)) (-5 *1 (-326 *4 *3 *5 *6)) (-4 *4 (-327 *3 *5 *6)))) (-1735 (*1 *2) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) (-1734 (*1 *2) (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-607 (-905 *5))) (-5 *1 (-326 *4 *5 *6 *7)) (-4 *4 (-327 *5 *6 *7)))) (-1731 (*1 *2) (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-607 (-607 *4))) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6))))) +(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -1731 ((-607 (-607 |#2|)))) (-15 -1732 ((-607 (-905 |#2|)) (-1123))) (-15 -1733 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -1735 ((-3 |#3| "failed"))) (-15 -4118 (|#2| |#1| |#2| |#2|)) (-15 -3817 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1747 ((-111) |#1| |#3|)) (-15 -1747 ((-111) |#1| |#2|)) (-15 -1887 (|#1| (-1205 |#3|) |#3|)) (-15 -1739 ((-2 (|:| |num| (-1205 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1744 ((-1205 |#1|) (-1205 |#1|))) (-15 -1745 ((-1205 |#1|) (-1205 |#1|))) (-15 -1746 ((-1205 |#1|) (-1205 |#1|))) (-15 -1747 ((-111) |#1|)) (-15 -1748 ((-111) |#1|)) (-15 -1756 ((-111) |#2| |#2|)) (-15 -1757 ((-111))) (-15 -1758 ((-735))) (-15 -3696 ((-735))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)))) (-15 -4129 (|#1| |#1| (-1 (-392 |#3|) (-392 |#3|)) (-735))) (-15 -1887 (|#1| (-1205 (-392 |#3|)))) (-15 -1887 (|#1| (-1205 (-392 |#3|)) (-1205 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 193)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (|has| (-392 |#2|) (-348)))) (-2151 (($ $) 92 (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) 94 (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) 44) (((-653 (-392 |#2|))) 59)) (-3649 (((-392 |#2|) $) 50)) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 111 (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) 112 (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) 102 (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) 85 (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) 210)) (-1752 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) 163)) (-3469 (((-526) $) 167 (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) 165 (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) 162)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) 46) (($ (-1205 (-392 |#2|))) 62) (($ (-1205 |#2|) |#2|) 192)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) 106 (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) 51) (((-653 (-392 |#2|)) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) 159) (((-653 (-392 |#2|)) (-653 $)) 158)) (-1744 (((-1205 $) (-1205 $)) 198)) (-4161 (($ |#3|) 155) (((-3 $ "failed") (-392 |#3|)) 152 (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-1731 (((-607 (-607 |#1|))) 179 (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) 214)) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) 207)) (-1750 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-2860 (($ $ $) 105 (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| (-392 |#2|) (-348)))) (-3817 (($ $) 185)) (-3133 (($) 146 (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) 147 (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) 138 (|has| (-392 |#2|) (-335))) (($ $) 137 (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) 113 (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) 149 (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) 135 (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) 30)) (-3696 (((-735)) 217)) (-1745 (((-1205 $) (-1205 $)) 199)) (-3429 (((-392 |#2|) $) 49)) (-1732 (((-607 (-905 |#1|)) (-1123)) 180 (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) 139 (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) 42 (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) 87 (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) 153)) (-1989 (($ (-607 $)) 98 (|has| (-392 |#2|) (-348))) (($ $ $) 97 (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) 9)) (-1740 (((-653 (-392 |#2|))) 194)) (-1742 (((-653 (-392 |#2|))) 196)) (-2703 (($ $) 114 (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 190)) (-1741 (((-653 (-392 |#2|))) 195)) (-1743 (((-653 (-392 |#2|))) 197)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 191)) (-1749 (((-1205 $)) 203)) (-4237 (((-1205 $)) 204)) (-1748 (((-111) $) 202)) (-1747 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3764 (($) 140 (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| "failed")) 182)) (-3555 (((-1070) $) 10)) (-1758 (((-735)) 216)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) 96 (|has| (-392 |#2|) (-348))) (($ $ $) 95 (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) 110 (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) 90 (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) 103 (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) 184)) (-1735 (((-3 |#2| "failed")) 183)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) 45) (((-392 |#2|)) 58)) (-1863 (((-735) $) 148 (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) 136 (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) 120 (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) 119 (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-607 (-1123)) (-607 (-735))) 127 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123) (-735)) 128 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-607 (-1123))) 129 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123)) 130 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-735)) 132 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) 134 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) 151 (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 156)) (-1766 (($) 145 (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) 48) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) 47) (((-1205 (-392 |#2|)) $) 64) (((-653 (-392 |#2|)) (-1205 $)) 63)) (-4287 (((-1205 (-392 |#2|)) $) 61) (($ (-1205 (-392 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) 200)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 |#2|)) 35) (($ (-392 (-526))) 84 (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) 89 (|has| (-392 |#2|) (-348)))) (-3002 (($ $) 141 (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) 41 (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) 43)) (-3423 (((-735)) 28)) (-1755 (((-111)) 213)) (-1754 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2104 (((-1205 $)) 65)) (-2150 (((-111) $ $) 93 (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1757 (((-111)) 215)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) 122 (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) 121 (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) 123 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123) (-735)) 124 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-607 (-1123))) 125 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-1123)) 126 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) (-3155 (|has| (-392 |#2|) (-859 (-1123))) (|has| (-392 |#2|) (-348))))) (($ $ (-735)) 131 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) 133 (-3850 (-3155 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-219))) (-3155 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 118 (|has| (-392 |#2|) (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 115 (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 |#2|)) 37) (($ (-392 |#2|) $) 36) (($ (-392 (-526)) $) 117 (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) 116 (|has| (-392 |#2|) (-348))))) +(((-327 |#1| |#2| |#3|) (-134) (-1164) (-1181 |t#1|) (-1181 (-392 |t#2|))) (T -327)) +((-3696 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) (-1758 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) (-1757 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1756 (*1 *2 *3 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1755 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1754 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1754 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-1753 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1752 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1752 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-1751 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1750 (*1 *2 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1750 (*1 *2 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-4237 (*1 *2) (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) (-1749 (*1 *2) (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1746 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-1743 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1742 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4))))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4))))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4))))) (-1737 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-2 (|:| |num| (-653 *5)) (|:| |den| *5))))) (-1747 (*1 *2 *1 *3) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) (-1747 (*1 *2 *1 *3) (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))))) (-4118 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))))) (-1735 (*1 *2) (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3)))) (-1734 (*1 *2) (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3)))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1164)) (-4 *6 (-1181 (-392 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-327 *4 *5 *6)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *4 (-348)) (-5 *2 (-607 (-905 *4))))) (-1731 (*1 *2) (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) (-4 *3 (-353)) (-5 *2 (-607 (-607 *3)))))) +(-13 (-689 (-392 |t#2|) |t#3|) (-10 -8 (-15 -3696 ((-735))) (-15 -1758 ((-735))) (-15 -1757 ((-111))) (-15 -1756 ((-111) |t#1| |t#1|)) (-15 -1755 ((-111))) (-15 -1754 ((-111) |t#1|)) (-15 -1754 ((-111) |t#2|)) (-15 -1753 ((-111))) (-15 -1752 ((-111) |t#1|)) (-15 -1752 ((-111) |t#2|)) (-15 -1751 ((-111))) (-15 -1750 ((-111) |t#1|)) (-15 -1750 ((-111) |t#2|)) (-15 -4237 ((-1205 $))) (-15 -1749 ((-1205 $))) (-15 -1748 ((-111) $)) (-15 -1747 ((-111) $)) (-15 -1746 ((-1205 $) (-1205 $))) (-15 -1745 ((-1205 $) (-1205 $))) (-15 -1744 ((-1205 $) (-1205 $))) (-15 -1743 ((-653 (-392 |t#2|)))) (-15 -1742 ((-653 (-392 |t#2|)))) (-15 -1741 ((-653 (-392 |t#2|)))) (-15 -1740 ((-653 (-392 |t#2|)))) (-15 -1739 ((-2 (|:| |num| (-1205 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1887 ($ (-1205 |t#2|) |t#2|)) (-15 -1738 ((-2 (|:| |num| (-1205 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1737 ($ (-1205 |t#2|) |t#2|)) (-15 -1736 ((-2 (|:| |num| (-653 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1747 ((-111) $ |t#1|)) (-15 -1747 ((-111) $ |t#2|)) (-15 -4129 ($ $ (-1 |t#2| |t#2|))) (-15 -3817 ($ $)) (-15 -4118 (|t#1| $ |t#1| |t#1|)) (-15 -1735 ((-3 |t#2| "failed"))) (-15 -1734 ((-3 |t#2| "failed"))) (-15 -1733 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-348)) (-15 -1732 ((-607 (-905 |t#1|)) (-1123))) |%noBranch|) (IF (|has| |t#1| (-353)) (-15 -1731 ((-607 (-607 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-37 #2=(-392 |#2|)) . T) ((-37 $) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-100) . T) ((-110 #1# #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-110 #2# #2#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-139))) ((-141) |has| (-392 |#2|) (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 |#3|) . T) ((-217 #2#) |has| (-392 |#2|) (-348)) ((-219) -3850 (|has| (-392 |#2|) (-335)) (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348)))) ((-229) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-275) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-292) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-348) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-387) |has| (-392 |#2|) (-335)) ((-353) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-353))) ((-335) |has| (-392 |#2|) (-335)) ((-355 #2# |#3|) . T) ((-395 #2# |#3|) . T) ((-362 #2#) . T) ((-397 #2#) . T) ((-436) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-533) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-613 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-613 #2#) . T) ((-613 $) . T) ((-606 #2#) . T) ((-606 (-526)) |has| (-392 |#2|) (-606 (-526))) ((-682 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-682 #2#) . T) ((-682 $) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-689 #2# |#3|) . T) ((-691) . T) ((-859 (-1123)) -12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123)))) ((-880) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-995 (-392 (-526))) |has| (-392 |#2|) (-995 (-392 (-526)))) ((-995 #2#) . T) ((-995 (-526)) |has| (-392 |#2|) (-995 (-526))) ((-1010 #1#) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348))) ((-1010 #2#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| (-392 |#2|) (-335)) ((-1164) -3850 (|has| (-392 |#2|) (-335)) (|has| (-392 |#2|) (-348)))) +((-4275 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|))) (-1164) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-1164) (-1181 |#5|) (-1181 (-392 |#6|)) (-327 |#5| |#6| |#7|)) (T -328)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1164)) (-4 *8 (-1164)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *9 (-1181 *8)) (-4 *2 (-327 *8 *9 *10)) (-5 *1 (-328 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-327 *5 *6 *7)) (-4 *10 (-1181 (-392 *9)))))) +(-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) +(((-329 |#1| |#2|) (-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-878) (-878)) (T -329)) +((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-329 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878))))) +(-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1759 ((-917 (-1070)))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 46)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 43 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 115)) (-3469 ((|#1| $) 86)) (-1887 (($ (-1205 |#1|)) 104)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 98 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 130 (|has| |#1| (-353)))) (-1772 (((-111) $) 49 (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) 47 (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 132 (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 90) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 140 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 147)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 71 (|has| |#1| (-353)))) (-4248 (((-111) $) 118)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) 44)) (-2470 (($) 128 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 93 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) 67) (((-878)) 68)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) 131 (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) 125 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) 96)) (-1766 (($) 129 (|has| |#1| (-353)))) (-1702 (($) 137 (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 59) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 143) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 75)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 139)) (-2104 (((-1205 $)) 117) (((-1205 $) (-878)) 73)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 32 T CONST)) (-2964 (($) 19 T CONST)) (-4245 (($ $) 81 (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 48)) (-4265 (($ $ $) 145) (($ $ |#1|) 146)) (-4156 (($ $) 127) (($ $ $) NIL)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) 149) (($ $ (-735)) 150) (($ $ (-526)) 148)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 77) (($ $ $) 76) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) +(((-330 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-335) (-1117 |#1|)) (T -330)) +((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-330 *3 *4)) (-4 *3 (-335)) (-14 *4 (-1117 *3))))) +(-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1759 (((-917 (-1070))) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-331 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) (-335) (-878)) (T -331)) +((-1759 (*1 *2) (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-331 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) +(-13 (-314 |#1|) (-10 -7 (-15 -1759 ((-917 (-1070)))))) +((-1769 (((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 42)) (-1760 (((-917 (-1070)) (-1117 |#1|)) 85)) (-1761 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|)) 78)) (-1762 (((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 86)) (-1763 (((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878)) 13)) (-1764 (((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)) 18))) +(((-332 |#1|) (-10 -7 (-15 -1760 ((-917 (-1070)) (-1117 |#1|))) (-15 -1761 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|))) (-15 -1762 ((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1769 ((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1763 ((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878))) (-15 -1764 ((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)))) (-335)) (T -332)) +((-1764 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-3 (-1117 *4) (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070))))))) (-5 *1 (-332 *4)) (-4 *4 (-335)))) (-1763 (*1 *2 *3) (|partial| -12 (-5 *3 (-878)) (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-5 *1 (-332 *4)) (-4 *4 (-335)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-735)) (-5 *1 (-332 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-653 *4)) (-5 *1 (-332 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-5 *1 (-332 *4)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-917 (-1070))) (-5 *1 (-332 *4))))) +(-10 -7 (-15 -1760 ((-917 (-1070)) (-1117 |#1|))) (-15 -1761 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) (-1117 |#1|))) (-15 -1762 ((-653 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1769 ((-735) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1763 ((-3 (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) "failed") (-878))) (-15 -1764 ((-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) (-878)))) +((-4274 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-333 |#1| |#2| |#3|) (-10 -7 (-15 -4274 (|#3| |#1|)) (-15 -4274 (|#1| |#3|))) (-314 |#2|) (-335) (-314 |#2|)) (T -333)) +((-4274 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *2 *4 *3)) (-4 *3 (-314 *4)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *3 *4 *2)) (-4 *3 (-314 *4))))) +(-10 -7 (-15 -4274 (|#3| |#1|)) (-15 -4274 (|#1| |#3|))) +((-1772 (((-111) $) 52)) (-4090 (((-796 (-878)) $) 21) (((-878) $) 53)) (-3763 (((-3 $ "failed") $) 16)) (-3764 (($) 9)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 95)) (-1863 (((-3 (-735) "failed") $ $) 73) (((-735) $) 61)) (-4129 (($ $ (-735)) NIL) (($ $) 8)) (-1766 (($) 46)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 34)) (-3002 (((-3 $ "failed") $) 40) (($ $) 39))) +(((-334 |#1|) (-10 -8 (-15 -4090 ((-878) |#1|)) (-15 -1863 ((-735) |#1|)) (-15 -1772 ((-111) |#1|)) (-15 -1766 (|#1|)) (-15 -3003 ((-3 (-1205 |#1|) "failed") (-653 |#1|))) (-15 -3002 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -1863 ((-3 (-735) "failed") |#1| |#1|)) (-15 -4090 ((-796 (-878)) |#1|)) (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) (-335)) (T -334)) +NIL +(-10 -8 (-15 -4090 ((-878) |#1|)) (-15 -1863 ((-735) |#1|)) (-15 -1772 ((-111) |#1|)) (-15 -1766 (|#1|)) (-15 -3003 ((-3 (-1205 |#1|) "failed") (-653 |#1|))) (-15 -3002 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -1863 ((-3 (-735) "failed") |#1| |#1|)) (-15 -4090 ((-796 (-878)) |#1|)) (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1767 (((-1132 (-878) (-735)) (-526)) 90)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3433 (((-735)) 100)) (-3855 (($) 17 T CONST)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 103)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-3133 (($) 88)) (-1772 (((-111) $) 87)) (-1862 (($ $) 76) (($ $ (-735)) 75)) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 78) (((-878) $) 85)) (-2471 (((-111) $) 30)) (-3763 (((-3 $ "failed") $) 99)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2102 (((-878) $) 102)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 98 T CONST)) (-2461 (($ (-878)) 101)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 91)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 77) (((-735) $) 86)) (-4129 (($ $ (-735)) 96) (($ $) 94)) (-1766 (($) 89)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 92)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3002 (((-3 $ "failed") $) 79) (($ $) 93)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-735)) 97) (($ $) 95)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) +(((-335) (-134)) (T -335)) +((-3002 (*1 *1 *1) (-4 *1 (-335))) (-3003 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-335)) (-5 *2 (-1205 *1)))) (-1768 (*1 *2) (-12 (-4 *1 (-335)) (-5 *2 (-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))))) (-1767 (*1 *2 *3) (-12 (-4 *1 (-335)) (-5 *3 (-526)) (-5 *2 (-1132 (-878) (-735))))) (-1766 (*1 *1) (-4 *1 (-335))) (-3133 (*1 *1) (-4 *1 (-335))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-111)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-735)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-878)))) (-1765 (*1 *2) (-12 (-4 *1 (-335)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-387) (-353) (-1099) (-219) (-10 -8 (-15 -3002 ($ $)) (-15 -3003 ((-3 (-1205 $) "failed") (-653 $))) (-15 -1768 ((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526)))))) (-15 -1767 ((-1132 (-878) (-735)) (-526))) (-15 -1766 ($)) (-15 -3133 ($)) (-15 -1772 ((-111) $)) (-15 -1863 ((-735) $)) (-15 -4090 ((-878) $)) (-15 -1765 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-583 (-823)) . T) ((-163) . T) ((-219) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-387) . T) ((-353) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) . T) ((-1164) . T)) +((-4238 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|) 53)) (-4237 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))) 51))) +(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|))) (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $)))) (-1181 |#1|) (-395 |#1| |#2|)) (T -336)) +((-4238 (*1 *2 *3) (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-4237 (*1 *2) (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) +(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-865 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-865 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-865 |#1|) "failed") $) NIL)) (-3469 (((-865 |#1|) $) NIL)) (-1887 (($ (-1205 (-865 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-865 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-865 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-865 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-865 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-865 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-865 |#1|) (-353)))) (-3429 (((-865 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-865 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-865 |#1|) (-353)))) (-1700 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353)))) (-1699 (((-1117 (-865 |#1|)) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-1117 (-865 |#1|)) "failed") $ $) NIL (|has| (-865 |#1|) (-353)))) (-1701 (($ $ (-1117 (-865 |#1|))) NIL (|has| (-865 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-865 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-865 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070)))))) NIL)) (-1770 (((-653 (-865 |#1|))) NIL)) (-2470 (($) NIL (|has| (-865 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-865 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-865 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-865 |#1|))) NIL)) (-1766 (($) NIL (|has| (-865 |#1|) (-353)))) (-1702 (($) NIL (|has| (-865 |#1|) (-353)))) (-3537 (((-1205 (-865 |#1|)) $) NIL) (((-653 (-865 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-865 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-865 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-865 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-865 |#1|) (-139)) (|has| (-865 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-865 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-865 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-865 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-865 |#1|)) NIL) (($ (-865 |#1|) $) NIL))) +(((-337 |#1| |#2|) (-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 (-865 |#1|)))) (-15 -1769 ((-735))))) (-878) (-878)) (T -337)) +((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 (-865 *3)) (|:| -2461 (-1070)))))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 (-865 *3))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878))))) +(-13 (-314 (-865 |#1|)) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 (-865 |#1|)) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 (-865 |#1|)))) (-15 -1769 ((-735))))) +((-2865 (((-111) $ $) 62)) (-3502 (((-111) $) 75)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) 93) (($ $ (-878)) 91 (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 149 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) 90)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) 163 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 113)) (-3469 ((|#1| $) 92)) (-1887 (($ (-1205 |#1|)) 59)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 159 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 150 (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 99 (|has| |#1| (-353)))) (-2103 (((-111) $) 176 (|has| |#1| (-353)))) (-3429 ((|#1| $) 95) (($ $ (-878)) 94 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 190) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 135 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) 74 (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) 71 (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) 83 (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) 70 (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 193)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 138 (|has| |#1| (-353)))) (-4248 (((-111) $) 109)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) 84)) (-1770 (((-653 |#1|)) 88)) (-2470 (($) 97 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 151 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) 152)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) 63)) (-3499 (((-1117 |#1|)) 153)) (-1766 (($) 134 (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 107) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 125) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 58)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 157)) (-2104 (((-1205 $)) 173) (((-1205 $) (-878)) 102)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 30 T CONST)) (-2964 (($) 22 T CONST)) (-4245 (($ $) 108 (|has| |#1| (-353))) (($ $ (-735)) 100 (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 184)) (-4265 (($ $ $) 105) (($ $ |#1|) 106)) (-4156 (($ $) 178) (($ $ $) 182)) (-4158 (($ $ $) 180)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 139)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 187) (($ $ $) 143) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) +(((-338 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) (-335) (-3 (-1117 |#1|) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (T -338)) +((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) *2)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))))))) +(-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1769 (((-735)) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-1771 (((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070)))))) NIL)) (-1770 (((-653 |#1|)) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-339 |#1| |#2|) (-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) (-335) (-878)) (T -339)) +((-1771 (*1 *2) (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878)))) (-1770 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878)))) (-1769 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) +(-13 (-314 |#1|) (-10 -7 (-15 -1771 ((-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))))) (-15 -1770 ((-653 |#1|))) (-15 -1769 ((-735))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) 120 (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) 140 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 93)) (-3469 ((|#1| $) 90)) (-1887 (($ (-1205 |#1|)) 85)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) 82 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 42 (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) 121 (|has| |#1| (-353)))) (-2103 (((-111) $) 74 (|has| |#1| (-353)))) (-3429 ((|#1| $) 39) (($ $ (-878)) 43 (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) 65) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) 97 (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) 95 (|has| |#1| (-353)))) (-4248 (((-111) $) 142)) (-3555 (((-1070) $) NIL)) (-2470 (($) 36 (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 115 (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) 139)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) 59)) (-3499 (((-1117 |#1|)) 88)) (-1766 (($) 126 (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) 53) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) 138) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 87)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 144)) (-2104 (((-1205 $)) 109) (((-1205 $) (-878)) 49)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 111 T CONST)) (-2964 (($) 32 T CONST)) (-4245 (($ $) 68 (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) 107)) (-4265 (($ $ $) 99) (($ $ |#1|) 100)) (-4156 (($ $) 80) (($ $ $) 105)) (-4158 (($ $ $) 103)) (** (($ $ (-878)) NIL) (($ $ (-735)) 44) (($ $ (-526)) 130)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 78) (($ $ $) 56) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-340 |#1| |#2|) (-314 |#1|) (-335) (-1117 |#1|)) (T -340)) +NIL +(-314 |#1|) +((-1787 (((-917 (-1117 |#1|)) (-1117 |#1|)) 36)) (-3294 (((-1117 |#1|) (-878) (-878)) 113) (((-1117 |#1|) (-878)) 112)) (-1772 (((-111) (-1117 |#1|)) 84)) (-1774 (((-878) (-878)) 71)) (-1775 (((-878) (-878)) 74)) (-1773 (((-878) (-878)) 69)) (-2103 (((-111) (-1117 |#1|)) 88)) (-1782 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 101)) (-1785 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 104)) (-1784 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 103)) (-1783 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 102)) (-1781 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 98)) (-1786 (((-1117 |#1|) (-1117 |#1|)) 62)) (-1777 (((-1117 |#1|) (-878)) 107)) (-1780 (((-1117 |#1|) (-878)) 110)) (-1779 (((-1117 |#1|) (-878)) 109)) (-1778 (((-1117 |#1|) (-878)) 108)) (-1776 (((-1117 |#1|) (-878)) 105))) +(((-341 |#1|) (-10 -7 (-15 -1772 ((-111) (-1117 |#1|))) (-15 -2103 ((-111) (-1117 |#1|))) (-15 -1773 ((-878) (-878))) (-15 -1774 ((-878) (-878))) (-15 -1775 ((-878) (-878))) (-15 -1776 ((-1117 |#1|) (-878))) (-15 -1777 ((-1117 |#1|) (-878))) (-15 -1778 ((-1117 |#1|) (-878))) (-15 -1779 ((-1117 |#1|) (-878))) (-15 -1780 ((-1117 |#1|) (-878))) (-15 -1781 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1782 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1783 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1784 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1785 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3294 ((-1117 |#1|) (-878))) (-15 -3294 ((-1117 |#1|) (-878) (-878))) (-15 -1786 ((-1117 |#1|) (-1117 |#1|))) (-15 -1787 ((-917 (-1117 |#1|)) (-1117 |#1|)))) (-335)) (T -341)) +((-1787 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-917 (-1117 *4))) (-5 *1 (-341 *4)) (-5 *3 (-1117 *4)))) (-1786 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-3294 (*1 *2 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1785 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1784 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1783 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1782 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1781 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) +(-10 -7 (-15 -1772 ((-111) (-1117 |#1|))) (-15 -2103 ((-111) (-1117 |#1|))) (-15 -1773 ((-878) (-878))) (-15 -1774 ((-878) (-878))) (-15 -1775 ((-878) (-878))) (-15 -1776 ((-1117 |#1|) (-878))) (-15 -1777 ((-1117 |#1|) (-878))) (-15 -1778 ((-1117 |#1|) (-878))) (-15 -1779 ((-1117 |#1|) (-878))) (-15 -1780 ((-1117 |#1|) (-878))) (-15 -1781 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1782 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1783 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1784 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -1785 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3294 ((-1117 |#1|) (-878))) (-15 -3294 ((-1117 |#1|) (-878) (-878))) (-15 -1786 ((-1117 |#1|) (-1117 |#1|))) (-15 -1787 ((-917 (-1117 |#1|)) (-1117 |#1|)))) +((-1788 ((|#1| (-1117 |#2|)) 52))) +(((-342 |#1| |#2|) (-10 -7 (-15 -1788 (|#1| (-1117 |#2|)))) (-13 (-387) (-10 -7 (-15 -4274 (|#1| |#2|)) (-15 -2102 ((-878) |#1|)) (-15 -2104 ((-1205 |#1|) (-878))) (-15 -4245 (|#1| |#1|)))) (-335)) (T -342)) +((-1788 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-4 *2 (-13 (-387) (-10 -7 (-15 -4274 (*2 *4)) (-15 -2102 ((-878) *2)) (-15 -2104 ((-1205 *2) (-878))) (-15 -4245 (*2 *2))))) (-5 *1 (-342 *2 *4))))) +(-10 -7 (-15 -1788 (|#1| (-1117 |#2|)))) +((-3004 (((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|) 34))) +(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -3004 ((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|))) (-335) (-1181 |#1|) (-1181 |#2|)) (T -343)) +((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-335)) (-5 *1 (-343 *4 *5 *3))))) +(-10 -7 (-15 -3004 ((-3 (-607 |#3|) "failed") (-607 |#3|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| |#1| (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| |#1| (-353)))) (-1772 (((-111) $) NIL (|has| |#1| (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| |#1| (-353))) (((-796 (-878)) $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| |#1| (-353)))) (-2103 (((-111) $) NIL (|has| |#1| (-353)))) (-3429 ((|#1| $) NIL) (($ $ (-878)) NIL (|has| |#1| (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 |#1|) $) NIL) (((-1117 $) $ (-878)) NIL (|has| |#1| (-353)))) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-1700 (((-1117 |#1|) $) NIL (|has| |#1| (-353)))) (-1699 (((-1117 |#1|) $) NIL (|has| |#1| (-353))) (((-3 (-1117 |#1|) "failed") $ $) NIL (|has| |#1| (-353)))) (-1701 (($ $ (-1117 |#1|)) NIL (|has| |#1| (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| |#1| (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| |#1| (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-353)))) (-1702 (($) NIL (|has| |#1| (-353)))) (-3537 (((-1205 |#1|) $) NIL) (((-653 |#1|) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) NIL)) (-3002 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-2969 (($ $) NIL (|has| |#1| (-353))) (($ $ (-735)) NIL (|has| |#1| (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-344 |#1| |#2|) (-314 |#1|) (-335) (-878)) (T -344)) +NIL +(-314 |#1|) +((-2301 (((-111) (-607 (-905 |#1|))) 34)) (-2303 (((-607 (-905 |#1|)) (-607 (-905 |#1|))) 46)) (-2302 (((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|))) 41))) +(((-345 |#1| |#2|) (-10 -7 (-15 -2301 ((-111) (-607 (-905 |#1|)))) (-15 -2302 ((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|)))) (-15 -2303 ((-607 (-905 |#1|)) (-607 (-905 |#1|))))) (-436) (-607 (-1123))) (T -345)) +((-2303 (*1 *2 *2) (-12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) (-14 *4 (-607 (-1123))))) (-2302 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) (-14 *4 (-607 (-1123))))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-111)) (-5 *1 (-345 *4 *5)) (-14 *5 (-607 (-1123)))))) +(-10 -7 (-15 -2301 ((-111) (-607 (-905 |#1|)))) (-15 -2302 ((-3 (-607 (-905 |#1|)) "failed") (-607 (-905 |#1|)))) (-15 -2303 ((-607 (-905 |#1|)) (-607 (-905 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) 15)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-526) $ (-526)) NIL)) (-2340 (($ (-1 |#1| |#1|) $) 32)) (-2341 (($ (-1 (-526) (-526)) $) 24)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 26)) (-3555 (((-1070) $) NIL)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $) 28)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 38) (($ |#1|) NIL)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ |#1| (-526)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-346 |#1|) (-13 (-457) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-526))) (-15 -3433 ((-735) $)) (-15 -2738 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-526) (-526)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $)))) (-1052)) (T -346)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2738 (*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-526) (-526))) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-346 *3)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-526))))) (-5 *1 (-346 *3)) (-4 *3 (-1052))))) +(-13 (-457) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-526))) (-15 -3433 ((-735) $)) (-15 -2738 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-526) (-526)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-526)))) $)))) +((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 13)) (-2151 (($ $) 14)) (-4286 (((-390 $) $) 30)) (-4045 (((-111) $) 26)) (-2703 (($ $) 19)) (-3457 (($ $ $) 23) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) 31)) (-3780 (((-3 $ "failed") $ $) 22)) (-1680 (((-735) $) 25)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 35)) (-2150 (((-111) $ $) 16)) (-4265 (($ $ $) 33))) +(((-347 |#1|) (-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) (-348)) (T -347)) +NIL +(-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) +(((-348) (-134)) (T -348)) +((-4265 (*1 *1 *1 *1) (-4 *1 (-348)))) +(-13 (-292) (-1164) (-229) (-10 -8 (-15 -4265 ($ $ $)) (-6 -4308) (-6 -4302))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-2865 (((-111) $ $) NIL)) (-1789 ((|#1| $ |#1|) 30)) (-1793 (($ $ (-1106)) 22)) (-3941 (((-3 |#1| "failed") $) 29)) (-1790 ((|#1| $) 27)) (-1794 (($ (-373)) 21) (($ (-373) (-1106)) 20)) (-3864 (((-373) $) 24)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) 25)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 19)) (-1792 (($ $) 23)) (-3353 (((-111) $ $) 18))) +(((-349 |#1|) (-13 (-350 (-373) |#1|) (-10 -8 (-15 -3941 ((-3 |#1| "failed") $)))) (-1052)) (T -349)) +((-3941 (*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1052))))) +(-13 (-350 (-373) |#1|) (-10 -8 (-15 -3941 ((-3 |#1| "failed") $)))) +((-2865 (((-111) $ $) 7)) (-1789 ((|#2| $ |#2|) 13)) (-1793 (($ $ (-1106)) 18)) (-1790 ((|#2| $) 14)) (-1794 (($ |#1|) 20) (($ |#1| (-1106)) 19)) (-3864 ((|#1| $) 16)) (-3554 (((-1106) $) 9)) (-1791 (((-1106) $) 15)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-1792 (($ $) 17)) (-3353 (((-111) $ $) 6))) +(((-350 |#1| |#2|) (-134) (-1052) (-1052)) (T -350)) +((-1794 (*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *1 (-350 *2 *4)) (-4 *2 (-1052)) (-4 *4 (-1052)))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-1106)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-1789 (*1 *2 *1 *2) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -1794 ($ |t#1|)) (-15 -1794 ($ |t#1| (-1106))) (-15 -1793 ($ $ (-1106))) (-15 -1792 ($ $)) (-15 -3864 (|t#1| $)) (-15 -1791 ((-1106) $)) (-15 -1790 (|t#2| $)) (-15 -1789 (|t#2| $ |t#2|)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-3536 (((-1205 (-653 |#2|)) (-1205 $)) 61)) (-1883 (((-653 |#2|) (-1205 $)) 120)) (-1819 ((|#2| $) 32)) (-1881 (((-653 |#2|) $ (-1205 $)) 123)) (-2465 (((-3 $ "failed") $) 75)) (-1817 ((|#2| $) 35)) (-1797 (((-1117 |#2|) $) 83)) (-1885 ((|#2| (-1205 $)) 106)) (-1815 (((-1117 |#2|) $) 28)) (-1809 (((-111)) 100)) (-1887 (($ (-1205 |#2|) (-1205 $)) 113)) (-3781 (((-3 $ "failed") $) 79)) (-1802 (((-111)) 95)) (-1800 (((-111)) 90)) (-1804 (((-111)) 53)) (-1884 (((-653 |#2|) (-1205 $)) 118)) (-1820 ((|#2| $) 31)) (-1882 (((-653 |#2|) $ (-1205 $)) 122)) (-2466 (((-3 $ "failed") $) 73)) (-1818 ((|#2| $) 34)) (-1798 (((-1117 |#2|) $) 82)) (-1886 ((|#2| (-1205 $)) 104)) (-1816 (((-1117 |#2|) $) 26)) (-1810 (((-111)) 99)) (-1801 (((-111)) 92)) (-1803 (((-111)) 51)) (-1805 (((-111)) 87)) (-1808 (((-111)) 101)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) 111)) (-1814 (((-111)) 97)) (-1799 (((-607 (-1205 |#2|))) 86)) (-1812 (((-111)) 98)) (-1813 (((-111)) 96)) (-1811 (((-111)) 46)) (-1807 (((-111)) 102))) +(((-351 |#1| |#2|) (-10 -8 (-15 -1797 ((-1117 |#2|) |#1|)) (-15 -1798 ((-1117 |#2|) |#1|)) (-15 -1799 ((-607 (-1205 |#2|)))) (-15 -2465 ((-3 |#1| "failed") |#1|)) (-15 -2466 ((-3 |#1| "failed") |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1800 ((-111))) (-15 -1801 ((-111))) (-15 -1802 ((-111))) (-15 -1803 ((-111))) (-15 -1804 ((-111))) (-15 -1805 ((-111))) (-15 -1807 ((-111))) (-15 -1808 ((-111))) (-15 -1809 ((-111))) (-15 -1810 ((-111))) (-15 -1811 ((-111))) (-15 -1812 ((-111))) (-15 -1813 ((-111))) (-15 -1814 ((-111))) (-15 -1815 ((-1117 |#2|) |#1|)) (-15 -1816 ((-1117 |#2|) |#1|)) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1817 (|#2| |#1|)) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|)))) (-352 |#2|) (-163)) (T -351)) +((-1814 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1813 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1812 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1811 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1810 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1809 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1807 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1805 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1803 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1802 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1801 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1800 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) (-1799 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-607 (-1205 *4))) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4))))) +(-10 -8 (-15 -1797 ((-1117 |#2|) |#1|)) (-15 -1798 ((-1117 |#2|) |#1|)) (-15 -1799 ((-607 (-1205 |#2|)))) (-15 -2465 ((-3 |#1| "failed") |#1|)) (-15 -2466 ((-3 |#1| "failed") |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1800 ((-111))) (-15 -1801 ((-111))) (-15 -1802 ((-111))) (-15 -1803 ((-111))) (-15 -1804 ((-111))) (-15 -1805 ((-111))) (-15 -1807 ((-111))) (-15 -1808 ((-111))) (-15 -1809 ((-111))) (-15 -1810 ((-111))) (-15 -1811 ((-111))) (-15 -1812 ((-111))) (-15 -1813 ((-111))) (-15 -1814 ((-111))) (-15 -1815 ((-1117 |#2|) |#1|)) (-15 -1816 ((-1117 |#2|) |#1|)) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1817 (|#2| |#1|)) (-15 -1818 (|#2| |#1|)) (-15 -1819 (|#2| |#1|)) (-15 -1820 (|#2| |#1|)) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1868 (((-3 $ "failed")) 37 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) 78)) (-1821 (((-1205 $)) 81)) (-3855 (($) 17 T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) 40 (|has| |#1| (-533)))) (-1795 (((-3 $ "failed")) 38 (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) 65)) (-1819 ((|#1| $) 74)) (-1881 (((-653 |#1|) $ (-1205 $)) 76)) (-2465 (((-3 $ "failed") $) 45 (|has| |#1| (-533)))) (-2468 (($ $ (-878)) 28)) (-1817 ((|#1| $) 72)) (-1797 (((-1117 |#1|) $) 42 (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) 67)) (-1815 (((-1117 |#1|) $) 63)) (-1809 (((-111)) 57)) (-1887 (($ (-1205 |#1|) (-1205 $)) 69)) (-3781 (((-3 $ "failed") $) 47 (|has| |#1| (-533)))) (-3406 (((-878)) 80)) (-1806 (((-111)) 54)) (-2493 (($ $ (-878)) 33)) (-1802 (((-111)) 50)) (-1800 (((-111)) 48)) (-1804 (((-111)) 52)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) 41 (|has| |#1| (-533)))) (-1796 (((-3 $ "failed")) 39 (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) 66)) (-1820 ((|#1| $) 75)) (-1882 (((-653 |#1|) $ (-1205 $)) 77)) (-2466 (((-3 $ "failed") $) 46 (|has| |#1| (-533)))) (-2467 (($ $ (-878)) 29)) (-1818 ((|#1| $) 73)) (-1798 (((-1117 |#1|) $) 43 (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) 68)) (-1816 (((-1117 |#1|) $) 64)) (-1810 (((-111)) 58)) (-3554 (((-1106) $) 9)) (-1801 (((-111)) 49)) (-1803 (((-111)) 51)) (-1805 (((-111)) 53)) (-3555 (((-1070) $) 10)) (-1808 (((-111)) 56)) (-3537 (((-1205 |#1|) $ (-1205 $)) 71) (((-653 |#1|) (-1205 $) (-1205 $)) 70)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) 79)) (-2655 (($ $ $) 25)) (-1814 (((-111)) 62)) (-4274 (((-823) $) 11)) (-1799 (((-607 (-1205 |#1|))) 44 (|has| |#1| (-533)))) (-2656 (($ $ $ $) 26)) (-1812 (((-111)) 60)) (-2654 (($ $ $) 24)) (-1813 (((-111)) 61)) (-1811 (((-111)) 59)) (-1807 (((-111)) 55)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-352 |#1|) (-134) (-163)) (T -352)) +((-1821 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-352 *3)))) (-3406 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-878)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 *4)))) (-3537 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-352 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3)))) (-1814 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1813 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1812 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1811 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1810 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1809 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1808 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1807 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1806 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1805 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1804 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1803 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1802 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1801 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1800 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3781 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-2466 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-2465 (*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) (-1799 (*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-607 (-1205 *3))))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3)))) (-2005 (*1 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) (-2004 (*1 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) (-1796 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) (-1795 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) (-1868 (*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) +(-13 (-709 |t#1|) (-10 -8 (-15 -1821 ((-1205 $))) (-15 -3406 ((-878))) (-15 -1990 ((-607 (-905 |t#1|)) (-1205 $))) (-15 -3536 ((-1205 (-653 |t#1|)) (-1205 $))) (-15 -1882 ((-653 |t#1|) $ (-1205 $))) (-15 -1881 ((-653 |t#1|) $ (-1205 $))) (-15 -1820 (|t#1| $)) (-15 -1819 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -1817 (|t#1| $)) (-15 -3537 ((-1205 |t#1|) $ (-1205 $))) (-15 -3537 ((-653 |t#1|) (-1205 $) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|) (-1205 $))) (-15 -1886 (|t#1| (-1205 $))) (-15 -1885 (|t#1| (-1205 $))) (-15 -1884 ((-653 |t#1|) (-1205 $))) (-15 -1883 ((-653 |t#1|) (-1205 $))) (-15 -1816 ((-1117 |t#1|) $)) (-15 -1815 ((-1117 |t#1|) $)) (-15 -1814 ((-111))) (-15 -1813 ((-111))) (-15 -1812 ((-111))) (-15 -1811 ((-111))) (-15 -1810 ((-111))) (-15 -1809 ((-111))) (-15 -1808 ((-111))) (-15 -1807 ((-111))) (-15 -1806 ((-111))) (-15 -1805 ((-111))) (-15 -1804 ((-111))) (-15 -1803 ((-111))) (-15 -1802 ((-111))) (-15 -1801 ((-111))) (-15 -1800 ((-111))) (IF (|has| |t#1| (-533)) (PROGN (-15 -3781 ((-3 $ "failed") $)) (-15 -2466 ((-3 $ "failed") $)) (-15 -2465 ((-3 $ "failed") $)) (-15 -1799 ((-607 (-1205 |t#1|)))) (-15 -1798 ((-1117 |t#1|) $)) (-15 -1797 ((-1117 |t#1|) $)) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -1796 ((-3 $ "failed"))) (-15 -1795 ((-3 $ "failed"))) (-15 -1868 ((-3 $ "failed"))) (-6 -4307)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-709 |#1|) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3433 (((-735)) 16)) (-3294 (($) 13)) (-2102 (((-878) $) 14)) (-3554 (((-1106) $) 9)) (-2461 (($ (-878)) 15)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) +(((-353) (-134)) (T -353)) +((-3433 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-735)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-353)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-878)))) (-3294 (*1 *1) (-4 *1 (-353)))) +(-13 (-1052) (-10 -8 (-15 -3433 ((-735))) (-15 -2461 ($ (-878))) (-15 -2102 ((-878) $)) (-15 -3294 ($)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-1877 (((-653 |#2|) (-1205 $)) 40)) (-1887 (($ (-1205 |#2|) (-1205 $)) 34)) (-1876 (((-653 |#2|) $ (-1205 $)) 42)) (-4076 ((|#2| (-1205 $)) 13)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) 25))) +(((-354 |#1| |#2| |#3|) (-10 -8 (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) (-355 |#2| |#3|) (-163) (-1181 |#2|)) (T -354)) +NIL +(-10 -8 (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1877 (((-653 |#1|) (-1205 $)) 44)) (-3649 ((|#1| $) 50)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46)) (-1876 (((-653 |#1|) $ (-1205 $)) 51)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4076 ((|#1| (-1205 $)) 45)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3002 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-355 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -355)) +((-3406 (*1 *2) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-878)))) (-1876 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-3537 (*1 *2 *1 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *4)))) (-3537 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-355 *4 *5)) (-4 *5 (-1181 *4)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *2 *4)) (-4 *4 (-1181 *2)) (-4 *2 (-163)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *3 (-348)) (-4 *2 (-1181 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -3406 ((-878))) (-15 -1876 ((-653 |t#1|) $ (-1205 $))) (-15 -3649 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -3537 ((-1205 |t#1|) $ (-1205 $))) (-15 -3537 ((-653 |t#1|) (-1205 $) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|) (-1205 $))) (-15 -4076 (|t#1| (-1205 $))) (-15 -1877 ((-653 |t#1|) (-1205 $))) (-15 -2667 (|t#2| $)) (IF (|has| |t#1| (-348)) (-15 -2106 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-1824 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-1822 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-3209 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-2347 (($ $) 25)) (-3738 (((-526) (-1 (-111) |#2|) $) NIL) (((-526) |#2| $) 11) (((-526) |#2| $ (-526)) NIL)) (-3832 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-356 |#1| |#2|) (-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3209 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-357 |#2|) (-1159)) (T -356)) +NIL +(-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3209 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-357 |#1|) (-134) (-1159)) (T -357)) +((-3832 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-2347 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)))) (-3209 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-1824 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-3738 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) (-3209 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-811)) (-5 *2 (-111)))) (-1823 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-2346 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)))) (-1822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) (-1822 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811))))) +(-13 (-616 |t#1|) (-10 -8 (-6 -4310) (-15 -3832 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -2347 ($ $)) (-15 -3209 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -1824 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -3738 ((-526) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3738 ((-526) |t#1| $)) (-15 -3738 ((-526) |t#1| $ (-526)))) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-6 (-811)) (-15 -3832 ($ $ $)) (-15 -3209 ($ $)) (-15 -1824 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -1823 ($ $ $ (-526))) (-15 -2346 ($ $)) (-15 -1822 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-811)) (-15 -1822 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) +((-4160 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4161 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4275 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1159) (-357 |#1|) (-1159) (-357 |#3|)) (T -358)) +((-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-4 *2 (-357 *5)) (-5 *1 (-358 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-358 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *2 (-357 *6)) (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 32)) (-4263 (($ $ (-735)) 33)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4256 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 36)) (-4253 (($ $) 34)) (-4257 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 37)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4086 (($ $ |#1| $) 31) (($ $ (-607 |#1|) (-607 $)) 30)) (-4264 (((-735) $) 38)) (-3844 (($ $ $) 29)) (-4274 (((-823) $) 11) (($ |#1|) 41) (((-1220 |#1| |#2|) $) 40) (((-1229 |#1| |#2|) $) 39)) (-4270 ((|#2| (-1229 |#1| |#2|) $) 42)) (-2957 (($) 18 T CONST)) (-1825 (($ (-637 |#1|)) 35)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#2|) 28 (|has| |#2| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-359 |#1| |#2|) (-134) (-811) (-163)) (T -359)) +((-4270 (*1 *2 *3 *1) (-12 (-5 *3 (-1229 *4 *2)) (-4 *1 (-359 *4 *2)) (-4 *4 (-811)) (-4 *2 (-163)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-1220 *3 *4)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-1229 *3 *4)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-735)))) (-4257 (*1 *2 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4256 (*1 *2 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-4 *1 (-359 *3 *4)) (-4 *4 (-163)))) (-4253 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4263 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-607 *3)))) (-4086 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *1)) (-4 *1 (-359 *4 *5)) (-4 *4 (-811)) (-4 *5 (-163))))) +(-13 (-602 |t#2|) (-10 -8 (-15 -4270 (|t#2| (-1229 |t#1| |t#2|) $)) (-15 -4274 ($ |t#1|)) (-15 -4274 ((-1220 |t#1| |t#2|) $)) (-15 -4274 ((-1229 |t#1| |t#2|) $)) (-15 -4264 ((-735) $)) (-15 -4257 ((-1229 |t#1| |t#2|) (-1229 |t#1| |t#2|) $)) (-15 -4256 ((-1229 |t#1| |t#2|) (-1229 |t#1| |t#2|) $)) (-15 -1825 ($ (-637 |t#1|))) (-15 -4253 ($ $)) (-15 -4263 ($ $ (-735))) (-15 -4251 ((-607 |t#1|) $)) (-15 -4086 ($ $ |t#1| $)) (-15 -4086 ($ $ (-607 |t#1|) (-607 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-602 |#2|) . T) ((-682 |#2|) . T) ((-1010 |#2|) . T) ((-1052) . T)) +((-1828 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-1826 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-1827 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) +(((-360 |#1| |#2|) (-10 -7 (-15 -1826 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1827 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1159) (-13 (-357 |#1|) (-10 -7 (-6 -4311)))) (T -360)) +((-1828 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))))) (-1827 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))))) (-1826 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) +(-10 -7 (-15 -1826 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1827 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1828 (|#2| (-1 (-111) |#1| |#1|) |#2|))) +((-2331 (((-653 |#2|) (-653 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 22) (((-653 (-526)) (-653 $)) 14))) +(((-361 |#1| |#2|) (-10 -8 (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 |#2|) (-653 |#1|)))) (-362 |#2|) (-1004)) (T -361)) +NIL +(-10 -8 (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 |#2|) (-653 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2331 (((-653 |#1|) (-653 $)) 34) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 33) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 41 (|has| |#1| (-606 (-526)))) (((-653 (-526)) (-653 $)) 40 (|has| |#1| (-606 (-526))))) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-362 |#1|) (-134) (-1004)) (T -362)) +NIL +(-13 (-606 |t#1|) (-10 -7 (IF (|has| |t#1| (-606 (-526))) (-6 (-606 (-526))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-3426 (((-526) $) 55)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) 110)) (-3806 (($ $) 82)) (-3961 (($ $) 71)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) 44)) (-1681 (((-111) $ $) NIL)) (-3804 (($ $) 80)) (-3960 (($ $) 69)) (-3945 (((-526) $) 64)) (-2659 (($ $ (-526)) 62)) (-3808 (($ $) NIL)) (-3959 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3424 (($ $) 112)) (-3470 (((-3 (-526) #1="failed") $) 189) (((-3 (-392 (-526)) #1#) $) 185)) (-3469 (((-526) $) 187) (((-392 (-526)) $) 183)) (-2861 (($ $ $) NIL)) (-1837 (((-526) $ $) 102)) (-3781 (((-3 $ "failed") $) 114)) (-1836 (((-392 (-526)) $ (-735)) 190) (((-392 (-526)) $ (-735) (-735)) 182)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 73) (((-878) (-878)) 98 (|has| $ (-6 -4301)))) (-3500 (((-111) $) 106)) (-3949 (($) 40)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-1829 (((-1211) (-735)) 152)) (-1830 (((-1211)) 157) (((-1211) (-735)) 158)) (-1832 (((-1211)) 159) (((-1211) (-735)) 160)) (-1831 (((-1211)) 155) (((-1211) (-735)) 156)) (-4090 (((-526) $) 58)) (-2471 (((-111) $) 104)) (-3311 (($ $ (-526)) NIL)) (-2661 (($ $) 48)) (-3429 (($ $) NIL)) (-3501 (((-111) $) 35)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-3638 (($ $ $) NIL) (($) 99 (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 17)) (-1835 (($) 87) (($ $) 92)) (-1834 (($) 91) (($ $) 93)) (-4259 (($ $) 83)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 116)) (-1865 (((-878) (-526)) 43 (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) 53)) (-3427 (($ $) 109)) (-3566 (($ (-526) (-526)) 107) (($ (-526) (-526) (-878)) 108)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 19)) (-1833 (($) 94)) (-4260 (($ $) 79)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-878)) 100) (((-878) (-878)) 101 (|has| $ (-6 -4301)))) (-4129 (($ $ (-735)) NIL) (($ $) 115)) (-1864 (((-878) (-526)) 47 (|has| $ (-6 -4301)))) (-3809 (($ $) NIL)) (-3958 (($ $) NIL)) (-3807 (($ $) NIL)) (-3957 (($ $) NIL)) (-3805 (($ $) 81)) (-3956 (($ $) 70)) (-4287 (((-363) $) 175) (((-211) $) 177) (((-849 (-363)) $) NIL) (((-1106) $) 162) (((-515) $) 173) (($ (-211)) 181)) (-4274 (((-823) $) 164) (($ (-526)) 186) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-526)) 186) (($ (-392 (-526))) NIL) (((-211) $) 178)) (-3423 (((-735)) NIL)) (-3428 (($ $) 111)) (-1866 (((-878)) 54) (((-878) (-878)) 66 (|has| $ (-6 -4301)))) (-2994 (((-878)) 103)) (-3812 (($ $) 86)) (-3800 (($ $) 46) (($ $ $) 52)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 84)) (-3798 (($ $) 37)) (-3814 (($ $) NIL)) (-3802 (($ $) NIL)) (-3815 (($ $) NIL)) (-3803 (($ $) NIL)) (-3813 (($ $) NIL)) (-3801 (($ $) NIL)) (-3811 (($ $) 85)) (-3799 (($ $) 49)) (-3702 (($ $) 51)) (-2957 (($) 34 T CONST)) (-2964 (($) 38 T CONST)) (-2803 (((-1106) $) 27) (((-1106) $ (-111)) 29) (((-1211) (-787) $) 30) (((-1211) (-787) $ (-111)) 31)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 39)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 42)) (-4265 (($ $ $) 45) (($ $ (-526)) 41)) (-4156 (($ $) 36) (($ $ $) 50)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) 67) (($ $ (-735)) NIL) (($ $ (-526)) 88) (($ $ (-392 (-526))) 125) (($ $ $) 117)) (* (($ (-878) $) 65) (($ (-735) $) NIL) (($ (-526) $) 68) (($ $ $) 60) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-363) (-13 (-389) (-219) (-584 (-1106)) (-785) (-583 (-211)) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -2661 ($ $)) (-15 -1837 ((-526) $ $)) (-15 -2659 ($ $ (-526))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -1833 ($)) (-15 -3800 ($ $ $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -4287 ($ (-211))) (-15 -1832 ((-1211))) (-15 -1832 ((-1211) (-735))) (-15 -1831 ((-1211))) (-15 -1831 ((-1211) (-735))) (-15 -1830 ((-1211))) (-15 -1830 ((-1211) (-735))) (-15 -1829 ((-1211) (-735))) (-6 -4301) (-6 -4293)))) (T -363)) +((** (*1 *1 *1 *1) (-5 *1 (-363))) (-4265 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-2661 (*1 *1 *1) (-5 *1 (-363))) (-1837 (*1 *2 *1 *1) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-2659 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) (-1836 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) (-1836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) (-1835 (*1 *1) (-5 *1 (-363))) (-1834 (*1 *1) (-5 *1 (-363))) (-1833 (*1 *1) (-5 *1 (-363))) (-3800 (*1 *1 *1 *1) (-5 *1 (-363))) (-1835 (*1 *1 *1) (-5 *1 (-363))) (-1834 (*1 *1 *1) (-5 *1 (-363))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-363)))) (-1832 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1831 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1830 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363))))) +(-13 (-389) (-219) (-584 (-1106)) (-785) (-583 (-211)) (-1145) (-584 (-515)) (-10 -8 (-15 -4265 ($ $ (-526))) (-15 ** ($ $ $)) (-15 -2661 ($ $)) (-15 -1837 ((-526) $ $)) (-15 -2659 ($ $ (-526))) (-15 -1836 ((-392 (-526)) $ (-735))) (-15 -1836 ((-392 (-526)) $ (-735) (-735))) (-15 -1835 ($)) (-15 -1834 ($)) (-15 -1833 ($)) (-15 -3800 ($ $ $)) (-15 -1835 ($ $)) (-15 -1834 ($ $)) (-15 -4287 ($ (-211))) (-15 -1832 ((-1211))) (-15 -1832 ((-1211) (-735))) (-15 -1831 ((-1211))) (-15 -1831 ((-1211) (-735))) (-15 -1830 ((-1211))) (-15 -1830 ((-1211) (-735))) (-15 -1829 ((-1211) (-735))) (-6 -4301) (-6 -4293))) +((-1838 (((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|) 51) (((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|) 50) (((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|) 47) (((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|) 41)) (-1839 (((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|) 30) (((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|) 18))) +(((-364 |#1|) (-10 -7 (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1839 ((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1839 ((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|))) (-13 (-348) (-809))) (T -364)) +((-1839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 (-159 *5)))) (-5 *1 (-364 *5)) (-4 *5 (-13 (-348) (-809))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 (-159 (-526)))))) (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 (-159 (-526))))))) (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809)))))) +(-10 -7 (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1838 ((-607 (-607 (-278 (-905 (-159 |#1|))))) (-607 (-278 (-392 (-905 (-159 (-526)))))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1838 ((-607 (-278 (-905 (-159 |#1|)))) (-278 (-392 (-905 (-159 (-526))))) |#1|)) (-15 -1839 ((-607 (-159 |#1|)) (-392 (-905 (-159 (-526)))) |#1|)) (-15 -1839 ((-607 (-607 (-159 |#1|))) (-607 (-392 (-905 (-159 (-526))))) (-607 (-1123)) |#1|))) +((-3895 (((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|) 46) (((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|) 45) (((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|) 42) (((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|) 36)) (-1840 (((-607 |#1|) (-392 (-905 (-526))) |#1|) 20) (((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|) 30))) +(((-365 |#1|) (-10 -7 (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|)) (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|)) (-15 -1840 ((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|)) (-15 -1840 ((-607 |#1|) (-392 (-905 (-526))) |#1|))) (-13 (-809) (-348))) (T -365)) +((-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 *5))) (-5 *1 (-365 *5)) (-4 *5 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 (-526))))) (-5 *2 (-607 (-278 (-905 *4)))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 (-278 (-905 *4)))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 (-526)))))) (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348)))))) +(-10 -7 (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-392 (-905 (-526)))) |#1|)) (-15 -3895 ((-607 (-607 (-278 (-905 |#1|)))) (-607 (-278 (-392 (-905 (-526))))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-392 (-905 (-526))) |#1|)) (-15 -3895 ((-607 (-278 (-905 |#1|))) (-278 (-392 (-905 (-526)))) |#1|)) (-15 -1840 ((-607 (-607 |#1|)) (-607 (-392 (-905 (-526)))) (-607 (-1123)) |#1|)) (-15 -1840 ((-607 |#1|) (-392 (-905 (-526))) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 28)) (-2957 (($) 12 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-366 |#1| |#2|) (-13 (-110 |#1| |#1|) (-491 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|))) (-1004) (-811)) (T -366)) +NIL +(-13 (-110 |#1| |#1|) (-491 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-682 |#1|)) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) 26)) (-3469 ((|#2| $) 28)) (-4276 (($ $) NIL)) (-2479 (((-735) $) 10)) (-3121 (((-607 $) $) 20)) (-4254 (((-111) $) NIL)) (-4255 (($ |#2| |#1|) 18)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3194 ((|#2| $) 15)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 45) (($ |#2|) 27)) (-4136 (((-607 |#1|) $) 17)) (-3999 ((|#1| $ |#2|) 47)) (-2957 (($) 29 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-367 |#1| |#2|) (-13 (-369 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1004) (-811)) (T -367)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811))))) +(-13 (-369 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-653 (-663))) 14) (($ (-607 (-315))) 13) (($ (-315)) 12) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 11))) (((-368) (-134)) (T -368)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-368)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-368)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-649 (-300 (-363))))) (-15 -1516 ((-3 $ "failed") (-649 (-300 (-363))))) (-15 -3958 ($ (-649 (-300 (-537))))) (-15 -1516 ((-3 $ "failed") (-649 (-300 (-537))))) (-15 -3958 ($ (-649 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-649 (-905 (-363))))) (-15 -3958 ($ (-649 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-649 (-905 (-537))))) (-15 -3958 ($ (-649 (-391 (-905 (-363)))))) (-15 -1516 ((-3 $ "failed") (-649 (-391 (-905 (-363)))))) (-15 -3958 ($ (-649 (-391 (-905 (-537)))))) (-15 -1516 ((-3 $ "failed") (-649 (-391 (-905 (-537)))))))) -(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 28)) (-2928 (($) 12 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-369 |#1| |#2|) (-13 (-110 |#1| |#1|) (-490 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|))) (-998) (-807)) (T -369)) -NIL -(-13 (-110 |#1| |#1|) (-490 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) 59)) (-3832 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $ $) 61)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1308 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2836 (((-111) $) 15)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-731) $ (-537)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-3572 (($ (-1 |#1| |#1|) $) 38)) (-1325 (($ (-1 (-731) (-731)) $) 35)) (-2896 (((-3 $ "failed") $ $) 50)) (-1654 (((-1100) $) NIL)) (-4041 (($ $ $) 26)) (-2532 (($ $ $) 24)) (-2528 (((-1064) $) NIL)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) 32)) (-3998 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2341 (((-816) $) 22) (($ |#1|) NIL)) (-2943 (($) 9 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 41)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 63 (|has| |#1| (-807)))) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ |#1| (-731)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-370 |#1|) (-13 (-687) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -3998 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-731) (-731)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) (-1045)) (T -370)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-2532 (*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-4041 (*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-2896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-3139 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-3998 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |rm| (-370 *3)))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-1308 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |mm| (-370 *3)) (|:| |rm| (-370 *3)))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-370 *4)) (-4 *4 (-1045)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-731) (-731))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-370 *3))))) -(-13 (-687) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -3998 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-731) (-731)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 45)) (-3958 (((-537) $) 44)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-2444 (($ $ $) 52)) (-3889 (($ $ $) 51)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 46)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 49)) (-2271 (((-111) $ $) 48)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 50)) (-2263 (((-111) $ $) 47)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-371) (-134)) (T -371)) -NIL -(-13 (-529) (-807) (-989 (-537))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1552 (((-111) $) 20)) (-3771 (((-111) $) 19)) (-3157 (($ (-1100) (-1100) (-1100)) 21)) (-3923 (((-1100) $) 16)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2948 (($ (-1100) (-1100) (-1100)) 14)) (-2100 (((-1100) $) 17)) (-2372 (((-111) $) 18)) (-3084 (((-1100) $) 15)) (-2341 (((-816) $) 12) (($ (-1100)) 13) (((-1100) $) 9)) (-2244 (((-111) $ $) 7))) -(((-372) (-373)) (T -372)) -NIL -(-373) -((-2330 (((-111) $ $) 7)) (-1552 (((-111) $) 14)) (-3771 (((-111) $) 15)) (-3157 (($ (-1100) (-1100) (-1100)) 13)) (-3923 (((-1100) $) 18)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2948 (($ (-1100) (-1100) (-1100)) 20)) (-2100 (((-1100) $) 17)) (-2372 (((-111) $) 16)) (-3084 (((-1100) $) 19)) (-2341 (((-816) $) 11) (($ (-1100)) 22) (((-1100) $) 21)) (-2244 (((-111) $ $) 6))) -(((-373) (-134)) (T -373)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2948 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-3157 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2948 ($ (-1100) (-1100) (-1100))) (-15 -3084 ((-1100) $)) (-15 -3923 ((-1100) $)) (-15 -2100 ((-1100) $)) (-15 -2372 ((-111) $)) (-15 -3771 ((-111) $)) (-15 -1552 ((-111) $)) (-15 -3157 ($ (-1100) (-1100) (-1100))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3243 (((-816) $) 50)) (-3832 (($) NIL T CONST)) (-2541 (($ $ (-874)) NIL)) (-1891 (($ $ (-874)) NIL)) (-3060 (($ $ (-874)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) 26)) (-1839 (((-731)) 17)) (-2760 (((-816) $) 52)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) NIL)) (-3727 (($ $ $ $) NIL)) (-3212 (($ $ $) NIL)) (-2928 (($) 20 T CONST)) (-2244 (((-111) $ $) 28)) (-2329 (($ $) 34) (($ $ $) 36)) (-2318 (($ $ $) 37)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-374 |#1| |#2| |#3|) (-13 (-705 |#3|) (-10 -8 (-15 -1839 ((-731))) (-15 -2760 ((-816) $)) (-15 -3243 ((-816) $)) (-15 -1524 ($ (-731))))) (-731) (-731) (-163)) (T -374)) -((-1839 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-163)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163))))) -(-13 (-705 |#3|) (-10 -8 (-15 -1839 ((-731))) (-15 -2760 ((-816) $)) (-15 -3243 ((-816) $)) (-15 -1524 ($ (-731))))) -((-2453 (((-1100)) 10)) (-3298 (((-1089 (-1100))) 28)) (-1539 (((-1205) (-1100)) 25) (((-1205) (-372)) 24)) (-3308 (((-1205)) 26)) (-2674 (((-1089 (-1100))) 27))) -(((-375) (-10 -7 (-15 -2674 ((-1089 (-1100)))) (-15 -3298 ((-1089 (-1100)))) (-15 -3308 ((-1205))) (-15 -1539 ((-1205) (-372))) (-15 -1539 ((-1205) (-1100))) (-15 -2453 ((-1100))))) (T -375)) -((-2453 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-375)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-375)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-375)))) (-3308 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-375)))) (-3298 (*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375)))) (-2674 (*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) -(-10 -7 (-15 -2674 ((-1089 (-1100)))) (-15 -3298 ((-1089 (-1100)))) (-15 -3308 ((-1205))) (-15 -1539 ((-1205) (-372))) (-15 -1539 ((-1205) (-1100))) (-15 -2453 ((-1100)))) -((-4231 (((-731) (-320 |#1| |#2| |#3| |#4|)) 16))) -(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|)))) (-13 (-352) (-347)) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -376)) -((-4231 (*1 *2 *3) (-12 (-5 *3 (-320 *4 *5 *6 *7)) (-4 *4 (-13 (-352) (-347))) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *7 (-326 *4 *5 *6)) (-5 *2 (-731)) (-5 *1 (-376 *4 *5 *6 *7))))) -(-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|)))) -((-2341 (((-378) |#1|) 11))) -(((-377 |#1|) (-10 -7 (-15 -2341 ((-378) |#1|))) (-1045)) (T -377)) -((-2341 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-377 *3)) (-4 *3 (-1045))))) -(-10 -7 (-15 -2341 ((-378) |#1|))) -((-2330 (((-111) $ $) NIL)) (-3066 (((-606 (-1100)) $ (-606 (-1100))) 38)) (-1735 (((-606 (-1100)) $ (-606 (-1100))) 39)) (-1486 (((-606 (-1100)) $ (-606 (-1100))) 40)) (-1677 (((-606 (-1100)) $) 35)) (-3157 (($) 23)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2882 (((-606 (-1100)) $) 36)) (-4107 (((-606 (-1100)) $) 37)) (-2356 (((-1205) $ (-537)) 33) (((-1205) $) 34)) (-3996 (($ (-816) (-537)) 30)) (-2341 (((-816) $) 42) (($ (-816)) 25)) (-2244 (((-111) $ $) NIL))) -(((-378) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2882 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1735 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100))))))) (T -378)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-378)))) (-3996 (*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-378)))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-378)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-378)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-3157 (*1 *1) (-5 *1 (-378))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-1735 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-3066 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2882 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1735 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100)))))) -((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8))) -(((-379) (-134)) (T -379)) -((-3322 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-1205))))) -(-13 (-1154) (-579 (-816)) (-10 -8 (-15 -3322 ((-1205) $)))) -(((-579 (-816)) . T) ((-1154) . T)) -((-1516 (((-3 $ "failed") (-300 (-363))) 21) (((-3 $ "failed") (-300 (-537))) 19) (((-3 $ "failed") (-905 (-363))) 17) (((-3 $ "failed") (-905 (-537))) 15) (((-3 $ "failed") (-391 (-905 (-363)))) 13) (((-3 $ "failed") (-391 (-905 (-537)))) 11)) (-3958 (($ (-300 (-363))) 22) (($ (-300 (-537))) 20) (($ (-905 (-363))) 18) (($ (-905 (-537))) 16) (($ (-391 (-905 (-363)))) 14) (($ (-391 (-905 (-537)))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) -(((-380) (-134)) (T -380)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-380)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-380)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363)))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))))) -(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) -((-2471 (((-606 (-1100)) (-606 (-1100))) 9)) (-3322 (((-1205) (-372)) 27)) (-3251 (((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117))) 60) (((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117)) 35) (((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117))) 34))) -(((-381) (-10 -7 (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)))) (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117))) (-15 -3251 ((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117)))) (-15 -3322 ((-1205) (-372))) (-15 -2471 ((-606 (-1100)) (-606 (-1100)))))) (T -381)) -((-2471 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-381)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381))))) -(-10 -7 (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)))) (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117))) (-15 -3251 ((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117)))) (-15 -3322 ((-1205) (-372))) (-15 -2471 ((-606 (-1100)) (-606 (-1100))))) -((-3322 (((-1205) $) 38)) (-2341 (((-816) $) 98) (($ (-314)) 100) (($ (-606 (-314))) 99) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 97) (($ (-300 (-661))) 54) (($ (-300 (-659))) 73) (($ (-300 (-654))) 86) (($ (-278 (-300 (-661)))) 68) (($ (-278 (-300 (-659)))) 81) (($ (-278 (-300 (-654)))) 94) (($ (-300 (-537))) 104) (($ (-300 (-363))) 117) (($ (-300 (-160 (-363)))) 130) (($ (-278 (-300 (-537)))) 112) (($ (-278 (-300 (-363)))) 125) (($ (-278 (-300 (-160 (-363))))) 138))) -(((-382 |#1| |#2| |#3| |#4|) (-13 (-379) (-10 -8 (-15 -2341 ($ (-314))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -2341 ($ (-300 (-661)))) (-15 -2341 ($ (-300 (-659)))) (-15 -2341 ($ (-300 (-654)))) (-15 -2341 ($ (-278 (-300 (-661))))) (-15 -2341 ($ (-278 (-300 (-659))))) (-15 -2341 ($ (-278 (-300 (-654))))) (-15 -2341 ($ (-300 (-537)))) (-15 -2341 ($ (-300 (-363)))) (-15 -2341 ($ (-300 (-160 (-363))))) (-15 -2341 ($ (-278 (-300 (-537))))) (-15 -2341 ($ (-278 (-300 (-363))))) (-15 -2341 ($ (-278 (-300 (-160 (-363)))))))) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-1121)) (T -382)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-661)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-659)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-654)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-537)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-160 (-363))))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-314))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -2341 ($ (-300 (-661)))) (-15 -2341 ($ (-300 (-659)))) (-15 -2341 ($ (-300 (-654)))) (-15 -2341 ($ (-278 (-300 (-661))))) (-15 -2341 ($ (-278 (-300 (-659))))) (-15 -2341 ($ (-278 (-300 (-654))))) (-15 -2341 ($ (-300 (-537)))) (-15 -2341 ($ (-300 (-363)))) (-15 -2341 ($ (-300 (-160 (-363))))) (-15 -2341 ($ (-278 (-300 (-537))))) (-15 -2341 ($ (-278 (-300 (-363))))) (-15 -2341 ($ (-278 (-300 (-160 (-363)))))))) -((-2330 (((-111) $ $) NIL)) (-4144 ((|#2| $) 36)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4046 (($ (-391 |#2|)) 85)) (-2660 (((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $) 37)) (-3456 (($ $) 32) (($ $ (-731)) 34)) (-3996 (((-391 |#2|) $) 46)) (-2350 (($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|)))) 31)) (-2341 (((-816) $) 120)) (-4230 (($ $) 33) (($ $ (-731)) 35)) (-2244 (((-111) $ $) NIL)) (-2318 (($ |#2| $) 39))) -(((-383 |#1| |#2|) (-13 (-1045) (-580 (-391 |#2|)) (-10 -8 (-15 -2318 ($ |#2| $)) (-15 -4046 ($ (-391 |#2|))) (-15 -4144 (|#2| $)) (-15 -2660 ((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) (-13 (-347) (-141)) (-1176 |#1|)) (T -383)) -((-2318 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *2)) (-4 *2 (-1176 *3)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-347) (-141))))) (-2660 (*1 *2 *1) (-12 (-4 *3 (-13 (-347) (-141))) (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) (-3456 (*1 *1 *1) (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) (-4 *3 (-1176 *2)))) (-4230 (*1 *1 *1) (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) (-4 *3 (-1176 *2)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3))))) -(-13 (-1045) (-580 (-391 |#2|)) (-10 -8 (-15 -2318 ($ |#2| $)) (-15 -4046 ($ (-391 |#2|))) (-15 -4144 (|#2| $)) (-15 -2660 ((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) -((-2330 (((-111) $ $) 9 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 15 (|has| |#1| (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 14 (|has| |#1| (-839 (-537))))) (-1654 (((-1100) $) 13 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2528 (((-1064) $) 12 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2341 (((-816) $) 11 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2244 (((-111) $ $) 10 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363))))))) -(((-384 |#1|) (-134) (-1154)) (T -384)) -NIL -(-13 (-1154) (-10 -7 (IF (|has| |t#1| (-839 (-537))) (-6 (-839 (-537))) |%noBranch|) (IF (|has| |t#1| (-839 (-363))) (-6 (-839 (-363))) |%noBranch|))) -(((-100) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-579 (-816)) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-1045) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-1154) . T)) -((-2642 (($ $) 10) (($ $ (-731)) 11))) -(((-385 |#1|) (-10 -8 (-15 -2642 (|#1| |#1| (-731))) (-15 -2642 (|#1| |#1|))) (-386)) (T -385)) -NIL -(-10 -8 (-15 -2642 (|#1| |#1| (-731))) (-15 -2642 (|#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2642 (($ $) 76) (($ $ (-731)) 75)) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 78)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 77)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-2644 (((-3 $ "failed") $) 79)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) -(((-386) (-134)) (T -386)) -((-4231 (*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-793 (-874))))) (-3030 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-386)) (-5 *2 (-731)))) (-2642 (*1 *1 *1) (-4 *1 (-386))) (-2642 (*1 *1 *1 *2) (-12 (-4 *1 (-386)) (-5 *2 (-731))))) -(-13 (-347) (-139) (-10 -8 (-15 -4231 ((-793 (-874)) $)) (-15 -3030 ((-3 (-731) "failed") $ $)) (-15 -2642 ($ $)) (-15 -2642 ($ $ (-731))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-2851 (($ (-537) (-537)) 11) (($ (-537) (-537) (-874)) NIL)) (-3025 (((-874)) 16) (((-874) (-874)) NIL))) -(((-387 |#1|) (-10 -8 (-15 -3025 ((-874) (-874))) (-15 -3025 ((-874))) (-15 -2851 (|#1| (-537) (-537) (-874))) (-15 -2851 (|#1| (-537) (-537)))) (-388)) (T -387)) -((-3025 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388))))) -(-10 -8 (-15 -3025 ((-874) (-874))) (-15 -3025 ((-874))) (-15 -2851 (|#1| (-537) (-537) (-874))) (-15 -2851 (|#1| (-537) (-537)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 (((-537) $) 86)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1586 (($ $) 84)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 94)) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 111)) (-3832 (($) 17 T CONST)) (-3981 (($ $) 83)) (-1516 (((-3 (-537) "failed") $) 99) (((-3 (-391 (-537)) "failed") $) 96)) (-3958 (((-537) $) 98) (((-391 (-537)) $) 95)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2300 (((-874)) 127) (((-874) (-874)) 124 (|has| $ (-6 -4291)))) (-3797 (((-111) $) 109)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 90)) (-4231 (((-537) $) 133)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 93)) (-2055 (($ $) 89)) (-2840 (((-111) $) 110)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 108) (($) 121 (-12 (-3679 (|has| $ (-6 -4291))) (-3679 (|has| $ (-6 -4283)))))) (-3889 (($ $ $) 107) (($) 120 (-12 (-3679 (|has| $ (-6 -4291))) (-3679 (|has| $ (-6 -4283)))))) (-4020 (((-537) $) 130)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3964 (((-874) (-537)) 123 (|has| $ (-6 -4291)))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 85)) (-3830 (($ $) 87)) (-2851 (($ (-537) (-537)) 135) (($ (-537) (-537) (-874)) 134)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-3283 (((-537) $) 131)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3025 (((-874)) 128) (((-874) (-874)) 125 (|has| $ (-6 -4291)))) (-1398 (((-874) (-537)) 122 (|has| $ (-6 -4291)))) (-3996 (((-363) $) 102) (((-210) $) 101) (((-845 (-363)) $) 91)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-537)) 100) (($ (-391 (-537))) 97)) (-3654 (((-731)) 28)) (-3903 (($ $) 88)) (-3272 (((-874)) 129) (((-874) (-874)) 126 (|has| $ (-6 -4291)))) (-1605 (((-874)) 132)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 112)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 105)) (-2271 (((-111) $ $) 104)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 106)) (-2263 (((-111) $ $) 103)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 92)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) -(((-388) (-134)) (T -388)) -((-2851 (*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-388)))) (-2851 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-4 *1 (-388)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-1605 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-3272 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3025 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-2300 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) (-5 *2 (-874)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) (-5 *2 (-874)))) (-2444 (*1 *1) (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) (-3679 (|has| *1 (-6 -4283))))) (-3889 (*1 *1) (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) (-3679 (|has| *1 (-6 -4283)))))) -(-13 (-1007) (-10 -8 (-6 -4150) (-15 -2851 ($ (-537) (-537))) (-15 -2851 ($ (-537) (-537) (-874))) (-15 -4231 ((-537) $)) (-15 -1605 ((-874))) (-15 -3283 ((-537) $)) (-15 -4020 ((-537) $)) (-15 -3272 ((-874))) (-15 -3025 ((-874))) (-15 -2300 ((-874))) (IF (|has| $ (-6 -4291)) (PROGN (-15 -3272 ((-874) (-874))) (-15 -3025 ((-874) (-874))) (-15 -2300 ((-874) (-874))) (-15 -3964 ((-874) (-537))) (-15 -1398 ((-874) (-537)))) |%noBranch|) (IF (|has| $ (-6 -4283)) |%noBranch| (IF (|has| $ (-6 -4291)) |%noBranch| (PROGN (-15 -2444 ($)) (-15 -3889 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-845 (-363))) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-839 (-363)) . T) ((-873) . T) ((-954) . T) ((-973) . T) ((-1007) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-1612 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 20))) -(((-389 |#1| |#2|) (-10 -7 (-15 -1612 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-529) (-529)) (T -389)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-5 *2 (-402 *6)) (-5 *1 (-389 *5 *6))))) -(-10 -7 (-15 -1612 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) -((-1612 (((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)) 13))) -(((-390 |#1| |#2|) (-10 -7 (-15 -1612 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)))) (-529) (-529)) (T -390)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-5 *2 (-391 *6)) (-5 *1 (-390 *5 *6))))) -(-10 -7 (-15 -1612 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 13)) (-1874 ((|#1| $) 21 (|has| |#1| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#1| (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 17) (((-3 (-1117) "failed") $) NIL (|has| |#1| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 15) (((-1117) $) NIL (|has| |#1| (-989 (-1117)))) (((-391 (-537)) $) 67 (|has| |#1| (-989 (-537)))) (((-537) $) NIL (|has| |#1| (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 50)) (-1618 (($) NIL (|has| |#1| (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| |#1| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#1| (-839 (-363))))) (-2836 (((-111) $) 64)) (-2868 (($ $) NIL)) (-3301 ((|#1| $) 71)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-2840 (((-111) $) NIL (|has| |#1| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 97)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| |#1| (-291)))) (-3830 ((|#1| $) 28 (|has| |#1| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 135 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 131 (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) NIL)) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2395 (($ $) NIL)) (-3315 ((|#1| $) 73)) (-3996 (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (((-513) $) NIL (|has| |#1| (-580 (-513)))) (((-363) $) NIL (|has| |#1| (-973))) (((-210) $) NIL (|has| |#1| (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 115 (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 10) (($ (-1117)) NIL (|has| |#1| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) 99 (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 100)) (-3903 ((|#1| $) 26 (|has| |#1| (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| |#1| (-780)))) (-2928 (($) 22 T CONST)) (-2943 (($) 8 T CONST)) (-1379 (((-1100) $) 43 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1100) $ (-111)) 44 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1205) (-782) $) 45 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1205) (-782) $ (-111)) 46 (-12 (|has| |#1| (-522)) (|has| |#1| (-788))))) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 56)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 24 (|has| |#1| (-807)))) (-2340 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2329 (($ $) 25) (($ $ $) 55)) (-2318 (($ $ $) 53)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 125)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 60) (($ $ $) 57) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-391 |#1|) (-13 (-945 |#1|) (-10 -7 (IF (|has| |#1| (-522)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4287)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-6 -4298)) (-6 -4287) |%noBranch|) |%noBranch|) |%noBranch|))) (-529)) (T -391)) -NIL -(-13 (-945 |#1|) (-10 -7 (IF (|has| |#1| (-522)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4287)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-6 -4298)) (-6 -4287) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3623 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 18)) (-3447 (($ (-1200 |#2|) (-1200 $)) NIL) (($ (-1200 |#2|)) 24)) (-2664 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 38)) (-3199 ((|#3| $) 60)) (-2067 ((|#2| (-1200 $)) NIL) ((|#2|) 20)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 22) (((-649 |#2|) (-1200 $)) 36)) (-3996 (((-1200 |#2|) $) 11) (($ (-1200 |#2|)) 13)) (-2736 ((|#3| $) 52))) -(((-392 |#1| |#2| |#3|) (-10 -8 (-15 -2664 ((-649 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3623 ((-649 |#2|))) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 (|#3| |#1|)) (-15 -2736 (|#3| |#1|)) (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) (-393 |#2| |#3|) (-163) (-1176 |#2|)) (T -392)) -((-3623 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)) (-5 *1 (-392 *3 *4 *5)) (-4 *3 (-393 *4 *5)))) (-2067 (*1 *2) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-163)) (-5 *1 (-392 *3 *2 *4)) (-4 *3 (-393 *2 *4))))) -(-10 -8 (-15 -2664 ((-649 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3623 ((-649 |#2|))) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 (|#3| |#1|)) (-15 -2736 (|#3| |#1|)) (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-2644 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-393 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -393)) -((-2122 (*1 *2) (-12 (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *1)) (-4 *1 (-393 *3 *4)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-393 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) (-4 *4 (-1176 *3)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *3)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) (-4 *4 (-1176 *3)))) (-3623 (*1 *2) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-649 *3)))) (-2067 (*1 *2) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-649 *3))))) -(-13 (-354 |t#1| |t#2|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3996 ((-1200 |t#1|) $)) (-15 -3996 ($ (-1200 |t#1|))) (-15 -3623 ((-649 |t#1|))) (-15 -2067 (|t#1|)) (-15 -2664 ((-649 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-354 |#1| |#2|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) 27) (((-3 (-537) "failed") $) 19)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) 24) (((-537) $) 14)) (-2341 (($ |#2|) NIL) (($ (-391 (-537))) 22) (($ (-537)) 11))) -(((-394 |#1| |#2|) (-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|))) (-395 |#2|) (-1154)) (T -394)) -NIL -(-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|))) -((-1516 (((-3 |#1| "failed") $) 7) (((-3 (-391 (-537)) "failed") $) 16 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 13 (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 8) (((-391 (-537)) $) 15 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 12 (|has| |#1| (-989 (-537))))) (-2341 (($ |#1|) 6) (($ (-391 (-537))) 17 (|has| |#1| (-989 (-391 (-537))))) (($ (-537)) 14 (|has| |#1| (-989 (-537)))))) -(((-395 |#1|) (-134) (-1154)) (T -395)) -NIL -(-13 (-989 |t#1|) (-10 -7 (IF (|has| |t#1| (-989 (-537))) (-6 (-989 (-537))) |%noBranch|) (IF (|has| |t#1| (-989 (-391 (-537)))) (-6 (-989 (-391 (-537)))) |%noBranch|))) -(((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T)) -((-1612 (((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)) 33))) -(((-396 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 ((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)))) (-291) (-945 |#1|) (-1176 |#2|) (-13 (-393 |#2| |#3|) (-989 |#2|)) (-291) (-945 |#5|) (-1176 |#6|) (-13 (-393 |#6| |#7|) (-989 |#6|))) (T -396)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-397 *5 *6 *7 *8)) (-4 *5 (-291)) (-4 *6 (-945 *5)) (-4 *7 (-1176 *6)) (-4 *8 (-13 (-393 *6 *7) (-989 *6))) (-4 *9 (-291)) (-4 *10 (-945 *9)) (-4 *11 (-1176 *10)) (-5 *2 (-397 *9 *10 *11 *12)) (-5 *1 (-396 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-393 *10 *11) (-989 *10)))))) -(-10 -7 (-15 -1612 ((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)))) -((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-3168 ((|#4| (-731) (-1200 |#4|)) 56)) (-2836 (((-111) $) NIL)) (-3301 (((-1200 |#4|) $) 17)) (-2055 ((|#2| $) 54)) (-3596 (($ $) 139)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 100)) (-3754 (($ (-1200 |#4|)) 99)) (-2528 (((-1064) $) NIL)) (-3315 ((|#1| $) 18)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 134)) (-2122 (((-1200 |#4|) $) 129)) (-2943 (($) 11 T CONST)) (-2244 (((-111) $ $) 40)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 122)) (* (($ $ $) 121))) -(((-397 |#1| |#2| |#3| |#4|) (-13 (-456) (-10 -8 (-15 -3754 ($ (-1200 |#4|))) (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -3301 ((-1200 |#4|) $)) (-15 -3315 (|#1| $)) (-15 -3596 ($ $)) (-15 -3168 (|#4| (-731) (-1200 |#4|))))) (-291) (-945 |#1|) (-1176 |#2|) (-13 (-393 |#2| |#3|) (-989 |#2|))) (T -397)) -((-3754 (*1 *1 *2) (-12 (-5 *2 (-1200 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-397 *3 *4 *5 *6)))) (-2122 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) (-2055 (*1 *2 *1) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-397 *3 *2 *4 *5)) (-4 *3 (-291)) (-4 *5 (-13 (-393 *2 *4) (-989 *2))))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) (-3315 (*1 *2 *1) (-12 (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-4 *2 (-291)) (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) (-3596 (*1 *1 *1) (-12 (-4 *2 (-291)) (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-1200 *2)) (-4 *5 (-291)) (-4 *6 (-945 *5)) (-4 *2 (-13 (-393 *6 *7) (-989 *6))) (-5 *1 (-397 *5 *6 *7 *2)) (-4 *7 (-1176 *6))))) -(-13 (-456) (-10 -8 (-15 -3754 ($ (-1200 |#4|))) (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -3301 ((-1200 |#4|) $)) (-15 -3315 (|#1| $)) (-15 -3596 ($ $)) (-15 -3168 (|#4| (-731) (-1200 |#4|))))) -((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2055 ((|#2| $) 61)) (-1555 (($ (-1200 |#4|)) 25) (($ (-397 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-989 |#2|)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 34)) (-2122 (((-1200 |#4|) $) 26)) (-2943 (($) 23 T CONST)) (-2244 (((-111) $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ $ $) 72))) -(((-398 |#1| |#2| |#3| |#4| |#5|) (-13 (-687) (-10 -8 (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -1555 ($ (-1200 |#4|))) (IF (|has| |#4| (-989 |#2|)) (-15 -1555 ($ (-397 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-291) (-945 |#1|) (-1176 |#2|) (-393 |#2| |#3|) (-1200 |#4|)) (T -398)) -((-2122 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)) (-4 *6 (-393 *4 *5)) (-14 *7 *2))) (-2055 (*1 *2 *1) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-398 *3 *2 *4 *5 *6)) (-4 *3 (-291)) (-4 *5 (-393 *2 *4)) (-14 *6 (-1200 *5)))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-1200 *6)) (-4 *6 (-393 *4 *5)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-398 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-397 *3 *4 *5 *6)) (-4 *6 (-989 *4)) (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *6 (-393 *4 *5)) (-14 *7 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7))))) -(-13 (-687) (-10 -8 (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -1555 ($ (-1200 |#4|))) (IF (|has| |#4| (-989 |#2|)) (-15 -1555 ($ (-397 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-401 |#2|) (-163) (-401 |#4|) (-163)) (T -399)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-401 *6)) (-5 *1 (-399 *4 *5 *2 *6)) (-4 *4 (-401 *5))))) -(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) -((-1397 (((-3 $ "failed")) 86)) (-3822 (((-1200 (-649 |#2|)) (-1200 $)) NIL) (((-1200 (-649 |#2|))) 91)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 85)) (-2649 (((-3 $ "failed")) 84)) (-4263 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 102)) (-4246 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 110)) (-1899 (((-1113 (-905 |#2|))) 55)) (-2503 ((|#2| (-1200 $)) NIL) ((|#2|) 106)) (-3447 (($ (-1200 |#2|) (-1200 $)) NIL) (($ (-1200 |#2|)) 112)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 83)) (-1652 (((-3 $ "failed")) 75)) (-3699 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 100)) (-3486 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 108)) (-4096 (((-1113 (-905 |#2|))) 54)) (-2757 ((|#2| (-1200 $)) NIL) ((|#2|) 104)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 111) (((-649 |#2|) (-1200 $)) 118)) (-3996 (((-1200 |#2|) $) 96) (($ (-1200 |#2|)) 98)) (-4183 (((-606 (-905 |#2|)) (-1200 $)) NIL) (((-606 (-905 |#2|))) 94)) (-3127 (($ (-649 |#2|) $) 90))) -(((-400 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| (-649 |#2|) |#1|)) (-15 -1899 ((-1113 (-905 |#2|)))) (-15 -4096 ((-1113 (-905 |#2|)))) (-15 -4246 ((-649 |#2|) |#1|)) (-15 -3486 ((-649 |#2|) |#1|)) (-15 -4263 ((-649 |#2|))) (-15 -3699 ((-649 |#2|))) (-15 -2503 (|#2|)) (-15 -2757 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -4183 ((-606 (-905 |#2|)))) (-15 -3822 ((-1200 (-649 |#2|)))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -1397 ((-3 |#1| "failed"))) (-15 -2649 ((-3 |#1| "failed"))) (-15 -1652 ((-3 |#1| "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -3324 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|))) (-15 -4183 ((-606 (-905 |#2|)) (-1200 |#1|)))) (-401 |#2|) (-163)) (T -400)) -((-3822 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4183 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-2757 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) (-2503 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) (-3699 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4263 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4096 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4))))) -(-10 -8 (-15 -3127 (|#1| (-649 |#2|) |#1|)) (-15 -1899 ((-1113 (-905 |#2|)))) (-15 -4096 ((-1113 (-905 |#2|)))) (-15 -4246 ((-649 |#2|) |#1|)) (-15 -3486 ((-649 |#2|) |#1|)) (-15 -4263 ((-649 |#2|))) (-15 -3699 ((-649 |#2|))) (-15 -2503 (|#2|)) (-15 -2757 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -4183 ((-606 (-905 |#2|)))) (-15 -3822 ((-1200 (-649 |#2|)))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -1397 ((-3 |#1| "failed"))) (-15 -2649 ((-3 |#1| "failed"))) (-15 -1652 ((-3 |#1| "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -3324 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|))) (-15 -4183 ((-606 (-905 |#2|)) (-1200 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1397 (((-3 $ "failed")) 37 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) 78) (((-1200 (-649 |#1|))) 100)) (-2568 (((-1200 $)) 81)) (-3832 (($) 17 T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 40 (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) 38 (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) 65) (((-649 |#1|)) 92)) (-2624 ((|#1| $) 74)) (-4246 (((-649 |#1|) $ (-1200 $)) 76) (((-649 |#1|) $) 90)) (-3800 (((-3 $ "failed") $) 45 (|has| |#1| (-529)))) (-1899 (((-1113 (-905 |#1|))) 88 (|has| |#1| (-347)))) (-2541 (($ $ (-874)) 28)) (-4260 ((|#1| $) 72)) (-3112 (((-1113 |#1|) $) 42 (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) 67) ((|#1|) 94)) (-1889 (((-1113 |#1|) $) 63)) (-1855 (((-111)) 57)) (-3447 (($ (-1200 |#1|) (-1200 $)) 69) (($ (-1200 |#1|)) 98)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-529)))) (-3705 (((-874)) 80)) (-3364 (((-111)) 54)) (-1891 (($ $ (-874)) 33)) (-2186 (((-111)) 50)) (-1684 (((-111)) 48)) (-3468 (((-111)) 52)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 41 (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) 39 (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) 66) (((-649 |#1|)) 93)) (-4217 ((|#1| $) 75)) (-3486 (((-649 |#1|) $ (-1200 $)) 77) (((-649 |#1|) $) 91)) (-3820 (((-3 $ "failed") $) 46 (|has| |#1| (-529)))) (-4096 (((-1113 (-905 |#1|))) 89 (|has| |#1| (-347)))) (-3060 (($ $ (-874)) 29)) (-3408 ((|#1| $) 73)) (-2818 (((-1113 |#1|) $) 43 (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) 68) ((|#1|) 95)) (-4207 (((-1113 |#1|) $) 64)) (-2987 (((-111)) 58)) (-1654 (((-1100) $) 9)) (-2631 (((-111)) 49)) (-2077 (((-111)) 51)) (-2415 (((-111)) 53)) (-2528 (((-1064) $) 10)) (-3162 (((-111)) 56)) (-1922 ((|#1| $ (-537)) 101)) (-1484 (((-1200 |#1|) $ (-1200 $)) 71) (((-649 |#1|) (-1200 $) (-1200 $)) 70) (((-1200 |#1|) $) 103) (((-649 |#1|) (-1200 $)) 102)) (-3996 (((-1200 |#1|) $) 97) (($ (-1200 |#1|)) 96)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) 79) (((-606 (-905 |#1|))) 99)) (-1674 (($ $ $) 25)) (-3365 (((-111)) 62)) (-2341 (((-816) $) 11)) (-2122 (((-1200 $)) 104)) (-3678 (((-606 (-1200 |#1|))) 44 (|has| |#1| (-529)))) (-3727 (($ $ $ $) 26)) (-2510 (((-111)) 60)) (-3127 (($ (-649 |#1|) $) 87)) (-3212 (($ $ $) 24)) (-3750 (((-111)) 61)) (-3530 (((-111)) 59)) (-1972 (((-111)) 55)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-401 |#1|) (-134) (-163)) (T -401)) -((-2122 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-401 *3)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-401 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-3822 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 (-649 *3))))) (-4183 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-606 (-905 *3))))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) (-2757 (*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-2503 (*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-3699 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4263 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4096 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) (-5 *2 (-1113 (-905 *3))))) (-1899 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) (-5 *2 (-1113 (-905 *3))))) (-3127 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *3)) (-4 *1 (-401 *3)) (-4 *3 (-163))))) -(-13 (-351 |t#1|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -1922 (|t#1| $ (-537))) (-15 -3822 ((-1200 (-649 |t#1|)))) (-15 -4183 ((-606 (-905 |t#1|)))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3996 ((-1200 |t#1|) $)) (-15 -3996 ($ (-1200 |t#1|))) (-15 -2757 (|t#1|)) (-15 -2503 (|t#1|)) (-15 -3699 ((-649 |t#1|))) (-15 -4263 ((-649 |t#1|))) (-15 -3486 ((-649 |t#1|) $)) (-15 -4246 ((-649 |t#1|) $)) (IF (|has| |t#1| (-347)) (PROGN (-15 -4096 ((-1113 (-905 |t#1|)))) (-15 -1899 ((-1113 (-905 |t#1|))))) |%noBranch|) (-15 -3127 ($ (-649 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-351 |#1|) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-705 |#1|) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 42)) (-1722 (($ $) 57)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 146)) (-3377 (($ $) NIL)) (-4017 (((-111) $) 36)) (-1397 ((|#1| $) 13)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-1158)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-1158)))) (-3910 (($ |#1| (-537)) 31)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 116)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 55)) (-3490 (((-3 $ "failed") $) 131)) (-2484 (((-3 (-391 (-537)) "failed") $) 63 (|has| |#1| (-522)))) (-1797 (((-111) $) 59 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 70 (|has| |#1| (-522)))) (-1989 (($ |#1| (-537)) 33)) (-2639 (((-111) $) 152 (|has| |#1| (-1158)))) (-2836 (((-111) $) 43)) (-2333 (((-731) $) 38)) (-2109 (((-3 "nil" "sqfr" "irred" "prime") $ (-537)) 137)) (-4125 ((|#1| $ (-537)) 136)) (-2703 (((-537) $ (-537)) 135)) (-3814 (($ |#1| (-537)) 30)) (-1612 (($ (-1 |#1| |#1|) $) 143)) (-2323 (($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537))))) 58)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2905 (($ |#1| (-537)) 32)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) 147 (|has| |#1| (-435)))) (-3247 (($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3415 (((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $) 54)) (-2553 (((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $) 12)) (-3622 (((-402 $) $) NIL (|has| |#1| (-1158)))) (-3515 (((-3 $ "failed") $ $) 138)) (-3283 (((-537) $) 132)) (-1905 ((|#1| $) 56)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 79 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 85 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) $) NIL (|has| |#1| (-495 (-1117) $))) (($ $ (-606 (-1117)) (-606 $)) 86 (|has| |#1| (-495 (-1117) $))) (($ $ (-606 (-278 $))) 82 (|has| |#1| (-293 $))) (($ $ (-278 $)) NIL (|has| |#1| (-293 $))) (($ $ $ $) NIL (|has| |#1| (-293 $))) (($ $ (-606 $) (-606 $)) NIL (|has| |#1| (-293 $)))) (-1922 (($ $ |#1|) 71 (|has| |#1| (-270 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-270 $ $)))) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3996 (((-513) $) 27 (|has| |#1| (-580 (-513)))) (((-363) $) 92 (|has| |#1| (-973))) (((-210) $) 95 (|has| |#1| (-973)))) (-2341 (((-816) $) 114) (($ (-537)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537)))))) (-3654 (((-731)) 48)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 40 T CONST)) (-2943 (($) 39 T CONST)) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-111) $ $) 96)) (-2329 (($ $) 128) (($ $ $) NIL)) (-2318 (($ $ $) 140)) (** (($ $ (-874)) NIL) (($ $ (-731)) 102)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-402 |#1|) (-13 (-529) (-216 |#1|) (-37 |#1|) (-322 |#1|) (-395 |#1|) (-10 -8 (-15 -1905 (|#1| $)) (-15 -3283 ((-537) $)) (-15 -2323 ($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))))) (-15 -2553 ((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $)) (-15 -3814 ($ |#1| (-537))) (-15 -3415 ((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $)) (-15 -2905 ($ |#1| (-537))) (-15 -2703 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -2109 ((-3 "nil" "sqfr" "irred" "prime") $ (-537))) (-15 -2333 ((-731) $)) (-15 -1989 ($ |#1| (-537))) (-15 -3910 ($ |#1| (-537))) (-15 -3247 ($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1397 (|#1| $)) (-15 -1722 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-435)) (-6 (-435)) |%noBranch|) (IF (|has| |#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-270 $ $)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |#1| (-293 $)) (-6 (-293 $)) |%noBranch|) (IF (|has| |#1| (-495 (-1117) $)) (-6 (-495 (-1117) $)) |%noBranch|))) (-529)) (T -402)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-529)) (-5 *1 (-402 *3)))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-2323 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-537))))) (-4 *2 (-529)) (-5 *1 (-402 *2)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-537))))) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-3814 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -3283 (-537))))) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-402 *4)) (-4 *4 (-529)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3247 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1397 (*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529))))) -(-13 (-529) (-216 |#1|) (-37 |#1|) (-322 |#1|) (-395 |#1|) (-10 -8 (-15 -1905 (|#1| $)) (-15 -3283 ((-537) $)) (-15 -2323 ($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))))) (-15 -2553 ((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $)) (-15 -3814 ($ |#1| (-537))) (-15 -3415 ((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $)) (-15 -2905 ($ |#1| (-537))) (-15 -2703 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -2109 ((-3 "nil" "sqfr" "irred" "prime") $ (-537))) (-15 -2333 ((-731) $)) (-15 -1989 ($ |#1| (-537))) (-15 -3910 ($ |#1| (-537))) (-15 -3247 ($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1397 (|#1| $)) (-15 -1722 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-435)) (-6 (-435)) |%noBranch|) (IF (|has| |#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-270 $ $)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |#1| (-293 $)) (-6 (-293 $)) |%noBranch|) (IF (|has| |#1| (-495 (-1117) $)) (-6 (-495 (-1117) $)) |%noBranch|))) -((-3878 (((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|)) 21)) (-3985 (((-402 |#1|) (-402 |#1|) (-402 |#1|)) 16))) -(((-403 |#1|) (-10 -7 (-15 -3878 ((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|))) (-15 -3985 ((-402 |#1|) (-402 |#1|) (-402 |#1|)))) (-529)) (T -403)) -((-3985 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-529)) (-5 *1 (-403 *3)))) (-3878 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-402 *4) *4)) (-4 *4 (-529)) (-5 *2 (-402 *4)) (-5 *1 (-403 *4))))) -(-10 -7 (-15 -3878 ((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|))) (-15 -3985 ((-402 |#1|) (-402 |#1|) (-402 |#1|)))) -((-1794 ((|#2| |#2|) 166)) (-1824 (((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111)) 57))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1824 ((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111))) (-15 -1794 (|#2| |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -404)) -((-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1139) (-414 *3))) (-14 *4 (-1117)) (-14 *5 *2))) (-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |%expansion| (-297 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-14 *6 (-1117)) (-14 *7 *3)))) -(-10 -7 (-15 -1824 ((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111))) (-15 -1794 (|#2| |#2|))) -((-1612 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-998) (-807)) (-414 |#1|) (-13 (-998) (-807)) (-414 |#3|)) (T -405)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-998) (-807))) (-4 *6 (-13 (-998) (-807))) (-4 *2 (-414 *6)) (-5 *1 (-405 *5 *4 *6 *2)) (-4 *4 (-414 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) -((-1794 ((|#2| |#2|) 90)) (-3748 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100)) 48)) (-4153 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100)) 154))) -(((-406 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3748 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -4153 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -1794 (|#2| |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|) (-10 -8 (-15 -2341 ($ |#3|)))) (-805) (-13 (-1178 |#2| |#3|) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $)))) (-936 |#4|) (-1117)) (T -406)) -((-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *2 (-13 (-27) (-1139) (-414 *3) (-10 -8 (-15 -2341 ($ *4))))) (-4 *4 (-805)) (-4 *5 (-13 (-1178 *2 *4) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *1 (-406 *3 *2 *4 *5 *6 *7)) (-4 *6 (-936 *5)) (-14 *7 (-1117)))) (-4153 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) (-4 *7 (-805)) (-4 *8 (-13 (-1178 *3 *7) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) (-14 *10 (-1117)))) (-3748 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) (-4 *7 (-805)) (-4 *8 (-13 (-1178 *3 *7) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) (-14 *10 (-1117))))) -(-10 -7 (-15 -3748 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -4153 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -1794 (|#2| |#2|))) -((-2547 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3195 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1612 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1045) (-409 |#1|) (-1045) (-409 |#3|)) (T -407)) -((-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1045)) (-4 *5 (-1045)) (-4 *2 (-409 *5)) (-5 *1 (-407 *6 *4 *5 *2)) (-4 *4 (-409 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-5 *1 (-407 *5 *4 *2 *6)) (-4 *4 (-409 *5)) (-4 *6 (-409 *2)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-409 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-409 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1750 (($) 44)) (-4221 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2969 (($ $ $) 39)) (-3495 (((-111) $ $) 28)) (-3151 (((-731)) 47)) (-1272 (($ (-606 |#2|)) 20) (($) NIL)) (-1618 (($) 53)) (-3577 (((-111) $ $) 13)) (-2444 ((|#2| $) 61)) (-3889 ((|#2| $) 59)) (-2334 (((-874) $) 55)) (-3891 (($ $ $) 35)) (-2009 (($ (-874)) 50)) (-2867 (($ $ |#2|) NIL) (($ $ $) 38)) (-2539 (((-731) (-1 (-111) |#2|) $) NIL) (((-731) |#2| $) 26)) (-2350 (($ (-606 |#2|)) 24)) (-1583 (($ $) 46)) (-2341 (((-816) $) 33)) (-1627 (((-731) $) 21)) (-3575 (($ (-606 |#2|)) 19) (($) NIL)) (-2244 (((-111) $ $) 16))) -(((-408 |#1| |#2|) (-10 -8 (-15 -3151 ((-731))) (-15 -2009 (|#1| (-874))) (-15 -2334 ((-874) |#1|)) (-15 -1618 (|#1|)) (-15 -2444 (|#2| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -1750 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1627 ((-731) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -3577 ((-111) |#1| |#1|)) (-15 -3575 (|#1|)) (-15 -3575 (|#1| (-606 |#2|))) (-15 -1272 (|#1|)) (-15 -1272 (|#1| (-606 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -3495 ((-111) |#1| |#1|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#2| |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|))) (-409 |#2|) (-1045)) (T -408)) -((-3151 (*1 *2) (-12 (-4 *4 (-1045)) (-5 *2 (-731)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4))))) -(-10 -8 (-15 -3151 ((-731))) (-15 -2009 (|#1| (-874))) (-15 -2334 ((-874) |#1|)) (-15 -1618 (|#1|)) (-15 -2444 (|#2| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -1750 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1627 ((-731) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -3577 ((-111) |#1| |#1|)) (-15 -3575 (|#1|)) (-15 -3575 (|#1| (-606 |#2|))) (-15 -1272 (|#1|)) (-15 -1272 (|#1| (-606 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -3495 ((-111) |#1| |#1|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#2| |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|))) -((-2330 (((-111) $ $) 19)) (-1750 (($) 67 (|has| |#1| (-352)))) (-4221 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2969 (($ $ $) 78)) (-3495 (((-111) $ $) 79)) (-2506 (((-111) $ (-731)) 8)) (-3151 (((-731)) 61 (|has| |#1| (-352)))) (-1272 (($ (-606 |#1|)) 74) (($) 73)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-1618 (($) 64 (|has| |#1| (-352)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 70)) (-1642 (((-111) $ (-731)) 9)) (-2444 ((|#1| $) 65 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 66 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2334 (((-874) $) 63 (|has| |#1| (-352)))) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 75)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2009 (($ (-874)) 62 (|has| |#1| (-352)))) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2867 (($ $ |#1|) 77) (($ $ $) 76)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-1583 (($ $) 68 (|has| |#1| (-352)))) (-2341 (((-816) $) 18)) (-1627 (((-731) $) 69)) (-3575 (($ (-606 |#1|)) 72) (($) 71)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-409 |#1|) (-134) (-1045)) (T -409)) -((-1627 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-1045)) (-5 *2 (-731)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-352)))) (-1750 (*1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-352)) (-4 *2 (-1045)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807))))) -(-13 (-214 |t#1|) (-1043 |t#1|) (-10 -8 (-6 -4300) (-15 -1627 ((-731) $)) (IF (|has| |t#1| (-352)) (PROGN (-6 (-352)) (-15 -1583 ($ $)) (-15 -1750 ($))) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-15 -3889 (|t#1| $)) (-15 -2444 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-214 |#1|) . T) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-352) |has| |#1| (-352)) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) -((-3332 (((-554 |#2|) |#2| (-1117)) 36)) (-3007 (((-554 |#2|) |#2| (-1117)) 20)) (-2402 ((|#2| |#2| (-1117)) 25))) -(((-410 |#1| |#2|) (-10 -7 (-15 -3007 ((-554 |#2|) |#2| (-1117))) (-15 -3332 ((-554 |#2|) |#2| (-1117))) (-15 -2402 (|#2| |#2| (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-29 |#1|))) (T -410)) -((-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-410 *4 *2)) (-4 *2 (-13 (-1139) (-29 *4))))) (-3332 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) (-4 *3 (-13 (-1139) (-29 *5))))) (-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) (-4 *3 (-13 (-1139) (-29 *5)))))) -(-10 -7 (-15 -3007 ((-554 |#2|) |#2| (-1117))) (-15 -3332 ((-554 |#2|) |#2| (-1117))) (-15 -2402 (|#2| |#2| (-1117)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3807 (($ |#2| |#1|) 35)) (-3321 (($ |#2| |#1|) 33)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-315 |#2|)) 25)) (-3654 (((-731)) NIL)) (-2928 (($) 10 T CONST)) (-2943 (($) 16 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-411 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4287)) (IF (|has| |#1| (-6 -4287)) (-6 -4287) |%noBranch|) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-315 |#2|))) (-15 -3807 ($ |#2| |#1|)) (-15 -3321 ($ |#2| |#1|)))) (-13 (-163) (-37 (-391 (-537)))) (-13 (-807) (-21))) (T -411)) -((-2341 (*1 *1 *2) (-12 (-5 *1 (-411 *2 *3)) (-4 *2 (-13 (-163) (-37 (-391 (-537))))) (-4 *3 (-13 (-807) (-21))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-315 *4)) (-4 *4 (-13 (-807) (-21))) (-5 *1 (-411 *3 *4)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))))) (-3807 (*1 *1 *2 *3) (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) (-4 *2 (-13 (-807) (-21))))) (-3321 (*1 *1 *2 *3) (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) (-4 *2 (-13 (-807) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4287)) (IF (|has| |#1| (-6 -4287)) (-6 -4287) |%noBranch|) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-315 |#2|))) (-15 -3807 ($ |#2| |#1|)) (-15 -3321 ($ |#2| |#1|)))) -((-3092 (((-3 |#2| (-606 |#2|)) |#2| (-1117)) 109))) -(((-412 |#1| |#2|) (-10 -7 (-15 -3092 ((-3 |#2| (-606 |#2|)) |#2| (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -412)) -((-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 *3 (-606 *3))) (-5 *1 (-412 *5 *3)) (-4 *3 (-13 (-1139) (-912) (-29 *5)))))) -(-10 -7 (-15 -3092 ((-3 |#2| (-606 |#2|)) |#2| (-1117)))) -((-3757 (((-606 (-1117)) $) 72)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 273)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) 237)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-1117) "failed") $) 75) (((-3 (-537) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-391 (-905 |#2|)) "failed") $) 324) (((-3 (-905 |#2|) "failed") $) 235) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-1117) $) 30) (((-537) $) NIL) ((|#2| $) 231) (((-391 (-905 |#2|)) $) 305) (((-905 |#2|) $) 232) (((-391 (-537)) $) NIL)) (-3979 (((-113) (-113)) 47)) (-2868 (($ $) 87)) (-2765 (((-3 (-578 $) "failed") $) 228)) (-3576 (((-606 (-578 $)) $) 229)) (-3898 (((-3 (-606 $) "failed") $) 247)) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 254)) (-2566 (((-3 (-606 $) "failed") $) 245)) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 264)) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 251) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 219)) (-3876 (((-111) $) 19)) (-3890 ((|#2| $) 21)) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) 236) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 96) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1117)) 57) (($ $ (-606 (-1117))) 240) (($ $) 241) (($ $ (-113) $ (-1117)) 60) (($ $ (-606 (-113)) (-606 $) (-1117)) 67) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 107) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 242) (($ $ (-1117) (-731) (-1 $ (-606 $))) 94) (($ $ (-1117) (-731) (-1 $ $)) 93)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) 106)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) 238)) (-2395 (($ $) 284)) (-3996 (((-845 (-537)) $) 257) (((-845 (-363)) $) 261) (($ (-402 $)) 320) (((-513) $) NIL)) (-2341 (((-816) $) 239) (($ (-578 $)) 84) (($ (-1117)) 26) (($ |#2|) NIL) (($ (-1069 |#2| (-578 $))) NIL) (($ (-391 |#2|)) 289) (($ (-905 (-391 |#2|))) 329) (($ (-391 (-905 (-391 |#2|)))) 301) (($ (-391 (-905 |#2|))) 295) (($ $) NIL) (($ (-905 |#2|)) 185) (($ (-391 (-537))) 334) (($ (-537)) NIL)) (-3654 (((-731)) 79)) (-2336 (((-111) (-113)) 41)) (-2688 (($ (-1117) $) 33) (($ (-1117) $ $) 34) (($ (-1117) $ $ $) 35) (($ (-1117) $ $ $ $) 36) (($ (-1117) (-606 $)) 39)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) -(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-874) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3654 ((-731))) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-905 |#2|) |#1|)) (-15 -1516 ((-3 (-905 |#2|) "failed") |#1|)) (-15 -2341 (|#1| (-905 |#2|))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -3958 ((-391 (-905 |#2|)) |#1|)) (-15 -1516 ((-3 (-391 (-905 |#2|)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-905 |#2|)))) (-15 -3588 ((-391 (-1113 |#1|)) |#1| (-578 |#1|))) (-15 -2341 (|#1| (-391 (-905 (-391 |#2|))))) (-15 -2341 (|#1| (-905 (-391 |#2|)))) (-15 -2341 (|#1| (-391 |#2|))) (-15 -2395 (|#1| |#1|)) (-15 -3996 (|#1| (-402 |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| |#1|)))) (-15 -1570 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-537))) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-1117))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-113))) (-15 -2868 (|#1| |#1|)) (-15 -2341 (|#1| (-1069 |#2| (-578 |#1|)))) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 |#1|))) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 |#1|) (-1117))) (-15 -4116 (|#1| |#1| (-113) |#1| (-1117))) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1117)))) (-15 -4116 (|#1| |#1| (-1117))) (-15 -2688 (|#1| (-1117) (-606 |#1|))) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1|)) (-15 -3757 ((-606 (-1117)) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3576 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2341 (|#1| (-578 |#1|))) (-15 -2341 ((-816) |#1|))) (-414 |#2|) (-807)) (T -413)) -((-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-807)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3654 (*1 *2) (-12 (-4 *4 (-807)) (-5 *2 (-731)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))) -(-10 -8 (-15 * (|#1| (-874) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3654 ((-731))) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-905 |#2|) |#1|)) (-15 -1516 ((-3 (-905 |#2|) "failed") |#1|)) (-15 -2341 (|#1| (-905 |#2|))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -3958 ((-391 (-905 |#2|)) |#1|)) (-15 -1516 ((-3 (-391 (-905 |#2|)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-905 |#2|)))) (-15 -3588 ((-391 (-1113 |#1|)) |#1| (-578 |#1|))) (-15 -2341 (|#1| (-391 (-905 (-391 |#2|))))) (-15 -2341 (|#1| (-905 (-391 |#2|)))) (-15 -2341 (|#1| (-391 |#2|))) (-15 -2395 (|#1| |#1|)) (-15 -3996 (|#1| (-402 |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| |#1|)))) (-15 -1570 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-537))) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-1117))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-113))) (-15 -2868 (|#1| |#1|)) (-15 -2341 (|#1| (-1069 |#2| (-578 |#1|)))) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 |#1|))) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 |#1|) (-1117))) (-15 -4116 (|#1| |#1| (-113) |#1| (-1117))) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1117)))) (-15 -4116 (|#1| |#1| (-1117))) (-15 -2688 (|#1| (-1117) (-606 |#1|))) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1|)) (-15 -3757 ((-606 (-1117)) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3576 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2341 (|#1| (-578 |#1|))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 113 (|has| |#1| (-25)))) (-3757 (((-606 (-1117)) $) 200)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 168 (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 140 (|has| |#1| (-529)))) (-3377 (($ $) 141 (|has| |#1| (-529)))) (-4017 (((-111) $) 143 (|has| |#1| (-529)))) (-3852 (((-606 (-578 $)) $) 44)) (-3418 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1519 (($ $ (-278 $)) 56) (($ $ (-606 (-278 $))) 55) (($ $ (-606 (-578 $)) (-606 $)) 54)) (-1395 (($ $) 160 (|has| |#1| (-529)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-529)))) (-4099 (((-111) $ $) 151 (|has| |#1| (-529)))) (-3832 (($) 101 (-1533 (|has| |#1| (-1057)) (|has| |#1| (-25))) CONST)) (-1516 (((-3 (-578 $) "failed") $) 69) (((-3 (-1117) "failed") $) 213) (((-3 (-537) "failed") $) 206 (|has| |#1| (-989 (-537)))) (((-3 |#1| "failed") $) 204) (((-3 (-391 (-905 |#1|)) "failed") $) 166 (|has| |#1| (-529))) (((-3 (-905 |#1|) "failed") $) 120 (|has| |#1| (-998))) (((-3 (-391 (-537)) "failed") $) 95 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-578 $) $) 68) (((-1117) $) 212) (((-537) $) 207 (|has| |#1| (-989 (-537)))) ((|#1| $) 203) (((-391 (-905 |#1|)) $) 165 (|has| |#1| (-529))) (((-905 |#1|) $) 119 (|has| |#1| (-998))) (((-391 (-537)) $) 94 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) 155 (|has| |#1| (-529)))) (-2053 (((-649 (-537)) (-649 $)) 134 (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 133 (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 132 (|has| |#1| (-998))) (((-649 |#1|) (-649 $)) 131 (|has| |#1| (-998)))) (-3490 (((-3 $ "failed") $) 103 (|has| |#1| (-1057)))) (-3539 (($ $ $) 154 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-529)))) (-2639 (((-111) $) 162 (|has| |#1| (-529)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 209 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 208 (|has| |#1| (-839 (-363))))) (-3886 (($ $) 51) (($ (-606 $)) 50)) (-3350 (((-606 (-113)) $) 43)) (-3979 (((-113) (-113)) 42)) (-2836 (((-111) $) 102 (|has| |#1| (-1057)))) (-2353 (((-111) $) 22 (|has| $ (-989 (-537))))) (-2868 (($ $) 183 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 184 (|has| |#1| (-998)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-529)))) (-2040 (((-1113 $) (-578 $)) 25 (|has| $ (-998)))) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1612 (($ (-1 $ $) (-578 $)) 36)) (-2765 (((-3 (-578 $) "failed") $) 46)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-529))) (($ $ $) 146 (|has| |#1| (-529)))) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 45)) (-3381 (($ (-113) $) 38) (($ (-113) (-606 $)) 37)) (-3898 (((-3 (-606 $) "failed") $) 189 (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 180 (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 187 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 186 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 188 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 182 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 181 (|has| |#1| (-998)))) (-3215 (((-111) $ (-113)) 40) (((-111) $ (-1117)) 39)) (-3865 (($ $) 105 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2545 (((-731) $) 47)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 202)) (-3890 ((|#1| $) 201)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-529)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-529))) (($ $ $) 144 (|has| |#1| (-529)))) (-2482 (((-111) $ $) 35) (((-111) $ (-1117)) 34)) (-3622 (((-402 $) $) 159 (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-529))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ $) 139 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-529)))) (-2977 (((-111) $) 23 (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) 67) (($ $ (-606 (-578 $)) (-606 $)) 66) (($ $ (-606 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-606 $) (-606 $)) 62) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 33) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 32) (($ $ (-1117) (-1 $ (-606 $))) 31) (($ $ (-1117) (-1 $ $)) 30) (($ $ (-606 (-113)) (-606 (-1 $ $))) 29) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 28) (($ $ (-113) (-1 $ (-606 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1117)) 194 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) 193 (|has| |#1| (-580 (-513)))) (($ $) 192 (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 191 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-113)) (-606 $) (-1117)) 190 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 179 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 178 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) 177 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ $)) 176 (|has| |#1| (-998)))) (-1930 (((-731) $) 152 (|has| |#1| (-529)))) (-1922 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-606 $)) 57)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-529)))) (-2190 (($ $) 49) (($ $ $) 48)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 125 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 124 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 123 (|has| |#1| (-998))) (($ $ (-1117)) 122 (|has| |#1| (-998)))) (-2395 (($ $) 173 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 174 (|has| |#1| (-529)))) (-2529 (($ $) 24 (|has| $ (-998)))) (-3996 (((-845 (-537)) $) 211 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 210 (|has| |#1| (-580 (-845 (-363))))) (($ (-402 $)) 175 (|has| |#1| (-529))) (((-513) $) 97 (|has| |#1| (-580 (-513))))) (-1978 (($ $ $) 108 (|has| |#1| (-456)))) (-1674 (($ $ $) 109 (|has| |#1| (-456)))) (-2341 (((-816) $) 11) (($ (-578 $)) 70) (($ (-1117)) 214) (($ |#1|) 205) (($ (-1069 |#1| (-578 $))) 185 (|has| |#1| (-998))) (($ (-391 |#1|)) 171 (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) 170 (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) 169 (|has| |#1| (-529))) (($ (-391 (-905 |#1|))) 167 (|has| |#1| (-529))) (($ $) 138 (|has| |#1| (-529))) (($ (-905 |#1|)) 121 (|has| |#1| (-998))) (($ (-391 (-537))) 96 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537)))))) (($ (-537)) 93 (-1533 (|has| |#1| (-998)) (|has| |#1| (-989 (-537)))))) (-2644 (((-3 $ "failed") $) 135 (|has| |#1| (-139)))) (-3654 (((-731)) 130 (|has| |#1| (-998)))) (-1822 (($ $) 53) (($ (-606 $)) 52)) (-2336 (((-111) (-113)) 41)) (-3276 (((-111) $ $) 142 (|has| |#1| (-529)))) (-2688 (($ (-1117) $) 199) (($ (-1117) $ $) 198) (($ (-1117) $ $ $) 197) (($ (-1117) $ $ $ $) 196) (($ (-1117) (-606 $)) 195)) (-2928 (($) 112 (|has| |#1| (-25)) CONST)) (-2943 (($) 100 (|has| |#1| (-1057)) CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 129 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 128 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 127 (|has| |#1| (-998))) (($ $ (-1117)) 126 (|has| |#1| (-998)))) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2340 (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 172 (|has| |#1| (-529))) (($ $ $) 106 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2329 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2318 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-537)) 107 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529)))) (($ $ (-731)) 104 (|has| |#1| (-1057))) (($ $ (-874)) 99 (|has| |#1| (-1057)))) (* (($ (-391 (-537)) $) 164 (|has| |#1| (-529))) (($ $ (-391 (-537))) 163 (|has| |#1| (-529))) (($ |#1| $) 137 (|has| |#1| (-163))) (($ $ |#1|) 136 (|has| |#1| (-163))) (($ (-537) $) 118 (|has| |#1| (-21))) (($ (-731) $) 114 (|has| |#1| (-25))) (($ (-874) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1057))))) -(((-414 |#1|) (-134) (-807)) (T -414)) -((-3876 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-111)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-606 (-1117))))) (-2688 (*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-580 (-513))))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-580 (-513))))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-580 (-513))))) (-4116 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1117)) (-4 *1 (-414 *4)) (-4 *4 (-807)) (-4 *4 (-580 (-513))))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 *1)) (-5 *4 (-1117)) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-580 (-513))))) (-3898 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-414 *3)))) (-2983 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) (-2566 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-414 *3)))) (-1249 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 (-537)) (|:| |var| (-578 *1)))) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-998)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) (-4 *1 (-414 *3)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-998)))) (-2983 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-998)) (-4 *4 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *4)))) (-2983 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-998)) (-4 *4 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *4)))) (-1570 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) (-5 *4 (-606 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) (-5 *4 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 (-606 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-414 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-3315 (*1 *2 *1) (-12 (-4 *3 (-529)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) (-4 *1 (-414 *3)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-529)))) (-2340 (*1 *1 *2 *2) (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 *3))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-391 *3)))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)) (-4 *4 (-529)) (-5 *2 (-391 (-1113 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-1057))))) -(-13 (-286) (-989 (-1117)) (-837 |t#1|) (-384 |t#1|) (-395 |t#1|) (-10 -8 (-15 -3876 ((-111) $)) (-15 -3890 (|t#1| $)) (-15 -3757 ((-606 (-1117)) $)) (-15 -2688 ($ (-1117) $)) (-15 -2688 ($ (-1117) $ $)) (-15 -2688 ($ (-1117) $ $ $)) (-15 -2688 ($ (-1117) $ $ $ $)) (-15 -2688 ($ (-1117) (-606 $))) (IF (|has| |t#1| (-580 (-513))) (PROGN (-6 (-580 (-513))) (-15 -4116 ($ $ (-1117))) (-15 -4116 ($ $ (-606 (-1117)))) (-15 -4116 ($ $)) (-15 -4116 ($ $ (-113) $ (-1117))) (-15 -4116 ($ $ (-606 (-113)) (-606 $) (-1117)))) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-6 (-687)) (-15 ** ($ $ (-731))) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-456)) (-6 (-456)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-6 (-998)) (-6 (-989 (-905 |t#1|))) (-6 (-853 (-1117))) (-6 (-361 |t#1|)) (-15 -2341 ($ (-1069 |t#1| (-578 $)))) (-15 -3301 ((-1069 |t#1| (-578 $)) $)) (-15 -2868 ($ $)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117))) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $)) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-1117) (-731) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-1117) (-731) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-347)) (-6 (-989 (-391 (-905 |t#1|)))) (-15 -3996 ($ (-402 $))) (-15 -3315 ((-1069 |t#1| (-578 $)) $)) (-15 -2395 ($ $)) (-15 -2340 ($ (-1069 |t#1| (-578 $)) (-1069 |t#1| (-578 $)))) (-15 -2341 ($ (-391 |t#1|))) (-15 -2341 ($ (-905 (-391 |t#1|)))) (-15 -2341 ($ (-391 (-905 (-391 |t#1|))))) (-15 -3588 ((-391 (-1113 $)) $ (-578 $))) (IF (|has| |t#1| (-989 (-537))) (-6 (-989 (-391 (-537)))) |%noBranch|)) |%noBranch|))) -(((-21) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-23) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-391 (-537))) |has| |#1| (-529)) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-529)) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) |has| |#1| (-529)) ((-129) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) |has| |#1| (-529)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-228) |has| |#1| (-529)) ((-274) |has| |#1| (-529)) ((-291) |has| |#1| (-529)) ((-293 $) . T) ((-286) . T) ((-347) |has| |#1| (-529)) ((-361 |#1|) |has| |#1| (-998)) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-435) |has| |#1| (-529)) ((-456) |has| |#1| (-456)) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-529)) ((-609 |#1|) |has| |#1| (-163)) ((-609 $) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-602 (-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) ((-602 |#1|) |has| |#1| (-998)) ((-678 #0#) |has| |#1| (-529)) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) -1533 (|has| |#1| (-1057)) (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-456)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-807) . T) ((-853 (-1117)) |has| |#1| (-998)) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-873) |has| |#1| (-529)) ((-989 (-391 (-537))) -1533 (|has| |#1| (-989 (-391 (-537)))) (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) ((-989 (-391 (-905 |#1|))) |has| |#1| (-529)) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-578 $)) . T) ((-989 (-905 |#1|)) |has| |#1| (-998)) ((-989 (-1117)) . T) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-529)) ((-1004 |#1|) |has| |#1| (-163)) ((-1004 $) |has| |#1| (-529)) ((-998) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1005) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1057) -1533 (|has| |#1| (-1057)) (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-456)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1045) . T) ((-1154) . T) ((-1158) |has| |#1| (-529))) -((-3548 ((|#2| |#2| |#2|) 33)) (-3979 (((-113) (-113)) 44)) (-2254 ((|#2| |#2|) 66)) (-2800 ((|#2| |#2|) 69)) (-1593 ((|#2| |#2|) 32)) (-3288 ((|#2| |#2| |#2|) 35)) (-1961 ((|#2| |#2| |#2|) 37)) (-2354 ((|#2| |#2| |#2|) 34)) (-1716 ((|#2| |#2| |#2|) 36)) (-2336 (((-111) (-113)) 42)) (-2147 ((|#2| |#2|) 39)) (-3502 ((|#2| |#2|) 38)) (-2209 ((|#2| |#2|) 27)) (-2247 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2611 ((|#2| |#2| |#2|) 31))) -(((-415 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2209 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2247 (|#2| |#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -1716 (|#2| |#2| |#2|)) (-15 -1961 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2254 (|#2| |#2|))) (-13 (-807) (-529)) (-414 |#1|)) (T -415)) -((-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1961 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1716 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3288 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2354 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2611 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2247 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *4)) (-4 *4 (-414 *3)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-415 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2209 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2247 (|#2| |#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -1716 (|#2| |#2| |#2|)) (-15 -1961 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2254 (|#2| |#2|))) -((-4145 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|)) 61))) -(((-416 |#1| |#2|) (-10 -7 (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|))) (IF (|has| |#2| (-27)) (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-529) (-807) (-141)) (-414 |#1|)) (T -416)) -((-4145 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-529) (-807) (-141))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1113 *3)) (|:| |pol2| (-1113 *3)) (|:| |prim| (-1113 *3)))) (-5 *1 (-416 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-529) (-807) (-141))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-606 (-1113 *5))) (|:| |prim| (-1113 *5)))) (-5 *1 (-416 *4 *5))))) -(-10 -7 (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|))) (IF (|has| |#2| (-27)) (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3166 (((-1205)) 19)) (-2028 (((-1113 (-391 (-537))) |#2| (-578 |#2|)) 41) (((-391 (-537)) |#2|) 25))) -(((-417 |#1| |#2|) (-10 -7 (-15 -2028 ((-391 (-537)) |#2|)) (-15 -2028 ((-1113 (-391 (-537))) |#2| (-578 |#2|))) (-15 -3166 ((-1205)))) (-13 (-807) (-529) (-989 (-537))) (-414 |#1|)) (T -417)) -((-3166 (*1 *2) (-12 (-4 *3 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1205)) (-5 *1 (-417 *3 *4)) (-4 *4 (-414 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-417 *5 *3)))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-417 *4 *3)) (-4 *3 (-414 *4))))) -(-10 -7 (-15 -2028 ((-391 (-537)) |#2|)) (-15 -2028 ((-1113 (-391 (-537))) |#2| (-578 |#2|))) (-15 -3166 ((-1205)))) -((-3928 (((-111) $) 28)) (-3525 (((-111) $) 30)) (-1660 (((-111) $) 31)) (-2991 (((-111) $) 34)) (-3478 (((-111) $) 29)) (-1780 (((-111) $) 33)) (-2341 (((-816) $) 18) (($ (-1100)) 27) (($ (-1117)) 23) (((-1117) $) 22) (((-1049) $) 21)) (-2041 (((-111) $) 32)) (-2244 (((-111) $ $) 15))) -(((-418) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2341 ((-1049) $)) (-15 -3928 ((-111) $)) (-15 -3478 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -1780 ((-111) $)) (-15 -2991 ((-111) $)) (-15 -2041 ((-111) $)) (-15 -3525 ((-111) $)) (-15 -2244 ((-111) $ $))))) (T -418)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-418)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2341 ((-1049) $)) (-15 -3928 ((-111) $)) (-15 -3478 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -1780 ((-111) $)) (-15 -2991 ((-111) $)) (-15 -2041 ((-111) $)) (-15 -3525 ((-111) $)) (-15 -2244 ((-111) $ $)))) -((-1953 (((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|) 70)) (-3835 (((-402 |#3|) |#3|) 34)) (-2277 (((-3 (-402 (-1113 (-47))) "failed") |#3|) 46 (|has| |#2| (-989 (-47))))) (-4262 (((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|) 37))) -(((-419 |#1| |#2| |#3|) (-10 -7 (-15 -3835 ((-402 |#3|) |#3|)) (-15 -1953 ((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|)) (-15 -4262 ((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|)) (IF (|has| |#2| (-989 (-47))) (-15 -2277 ((-3 (-402 (-1113 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-529) (-807) (-989 (-537))) (-414 |#1|) (-1176 |#2|)) (T -419)) -((-2277 (*1 *2 *3) (|partial| -12 (-4 *5 (-989 (-47))) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-47)))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111)))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-1953 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-391 (-537))))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-3835 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 *3)) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) -(-10 -7 (-15 -3835 ((-402 |#3|) |#3|)) (-15 -1953 ((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|)) (-15 -4262 ((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|)) (IF (|has| |#2| (-989 (-47))) (-15 -2277 ((-3 (-402 (-1113 (-47))) "failed") |#3|)) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-3160 (((-1100) $ (-1100)) NIL)) (-1898 (($ $ (-1100)) NIL)) (-2151 (((-1100) $) NIL)) (-3318 (((-372) (-372) (-372)) 17) (((-372) (-372)) 15)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) NIL)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2007 (((-1205) (-1100)) 9)) (-2344 (((-1205) (-1100)) 10)) (-3012 (((-1205)) 11)) (-2341 (((-816) $) NIL)) (-1338 (($ $) 35)) (-2244 (((-111) $ $) NIL))) -(((-420) (-13 (-348 (-372) (-1100)) (-10 -7 (-15 -3318 ((-372) (-372) (-372))) (-15 -3318 ((-372) (-372))) (-15 -2007 ((-1205) (-1100))) (-15 -2344 ((-1205) (-1100))) (-15 -3012 ((-1205)))))) (T -420)) -((-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420)))) (-3012 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-420))))) -(-13 (-348 (-372) (-1100)) (-10 -7 (-15 -3318 ((-372) (-372) (-372))) (-15 -3318 ((-372) (-372))) (-15 -2007 ((-1205) (-1100))) (-15 -2344 ((-1205) (-1100))) (-15 -3012 ((-1205))))) -((-2330 (((-111) $ $) NIL)) (-3359 (((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $) 11)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2104 (($) 32)) (-2374 (($) 38)) (-1293 (($) 34)) (-4250 (($) 36)) (-1529 (($) 33)) (-3248 (($) 35)) (-1857 (($) 37)) (-2561 (((-111) $) 8)) (-2208 (((-606 (-905 (-537))) $) 19)) (-2350 (($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111)) 27) (($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111)) 28)) (-2341 (((-816) $) 23) (($ (-418)) 29)) (-2244 (((-111) $ $) NIL))) -(((-421) (-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -2341 ($ (-418))) (-15 -3359 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -2208 ((-606 (-905 (-537))) $)) (-15 -2561 ((-111) $)) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111))) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111))) (-15 -2104 ($)) (-15 -1529 ($)) (-15 -1293 ($)) (-15 -2374 ($)) (-15 -3248 ($)) (-15 -4250 ($)) (-15 -1857 ($))))) (T -421)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-421)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-418)) (-5 *1 (-421)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-421)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-606 (-905 (-537)))) (-5 *1 (-421)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *3 (-606 (-1117))) (-5 *4 (-111)) (-5 *1 (-421)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-111)) (-5 *1 (-421)))) (-2104 (*1 *1) (-5 *1 (-421))) (-1529 (*1 *1) (-5 *1 (-421))) (-1293 (*1 *1) (-5 *1 (-421))) (-2374 (*1 *1) (-5 *1 (-421))) (-3248 (*1 *1) (-5 *1 (-421))) (-4250 (*1 *1) (-5 *1 (-421))) (-1857 (*1 *1) (-5 *1 (-421)))) -(-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -2341 ($ (-418))) (-15 -3359 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -2208 ((-606 (-905 (-537))) $)) (-15 -2561 ((-111) $)) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111))) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111))) (-15 -2104 ($)) (-15 -1529 ($)) (-15 -1293 ($)) (-15 -2374 ($)) (-15 -3248 ($)) (-15 -4250 ($)) (-15 -1857 ($)))) -((-2330 (((-111) $ $) NIL)) (-3923 (((-1117) $) 8)) (-1654 (((-1100) $) 16)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 13))) -(((-422 |#1|) (-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) (-1117)) (T -422)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-422 *3)) (-14 *3 *2)))) -(-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) -((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-1200 (-659))) 14) (($ (-606 (-314))) 13) (($ (-314)) 12) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 11))) -(((-423) (-134)) (T -423)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-659))) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-423))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-1200 (-659)))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))))) -(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) -((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 21) (((-3 $ "failed") (-1200 (-300 (-537)))) 19) (((-3 $ "failed") (-1200 (-905 (-363)))) 17) (((-3 $ "failed") (-1200 (-905 (-537)))) 15) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 13) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 11)) (-3958 (($ (-1200 (-300 (-363)))) 22) (($ (-1200 (-300 (-537)))) 20) (($ (-1200 (-905 (-363)))) 18) (($ (-1200 (-905 (-537)))) 16) (($ (-1200 (-391 (-905 (-363))))) 14) (($ (-1200 (-391 (-905 (-537))))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-653 (-663))) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-368)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-368))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-653 (-663)))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))))) +(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| "failed") $) 44)) (-3469 ((|#2| $) 43)) (-4276 (($ $) 30)) (-2479 (((-735) $) 34)) (-3121 (((-607 $) $) 35)) (-4254 (((-111) $) 38)) (-4255 (($ |#2| |#1|) 39)) (-4275 (($ (-1 |#1| |#1|) $) 40)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3194 ((|#2| $) 33)) (-3487 ((|#1| $) 32)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ |#2|) 45)) (-4136 (((-607 |#1|) $) 36)) (-3999 ((|#1| $ |#2|) 41)) (-2957 (($) 18 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-369 |#1| |#2|) (-134) (-1004) (-1052)) (T -369)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)))) (-4255 (*1 *1 *2 *3) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-111)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-369 *3 *4)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-735)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052))))) +(-13 (-110 |t#1| |t#1|) (-995 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3999 (|t#1| $ |t#2|)) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -4255 ($ |t#2| |t#1|)) (-15 -4254 ((-111) $)) (-15 -2963 ((-607 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4136 ((-607 |t#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (-15 -3194 (|t#2| $)) (-15 -3487 (|t#1| $)) (-15 -1841 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4276 ($ $)) (IF (|has| |t#1| (-163)) (-6 (-682 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) |has| |#1| (-163)) ((-995 |#2|) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-3470 (((-3 $ "failed") (-653 (-299 (-363)))) 21) (((-3 $ "failed") (-653 (-299 (-526)))) 19) (((-3 $ "failed") (-653 (-905 (-363)))) 17) (((-3 $ "failed") (-653 (-905 (-526)))) 15) (((-3 $ "failed") (-653 (-392 (-905 (-363))))) 13) (((-3 $ "failed") (-653 (-392 (-905 (-526))))) 11)) (-3469 (($ (-653 (-299 (-363)))) 22) (($ (-653 (-299 (-526)))) 20) (($ (-653 (-905 (-363)))) 18) (($ (-653 (-905 (-526)))) 16) (($ (-653 (-392 (-905 (-363))))) 14) (($ (-653 (-392 (-905 (-526))))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) +(((-370) (-134)) (T -370)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-370)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-370)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-653 (-299 (-363))))) (-15 -3470 ((-3 $ "failed") (-653 (-299 (-363))))) (-15 -3469 ($ (-653 (-299 (-526))))) (-15 -3470 ((-3 $ "failed") (-653 (-299 (-526))))) (-15 -3469 ($ (-653 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-653 (-905 (-363))))) (-15 -3469 ($ (-653 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-653 (-905 (-526))))) (-15 -3469 ($ (-653 (-392 (-905 (-363)))))) (-15 -3470 ((-3 $ "failed") (-653 (-392 (-905 (-363)))))) (-15 -3469 ($ (-653 (-392 (-905 (-526)))))) (-15 -3470 ((-3 $ "failed") (-653 (-392 (-905 (-526)))))))) +(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) 59)) (-3855 (($) NIL T CONST)) (-4256 (((-3 $ "failed") $ $) 61)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2471 (((-111) $) 15)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-735) $ (-526)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2340 (($ (-1 |#1| |#1|) $) 38)) (-2341 (($ (-1 (-735) (-735)) $) 35)) (-4257 (((-3 $ "failed") $ $) 50)) (-3554 (((-1106) $) NIL)) (-2740 (($ $ $) 26)) (-2741 (($ $ $) 24)) (-3555 (((-1070) $) NIL)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) 32)) (-3181 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4274 (((-823) $) 22) (($ |#1|) NIL)) (-2964 (($) 9 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 41)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 63 (|has| |#1| (-811)))) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ |#1| (-735)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-371 |#1|) (-13 (-691) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-735) (-735)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1052)) (T -371)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2741 (*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-4257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-4256 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-3181 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |rm| (-371 *3)))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2739 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |mm| (-371 *3)) (|:| |rm| (-371 *3)))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-371 *4)) (-4 *4 (-1052)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-735) (-735))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-371 *3))))) +(-13 (-691) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2341 ($ (-1 (-735) (-735)) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 45)) (-3469 (((-526) $) 44)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3637 (($ $ $) 52)) (-3638 (($ $ $) 51)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 46)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 49)) (-2864 (((-111) $ $) 48)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 50)) (-2985 (((-111) $ $) 47)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-372) (-134)) (T -372)) +NIL +(-13 (-533) (-811) (-995 (-526))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-1842 (((-111) $) 20)) (-1843 (((-111) $) 19)) (-3936 (($ (-1106) (-1106) (-1106)) 21)) (-3864 (((-1106) $) 16)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1847 (($ (-1106) (-1106) (-1106)) 14)) (-1845 (((-1106) $) 17)) (-1844 (((-111) $) 18)) (-1846 (((-1106) $) 15)) (-4274 (((-823) $) 12) (($ (-1106)) 13) (((-1106) $) 9)) (-3353 (((-111) $ $) 7))) +(((-373) (-374)) (T -373)) +NIL +(-374) +((-2865 (((-111) $ $) 7)) (-1842 (((-111) $) 14)) (-1843 (((-111) $) 15)) (-3936 (($ (-1106) (-1106) (-1106)) 13)) (-3864 (((-1106) $) 18)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-1847 (($ (-1106) (-1106) (-1106)) 20)) (-1845 (((-1106) $) 17)) (-1844 (((-111) $) 16)) (-1846 (((-1106) $) 19)) (-4274 (((-823) $) 11) (($ (-1106)) 22) (((-1106) $) 21)) (-3353 (((-111) $ $) 6))) +(((-374) (-134)) (T -374)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1847 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111)))) (-3936 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -1847 ($ (-1106) (-1106) (-1106))) (-15 -1846 ((-1106) $)) (-15 -3864 ((-1106) $)) (-15 -1845 ((-1106) $)) (-15 -1844 ((-111) $)) (-15 -1843 ((-111) $)) (-15 -1842 ((-111) $)) (-15 -3936 ($ (-1106) (-1106) (-1106))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1848 (((-823) $) 50)) (-3855 (($) NIL T CONST)) (-2468 (($ $ (-878)) NIL)) (-2493 (($ $ (-878)) NIL)) (-2467 (($ $ (-878)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($ (-735)) 26)) (-4230 (((-735)) 17)) (-1849 (((-823) $) 52)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) NIL)) (-2656 (($ $ $ $) NIL)) (-2654 (($ $ $) NIL)) (-2957 (($) 20 T CONST)) (-3353 (((-111) $ $) 28)) (-4156 (($ $) 34) (($ $ $) 36)) (-4158 (($ $ $) 37)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-375 |#1| |#2| |#3|) (-13 (-709 |#3|) (-10 -8 (-15 -4230 ((-735))) (-15 -1849 ((-823) $)) (-15 -1848 ((-823) $)) (-15 -2470 ($ (-735))))) (-735) (-735) (-163)) (T -375)) +((-4230 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-163)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-163)))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163))))) +(-13 (-709 |#3|) (-10 -8 (-15 -4230 ((-735))) (-15 -1849 ((-823) $)) (-15 -1848 ((-823) $)) (-15 -2470 ($ (-735))))) +((-1854 (((-1106)) 10)) (-1851 (((-1095 (-1106))) 28)) (-1853 (((-1211) (-1106)) 25) (((-1211) (-373)) 24)) (-1852 (((-1211)) 26)) (-1850 (((-1095 (-1106))) 27))) +(((-376) (-10 -7 (-15 -1850 ((-1095 (-1106)))) (-15 -1851 ((-1095 (-1106)))) (-15 -1852 ((-1211))) (-15 -1853 ((-1211) (-373))) (-15 -1853 ((-1211) (-1106))) (-15 -1854 ((-1106))))) (T -376)) +((-1854 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-376)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-376)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-376)))) (-1852 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-376)))) (-1851 (*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376)))) (-1850 (*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) +(-10 -7 (-15 -1850 ((-1095 (-1106)))) (-15 -1851 ((-1095 (-1106)))) (-15 -1852 ((-1211))) (-15 -1853 ((-1211) (-373))) (-15 -1853 ((-1211) (-1106))) (-15 -1854 ((-1106)))) +((-4090 (((-735) (-318 |#1| |#2| |#3| |#4|)) 16))) +(((-377 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|)))) (-13 (-353) (-348)) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -377)) +((-4090 (*1 *2 *3) (-12 (-5 *3 (-318 *4 *5 *6 *7)) (-4 *4 (-13 (-353) (-348))) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *7 (-327 *4 *5 *6)) (-5 *2 (-735)) (-5 *1 (-377 *4 *5 *6 *7))))) +(-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|)))) +((-2865 (((-111) $ $) NIL)) (-3932 (((-607 (-1106)) $ (-607 (-1106))) 38)) (-1855 (((-607 (-1106)) $ (-607 (-1106))) 39)) (-3934 (((-607 (-1106)) $ (-607 (-1106))) 40)) (-3935 (((-607 (-1106)) $) 35)) (-3936 (($) 23)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1856 (((-607 (-1106)) $) 36)) (-3938 (((-607 (-1106)) $) 37)) (-3939 (((-1211) $ (-526)) 33) (((-1211) $) 34)) (-4287 (($ (-823) (-526)) 30)) (-4274 (((-823) $) 42) (($ (-823)) 25)) (-3353 (((-111) $ $) NIL))) +(((-378) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -1856 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -1855 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106))))))) (T -378)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-378)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-378)))) (-3939 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-378)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-378)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3936 (*1 *1) (-5 *1 (-378))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3934 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-1855 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) (-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -1856 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -1855 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106)))))) +((-4274 (((-378) |#1|) 11))) +(((-379 |#1|) (-10 -7 (-15 -4274 ((-378) |#1|))) (-1052)) (T -379)) +((-4274 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-379 *3)) (-4 *3 (-1052))))) +(-10 -7 (-15 -4274 ((-378) |#1|))) +((-1858 (((-607 (-1106)) (-607 (-1106))) 9)) (-3699 (((-1211) (-373)) 27)) (-1857 (((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123))) 60) (((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123)) 35) (((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123))) 34))) +(((-380) (-10 -7 (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)))) (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123))) (-15 -1857 ((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123)))) (-15 -3699 ((-1211) (-373))) (-15 -1858 ((-607 (-1106)) (-607 (-1106)))))) (T -380)) +((-1858 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-380)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *5 (-1126)) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) (-1857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380))))) +(-10 -7 (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)))) (-15 -1857 ((-1054) (-1123) (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123)))) (-607 (-607 (-3 (|:| |array| (-607 (-1123))) (|:| |scalar| (-1123))))) (-607 (-1123)) (-1123))) (-15 -1857 ((-1054) (-1123) (-607 (-1123)) (-1126) (-607 (-1123)))) (-15 -3699 ((-1211) (-373))) (-15 -1858 ((-607 (-1106)) (-607 (-1106))))) +((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8))) +(((-381) (-134)) (T -381)) +((-3699 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1211))))) +(-13 (-1159) (-583 (-823)) (-10 -8 (-15 -3699 ((-1211) $)))) +(((-583 (-823)) . T) ((-1159) . T)) +((-3470 (((-3 $ "failed") (-299 (-363))) 21) (((-3 $ "failed") (-299 (-526))) 19) (((-3 $ "failed") (-905 (-363))) 17) (((-3 $ "failed") (-905 (-526))) 15) (((-3 $ "failed") (-392 (-905 (-363)))) 13) (((-3 $ "failed") (-392 (-905 (-526)))) 11)) (-3469 (($ (-299 (-363))) 22) (($ (-299 (-526))) 20) (($ (-905 (-363))) 18) (($ (-905 (-526))) 16) (($ (-392 (-905 (-363)))) 14) (($ (-392 (-905 (-526)))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) +(((-382) (-134)) (T -382)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-382)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-382)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-299 (-363)))) (-15 -3470 ((-3 $ "failed") (-299 (-363)))) (-15 -3469 ($ (-299 (-526)))) (-15 -3470 ((-3 $ "failed") (-299 (-526)))) (-15 -3469 ($ (-905 (-363)))) (-15 -3470 ((-3 $ "failed") (-905 (-363)))) (-15 -3469 ($ (-905 (-526)))) (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-392 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-363))))) (-15 -3469 ($ (-392 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-392 (-905 (-526))))))) +(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) +((-3699 (((-1211) $) 38)) (-4274 (((-823) $) 98) (($ (-315)) 100) (($ (-607 (-315))) 99) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 97) (($ (-299 (-665))) 54) (($ (-299 (-663))) 73) (($ (-299 (-658))) 86) (($ (-278 (-299 (-665)))) 68) (($ (-278 (-299 (-663)))) 81) (($ (-278 (-299 (-658)))) 94) (($ (-299 (-526))) 104) (($ (-299 (-363))) 117) (($ (-299 (-159 (-363)))) 130) (($ (-278 (-299 (-526)))) 112) (($ (-278 (-299 (-363)))) 125) (($ (-278 (-299 (-159 (-363))))) 138))) +(((-383 |#1| |#2| |#3| |#4|) (-13 (-381) (-10 -8 (-15 -4274 ($ (-315))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -4274 ($ (-299 (-665)))) (-15 -4274 ($ (-299 (-663)))) (-15 -4274 ($ (-299 (-658)))) (-15 -4274 ($ (-278 (-299 (-665))))) (-15 -4274 ($ (-278 (-299 (-663))))) (-15 -4274 ($ (-278 (-299 (-658))))) (-15 -4274 ($ (-299 (-526)))) (-15 -4274 ($ (-299 (-363)))) (-15 -4274 ($ (-299 (-159 (-363))))) (-15 -4274 ($ (-278 (-299 (-526))))) (-15 -4274 ($ (-278 (-299 (-363))))) (-15 -4274 ($ (-278 (-299 (-159 (-363)))))))) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 "void")) (-607 (-1123)) (-1127)) (T -383)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-665)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-663)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-658)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-526)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-278 (-299 (-159 (-363))))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) (-14 *6 (-1127))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-315))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -4274 ($ (-299 (-665)))) (-15 -4274 ($ (-299 (-663)))) (-15 -4274 ($ (-299 (-658)))) (-15 -4274 ($ (-278 (-299 (-665))))) (-15 -4274 ($ (-278 (-299 (-663))))) (-15 -4274 ($ (-278 (-299 (-658))))) (-15 -4274 ($ (-299 (-526)))) (-15 -4274 ($ (-299 (-363)))) (-15 -4274 ($ (-299 (-159 (-363))))) (-15 -4274 ($ (-278 (-299 (-526))))) (-15 -4274 ($ (-278 (-299 (-363))))) (-15 -4274 ($ (-278 (-299 (-159 (-363)))))))) +((-2865 (((-111) $ $) NIL)) (-1860 ((|#2| $) 36)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1861 (($ (-392 |#2|)) 85)) (-1859 (((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $) 37)) (-4129 (($ $) 32) (($ $ (-735)) 34)) (-4287 (((-392 |#2|) $) 46)) (-3844 (($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|)))) 31)) (-4274 (((-823) $) 120)) (-2969 (($ $) 33) (($ $ (-735)) 35)) (-3353 (((-111) $ $) NIL)) (-4158 (($ |#2| $) 39))) +(((-384 |#1| |#2|) (-13 (-1052) (-584 (-392 |#2|)) (-10 -8 (-15 -4158 ($ |#2| $)) (-15 -1861 ($ (-392 |#2|))) (-15 -1860 (|#2| $)) (-15 -1859 ((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))))) (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) (-13 (-348) (-141)) (-1181 |#1|)) (T -384)) +((-4158 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *2)) (-4 *2 (-1181 *3)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) (-1860 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-384 *3 *2)) (-4 *3 (-13 (-348) (-141))))) (-1859 (*1 *2 *1) (-12 (-4 *3 (-13 (-348) (-141))) (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) (-4129 (*1 *1 *1) (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) (-2969 (*1 *1 *1) (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3))))) +(-13 (-1052) (-584 (-392 |#2|)) (-10 -8 (-15 -4158 ($ |#2| $)) (-15 -1861 ($ (-392 |#2|))) (-15 -1860 (|#2| $)) (-15 -1859 ((-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -2462 (-735)) (|:| -4091 |#2|) (|:| |num| |#2|))))) (-15 -4129 ($ $)) (-15 -2969 ($ $)) (-15 -4129 ($ $ (-735))) (-15 -2969 ($ $ (-735))))) +((-2865 (((-111) $ $) 9 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 15 (|has| |#1| (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 14 (|has| |#1| (-845 (-526))))) (-3554 (((-1106) $) 13 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3555 (((-1070) $) 12 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-4274 (((-823) $) 11 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))))) (-3353 (((-111) $ $) 10 (-3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363))))))) +(((-385 |#1|) (-134) (-1159)) (T -385)) +NIL +(-13 (-1159) (-10 -7 (IF (|has| |t#1| (-845 (-526))) (-6 (-845 (-526))) |%noBranch|) (IF (|has| |t#1| (-845 (-363))) (-6 (-845 (-363))) |%noBranch|))) +(((-100) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-583 (-823)) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-1052) -3850 (|has| |#1| (-845 (-526))) (|has| |#1| (-845 (-363)))) ((-1159) . T)) +((-1862 (($ $) 10) (($ $ (-735)) 11))) +(((-386 |#1|) (-10 -8 (-15 -1862 (|#1| |#1| (-735))) (-15 -1862 (|#1| |#1|))) (-387)) (T -386)) +NIL +(-10 -8 (-15 -1862 (|#1| |#1| (-735))) (-15 -1862 (|#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-1862 (($ $) 76) (($ $ (-735)) 75)) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 78)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 77)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63)) (-3002 (((-3 $ "failed") $) 79)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) +(((-387) (-134)) (T -387)) +((-4090 (*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-796 (-878))))) (-1863 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-387)) (-5 *2 (-735)))) (-1862 (*1 *1 *1) (-4 *1 (-387))) (-1862 (*1 *1 *1 *2) (-12 (-4 *1 (-387)) (-5 *2 (-735))))) +(-13 (-348) (-139) (-10 -8 (-15 -4090 ((-796 (-878)) $)) (-15 -1863 ((-3 (-735) "failed") $ $)) (-15 -1862 ($ $)) (-15 -1862 ($ $ (-735))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-3566 (($ (-526) (-526)) 11) (($ (-526) (-526) (-878)) NIL)) (-2910 (((-878)) 16) (((-878) (-878)) NIL))) +(((-388 |#1|) (-10 -8 (-15 -2910 ((-878) (-878))) (-15 -2910 ((-878))) (-15 -3566 (|#1| (-526) (-526) (-878))) (-15 -3566 (|#1| (-526) (-526)))) (-389)) (T -388)) +((-2910 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389))))) +(-10 -8 (-15 -2910 ((-878) (-878))) (-15 -2910 ((-878))) (-15 -3566 (|#1| (-526) (-526) (-878))) (-15 -3566 (|#1| (-526) (-526)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 (((-526) $) 86)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4089 (($ $) 84)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 94)) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 111)) (-3855 (($) 17 T CONST)) (-3424 (($ $) 83)) (-3470 (((-3 (-526) #1="failed") $) 99) (((-3 (-392 (-526)) #1#) $) 96)) (-3469 (((-526) $) 98) (((-392 (-526)) $) 95)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-2435 (((-878)) 127) (((-878) (-878)) 124 (|has| $ (-6 -4301)))) (-3500 (((-111) $) 109)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 90)) (-4090 (((-526) $) 133)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 93)) (-3429 (($ $) 89)) (-3501 (((-111) $) 110)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-3637 (($ $ $) 108) (($) 121 (-12 (-3636 (|has| $ (-6 -4301))) (-3636 (|has| $ (-6 -4293)))))) (-3638 (($ $ $) 107) (($) 120 (-12 (-3636 (|has| $ (-6 -4301))) (-3636 (|has| $ (-6 -4293)))))) (-2436 (((-526) $) 130)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-1865 (((-878) (-526)) 123 (|has| $ (-6 -4301)))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 85)) (-3427 (($ $) 87)) (-3566 (($ (-526) (-526)) 135) (($ (-526) (-526) (-878)) 134)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-2462 (((-526) $) 131)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-2910 (((-878)) 128) (((-878) (-878)) 125 (|has| $ (-6 -4301)))) (-1864 (((-878) (-526)) 122 (|has| $ (-6 -4301)))) (-4287 (((-363) $) 102) (((-211) $) 101) (((-849 (-363)) $) 91)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-526)) 100) (($ (-392 (-526))) 97)) (-3423 (((-735)) 28)) (-3428 (($ $) 88)) (-1866 (((-878)) 129) (((-878) (-878)) 126 (|has| $ (-6 -4301)))) (-2994 (((-878)) 132)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 112)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 105)) (-2864 (((-111) $ $) 104)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 106)) (-2985 (((-111) $ $) 103)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 92)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) +(((-389) (-134)) (T -389)) +((-3566 (*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-389)))) (-3566 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-4 *1 (-389)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-2994 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) (-1866 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2910 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-2435 (*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878)))) (-3637 (*1 *1) (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) (-3636 (|has| *1 (-6 -4293))))) (-3638 (*1 *1) (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) (-3636 (|has| *1 (-6 -4293)))))) +(-13 (-1013) (-10 -8 (-6 -4088) (-15 -3566 ($ (-526) (-526))) (-15 -3566 ($ (-526) (-526) (-878))) (-15 -4090 ((-526) $)) (-15 -2994 ((-878))) (-15 -2462 ((-526) $)) (-15 -2436 ((-526) $)) (-15 -1866 ((-878))) (-15 -2910 ((-878))) (-15 -2435 ((-878))) (IF (|has| $ (-6 -4301)) (PROGN (-15 -1866 ((-878) (-878))) (-15 -2910 ((-878) (-878))) (-15 -2435 ((-878) (-878))) (-15 -1865 ((-878) (-526))) (-15 -1864 ((-878) (-526)))) |%noBranch|) (IF (|has| $ (-6 -4293)) |%noBranch| (IF (|has| $ (-6 -4301)) |%noBranch| (PROGN (-15 -3637 ($)) (-15 -3638 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-849 (-363))) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-845 (-363)) . T) ((-880) . T) ((-960) . T) ((-977) . T) ((-1013) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 42)) (-1867 (($ $) 57)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 146)) (-2151 (($ $) NIL)) (-2149 (((-111) $) 36)) (-1868 ((|#1| $) 13)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-1164)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-1164)))) (-1870 (($ |#1| (-526)) 31)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 116)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 55)) (-3781 (((-3 $ "failed") $) 131)) (-3324 (((-3 (-392 (-526)) "failed") $) 63 (|has| |#1| (-525)))) (-3323 (((-111) $) 59 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 70 (|has| |#1| (-525)))) (-1871 (($ |#1| (-526)) 33)) (-4045 (((-111) $) 152 (|has| |#1| (-1164)))) (-2471 (((-111) $) 43)) (-1932 (((-735) $) 38)) (-1872 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-526)) 137)) (-2737 ((|#1| $ (-526)) 136)) (-1873 (((-526) $ (-526)) 135)) (-1875 (($ |#1| (-526)) 30)) (-4275 (($ (-1 |#1| |#1|) $) 143)) (-1929 (($ |#1| (-607 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526))))) 58)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1874 (($ |#1| (-526)) 32)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) 147 (|has| |#1| (-436)))) (-1869 (($ |#1| (-526) (-3 #2# #3# #4# #5#)) 29)) (-2736 (((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $) 54)) (-2051 (((-607 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $) 12)) (-4051 (((-390 $) $) NIL (|has| |#1| (-1164)))) (-3780 (((-3 $ "failed") $ $) 138)) (-2462 (((-526) $) 132)) (-4280 ((|#1| $) 56)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 79 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 85 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) $) NIL (|has| |#1| (-496 (-1123) $))) (($ $ (-607 (-1123)) (-607 $)) 86 (|has| |#1| (-496 (-1123) $))) (($ $ (-607 (-278 $))) 82 (|has| |#1| (-294 $))) (($ $ (-278 $)) NIL (|has| |#1| (-294 $))) (($ $ $ $) NIL (|has| |#1| (-294 $))) (($ $ (-607 $) (-607 $)) NIL (|has| |#1| (-294 $)))) (-4118 (($ $ |#1|) 71 (|has| |#1| (-271 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-271 $ $)))) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4287 (((-515) $) 27 (|has| |#1| (-584 (-515)))) (((-363) $) 92 (|has| |#1| (-977))) (((-211) $) 95 (|has| |#1| (-977)))) (-4274 (((-823) $) 114) (($ (-526)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526)))))) (-3423 (((-735)) 48)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 40 T CONST)) (-2964 (($) 39 T CONST)) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-111) $ $) 96)) (-4156 (($ $) 128) (($ $ $) NIL)) (-4158 (($ $ $) 140)) (** (($ $ (-878)) NIL) (($ $ (-735)) 102)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-390 |#1|) (-13 (-533) (-217 |#1|) (-37 |#1|) (-323 |#1|) (-397 |#1|) (-10 -8 (-15 -4280 (|#1| $)) (-15 -2462 ((-526) $)) (-15 -1929 ($ |#1| (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))))) (-15 -2051 ((-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $)) (-15 -1875 ($ |#1| (-526))) (-15 -2736 ((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $)) (-15 -1874 ($ |#1| (-526))) (-15 -1873 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -1872 ((-3 #1# #2# #3# #4#) $ (-526))) (-15 -1932 ((-735) $)) (-15 -1871 ($ |#1| (-526))) (-15 -1870 ($ |#1| (-526))) (-15 -1869 ($ |#1| (-526) (-3 #1# #2# #3# #4#))) (-15 -1868 (|#1| $)) (-15 -1867 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-436)) (-6 (-436)) |%noBranch|) (IF (|has| |#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-271 $ $)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |#1| (-294 $)) (-6 (-294 $)) |%noBranch|) (IF (|has| |#1| (-496 (-1123) $)) (-6 (-496 (-1123) $)) |%noBranch|))) (-533)) (T -390)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-533)) (-5 *1 (-390 *3)))) (-4280 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-526))))) (-4 *2 (-533)) (-5 *1 (-390 *2)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-526))))) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1875 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -2462 (-526))))) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1874 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1873 (*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-390 *4)) (-4 *4 (-533)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) (-1871 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1870 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1869 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1868 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533))))) +(-13 (-533) (-217 |#1|) (-37 |#1|) (-323 |#1|) (-397 |#1|) (-10 -8 (-15 -4280 (|#1| $)) (-15 -2462 ((-526) $)) (-15 -1929 ($ |#1| (-607 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))))) (-15 -2051 ((-607 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-526)))) $)) (-15 -1875 ($ |#1| (-526))) (-15 -2736 ((-607 (-2 (|:| -4051 |#1|) (|:| -2462 (-526)))) $)) (-15 -1874 ($ |#1| (-526))) (-15 -1873 ((-526) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -1872 ((-3 #1# #2# #3# #4#) $ (-526))) (-15 -1932 ((-735) $)) (-15 -1871 ($ |#1| (-526))) (-15 -1870 ($ |#1| (-526))) (-15 -1869 ($ |#1| (-526) (-3 #1# #2# #3# #4#))) (-15 -1868 (|#1| $)) (-15 -1867 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-436)) (-6 (-436)) |%noBranch|) (IF (|has| |#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-271 $ $)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |#1| (-294 $)) (-6 (-294 $)) |%noBranch|) (IF (|has| |#1| (-496 (-1123) $)) (-6 (-496 (-1123) $)) |%noBranch|))) +((-4275 (((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)) 20))) +(((-391 |#1| |#2|) (-10 -7 (-15 -4275 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) (-533) (-533)) (T -391)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-5 *2 (-390 *6)) (-5 *1 (-391 *5 *6))))) +(-10 -7 (-15 -4275 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 13)) (-3426 ((|#1| $) 21 (|has| |#1| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#1| (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 17) (((-3 (-1123) #2#) $) NIL (|has| |#1| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 70 (|has| |#1| (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 15) (((-1123) $) NIL (|has| |#1| (-995 (-1123)))) (((-392 (-526)) $) 67 (|has| |#1| (-995 (-526)))) (((-526) $) NIL (|has| |#1| (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 50)) (-3294 (($) NIL (|has| |#1| (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| |#1| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#1| (-845 (-363))))) (-2471 (((-111) $) 64)) (-3296 (($ $) NIL)) (-3298 ((|#1| $) 71)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3501 (((-111) $) NIL (|has| |#1| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 97)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| |#1| (-292)))) (-3427 ((|#1| $) 28 (|has| |#1| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 135 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 131 (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) NIL)) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3295 (($ $) NIL)) (-3297 ((|#1| $) 73)) (-4287 (((-849 (-526)) $) NIL (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#1| (-584 (-849 (-363))))) (((-515) $) NIL (|has| |#1| (-584 (-515)))) (((-363) $) NIL (|has| |#1| (-977))) (((-211) $) NIL (|has| |#1| (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 115 (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 10) (($ (-1123)) NIL (|has| |#1| (-995 (-1123))))) (-3002 (((-3 $ #1#) $) 99 (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 100)) (-3428 ((|#1| $) 26 (|has| |#1| (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| |#1| (-784)))) (-2957 (($) 22 T CONST)) (-2964 (($) 8 T CONST)) (-2803 (((-1106) $) 43 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1106) $ (-111)) 44 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1211) (-787) $) 45 (-12 (|has| |#1| (-525)) (|has| |#1| (-785)))) (((-1211) (-787) $ (-111)) 46 (-12 (|has| |#1| (-525)) (|has| |#1| (-785))))) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 56)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) 24 (|has| |#1| (-811)))) (-4265 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4156 (($ $) 25) (($ $ $) 55)) (-4158 (($ $ $) 53)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 125)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 60) (($ $ $) 57) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-392 |#1|) (-13 (-950 |#1|) (-10 -7 (IF (|has| |#1| (-525)) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-6 -4308)) (-6 -4297) |%noBranch|) |%noBranch|) |%noBranch|))) (-533)) (T -392)) +NIL +(-13 (-950 |#1|) (-10 -7 (IF (|has| |#1| (-525)) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (IF (|has| |#1| (-436)) (IF (|has| |#1| (-6 -4308)) (-6 -4297) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4275 (((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)) 13))) +(((-393 |#1| |#2|) (-10 -7 (-15 -4275 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) (-533) (-533)) (T -393)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-5 *2 (-392 *6)) (-5 *1 (-393 *5 *6))))) +(-10 -7 (-15 -4275 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) +((-1877 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 18)) (-1887 (($ (-1205 |#2|) (-1205 $)) NIL) (($ (-1205 |#2|)) 24)) (-1876 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 38)) (-2106 ((|#3| $) 60)) (-4076 ((|#2| (-1205 $)) NIL) ((|#2|) 20)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 22) (((-653 |#2|) (-1205 $)) 36)) (-4287 (((-1205 |#2|) $) 11) (($ (-1205 |#2|)) 13)) (-2667 ((|#3| $) 52))) +(((-394 |#1| |#2| |#3|) (-10 -8 (-15 -1876 ((-653 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -1877 ((-653 |#2|))) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 (|#3| |#1|)) (-15 -2667 (|#3| |#1|)) (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) (-395 |#2| |#3|) (-163) (-1181 |#2|)) (T -394)) +((-1877 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)) (-5 *1 (-394 *3 *4 *5)) (-4 *3 (-395 *4 *5)))) (-4076 (*1 *2) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-163)) (-5 *1 (-394 *3 *2 *4)) (-4 *3 (-395 *2 *4))))) +(-10 -8 (-15 -1876 ((-653 |#2|) |#1|)) (-15 -4076 (|#2|)) (-15 -1877 ((-653 |#2|))) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -2106 (|#3| |#1|)) (-15 -2667 (|#3| |#1|)) (-15 -1877 ((-653 |#2|) (-1205 |#1|))) (-15 -4076 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1876 ((-653 |#2|) |#1| (-1205 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35)) (-3002 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-395 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -395)) +((-2104 (*1 *2) (-12 (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *1)) (-4 *1 (-395 *3 *4)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-395 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) (-4 *4 (-1181 *3)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *3)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) (-4 *4 (-1181 *3)))) (-1877 (*1 *2) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-653 *3)))) (-4076 (*1 *2) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-653 *3))))) +(-13 (-355 |t#1| |t#2|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -4287 ((-1205 |t#1|) $)) (-15 -4287 ($ (-1205 |t#1|))) (-15 -1877 ((-653 |t#1|))) (-15 -4076 (|t#1|)) (-15 -1876 ((-653 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-355 |#1| |#2|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) 27) (((-3 (-526) #1#) $) 19)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) 24) (((-526) $) 14)) (-4274 (($ |#2|) NIL) (($ (-392 (-526))) 22) (($ (-526)) 11))) +(((-396 |#1| |#2|) (-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|))) (-397 |#2|) (-1159)) (T -396)) +NIL +(-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|))) +((-3470 (((-3 |#1| #1="failed") $) 7) (((-3 (-392 (-526)) #1#) $) 16 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #1#) $) 13 (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 8) (((-392 (-526)) $) 15 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 12 (|has| |#1| (-995 (-526))))) (-4274 (($ |#1|) 6) (($ (-392 (-526))) 17 (|has| |#1| (-995 (-392 (-526))))) (($ (-526)) 14 (|has| |#1| (-995 (-526)))))) +(((-397 |#1|) (-134) (-1159)) (T -397)) +NIL +(-13 (-995 |t#1|) (-10 -7 (IF (|has| |t#1| (-995 (-526))) (-6 (-995 (-526))) |%noBranch|) (IF (|has| |t#1| (-995 (-392 (-526)))) (-6 (-995 (-392 (-526)))) |%noBranch|))) +(((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T)) +((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-1878 ((|#4| (-735) (-1205 |#4|)) 56)) (-2471 (((-111) $) NIL)) (-3298 (((-1205 |#4|) $) 17)) (-3429 ((|#2| $) 54)) (-1879 (($ $) 139)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 100)) (-2068 (($ (-1205 |#4|)) 99)) (-3555 (((-1070) $) NIL)) (-3297 ((|#1| $) 18)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 134)) (-2104 (((-1205 |#4|) $) 129)) (-2964 (($) 11 T CONST)) (-3353 (((-111) $ $) 40)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 122)) (* (($ $ $) 121))) +(((-398 |#1| |#2| |#3| |#4|) (-13 (-457) (-10 -8 (-15 -2068 ($ (-1205 |#4|))) (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -3298 ((-1205 |#4|) $)) (-15 -3297 (|#1| $)) (-15 -1879 ($ $)) (-15 -1878 (|#4| (-735) (-1205 |#4|))))) (-292) (-950 |#1|) (-1181 |#2|) (-13 (-395 |#2| |#3|) (-995 |#2|))) (T -398)) +((-2068 (*1 *1 *2) (-12 (-5 *2 (-1205 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-398 *3 *4 *5 *6)))) (-2104 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) (-3429 (*1 *2 *1) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *3 (-292)) (-4 *5 (-13 (-395 *2 *4) (-995 *2))))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-4 *2 (-292)) (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) (-1879 (*1 *1 *1) (-12 (-4 *2 (-292)) (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-1205 *2)) (-4 *5 (-292)) (-4 *6 (-950 *5)) (-4 *2 (-13 (-395 *6 *7) (-995 *6))) (-5 *1 (-398 *5 *6 *7 *2)) (-4 *7 (-1181 *6))))) +(-13 (-457) (-10 -8 (-15 -2068 ($ (-1205 |#4|))) (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -3298 ((-1205 |#4|) $)) (-15 -3297 (|#1| $)) (-15 -1879 ($ $)) (-15 -1878 (|#4| (-735) (-1205 |#4|))))) +((-4275 (((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)) 33))) +(((-399 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 ((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)))) (-292) (-950 |#1|) (-1181 |#2|) (-13 (-395 |#2| |#3|) (-995 |#2|)) (-292) (-950 |#5|) (-1181 |#6|) (-13 (-395 |#6| |#7|) (-995 |#6|))) (T -399)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-398 *5 *6 *7 *8)) (-4 *5 (-292)) (-4 *6 (-950 *5)) (-4 *7 (-1181 *6)) (-4 *8 (-13 (-395 *6 *7) (-995 *6))) (-4 *9 (-292)) (-4 *10 (-950 *9)) (-4 *11 (-1181 *10)) (-5 *2 (-398 *9 *10 *11 *12)) (-5 *1 (-399 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-395 *10 *11) (-995 *10)))))) +(-10 -7 (-15 -4275 ((-398 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-398 |#1| |#2| |#3| |#4|)))) +((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3429 ((|#2| $) 61)) (-1880 (($ (-1205 |#4|)) 25) (($ (-398 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-995 |#2|)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 34)) (-2104 (((-1205 |#4|) $) 26)) (-2964 (($) 23 T CONST)) (-3353 (((-111) $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ $ $) 72))) +(((-400 |#1| |#2| |#3| |#4| |#5|) (-13 (-691) (-10 -8 (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -1880 ($ (-1205 |#4|))) (IF (|has| |#4| (-995 |#2|)) (-15 -1880 ($ (-398 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-292) (-950 |#1|) (-1181 |#2|) (-395 |#2| |#3|) (-1205 |#4|)) (T -400)) +((-2104 (*1 *2 *1) (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7)) (-4 *6 (-395 *4 *5)) (-14 *7 *2))) (-3429 (*1 *2 *1) (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-400 *3 *2 *4 *5 *6)) (-4 *3 (-292)) (-4 *5 (-395 *2 *4)) (-14 *6 (-1205 *5)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-1205 *6)) (-4 *6 (-395 *4 *5)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-400 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-398 *3 *4 *5 *6)) (-4 *6 (-995 *4)) (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *6 (-395 *4 *5)) (-14 *7 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7))))) +(-13 (-691) (-10 -8 (-15 -2104 ((-1205 |#4|) $)) (-15 -3429 (|#2| $)) (-15 -1880 ($ (-1205 |#4|))) (IF (|has| |#4| (-995 |#2|)) (-15 -1880 ($ (-398 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-403 |#2|) (-163) (-403 |#4|) (-163)) (T -401)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-403 *6)) (-5 *1 (-401 *4 *5 *2 *6)) (-4 *4 (-403 *5))))) +(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) +((-1868 (((-3 $ #1="failed")) 86)) (-3536 (((-1205 (-653 |#2|)) (-1205 $)) NIL) (((-1205 (-653 |#2|))) 91)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 85)) (-1795 (((-3 $ #1#)) 84)) (-1883 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 102)) (-1881 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 110)) (-1998 (((-1117 (-905 |#2|))) 55)) (-1885 ((|#2| (-1205 $)) NIL) ((|#2|) 106)) (-1887 (($ (-1205 |#2|) (-1205 $)) NIL) (($ (-1205 |#2|)) 112)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 83)) (-1796 (((-3 $ #1#)) 75)) (-1884 (((-653 |#2|) (-1205 $)) NIL) (((-653 |#2|)) 100)) (-1882 (((-653 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) $) 108)) (-2002 (((-1117 (-905 |#2|))) 54)) (-1886 ((|#2| (-1205 $)) NIL) ((|#2|) 104)) (-3537 (((-1205 |#2|) $ (-1205 $)) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $) 111) (((-653 |#2|) (-1205 $)) 118)) (-4287 (((-1205 |#2|) $) 96) (($ (-1205 |#2|)) 98)) (-1990 (((-607 (-905 |#2|)) (-1205 $)) NIL) (((-607 (-905 |#2|))) 94)) (-2849 (($ (-653 |#2|) $) 90))) +(((-402 |#1| |#2|) (-10 -8 (-15 -2849 (|#1| (-653 |#2|) |#1|)) (-15 -1998 ((-1117 (-905 |#2|)))) (-15 -2002 ((-1117 (-905 |#2|)))) (-15 -1881 ((-653 |#2|) |#1|)) (-15 -1882 ((-653 |#2|) |#1|)) (-15 -1883 ((-653 |#2|))) (-15 -1884 ((-653 |#2|))) (-15 -1885 (|#2|)) (-15 -1886 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -1990 ((-607 (-905 |#2|)))) (-15 -3536 ((-1205 (-653 |#2|)))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -1868 ((-3 |#1| #1="failed"))) (-15 -1795 ((-3 |#1| #1#))) (-15 -1796 ((-3 |#1| #1#))) (-15 -2004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -2005 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|))) (-15 -1990 ((-607 (-905 |#2|)) (-1205 |#1|)))) (-403 |#2|) (-163)) (T -402)) +((-3536 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1990 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1886 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) (-1885 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) (-1884 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-2002 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1998 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4))))) +(-10 -8 (-15 -2849 (|#1| (-653 |#2|) |#1|)) (-15 -1998 ((-1117 (-905 |#2|)))) (-15 -2002 ((-1117 (-905 |#2|)))) (-15 -1881 ((-653 |#2|) |#1|)) (-15 -1882 ((-653 |#2|) |#1|)) (-15 -1883 ((-653 |#2|))) (-15 -1884 ((-653 |#2|))) (-15 -1885 (|#2|)) (-15 -1886 (|#2|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -1887 (|#1| (-1205 |#2|))) (-15 -1990 ((-607 (-905 |#2|)))) (-15 -3536 ((-1205 (-653 |#2|)))) (-15 -3537 ((-653 |#2|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1|)) (-15 -1868 ((-3 |#1| #1="failed"))) (-15 -1795 ((-3 |#1| #1#))) (-15 -1796 ((-3 |#1| #1#))) (-15 -2004 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -2005 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) #1#))) (-15 -1883 ((-653 |#2|) (-1205 |#1|))) (-15 -1884 ((-653 |#2|) (-1205 |#1|))) (-15 -1885 (|#2| (-1205 |#1|))) (-15 -1886 (|#2| (-1205 |#1|))) (-15 -1887 (|#1| (-1205 |#2|) (-1205 |#1|))) (-15 -3537 ((-653 |#2|) (-1205 |#1|) (-1205 |#1|))) (-15 -3537 ((-1205 |#2|) |#1| (-1205 |#1|))) (-15 -1881 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -1882 ((-653 |#2|) |#1| (-1205 |#1|))) (-15 -3536 ((-1205 (-653 |#2|)) (-1205 |#1|))) (-15 -1990 ((-607 (-905 |#2|)) (-1205 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1868 (((-3 $ #1="failed")) 37 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3536 (((-1205 (-653 |#1|)) (-1205 $)) 78) (((-1205 (-653 |#1|))) 100)) (-1821 (((-1205 $)) 81)) (-3855 (($) 17 T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 40 (|has| |#1| (-533)))) (-1795 (((-3 $ #1#)) 38 (|has| |#1| (-533)))) (-1883 (((-653 |#1|) (-1205 $)) 65) (((-653 |#1|)) 92)) (-1819 ((|#1| $) 74)) (-1881 (((-653 |#1|) $ (-1205 $)) 76) (((-653 |#1|) $) 90)) (-2465 (((-3 $ #1#) $) 45 (|has| |#1| (-533)))) (-1998 (((-1117 (-905 |#1|))) 88 (|has| |#1| (-348)))) (-2468 (($ $ (-878)) 28)) (-1817 ((|#1| $) 72)) (-1797 (((-1117 |#1|) $) 42 (|has| |#1| (-533)))) (-1885 ((|#1| (-1205 $)) 67) ((|#1|) 94)) (-1815 (((-1117 |#1|) $) 63)) (-1809 (((-111)) 57)) (-1887 (($ (-1205 |#1|) (-1205 $)) 69) (($ (-1205 |#1|)) 98)) (-3781 (((-3 $ #1#) $) 47 (|has| |#1| (-533)))) (-3406 (((-878)) 80)) (-1806 (((-111)) 54)) (-2493 (($ $ (-878)) 33)) (-1802 (((-111)) 50)) (-1800 (((-111)) 48)) (-1804 (((-111)) 52)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) 41 (|has| |#1| (-533)))) (-1796 (((-3 $ #1#)) 39 (|has| |#1| (-533)))) (-1884 (((-653 |#1|) (-1205 $)) 66) (((-653 |#1|)) 93)) (-1820 ((|#1| $) 75)) (-1882 (((-653 |#1|) $ (-1205 $)) 77) (((-653 |#1|) $) 91)) (-2466 (((-3 $ #1#) $) 46 (|has| |#1| (-533)))) (-2002 (((-1117 (-905 |#1|))) 89 (|has| |#1| (-348)))) (-2467 (($ $ (-878)) 29)) (-1818 ((|#1| $) 73)) (-1798 (((-1117 |#1|) $) 43 (|has| |#1| (-533)))) (-1886 ((|#1| (-1205 $)) 68) ((|#1|) 95)) (-1816 (((-1117 |#1|) $) 64)) (-1810 (((-111)) 58)) (-3554 (((-1106) $) 9)) (-1801 (((-111)) 49)) (-1803 (((-111)) 51)) (-1805 (((-111)) 53)) (-3555 (((-1070) $) 10)) (-1808 (((-111)) 56)) (-4118 ((|#1| $ (-526)) 101)) (-3537 (((-1205 |#1|) $ (-1205 $)) 71) (((-653 |#1|) (-1205 $) (-1205 $)) 70) (((-1205 |#1|) $) 103) (((-653 |#1|) (-1205 $)) 102)) (-4287 (((-1205 |#1|) $) 97) (($ (-1205 |#1|)) 96)) (-1990 (((-607 (-905 |#1|)) (-1205 $)) 79) (((-607 (-905 |#1|))) 99)) (-2655 (($ $ $) 25)) (-1814 (((-111)) 62)) (-4274 (((-823) $) 11)) (-2104 (((-1205 $)) 104)) (-1799 (((-607 (-1205 |#1|))) 44 (|has| |#1| (-533)))) (-2656 (($ $ $ $) 26)) (-1812 (((-111)) 60)) (-2849 (($ (-653 |#1|) $) 87)) (-2654 (($ $ $) 24)) (-1813 (((-111)) 61)) (-1811 (((-111)) 59)) (-1807 (((-111)) 55)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-403 |#1|) (-134) (-163)) (T -403)) +((-2104 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-403 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-403 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-3536 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 (-653 *3))))) (-1990 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-607 (-905 *3))))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) (-1886 (*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-1885 (*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163)))) (-1884 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1883 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3)))) (-2002 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) (-5 *2 (-1117 (-905 *3))))) (-1998 (*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) (-5 *2 (-1117 (-905 *3))))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-653 *3)) (-4 *1 (-403 *3)) (-4 *3 (-163))))) +(-13 (-352 |t#1|) (-10 -8 (-15 -2104 ((-1205 $))) (-15 -3537 ((-1205 |t#1|) $)) (-15 -3537 ((-653 |t#1|) (-1205 $))) (-15 -4118 (|t#1| $ (-526))) (-15 -3536 ((-1205 (-653 |t#1|)))) (-15 -1990 ((-607 (-905 |t#1|)))) (-15 -1887 ($ (-1205 |t#1|))) (-15 -4287 ((-1205 |t#1|) $)) (-15 -4287 ($ (-1205 |t#1|))) (-15 -1886 (|t#1|)) (-15 -1885 (|t#1|)) (-15 -1884 ((-653 |t#1|))) (-15 -1883 ((-653 |t#1|))) (-15 -1882 ((-653 |t#1|) $)) (-15 -1881 ((-653 |t#1|) $)) (IF (|has| |t#1| (-348)) (PROGN (-15 -2002 ((-1117 (-905 |t#1|)))) (-15 -1998 ((-1117 (-905 |t#1|))))) |%noBranch|) (-15 -2849 ($ (-653 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-352 |#1|) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-709 |#1|) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-3431 (((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|)) 21)) (-1888 (((-390 |#1|) (-390 |#1|) (-390 |#1|)) 16))) +(((-404 |#1|) (-10 -7 (-15 -3431 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -1888 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) (-533)) (T -404)) +((-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-390 *3)) (-4 *3 (-533)) (-5 *1 (-404 *3)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-533)) (-5 *2 (-390 *4)) (-5 *1 (-404 *4))))) +(-10 -7 (-15 -3431 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -1888 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) +((-3384 (((-607 (-1123)) $) 72)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 273)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) 237)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-1123) #1#) $) 75) (((-3 (-526) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-392 (-905 |#2|)) #1#) $) 324) (((-3 (-905 |#2|) #1#) $) 235) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-1123) $) 30) (((-526) $) NIL) ((|#2| $) 231) (((-392 (-905 |#2|)) $) 305) (((-905 |#2|) $) 232) (((-392 (-526)) $) NIL)) (-2307 (((-112) (-112)) 47)) (-3296 (($ $) 87)) (-1638 (((-3 (-581 $) "failed") $) 228)) (-1637 (((-607 (-581 $)) $) 229)) (-3123 (((-3 (-607 $) "failed") $) 247)) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $) 254)) (-3122 (((-3 (-607 $) "failed") $) 245)) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $) 264)) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $) 251) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123)) 219)) (-1892 (((-111) $) 19)) (-1891 ((|#2| $) 21)) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) 236) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 96) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1123)) 57) (($ $ (-607 (-1123))) 240) (($ $) 241) (($ $ (-112) $ (-1123)) 60) (($ $ (-607 (-112)) (-607 $) (-1123)) 67) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 107) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 242) (($ $ (-1123) (-735) (-1 $ (-607 $))) 94) (($ $ (-1123) (-735) (-1 $ $)) 93)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) 106)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) 238)) (-3295 (($ $) 284)) (-4287 (((-849 (-526)) $) 257) (((-849 (-363)) $) 261) (($ (-390 $)) 320) (((-515) $) NIL)) (-4274 (((-823) $) 239) (($ (-581 $)) 84) (($ (-1123)) 26) (($ |#2|) NIL) (($ (-1075 |#2| (-581 $))) NIL) (($ (-392 |#2|)) 289) (($ (-905 (-392 |#2|))) 329) (($ (-392 (-905 (-392 |#2|)))) 301) (($ (-392 (-905 |#2|))) 295) (($ $) NIL) (($ (-905 |#2|)) 185) (($ (-392 (-526))) 334) (($ (-526)) NIL)) (-3423 (((-735)) 79)) (-2306 (((-111) (-112)) 41)) (-1890 (($ (-1123) $) 33) (($ (-1123) $ $) 34) (($ (-1123) $ $ $) 35) (($ (-1123) $ $ $ $) 36) (($ (-1123) (-607 $)) 39)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) +(((-405 |#1| |#2|) (-10 -8 (-15 * (|#1| (-878) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3423 ((-735))) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-905 |#2|) |#1|)) (-15 -3470 ((-3 (-905 |#2|) #1#) |#1|)) (-15 -4274 (|#1| (-905 |#2|))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -3469 ((-392 (-905 |#2|)) |#1|)) (-15 -3470 ((-3 (-392 (-905 |#2|)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-905 |#2|)))) (-15 -3386 ((-392 (-1117 |#1|)) |#1| (-581 |#1|))) (-15 -4274 (|#1| (-392 (-905 (-392 |#2|))))) (-15 -4274 (|#1| (-905 (-392 |#2|)))) (-15 -4274 (|#1| (-392 |#2|))) (-15 -3295 (|#1| |#1|)) (-15 -4287 (|#1| (-390 |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| |#1|)))) (-15 -3125 ((-3 (-2 (|:| |val| |#1|) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-1123))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-112))) (-15 -3296 (|#1| |#1|)) (-15 -4274 (|#1| (-1075 |#2| (-581 |#1|)))) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 |#1|))) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 |#1|) (-1123))) (-15 -4086 (|#1| |#1| (-112) |#1| (-1123))) (-15 -4086 (|#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1123)))) (-15 -4086 (|#1| |#1| (-1123))) (-15 -1890 (|#1| (-1123) (-607 |#1|))) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1|)) (-15 -3384 ((-607 (-1123)) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1637 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) #1#) |#1|)) (-15 -4274 (|#1| (-581 |#1|))) (-15 -4274 ((-823) |#1|))) (-406 |#2|) (-811)) (T -405)) +((-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-811)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-405 *4 *5)) (-4 *4 (-406 *5)))) (-3423 (*1 *2) (-12 (-4 *4 (-811)) (-5 *2 (-735)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) +(-10 -8 (-15 * (|#1| (-878) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3423 ((-735))) (-15 -4274 (|#1| (-526))) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-905 |#2|) |#1|)) (-15 -3470 ((-3 (-905 |#2|) #1#) |#1|)) (-15 -4274 (|#1| (-905 |#2|))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -3469 ((-392 (-905 |#2|)) |#1|)) (-15 -3470 ((-3 (-392 (-905 |#2|)) #1#) |#1|)) (-15 -4274 (|#1| (-392 (-905 |#2|)))) (-15 -3386 ((-392 (-1117 |#1|)) |#1| (-581 |#1|))) (-15 -4274 (|#1| (-392 (-905 (-392 |#2|))))) (-15 -4274 (|#1| (-905 (-392 |#2|)))) (-15 -4274 (|#1| (-392 |#2|))) (-15 -3295 (|#1| |#1|)) (-15 -4287 (|#1| (-390 |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-735) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-735)) (-607 (-1 |#1| |#1|)))) (-15 -3125 ((-3 (-2 (|:| |val| |#1|) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-1123))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1| (-112))) (-15 -3296 (|#1| |#1|)) (-15 -4274 (|#1| (-1075 |#2| (-581 |#1|)))) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 |#1|))) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 |#1|)) (|:| -2462 (-526))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 |#1|) (-1123))) (-15 -4086 (|#1| |#1| (-112) |#1| (-1123))) (-15 -4086 (|#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1123)))) (-15 -4086 (|#1| |#1| (-1123))) (-15 -1890 (|#1| (-1123) (-607 |#1|))) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1| |#1|)) (-15 -1890 (|#1| (-1123) |#1|)) (-15 -3384 ((-607 (-1123)) |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -1892 ((-111) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-112) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-112)) (-607 (-1 |#1| |#1|)))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| |#1|))) (-15 -4086 (|#1| |#1| (-1123) (-1 |#1| (-607 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| (-607 |#1|))))) (-15 -4086 (|#1| |#1| (-607 (-1123)) (-607 (-1 |#1| |#1|)))) (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -1637 ((-607 (-581 |#1|)) |#1|)) (-15 -1638 ((-3 (-581 |#1|) "failed") |#1|)) (-15 -1640 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -1640 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -1640 (|#1| |#1| (-278 |#1|))) (-15 -4118 (|#1| (-112) (-607 |#1|))) (-15 -4118 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1| |#1|)) (-15 -4118 (|#1| (-112) |#1|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4086 (|#1| |#1| (-607 (-581 |#1|)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-581 |#1|) |#1|)) (-15 -3469 ((-581 |#1|) |#1|)) (-15 -3470 ((-3 (-581 |#1|) #1#) |#1|)) (-15 -4274 (|#1| (-581 |#1|))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 113 (|has| |#1| (-25)))) (-3384 (((-607 (-1123)) $) 200)) (-3386 (((-392 (-1117 $)) $ (-581 $)) 168 (|has| |#1| (-533)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 140 (|has| |#1| (-533)))) (-2151 (($ $) 141 (|has| |#1| (-533)))) (-2149 (((-111) $) 143 (|has| |#1| (-533)))) (-1636 (((-607 (-581 $)) $) 44)) (-1345 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1640 (($ $ (-278 $)) 56) (($ $ (-607 (-278 $))) 55) (($ $ (-607 (-581 $)) (-607 $)) 54)) (-4093 (($ $) 160 (|has| |#1| (-533)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-533)))) (-1681 (((-111) $ $) 151 (|has| |#1| (-533)))) (-3855 (($) 101 (-3850 (|has| |#1| (-1063)) (|has| |#1| (-25))) CONST)) (-3470 (((-3 (-581 $) #1="failed") $) 69) (((-3 (-1123) #1#) $) 213) (((-3 (-526) #1#) $) 206 (|has| |#1| (-995 (-526)))) (((-3 |#1| #1#) $) 204) (((-3 (-392 (-905 |#1|)) #1#) $) 166 (|has| |#1| (-533))) (((-3 (-905 |#1|) #1#) $) 120 (|has| |#1| (-1004))) (((-3 (-392 (-526)) #1#) $) 95 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 (((-581 $) $) 68) (((-1123) $) 212) (((-526) $) 207 (|has| |#1| (-995 (-526)))) ((|#1| $) 203) (((-392 (-905 |#1|)) $) 165 (|has| |#1| (-533))) (((-905 |#1|) $) 119 (|has| |#1| (-1004))) (((-392 (-526)) $) 94 (-3850 (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526))))))) (-2861 (($ $ $) 155 (|has| |#1| (-533)))) (-2331 (((-653 (-526)) (-653 $)) 134 (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 133 (-3155 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 132 (|has| |#1| (-1004))) (((-653 |#1|) (-653 $)) 131 (|has| |#1| (-1004)))) (-3781 (((-3 $ "failed") $) 103 (|has| |#1| (-1063)))) (-2860 (($ $ $) 154 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-533)))) (-4045 (((-111) $) 162 (|has| |#1| (-533)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 209 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 208 (|has| |#1| (-845 (-363))))) (-2870 (($ $) 51) (($ (-607 $)) 50)) (-1635 (((-607 (-112)) $) 43)) (-2307 (((-112) (-112)) 42)) (-2471 (((-111) $) 102 (|has| |#1| (-1063)))) (-2973 (((-111) $) 22 (|has| $ (-995 (-526))))) (-3296 (($ $) 183 (|has| |#1| (-1004)))) (-3298 (((-1075 |#1| (-581 $)) $) 184 (|has| |#1| (-1004)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 158 (|has| |#1| (-533)))) (-1633 (((-1117 $) (-581 $)) 25 (|has| $ (-1004)))) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-4275 (($ (-1 $ $) (-581 $)) 36)) (-1638 (((-3 (-581 $) "failed") $) 46)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-533))) (($ $ $) 146 (|has| |#1| (-533)))) (-3554 (((-1106) $) 9)) (-1637 (((-607 (-581 $)) $) 45)) (-2288 (($ (-112) $) 38) (($ (-112) (-607 $)) 37)) (-3123 (((-3 (-607 $) "failed") $) 189 (|has| |#1| (-1063)))) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $) 180 (|has| |#1| (-1004)))) (-3122 (((-3 (-607 $) "failed") $) 187 (|has| |#1| (-25)))) (-1889 (((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3124 (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $) 188 (|has| |#1| (-1063))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112)) 182 (|has| |#1| (-1004))) (((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123)) 181 (|has| |#1| (-1004)))) (-2930 (((-111) $ (-112)) 40) (((-111) $ (-1123)) 39)) (-2703 (($ $) 105 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-2900 (((-735) $) 47)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 202)) (-1891 ((|#1| $) 201)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-533)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-533))) (($ $ $) 144 (|has| |#1| (-533)))) (-1634 (((-111) $ $) 35) (((-111) $ (-1123)) 34)) (-4051 (((-390 $) $) 159 (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-533))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ $) 139 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-533)))) (-2974 (((-111) $) 23 (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) 67) (($ $ (-607 (-581 $)) (-607 $)) 66) (($ $ (-607 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-607 $) (-607 $)) 62) (($ $ (-607 (-1123)) (-607 (-1 $ $))) 33) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) 32) (($ $ (-1123) (-1 $ (-607 $))) 31) (($ $ (-1123) (-1 $ $)) 30) (($ $ (-607 (-112)) (-607 (-1 $ $))) 29) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) 28) (($ $ (-112) (-1 $ (-607 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1123)) 194 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123))) 193 (|has| |#1| (-584 (-515)))) (($ $) 192 (|has| |#1| (-584 (-515)))) (($ $ (-112) $ (-1123)) 191 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-112)) (-607 $) (-1123)) 190 (|has| |#1| (-584 (-515)))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $))) 179 (|has| |#1| (-1004))) (($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $)))) 178 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ (-607 $))) 177 (|has| |#1| (-1004))) (($ $ (-1123) (-735) (-1 $ $)) 176 (|has| |#1| (-1004)))) (-1680 (((-735) $) 152 (|has| |#1| (-533)))) (-4118 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-607 $)) 57)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-533)))) (-1639 (($ $) 49) (($ $ $) 48)) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 125 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 124 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 123 (|has| |#1| (-1004))) (($ $ (-1123)) 122 (|has| |#1| (-1004)))) (-3295 (($ $) 173 (|has| |#1| (-533)))) (-3297 (((-1075 |#1| (-581 $)) $) 174 (|has| |#1| (-533)))) (-3499 (($ $) 24 (|has| $ (-1004)))) (-4287 (((-849 (-526)) $) 211 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 210 (|has| |#1| (-584 (-849 (-363))))) (($ (-390 $)) 175 (|has| |#1| (-533))) (((-515) $) 97 (|has| |#1| (-584 (-515))))) (-3309 (($ $ $) 108 (|has| |#1| (-457)))) (-2655 (($ $ $) 109 (|has| |#1| (-457)))) (-4274 (((-823) $) 11) (($ (-581 $)) 70) (($ (-1123)) 214) (($ |#1|) 205) (($ (-1075 |#1| (-581 $))) 185 (|has| |#1| (-1004))) (($ (-392 |#1|)) 171 (|has| |#1| (-533))) (($ (-905 (-392 |#1|))) 170 (|has| |#1| (-533))) (($ (-392 (-905 (-392 |#1|)))) 169 (|has| |#1| (-533))) (($ (-392 (-905 |#1|))) 167 (|has| |#1| (-533))) (($ $) 138 (|has| |#1| (-533))) (($ (-905 |#1|)) 121 (|has| |#1| (-1004))) (($ (-392 (-526))) 96 (-3850 (|has| |#1| (-533)) (-12 (|has| |#1| (-995 (-526))) (|has| |#1| (-533))) (|has| |#1| (-995 (-392 (-526)))))) (($ (-526)) 93 (-3850 (|has| |#1| (-1004)) (|has| |#1| (-995 (-526)))))) (-3002 (((-3 $ "failed") $) 135 (|has| |#1| (-139)))) (-3423 (((-735)) 130 (|has| |#1| (-1004)))) (-2887 (($ $) 53) (($ (-607 $)) 52)) (-2306 (((-111) (-112)) 41)) (-2150 (((-111) $ $) 142 (|has| |#1| (-533)))) (-1890 (($ (-1123) $) 199) (($ (-1123) $ $) 198) (($ (-1123) $ $ $) 197) (($ (-1123) $ $ $ $) 196) (($ (-1123) (-607 $)) 195)) (-2957 (($) 112 (|has| |#1| (-25)) CONST)) (-2964 (($) 100 (|has| |#1| (-1063)) CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 129 (|has| |#1| (-1004))) (($ $ (-1123) (-735)) 128 (|has| |#1| (-1004))) (($ $ (-607 (-1123))) 127 (|has| |#1| (-1004))) (($ $ (-1123)) 126 (|has| |#1| (-1004)))) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4265 (($ (-1075 |#1| (-581 $)) (-1075 |#1| (-581 $))) 172 (|has| |#1| (-533))) (($ $ $) 106 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533))))) (-4156 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4158 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-526)) 107 (-3850 (|has| |#1| (-457)) (|has| |#1| (-533)))) (($ $ (-735)) 104 (|has| |#1| (-1063))) (($ $ (-878)) 99 (|has| |#1| (-1063)))) (* (($ (-392 (-526)) $) 164 (|has| |#1| (-533))) (($ $ (-392 (-526))) 163 (|has| |#1| (-533))) (($ |#1| $) 137 (|has| |#1| (-163))) (($ $ |#1|) 136 (|has| |#1| (-163))) (($ (-526) $) 118 (|has| |#1| (-21))) (($ (-735) $) 114 (|has| |#1| (-25))) (($ (-878) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1063))))) +(((-406 |#1|) (-134) (-811)) (T -406)) +((-1892 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-607 (-1123))))) (-1890 (*1 *1 *2 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) (-4086 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-584 (-515))))) (-4086 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1123)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-584 (-515))))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 *1)) (-5 *4 (-1123)) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-584 (-515))))) (-3123 (*1 *2 *1) (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-406 *3)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) (-3122 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-406 *3)))) (-1889 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 (-526)) (|:| |var| (-581 *1)))) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-1004)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) (-4 *1 (-406 *3)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-1004)))) (-3124 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-1004)) (-4 *4 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) (-3124 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-1004)) (-4 *4 (-811)) (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) (-3125 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-2 (|:| |val| *1) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 *1))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 (-607 *1))) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4086 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-390 *1)) (-4 *1 (-406 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-533)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) (-4 *1 (-406 *3)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-533)))) (-4265 (*1 *1 *2 *2) (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 *3))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-392 *3)))) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-581 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-533)) (-5 *2 (-392 (-1117 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-1063))))) +(-13 (-283) (-995 (-1123)) (-843 |t#1|) (-385 |t#1|) (-397 |t#1|) (-10 -8 (-15 -1892 ((-111) $)) (-15 -1891 (|t#1| $)) (-15 -3384 ((-607 (-1123)) $)) (-15 -1890 ($ (-1123) $)) (-15 -1890 ($ (-1123) $ $)) (-15 -1890 ($ (-1123) $ $ $)) (-15 -1890 ($ (-1123) $ $ $ $)) (-15 -1890 ($ (-1123) (-607 $))) (IF (|has| |t#1| (-584 (-515))) (PROGN (-6 (-584 (-515))) (-15 -4086 ($ $ (-1123))) (-15 -4086 ($ $ (-607 (-1123)))) (-15 -4086 ($ $)) (-15 -4086 ($ $ (-112) $ (-1123))) (-15 -4086 ($ $ (-607 (-112)) (-607 $) (-1123)))) |%noBranch|) (IF (|has| |t#1| (-1063)) (PROGN (-6 (-691)) (-15 ** ($ $ (-735))) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -1889 ((-3 (-2 (|:| -4270 (-526)) (|:| |var| (-581 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-995 (-905 |t#1|))) (-6 (-859 (-1123))) (-6 (-362 |t#1|)) (-15 -4274 ($ (-1075 |t#1| (-581 $)))) (-15 -3298 ((-1075 |t#1| (-581 $)) $)) (-15 -3296 ($ $)) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-112))) (-15 -3124 ((-3 (-2 (|:| |var| (-581 $)) (|:| -2462 (-526))) "failed") $ (-1123))) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 (-526))) "failed") $)) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ $)))) (-15 -4086 ($ $ (-607 (-1123)) (-607 (-735)) (-607 (-1 $ (-607 $))))) (-15 -4086 ($ $ (-1123) (-735) (-1 $ (-607 $)))) (-15 -4086 ($ $ (-1123) (-735) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-348)) (-6 (-995 (-392 (-905 |t#1|)))) (-15 -4287 ($ (-390 $))) (-15 -3297 ((-1075 |t#1| (-581 $)) $)) (-15 -3295 ($ $)) (-15 -4265 ($ (-1075 |t#1| (-581 $)) (-1075 |t#1| (-581 $)))) (-15 -4274 ($ (-392 |t#1|))) (-15 -4274 ($ (-905 (-392 |t#1|)))) (-15 -4274 ($ (-392 (-905 (-392 |t#1|))))) (-15 -3386 ((-392 (-1117 $)) $ (-581 $))) (IF (|has| |t#1| (-995 (-526))) (-6 (-995 (-392 (-526)))) |%noBranch|)) |%noBranch|))) +(((-21) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-23) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #1=(-392 (-526))) |has| |#1| (-533)) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-533)) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) |has| |#1| (-533)) ((-129) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) |has| |#1| (-533)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-229) |has| |#1| (-533)) ((-275) |has| |#1| (-533)) ((-292) |has| |#1| (-533)) ((-294 $) . T) ((-283) . T) ((-348) |has| |#1| (-533)) ((-362 |#1|) |has| |#1| (-1004)) ((-385 |#1|) . T) ((-397 |#1|) . T) ((-436) |has| |#1| (-533)) ((-457) |has| |#1| (-457)) ((-496 (-581 $) $) . T) ((-496 $ $) . T) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-533)) ((-613 |#1|) |has| |#1| (-163)) ((-613 $) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-606 (-526)) -12 (|has| |#1| (-606 (-526))) (|has| |#1| (-1004))) ((-606 |#1|) |has| |#1| (-1004)) ((-682 #1#) |has| |#1| (-533)) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) -3850 (|has| |#1| (-1063)) (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-457)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-811) . T) ((-859 (-1123)) |has| |#1| (-1004)) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-880) |has| |#1| (-533)) ((-995 (-392 (-526))) -3850 (|has| |#1| (-995 (-392 (-526)))) (-12 (|has| |#1| (-533)) (|has| |#1| (-995 (-526))))) ((-995 (-392 (-905 |#1|))) |has| |#1| (-533)) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-581 $)) . T) ((-995 (-905 |#1|)) |has| |#1| (-1004)) ((-995 (-1123)) . T) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-533)) ((-1010 |#1|) |has| |#1| (-163)) ((-1010 $) |has| |#1| (-533)) ((-1004) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1011) -3850 (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1063) -3850 (|has| |#1| (-1063)) (|has| |#1| (-1004)) (|has| |#1| (-533)) (|has| |#1| (-457)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1052) . T) ((-1159) . T) ((-1164) |has| |#1| (-533))) +((-4275 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1004) (-811)) (-406 |#1|) (-13 (-1004) (-811)) (-406 |#3|)) (T -407)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1004) (-811))) (-4 *6 (-13 (-1004) (-811))) (-4 *2 (-406 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) +((-1896 ((|#2| |#2|) 166)) (-1893 (((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111)) 57))) +(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 ((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111))) (-15 -1896 (|#2| |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -408)) +((-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1145) (-406 *3))) (-14 *4 (-1123)) (-14 *5 *2))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (|:| |%expansion| (-298 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-408 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-14 *6 (-1123)) (-14 *7 *3)))) +(-10 -7 (-15 -1893 ((-3 (|:| |%expansion| (-298 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111))) (-15 -1896 (|#2| |#2|))) +((-1896 ((|#2| |#2|) 90)) (-1894 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106)) 48)) (-1895 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106)) 154))) +(((-409 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1895 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1896 (|#2| |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|) (-10 -8 (-15 -4274 ($ |#3|)))) (-809) (-13 (-1184 |#2| |#3|) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $)))) (-942 |#4|) (-1123)) (T -409)) +((-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *2 (-13 (-27) (-1145) (-406 *3) (-10 -8 (-15 -4274 ($ *4))))) (-4 *4 (-809)) (-4 *5 (-13 (-1184 *2 *4) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *1 (-409 *3 *2 *4 *5 *6 *7)) (-4 *6 (-942 *5)) (-14 *7 (-1123)))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) (-4 *7 (-809)) (-4 *8 (-13 (-1184 *3 *7) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) (-14 *10 (-1123)))) (-1894 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) (-4 *7 (-809)) (-4 *8 (-13 (-1184 *3 *7) (-348) (-1145) (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) (-14 *10 (-1123))))) +(-10 -7 (-15 -1894 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1895 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106))))) |#2| (-111) (-1106))) (-15 -1896 (|#2| |#2|))) +((-1897 (($) 44)) (-3546 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3548 (($ $ $) 39)) (-3547 (((-111) $ $) 28)) (-3433 (((-735)) 47)) (-3551 (($ (-607 |#2|)) 20) (($) NIL)) (-3294 (($) 53)) (-3553 (((-111) $ $) 13)) (-3637 ((|#2| $) 61)) (-3638 ((|#2| $) 59)) (-2102 (((-878) $) 55)) (-3550 (($ $ $) 35)) (-2461 (($ (-878)) 50)) (-3549 (($ $ |#2|) NIL) (($ $ $) 38)) (-2045 (((-735) (-1 (-111) |#2|) $) NIL) (((-735) |#2| $) 26)) (-3844 (($ (-607 |#2|)) 24)) (-1898 (($ $) 46)) (-4274 (((-823) $) 33)) (-1899 (((-735) $) 21)) (-3552 (($ (-607 |#2|)) 19) (($) NIL)) (-3353 (((-111) $ $) 16))) +(((-410 |#1| |#2|) (-10 -8 (-15 -3433 ((-735))) (-15 -2461 (|#1| (-878))) (-15 -2102 ((-878) |#1|)) (-15 -3294 (|#1|)) (-15 -3637 (|#2| |#1|)) (-15 -3638 (|#2| |#1|)) (-15 -1897 (|#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1899 ((-735) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3553 ((-111) |#1| |#1|)) (-15 -3552 (|#1|)) (-15 -3552 (|#1| (-607 |#2|))) (-15 -3551 (|#1|)) (-15 -3551 (|#1| (-607 |#2|))) (-15 -3550 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3547 ((-111) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|))) (-411 |#2|) (-1052)) (T -410)) +((-3433 (*1 *2) (-12 (-4 *4 (-1052)) (-5 *2 (-735)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) +(-10 -8 (-15 -3433 ((-735))) (-15 -2461 (|#1| (-878))) (-15 -2102 ((-878) |#1|)) (-15 -3294 (|#1|)) (-15 -3637 (|#2| |#1|)) (-15 -3638 (|#2| |#1|)) (-15 -1897 (|#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1899 ((-735) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3553 ((-111) |#1| |#1|)) (-15 -3552 (|#1|)) (-15 -3552 (|#1| (-607 |#2|))) (-15 -3551 (|#1|)) (-15 -3551 (|#1| (-607 |#2|))) (-15 -3550 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3547 ((-111) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#2| |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|))) +((-2865 (((-111) $ $) 19)) (-1897 (($) 67 (|has| |#1| (-353)))) (-3546 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3548 (($ $ $) 78)) (-3547 (((-111) $ $) 79)) (-1244 (((-111) $ (-735)) 8)) (-3433 (((-735)) 61 (|has| |#1| (-353)))) (-3551 (($ (-607 |#1|)) 74) (($) 73)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-3294 (($) 64 (|has| |#1| (-353)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 70)) (-4041 (((-111) $ (-735)) 9)) (-3637 ((|#1| $) 65 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 66 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-2102 (((-878) $) 63 (|has| |#1| (-353)))) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 75)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-2461 (($ (-878)) 62 (|has| |#1| (-353)))) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3549 (($ $ |#1|) 77) (($ $ $) 76)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-1898 (($ $) 68 (|has| |#1| (-353)))) (-4274 (((-823) $) 18)) (-1899 (((-735) $) 69)) (-3552 (($ (-607 |#1|)) 72) (($) 71)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-411 |#1|) (-134) (-1052)) (T -411)) +((-1899 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-1052)) (-5 *2 (-735)))) (-1898 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-353)))) (-1897 (*1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-353)) (-4 *2 (-1052)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811))))) +(-13 (-215 |t#1|) (-1050 |t#1|) (-10 -8 (-6 -4310) (-15 -1899 ((-735) $)) (IF (|has| |t#1| (-353)) (PROGN (-6 (-353)) (-15 -1898 ($ $)) (-15 -1897 ($))) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-15 -3638 (|t#1| $)) (-15 -3637 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-215 |#1|) . T) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-353) |has| |#1| (-353)) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) +((-4160 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4161 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4275 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1052) (-411 |#1|) (-1052) (-411 |#3|)) (T -412)) +((-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1052)) (-4 *5 (-1052)) (-4 *2 (-411 *5)) (-5 *1 (-412 *6 *4 *5 *2)) (-4 *4 (-411 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-5 *1 (-412 *5 *4 *2 *6)) (-4 *4 (-411 *5)) (-4 *6 (-411 *2)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-411 *6)) (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-411 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4161 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4160 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1900 (((-556 |#2|) |#2| (-1123)) 36)) (-2193 (((-556 |#2|) |#2| (-1123)) 20)) (-2232 ((|#2| |#2| (-1123)) 25))) +(((-413 |#1| |#2|) (-10 -7 (-15 -2193 ((-556 |#2|) |#2| (-1123))) (-15 -1900 ((-556 |#2|) |#2| (-1123))) (-15 -2232 (|#2| |#2| (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-29 |#1|))) (T -413)) +((-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-413 *4 *2)) (-4 *2 (-13 (-1145) (-29 *4))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5))))) (-2193 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5)))))) +(-10 -7 (-15 -2193 ((-556 |#2|) |#2| (-1123))) (-15 -1900 ((-556 |#2|) |#2| (-1123))) (-15 -2232 (|#2| |#2| (-1123)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-1902 (($ |#2| |#1|) 35)) (-1901 (($ |#2| |#1|) 33)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-316 |#2|)) 25)) (-3423 (((-735)) NIL)) (-2957 (($) 10 T CONST)) (-2964 (($) 16 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-414 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4297)) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-316 |#2|))) (-15 -1902 ($ |#2| |#1|)) (-15 -1901 ($ |#2| |#1|)))) (-13 (-163) (-37 (-392 (-526)))) (-13 (-811) (-21))) (T -414)) +((-4274 (*1 *1 *2) (-12 (-5 *1 (-414 *2 *3)) (-4 *2 (-13 (-163) (-37 (-392 (-526))))) (-4 *3 (-13 (-811) (-21))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-316 *4)) (-4 *4 (-13 (-811) (-21))) (-5 *1 (-414 *3 *4)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) (-4 *2 (-13 (-811) (-21))))) (-1901 (*1 *1 *2 *3) (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) (-4 *2 (-13 (-811) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4297)) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-316 |#2|))) (-15 -1902 ($ |#2| |#1|)) (-15 -1901 ($ |#2| |#1|)))) +((-4131 (((-3 |#2| (-607 |#2|)) |#2| (-1123)) 109))) +(((-415 |#1| |#2|) (-10 -7 (-15 -4131 ((-3 |#2| (-607 |#2|)) |#2| (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -415)) +((-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 *3 (-607 *3))) (-5 *1 (-415 *5 *3)) (-4 *3 (-13 (-1145) (-919) (-29 *5)))))) +(-10 -7 (-15 -4131 ((-3 |#2| (-607 |#2|)) |#2| (-1123)))) +((-3705 ((|#2| |#2| |#2|) 33)) (-2307 (((-112) (-112)) 44)) (-1904 ((|#2| |#2|) 66)) (-1903 ((|#2| |#2|) 69)) (-3704 ((|#2| |#2|) 32)) (-3708 ((|#2| |#2| |#2|) 35)) (-3710 ((|#2| |#2| |#2|) 37)) (-3707 ((|#2| |#2| |#2|) 34)) (-3709 ((|#2| |#2| |#2|) 36)) (-2306 (((-111) (-112)) 42)) (-3712 ((|#2| |#2|) 39)) (-3711 ((|#2| |#2|) 38)) (-3702 ((|#2| |#2|) 27)) (-3706 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3703 ((|#2| |#2| |#2|) 31))) +(((-416 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -3702 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -3710 (|#2| |#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -1904 (|#2| |#2|))) (-13 (-811) (-533)) (-406 |#1|)) (T -416)) +((-1904 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-1903 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3710 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3709 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3708 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3707 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3706 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-3702 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *4)) (-4 *4 (-406 *3)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-416 *4 *5)) (-4 *5 (-406 *4))))) +(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -3702 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2| |#2|)) (-15 -3710 (|#2| |#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -1904 (|#2| |#2|))) +((-3133 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|)) 61))) +(((-417 |#1| |#2|) (-10 -7 (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|))) (IF (|has| |#2| (-27)) (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-533) (-811) (-141)) (-406 |#1|)) (T -417)) +((-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1117 *3)) (|:| |pol2| (-1117 *3)) (|:| |prim| (-1117 *3)))) (-5 *1 (-417 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-607 (-1117 *5))) (|:| |prim| (-1117 *5)))) (-5 *1 (-417 *4 *5))))) +(-10 -7 (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-607 (-1117 |#2|))) (|:| |prim| (-1117 |#2|))) (-607 |#2|))) (IF (|has| |#2| (-27)) (-15 -3133 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1117 |#2|)) (|:| |pol2| (-1117 |#2|)) (|:| |prim| (-1117 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1906 (((-1211)) 19)) (-1905 (((-1117 (-392 (-526))) |#2| (-581 |#2|)) 41) (((-392 (-526)) |#2|) 25))) +(((-418 |#1| |#2|) (-10 -7 (-15 -1905 ((-392 (-526)) |#2|)) (-15 -1905 ((-1117 (-392 (-526))) |#2| (-581 |#2|))) (-15 -1906 ((-1211)))) (-13 (-811) (-533) (-995 (-526))) (-406 |#1|)) (T -418)) +((-1906 (*1 *2) (-12 (-4 *3 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1211)) (-5 *1 (-418 *3 *4)) (-4 *4 (-406 *3)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-581 *3)) (-4 *3 (-406 *5)) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-418 *5 *3)))) (-1905 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-418 *4 *3)) (-4 *3 (-406 *4))))) +(-10 -7 (-15 -1905 ((-392 (-526)) |#2|)) (-15 -1905 ((-1117 (-392 (-526))) |#2| (-581 |#2|))) (-15 -1906 ((-1211)))) +((-3967 (((-111) $) 28)) (-1907 (((-111) $) 30)) (-3571 (((-111) $) 31)) (-1909 (((-111) $) 34)) (-1911 (((-111) $) 29)) (-1910 (((-111) $) 33)) (-4274 (((-823) $) 18) (($ (-1106)) 27) (($ (-1123)) 23) (((-1123) $) 22) (((-1054) $) 21)) (-1908 (((-111) $) 32)) (-3353 (((-111) $ $) 15))) +(((-419) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -4274 ((-1054) $)) (-15 -3967 ((-111) $)) (-15 -1911 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -1910 ((-111) $)) (-15 -1909 ((-111) $)) (-15 -1908 ((-111) $)) (-15 -1907 ((-111) $)) (-15 -3353 ((-111) $ $))))) (T -419)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-419)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-419)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) (-3353 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) +(-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1106))) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -4274 ((-1054) $)) (-15 -3967 ((-111) $)) (-15 -1911 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -1910 ((-111) $)) (-15 -1909 ((-111) $)) (-15 -1908 ((-111) $)) (-15 -1907 ((-111) $)) (-15 -3353 ((-111) $ $)))) +((-1913 (((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|) 70)) (-1912 (((-390 |#3|) |#3|) 34)) (-1915 (((-3 (-390 (-1117 (-47))) "failed") |#3|) 46 (|has| |#2| (-995 (-47))))) (-1914 (((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|) 37))) +(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1912 ((-390 |#3|) |#3|)) (-15 -1913 ((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|)) (-15 -1914 ((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|)) (IF (|has| |#2| (-995 (-47))) (-15 -1915 ((-3 (-390 (-1117 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-533) (-811) (-995 (-526))) (-406 |#1|) (-1181 |#2|)) (T -420)) +((-1915 (*1 *2 *3) (|partial| -12 (-4 *5 (-995 (-47))) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-47)))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1914 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111)))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1913 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-392 (-526))))) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-1912 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 (-390 *3)) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) +(-10 -7 (-15 -1912 ((-390 |#3|) |#3|)) (-15 -1913 ((-3 (-390 (-1117 (-392 (-526)))) "failed") |#3|)) (-15 -1914 ((-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) (|:| -2936 (-111))) |#3|)) (IF (|has| |#2| (-995 (-47))) (-15 -1915 ((-3 (-390 (-1117 (-47))) "failed") |#3|)) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-1924 (((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $) 11)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1922 (($) 32)) (-1919 (($) 38)) (-1920 (($) 34)) (-1917 (($) 36)) (-1921 (($) 33)) (-1918 (($) 35)) (-1916 (($) 37)) (-1923 (((-111) $) 8)) (-2651 (((-607 (-905 (-526))) $) 19)) (-3844 (($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111)) 27) (($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111)) 28)) (-4274 (((-823) $) 23) (($ (-419)) 29)) (-3353 (((-111) $ $) NIL))) +(((-421) (-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -4274 ($ (-419))) (-15 -1924 ((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -2651 ((-607 (-905 (-526))) $)) (-15 -1923 ((-111) $)) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111))) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111))) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -1918 ($)) (-15 -1917 ($)) (-15 -1916 ($))))) (T -421)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-421)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-419)) (-5 *1 (-421)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *1 (-421)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-607 (-905 (-526)))) (-5 *1 (-421)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-1123))) (-5 *4 (-111)) (-5 *1 (-421)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-111)) (-5 *1 (-421)))) (-1922 (*1 *1) (-5 *1 (-421))) (-1921 (*1 *1) (-5 *1 (-421))) (-1920 (*1 *1) (-5 *1 (-421))) (-1919 (*1 *1) (-5 *1 (-421))) (-1918 (*1 *1) (-5 *1 (-421))) (-1917 (*1 *1) (-5 *1 (-421))) (-1916 (*1 *1) (-5 *1 (-421)))) +(-13 (-1052) (-10 -8 (-15 -4274 ((-823) $)) (-15 -4274 ($ (-419))) (-15 -1924 ((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -2651 ((-607 (-905 (-526))) $)) (-15 -1923 ((-111) $)) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-1123)) (-111))) (-15 -3844 ($ (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-607 (-905 (-526))) (-111))) (-15 -1922 ($)) (-15 -1921 ($)) (-15 -1920 ($)) (-15 -1919 ($)) (-15 -1918 ($)) (-15 -1917 ($)) (-15 -1916 ($)))) +((-2865 (((-111) $ $) NIL)) (-1789 (((-1106) $ (-1106)) NIL)) (-1793 (($ $ (-1106)) NIL)) (-1790 (((-1106) $) NIL)) (-1928 (((-373) (-373) (-373)) 17) (((-373) (-373)) 15)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) NIL)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1927 (((-1211) (-1106)) 9)) (-1926 (((-1211) (-1106)) 10)) (-1925 (((-1211)) 11)) (-4274 (((-823) $) NIL)) (-1792 (($ $) 35)) (-3353 (((-111) $ $) NIL))) +(((-422) (-13 (-350 (-373) (-1106)) (-10 -7 (-15 -1928 ((-373) (-373) (-373))) (-15 -1928 ((-373) (-373))) (-15 -1927 ((-1211) (-1106))) (-15 -1926 ((-1211) (-1106))) (-15 -1925 ((-1211)))))) (T -422)) +((-1928 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422)))) (-1925 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-422))))) +(-13 (-350 (-373) (-1106)) (-10 -7 (-15 -1928 ((-373) (-373) (-373))) (-15 -1928 ((-373) (-373))) (-15 -1927 ((-1211) (-1106))) (-15 -1926 ((-1211) (-1106))) (-15 -1925 ((-1211))))) +((-2865 (((-111) $ $) NIL)) (-3864 (((-1123) $) 8)) (-3554 (((-1106) $) 16)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 13))) +(((-423 |#1|) (-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) (-1123)) (T -423)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-423 *3)) (-14 *3 *2)))) +(-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) +((-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-1205 (-663))) 14) (($ (-607 (-315))) 13) (($ (-315)) 12) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 11))) (((-424) (-134)) (T -424)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-424)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-424)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424))))) -(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-1200 (-300 (-363))))) (-15 -1516 ((-3 $ "failed") (-1200 (-300 (-363))))) (-15 -3958 ($ (-1200 (-300 (-537))))) (-15 -1516 ((-3 $ "failed") (-1200 (-300 (-537))))) (-15 -3958 ($ (-1200 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-1200 (-905 (-363))))) (-15 -3958 ($ (-1200 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-1200 (-905 (-537))))) (-15 -3958 ($ (-1200 (-391 (-905 (-363)))))) (-15 -1516 ((-3 $ "failed") (-1200 (-391 (-905 (-363)))))) (-15 -3958 ($ (-1200 (-391 (-905 (-537)))))) (-15 -1516 ((-3 $ "failed") (-1200 (-391 (-905 (-537)))))))) -(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) -((-2201 (((-111)) 17)) (-3805 (((-111) (-111)) 18)) (-3772 (((-111)) 13)) (-2392 (((-111) (-111)) 14)) (-2483 (((-111)) 15)) (-3586 (((-111) (-111)) 16)) (-3125 (((-874) (-874)) 21) (((-874)) 20)) (-2333 (((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537))))) 42)) (-3604 (((-874) (-874)) 23) (((-874)) 22)) (-3503 (((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|) 62)) (-2323 (((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537))))))) 126)) (-3054 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)) 152)) (-3159 (((-402 |#1|) |#1| (-731) (-731)) 165) (((-402 |#1|) |#1| (-606 (-731)) (-731)) 162) (((-402 |#1|) |#1| (-606 (-731))) 164) (((-402 |#1|) |#1| (-731)) 163) (((-402 |#1|) |#1|) 161)) (-4272 (((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111)) 167) (((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731)) 168) (((-3 |#1| "failed") (-874) |#1| (-606 (-731))) 170) (((-3 |#1| "failed") (-874) |#1| (-731)) 169) (((-3 |#1| "failed") (-874) |#1|) 171)) (-3622 (((-402 |#1|) |#1| (-731) (-731)) 160) (((-402 |#1|) |#1| (-606 (-731)) (-731)) 156) (((-402 |#1|) |#1| (-606 (-731))) 158) (((-402 |#1|) |#1| (-731)) 157) (((-402 |#1|) |#1|) 155)) (-1900 (((-111) |#1|) 37)) (-2916 (((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537))))) 67)) (-1866 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)) 154))) -(((-425 |#1|) (-10 -7 (-15 -2323 ((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))))) (-15 -2916 ((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3604 ((-874))) (-15 -3604 ((-874) (-874))) (-15 -3125 ((-874))) (-15 -3125 ((-874) (-874))) (-15 -2333 ((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3503 ((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|)) (-15 -2201 ((-111))) (-15 -3805 ((-111) (-111))) (-15 -3772 ((-111))) (-15 -2392 ((-111) (-111))) (-15 -1900 ((-111) |#1|)) (-15 -2483 ((-111))) (-15 -3586 ((-111) (-111))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1| (-731))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3622 ((-402 |#1|) |#1| (-731) (-731))) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1| (-731))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3159 ((-402 |#1|) |#1| (-731) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1|)) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111))) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111))) (-15 -1866 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)))) (-1176 (-537))) (T -425)) -((-1866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1047 (-731))) (-5 *6 (-731)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *6 (-111)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-731)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-874)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-3159 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2483 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-1900 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3772 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2201 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3503 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2909 (-537)) (|:| -3415 (-606 *3)))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) (-4 *4 (-1176 (-537))) (-5 *2 (-731)) (-5 *1 (-425 *4)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3125 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3604 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) (-4 *4 (-1176 (-537))) (-5 *2 (-698 (-731))) (-5 *1 (-425 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *4) (|:| -2430 (-537))))))) (-4 *4 (-1176 (-537))) (-5 *2 (-402 *4)) (-5 *1 (-425 *4))))) -(-10 -7 (-15 -2323 ((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))))) (-15 -2916 ((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3604 ((-874))) (-15 -3604 ((-874) (-874))) (-15 -3125 ((-874))) (-15 -3125 ((-874) (-874))) (-15 -2333 ((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3503 ((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|)) (-15 -2201 ((-111))) (-15 -3805 ((-111) (-111))) (-15 -3772 ((-111))) (-15 -2392 ((-111) (-111))) (-15 -1900 ((-111) |#1|)) (-15 -2483 ((-111))) (-15 -3586 ((-111) (-111))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1| (-731))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3622 ((-402 |#1|) |#1| (-731) (-731))) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1| (-731))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3159 ((-402 |#1|) |#1| (-731) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1|)) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111))) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111))) (-15 -1866 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)))) -((-2879 (((-537) |#2|) 48) (((-537) |#2| (-731)) 47)) (-1569 (((-537) |#2|) 55)) (-3974 ((|#3| |#2|) 25)) (-2055 ((|#3| |#2| (-874)) 14)) (-3845 ((|#3| |#2|) 15)) (-3762 ((|#3| |#2|) 9)) (-2545 ((|#3| |#2|) 10)) (-3396 ((|#3| |#2| (-874)) 62) ((|#3| |#2|) 30)) (-3050 (((-537) |#2|) 57))) -(((-426 |#1| |#2| |#3|) (-10 -7 (-15 -3050 ((-537) |#2|)) (-15 -3396 (|#3| |#2|)) (-15 -3396 (|#3| |#2| (-874))) (-15 -1569 ((-537) |#2|)) (-15 -2879 ((-537) |#2| (-731))) (-15 -2879 ((-537) |#2|)) (-15 -2055 (|#3| |#2| (-874))) (-15 -3974 (|#3| |#2|)) (-15 -3762 (|#3| |#2|)) (-15 -2545 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) (-998) (-1176 |#1|) (-13 (-388) (-989 |#1|) (-347) (-1139) (-268))) (T -426)) -((-3845 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-2545 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-998)) (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268))))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *5 *3 *6)) (-4 *3 (-1176 *5)) (-4 *6 (-13 (-388) (-989 *5) (-347) (-1139) (-268))))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268))))) (-3396 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-998)) (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) (-3396 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) -(-10 -7 (-15 -3050 ((-537) |#2|)) (-15 -3396 (|#3| |#2|)) (-15 -3396 (|#3| |#2| (-874))) (-15 -1569 ((-537) |#2|)) (-15 -2879 ((-537) |#2| (-731))) (-15 -2879 ((-537) |#2|)) (-15 -2055 (|#3| |#2| (-874))) (-15 -3974 (|#3| |#2|)) (-15 -3762 (|#3| |#2|)) (-15 -2545 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) -((-2692 ((|#2| (-1200 |#1|)) 36)) (-1741 ((|#2| |#2| |#1|) 49)) (-3694 ((|#2| |#2| |#1|) 41)) (-3289 ((|#2| |#2|) 38)) (-2903 (((-111) |#2|) 30)) (-2569 (((-606 |#2|) (-874) (-402 |#2|)) 17)) (-4272 ((|#2| (-874) (-402 |#2|)) 21)) (-2916 (((-698 (-731)) (-402 |#2|)) 25))) -(((-427 |#1| |#2|) (-10 -7 (-15 -2903 ((-111) |#2|)) (-15 -2692 (|#2| (-1200 |#1|))) (-15 -3289 (|#2| |#2|)) (-15 -3694 (|#2| |#2| |#1|)) (-15 -1741 (|#2| |#2| |#1|)) (-15 -2916 ((-698 (-731)) (-402 |#2|))) (-15 -4272 (|#2| (-874) (-402 |#2|))) (-15 -2569 ((-606 |#2|) (-874) (-402 |#2|)))) (-998) (-1176 |#1|)) (T -427)) -((-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-402 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-998)) (-5 *2 (-606 *6)) (-5 *1 (-427 *5 *6)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-402 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-427 *5 *2)) (-4 *5 (-998)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-998)) (-5 *2 (-698 (-731))) (-5 *1 (-427 *4 *5)))) (-1741 (*1 *2 *2 *3) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-3694 (*1 *2 *2 *3) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-998)) (-4 *2 (-1176 *4)) (-5 *1 (-427 *4 *2)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-427 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -2903 ((-111) |#2|)) (-15 -2692 (|#2| (-1200 |#1|))) (-15 -3289 (|#2| |#2|)) (-15 -3694 (|#2| |#2| |#1|)) (-15 -1741 (|#2| |#2| |#1|)) (-15 -2916 ((-698 (-731)) (-402 |#2|))) (-15 -4272 (|#2| (-874) (-402 |#2|))) (-15 -2569 ((-606 |#2|) (-874) (-402 |#2|)))) -((-2018 (((-731)) 41)) (-2478 (((-731)) 23 (|has| |#1| (-388))) (((-731) (-731)) 22 (|has| |#1| (-388)))) (-2294 (((-537) |#1|) 18 (|has| |#1| (-388)))) (-4060 (((-537) |#1|) 20 (|has| |#1| (-388)))) (-3816 (((-731)) 40) (((-731) (-731)) 39)) (-2673 ((|#1| (-731) (-537)) 29)) (-2429 (((-1205)) 43))) -(((-428 |#1|) (-10 -7 (-15 -2673 (|#1| (-731) (-537))) (-15 -3816 ((-731) (-731))) (-15 -3816 ((-731))) (-15 -2018 ((-731))) (-15 -2429 ((-1205))) (IF (|has| |#1| (-388)) (PROGN (-15 -4060 ((-537) |#1|)) (-15 -2294 ((-537) |#1|)) (-15 -2478 ((-731) (-731))) (-15 -2478 ((-731)))) |%noBranch|)) (-998)) (T -428)) -((-2478 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2294 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2429 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-2018 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-3816 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-537)) (-5 *1 (-428 *2)) (-4 *2 (-998))))) -(-10 -7 (-15 -2673 (|#1| (-731) (-537))) (-15 -3816 ((-731) (-731))) (-15 -3816 ((-731))) (-15 -2018 ((-731))) (-15 -2429 ((-1205))) (IF (|has| |#1| (-388)) (PROGN (-15 -4060 ((-537) |#1|)) (-15 -2294 ((-537) |#1|)) (-15 -2478 ((-731) (-731))) (-15 -2478 ((-731)))) |%noBranch|)) -((-3952 (((-606 (-537)) (-537)) 61)) (-2639 (((-111) (-160 (-537))) 65)) (-3622 (((-402 (-160 (-537))) (-160 (-537))) 60))) -(((-429) (-10 -7 (-15 -3622 ((-402 (-160 (-537))) (-160 (-537)))) (-15 -3952 ((-606 (-537)) (-537))) (-15 -2639 ((-111) (-160 (-537)))))) (T -429)) -((-2639 (*1 *2 *3) (-12 (-5 *3 (-160 (-537))) (-5 *2 (-111)) (-5 *1 (-429)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-429)) (-5 *3 (-537)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 (-160 (-537)))) (-5 *1 (-429)) (-5 *3 (-160 (-537)))))) -(-10 -7 (-15 -3622 ((-402 (-160 (-537))) (-160 (-537)))) (-15 -3952 ((-606 (-537)) (-537))) (-15 -2639 ((-111) (-160 (-537))))) -((-1675 ((|#4| |#4| (-606 |#4|)) 61)) (-3077 (((-606 |#4|) (-606 |#4|) (-1100) (-1100)) 17) (((-606 |#4|) (-606 |#4|) (-1100)) 16) (((-606 |#4|) (-606 |#4|)) 11))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1675 (|#4| |#4| (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100) (-1100)))) (-291) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -430)) -((-3077 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3077 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-430 *3 *4 *5 *6)))) (-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *2))))) -(-10 -7 (-15 -1675 (|#4| |#4| (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100) (-1100)))) -((-3811 (((-606 (-606 |#4|)) (-606 |#4|) (-111)) 73) (((-606 (-606 |#4|)) (-606 |#4|)) 72) (((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111)) 66) (((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|)) 67)) (-2005 (((-606 (-606 |#4|)) (-606 |#4|) (-111)) 42) (((-606 (-606 |#4|)) (-606 |#4|)) 63))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-111)))) (-13 (-291) (-141)) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -431)) -((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(-10 -7 (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-111)))) -((-2416 (((-731) |#4|) 12)) (-4024 (((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)))) 31)) (-2311 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1769 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2256 ((|#4| |#4| (-606 |#4|)) 40)) (-1877 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|)) 70)) (-4066 (((-1205) |#4|) 42)) (-3723 (((-1205) (-606 |#4|)) 51)) (-1410 (((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537)) 48)) (-2421 (((-1205) (-537)) 79)) (-2676 (((-606 |#4|) (-606 |#4|)) 77)) (-3751 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731)) 25)) (-3229 (((-537) |#4|) 78)) (-2265 ((|#4| |#4|) 29)) (-3543 (((-606 |#4|) (-606 |#4|) (-537) (-537)) 56)) (-3130 (((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537)) 89)) (-1553 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2396 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1847 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3545 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2769 (((-111) |#2| |#2|) 57)) (-3483 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2536 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1765 ((|#4| |#4| (-606 |#4|)) 71))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1765 (|#4| |#4| (-606 |#4|))) (-15 -2256 (|#4| |#4| (-606 |#4|))) (-15 -3543 ((-606 |#4|) (-606 |#4|) (-537) (-537))) (-15 -2396 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2769 ((-111) |#2| |#2|)) (-15 -2536 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3483 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3545 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1847 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|))) (-15 -2265 (|#4| |#4|)) (-15 -4024 ((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))))) (-15 -1769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2311 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2676 ((-606 |#4|) (-606 |#4|))) (-15 -3229 ((-537) |#4|)) (-15 -4066 ((-1205) |#4|)) (-15 -1410 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537))) (-15 -3130 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537))) (-15 -3723 ((-1205) (-606 |#4|))) (-15 -2421 ((-1205) (-537))) (-15 -1553 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731))) (-15 -2416 ((-731) |#4|))) (-435) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -432)) -((-2416 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-3751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-731)) (|:| -2990 *4))) (-5 *5 (-731)) (-4 *4 (-902 *6 *7 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-432 *6 *7 *8 *4)))) (-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *4)))) (-1410 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *4)))) (-4066 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-537)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-2676 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-2311 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-753)) (-4 *2 (-902 *4 *5 *6)) (-5 *1 (-432 *4 *5 *6 *2)) (-4 *4 (-435)) (-4 *6 (-807)))) (-4024 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 *3)))) (-5 *4 (-731)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *3)))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-432 *5 *6 *7 *3)))) (-1847 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-753)) (-4 *6 (-902 *4 *3 *5)) (-4 *4 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *4 *3 *5 *6)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-753)) (-4 *3 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *3)))) (-2536 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5)))) (-2769 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7)))) (-3543 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *7)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2)))) (-1765 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) -(-10 -7 (-15 -1765 (|#4| |#4| (-606 |#4|))) (-15 -2256 (|#4| |#4| (-606 |#4|))) (-15 -3543 ((-606 |#4|) (-606 |#4|) (-537) (-537))) (-15 -2396 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2769 ((-111) |#2| |#2|)) (-15 -2536 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3483 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3545 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1847 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|))) (-15 -2265 (|#4| |#4|)) (-15 -4024 ((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))))) (-15 -1769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2311 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2676 ((-606 |#4|) (-606 |#4|))) (-15 -3229 ((-537) |#4|)) (-15 -4066 ((-1205) |#4|)) (-15 -1410 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537))) (-15 -3130 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537))) (-15 -3723 ((-1205) (-606 |#4|))) (-15 -2421 ((-1205) (-537))) (-15 -1553 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731))) (-15 -2416 ((-731) |#4|))) -((-1575 ((|#4| |#4| (-606 |#4|)) 22 (|has| |#1| (-347)))) (-2597 (((-606 |#4|) (-606 |#4|) (-1100) (-1100)) 41) (((-606 |#4|) (-606 |#4|) (-1100)) 40) (((-606 |#4|) (-606 |#4|)) 35))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2597 ((-606 |#4|) (-606 |#4|))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100) (-1100))) (IF (|has| |#1| (-347)) (-15 -1575 (|#4| |#4| (-606 |#4|))) |%noBranch|)) (-435) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -433)) -((-1575 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-347)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *2)))) (-2597 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *7)))) (-2597 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *7)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-433 *3 *4 *5 *6))))) -(-10 -7 (-15 -2597 ((-606 |#4|) (-606 |#4|))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100) (-1100))) (IF (|has| |#1| (-347)) (-15 -1575 (|#4| |#4| (-606 |#4|))) |%noBranch|)) -((-2183 (($ $ $) 14) (($ (-606 $)) 21)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 41)) (-2211 (($ $ $) NIL) (($ (-606 $)) 22))) -(((-434 |#1|) (-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2183 (|#1| (-606 |#1|))) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|))) (-435)) (T -434)) -NIL -(-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2183 (|#1| (-606 |#1|))) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-435) (-134)) (T -435)) -((-2211 (*1 *1 *1 *1) (-4 *1 (-435))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) (-2183 (*1 *1 *1 *1) (-4 *1 (-435))) (-2183 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) (-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-435))))) -(-13 (-529) (-10 -8 (-15 -2211 ($ $ $)) (-15 -2211 ($ (-606 $))) (-15 -2183 ($ $ $)) (-15 -2183 ($ (-606 $))) (-15 -2298 ((-1113 $) (-1113 $) (-1113 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 (-391 (-905 |#1|)))) (-1200 $)) NIL) (((-1200 (-649 (-391 (-905 |#1|))))) NIL)) (-2568 (((-1200 $)) NIL)) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL)) (-2649 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-4263 (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL) (((-649 (-391 (-905 |#1|)))) NIL)) (-2624 (((-391 (-905 |#1|)) $) NIL)) (-4246 (((-649 (-391 (-905 |#1|))) $ (-1200 $)) NIL) (((-649 (-391 (-905 |#1|))) $) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-1899 (((-1113 (-905 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-347))) (((-1113 (-391 (-905 |#1|)))) 84 (|has| |#1| (-529)))) (-2541 (($ $ (-874)) NIL)) (-4260 (((-391 (-905 |#1|)) $) NIL)) (-3112 (((-1113 (-391 (-905 |#1|))) $) 82 (|has| (-391 (-905 |#1|)) (-529)))) (-2503 (((-391 (-905 |#1|)) (-1200 $)) NIL) (((-391 (-905 |#1|))) NIL)) (-1889 (((-1113 (-391 (-905 |#1|))) $) NIL)) (-1855 (((-111)) NIL)) (-3447 (($ (-1200 (-391 (-905 |#1|))) (-1200 $)) 103) (($ (-1200 (-391 (-905 |#1|)))) NIL)) (-3490 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3705 (((-874)) NIL)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) NIL)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL)) (-1652 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3699 (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL) (((-649 (-391 (-905 |#1|)))) NIL)) (-4217 (((-391 (-905 |#1|)) $) NIL)) (-3486 (((-649 (-391 (-905 |#1|))) $ (-1200 $)) NIL) (((-649 (-391 (-905 |#1|))) $) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-4096 (((-1113 (-905 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-347))) (((-1113 (-391 (-905 |#1|)))) 83 (|has| |#1| (-529)))) (-3060 (($ $ (-874)) NIL)) (-3408 (((-391 (-905 |#1|)) $) NIL)) (-2818 (((-1113 (-391 (-905 |#1|))) $) 77 (|has| (-391 (-905 |#1|)) (-529)))) (-2757 (((-391 (-905 |#1|)) (-1200 $)) NIL) (((-391 (-905 |#1|))) NIL)) (-4207 (((-1113 (-391 (-905 |#1|))) $) NIL)) (-2987 (((-111)) NIL)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL)) (-2077 (((-111)) NIL)) (-2415 (((-111)) NIL)) (-2528 (((-1064) $) NIL)) (-2661 (((-391 (-905 |#1|)) $ $) 71 (|has| |#1| (-529)))) (-4176 (((-391 (-905 |#1|)) $) 93 (|has| |#1| (-529)))) (-3997 (((-391 (-905 |#1|)) $) 95 (|has| |#1| (-529)))) (-1499 (((-1113 (-391 (-905 |#1|))) $) 88 (|has| |#1| (-529)))) (-3113 (((-391 (-905 |#1|))) 72 (|has| |#1| (-529)))) (-3631 (((-391 (-905 |#1|)) $ $) 64 (|has| |#1| (-529)))) (-2632 (((-391 (-905 |#1|)) $) 92 (|has| |#1| (-529)))) (-3541 (((-391 (-905 |#1|)) $) 94 (|has| |#1| (-529)))) (-1614 (((-1113 (-391 (-905 |#1|))) $) 87 (|has| |#1| (-529)))) (-3198 (((-391 (-905 |#1|))) 68 (|has| |#1| (-529)))) (-2954 (($) 101) (($ (-1117)) 107) (($ (-1200 (-1117))) 106) (($ (-1200 $)) 96) (($ (-1117) (-1200 $)) 105) (($ (-1200 (-1117)) (-1200 $)) 104)) (-3162 (((-111)) NIL)) (-1922 (((-391 (-905 |#1|)) $ (-537)) NIL)) (-1484 (((-1200 (-391 (-905 |#1|))) $ (-1200 $)) 98) (((-649 (-391 (-905 |#1|))) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 (-905 |#1|))) $) 40) (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL)) (-3996 (((-1200 (-391 (-905 |#1|))) $) NIL) (($ (-1200 (-391 (-905 |#1|)))) 37)) (-4183 (((-606 (-905 (-391 (-905 |#1|)))) (-1200 $)) NIL) (((-606 (-905 (-391 (-905 |#1|))))) NIL) (((-606 (-905 |#1|)) (-1200 $)) 99 (|has| |#1| (-529))) (((-606 (-905 |#1|))) 100 (|has| |#1| (-529)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL)) (-2341 (((-816) $) NIL) (($ (-1200 (-391 (-905 |#1|)))) NIL)) (-2122 (((-1200 $)) 60)) (-3678 (((-606 (-1200 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL)) (-3127 (($ (-649 (-391 (-905 |#1|))) $) NIL)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL)) (-3530 (((-111)) NIL)) (-1972 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) 97)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 56) (($ $ (-391 (-905 |#1|))) NIL) (($ (-391 (-905 |#1|)) $) NIL) (($ (-1084 |#2| (-391 (-905 |#1|))) $) NIL))) -(((-436 |#1| |#2| |#3| |#4|) (-13 (-401 (-391 (-905 |#1|))) (-609 (-1084 |#2| (-391 (-905 |#1|)))) (-10 -8 (-15 -2341 ($ (-1200 (-391 (-905 |#1|))))) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2954 ($)) (-15 -2954 ($ (-1117))) (-15 -2954 ($ (-1200 (-1117)))) (-15 -2954 ($ (-1200 $))) (-15 -2954 ($ (-1117) (-1200 $))) (-15 -2954 ($ (-1200 (-1117)) (-1200 $))) (IF (|has| |#1| (-529)) (PROGN (-15 -4096 ((-1113 (-391 (-905 |#1|))))) (-15 -1614 ((-1113 (-391 (-905 |#1|))) $)) (-15 -2632 ((-391 (-905 |#1|)) $)) (-15 -3541 ((-391 (-905 |#1|)) $)) (-15 -1899 ((-1113 (-391 (-905 |#1|))))) (-15 -1499 ((-1113 (-391 (-905 |#1|))) $)) (-15 -4176 ((-391 (-905 |#1|)) $)) (-15 -3997 ((-391 (-905 |#1|)) $)) (-15 -3631 ((-391 (-905 |#1|)) $ $)) (-15 -3198 ((-391 (-905 |#1|)))) (-15 -2661 ((-391 (-905 |#1|)) $ $)) (-15 -3113 ((-391 (-905 |#1|)))) (-15 -4183 ((-606 (-905 |#1|)) (-1200 $))) (-15 -4183 ((-606 (-905 |#1|))))) |%noBranch|))) (-163) (-874) (-606 (-1117)) (-1200 (-649 |#1|))) (T -436)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 *3)))) (-4 *3 (-163)) (-14 *6 (-1200 (-649 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) (-3324 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-436 *3 *4 *5 *6)) (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2472 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-436 *3 *4 *5 *6)) (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1) (-12 (-5 *1 (-436 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-874)) (-14 *4 (-606 (-1117))) (-14 *5 (-1200 (-649 *2))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 *2)) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1200 (-1117))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1200 (-436 *3 *4 *5 *6))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 *2)) (-14 *7 (-1200 (-649 *4))))) (-2954 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 (-1117))) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) (-4096 (*1 *2) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3631 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3198 (*1 *2) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2661 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3113 (*1 *2) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *2 (-606 (-905 *4))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) (-4183 (*1 *2) (-12 (-5 *2 (-606 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(-13 (-401 (-391 (-905 |#1|))) (-609 (-1084 |#2| (-391 (-905 |#1|)))) (-10 -8 (-15 -2341 ($ (-1200 (-391 (-905 |#1|))))) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2954 ($)) (-15 -2954 ($ (-1117))) (-15 -2954 ($ (-1200 (-1117)))) (-15 -2954 ($ (-1200 $))) (-15 -2954 ($ (-1117) (-1200 $))) (-15 -2954 ($ (-1200 (-1117)) (-1200 $))) (IF (|has| |#1| (-529)) (PROGN (-15 -4096 ((-1113 (-391 (-905 |#1|))))) (-15 -1614 ((-1113 (-391 (-905 |#1|))) $)) (-15 -2632 ((-391 (-905 |#1|)) $)) (-15 -3541 ((-391 (-905 |#1|)) $)) (-15 -1899 ((-1113 (-391 (-905 |#1|))))) (-15 -1499 ((-1113 (-391 (-905 |#1|))) $)) (-15 -4176 ((-391 (-905 |#1|)) $)) (-15 -3997 ((-391 (-905 |#1|)) $)) (-15 -3631 ((-391 (-905 |#1|)) $ $)) (-15 -3198 ((-391 (-905 |#1|)))) (-15 -2661 ((-391 (-905 |#1|)) $ $)) (-15 -3113 ((-391 (-905 |#1|)))) (-15 -4183 ((-606 (-905 |#1|)) (-1200 $))) (-15 -4183 ((-606 (-905 |#1|))))) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 13)) (-3757 (((-606 (-818 |#1|)) $) 75)) (-3588 (((-1113 $) $ (-818 |#1|)) 46) (((-1113 |#2|) $) 118)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) 21) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 44) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) 42) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) 80)) (-3940 (($ $) 68)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| |#3| $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 58)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) 123) (($ (-1113 $) (-818 |#1|)) 52)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) 59)) (-3733 (($ |#2| |#3|) 28) (($ $ (-818 |#1|) (-731)) 30) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 ((|#3| $) NIL) (((-731) $ (-818 |#1|)) 50) (((-606 (-731)) $ (-606 (-818 |#1|))) 57)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 |#3| |#3|) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) 39)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) 41)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 40)) (-3890 ((|#2| $) 116)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) 128 (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) 87) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) 90) (($ $ (-818 |#1|) $) 85) (($ $ (-606 (-818 |#1|)) (-606 $)) 106)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) 53) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 ((|#3| $) 67) (((-731) $ (-818 |#1|)) 37) (((-606 (-731)) $ (-606 (-818 |#1|))) 56)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) 125 (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) 145) (($ (-537)) NIL) (($ |#2|) 86) (($ (-818 |#1|)) 31) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ |#3|) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) 17 T CONST)) (-2943 (($) 25 T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) 64 (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 111)) (** (($ $ (-874)) NIL) (($ $ (-731)) 109)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 29) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-437 |#1| |#2| |#3|) (-13 (-902 |#2| |#3| (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998) (-223 (-2258 |#1|) (-731))) (T -437)) -((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-14 *3 (-606 (-1117))) (-5 *1 (-437 *3 *4 *5)) (-4 *4 (-998)) (-4 *5 (-223 (-2258 *3) (-731)))))) -(-13 (-902 |#2| |#3| (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) -((-3823 (((-111) |#1| (-606 |#2|)) 69)) (-3920 (((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|)) 78)) (-2433 (((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|))) 80)) (-1818 ((|#2| |#2| |#1|) 28)) (-3170 (((-731) |#2| (-606 |#2|)) 20))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1818 (|#2| |#2| |#1|)) (-15 -3170 ((-731) |#2| (-606 |#2|))) (-15 -3920 ((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|))) (-15 -2433 ((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|)))) (-15 -3823 ((-111) |#1| (-606 |#2|)))) (-291) (-1176 |#1|)) (T -438)) -((-3823 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *5)) (-4 *5 (-1176 *3)) (-4 *3 (-291)) (-5 *2 (-111)) (-5 *1 (-438 *3 *5)))) (-2433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1200 (-606 *3))) (-4 *4 (-291)) (-5 *2 (-606 *3)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1176 *4)))) (-3920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-291)) (-4 *6 (-1176 *4)) (-5 *2 (-1200 (-606 *6))) (-5 *1 (-438 *4 *6)) (-5 *5 (-606 *6)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-291)) (-5 *2 (-731)) (-5 *1 (-438 *5 *3)))) (-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1176 *3))))) -(-10 -7 (-15 -1818 (|#2| |#2| |#1|)) (-15 -3170 ((-731) |#2| (-606 |#2|))) (-15 -3920 ((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|))) (-15 -2433 ((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|)))) (-15 -3823 ((-111) |#1| (-606 |#2|)))) -((-3622 (((-402 |#5|) |#5|) 24))) -(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3622 ((-402 |#5|) |#5|))) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-753) (-529) (-529) (-902 |#4| |#2| |#1|)) (T -439)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *5 (-753)) (-4 *7 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-439 *4 *5 *6 *7 *3)) (-4 *6 (-529)) (-4 *3 (-902 *7 *5 *4))))) -(-10 -7 (-15 -3622 ((-402 |#5|) |#5|))) -((-1541 ((|#3|) 37)) (-2298 (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 33))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2298 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -1541 (|#3|))) (-753) (-807) (-862) (-902 |#3| |#1| |#2|)) (T -440)) -((-1541 (*1 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) (-5 *1 (-440 *3 *4 *2 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-862)) (-5 *1 (-440 *3 *4 *5 *6))))) -(-10 -7 (-15 -2298 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -1541 (|#3|))) -((-3622 (((-402 (-1113 |#1|)) (-1113 |#1|)) 43))) -(((-441 |#1|) (-10 -7 (-15 -3622 ((-402 (-1113 |#1|)) (-1113 |#1|)))) (-291)) (T -441)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-291)) (-5 *2 (-402 (-1113 *4))) (-5 *1 (-441 *4)) (-5 *3 (-1113 *4))))) -(-10 -7 (-15 -3622 ((-402 (-1113 |#1|)) (-1113 |#1|)))) -((-3815 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731))) 42) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731))) 41) (((-51) |#2| (-1117) (-278 |#2|)) 35) (((-51) (-1 |#2| (-537)) (-278 |#2|)) 28)) (-2411 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 80) (((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 79) (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537))) 78) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537))) 77) (((-51) |#2| (-1117) (-278 |#2|)) 72) (((-51) (-1 |#2| (-537)) (-278 |#2|)) 71)) (-3839 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 66) (((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 64)) (-3827 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537))) 48) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537))) 47))) -(((-442 |#1| |#2|) (-10 -7 (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731)))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731)))) (-15 -3827 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -3827 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -3839 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -3839 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -442)) -((-2411 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) (-2411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) (-4 *8 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) (-2411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) (-3839 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) (-3839 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) (-4 *8 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) (-3827 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-3827 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-3815 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-731))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-731))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *5 *6))))) -(-10 -7 (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731)))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731)))) (-15 -3827 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -3827 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -3839 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -3839 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))))) -((-1818 ((|#2| |#2| |#1|) 15)) (-2086 (((-606 |#2|) |#2| (-606 |#2|) |#1| (-874)) 69)) (-4130 (((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874)) 60))) -(((-443 |#1| |#2|) (-10 -7 (-15 -4130 ((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874))) (-15 -2086 ((-606 |#2|) |#2| (-606 |#2|) |#1| (-874))) (-15 -1818 (|#2| |#2| |#1|))) (-291) (-1176 |#1|)) (T -443)) -((-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1176 *3)))) (-2086 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-606 *3)) (-5 *5 (-874)) (-4 *3 (-1176 *4)) (-4 *4 (-291)) (-5 *1 (-443 *4 *3)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-874)) (-4 *5 (-291)) (-4 *3 (-1176 *5)) (-5 *2 (-2 (|:| |plist| (-606 *3)) (|:| |modulo| *5))) (-5 *1 (-443 *5 *3)) (-5 *4 (-606 *3))))) -(-10 -7 (-15 -4130 ((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874))) (-15 -2086 ((-606 |#2|) |#2| (-606 |#2|) |#1| (-874))) (-15 -1818 (|#2| |#2| |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 28)) (-3492 (($ |#3|) 25)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) 32)) (-3147 (($ |#2| |#4| $) 33)) (-3733 (($ |#2| (-674 |#3| |#4| |#5|)) 24)) (-3901 (((-674 |#3| |#4| |#5|) $) 15)) (-2369 ((|#3| $) 19)) (-2729 ((|#4| $) 17)) (-3912 ((|#2| $) 29)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-4139 (($ |#2| |#3| |#4|) 26)) (-2928 (($) 36 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-444 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-678 |#6|) (-678 |#2|) (-10 -8 (-15 -3912 (|#2| $)) (-15 -3901 ((-674 |#3| |#4| |#5|) $)) (-15 -2729 (|#4| $)) (-15 -2369 (|#3| $)) (-15 -3940 ($ $)) (-15 -3733 ($ |#2| (-674 |#3| |#4| |#5|))) (-15 -3492 ($ |#3|)) (-15 -4139 ($ |#2| |#3| |#4|)) (-15 -3147 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-606 (-1117)) (-163) (-807) (-223 (-2258 |#1|) (-731)) (-1 (-111) (-2 (|:| -2009 |#3|) (|:| -3283 |#4|)) (-2 (|:| -2009 |#3|) (|:| -3283 |#4|))) (-902 |#2| |#4| (-818 |#1|))) (T -444)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *6 (-223 (-2258 *3) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-5 *1 (-444 *3 *4 *5 *6 *7 *2)) (-4 *5 (-807)) (-4 *2 (-902 *4 *6 (-818 *3))))) (-3912 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) (-2 (|:| -2009 *4) (|:| -3283 *5)))) (-4 *2 (-163)) (-5 *1 (-444 *3 *2 *4 *5 *6 *7)) (-4 *4 (-807)) (-4 *7 (-902 *2 *5 (-818 *3))))) (-3901 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *6 (-223 (-2258 *3) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-5 *2 (-674 *5 *6 *7)) (-5 *1 (-444 *3 *4 *5 *6 *7 *8)) (-4 *5 (-807)) (-4 *8 (-902 *4 *6 (-818 *3))))) (-2729 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-14 *6 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *2)) (-2 (|:| -2009 *5) (|:| -3283 *2)))) (-4 *2 (-223 (-2258 *3) (-731))) (-5 *1 (-444 *3 *4 *5 *2 *6 *7)) (-4 *5 (-807)) (-4 *7 (-902 *4 *2 (-818 *3))))) (-2369 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) (-2 (|:| -2009 *2) (|:| -3283 *5)))) (-4 *2 (-807)) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *7 (-902 *4 *5 (-818 *3))))) (-3940 (*1 *1 *1) (-12 (-14 *2 (-606 (-1117))) (-4 *3 (-163)) (-4 *5 (-223 (-2258 *2) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) (-2 (|:| -2009 *4) (|:| -3283 *5)))) (-5 *1 (-444 *2 *3 *4 *5 *6 *7)) (-4 *4 (-807)) (-4 *7 (-902 *3 *5 (-818 *2))))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-674 *5 *6 *7)) (-4 *5 (-807)) (-4 *6 (-223 (-2258 *4) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-14 *4 (-606 (-1117))) (-4 *2 (-163)) (-5 *1 (-444 *4 *2 *5 *6 *7 *8)) (-4 *8 (-902 *2 *6 (-818 *4))))) (-3492 (*1 *1 *2) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) (-2 (|:| -2009 *2) (|:| -3283 *5)))) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *2 (-807)) (-4 *7 (-902 *4 *5 (-818 *3))))) (-4139 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-606 (-1117))) (-4 *2 (-163)) (-4 *4 (-223 (-2258 *5) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *4)) (-2 (|:| -2009 *3) (|:| -3283 *4)))) (-5 *1 (-444 *5 *2 *3 *4 *6 *7)) (-4 *3 (-807)) (-4 *7 (-902 *2 *4 (-818 *5))))) (-3147 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-606 (-1117))) (-4 *2 (-163)) (-4 *3 (-223 (-2258 *4) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *3)) (-2 (|:| -2009 *5) (|:| -3283 *3)))) (-5 *1 (-444 *4 *2 *5 *3 *6 *7)) (-4 *5 (-807)) (-4 *7 (-902 *2 *3 (-818 *4)))))) -(-13 (-678 |#6|) (-678 |#2|) (-10 -8 (-15 -3912 (|#2| $)) (-15 -3901 ((-674 |#3| |#4| |#5|) $)) (-15 -2729 (|#4| $)) (-15 -2369 (|#3| $)) (-15 -3940 ($ $)) (-15 -3733 ($ |#2| (-674 |#3| |#4| |#5|))) (-15 -3492 ($ |#3|)) (-15 -4139 ($ |#2| |#3| |#4|)) (-15 -3147 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3230 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-445 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3230 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|) (-13 (-989 (-391 (-537))) (-347) (-10 -8 (-15 -2341 ($ |#4|)) (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $))))) (T -445)) -((-3230 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-807)) (-4 *5 (-753)) (-4 *6 (-529)) (-4 *7 (-902 *6 *5 *3)) (-5 *1 (-445 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-989 (-391 (-537))) (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $)))))))) -(-10 -7 (-15 -3230 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-3757 (((-606 |#3|) $) 41)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 47)) (-3958 (($ (-606 |#4|)) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#4|) $) 18 (|has| $ (-6 -4300)))) (-1464 ((|#3| $) 45)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 14 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 39)) (-3425 (($) 17)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 16)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513)))) (($ (-606 |#4|)) 49)) (-2350 (($ (-606 |#4|)) 13)) (-1713 (($ $ |#3|) NIL)) (-2488 (($ $ |#3|) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 38) (((-606 |#4|) $) 48)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 30)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-446 |#1| |#2| |#3| |#4|) (-13 (-929 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3996 ($ (-606 |#4|))) (-6 -4300) (-6 -4301))) (-998) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -446)) -((-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-446 *3 *4 *5 *6))))) -(-13 (-929 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3996 ($ (-606 |#4|))) (-6 -4300) (-6 -4301))) -((-2928 (($) 11)) (-2943 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-447 |#1| |#2| |#3|) (-10 -8 (-15 -2943 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2928 (|#1|))) (-448 |#2| |#3|) (-163) (-23)) (T -447)) -NIL -(-10 -8 (-15 -2943 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2928 (|#1|))) -((-2330 (((-111) $ $) 7)) (-1516 (((-3 |#1| "failed") $) 26)) (-3958 ((|#1| $) 25)) (-3371 (($ $ $) 23)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 ((|#2| $) 19)) (-2341 (((-816) $) 11) (($ |#1|) 27)) (-2928 (($) 18 T CONST)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 15) (($ $ $) 13)) (-2318 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-448 |#1| |#2|) (-134) (-163) (-23)) (T -448)) -((-2943 (*1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-3371 (*1 *1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) -(-13 (-453 |t#1| |t#2|) (-989 |t#1|) (-10 -8 (-15 (-2943) ($) -2787) (-15 -3371 ($ $ $)))) -(((-100) . T) ((-579 (-816)) . T) ((-453 |#1| |#2|) . T) ((-989 |#1|) . T) ((-1045) . T)) -((-3518 (((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874)) 18)) (-3257 (((-1200 (-1200 (-537))) (-874)) 16))) -(((-449) (-10 -7 (-15 -3518 ((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874))) (-15 -3257 ((-1200 (-1200 (-537))) (-874))))) (T -449)) -((-3257 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 (-537)))) (-5 *1 (-449)))) (-3518 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 (-1200 (-537)))) (-5 *3 (-874)) (-5 *1 (-449))))) -(-10 -7 (-15 -3518 ((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874))) (-15 -3257 ((-1200 (-1200 (-537))) (-874)))) -((-1709 (((-537) (-537)) 30) (((-537)) 22)) (-2634 (((-537) (-537)) 26) (((-537)) 18)) (-1513 (((-537) (-537)) 28) (((-537)) 20)) (-4189 (((-111) (-111)) 12) (((-111)) 10)) (-2576 (((-111) (-111)) 11) (((-111)) 9)) (-3922 (((-111) (-111)) 24) (((-111)) 15))) -(((-450) (-10 -7 (-15 -2576 ((-111))) (-15 -4189 ((-111))) (-15 -2576 ((-111) (-111))) (-15 -4189 ((-111) (-111))) (-15 -3922 ((-111))) (-15 -1513 ((-537))) (-15 -2634 ((-537))) (-15 -1709 ((-537))) (-15 -3922 ((-111) (-111))) (-15 -1513 ((-537) (-537))) (-15 -2634 ((-537) (-537))) (-15 -1709 ((-537) (-537))))) (T -450)) -((-1709 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-2634 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-1709 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-2634 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-1513 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-3922 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-4189 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-4189 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-2576 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) -(-10 -7 (-15 -2576 ((-111))) (-15 -4189 ((-111))) (-15 -2576 ((-111) (-111))) (-15 -4189 ((-111) (-111))) (-15 -3922 ((-111))) (-15 -1513 ((-537))) (-15 -2634 ((-537))) (-15 -1709 ((-537))) (-15 -3922 ((-111) (-111))) (-15 -1513 ((-537) (-537))) (-15 -2634 ((-537) (-537))) (-15 -1709 ((-537) (-537)))) -((-2330 (((-111) $ $) NIL)) (-1547 (((-606 (-363)) $) 28) (((-606 (-363)) $ (-606 (-363))) 96)) (-1751 (((-606 (-1040 (-363))) $) 16) (((-606 (-1040 (-363))) $ (-606 (-1040 (-363)))) 94)) (-2172 (((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827))) 45)) (-1880 (((-606 (-606 (-896 (-210)))) $) 90)) (-2385 (((-1205) $ (-896 (-210)) (-827)) 108)) (-1295 (($ $) 89) (($ (-606 (-606 (-896 (-210))))) 99) (($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874))) 98) (($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247))) 100)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 71)) (-2528 (((-1064) $) NIL)) (-2534 (($) 97)) (-3616 (((-606 (-210)) (-606 (-606 (-896 (-210))))) 56)) (-2115 (((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874)) 102) (((-1205) $ (-896 (-210))) 104) (((-1205) $ (-896 (-210)) (-827) (-827) (-874)) 103)) (-2341 (((-816) $) 114) (($ (-606 (-606 (-896 (-210))))) 109)) (-3462 (((-1205) $ (-896 (-210))) 107)) (-2244 (((-111) $ $) NIL))) -(((-451) (-13 (-1045) (-10 -8 (-15 -2534 ($)) (-15 -1295 ($ $)) (-15 -1295 ($ (-606 (-606 (-896 (-210)))))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247)))) (-15 -1880 ((-606 (-606 (-896 (-210)))) $)) (-15 -2926 ((-537) $)) (-15 -1751 ((-606 (-1040 (-363))) $)) (-15 -1751 ((-606 (-1040 (-363))) $ (-606 (-1040 (-363))))) (-15 -1547 ((-606 (-363)) $)) (-15 -1547 ((-606 (-363)) $ (-606 (-363)))) (-15 -2115 ((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874))) (-15 -2115 ((-1205) $ (-896 (-210)))) (-15 -2115 ((-1205) $ (-896 (-210)) (-827) (-827) (-874))) (-15 -3462 ((-1205) $ (-896 (-210)))) (-15 -2385 ((-1205) $ (-896 (-210)) (-827))) (-15 -2341 ($ (-606 (-606 (-896 (-210)))))) (-15 -2341 ((-816) $)) (-15 -2172 ((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827)))) (-15 -3616 ((-606 (-210)) (-606 (-606 (-896 (-210))))))))) (T -451)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-451)))) (-2534 (*1 *1) (-5 *1 (-451))) (-1295 (*1 *1 *1) (-5 *1 (-451))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-1295 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *4 (-606 (-874))) (-5 *1 (-451)))) (-1295 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *4 (-606 (-874))) (-5 *5 (-606 (-247))) (-5 *1 (-451)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-451)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) (-1547 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-2172 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *1 (-451)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-210))) (-5 *1 (-451))))) -(-13 (-1045) (-10 -8 (-15 -2534 ($)) (-15 -1295 ($ $)) (-15 -1295 ($ (-606 (-606 (-896 (-210)))))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247)))) (-15 -1880 ((-606 (-606 (-896 (-210)))) $)) (-15 -2926 ((-537) $)) (-15 -1751 ((-606 (-1040 (-363))) $)) (-15 -1751 ((-606 (-1040 (-363))) $ (-606 (-1040 (-363))))) (-15 -1547 ((-606 (-363)) $)) (-15 -1547 ((-606 (-363)) $ (-606 (-363)))) (-15 -2115 ((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874))) (-15 -2115 ((-1205) $ (-896 (-210)))) (-15 -2115 ((-1205) $ (-896 (-210)) (-827) (-827) (-874))) (-15 -3462 ((-1205) $ (-896 (-210)))) (-15 -2385 ((-1205) $ (-896 (-210)) (-827))) (-15 -2341 ($ (-606 (-606 (-896 (-210)))))) (-15 -2341 ((-816) $)) (-15 -2172 ((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827)))) (-15 -3616 ((-606 (-210)) (-606 (-606 (-896 (-210)))))))) -((-2329 (($ $) NIL) (($ $ $) 11))) -(((-452 |#1| |#2| |#3|) (-10 -8 (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|))) (-453 |#2| |#3|) (-163) (-23)) (T -452)) -NIL -(-10 -8 (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 ((|#2| $) 19)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 15) (($ $ $) 13)) (-2318 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-453 |#1| |#2|) (-134) (-163) (-23)) (T -453)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) (-2928 (*1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) -(-13 (-1045) (-10 -8 (-15 -2872 (|t#2| $)) (-15 (-2928) ($) -2787) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2329 ($ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2827 (((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|))) 92)) (-3628 (((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))) 90)) (-3174 (((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))) 61))) -(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -2827 ((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -3174 ((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))))) (-606 (-1117)) (-435) (-435)) (T -454)) -((-3174 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-2 (|:| |dpolys| (-606 (-232 *5 *6))) (|:| |coords| (-606 (-537))))) (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435)))) (-2827 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-454 *4 *5 *6)) (-4 *6 (-435)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-606 (-606 (-232 *5 *6)))) (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) -(-10 -7 (-15 -3628 ((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -2827 ((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -3174 ((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))))) -((-3490 (((-3 $ "failed") $) 11)) (-1978 (($ $ $) 18)) (-1674 (($ $ $) 19)) (-2340 (($ $ $) 9)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 17))) -(((-455 |#1|) (-10 -8 (-15 -1674 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) (-456)) (T -455)) -NIL -(-10 -8 (-15 -1674 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-2836 (((-111) $) 17)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 24)) (-2528 (((-1064) $) 10)) (-1978 (($ $ $) 21)) (-1674 (($ $ $) 20)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 23)) (** (($ $ (-874)) 13) (($ $ (-731)) 16) (($ $ (-537)) 22)) (* (($ $ $) 14))) -(((-456) (-134)) (T -456)) -((-3865 (*1 *1 *1) (-4 *1 (-456))) (-2340 (*1 *1 *1 *1) (-4 *1 (-456))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-456)) (-5 *2 (-537)))) (-1978 (*1 *1 *1 *1) (-4 *1 (-456))) (-1674 (*1 *1 *1 *1) (-4 *1 (-456)))) -(-13 (-687) (-10 -8 (-15 -3865 ($ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-537))) (-6 -4297) (-15 -1978 ($ $ $)) (-15 -1674 ($ $ $)))) -(((-100) . T) ((-579 (-816)) . T) ((-687) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 17)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) NIL) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 26 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 33 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 27 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 25 (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 15)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1196 |#2|)) NIL) (($ (-1185 |#1| |#2| |#3|)) 9) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 18)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 24)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-457 |#1| |#2| |#3|) (-13 (-1181 |#1|) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -2341 ($ (-1185 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -457)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-457 *3 *4 *5)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1181 |#1|) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -2341 ($ (-1185 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) 18)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 19)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 16)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-458 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2|) (-1045) (-1045) (-1130 |#1| |#2|) |#2|) (T -458)) -NIL -(-1130 |#1| |#2|) -((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) NIL)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2375 (((-3 |#4| "failed") $) 37)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 47)) (-1540 (($ $ |#4|) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3042 (((-111) |#3| $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-459 |#1| |#2| |#3| |#4|) (-1147 |#1| |#2| |#3| |#4|) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -459)) -NIL -(-1147 |#1| |#2| |#3| |#4|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3338 (($) 18)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3996 (((-363) $) 22) (((-210) $) 25) (((-391 (-1113 (-537))) $) 19) (((-513) $) 52)) (-2341 (((-816) $) 50) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (((-210) $) 24) (((-363) $) 21)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 36 T CONST)) (-2943 (($) 11 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-460) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))) (-973) (-579 (-210)) (-579 (-363)) (-580 (-391 (-1113 (-537)))) (-580 (-513)) (-10 -8 (-15 -3338 ($))))) (T -460)) -((-3338 (*1 *1) (-5 *1 (-460)))) -(-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))) (-973) (-579 (-210)) (-579 (-363)) (-580 (-391 (-1113 (-537)))) (-580 (-513)) (-10 -8 (-15 -3338 ($)))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) 16)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 20)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 18)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) 13)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 19)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 11 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) 15 (|has| $ (-6 -4300))))) -(((-461 |#1| |#2| |#3|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045) (-1100)) (T -461)) -NIL -(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) -((-4106 (((-537) (-537) (-537)) 7)) (-2167 (((-111) (-537) (-537) (-537) (-537)) 11)) (-1873 (((-1200 (-606 (-537))) (-731) (-731)) 23))) -(((-462) (-10 -7 (-15 -4106 ((-537) (-537) (-537))) (-15 -2167 ((-111) (-537) (-537) (-537) (-537))) (-15 -1873 ((-1200 (-606 (-537))) (-731) (-731))))) (T -462)) -((-1873 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1200 (-606 (-537)))) (-5 *1 (-462)))) (-2167 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-462)))) (-4106 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-462))))) -(-10 -7 (-15 -4106 ((-537) (-537) (-537))) (-15 -2167 ((-111) (-537) (-537) (-537) (-537))) (-15 -1873 ((-1200 (-606 (-537))) (-731) (-731)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) NIL)) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-464 (-2258 |#1|) (-731)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-464 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-464 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-464 (-2258 |#1|) (-731)) (-464 (-2258 |#1|) (-731))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-464 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-464 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-463 |#1| |#2|) (-13 (-902 |#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998)) (T -463)) -((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-463 *3 *4)) (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) -(-13 (-902 |#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) -((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) NIL (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) NIL (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 11)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) NIL)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) NIL (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) NIL (|has| |#2| (-129)) CONST)) (-2943 (($) NIL (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 15 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) NIL (|has| |#2| (-687))) (($ $ |#2|) NIL (|has| |#2| (-687))) (($ |#2| $) NIL (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-464 |#1| |#2|) (-223 |#1| |#2|) (-731) (-753)) (T -464)) -NIL -(-223 |#1| |#2|) -((-2330 (((-111) $ $) NIL)) (-1520 (((-606 (-487)) $) 11)) (-3923 (((-487) $) 10)) (-1654 (((-1100) $) NIL)) (-3755 (($ (-487) (-606 (-487))) 9)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-465) (-13 (-1029) (-10 -8 (-15 -3755 ($ (-487) (-606 (-487)))) (-15 -3923 ((-487) $)) (-15 -1520 ((-606 (-487)) $))))) (T -465)) -((-3755 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-487))) (-5 *2 (-487)) (-5 *1 (-465)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-465)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-606 (-487))) (-5 *1 (-465))))) -(-13 (-1029) (-10 -8 (-15 -3755 ($ (-487) (-606 (-487)))) (-15 -3923 ((-487) $)) (-15 -1520 ((-606 (-487)) $)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1646 (($ $ $) 32)) (-1470 (($ $ $) 31)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3889 ((|#1| $) 26)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 27)) (-3499 (($ |#1| $) 10)) (-2217 (($ (-606 |#1|)) 12)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 23)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 9)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 29)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) 21 (|has| $ (-6 -4300))))) -(((-466 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -2217 ($ (-606 |#1|))))) (-807)) (T -466)) -((-2217 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-466 *3))))) -(-13 (-921 |#1|) (-10 -8 (-15 -2217 ($ (-606 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ $) 69)) (-2315 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 44)) (-2528 (((-1064) $) NIL)) (-1524 (((-3 |#4| "failed") $) 107)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-537)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2341 (((-816) $) 102)) (-2928 (($) 33 T CONST)) (-2244 (((-111) $ $) 109)) (-2329 (($ $) 72) (($ $ $) NIL)) (-2318 (($ $ $) 70)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 73))) -(((-467 |#1| |#2| |#3| |#4|) (-319 |#1| |#2| |#3| |#4|) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -467)) -NIL -(-319 |#1| |#2| |#3| |#4|) -((-2563 (((-537) (-606 (-537))) 30)) (-4143 ((|#1| (-606 |#1|)) 56)) (-1990 (((-606 |#1|) (-606 |#1|)) 57)) (-2744 (((-606 |#1|) (-606 |#1|)) 59)) (-2211 ((|#1| (-606 |#1|)) 58)) (-1835 (((-606 (-537)) (-606 |#1|)) 33))) -(((-468 |#1|) (-10 -7 (-15 -2211 (|#1| (-606 |#1|))) (-15 -4143 (|#1| (-606 |#1|))) (-15 -2744 ((-606 |#1|) (-606 |#1|))) (-15 -1990 ((-606 |#1|) (-606 |#1|))) (-15 -1835 ((-606 (-537)) (-606 |#1|))) (-15 -2563 ((-537) (-606 (-537))))) (-1176 (-537))) (T -468)) -((-2563 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-537)) (-5 *1 (-468 *4)) (-4 *4 (-1176 *2)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1176 (-537))) (-5 *2 (-606 (-537))) (-5 *1 (-468 *4)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537))))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537)))))) -(-10 -7 (-15 -2211 (|#1| (-606 |#1|))) (-15 -4143 (|#1| (-606 |#1|))) (-15 -2744 ((-606 |#1|) (-606 |#1|))) (-15 -1990 ((-606 |#1|) (-606 |#1|))) (-15 -1835 ((-606 (-537)) (-606 |#1|))) (-15 -2563 ((-537) (-606 (-537))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2050 (($ (-391 (-537))) 9)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 16) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) -(((-469) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 16) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2050 ($ (-391 (-537))))))) (T -469)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 16)) (-5 *1 (-469)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469))))) -(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 16) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2050 ($ (-391 (-537)))))) -((-3703 (((-606 |#2|) $) 23)) (-3122 (((-111) |#2| $) 28)) (-3206 (((-111) (-1 (-111) |#2|) $) 21)) (-4116 (($ $ (-606 (-278 |#2|))) 13) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-606 |#2|) (-606 |#2|)) NIL)) (-2539 (((-731) (-1 (-111) |#2|) $) 22) (((-731) |#2| $) 26)) (-2341 (((-816) $) 37)) (-2030 (((-111) (-1 (-111) |#2|) $) 20)) (-2244 (((-111) $ $) 31)) (-2258 (((-731) $) 17))) -(((-470 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3703 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) (-471 |#2|) (-1154)) (T -470)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3703 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-471 |#1|) (-134) (-1154)) (T -471)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) (-2030 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-3206 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-2539 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-731)))) (-3661 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-3703 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-2539 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-731)))) (-3122 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |t#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |t#1| (-1045)) (IF (|has| |t#1| (-293 |t#1|)) (-6 (-293 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4301)) (-15 -4081 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4300)) (PROGN (-15 -2030 ((-111) (-1 (-111) |t#1|) $)) (-15 -3206 ((-111) (-1 (-111) |t#1|) $)) (-15 -2539 ((-731) (-1 (-111) |t#1|) $)) (-15 -3661 ((-606 |t#1|) $)) (-15 -3703 ((-606 |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2539 ((-731) |t#1| $)) (-15 -3122 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3701 (($ (-1100)) 8)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 14) (((-1100) $) 11)) (-2244 (((-111) $ $) 10))) -(((-472) (-13 (-1045) (-579 (-1100)) (-10 -8 (-15 -3701 ($ (-1100)))))) (T -472)) -((-3701 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-472))))) -(-13 (-1045) (-579 (-1100)) (-10 -8 (-15 -3701 ($ (-1100))))) -((-1403 (($ $) 15)) (-1378 (($ $) 24)) (-1429 (($ $) 12)) (-1441 (($ $) 10)) (-1415 (($ $) 17)) (-1389 (($ $) 22))) -(((-473 |#1|) (-10 -8 (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|))) (-474)) (T -473)) -NIL -(-10 -8 (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|))) -((-1403 (($ $) 11)) (-1378 (($ $) 10)) (-1429 (($ $) 9)) (-1441 (($ $) 8)) (-1415 (($ $) 7)) (-1389 (($ $) 6))) -(((-474) (-134)) (T -474)) -((-1403 (*1 *1 *1) (-4 *1 (-474))) (-1378 (*1 *1 *1) (-4 *1 (-474))) (-1429 (*1 *1 *1) (-4 *1 (-474))) (-1441 (*1 *1 *1) (-4 *1 (-474))) (-1415 (*1 *1 *1) (-4 *1 (-474))) (-1389 (*1 *1 *1) (-4 *1 (-474)))) -(-13 (-10 -8 (-15 -1389 ($ $)) (-15 -1415 ($ $)) (-15 -1441 ($ $)) (-15 -1429 ($ $)) (-15 -1378 ($ $)) (-15 -1403 ($ $)))) -((-3622 (((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)) 42))) -(((-475 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)))) (-347) (-1176 |#1|) (-13 (-347) (-141) (-685 |#1| |#2|)) (-1176 |#3|)) (T -475)) -((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-4 *7 (-13 (-347) (-141) (-685 *5 *6))) (-5 *2 (-402 *3)) (-5 *1 (-475 *5 *6 *7 *3)) (-4 *3 (-1176 *7))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)))) -((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-2652 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1656 (((-111) $) 39)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2789 (((-111) $ $) 64)) (-3852 (((-606 (-578 $)) $) 48)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1974 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-4190 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-537) $) NIL) (((-391 (-537)) $) 50)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-391 (-537)))) (|:| |vec| (-1200 (-391 (-537))))) (-649 $) (-1200 $)) NIL) (((-649 (-391 (-537))) (-649 $)) NIL)) (-3195 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) 42)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-3301 (((-1069 (-537) (-578 $)) $) 37)) (-2590 (($ $ (-537)) NIL)) (-2055 (((-1113 $) (-1113 $) (-578 $)) 78) (((-1113 $) (-1113 $) (-606 (-578 $))) 55) (($ $ (-578 $)) 67) (($ $ (-606 (-578 $))) 68)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2040 (((-1113 $) (-578 $)) 65 (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-3865 (($ $) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1930 (((-731) $) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) 36)) (-3315 (((-1069 (-537) (-578 $)) $) 20)) (-2529 (($ $) NIL (|has| $ (-998)))) (-3996 (((-363) $) 92) (((-210) $) 100) (((-160 (-363)) $) 108)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-1069 (-537) (-578 $))) 21)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) 84)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 10 T CONST)) (-2943 (($) 22 T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 24)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) 44)) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-391 (-537))) NIL) (($ $ (-537)) 46) (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ $ $) 27) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) -(((-476) (-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2789 ((-111) $ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $))))))) (T -476)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3195 (*1 *1 *1) (-5 *1 (-476))) (-2789 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-476)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-578 (-476))) (-5 *1 (-476)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-606 (-578 (-476)))) (-5 *1 (-476)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-476))) (-5 *1 (-476)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-476)))) (-5 *1 (-476))))) -(-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2789 ((-111) $ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $)))))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 25 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 22 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 21)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 14)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 12 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) 23 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 10 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 13)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 24) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 9 (|has| $ (-6 -4300))))) -(((-477 |#1| |#2|) (-19 |#1|) (-1154) (-537)) (T -477)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-663))) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-424)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-424))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-1205 (-663)))) (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))))) +(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) +((-3470 (((-3 $ "failed") (-1205 (-299 (-363)))) 21) (((-3 $ "failed") (-1205 (-299 (-526)))) 19) (((-3 $ "failed") (-1205 (-905 (-363)))) 17) (((-3 $ "failed") (-1205 (-905 (-526)))) 15) (((-3 $ "failed") (-1205 (-392 (-905 (-363))))) 13) (((-3 $ "failed") (-1205 (-392 (-905 (-526))))) 11)) (-3469 (($ (-1205 (-299 (-363)))) 22) (($ (-1205 (-299 (-526)))) 20) (($ (-1205 (-905 (-363)))) 18) (($ (-1205 (-905 (-526)))) 16) (($ (-1205 (-392 (-905 (-363))))) 14) (($ (-1205 (-392 (-905 (-526))))) 12)) (-3699 (((-1211) $) 7)) (-4274 (((-823) $) 8) (($ (-607 (-315))) 25) (($ (-315)) 24) (($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) 23))) +(((-425) (-134)) (T -425)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-425)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-425)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425))))) +(-13 (-381) (-10 -8 (-15 -4274 ($ (-607 (-315)))) (-15 -4274 ($ (-315))) (-15 -4274 ($ (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315)))))) (-15 -3469 ($ (-1205 (-299 (-363))))) (-15 -3470 ((-3 $ "failed") (-1205 (-299 (-363))))) (-15 -3469 ($ (-1205 (-299 (-526))))) (-15 -3470 ((-3 $ "failed") (-1205 (-299 (-526))))) (-15 -3469 ($ (-1205 (-905 (-363))))) (-15 -3470 ((-3 $ "failed") (-1205 (-905 (-363))))) (-15 -3469 ($ (-1205 (-905 (-526))))) (-15 -3470 ((-3 $ "failed") (-1205 (-905 (-526))))) (-15 -3469 ($ (-1205 (-392 (-905 (-363)))))) (-15 -3470 ((-3 $ "failed") (-1205 (-392 (-905 (-363)))))) (-15 -3469 ($ (-1205 (-392 (-905 (-526)))))) (-15 -3470 ((-3 $ "failed") (-1205 (-392 (-905 (-526)))))))) +(((-583 (-823)) . T) ((-381) . T) ((-1159) . T)) +((-1934 (((-111)) 17)) (-1935 (((-111) (-111)) 18)) (-1936 (((-111)) 13)) (-1937 (((-111) (-111)) 14)) (-1939 (((-111)) 15)) (-1940 (((-111) (-111)) 16)) (-1931 (((-878) (-878)) 21) (((-878)) 20)) (-1932 (((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526))))) 42)) (-1930 (((-878) (-878)) 23) (((-878)) 22)) (-1933 (((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|) 62)) (-1929 (((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526))))))) 126)) (-4053 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)) 152)) (-4052 (((-390 |#1|) |#1| (-735) (-735)) 165) (((-390 |#1|) |#1| (-607 (-735)) (-735)) 162) (((-390 |#1|) |#1| (-607 (-735))) 164) (((-390 |#1|) |#1| (-735)) 163) (((-390 |#1|) |#1|) 161)) (-1951 (((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111)) 167) (((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735)) 168) (((-3 |#1| "failed") (-878) |#1| (-607 (-735))) 170) (((-3 |#1| "failed") (-878) |#1| (-735)) 169) (((-3 |#1| "failed") (-878) |#1|) 171)) (-4051 (((-390 |#1|) |#1| (-735) (-735)) 160) (((-390 |#1|) |#1| (-607 (-735)) (-735)) 156) (((-390 |#1|) |#1| (-607 (-735))) 158) (((-390 |#1|) |#1| (-735)) 157) (((-390 |#1|) |#1|) 155)) (-1938 (((-111) |#1|) 37)) (-1950 (((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526))))) 67)) (-1941 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)) 154))) +(((-426 |#1|) (-10 -7 (-15 -1929 ((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))))) (-15 -1950 ((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1930 ((-878))) (-15 -1930 ((-878) (-878))) (-15 -1931 ((-878))) (-15 -1931 ((-878) (-878))) (-15 -1932 ((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1933 ((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|)) (-15 -1934 ((-111))) (-15 -1935 ((-111) (-111))) (-15 -1936 ((-111))) (-15 -1937 ((-111) (-111))) (-15 -1938 ((-111) |#1|)) (-15 -1939 ((-111))) (-15 -1940 ((-111) (-111))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1| (-735))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4051 ((-390 |#1|) |#1| (-735) (-735))) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1| (-735))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4052 ((-390 |#1|) |#1| (-735) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1|)) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111))) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111))) (-15 -1941 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)))) (-1181 (-526))) (T -426)) +((-1941 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1048 (-735))) (-5 *6 (-735)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *6 (-111)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-878)) (-5 *4 (-735)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-1951 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-878)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) (-4052 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1939 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1938 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1936 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1934 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1933 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2875 (-526)) (|:| -2736 (-607 *3)))) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) (-4 *4 (-1181 (-526))) (-5 *2 (-735)) (-5 *1 (-426 *4)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1931 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1930 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) (-4 *4 (-1181 (-526))) (-5 *2 (-701 (-735))) (-5 *1 (-426 *4)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *4) (|:| -2456 (-526))))))) (-4 *4 (-1181 (-526))) (-5 *2 (-390 *4)) (-5 *1 (-426 *4))))) +(-10 -7 (-15 -1929 ((-390 |#1|) (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))))) (-15 -1950 ((-701 (-735)) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1930 ((-878))) (-15 -1930 ((-878) (-878))) (-15 -1931 ((-878))) (-15 -1931 ((-878) (-878))) (-15 -1932 ((-735) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))))) (-15 -1933 ((-2 (|:| -2875 (-526)) (|:| -2736 (-607 |#1|))) |#1|)) (-15 -1934 ((-111))) (-15 -1935 ((-111) (-111))) (-15 -1936 ((-111))) (-15 -1937 ((-111) (-111))) (-15 -1938 ((-111) |#1|)) (-15 -1939 ((-111))) (-15 -1940 ((-111) (-111))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4051 ((-390 |#1|) |#1| (-735))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4051 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4051 ((-390 |#1|) |#1| (-735) (-735))) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1| (-735))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)))) (-15 -4052 ((-390 |#1|) |#1| (-607 (-735)) (-735))) (-15 -4052 ((-390 |#1|) |#1| (-735) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1|)) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735))) (-15 -1951 ((-3 |#1| "failed") (-878) |#1| (-607 (-735)) (-735) (-111))) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111))) (-15 -1941 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111) (-1048 (-735)) (-735)))) +((-1945 (((-526) |#2|) 48) (((-526) |#2| (-735)) 47)) (-1944 (((-526) |#2|) 55)) (-1946 ((|#3| |#2|) 25)) (-3429 ((|#3| |#2| (-878)) 14)) (-4152 ((|#3| |#2|) 15)) (-1947 ((|#3| |#2|) 9)) (-2900 ((|#3| |#2|) 10)) (-1943 ((|#3| |#2| (-878)) 62) ((|#3| |#2|) 30)) (-1942 (((-526) |#2|) 57))) +(((-427 |#1| |#2| |#3|) (-10 -7 (-15 -1942 ((-526) |#2|)) (-15 -1943 (|#3| |#2|)) (-15 -1943 (|#3| |#2| (-878))) (-15 -1944 ((-526) |#2|)) (-15 -1945 ((-526) |#2| (-735))) (-15 -1945 ((-526) |#2|)) (-15 -3429 (|#3| |#2| (-878))) (-15 -1946 (|#3| |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -2900 (|#3| |#2|)) (-15 -4152 (|#3| |#2|))) (-1004) (-1181 |#1|) (-13 (-389) (-995 |#1|) (-348) (-1145) (-269))) (T -427)) +((-4152 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) (-4 *3 (-1181 *5)))) (-1945 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269))))) (-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *5 *3 *6)) (-4 *3 (-1181 *5)) (-4 *6 (-13 (-389) (-995 *5) (-348) (-1145) (-269))))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269))))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) (-4 *3 (-1181 *5)))) (-1943 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) +(-10 -7 (-15 -1942 ((-526) |#2|)) (-15 -1943 (|#3| |#2|)) (-15 -1943 (|#3| |#2| (-878))) (-15 -1944 ((-526) |#2|)) (-15 -1945 ((-526) |#2| (-735))) (-15 -1945 ((-526) |#2|)) (-15 -3429 (|#3| |#2| (-878))) (-15 -1946 (|#3| |#2|)) (-15 -1947 (|#3| |#2|)) (-15 -2900 (|#3| |#2|)) (-15 -4152 (|#3| |#2|))) +((-3673 ((|#2| (-1205 |#1|)) 36)) (-1949 ((|#2| |#2| |#1|) 49)) (-1948 ((|#2| |#2| |#1|) 41)) (-2347 ((|#2| |#2|) 38)) (-3486 (((-111) |#2|) 30)) (-1952 (((-607 |#2|) (-878) (-390 |#2|)) 17)) (-1951 ((|#2| (-878) (-390 |#2|)) 21)) (-1950 (((-701 (-735)) (-390 |#2|)) 25))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3486 ((-111) |#2|)) (-15 -3673 (|#2| (-1205 |#1|))) (-15 -2347 (|#2| |#2|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -1949 (|#2| |#2| |#1|)) (-15 -1950 ((-701 (-735)) (-390 |#2|))) (-15 -1951 (|#2| (-878) (-390 |#2|))) (-15 -1952 ((-607 |#2|) (-878) (-390 |#2|)))) (-1004) (-1181 |#1|)) (T -428)) +((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-390 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-1004)) (-5 *2 (-607 *6)) (-5 *1 (-428 *5 *6)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-390 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-428 *5 *2)) (-4 *5 (-1004)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-390 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-701 (-735))) (-5 *1 (-428 *4 *5)))) (-1949 (*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-1948 (*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-1004)) (-4 *2 (-1181 *4)) (-5 *1 (-428 *4 *2)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -3486 ((-111) |#2|)) (-15 -3673 (|#2| (-1205 |#1|))) (-15 -2347 (|#2| |#2|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -1949 (|#2| |#2| |#1|)) (-15 -1950 ((-701 (-735)) (-390 |#2|))) (-15 -1951 (|#2| (-878) (-390 |#2|))) (-15 -1952 ((-607 |#2|) (-878) (-390 |#2|)))) +((-1955 (((-735)) 41)) (-1959 (((-735)) 23 (|has| |#1| (-389))) (((-735) (-735)) 22 (|has| |#1| (-389)))) (-1958 (((-526) |#1|) 18 (|has| |#1| (-389)))) (-1957 (((-526) |#1|) 20 (|has| |#1| (-389)))) (-1954 (((-735)) 40) (((-735) (-735)) 39)) (-1953 ((|#1| (-735) (-526)) 29)) (-1956 (((-1211)) 43))) +(((-429 |#1|) (-10 -7 (-15 -1953 (|#1| (-735) (-526))) (-15 -1954 ((-735) (-735))) (-15 -1954 ((-735))) (-15 -1955 ((-735))) (-15 -1956 ((-1211))) (IF (|has| |#1| (-389)) (PROGN (-15 -1957 ((-526) |#1|)) (-15 -1958 ((-526) |#1|)) (-15 -1959 ((-735) (-735))) (-15 -1959 ((-735)))) |%noBranch|)) (-1004)) (T -429)) +((-1959 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1958 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) (-1956 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1955 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1954 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-526)) (-5 *1 (-429 *2)) (-4 *2 (-1004))))) +(-10 -7 (-15 -1953 (|#1| (-735) (-526))) (-15 -1954 ((-735) (-735))) (-15 -1954 ((-735))) (-15 -1955 ((-735))) (-15 -1956 ((-1211))) (IF (|has| |#1| (-389)) (PROGN (-15 -1957 ((-526) |#1|)) (-15 -1958 ((-526) |#1|)) (-15 -1959 ((-735) (-735))) (-15 -1959 ((-735)))) |%noBranch|)) +((-1960 (((-607 (-526)) (-526)) 61)) (-4045 (((-111) (-159 (-526))) 65)) (-4051 (((-390 (-159 (-526))) (-159 (-526))) 60))) +(((-430) (-10 -7 (-15 -4051 ((-390 (-159 (-526))) (-159 (-526)))) (-15 -1960 ((-607 (-526)) (-526))) (-15 -4045 ((-111) (-159 (-526)))))) (T -430)) +((-4045 (*1 *2 *3) (-12 (-5 *3 (-159 (-526))) (-5 *2 (-111)) (-5 *1 (-430)))) (-1960 (*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-430)) (-5 *3 (-526)))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 (-159 (-526)))) (-5 *1 (-430)) (-5 *3 (-159 (-526)))))) +(-10 -7 (-15 -4051 ((-390 (-159 (-526))) (-159 (-526)))) (-15 -1960 ((-607 (-526)) (-526))) (-15 -4045 ((-111) (-159 (-526))))) +((-3246 ((|#4| |#4| (-607 |#4|)) 22 (|has| |#1| (-348)))) (-2303 (((-607 |#4|) (-607 |#4|) (-1106) (-1106)) 41) (((-607 |#4|) (-607 |#4|) (-1106)) 40) (((-607 |#4|) (-607 |#4|)) 35))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2303 ((-607 |#4|) (-607 |#4|))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106) (-1106))) (IF (|has| |#1| (-348)) (-15 -3246 (|#4| |#4| (-607 |#4|))) |%noBranch|)) (-436) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -431)) +((-3246 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-348)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *2)))) (-2303 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) (-2303 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-431 *3 *4 *5 *6))))) +(-10 -7 (-15 -2303 ((-607 |#4|) (-607 |#4|))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -2303 ((-607 |#4|) (-607 |#4|) (-1106) (-1106))) (IF (|has| |#1| (-348)) (-15 -3246 (|#4| |#4| (-607 |#4|))) |%noBranch|)) +((-1961 ((|#4| |#4| (-607 |#4|)) 61)) (-1962 (((-607 |#4|) (-607 |#4|) (-1106) (-1106)) 17) (((-607 |#4|) (-607 |#4|) (-1106)) 16) (((-607 |#4|) (-607 |#4|)) 11))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#4| |#4| (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106) (-1106)))) (-292) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -432)) +((-1962 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) (-1962 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-432 *3 *4 *5 *6)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *2))))) +(-10 -7 (-15 -1961 (|#4| |#4| (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106))) (-15 -1962 ((-607 |#4|) (-607 |#4|) (-1106) (-1106)))) +((-1964 (((-607 (-607 |#4|)) (-607 |#4|) (-111)) 73) (((-607 (-607 |#4|)) (-607 |#4|)) 72) (((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111)) 66) (((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|)) 67)) (-1963 (((-607 (-607 |#4|)) (-607 |#4|) (-111)) 42) (((-607 (-607 |#4|)) (-607 |#4|)) 63))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-111)))) (-13 (-292) (-141)) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -433)) +((-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-1964 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1964 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) +(-10 -7 (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1963 ((-607 (-607 |#4|)) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-607 |#4|) (-111))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|))) (-15 -1964 ((-607 (-607 |#4|)) (-607 |#4|) (-111)))) +((-1988 (((-735) |#4|) 12)) (-1976 (((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)))) 31)) (-1978 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1977 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1966 ((|#4| |#4| (-607 |#4|)) 40)) (-1974 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|)) 70)) (-1981 (((-1211) |#4|) 42)) (-1984 (((-1211) (-607 |#4|)) 51)) (-1982 (((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526)) 48)) (-1985 (((-1211) (-526)) 79)) (-1979 (((-607 |#4|) (-607 |#4|)) 77)) (-1987 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735)) 25)) (-1980 (((-526) |#4|) 78)) (-1975 ((|#4| |#4|) 29)) (-1967 (((-607 |#4|) (-607 |#4|) (-526) (-526)) 56)) (-1983 (((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526)) 89)) (-1986 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1968 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1973 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1972 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1969 (((-111) |#2| |#2|) 57)) (-1971 (((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1970 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1965 ((|#4| |#4| (-607 |#4|)) 71))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1965 (|#4| |#4| (-607 |#4|))) (-15 -1966 (|#4| |#4| (-607 |#4|))) (-15 -1967 ((-607 |#4|) (-607 |#4|) (-526) (-526))) (-15 -1968 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1969 ((-111) |#2| |#2|)) (-15 -1970 ((-111) |#2| |#2| |#2| |#2|)) (-15 -1971 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1972 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1973 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1974 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|))) (-15 -1975 (|#4| |#4|)) (-15 -1976 ((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))))) (-15 -1977 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1978 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1979 ((-607 |#4|) (-607 |#4|))) (-15 -1980 ((-526) |#4|)) (-15 -1981 ((-1211) |#4|)) (-15 -1982 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526))) (-15 -1983 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526))) (-15 -1984 ((-1211) (-607 |#4|))) (-15 -1985 ((-1211) (-526))) (-15 -1986 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1987 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735))) (-15 -1988 ((-735) |#4|))) (-436) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -434)) +((-1988 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-735)) (|:| -2096 *4))) (-5 *5 (-735)) (-4 *4 (-909 *6 *7 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-434 *6 *7 *8 *4)))) (-1986 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1983 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *4)))) (-1982 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *4)))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1980 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-526)) (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1978 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-757)) (-4 *2 (-909 *4 *5 *6)) (-5 *1 (-434 *4 *5 *6 *2)) (-4 *4 (-436)) (-4 *6 (-811)))) (-1976 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 *3)))) (-5 *4 (-735)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-434 *5 *6 *7 *3)))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-434 *5 *6 *7 *3)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-757)) (-4 *6 (-909 *4 *3 *5)) (-4 *4 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *4 *3 *5 *6)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6)))) (-1971 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-757)) (-4 *3 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *3)))) (-1970 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1967 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *7)))) (-1966 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2)))) (-1965 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) +(-10 -7 (-15 -1965 (|#4| |#4| (-607 |#4|))) (-15 -1966 (|#4| |#4| (-607 |#4|))) (-15 -1967 ((-607 |#4|) (-607 |#4|) (-526) (-526))) (-15 -1968 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1969 ((-111) |#2| |#2|)) (-15 -1970 ((-111) |#2| |#2| |#2| |#2|)) (-15 -1971 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1972 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1973 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1974 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-607 |#4|))) (-15 -1975 (|#4| |#4|)) (-15 -1976 ((-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))) |#4| (-735) (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|))))) (-15 -1977 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1978 ((-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-607 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1979 ((-607 |#4|) (-607 |#4|))) (-15 -1980 ((-526) |#4|)) (-15 -1981 ((-1211) |#4|)) (-15 -1982 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526))) (-15 -1983 ((-526) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-526) (-526) (-526) (-526))) (-15 -1984 ((-1211) (-607 |#4|))) (-15 -1985 ((-1211) (-526))) (-15 -1986 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1987 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-735)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-735)) (|:| -2096 |#4|)) |#4| (-735))) (-15 -1988 ((-735) |#4|))) +((-1989 (($ $ $) 14) (($ (-607 $)) 21)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 41)) (-3457 (($ $ $) NIL) (($ (-607 $)) 22))) +(((-435 |#1|) (-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1989 (|#1| (-607 |#1|))) (-15 -1989 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|))) (-436)) (T -435)) +NIL +(-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1989 (|#1| (-607 |#1|))) (-15 -1989 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -3457 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-436) (-134)) (T -436)) +((-3457 (*1 *1 *1 *1) (-4 *1 (-436))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) (-1989 (*1 *1 *1 *1) (-4 *1 (-436))) (-1989 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) (-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-436))))) +(-13 (-533) (-10 -8 (-15 -3457 ($ $ $)) (-15 -3457 ($ (-607 $))) (-15 -1989 ($ $ $)) (-15 -1989 ($ (-607 $))) (-15 -3008 ((-1117 $) (-1117 $) (-1117 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 (-392 (-905 |#1|)))) (-1205 $)) NIL) (((-1205 (-653 (-392 (-905 |#1|))))) NIL)) (-1821 (((-1205 $)) NIL)) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) NIL)) (-1795 (((-3 $ #1#)) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1883 (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL) (((-653 (-392 (-905 |#1|)))) NIL)) (-1819 (((-392 (-905 |#1|)) $) NIL)) (-1881 (((-653 (-392 (-905 |#1|))) $ (-1205 $)) NIL) (((-653 (-392 (-905 |#1|))) $) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1998 (((-1117 (-905 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-348))) (((-1117 (-392 (-905 |#1|)))) 84 (|has| |#1| (-533)))) (-2468 (($ $ (-878)) NIL)) (-1817 (((-392 (-905 |#1|)) $) NIL)) (-1797 (((-1117 (-392 (-905 |#1|))) $) 82 (|has| (-392 (-905 |#1|)) (-533)))) (-1885 (((-392 (-905 |#1|)) (-1205 $)) NIL) (((-392 (-905 |#1|))) NIL)) (-1815 (((-1117 (-392 (-905 |#1|))) $) NIL)) (-1809 (((-111)) NIL)) (-1887 (($ (-1205 (-392 (-905 |#1|))) (-1205 $)) 103) (($ (-1205 (-392 (-905 |#1|)))) NIL)) (-3781 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-3406 (((-878)) NIL)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) NIL)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed")) NIL)) (-1796 (((-3 $ #1#)) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-1884 (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL) (((-653 (-392 (-905 |#1|)))) NIL)) (-1820 (((-392 (-905 |#1|)) $) NIL)) (-1882 (((-653 (-392 (-905 |#1|))) $ (-1205 $)) NIL) (((-653 (-392 (-905 |#1|))) $) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-2002 (((-1117 (-905 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-348))) (((-1117 (-392 (-905 |#1|)))) 83 (|has| |#1| (-533)))) (-2467 (($ $ (-878)) NIL)) (-1818 (((-392 (-905 |#1|)) $) NIL)) (-1798 (((-1117 (-392 (-905 |#1|))) $) 77 (|has| (-392 (-905 |#1|)) (-533)))) (-1886 (((-392 (-905 |#1|)) (-1205 $)) NIL) (((-392 (-905 |#1|))) NIL)) (-1816 (((-1117 (-392 (-905 |#1|))) $) NIL)) (-1810 (((-111)) NIL)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL)) (-1803 (((-111)) NIL)) (-1805 (((-111)) NIL)) (-3555 (((-1070) $) NIL)) (-1992 (((-392 (-905 |#1|)) $ $) 71 (|has| |#1| (-533)))) (-1996 (((-392 (-905 |#1|)) $) 93 (|has| |#1| (-533)))) (-1995 (((-392 (-905 |#1|)) $) 95 (|has| |#1| (-533)))) (-1997 (((-1117 (-392 (-905 |#1|))) $) 88 (|has| |#1| (-533)))) (-1991 (((-392 (-905 |#1|))) 72 (|has| |#1| (-533)))) (-1994 (((-392 (-905 |#1|)) $ $) 64 (|has| |#1| (-533)))) (-2000 (((-392 (-905 |#1|)) $) 92 (|has| |#1| (-533)))) (-1999 (((-392 (-905 |#1|)) $) 94 (|has| |#1| (-533)))) (-2001 (((-1117 (-392 (-905 |#1|))) $) 87 (|has| |#1| (-533)))) (-1993 (((-392 (-905 |#1|))) 68 (|has| |#1| (-533)))) (-2003 (($) 101) (($ (-1123)) 107) (($ (-1205 (-1123))) 106) (($ (-1205 $)) 96) (($ (-1123) (-1205 $)) 105) (($ (-1205 (-1123)) (-1205 $)) 104)) (-1808 (((-111)) NIL)) (-4118 (((-392 (-905 |#1|)) $ (-526)) NIL)) (-3537 (((-1205 (-392 (-905 |#1|))) $ (-1205 $)) 98) (((-653 (-392 (-905 |#1|))) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 (-905 |#1|))) $) 40) (((-653 (-392 (-905 |#1|))) (-1205 $)) NIL)) (-4287 (((-1205 (-392 (-905 |#1|))) $) NIL) (($ (-1205 (-392 (-905 |#1|)))) 37)) (-1990 (((-607 (-905 (-392 (-905 |#1|)))) (-1205 $)) NIL) (((-607 (-905 (-392 (-905 |#1|))))) NIL) (((-607 (-905 |#1|)) (-1205 $)) 99 (|has| |#1| (-533))) (((-607 (-905 |#1|))) 100 (|has| |#1| (-533)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL)) (-4274 (((-823) $) NIL) (($ (-1205 (-392 (-905 |#1|)))) NIL)) (-2104 (((-1205 $)) 60)) (-1799 (((-607 (-1205 (-392 (-905 |#1|))))) NIL (|has| (-392 (-905 |#1|)) (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL)) (-2849 (($ (-653 (-392 (-905 |#1|))) $) NIL)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL)) (-1811 (((-111)) NIL)) (-1807 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) 97)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 56) (($ $ (-392 (-905 |#1|))) NIL) (($ (-392 (-905 |#1|)) $) NIL) (($ (-1090 |#2| (-392 (-905 |#1|))) $) NIL))) +(((-437 |#1| |#2| |#3| |#4|) (-13 (-403 (-392 (-905 |#1|))) (-613 (-1090 |#2| (-392 (-905 |#1|)))) (-10 -8 (-15 -4274 ($ (-1205 (-392 (-905 |#1|))))) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2003 ($)) (-15 -2003 ($ (-1123))) (-15 -2003 ($ (-1205 (-1123)))) (-15 -2003 ($ (-1205 $))) (-15 -2003 ($ (-1123) (-1205 $))) (-15 -2003 ($ (-1205 (-1123)) (-1205 $))) (IF (|has| |#1| (-533)) (PROGN (-15 -2002 ((-1117 (-392 (-905 |#1|))))) (-15 -2001 ((-1117 (-392 (-905 |#1|))) $)) (-15 -2000 ((-392 (-905 |#1|)) $)) (-15 -1999 ((-392 (-905 |#1|)) $)) (-15 -1998 ((-1117 (-392 (-905 |#1|))))) (-15 -1997 ((-1117 (-392 (-905 |#1|))) $)) (-15 -1996 ((-392 (-905 |#1|)) $)) (-15 -1995 ((-392 (-905 |#1|)) $)) (-15 -1994 ((-392 (-905 |#1|)) $ $)) (-15 -1993 ((-392 (-905 |#1|)))) (-15 -1992 ((-392 (-905 |#1|)) $ $)) (-15 -1991 ((-392 (-905 |#1|)))) (-15 -1990 ((-607 (-905 |#1|)) (-1205 $))) (-15 -1990 ((-607 (-905 |#1|))))) |%noBranch|))) (-163) (-878) (-607 (-1123)) (-1205 (-653 |#1|))) (T -437)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 *3)))) (-4 *3 (-163)) (-14 *6 (-1205 (-653 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))))) (-2005 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-437 *3 *4 *5 *6)) (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2004 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-437 *3 *4 *5 *6)) (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1) (-12 (-5 *1 (-437 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-878)) (-14 *4 (-607 (-1123))) (-14 *5 (-1205 (-653 *2))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 *2)) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1205 (-1123))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1205 (-437 *3 *4 *5 *6))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 *2)) (-14 *7 (-1205 (-653 *4))))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1205 (-1123))) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) (-2002 (*1 *2) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1998 (*1 *2) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1994 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1993 (*1 *2) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1992 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1991 (*1 *2) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *2 (-607 (-905 *4))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) (-1990 (*1 *2) (-12 (-5 *2 (-607 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) +(-13 (-403 (-392 (-905 |#1|))) (-613 (-1090 |#2| (-392 (-905 |#1|)))) (-10 -8 (-15 -4274 ($ (-1205 (-392 (-905 |#1|))))) (-15 -2005 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2004 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) "failed"))) (-15 -2003 ($)) (-15 -2003 ($ (-1123))) (-15 -2003 ($ (-1205 (-1123)))) (-15 -2003 ($ (-1205 $))) (-15 -2003 ($ (-1123) (-1205 $))) (-15 -2003 ($ (-1205 (-1123)) (-1205 $))) (IF (|has| |#1| (-533)) (PROGN (-15 -2002 ((-1117 (-392 (-905 |#1|))))) (-15 -2001 ((-1117 (-392 (-905 |#1|))) $)) (-15 -2000 ((-392 (-905 |#1|)) $)) (-15 -1999 ((-392 (-905 |#1|)) $)) (-15 -1998 ((-1117 (-392 (-905 |#1|))))) (-15 -1997 ((-1117 (-392 (-905 |#1|))) $)) (-15 -1996 ((-392 (-905 |#1|)) $)) (-15 -1995 ((-392 (-905 |#1|)) $)) (-15 -1994 ((-392 (-905 |#1|)) $ $)) (-15 -1993 ((-392 (-905 |#1|)))) (-15 -1992 ((-392 (-905 |#1|)) $ $)) (-15 -1991 ((-392 (-905 |#1|)))) (-15 -1990 ((-607 (-905 |#1|)) (-1205 $))) (-15 -1990 ((-607 (-905 |#1|))))) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 13)) (-3384 (((-607 (-824 |#1|)) $) 75)) (-3386 (((-1117 $) $ (-824 |#1|)) 46) (((-1117 |#2|) $) 118)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) 21) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) 44) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) 42) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) 80)) (-4276 (($ $) 68)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| |#3| $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 58)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) 123) (($ (-1117 $) (-824 |#1|)) 52)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) 59)) (-3193 (($ |#2| |#3|) 28) (($ $ (-824 |#1|) (-735)) 30) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 ((|#3| $) NIL) (((-735) $ (-824 |#1|)) 50) (((-607 (-735)) $ (-607 (-824 |#1|))) 57)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 |#3| |#3|) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) 39)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) 41)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 40)) (-1891 ((|#2| $) 116)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) 128 (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) 87) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) 90) (($ $ (-824 |#1|) $) 85) (($ $ (-607 (-824 |#1|)) (-607 $)) 106)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) 53) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 ((|#3| $) 67) (((-735) $ (-824 |#1|)) 37) (((-607 (-735)) $ (-607 (-824 |#1|))) 56)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) 125 (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) 145) (($ (-526)) NIL) (($ |#2|) 86) (($ (-824 |#1|)) 31) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ |#3|) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) 17 T CONST)) (-2964 (($) 25 T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) 64 (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 111)) (** (($ $ (-878)) NIL) (($ $ (-735)) 109)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 29) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-438 |#1| |#2| |#3|) (-13 (-909 |#2| |#3| (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004) (-224 (-4273 |#1|) (-735))) (T -438)) +((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-14 *3 (-607 (-1123))) (-5 *1 (-438 *3 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-224 (-4273 *3) (-735)))))) +(-13 (-909 |#2| |#3| (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) +((-2009 (((-111) |#1| (-607 |#2|)) 69)) (-2007 (((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|)) 78)) (-2008 (((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|))) 80)) (-2125 ((|#2| |#2| |#1|) 28)) (-2006 (((-735) |#2| (-607 |#2|)) 20))) +(((-439 |#1| |#2|) (-10 -7 (-15 -2125 (|#2| |#2| |#1|)) (-15 -2006 ((-735) |#2| (-607 |#2|))) (-15 -2007 ((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|))) (-15 -2008 ((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|)))) (-15 -2009 ((-111) |#1| (-607 |#2|)))) (-292) (-1181 |#1|)) (T -439)) +((-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *5)) (-4 *5 (-1181 *3)) (-4 *3 (-292)) (-5 *2 (-111)) (-5 *1 (-439 *3 *5)))) (-2008 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1205 (-607 *3))) (-4 *4 (-292)) (-5 *2 (-607 *3)) (-5 *1 (-439 *4 *3)) (-4 *3 (-1181 *4)))) (-2007 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-292)) (-4 *6 (-1181 *4)) (-5 *2 (-1205 (-607 *6))) (-5 *1 (-439 *4 *6)) (-5 *5 (-607 *6)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-292)) (-5 *2 (-735)) (-5 *1 (-439 *5 *3)))) (-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1181 *3))))) +(-10 -7 (-15 -2125 (|#2| |#2| |#1|)) (-15 -2006 ((-735) |#2| (-607 |#2|))) (-15 -2007 ((-3 (-1205 (-607 |#2|)) "failed") (-735) |#1| (-607 |#2|))) (-15 -2008 ((-3 (-607 |#2|) "failed") |#2| |#1| (-1205 (-607 |#2|)))) (-15 -2009 ((-111) |#1| (-607 |#2|)))) +((-4051 (((-390 |#5|) |#5|) 24))) +(((-440 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4051 ((-390 |#5|) |#5|))) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-757) (-533) (-533) (-909 |#4| |#2| |#1|)) (T -440)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) (-4 *5 (-757)) (-4 *7 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-440 *4 *5 *6 *7 *3)) (-4 *6 (-533)) (-4 *3 (-909 *7 *5 *4))))) +(-10 -7 (-15 -4051 ((-390 |#5|) |#5|))) +((-3000 ((|#3|) 37)) (-3008 (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 33))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3008 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3000 (|#3|))) (-757) (-811) (-869) (-909 |#3| |#1| |#2|)) (T -441)) +((-3000 (*1 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-441 *3 *4 *2 *5)) (-4 *5 (-909 *2 *3 *4)))) (-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-869)) (-5 *1 (-441 *3 *4 *5 *6))))) +(-10 -7 (-15 -3008 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3000 (|#3|))) +((-4051 (((-390 (-1117 |#1|)) (-1117 |#1|)) 43))) +(((-442 |#1|) (-10 -7 (-15 -4051 ((-390 (-1117 |#1|)) (-1117 |#1|)))) (-292)) (T -442)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-292)) (-5 *2 (-390 (-1117 *4))) (-5 *1 (-442 *4)) (-5 *3 (-1117 *4))))) +(-10 -7 (-15 -4051 ((-390 (-1117 |#1|)) (-1117 |#1|)))) +((-4048 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735))) 42) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735))) 41) (((-50) |#2| (-1123) (-278 |#2|)) 35) (((-50) (-1 |#2| (-526)) (-278 |#2|)) 28)) (-4137 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 80) (((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 79) (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526))) 78) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526))) 77) (((-50) |#2| (-1123) (-278 |#2|)) 72) (((-50) (-1 |#2| (-526)) (-278 |#2|)) 71)) (-4100 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 66) (((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))) 64)) (-4097 (((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526))) 48) (((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526))) 47))) +(((-443 |#1| |#2|) (-10 -7 (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735)))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735)))) (-15 -4097 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4097 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4100 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4100 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -443)) +((-4137 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *8 *3)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) (-4 *8 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *8)))) (-4137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *3)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *5 *6)))) (-4100 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *8 *3)))) (-4100 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) (-4 *8 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *8)))) (-4097 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4048 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-735))) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *7 *3)))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-735))) (-4 *7 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *7)))) (-4048 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *6 *3)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) (-5 *1 (-443 *5 *6))))) +(-10 -7 (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4048 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-735)))) (-15 -4048 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-735)))) (-15 -4097 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4097 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4100 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4100 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|))) (-15 -4137 ((-50) (-1 |#2| (-526)) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-526)))) (-15 -4137 ((-50) (-1 |#2| (-392 (-526))) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526)))) (-15 -4137 ((-50) |#2| (-1123) (-278 |#2|) (-1172 (-392 (-526))) (-392 (-526))))) +((-2125 ((|#2| |#2| |#1|) 15)) (-2011 (((-607 |#2|) |#2| (-607 |#2|) |#1| (-878)) 69)) (-2010 (((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878)) 60))) +(((-444 |#1| |#2|) (-10 -7 (-15 -2010 ((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878))) (-15 -2011 ((-607 |#2|) |#2| (-607 |#2|) |#1| (-878))) (-15 -2125 (|#2| |#2| |#1|))) (-292) (-1181 |#1|)) (T -444)) +((-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1181 *3)))) (-2011 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-607 *3)) (-5 *5 (-878)) (-4 *3 (-1181 *4)) (-4 *4 (-292)) (-5 *1 (-444 *4 *3)))) (-2010 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-878)) (-4 *5 (-292)) (-4 *3 (-1181 *5)) (-5 *2 (-2 (|:| |plist| (-607 *3)) (|:| |modulo| *5))) (-5 *1 (-444 *5 *3)) (-5 *4 (-607 *3))))) +(-10 -7 (-15 -2010 ((-2 (|:| |plist| (-607 |#2|)) (|:| |modulo| |#1|)) |#2| (-607 |#2|) |#1| (-878))) (-15 -2011 ((-607 |#2|) |#2| (-607 |#2|) |#1| (-878))) (-15 -2125 (|#2| |#2| |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 28)) (-4029 (($ |#3|) 25)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) 32)) (-2012 (($ |#2| |#4| $) 33)) (-3193 (($ |#2| (-678 |#3| |#4| |#5|)) 24)) (-3194 (((-678 |#3| |#4| |#5|) $) 15)) (-2014 ((|#3| $) 19)) (-2015 ((|#4| $) 17)) (-3487 ((|#2| $) 29)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2013 (($ |#2| |#3| |#4|) 26)) (-2957 (($) 36 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-445 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-682 |#6|) (-682 |#2|) (-10 -8 (-15 -3487 (|#2| $)) (-15 -3194 ((-678 |#3| |#4| |#5|) $)) (-15 -2015 (|#4| $)) (-15 -2014 (|#3| $)) (-15 -4276 ($ $)) (-15 -3193 ($ |#2| (-678 |#3| |#4| |#5|))) (-15 -4029 ($ |#3|)) (-15 -2013 ($ |#2| |#3| |#4|)) (-15 -2012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-607 (-1123)) (-163) (-811) (-224 (-4273 |#1|) (-735)) (-1 (-111) (-2 (|:| -2461 |#3|) (|:| -2462 |#4|)) (-2 (|:| -2461 |#3|) (|:| -2462 |#4|))) (-909 |#2| |#4| (-824 |#1|))) (T -445)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-5 *1 (-445 *3 *4 *5 *6 *7 *2)) (-4 *5 (-811)) (-4 *2 (-909 *4 *6 (-824 *3))))) (-3487 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) (-2 (|:| -2461 *4) (|:| -2462 *5)))) (-4 *2 (-163)) (-5 *1 (-445 *3 *2 *4 *5 *6 *7)) (-4 *4 (-811)) (-4 *7 (-909 *2 *5 (-824 *3))))) (-3194 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-5 *2 (-678 *5 *6 *7)) (-5 *1 (-445 *3 *4 *5 *6 *7 *8)) (-4 *5 (-811)) (-4 *8 (-909 *4 *6 (-824 *3))))) (-2015 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-14 *6 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *2)) (-2 (|:| -2461 *5) (|:| -2462 *2)))) (-4 *2 (-224 (-4273 *3) (-735))) (-5 *1 (-445 *3 *4 *5 *2 *6 *7)) (-4 *5 (-811)) (-4 *7 (-909 *4 *2 (-824 *3))))) (-2014 (*1 *2 *1) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) (-2 (|:| -2461 *2) (|:| -2462 *5)))) (-4 *2 (-811)) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *7 (-909 *4 *5 (-824 *3))))) (-4276 (*1 *1 *1) (-12 (-14 *2 (-607 (-1123))) (-4 *3 (-163)) (-4 *5 (-224 (-4273 *2) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) (-2 (|:| -2461 *4) (|:| -2462 *5)))) (-5 *1 (-445 *2 *3 *4 *5 *6 *7)) (-4 *4 (-811)) (-4 *7 (-909 *3 *5 (-824 *2))))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-678 *5 *6 *7)) (-4 *5 (-811)) (-4 *6 (-224 (-4273 *4) (-735))) (-14 *7 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) (-2 (|:| -2461 *5) (|:| -2462 *6)))) (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-5 *1 (-445 *4 *2 *5 *6 *7 *8)) (-4 *8 (-909 *2 *6 (-824 *4))))) (-4029 (*1 *1 *2) (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) (-2 (|:| -2461 *2) (|:| -2462 *5)))) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *2 (-811)) (-4 *7 (-909 *4 *5 (-824 *3))))) (-2013 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-607 (-1123))) (-4 *2 (-163)) (-4 *4 (-224 (-4273 *5) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *4)) (-2 (|:| -2461 *3) (|:| -2462 *4)))) (-5 *1 (-445 *5 *2 *3 *4 *6 *7)) (-4 *3 (-811)) (-4 *7 (-909 *2 *4 (-824 *5))))) (-2012 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-4 *3 (-224 (-4273 *4) (-735))) (-14 *6 (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *3)) (-2 (|:| -2461 *5) (|:| -2462 *3)))) (-5 *1 (-445 *4 *2 *5 *3 *6 *7)) (-4 *5 (-811)) (-4 *7 (-909 *2 *3 (-824 *4)))))) +(-13 (-682 |#6|) (-682 |#2|) (-10 -8 (-15 -3487 (|#2| $)) (-15 -3194 ((-678 |#3| |#4| |#5|) $)) (-15 -2015 (|#4| $)) (-15 -2014 (|#3| $)) (-15 -4276 ($ $)) (-15 -3193 ($ |#2| (-678 |#3| |#4| |#5|))) (-15 -4029 ($ |#3|)) (-15 -2013 ($ |#2| |#3| |#4|)) (-15 -2012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2016 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-446 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2016 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|) (-13 (-995 (-392 (-526))) (-348) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $))))) (T -446)) +((-2016 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-811)) (-4 *5 (-757)) (-4 *6 (-533)) (-4 *7 (-909 *6 *5 *3)) (-5 *1 (-446 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-995 (-392 (-526))) (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(-10 -7 (-15 -2016 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3384 (((-607 |#3|) $) 41)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 47)) (-3469 (($ (-607 |#4|)) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#4|) $) 18 (|has| $ (-6 -4310)))) (-3493 ((|#3| $) 45)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 14 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 39)) (-3887 (($) 17)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 16)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515)))) (($ (-607 |#4|)) 49)) (-3844 (($ (-607 |#4|)) 13)) (-3210 (($ $ |#3|) NIL)) (-3212 (($ $ |#3|) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 38) (((-607 |#4|) $) 48)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 30)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-447 |#1| |#2| |#3| |#4|) (-13 (-935 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4287 ($ (-607 |#4|))) (-6 -4310) (-6 -4311))) (-1004) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -447)) +((-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-447 *3 *4 *5 *6))))) +(-13 (-935 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4287 ($ (-607 |#4|))) (-6 -4310) (-6 -4311))) +((-2957 (($) 11)) (-2964 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-448 |#1| |#2| |#3|) (-10 -8 (-15 -2964 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2957 (|#1|))) (-449 |#2| |#3|) (-163) (-23)) (T -448)) +NIL +(-10 -8 (-15 -2964 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2957 (|#1|))) +((-2865 (((-111) $ $) 7)) (-3470 (((-3 |#1| "failed") $) 26)) (-3469 ((|#1| $) 25)) (-4261 (($ $ $) 23)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 ((|#2| $) 19)) (-4274 (((-823) $) 11) (($ |#1|) 27)) (-2957 (($) 18 T CONST)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 15) (($ $ $) 13)) (-4158 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-449 |#1| |#2|) (-134) (-163) (-23)) (T -449)) +((-2964 (*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4261 (*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) +(-13 (-454 |t#1| |t#2|) (-995 |t#1|) (-10 -8 (-15 (-2964) ($) -4268) (-15 -4261 ($ $ $)))) +(((-100) . T) ((-583 (-823)) . T) ((-454 |#1| |#2|) . T) ((-995 |#1|) . T) ((-1052) . T)) +((-2017 (((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878)) 18)) (-2018 (((-1205 (-1205 (-526))) (-878)) 16))) +(((-450) (-10 -7 (-15 -2017 ((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878))) (-15 -2018 ((-1205 (-1205 (-526))) (-878))))) (T -450)) +((-2018 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 (-526)))) (-5 *1 (-450)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 (-1205 (-526)))) (-5 *3 (-878)) (-5 *1 (-450))))) +(-10 -7 (-15 -2017 ((-1205 (-1205 (-526))) (-1205 (-1205 (-526))) (-878))) (-15 -2018 ((-1205 (-1205 (-526))) (-878)))) +((-3070 (((-526) (-526)) 30) (((-526)) 22)) (-3074 (((-526) (-526)) 26) (((-526)) 18)) (-3072 (((-526) (-526)) 28) (((-526)) 20)) (-2020 (((-111) (-111)) 12) (((-111)) 10)) (-2019 (((-111) (-111)) 11) (((-111)) 9)) (-2021 (((-111) (-111)) 24) (((-111)) 15))) +(((-451) (-10 -7 (-15 -2019 ((-111))) (-15 -2020 ((-111))) (-15 -2019 ((-111) (-111))) (-15 -2020 ((-111) (-111))) (-15 -2021 ((-111))) (-15 -3072 ((-526))) (-15 -3074 ((-526))) (-15 -3070 ((-526))) (-15 -2021 ((-111) (-111))) (-15 -3072 ((-526) (-526))) (-15 -3074 ((-526) (-526))) (-15 -3070 ((-526) (-526))))) (T -451)) +((-3070 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-3070 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3074 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-3072 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) (-2021 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2019 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2020 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) (-2019 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) +(-10 -7 (-15 -2019 ((-111))) (-15 -2020 ((-111))) (-15 -2019 ((-111) (-111))) (-15 -2020 ((-111) (-111))) (-15 -2021 ((-111))) (-15 -3072 ((-526))) (-15 -3074 ((-526))) (-15 -3070 ((-526))) (-15 -2021 ((-111) (-111))) (-15 -3072 ((-526) (-526))) (-15 -3074 ((-526) (-526))) (-15 -3070 ((-526) (-526)))) +((-2865 (((-111) $ $) NIL)) (-4170 (((-607 (-363)) $) 28) (((-607 (-363)) $ (-607 (-363))) 96)) (-2026 (((-607 (-1041 (-363))) $) 16) (((-607 (-1041 (-363))) $ (-607 (-1041 (-363)))) 94)) (-2023 (((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833))) 45)) (-2027 (((-607 (-607 (-902 (-211)))) $) 90)) (-4028 (((-1211) $ (-902 (-211)) (-833)) 108)) (-2028 (($ $) 89) (($ (-607 (-607 (-902 (-211))))) 99) (($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878))) 98) (($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246))) 100)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 71)) (-3555 (((-1070) $) NIL)) (-2029 (($) 97)) (-2022 (((-607 (-211)) (-607 (-607 (-902 (-211))))) 56)) (-2025 (((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878)) 102) (((-1211) $ (-902 (-211))) 104) (((-1211) $ (-902 (-211)) (-833) (-833) (-878)) 103)) (-4274 (((-823) $) 114) (($ (-607 (-607 (-902 (-211))))) 109)) (-2024 (((-1211) $ (-902 (-211))) 107)) (-3353 (((-111) $ $) NIL))) +(((-452) (-13 (-1052) (-10 -8 (-15 -2029 ($)) (-15 -2028 ($ $)) (-15 -2028 ($ (-607 (-607 (-902 (-211)))))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246)))) (-15 -2027 ((-607 (-607 (-902 (-211)))) $)) (-15 -4179 ((-526) $)) (-15 -2026 ((-607 (-1041 (-363))) $)) (-15 -2026 ((-607 (-1041 (-363))) $ (-607 (-1041 (-363))))) (-15 -4170 ((-607 (-363)) $)) (-15 -4170 ((-607 (-363)) $ (-607 (-363)))) (-15 -2025 ((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878))) (-15 -2025 ((-1211) $ (-902 (-211)))) (-15 -2025 ((-1211) $ (-902 (-211)) (-833) (-833) (-878))) (-15 -2024 ((-1211) $ (-902 (-211)))) (-15 -4028 ((-1211) $ (-902 (-211)) (-833))) (-15 -4274 ($ (-607 (-607 (-902 (-211)))))) (-15 -4274 ((-823) $)) (-15 -2023 ((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833)))) (-15 -2022 ((-607 (-211)) (-607 (-607 (-902 (-211))))))))) (T -452)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-452)))) (-2029 (*1 *1) (-5 *1 (-452))) (-2028 (*1 *1 *1) (-5 *1 (-452))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-2028 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *4 (-607 (-878))) (-5 *1 (-452)))) (-2028 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *4 (-607 (-878))) (-5 *5 (-607 (-246))) (-5 *1 (-452)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-452)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) (-2026 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) (-4170 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2025 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) (-4028 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-452)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) (-5 *1 (-452)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-211))) (-5 *1 (-452))))) +(-13 (-1052) (-10 -8 (-15 -2029 ($)) (-15 -2028 ($ $)) (-15 -2028 ($ (-607 (-607 (-902 (-211)))))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)))) (-15 -2028 ($ (-607 (-607 (-902 (-211)))) (-607 (-833)) (-607 (-833)) (-607 (-878)) (-607 (-246)))) (-15 -2027 ((-607 (-607 (-902 (-211)))) $)) (-15 -4179 ((-526) $)) (-15 -2026 ((-607 (-1041 (-363))) $)) (-15 -2026 ((-607 (-1041 (-363))) $ (-607 (-1041 (-363))))) (-15 -4170 ((-607 (-363)) $)) (-15 -4170 ((-607 (-363)) $ (-607 (-363)))) (-15 -2025 ((-1211) $ (-607 (-902 (-211))) (-833) (-833) (-878))) (-15 -2025 ((-1211) $ (-902 (-211)))) (-15 -2025 ((-1211) $ (-902 (-211)) (-833) (-833) (-878))) (-15 -2024 ((-1211) $ (-902 (-211)))) (-15 -4028 ((-1211) $ (-902 (-211)) (-833))) (-15 -4274 ($ (-607 (-607 (-902 (-211)))))) (-15 -4274 ((-823) $)) (-15 -2023 ((-607 (-607 (-902 (-211)))) (-607 (-607 (-902 (-211)))) (-607 (-833)))) (-15 -2022 ((-607 (-211)) (-607 (-607 (-902 (-211)))))))) +((-4156 (($ $) NIL) (($ $ $) 11))) +(((-453 |#1| |#2| |#3|) (-10 -8 (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|))) (-454 |#2| |#3|) (-163) (-23)) (T -453)) +NIL +(-10 -8 (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 ((|#2| $) 19)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 15) (($ $ $) 13)) (-4158 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-454 |#1| |#2|) (-134) (-163) (-23)) (T -454)) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-454 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) (-2957 (*1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) +(-13 (-1052) (-10 -8 (-15 -4264 (|t#2| $)) (-15 (-2957) ($) -4268) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4156 ($ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2031 (((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|))) 92)) (-2030 (((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))) 90)) (-2032 (((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))) 61))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2030 ((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2031 ((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2032 ((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))))) (-607 (-1123)) (-436) (-436)) (T -455)) +((-2032 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-2 (|:| |dpolys| (-607 (-233 *5 *6))) (|:| |coords| (-607 (-526))))) (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436)))) (-2031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-455 *4 *5 *6)) (-4 *6 (-436)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-607 (-607 (-233 *5 *6)))) (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) +(-10 -7 (-15 -2030 ((-607 (-607 (-233 |#1| |#2|))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2031 ((-3 (-607 (-464 |#1| |#2|)) "failed") (-607 (-464 |#1| |#2|)) (-607 (-824 |#1|)))) (-15 -2032 ((-2 (|:| |dpolys| (-607 (-233 |#1| |#2|))) (|:| |coords| (-607 (-526)))) (-607 (-233 |#1| |#2|)) (-607 (-824 |#1|))))) +((-3781 (((-3 $ "failed") $) 11)) (-3309 (($ $ $) 18)) (-2655 (($ $ $) 19)) (-4265 (($ $ $) 9)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 17))) +(((-456 |#1|) (-10 -8 (-15 -2655 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) (-457)) (T -456)) +NIL +(-10 -8 (-15 -2655 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2471 (((-111) $) 17)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 24)) (-3555 (((-1070) $) 10)) (-3309 (($ $ $) 21)) (-2655 (($ $ $) 20)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 23)) (** (($ $ (-878)) 13) (($ $ (-735)) 16) (($ $ (-526)) 22)) (* (($ $ $) 14))) +(((-457) (-134)) (T -457)) +((-2703 (*1 *1 *1) (-4 *1 (-457))) (-4265 (*1 *1 *1 *1) (-4 *1 (-457))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-457)) (-5 *2 (-526)))) (-3309 (*1 *1 *1 *1) (-4 *1 (-457))) (-2655 (*1 *1 *1 *1) (-4 *1 (-457)))) +(-13 (-691) (-10 -8 (-15 -2703 ($ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-526))) (-6 -4307) (-15 -3309 ($ $ $)) (-15 -2655 ($ $ $)))) +(((-100) . T) ((-583 (-823)) . T) ((-691) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 17)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) NIL) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 26 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 33 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 27 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 25 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 15)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1202 |#2|)) NIL) (($ (-1186 |#1| |#2| |#3|)) 9) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 18)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 24)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-458 |#1| |#2| |#3|) (-13 (-1188 |#1|) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4274 ($ (-1186 |#1| |#2| |#3|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -458)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-458 *3 *4 *5)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1188 |#1|) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4274 ($ (-1186 |#1| |#2| |#3|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) 18)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 19)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 16)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-459 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2|) (-1052) (-1052) (-1136 |#1| |#2|) |#2|) (T -459)) +NIL +(-1136 |#1| |#2|) +((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) NIL)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-4116 (((-3 |#4| #1#) $) 37)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 47)) (-4087 (($ $ |#4|) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-4250 (((-111) |#3| $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-460 |#1| |#2| |#3| |#4|) (-1154 |#1| |#2| |#3| |#4|) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -460)) +NIL +(-1154 |#1| |#2| |#3| |#4|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3949 (($) 18)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4287 (((-363) $) 22) (((-211) $) 25) (((-392 (-1117 (-526))) $) 19) (((-515) $) 52)) (-4274 (((-823) $) 50) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (((-211) $) 24) (((-363) $) 21)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 36 T CONST)) (-2964 (($) 11 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-461) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))) (-977) (-583 (-211)) (-583 (-363)) (-584 (-392 (-1117 (-526)))) (-584 (-515)) (-10 -8 (-15 -3949 ($))))) (T -461)) +((-3949 (*1 *1) (-5 *1 (-461)))) +(-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))) (-977) (-583 (-211)) (-583 (-363)) (-584 (-392 (-1117 (-526)))) (-584 (-515)) (-10 -8 (-15 -3949 ($)))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) 16)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 20)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 18)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) 13)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 19)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 11 (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) 15 (|has| $ (-6 -4310))))) +(((-462 |#1| |#2| |#3|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052) (-1106)) (T -462)) +NIL +(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) +((-2033 (((-526) (-526) (-526)) 7)) (-2034 (((-111) (-526) (-526) (-526) (-526)) 11)) (-3771 (((-1205 (-607 (-526))) (-735) (-735)) 23))) +(((-463) (-10 -7 (-15 -2033 ((-526) (-526) (-526))) (-15 -2034 ((-111) (-526) (-526) (-526) (-526))) (-15 -3771 ((-1205 (-607 (-526))) (-735) (-735))))) (T -463)) +((-3771 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1205 (-607 (-526)))) (-5 *1 (-463)))) (-2034 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-463)))) (-2033 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-463))))) +(-10 -7 (-15 -2033 ((-526) (-526) (-526))) (-15 -2034 ((-111) (-526) (-526) (-526) (-526))) (-15 -3771 ((-1205 (-607 (-526))) (-735) (-735)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-2035 (($ $ (-607 (-526))) NIL)) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-465 (-4273 |#1|) (-735)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-465 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-465 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-465 (-4273 |#1|) (-735)) (-465 (-4273 |#1|) (-735))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-465 (-4273 |#1|) (-735)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-465 (-4273 |#1|) (-735))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-464 |#1| |#2|) (-13 (-909 |#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) (-607 (-1123)) (-1004)) (T -464)) +((-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-464 *3 *4)) (-14 *3 (-607 (-1123))) (-4 *4 (-1004))))) +(-13 (-909 |#2| (-465 (-4273 |#1|) (-735)) (-824 |#1|)) (-10 -8 (-15 -2035 ($ $ (-607 (-526)))))) +((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) NIL (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) NIL (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) 11)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) NIL)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) NIL (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) NIL (|has| |#2| (-129)) CONST)) (-2964 (($) NIL (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 15 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) NIL (|has| |#2| (-691))) (($ $ |#2|) NIL (|has| |#2| (-691))) (($ |#2| $) NIL (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-465 |#1| |#2|) (-224 |#1| |#2|) (-735) (-757)) (T -465)) +NIL +(-224 |#1| |#2|) +((-2865 (((-111) $ $) NIL)) (-2036 (((-607 (-488)) $) 11)) (-3864 (((-488) $) 10)) (-3554 (((-1106) $) NIL)) (-2037 (($ (-488) (-607 (-488))) 9)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-466) (-13 (-1035) (-10 -8 (-15 -2037 ($ (-488) (-607 (-488)))) (-15 -3864 ((-488) $)) (-15 -2036 ((-607 (-488)) $))))) (T -466)) +((-2037 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-488))) (-5 *2 (-488)) (-5 *1 (-466)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-466)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-607 (-488))) (-5 *1 (-466))))) +(-13 (-1035) (-10 -8 (-15 -2037 ($ (-488) (-607 (-488)))) (-15 -3864 ((-488) $)) (-15 -2036 ((-607 (-488)) $)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-3159 (($ $ $) 32)) (-3832 (($ $ $) 31)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3638 ((|#1| $) 26)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 27)) (-3929 (($ |#1| $) 10)) (-2038 (($ (-607 |#1|)) 12)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 23)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 9)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 29)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) 21 (|has| $ (-6 -4310))))) +(((-467 |#1|) (-13 (-927 |#1|) (-10 -8 (-15 -2038 ($ (-607 |#1|))))) (-811)) (T -467)) +((-2038 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-467 *3))))) +(-13 (-927 |#1|) (-10 -8 (-15 -2038 ($ (-607 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ $) 69)) (-1728 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-2068 (((-398 |#2| (-392 |#2|) |#3| |#4|) $) 44)) (-3555 (((-1070) $) NIL)) (-2470 (((-3 |#4| "failed") $) 107)) (-1729 (($ (-398 |#2| (-392 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-526)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3754 (((-2 (|:| -2386 (-398 |#2| (-392 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4274 (((-823) $) 102)) (-2957 (($) 33 T CONST)) (-3353 (((-111) $ $) 109)) (-4156 (($ $) 72) (($ $ $) NIL)) (-4158 (($ $ $) 70)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 73))) +(((-468 |#1| |#2| |#3| |#4|) (-321 |#1| |#2| |#3| |#4|) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -468)) +NIL +(-321 |#1| |#2| |#3| |#4|) +((-2042 (((-526) (-607 (-526))) 30)) (-2039 ((|#1| (-607 |#1|)) 56)) (-2041 (((-607 |#1|) (-607 |#1|)) 57)) (-2040 (((-607 |#1|) (-607 |#1|)) 59)) (-3457 ((|#1| (-607 |#1|)) 58)) (-3117 (((-607 (-526)) (-607 |#1|)) 33))) +(((-469 |#1|) (-10 -7 (-15 -3457 (|#1| (-607 |#1|))) (-15 -2039 (|#1| (-607 |#1|))) (-15 -2040 ((-607 |#1|) (-607 |#1|))) (-15 -2041 ((-607 |#1|) (-607 |#1|))) (-15 -3117 ((-607 (-526)) (-607 |#1|))) (-15 -2042 ((-526) (-607 (-526))))) (-1181 (-526))) (T -469)) +((-2042 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-526)) (-5 *1 (-469 *4)) (-4 *4 (-1181 *2)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1181 (-526))) (-5 *2 (-607 (-526))) (-5 *1 (-469 *4)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526))))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526)))))) +(-10 -7 (-15 -3457 (|#1| (-607 |#1|))) (-15 -2039 (|#1| (-607 |#1|))) (-15 -2040 ((-607 |#1|) (-607 |#1|))) (-15 -2041 ((-607 |#1|) (-607 |#1|))) (-15 -3117 ((-607 (-526)) (-607 |#1|))) (-15 -2042 ((-526) (-607 (-526))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-526) $) NIL (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-2043 (($ (-392 (-526))) 9)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) NIL)) (-3427 (((-526) $) NIL (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 8) (($ (-526)) NIL) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL) (((-962 16) $) 10)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-526) $) NIL (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-526) (-811)))) (-4265 (($ $ $) NIL) (($ (-526) (-526)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) NIL) (($ $ (-526)) NIL))) +(((-470) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 16) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2043 ($ (-392 (-526))))))) (T -470)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-962 16)) (-5 *1 (-470)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470))))) +(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -4274 ((-962 16) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -2043 ($ (-392 (-526)))))) +((-2480 (((-607 |#2|) $) 23)) (-3557 (((-111) |#2| $) 28)) (-2046 (((-111) (-1 (-111) |#2|) $) 21)) (-4086 (($ $ (-607 (-278 |#2|))) 13) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-607 |#2|) (-607 |#2|)) NIL)) (-2045 (((-735) (-1 (-111) |#2|) $) 22) (((-735) |#2| $) 26)) (-4274 (((-823) $) 37)) (-2047 (((-111) (-1 (-111) |#2|) $) 20)) (-3353 (((-111) $ $) 31)) (-4273 (((-735) $) 17))) +(((-471 |#1| |#2|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2480 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) (-472 |#2|) (-1159)) (T -471)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#2| |#2|)) (-15 -4086 (|#1| |#1| (-278 |#2|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#2|)))) (-15 -3557 ((-111) |#2| |#1|)) (-15 -2045 ((-735) |#2| |#1|)) (-15 -2480 ((-607 |#2|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#2|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-472 |#1|) (-134) (-1159)) (T -472)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) (-2048 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) (-2047 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2046 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2045 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) (-4 *4 (-1159)) (-5 *2 (-735)))) (-2044 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-2480 (*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-2045 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-735)))) (-3557 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-1052)) (IF (|has| |t#1| (-294 |t#1|)) (-6 (-294 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4311)) (-15 -2048 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4310)) (PROGN (-15 -2047 ((-111) (-1 (-111) |t#1|) $)) (-15 -2046 ((-111) (-1 (-111) |t#1|) $)) (-15 -2045 ((-735) (-1 (-111) |t#1|) $)) (-15 -2044 ((-607 |t#1|) $)) (-15 -2480 ((-607 |t#1|) $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -2045 ((-735) |t#1| $)) (-15 -3557 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2049 (($ (-1106)) 8)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 14) (((-1106) $) 11)) (-3353 (((-111) $ $) 10))) +(((-473) (-13 (-1052) (-583 (-1106)) (-10 -8 (-15 -2049 ($ (-1106)))))) (T -473)) +((-2049 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-473))))) +(-13 (-1052) (-583 (-1106)) (-10 -8 (-15 -2049 ($ (-1106))))) +((-3806 (($ $) 15)) (-3804 (($ $) 24)) (-3808 (($ $) 12)) (-3809 (($ $) 10)) (-3807 (($ $) 17)) (-3805 (($ $) 22))) +(((-474 |#1|) (-10 -8 (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|))) (-475)) (T -474)) +NIL +(-10 -8 (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|))) +((-3806 (($ $) 11)) (-3804 (($ $) 10)) (-3808 (($ $) 9)) (-3809 (($ $) 8)) (-3807 (($ $) 7)) (-3805 (($ $) 6))) +(((-475) (-134)) (T -475)) +((-3806 (*1 *1 *1) (-4 *1 (-475))) (-3804 (*1 *1 *1) (-4 *1 (-475))) (-3808 (*1 *1 *1) (-4 *1 (-475))) (-3809 (*1 *1 *1) (-4 *1 (-475))) (-3807 (*1 *1 *1) (-4 *1 (-475))) (-3805 (*1 *1 *1) (-4 *1 (-475)))) +(-13 (-10 -8 (-15 -3805 ($ $)) (-15 -3807 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3804 ($ $)) (-15 -3806 ($ $)))) +((-4051 (((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)) 42))) +(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) (-348) (-1181 |#1|) (-13 (-348) (-141) (-689 |#1| |#2|)) (-1181 |#3|)) (T -476)) +((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-4 *7 (-13 (-348) (-141) (-689 *5 *6))) (-5 *2 (-390 *3)) (-5 *1 (-476 *5 *6 *7 *3)) (-4 *3 (-1181 *7))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) +((-2865 (((-111) $ $) NIL)) (-1643 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-1238 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3502 (((-111) $) 39)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2050 (((-111) $ $) 64)) (-1636 (((-607 (-581 $)) $) 48)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1640 (($ $ (-278 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-1239 (((-607 $) (-1117 $) (-1123)) NIL) (((-607 $) (-1117 $)) NIL) (((-607 $) (-905 $)) NIL)) (-3497 (($ (-1117 $) (-1123)) NIL) (($ (-1117 $)) NIL) (($ (-905 $)) NIL)) (-3470 (((-3 (-581 $) #1="failed") $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL)) (-3469 (((-581 $) $) NIL) (((-526) $) NIL) (((-392 (-526)) $) 50)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-392 (-526)))) (|:| |vec| (-1205 (-392 (-526))))) (-653 $) (-1205 $)) NIL) (((-653 (-392 (-526))) (-653 $)) NIL)) (-4161 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2870 (($ $) NIL) (($ (-607 $)) NIL)) (-1635 (((-607 (-112)) $) NIL)) (-2307 (((-112) (-112)) NIL)) (-2471 (((-111) $) 42)) (-2973 (((-111) $) NIL (|has| $ (-995 (-526))))) (-3298 (((-1075 (-526) (-581 $)) $) 37)) (-3311 (($ $ (-526)) NIL)) (-3429 (((-1117 $) (-1117 $) (-581 $)) 78) (((-1117 $) (-1117 $) (-607 (-581 $))) 55) (($ $ (-581 $)) 67) (($ $ (-607 (-581 $))) 68)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-1633 (((-1117 $) (-581 $)) 65 (|has| $ (-1004)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 $ $) (-581 $)) NIL)) (-1638 (((-3 (-581 $) "failed") $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-1637 (((-607 (-581 $)) $) NIL)) (-2288 (($ (-112) $) NIL) (($ (-112) (-607 $)) NIL)) (-2930 (((-111) $ (-112)) NIL) (((-111) $ (-1123)) NIL)) (-2703 (($ $) NIL)) (-2900 (((-735) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1634 (((-111) $ $) NIL) (((-111) $ (-1123)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL (|has| $ (-995 (-526))))) (-4086 (($ $ (-581 $) $) NIL) (($ $ (-607 (-581 $)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-1123)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-1123) (-1 $ (-607 $))) NIL) (($ $ (-1123) (-1 $ $)) NIL) (($ $ (-607 (-112)) (-607 (-1 $ $))) NIL) (($ $ (-607 (-112)) (-607 (-1 $ (-607 $)))) NIL) (($ $ (-112) (-1 $ (-607 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1680 (((-735) $) NIL)) (-4118 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-607 $)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) 36)) (-3297 (((-1075 (-526) (-581 $)) $) 20)) (-3499 (($ $) NIL (|has| $ (-1004)))) (-4287 (((-363) $) 92) (((-211) $) 100) (((-159 (-363)) $) 108)) (-4274 (((-823) $) NIL) (($ (-581 $)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-1075 (-526) (-581 $))) 21)) (-3423 (((-735)) NIL)) (-2887 (($ $) NIL) (($ (-607 $)) NIL)) (-2306 (((-111) (-112)) 84)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 10 T CONST)) (-2964 (($) 22 T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 24)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) 44)) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-392 (-526))) NIL) (($ $ (-526)) 46) (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ $ $) 27) (($ (-526) $) NIL) (($ (-735) $) NIL) (($ (-878) $) NIL))) +(((-477) (-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -2050 ((-111) $ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $))))))) (T -477)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) (-4161 (*1 *1 *1) (-5 *1 (-477))) (-2050 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-477)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-581 (-477))) (-5 *1 (-477)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-607 (-581 (-477)))) (-5 *1 (-477)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-581 (-477))) (-5 *1 (-477)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-477)))) (-5 *1 (-477))))) +(-13 (-283) (-27) (-995 (-526)) (-995 (-392 (-526))) (-606 (-526)) (-977) (-606 (-392 (-526))) (-141) (-584 (-159 (-363))) (-219) (-10 -8 (-15 -4274 ($ (-1075 (-526) (-581 $)))) (-15 -3298 ((-1075 (-526) (-581 $)) $)) (-15 -3297 ((-1075 (-526) (-581 $)) $)) (-15 -4161 ($ $)) (-15 -2050 ((-111) $ $)) (-15 -3429 ((-1117 $) (-1117 $) (-581 $))) (-15 -3429 ((-1117 $) (-1117 $) (-607 (-581 $)))) (-15 -3429 ($ $ (-581 $))) (-15 -3429 ($ $ (-607 (-581 $)))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 25 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 22 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 21)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 14)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 12 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) 23 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 10 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 13)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 24) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 9 (|has| $ (-6 -4310))))) +(((-478 |#1| |#2|) (-19 |#1|) (-1159) (-526)) (T -478)) NIL (-19 |#1|) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL)) (-2720 (($ $ (-537) (-477 |#1| |#3|)) NIL)) (-2573 (($ $ (-537) (-477 |#1| |#2|)) NIL)) (-3832 (($) NIL T CONST)) (-2964 (((-477 |#1| |#3|) $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-477 |#1| |#2|) $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-478 |#1| |#2| |#3|) (-55 |#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) (-1154) (-537) (-537)) (T -478)) -NIL -(-55 |#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) -((-2070 (((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731)) 27)) (-2553 (((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731)) 34)) (-3747 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)) 85))) -(((-479 |#1| |#2| |#3|) (-10 -7 (-15 -2553 ((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731))) (-15 -2070 ((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731))) (-15 -3747 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)))) (-333) (-1176 |#1|) (-1176 |#2|)) (T -479)) -((-3747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-649 *7))))) (-5 *5 (-731)) (-4 *8 (-1176 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-649 *7)))) (-5 *1 (-479 *6 *7 *8)))) (-2070 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-4 *5 (-333)) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-649 *6))))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-649 *6)))) (-4 *7 (-1176 *6)))) (-2553 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-731)) (-4 *3 (-333)) (-4 *5 (-1176 *3)) (-5 *2 (-606 (-1113 *3))) (-5 *1 (-479 *3 *5 *6)) (-4 *6 (-1176 *5))))) -(-10 -7 (-15 -2553 ((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731))) (-15 -2070 ((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731))) (-15 -3747 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)))) -((-2160 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))) 62)) (-2937 ((|#1| (-649 |#1|) |#1| (-731)) 25)) (-3385 (((-731) (-731) (-731)) 30)) (-3547 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 42)) (-2033 (((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|) 50) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 47)) (-1795 ((|#1| (-649 |#1|) (-649 |#1|) |#1| (-537)) 29)) (-3018 ((|#1| (-649 |#1|)) 18))) -(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -3018 (|#1| (-649 |#1|))) (-15 -2937 (|#1| (-649 |#1|) |#1| (-731))) (-15 -1795 (|#1| (-649 |#1|) (-649 |#1|) |#1| (-537))) (-15 -3385 ((-731) (-731) (-731))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -3547 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2160 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))))) (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $)))) (-1176 |#1|) (-393 |#1| |#2|)) (T -480)) -((-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3547 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-2033 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-2033 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-1795 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-537)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5)))) (-2937 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-731)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *4 (-1176 *2)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-5 *1 (-480 *2 *4 *5)) (-4 *5 (-393 *2 *4))))) -(-10 -7 (-15 -3018 (|#1| (-649 |#1|))) (-15 -2937 (|#1| (-649 |#1|) |#1| (-731))) (-15 -1795 (|#1| (-649 |#1|) (-649 |#1|) |#1| (-537))) (-15 -3385 ((-731) (-731) (-731))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -3547 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2160 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))))) -((-2330 (((-111) $ $) NIL)) (-3284 (($ $) NIL)) (-1435 (($ $ $) 35)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-111) (-807)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-111) $ (-1167 (-537)) (-111)) NIL (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) 36 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2355 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-4091 (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) NIL)) (-2299 (((-537) (-111) $ (-537)) NIL (|has| (-111) (-1045))) (((-537) (-111) $) NIL (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) NIL)) (-3661 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-2681 (($ $ $) 33)) (-3679 (($ $) NIL)) (-3897 (($ $ $) NIL)) (-3157 (($ (-731) (-111)) 23)) (-1810 (($ $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 8 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL)) (-1470 (($ $ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3703 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL)) (-4081 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ (-111) $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-111) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-3040 (($ $ (-111)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 24)) (-1922 (($ $ (-1167 (-537))) NIL) (((-111) $ (-537)) 18) (((-111) $ (-537) (-111)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2539 (((-731) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045)))) (((-731) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) 25)) (-3996 (((-513) $) NIL (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) NIL)) (-3434 (($ (-606 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-2341 (((-816) $) 22)) (-2030 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3319 (($ $ $) 31)) (-1512 (($ $ $) NIL)) (-2617 (($ $ $) 39)) (-2626 (($ $) 37)) (-2608 (($ $ $) 38)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 26)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 27)) (-1501 (($ $ $) NIL)) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) -(((-481 |#1|) (-13 (-122) (-10 -8 (-15 -2626 ($ $)) (-15 -2617 ($ $ $)) (-15 -2608 ($ $ $)))) (-537)) (T -481)) -((-2626 (*1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) (-2617 (*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) (-2608 (*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537))))) -(-13 (-122) (-10 -8 (-15 -2626 ($ $)) (-15 -2617 ($ $ $)) (-15 -2608 ($ $ $)))) -((-1947 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|)) 35)) (-2257 (((-1113 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1113 |#4|)) 22)) (-1289 (((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|))) 46)) (-1573 (((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-482 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2257 (|#2| (-1 |#1| |#4|) (-1113 |#4|))) (-15 -2257 ((-1113 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1947 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|))) (-15 -1289 ((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|)))) (-15 -1573 ((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|))) (-998) (-1176 |#1|) (-1176 |#2|) (-998)) (T -482)) -((-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *7))) (-5 *1 (-482 *5 *6 *4 *7)) (-4 *4 (-1176 *6)))) (-1289 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-649 (-1113 *8))) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-1176 *5)) (-5 *2 (-649 *6)) (-5 *1 (-482 *5 *6 *7 *8)) (-4 *7 (-1176 *6)))) (-1947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *4 (-1176 *5)) (-5 *2 (-1113 *7)) (-5 *1 (-482 *5 *4 *6 *7)) (-4 *6 (-1176 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2))))) -(-10 -7 (-15 -2257 (|#2| (-1 |#1| |#4|) (-1113 |#4|))) (-15 -2257 ((-1113 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1947 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|))) (-15 -1289 ((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|)))) (-15 -1573 ((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3404 (((-1205) $) 19)) (-1922 (((-1100) $ (-1117)) 23)) (-2356 (((-1205) $) 15)) (-2341 (((-816) $) 21) (($ (-1100)) 20)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 9)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) -(((-483) (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -2341 ($ (-1100)))))) (T -483)) -((-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1100)) (-5 *1 (-483)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-483))))) -(-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -2341 ($ (-1100))))) -((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1246 ((|#1| |#4|) 10)) (-4067 ((|#3| |#4|) 17))) -(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1246 (|#1| |#4|)) (-15 -4067 (|#3| |#4|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-529) (-945 |#1|) (-357 |#1|) (-357 |#2|)) (T -484)) -((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-4 *2 (-357 *4)) (-5 *1 (-484 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-357 *4))))) -(-10 -7 (-15 -1246 (|#1| |#4|)) (-15 -4067 (|#3| |#4|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2330 (((-111) $ $) NIL)) (-1451 (((-111) $ (-606 |#3|)) 105) (((-111) $) 106)) (-1656 (((-111) $) 149)) (-2864 (($ $ |#4|) 97) (($ $ |#4| (-606 |#3|)) 101)) (-1368 (((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|)) 142 (|has| |#3| (-580 (-1117))))) (-3413 (($ $ $) 91) (($ $ |#4|) 89)) (-2836 (((-111) $) 148)) (-3601 (($ $) 109)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 83) (($ (-606 $)) 85)) (-2044 (((-111) |#4| $) 108)) (-2887 (((-111) $ $) 72)) (-3754 (($ (-606 |#4|)) 90)) (-2528 (((-1064) $) NIL)) (-1608 (($ (-606 |#4|)) 146)) (-1444 (((-111) $) 147)) (-2597 (($ $) 74)) (-2269 (((-606 |#4|) $) 63)) (-2245 (((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|)) NIL)) (-2233 (((-111) |#4| $) 77)) (-1839 (((-537) $ (-606 |#3|)) 110) (((-537) $) 111)) (-2341 (((-816) $) 145) (($ (-606 |#4|)) 86)) (-1343 (($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $))) NIL)) (-2244 (((-111) $ $) 73)) (-2318 (($ $ $) 93)) (** (($ $ (-731)) 96)) (* (($ $ $) 95))) -(((-485 |#1| |#2| |#3| |#4|) (-13 (-1045) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 -2318 ($ $ $)) (-15 -2836 ((-111) $)) (-15 -1656 ((-111) $)) (-15 -2233 ((-111) |#4| $)) (-15 -2887 ((-111) $ $)) (-15 -2044 ((-111) |#4| $)) (-15 -1451 ((-111) $ (-606 |#3|))) (-15 -1451 ((-111) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-606 $))) (-15 -3413 ($ $ $)) (-15 -3413 ($ $ |#4|)) (-15 -2597 ($ $)) (-15 -2245 ((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|))) (-15 -1343 ($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)))) (-15 -1839 ((-537) $ (-606 |#3|))) (-15 -1839 ((-537) $)) (-15 -3601 ($ $)) (-15 -3754 ($ (-606 |#4|))) (-15 -1608 ($ (-606 |#4|))) (-15 -1444 ((-111) $)) (-15 -2269 ((-606 |#4|) $)) (-15 -2341 ($ (-606 |#4|))) (-15 -2864 ($ $ |#4|)) (-15 -2864 ($ $ |#4| (-606 |#3|))) (IF (|has| |#3| (-580 (-1117))) (-15 -1368 ((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|))) |%noBranch|))) (-347) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -485)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2836 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-1656 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2233 (*1 *2 *3 *1) (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-2887 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2044 (*1 *2 *3 *1) (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-1451 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1451 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-606 (-485 *3 *4 *5 *6))) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3413 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-2597 (*1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-2 (|:| |mval| (-649 *4)) (|:| |invmval| (-649 *4)) (|:| |genIdeal| (-485 *4 *5 *6 *7)))) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-649 *3)) (|:| |invmval| (-649 *3)) (|:| |genIdeal| (-485 *3 *4 *5 *6)))) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-1839 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-537)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1839 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3601 (*1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-1444 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2269 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *6)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-2864 (*1 *1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-2864 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *1 (-485 *4 *5 *6 *2)) (-4 *2 (-902 *4 *5 *6)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *6 (-580 (-1117))) (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1107 (-606 (-905 *4)) (-606 (-278 (-905 *4))))) (-5 *1 (-485 *4 *5 *6 *7))))) -(-13 (-1045) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 -2318 ($ $ $)) (-15 -2836 ((-111) $)) (-15 -1656 ((-111) $)) (-15 -2233 ((-111) |#4| $)) (-15 -2887 ((-111) $ $)) (-15 -2044 ((-111) |#4| $)) (-15 -1451 ((-111) $ (-606 |#3|))) (-15 -1451 ((-111) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-606 $))) (-15 -3413 ($ $ $)) (-15 -3413 ($ $ |#4|)) (-15 -2597 ($ $)) (-15 -2245 ((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|))) (-15 -1343 ($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)))) (-15 -1839 ((-537) $ (-606 |#3|))) (-15 -1839 ((-537) $)) (-15 -3601 ($ $)) (-15 -3754 ($ (-606 |#4|))) (-15 -1608 ($ (-606 |#4|))) (-15 -1444 ((-111) $)) (-15 -2269 ((-606 |#4|) $)) (-15 -2341 ($ (-606 |#4|))) (-15 -2864 ($ $ |#4|)) (-15 -2864 ($ $ |#4| (-606 |#3|))) (IF (|has| |#3| (-580 (-1117))) (-15 -1368 ((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|))) |%noBranch|))) -((-3099 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 150)) (-2071 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 151)) (-1882 (((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 108)) (-2639 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) NIL)) (-2697 (((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 153)) (-2352 (((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))) 165))) -(((-486 |#1| |#2|) (-10 -7 (-15 -3099 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2071 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2639 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -1882 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2697 ((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2352 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))))) (-606 (-1117)) (-731)) (T -486)) -((-2352 (*1 *2 *2 *3) (-12 (-5 *2 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *1 (-486 *4 *5)))) (-2697 (*1 *2 *3) (-12 (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-606 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537)))))) (-5 *1 (-486 *4 *5)) (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-485 (-391 (-537)) (-225 *4 (-731)) (-818 *3) (-232 *3 (-391 (-537))))) (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-486 *3 *4)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5))))) -(-10 -7 (-15 -3099 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2071 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2639 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -1882 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2697 ((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2352 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1122) $) NIL) (((-1117) $) 8)) (-2244 (((-111) $ $) NIL))) -(((-487) (-13 (-1029) (-579 (-1117)))) (T -487)) -NIL -(-13 (-1029) (-579 (-1117))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) 12 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 11) (($ $ $) 24)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 18))) -(((-488 |#1| |#2|) (-13 (-21) (-490 |#1| |#2|)) (-21) (-807)) (T -488)) -NIL -(-13 (-21) (-490 |#1| |#2|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 12)) (-3832 (($) NIL T CONST)) (-3940 (($ $) 28)) (-3733 (($ |#1| |#2|) 25)) (-1612 (($ (-1 |#1| |#1|) $) 27)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) 29)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) 10 T CONST)) (-2244 (((-111) $ $) NIL)) (-2318 (($ $ $) 18)) (* (($ (-874) $) NIL) (($ (-731) $) 23))) -(((-489 |#1| |#2|) (-13 (-23) (-490 |#1| |#2|)) (-23) (-807)) (T -489)) -NIL -(-13 (-23) (-490 |#1| |#2|)) -((-2330 (((-111) $ $) 7)) (-3940 (($ $) 13)) (-3733 (($ |#1| |#2|) 16)) (-1612 (($ (-1 |#1| |#1|) $) 17)) (-3749 ((|#2| $) 14)) (-3912 ((|#1| $) 15)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-490 |#1| |#2|) (-134) (-1045) (-807)) (T -490)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-490 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-807)))) (-3733 (*1 *1 *2 *3) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *3 (-807)) (-4 *2 (-1045)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-490 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-807)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807))))) -(-13 (-1045) (-10 -8 (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -3733 ($ |t#1| |t#2|)) (-15 -3912 (|t#1| $)) (-15 -3749 (|t#2| $)) (-15 -3940 ($ $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 13)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) -(((-491 |#1| |#2|) (-13 (-752) (-490 |#1| |#2|)) (-752) (-807)) (T -491)) -NIL -(-13 (-752) (-490 |#1| |#2|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) 16)) (-3418 (((-3 $ "failed") $ $) 13)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) -(((-492 |#1| |#2|) (-13 (-753) (-490 |#1| |#2|)) (-753) (-807)) (T -492)) -NIL -(-13 (-753) (-490 |#1| |#2|)) -((-2330 (((-111) $ $) NIL)) (-3940 (($ $) 25)) (-3733 (($ |#1| |#2|) 22)) (-1612 (($ (-1 |#1| |#1|) $) 24)) (-3749 ((|#2| $) 27)) (-3912 ((|#1| $) 26)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21)) (-2244 (((-111) $ $) 14))) -(((-493 |#1| |#2|) (-490 |#1| |#2|) (-1045) (-807)) (T -493)) -NIL -(-490 |#1| |#2|) -((-4116 (($ $ (-606 |#2|) (-606 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-494 |#1| |#2| |#3|) (-10 -8 (-15 -4116 (|#1| |#1| |#2| |#3|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#3|)))) (-495 |#2| |#3|) (-1045) (-1154)) (T -494)) -NIL -(-10 -8 (-15 -4116 (|#1| |#1| |#2| |#3|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#3|)))) -((-4116 (($ $ (-606 |#1|) (-606 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-495 |#1| |#2|) (-134) (-1045) (-1154)) (T -495)) -((-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *5)) (-4 *1 (-495 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1154)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-495 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1154))))) -(-13 (-10 -8 (-15 -4116 ($ $ |t#1| |t#2|)) (-15 -4116 ($ $ (-606 |t#1|) (-606 |t#2|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 16)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 18)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) 23)) (-1361 ((|#2| $ (-537)) 21)) (-3572 (($ (-1 |#1| |#1|) $) 46)) (-2191 (($ (-1 |#2| |#2|) $) 43)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) 53 (|has| |#2| (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 42) (($ |#1|) NIL)) (-3500 ((|#2| |#1| $) 49)) (-2928 (($) 11 T CONST)) (-2244 (((-111) $ $) 29)) (-2318 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-874) $) NIL) (($ (-731) $) 36) (($ |#2| |#1|) 31))) -(((-496 |#1| |#2| |#3|) (-307 |#1| |#2|) (-1045) (-129) |#2|) (T -496)) -NIL -(-307 |#1| |#2|) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2932 (((-111) (-111)) 25)) (-2476 ((|#1| $ (-537) |#1|) 28 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 52)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-1376 (($ $) 56 (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) 44)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3598 (($ $ (-537)) 13)) (-1446 (((-731) $) 11)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 23)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 21 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) 20 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ $ $ (-537)) 51) (($ |#1| $ (-537)) 37)) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1903 (($ (-606 |#1|)) 29)) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 19 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 40)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 16)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 33) (($ $ (-1167 (-537))) NIL)) (-3282 (($ $ (-1167 (-537))) 50) (($ $ (-537)) 45)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) 41 (|has| $ (-6 -4301)))) (-2494 (($ $) 32)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) 42) (($ $ |#1|) 39)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 17 (|has| $ (-6 -4300))))) -(((-497 |#1| |#2|) (-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) (-1154) (-537)) (T -497)) -((-1903 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-497 *3 *4)) (-14 *4 (-537)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 (-537)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 *2))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 (-537))))) -(-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) -((-2330 (((-111) $ $) NIL)) (-3467 (((-1122) $) 11)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3476 (((-1122) $) 13)) (-3441 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-498) (-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)) (-15 -3467 ((-1122) $)) (-15 -3476 ((-1122) $))))) (T -498)) -((-3441 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) -(-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)) (-15 -3467 ((-1122) $)) (-15 -3476 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-550 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-550 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-550 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-550 |#1|) "failed") $) NIL)) (-3958 (((-550 |#1|) $) NIL)) (-3447 (($ (-1200 (-550 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-550 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-550 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-550 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-550 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-550 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-550 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-550 |#1|) (-352)))) (-2055 (((-550 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-550 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-550 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-550 |#1|) (-352)))) (-1671 (((-1113 (-550 |#1|)) $) NIL (|has| (-550 |#1|) (-352)))) (-2728 (((-1113 (-550 |#1|)) $) NIL (|has| (-550 |#1|) (-352))) (((-3 (-1113 (-550 |#1|)) "failed") $ $) NIL (|has| (-550 |#1|) (-352)))) (-2841 (($ $ (-1113 (-550 |#1|))) NIL (|has| (-550 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-550 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| (-550 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-550 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-550 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-550 |#1|))) NIL)) (-3553 (($) NIL (|has| (-550 |#1|) (-352)))) (-3254 (($) NIL (|has| (-550 |#1|) (-352)))) (-1484 (((-1200 (-550 |#1|)) $) NIL) (((-649 (-550 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-550 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-550 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-550 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-550 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-550 |#1|)) NIL) (($ (-550 |#1|) $) NIL))) -(((-499 |#1| |#2|) (-313 (-550 |#1|)) (-874) (-874)) (T -499)) -NIL -(-313 (-550 |#1|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) 35)) (-2720 (($ $ (-537) |#4|) NIL)) (-2573 (($ $ (-537) |#5|) NIL)) (-3832 (($) NIL T CONST)) (-2964 ((|#4| $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) 34)) (-4030 ((|#1| $ (-537) (-537)) 32)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) 28)) (-3157 (($ (-731) (-731) |#1|) 25)) (-2945 (((-731) $) 30)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) 26)) (-2454 (((-537) $) 27)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 29)) (-2485 (((-537) $) 31)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) 38 (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 16)) (-1922 ((|#1| $ (-537) (-537)) 33) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 ((|#5| $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-500 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1154) (-537) (-537) (-357 |#1|) (-357 |#1|)) (T -500)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL)) (-1282 (($ $ (-526) (-478 |#1| |#3|)) NIL)) (-1281 (($ $ (-526) (-478 |#1| |#2|)) NIL)) (-3855 (($) NIL T CONST)) (-3409 (((-478 |#1| |#3|) $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-478 |#1| |#2|) $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-479 |#1| |#2| |#3|) (-55 |#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) (-1159) (-526) (-526)) (T -479)) +NIL +(-55 |#1| (-478 |#1| |#3|) (-478 |#1| |#2|)) +((-2052 (((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735)) 27)) (-2051 (((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735)) 34)) (-2170 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)) 85))) +(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -2051 ((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735))) (-15 -2052 ((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735))) (-15 -2170 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)))) (-335) (-1181 |#1|) (-1181 |#2|)) (T -480)) +((-2170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7))))) (-5 *5 (-735)) (-4 *8 (-1181 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-335)) (-5 *2 (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7)))) (-5 *1 (-480 *6 *7 *8)))) (-2052 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-735)) (-4 *5 (-335)) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6))))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6)))) (-4 *7 (-1181 *6)))) (-2051 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-735)) (-4 *3 (-335)) (-4 *5 (-1181 *3)) (-5 *2 (-607 (-1117 *3))) (-5 *1 (-480 *3 *5 *6)) (-4 *6 (-1181 *5))))) +(-10 -7 (-15 -2051 ((-607 (-1117 |#1|)) |#1| (-735) (-735) (-735))) (-15 -2052 ((-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-735) (-735))) (-15 -2170 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) (-607 |#3|) (-607 (-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) (-735)))) +((-2058 (((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))) 62)) (-2053 ((|#1| (-653 |#1|) |#1| (-735)) 25)) (-2055 (((-735) (-735) (-735)) 30)) (-2057 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 42)) (-2056 (((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|) 50) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 47)) (-2054 ((|#1| (-653 |#1|) (-653 |#1|) |#1| (-526)) 29)) (-3648 ((|#1| (-653 |#1|)) 18))) +(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -3648 (|#1| (-653 |#1|))) (-15 -2053 (|#1| (-653 |#1|) |#1| (-735))) (-15 -2054 (|#1| (-653 |#1|) (-653 |#1|) |#1| (-526))) (-15 -2055 ((-735) (-735) (-735))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2057 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2058 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))))) (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $)))) (-1181 |#1|) (-395 |#1| |#2|)) (T -481)) +((-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2056 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-735)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) (-2054 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-526)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5)))) (-2053 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-735)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *4 (-1181 *2)) (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-5 *1 (-481 *2 *4 *5)) (-4 *5 (-395 *2 *4))))) +(-10 -7 (-15 -3648 (|#1| (-653 |#1|))) (-15 -2053 (|#1| (-653 |#1|) |#1| (-735))) (-15 -2054 (|#1| (-653 |#1|) (-653 |#1|) |#1| (-526))) (-15 -2055 ((-735) (-735) (-735))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2056 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2057 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2058 ((-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|))) (-2 (|:| -2104 (-653 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-653 |#1|)))))) +((-2865 (((-111) $ $) NIL)) (-3639 (($ $) NIL)) (-3635 (($ $ $) 35)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| (-111) (-811))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-111) (-811)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-111) $ (-1172 (-526)) (-111)) NIL (|has| $ (-6 -4311))) (((-111) $ (-526) (-111)) 36 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-3725 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-4161 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-1613 (((-111) $ (-526) (-111)) NIL (|has| $ (-6 -4311)))) (-3410 (((-111) $ (-526)) NIL)) (-3738 (((-526) (-111) $ (-526)) NIL (|has| (-111) (-1052))) (((-526) (-111) $) NIL (|has| (-111) (-1052))) (((-526) (-1 (-111) (-111)) $) NIL)) (-2044 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3156 (($ $ $) 33)) (-3636 (($ $) NIL)) (-1337 (($ $ $) NIL)) (-3936 (($ (-735) (-111)) 23)) (-1338 (($ $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 8 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL)) (-3832 (($ $ $) NIL (|has| (-111) (-811))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2480 (((-607 (-111)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL)) (-2048 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ (-111) $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-111) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2277 (($ $ (-111)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-111)) (-607 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052)))) (($ $ (-607 (-278 (-111)))) NIL (-12 (|has| (-111) (-294 (-111))) (|has| (-111) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052))))) (-2283 (((-607 (-111)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 24)) (-4118 (($ $ (-1172 (-526))) NIL) (((-111) $ (-526)) 18) (((-111) $ (-526) (-111)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2045 (((-735) (-111) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-111) (-1052)))) (((-735) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) 25)) (-4287 (((-515) $) NIL (|has| (-111) (-584 (-515))))) (-3844 (($ (-607 (-111))) NIL)) (-4120 (($ (-607 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-4274 (((-823) $) 22)) (-2047 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4310)))) (-3155 (($ $ $) 31)) (-3641 (($ $ $) NIL)) (-3632 (($ $ $) 39)) (-3634 (($ $) 37)) (-3633 (($ $ $) 38)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 26)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 27)) (-3640 (($ $ $) NIL)) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) +(((-482 |#1|) (-13 (-122) (-10 -8 (-15 -3634 ($ $)) (-15 -3632 ($ $ $)) (-15 -3633 ($ $ $)))) (-526)) (T -482)) +((-3634 (*1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) (-3632 (*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) (-3633 (*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526))))) +(-13 (-122) (-10 -8 (-15 -3634 ($ $)) (-15 -3632 ($ $ $)) (-15 -3633 ($ $ $)))) +((-2060 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|)) 35)) (-2059 (((-1117 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1117 |#4|)) 22)) (-2061 (((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|))) 46)) (-2062 (((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-483 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2059 (|#2| (-1 |#1| |#4|) (-1117 |#4|))) (-15 -2059 ((-1117 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2060 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|))) (-15 -2061 ((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|)))) (-15 -2062 ((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|))) (-1004) (-1181 |#1|) (-1181 |#2|) (-1004)) (T -483)) +((-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-1117 (-1117 *7))) (-5 *1 (-483 *5 *6 *4 *7)) (-4 *4 (-1181 *6)))) (-2061 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-653 (-1117 *8))) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *6)) (-5 *1 (-483 *5 *6 *7 *8)) (-4 *7 (-1181 *6)))) (-2060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *4 (-1181 *5)) (-5 *2 (-1117 *7)) (-5 *1 (-483 *5 *4 *6 *7)) (-4 *6 (-1181 *4)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2))))) +(-10 -7 (-15 -2059 (|#2| (-1 |#1| |#4|) (-1117 |#4|))) (-15 -2059 ((-1117 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2060 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1117 |#4|))) (-15 -2061 ((-3 (-653 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-653 (-1117 |#4|)))) (-15 -2062 ((-1117 (-1117 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2063 (((-1211) $) 19)) (-4118 (((-1106) $ (-1123)) 23)) (-3939 (((-1211) $) 15)) (-4274 (((-823) $) 21) (($ (-1106)) 20)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 9)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) +(((-484) (-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -4274 ($ (-1106)))))) (T -484)) +((-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1106)) (-5 *1 (-484)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-484))))) +(-13 (-811) (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) (-15 -2063 ((-1211) $)) (-15 -4274 ($ (-1106))))) +((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4058 ((|#1| |#4|) 10)) (-4059 ((|#3| |#4|) 17))) +(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4058 (|#1| |#4|)) (-15 -4059 (|#3| |#4|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-533) (-950 |#1|) (-357 |#1|) (-357 |#2|)) (T -485)) +((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) (-4059 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-4 *2 (-357 *4)) (-5 *1 (-485 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-485 *2 *4 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-357 *4))))) +(-10 -7 (-15 -4058 (|#1| |#4|)) (-15 -4059 (|#3| |#4|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2865 (((-111) $ $) NIL)) (-2073 (((-111) $ (-607 |#3|)) 105) (((-111) $) 106)) (-3502 (((-111) $) 149)) (-2065 (($ $ |#4|) 97) (($ $ |#4| (-607 |#3|)) 101)) (-2064 (((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|)) 142 (|has| |#3| (-584 (-1123))))) (-2072 (($ $ $) 91) (($ $ |#4|) 89)) (-2471 (((-111) $) 148)) (-2069 (($ $) 109)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 83) (($ (-607 $)) 85)) (-2074 (((-111) |#4| $) 108)) (-2075 (((-111) $ $) 72)) (-2068 (($ (-607 |#4|)) 90)) (-3555 (((-1070) $) NIL)) (-2067 (($ (-607 |#4|)) 146)) (-2066 (((-111) $) 147)) (-2303 (($ $) 74)) (-2995 (((-607 |#4|) $) 63)) (-2071 (((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|)) NIL)) (-2076 (((-111) |#4| $) 77)) (-4230 (((-526) $ (-607 |#3|)) 110) (((-526) $) 111)) (-4274 (((-823) $) 145) (($ (-607 |#4|)) 86)) (-2070 (($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $))) NIL)) (-3353 (((-111) $ $) 73)) (-4158 (($ $ $) 93)) (** (($ $ (-735)) 96)) (* (($ $ $) 95))) +(((-486 |#1| |#2| |#3| |#4|) (-13 (-1052) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 -4158 ($ $ $)) (-15 -2471 ((-111) $)) (-15 -3502 ((-111) $)) (-15 -2076 ((-111) |#4| $)) (-15 -2075 ((-111) $ $)) (-15 -2074 ((-111) |#4| $)) (-15 -2073 ((-111) $ (-607 |#3|))) (-15 -2073 ((-111) $)) (-15 -3550 ($ $ $)) (-15 -3550 ($ (-607 $))) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ |#4|)) (-15 -2303 ($ $)) (-15 -2071 ((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|))) (-15 -2070 ($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)))) (-15 -4230 ((-526) $ (-607 |#3|))) (-15 -4230 ((-526) $)) (-15 -2069 ($ $)) (-15 -2068 ($ (-607 |#4|))) (-15 -2067 ($ (-607 |#4|))) (-15 -2066 ((-111) $)) (-15 -2995 ((-607 |#4|) $)) (-15 -4274 ($ (-607 |#4|))) (-15 -2065 ($ $ |#4|)) (-15 -2065 ($ $ |#4| (-607 |#3|))) (IF (|has| |#3| (-584 (-1123))) (-15 -2064 ((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|))) |%noBranch|))) (-348) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -486)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2471 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2076 (*1 *2 *3 *1) (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-2075 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2074 (*1 *2 *3 *1) (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-2073 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-607 (-486 *3 *4 *5 *6))) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2072 (*1 *1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2072 (*1 *1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2071 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |mval| (-653 *4)) (|:| |invmval| (-653 *4)) (|:| |genIdeal| (-486 *4 *5 *6 *7)))) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-653 *3)) (|:| |invmval| (-653 *3)) (|:| |genIdeal| (-486 *3 *4 *5 *6)))) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *2 (-526)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) (-4230 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2069 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2066 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *6)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) (-2065 (*1 *1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-909 *3 *4 *5)))) (-2065 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) (-5 *1 (-486 *4 *5 *6 *2)) (-4 *2 (-909 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *6 (-584 (-1123))) (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1113 (-607 (-905 *4)) (-607 (-278 (-905 *4))))) (-5 *1 (-486 *4 *5 *6 *7))))) +(-13 (-1052) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 -4158 ($ $ $)) (-15 -2471 ((-111) $)) (-15 -3502 ((-111) $)) (-15 -2076 ((-111) |#4| $)) (-15 -2075 ((-111) $ $)) (-15 -2074 ((-111) |#4| $)) (-15 -2073 ((-111) $ (-607 |#3|))) (-15 -2073 ((-111) $)) (-15 -3550 ($ $ $)) (-15 -3550 ($ (-607 $))) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ |#4|)) (-15 -2303 ($ $)) (-15 -2071 ((-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)) $ (-607 |#3|))) (-15 -2070 ($ (-2 (|:| |mval| (-653 |#1|)) (|:| |invmval| (-653 |#1|)) (|:| |genIdeal| $)))) (-15 -4230 ((-526) $ (-607 |#3|))) (-15 -4230 ((-526) $)) (-15 -2069 ($ $)) (-15 -2068 ($ (-607 |#4|))) (-15 -2067 ($ (-607 |#4|))) (-15 -2066 ((-111) $)) (-15 -2995 ((-607 |#4|) $)) (-15 -4274 ($ (-607 |#4|))) (-15 -2065 ($ $ |#4|)) (-15 -2065 ($ $ |#4| (-607 |#3|))) (IF (|has| |#3| (-584 (-1123))) (-15 -2064 ((-1113 (-607 (-905 |#1|)) (-607 (-278 (-905 |#1|)))) (-607 |#4|))) |%noBranch|))) +((-2077 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 150)) (-2078 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 151)) (-2079 (((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 108)) (-4045 (((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) NIL)) (-2080 (((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) 153)) (-2081 (((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))) 165))) +(((-487 |#1| |#2|) (-10 -7 (-15 -2077 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2078 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -4045 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2079 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2080 ((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2081 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))))) (-607 (-1123)) (-735)) (T -487)) +((-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *1 (-487 *4 *5)))) (-2080 (*1 *2 *3) (-12 (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-607 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))) (-5 *1 (-487 *4 *5)) (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-486 (-392 (-526)) (-225 *4 (-735)) (-824 *3) (-233 *3 (-392 (-526))))) (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-487 *3 *4)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) (-5 *1 (-487 *4 *5))))) +(-10 -7 (-15 -2077 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2078 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -4045 ((-111) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2079 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2080 ((-607 (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526))))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))))) (-15 -2081 ((-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-486 (-392 (-526)) (-225 |#2| (-735)) (-824 |#1|) (-233 |#1| (-392 (-526)))) (-607 (-824 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1128) $) NIL) (((-1123) $) 8)) (-3353 (((-111) $ $) NIL))) +(((-488) (-13 (-1035) (-583 (-1123)))) (T -488)) +NIL +(-13 (-1035) (-583 (-1123))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) 12 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 11) (($ $ $) 24)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 18))) +(((-489 |#1| |#2|) (-13 (-21) (-491 |#1| |#2|)) (-21) (-811)) (T -489)) +NIL +(-13 (-21) (-491 |#1| |#2|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 12)) (-3855 (($) NIL T CONST)) (-4276 (($ $) 28)) (-3193 (($ |#1| |#2|) 25)) (-4275 (($ (-1 |#1| |#1|) $) 27)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) 29)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) 10 T CONST)) (-3353 (((-111) $ $) NIL)) (-4158 (($ $ $) 18)) (* (($ (-878) $) NIL) (($ (-735) $) 23))) +(((-490 |#1| |#2|) (-13 (-23) (-491 |#1| |#2|)) (-23) (-811)) (T -490)) +NIL +(-13 (-23) (-491 |#1| |#2|)) +((-2865 (((-111) $ $) 7)) (-4276 (($ $) 13)) (-3193 (($ |#1| |#2|) 16)) (-4275 (($ (-1 |#1| |#1|) $) 17)) (-2082 ((|#2| $) 14)) (-3487 ((|#1| $) 15)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) +(((-491 |#1| |#2|) (-134) (-1052) (-811)) (T -491)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-811)))) (-3193 (*1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1052)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-491 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-811)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811))))) +(-13 (-1052) (-10 -8 (-15 -4275 ($ (-1 |t#1| |t#1|) $)) (-15 -3193 ($ |t#1| |t#2|)) (-15 -3487 (|t#1| $)) (-15 -2082 (|t#2| $)) (-15 -4276 ($ $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-4276 (($ $) 25)) (-3193 (($ |#1| |#2|) 22)) (-4275 (($ (-1 |#1| |#1|) $) 24)) (-2082 ((|#2| $) 27)) (-3487 ((|#1| $) 26)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21)) (-3353 (((-111) $ $) 14))) +(((-492 |#1| |#2|) (-491 |#1| |#2|) (-1052) (-811)) (T -492)) +NIL +(-491 |#1| |#2|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 13)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) +(((-493 |#1| |#2|) (-13 (-756) (-491 |#1| |#2|)) (-756) (-811)) (T -493)) +NIL +(-13 (-756) (-491 |#1| |#2|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) 16)) (-1345 (((-3 $ "failed") $ $) 13)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2082 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) +(((-494 |#1| |#2|) (-13 (-757) (-491 |#1| |#2|)) (-757) (-811)) (T -494)) +NIL +(-13 (-757) (-491 |#1| |#2|)) +((-4086 (($ $ (-607 |#2|) (-607 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-495 |#1| |#2| |#3|) (-10 -8 (-15 -4086 (|#1| |#1| |#2| |#3|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#3|)))) (-496 |#2| |#3|) (-1052) (-1159)) (T -495)) +NIL +(-10 -8 (-15 -4086 (|#1| |#1| |#2| |#3|)) (-15 -4086 (|#1| |#1| (-607 |#2|) (-607 |#3|)))) +((-4086 (($ $ (-607 |#1|) (-607 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-496 |#1| |#2|) (-134) (-1052) (-1159)) (T -496)) +((-4086 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *5)) (-4 *1 (-496 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1159)))) (-4086 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-496 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1159))))) +(-13 (-10 -8 (-15 -4086 ($ $ |t#1| |t#2|)) (-15 -4086 ($ $ (-607 |t#1|) (-607 |t#2|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 16)) (-4092 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 18)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-2737 ((|#1| $ (-526)) 23)) (-1695 ((|#2| $ (-526)) 21)) (-2340 (($ (-1 |#1| |#1|) $) 46)) (-1694 (($ (-1 |#2| |#2|) $) 43)) (-3554 (((-1106) $) NIL)) (-1693 (($ $ $) 53 (|has| |#2| (-756)))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 42) (($ |#1|) NIL)) (-3999 ((|#2| |#1| $) 49)) (-2957 (($) 11 T CONST)) (-3353 (((-111) $ $) 29)) (-4158 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-878) $) NIL) (($ (-735) $) 36) (($ |#2| |#1|) 31))) +(((-497 |#1| |#2| |#3|) (-308 |#1| |#2|) (-1052) (-129) |#2|) (T -497)) +NIL +(-308 |#1| |#2|) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-2083 (((-111) (-111)) 25)) (-4106 ((|#1| $ (-526) |#1|) 28 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 52)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-2424 (($ $) 56 (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) 44)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2084 (($ $ (-526)) 13)) (-2085 (((-735) $) 11)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 23)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 21 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) 20 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3929 (($ $ $ (-526)) 51) (($ |#1| $ (-526)) 37)) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2086 (($ (-607 |#1|)) 29)) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 19 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 40)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 16)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 33) (($ $ (-1172 (-526))) NIL)) (-1608 (($ $ (-1172 (-526))) 50) (($ $ (-526)) 45)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) 41 (|has| $ (-6 -4311)))) (-3719 (($ $) 32)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4109 (($ $ $) 42) (($ $ |#1|) 39)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 17 (|has| $ (-6 -4310))))) +(((-498 |#1| |#2|) (-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) (-1159) (-526)) (T -498)) +((-2086 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-498 *3 *4)) (-14 *4 (-526)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 *2))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) +(-13 (-19 |#1|) (-267 |#1|) (-10 -8 (-15 -2086 ($ (-607 |#1|))) (-15 -2085 ((-735) $)) (-15 -2084 ($ $ (-526))) (-15 -2083 ((-111) (-111))))) +((-2865 (((-111) $ $) NIL)) (-2088 (((-1128) $) 11)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2087 (((-1128) $) 13)) (-4239 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-499) (-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)) (-15 -2088 ((-1128) $)) (-15 -2087 ((-1128) $))))) (T -499)) +((-4239 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) +(-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)) (-15 -2088 ((-1128) $)) (-15 -2087 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (((-554 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-554 |#1|) (-353)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL (|has| (-554 |#1|) (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-554 |#1|) "failed") $) NIL)) (-3469 (((-554 |#1|) $) NIL)) (-1887 (($ (-1205 (-554 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-554 |#1|) (-353)))) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-554 |#1|) (-353)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL (|has| (-554 |#1|) (-353)))) (-1772 (((-111) $) NIL (|has| (-554 |#1|) (-353)))) (-1862 (($ $ (-735)) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353)))) (($ $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-4045 (((-111) $) NIL)) (-4090 (((-878) $) NIL (|has| (-554 |#1|) (-353))) (((-796 (-878)) $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| (-554 |#1|) (-353)))) (-2103 (((-111) $) NIL (|has| (-554 |#1|) (-353)))) (-3429 (((-554 |#1|) $) NIL) (($ $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-554 |#1|) (-353)))) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 (-554 |#1|)) $) NIL) (((-1117 $) $ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-2102 (((-878) $) NIL (|has| (-554 |#1|) (-353)))) (-1700 (((-1117 (-554 |#1|)) $) NIL (|has| (-554 |#1|) (-353)))) (-1699 (((-1117 (-554 |#1|)) $) NIL (|has| (-554 |#1|) (-353))) (((-3 (-1117 (-554 |#1|)) "failed") $ $) NIL (|has| (-554 |#1|) (-353)))) (-1701 (($ $ (-1117 (-554 |#1|))) NIL (|has| (-554 |#1|) (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-554 |#1|) (-353)) CONST)) (-2461 (($ (-878)) NIL (|has| (-554 |#1|) (-353)))) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| (-554 |#1|) (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-554 |#1|) (-353)))) (-4051 (((-390 $) $) NIL)) (-4247 (((-796 (-878))) NIL) (((-878)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-735) $) NIL (|has| (-554 |#1|) (-353))) (((-3 (-735) "failed") $ $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-4230 (((-131)) NIL)) (-4129 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-4264 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-3499 (((-1117 (-554 |#1|))) NIL)) (-1766 (($) NIL (|has| (-554 |#1|) (-353)))) (-1702 (($) NIL (|has| (-554 |#1|) (-353)))) (-3537 (((-1205 (-554 |#1|)) $) NIL) (((-653 (-554 |#1|)) (-1205 $)) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-554 |#1|) (-353)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-554 |#1|)) NIL)) (-3002 (($ $) NIL (|has| (-554 |#1|) (-353))) (((-3 $ "failed") $) NIL (-3850 (|has| (-554 |#1|) (-139)) (|has| (-554 |#1|) (-353))))) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL) (((-1205 $) (-878)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-2969 (($ $) NIL (|has| (-554 |#1|) (-353))) (($ $ (-735)) NIL (|has| (-554 |#1|) (-353)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL) (($ $ (-554 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-554 |#1|)) NIL) (($ (-554 |#1|) $) NIL))) +(((-500 |#1| |#2|) (-314 (-554 |#1|)) (-878) (-878)) (T -500)) +NIL +(-314 (-554 |#1|)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) 35)) (-1282 (($ $ (-526) |#4|) NIL)) (-1281 (($ $ (-526) |#5|) NIL)) (-3855 (($) NIL T CONST)) (-3409 ((|#4| $ (-526)) NIL)) (-1613 ((|#1| $ (-526) (-526) |#1|) 34)) (-3410 ((|#1| $ (-526) (-526)) 32)) (-2044 (((-607 |#1|) $) NIL)) (-3412 (((-735) $) 28)) (-3936 (($ (-735) (-735) |#1|) 25)) (-3411 (((-735) $) 30)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) 26)) (-3414 (((-526) $) 27)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 29)) (-3413 (((-526) $) 31)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) 38 (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 16)) (-4118 ((|#1| $ (-526) (-526)) 33) ((|#1| $ (-526) (-526) |#1|) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 ((|#5| $ (-526)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-501 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1159) (-526) (-526) (-357 |#1|) (-357 |#1|)) (T -501)) NIL (-55 |#1| |#4| |#5|) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 59 (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 23 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 21 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4301))) (($ $ "rest" $) 24 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) 28 (|has| $ (-6 -4301)))) (-3289 (($ $) 29)) (-3200 (($ $) 18) (($ $ (-731)) 32)) (-1376 (($ $) 55 (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) 27 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 31 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) 51 (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) 13) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 12)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) 17)) (-3425 (($) 16)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) NIL) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-3335 (((-111) $) 34)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) 36)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) 35)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 26)) (-3115 (($ $ $) 54) (($ $ |#1|) NIL)) (-3434 (($ $ $) NIL) (($ |#1| $) 10) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (((-816) $) 46 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 48 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 9 (|has| $ (-6 -4300))))) -(((-501 |#1| |#2|) (-627 |#1|) (-1154) (-537)) (T -501)) -NIL -(-627 |#1|) -((-3630 ((|#4| |#4|) 27)) (-3705 (((-731) |#4|) 32)) (-2342 (((-731) |#4|) 33)) (-2630 (((-606 |#3|) |#4|) 40 (|has| |#3| (-6 -4301)))) (-1321 (((-3 |#4| "failed") |#4|) 51)) (-2708 ((|#4| |#4|) 44)) (-3075 ((|#1| |#4|) 43))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3630 (|#4| |#4|)) (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (IF (|has| |#3| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|) (-15 -3075 (|#1| |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1321 ((-3 |#4| "failed") |#4|))) (-347) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -502)) -((-1321 (*1 *2 *2) (|partial| -12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-347)) (-5 *1 (-502 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) (-2630 (*1 *2 *3) (-12 (|has| *6 (-6 -4301)) (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(-10 -7 (-15 -3630 (|#4| |#4|)) (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (IF (|has| |#3| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|) (-15 -3075 (|#1| |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1321 ((-3 |#4| "failed") |#4|))) -((-3630 ((|#8| |#4|) 20)) (-2630 (((-606 |#3|) |#4|) 29 (|has| |#7| (-6 -4301)))) (-1321 (((-3 |#8| "failed") |#4|) 23))) -(((-503 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3630 (|#8| |#4|)) (-15 -1321 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|)) (-529) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|) (-945 |#1|) (-357 |#5|) (-357 |#5|) (-647 |#5| |#6| |#7|)) (T -503)) -((-2630 (*1 *2 *3) (-12 (|has| *9 (-6 -4301)) (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-606 *6)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-647 *4 *5 *6)) (-4 *10 (-647 *7 *8 *9)))) (-1321 (*1 *2 *3) (|partial| -12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7))))) -(-10 -7 (-15 -3630 (|#8| |#4|)) (-15 -1321 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) NIL)) (-2417 (($ $ $) NIL)) (-3660 (($ (-568 |#1| |#3|)) NIL) (($ $) NIL)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) 12)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-568 |#1| |#3|)) NIL)) (-2573 (($ $ (-537) (-568 |#1| |#2|)) NIL)) (-3110 (($ (-731) |#1|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 21 (|has| |#1| (-291)))) (-2964 (((-568 |#1| |#3|) $ (-537)) NIL)) (-3705 (((-731) $) 24 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) 26 (|has| |#1| (-529)))) (-2630 (((-606 (-568 |#1| |#2|)) $) 29 (|has| |#1| (-529)))) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) 19 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 10)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 11)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#1|))) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 33 (|has| |#1| (-347)))) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) 17 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-568 |#1| |#2|) $ (-537)) NIL)) (-2341 (($ (-568 |#1| |#2|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-568 |#1| |#2|) $ (-568 |#1| |#2|)) NIL) (((-568 |#1| |#3|) (-568 |#1| |#3|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-504 |#1| |#2| |#3|) (-647 |#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) (-998) (-537) (-537)) (T -504)) -NIL -(-647 |#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3584 (((-606 (-1153)) $) 13)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (($ (-606 (-1153))) 11)) (-2244 (((-111) $ $) NIL))) -(((-505) (-13 (-1029) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3584 ((-606 (-1153)) $))))) (T -505)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505))))) -(-13 (-1029) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3584 ((-606 (-1153)) $)))) -((-2330 (((-111) $ $) NIL)) (-1838 (((-1122) $) 13)) (-1654 (((-1100) $) NIL)) (-1851 (((-1117) $) 11)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-506) (-13 (-1029) (-10 -8 (-15 -1851 ((-1117) $)) (-15 -1838 ((-1122) $))))) (T -506)) -((-1851 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-506)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-506))))) -(-13 (-1029) (-10 -8 (-15 -1851 ((-1117) $)) (-15 -1838 ((-1122) $)))) -((-4178 (((-1113 |#1|) (-731)) 76)) (-1428 (((-1200 |#1|) (-1200 |#1|) (-874)) 69)) (-1686 (((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|) 84)) (-4259 (((-1200 |#1|) (-1200 |#1|) (-731)) 36)) (-1618 (((-1200 |#1|) (-874)) 71)) (-2890 (((-1200 |#1|) (-1200 |#1|) (-537)) 24)) (-2990 (((-1113 |#1|) (-1200 |#1|)) 77)) (-3522 (((-1200 |#1|) (-874)) 95)) (-3870 (((-111) (-1200 |#1|)) 80)) (-2055 (((-1200 |#1|) (-1200 |#1|) (-874)) 62)) (-3199 (((-1113 |#1|) (-1200 |#1|)) 89)) (-2334 (((-874) (-1200 |#1|)) 59)) (-3865 (((-1200 |#1|) (-1200 |#1|)) 30)) (-2009 (((-1200 |#1|) (-874) (-874)) 97)) (-3378 (((-1200 |#1|) (-1200 |#1|) (-1064) (-1064)) 23)) (-2313 (((-1200 |#1|) (-1200 |#1|) (-731) (-1064)) 37)) (-2122 (((-1200 (-1200 |#1|)) (-874)) 94)) (-2340 (((-1200 |#1|) (-1200 |#1|) (-1200 |#1|)) 81)) (** (((-1200 |#1|) (-1200 |#1|) (-537)) 45)) (* (((-1200 |#1|) (-1200 |#1|) (-1200 |#1|)) 25))) -(((-507 |#1|) (-10 -7 (-15 -1686 ((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|)) (-15 -1618 ((-1200 |#1|) (-874))) (-15 -2009 ((-1200 |#1|) (-874) (-874))) (-15 -2990 ((-1113 |#1|) (-1200 |#1|))) (-15 -4178 ((-1113 |#1|) (-731))) (-15 -2313 ((-1200 |#1|) (-1200 |#1|) (-731) (-1064))) (-15 -4259 ((-1200 |#1|) (-1200 |#1|) (-731))) (-15 -3378 ((-1200 |#1|) (-1200 |#1|) (-1064) (-1064))) (-15 -2890 ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 ** ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 * ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2340 ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2055 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -1428 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -3865 ((-1200 |#1|) (-1200 |#1|))) (-15 -2334 ((-874) (-1200 |#1|))) (-15 -3870 ((-111) (-1200 |#1|))) (-15 -2122 ((-1200 (-1200 |#1|)) (-874))) (-15 -3522 ((-1200 |#1|) (-874))) (-15 -3199 ((-1113 |#1|) (-1200 |#1|)))) (-333)) (T -507)) -((-3199 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 *4))) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-507 *4)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-874)) (-5 *1 (-507 *4)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2890 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-3378 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1064)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2313 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1200 *5)) (-5 *3 (-731)) (-5 *4 (-1064)) (-4 *5 (-333)) (-5 *1 (-507 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)))) (-2009 (*1 *2 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-1205)) (-5 *1 (-507 *4))))) -(-10 -7 (-15 -1686 ((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|)) (-15 -1618 ((-1200 |#1|) (-874))) (-15 -2009 ((-1200 |#1|) (-874) (-874))) (-15 -2990 ((-1113 |#1|) (-1200 |#1|))) (-15 -4178 ((-1113 |#1|) (-731))) (-15 -2313 ((-1200 |#1|) (-1200 |#1|) (-731) (-1064))) (-15 -4259 ((-1200 |#1|) (-1200 |#1|) (-731))) (-15 -3378 ((-1200 |#1|) (-1200 |#1|) (-1064) (-1064))) (-15 -2890 ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 ** ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 * ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2340 ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2055 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -1428 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -3865 ((-1200 |#1|) (-1200 |#1|))) (-15 -2334 ((-874) (-1200 |#1|))) (-15 -3870 ((-111) (-1200 |#1|))) (-15 -2122 ((-1200 (-1200 |#1|)) (-874))) (-15 -3522 ((-1200 |#1|) (-874))) (-15 -3199 ((-1113 |#1|) (-1200 |#1|)))) -((-1894 (((-1 |#1| |#1|) |#1|) 11)) (-3424 (((-1 |#1| |#1|)) 10))) -(((-508 |#1|) (-10 -7 (-15 -3424 ((-1 |#1| |#1|))) (-15 -1894 ((-1 |#1| |#1|) |#1|))) (-13 (-687) (-25))) (T -508)) -((-1894 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25))))) (-3424 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) -(-10 -7 (-15 -3424 ((-1 |#1| |#1|))) (-15 -1894 ((-1 |#1| |#1|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ (-731) |#1|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 (-731) (-731)) $) NIL)) (-3749 ((|#1| $) NIL)) (-3912 (((-731) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) -(((-509 |#1|) (-13 (-753) (-490 (-731) |#1|)) (-807)) (T -509)) -NIL -(-13 (-753) (-490 (-731) |#1|)) -((-1480 (((-606 |#2|) (-1113 |#1|) |#3|) 83)) (-2015 (((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))) 100)) (-3085 (((-1113 |#1|) (-649 |#1|)) 95))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3085 ((-1113 |#1|) (-649 |#1|))) (-15 -1480 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2015 ((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))))) (-347) (-347) (-13 (-347) (-805))) (T -510)) -((-2015 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *5 (-1 (-402 (-1113 *6)) (-1113 *6))) (-4 *6 (-347)) (-5 *2 (-606 (-2 (|:| |outval| *7) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 *7)))))) (-5 *1 (-510 *6 *7 *4)) (-4 *7 (-347)) (-4 *4 (-13 (-347) (-805))))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *5)) (-4 *5 (-347)) (-5 *2 (-606 *6)) (-5 *1 (-510 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *2 (-1113 *4)) (-5 *1 (-510 *4 *5 *6)) (-4 *5 (-347)) (-4 *6 (-13 (-347) (-805)))))) -(-10 -7 (-15 -3085 ((-1113 |#1|) (-649 |#1|))) (-15 -1480 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2015 ((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))))) -((-1548 (((-800 (-537))) 12)) (-1557 (((-800 (-537))) 14)) (-3349 (((-793 (-537))) 9))) -(((-511) (-10 -7 (-15 -3349 ((-793 (-537)))) (-15 -1548 ((-800 (-537)))) (-15 -1557 ((-800 (-537)))))) (T -511)) -((-1557 (*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) (-1548 (*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) (-3349 (*1 *2) (-12 (-5 *2 (-793 (-537))) (-5 *1 (-511))))) -(-10 -7 (-15 -3349 ((-793 (-537)))) (-15 -1548 ((-800 (-537)))) (-15 -1557 ((-800 (-537))))) -((-2473 (((-513) (-1117)) 15)) (-3443 ((|#1| (-513)) 20))) -(((-512 |#1|) (-10 -7 (-15 -2473 ((-513) (-1117))) (-15 -3443 (|#1| (-513)))) (-1154)) (T -512)) -((-3443 (*1 *2 *3) (-12 (-5 *3 (-513)) (-5 *1 (-512 *2)) (-4 *2 (-1154)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-513)) (-5 *1 (-512 *4)) (-4 *4 (-1154))))) -(-10 -7 (-15 -2473 ((-513) (-1117))) (-15 -3443 (|#1| (-513)))) -((-2330 (((-111) $ $) NIL)) (-1626 (((-1100) $) 48)) (-3128 (((-111) $) 43)) (-1694 (((-1117) $) 44)) (-3330 (((-111) $) 41)) (-3035 (((-1100) $) 42)) (-2114 (((-111) $) NIL)) (-2942 (((-111) $) NIL)) (-3477 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2173 (($ $ (-606 (-1117))) 20)) (-3443 (((-51) $) 22)) (-1660 (((-111) $) NIL)) (-1715 (((-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-2066 (($ $ (-606 (-1117)) (-1117)) 60)) (-2807 (((-111) $) NIL)) (-2851 (((-210) $) NIL)) (-2458 (($ $) 38)) (-1845 (((-816) $) NIL)) (-4113 (((-111) $ $) NIL)) (-1922 (($ $ (-537)) NIL) (($ $ (-606 (-537))) NIL)) (-3690 (((-606 $) $) 28)) (-3883 (((-1117) (-606 $)) 49)) (-3996 (($ (-606 $)) 53) (($ (-1100)) NIL) (($ (-1117)) 18) (($ (-537)) 8) (($ (-210)) 25) (($ (-816)) NIL) (((-1049) $) 11) (($ (-1049)) 12)) (-3599 (((-1117) (-1117) (-606 $)) 52)) (-2341 (((-816) $) 46)) (-1313 (($ $) 51)) (-1297 (($ $) 50)) (-2398 (($ $ (-606 $)) 57)) (-4233 (((-111) $) 27)) (-2928 (($) 9 T CONST)) (-2943 (($) 10 T CONST)) (-2244 (((-111) $ $) 61)) (-2340 (($ $ $) 66)) (-2318 (($ $ $) 62)) (** (($ $ (-731)) 65) (($ $ (-537)) 64)) (* (($ $ $) 63)) (-2258 (((-537) $) NIL))) -(((-513) (-13 (-1048 (-1100) (-1117) (-537) (-210) (-816)) (-580 (-1049)) (-10 -8 (-15 -3443 ((-51) $)) (-15 -3996 ($ (-1049))) (-15 -2398 ($ $ (-606 $))) (-15 -2066 ($ $ (-606 (-1117)) (-1117))) (-15 -2173 ($ $ (-606 (-1117)))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ (-537))) (-15 0 ($) -2787) (-15 1 ($) -2787) (-15 -2458 ($ $)) (-15 -1626 ((-1100) $)) (-15 -3883 ((-1117) (-606 $))) (-15 -3599 ((-1117) (-1117) (-606 $)))))) (T -513)) -((-3443 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-513)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-513)))) (-2398 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-513))) (-5 *1 (-513)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1117)) (-5 *1 (-513)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-513)))) (-2318 (*1 *1 *1 *1) (-5 *1 (-513))) (* (*1 *1 *1 *1) (-5 *1 (-513))) (-2340 (*1 *1 *1 *1) (-5 *1 (-513))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-513)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-513)))) (-2928 (*1 *1) (-5 *1 (-513))) (-2943 (*1 *1) (-5 *1 (-513))) (-2458 (*1 *1 *1) (-5 *1 (-513))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-513)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-606 (-513))) (-5 *2 (-1117)) (-5 *1 (-513)))) (-3599 (*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-513))) (-5 *1 (-513))))) -(-13 (-1048 (-1100) (-1117) (-537) (-210) (-816)) (-580 (-1049)) (-10 -8 (-15 -3443 ((-51) $)) (-15 -3996 ($ (-1049))) (-15 -2398 ($ $ (-606 $))) (-15 -2066 ($ $ (-606 (-1117)) (-1117))) (-15 -2173 ($ $ (-606 (-1117)))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ (-537))) (-15 (-2928) ($) -2787) (-15 (-2943) ($) -2787) (-15 -2458 ($ $)) (-15 -1626 ((-1100) $)) (-15 -3883 ((-1117) (-606 $))) (-15 -3599 ((-1117) (-1117) (-606 $))))) -((-2339 ((|#2| |#2|) 17)) (-2965 ((|#2| |#2|) 13)) (-3005 ((|#2| |#2| (-537) (-537)) 20)) (-3481 ((|#2| |#2|) 15))) -(((-514 |#1| |#2|) (-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) (-13 (-529) (-141)) (-1191 |#1|)) (T -514)) -((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-514 *4 *2)) (-4 *2 (-1191 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3))))) -(-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) -((-3793 (((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))) 32)) (-2822 (((-606 |#2|) (-905 |#1|) |#3|) 53) (((-606 |#2|) (-1113 |#1|) |#3|) 52)) (-2185 (((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|) 91))) -(((-515 |#1| |#2| |#3|) (-10 -7 (-15 -2822 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2822 ((-606 |#2|) (-905 |#1|) |#3|)) (-15 -2185 ((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|)) (-15 -3793 ((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))))) (-435) (-347) (-13 (-347) (-805))) (T -515)) -((-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1117))) (-4 *6 (-347)) (-5 *2 (-606 (-278 (-905 *6)))) (-5 *1 (-515 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-13 (-347) (-805))))) (-2185 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-515 *6 *7 *5)) (-4 *7 (-347)) (-4 *5 (-13 (-347) (-805))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) -(-10 -7 (-15 -2822 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2822 ((-606 |#2|) (-905 |#1|) |#3|)) (-15 -2185 ((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|)) (-15 -3793 ((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))))) -((-1818 ((|#2| |#2| |#1|) 17)) (-3453 ((|#2| (-606 |#2|)) 27)) (-2745 ((|#2| (-606 |#2|)) 46))) -(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 (|#2| (-606 |#2|))) (-15 -2745 (|#2| (-606 |#2|))) (-15 -1818 (|#2| |#2| |#1|))) (-291) (-1176 |#1|) |#1| (-1 |#1| |#1| (-731))) (T -516)) -((-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-731))) (-5 *1 (-516 *3 *2 *4 *5)) (-4 *2 (-1176 *3)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731))))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) -(-10 -7 (-15 -3453 (|#2| (-606 |#2|))) (-15 -2745 (|#2| (-606 |#2|))) (-15 -1818 (|#2| |#2| |#1|))) -((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))) 80) (((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|))) 169))) -(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|)))) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))))) (-807) (-753) (-13 (-291) (-141)) (-902 |#3| |#2| |#1|)) (T -517)) -((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *8 (-902 *7 *6 *5)) (-5 *2 (-402 (-1113 *8))) (-5 *1 (-517 *5 *6 *7 *8)) (-5 *3 (-1113 *8)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *2 (-402 *3)) (-5 *1 (-517 *5 *6 *7 *3)) (-4 *3 (-902 *7 *6 *5))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|)))) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))))) -((-2339 ((|#4| |#4|) 74)) (-2965 ((|#4| |#4|) 70)) (-3005 ((|#4| |#4| (-537) (-537)) 76)) (-3481 ((|#4| |#4|) 72))) -(((-518 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2965 (|#4| |#4|)) (-15 -3481 (|#4| |#4|)) (-15 -2339 (|#4| |#4|)) (-15 -3005 (|#4| |#4| (-537) (-537)))) (-13 (-347) (-352) (-580 (-537))) (-1176 |#1|) (-685 |#1| |#2|) (-1191 |#3|)) (T -518)) -((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) (-4 *5 (-1176 *4)) (-4 *6 (-685 *4 *5)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-1191 *6)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5))))) -(-10 -7 (-15 -2965 (|#4| |#4|)) (-15 -3481 (|#4| |#4|)) (-15 -2339 (|#4| |#4|)) (-15 -3005 (|#4| |#4| (-537) (-537)))) -((-2339 ((|#2| |#2|) 27)) (-2965 ((|#2| |#2|) 23)) (-3005 ((|#2| |#2| (-537) (-537)) 29)) (-3481 ((|#2| |#2|) 25))) -(((-519 |#1| |#2|) (-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) (-13 (-347) (-352) (-580 (-537))) (-1191 |#1|)) (T -519)) -((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) (-5 *1 (-519 *4 *2)) (-4 *2 (-1191 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3))))) -(-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) -((-2174 (((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)) 14) (((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|)) 13) (((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|)) 26))) -(((-520 |#1| |#2|) (-10 -7 (-15 -2174 ((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)))) (-998) (-1176 |#1|)) (T -520)) -((-2174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) (-2174 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) (-2174 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-537) "failed") *5)) (-4 *5 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *5 *3)) (-4 *3 (-1176 *5))))) -(-10 -7 (-15 -2174 ((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)))) -((-2675 (($ $ $) 79)) (-2414 (((-402 $) $) 47)) (-1516 (((-3 (-537) "failed") $) 59)) (-3958 (((-537) $) 37)) (-2484 (((-3 (-391 (-537)) "failed") $) 74)) (-1797 (((-111) $) 24)) (-2616 (((-391 (-537)) $) 72)) (-2639 (((-111) $) 50)) (-2238 (($ $ $ $) 86)) (-3797 (((-111) $) 16)) (-2967 (($ $ $) 57)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 69)) (-2824 (((-3 $ "failed") $) 64)) (-1454 (($ $) 23)) (-1753 (($ $ $) 84)) (-3956 (($) 60)) (-2871 (($ $) 53)) (-3622 (((-402 $) $) 45)) (-2977 (((-111) $) 14)) (-1930 (((-731) $) 28)) (-3456 (($ $ (-731)) NIL) (($ $) 10)) (-2494 (($ $) 17)) (-3996 (((-537) $) NIL) (((-513) $) 36) (((-845 (-537)) $) 40) (((-363) $) 31) (((-210) $) 33)) (-3654 (((-731)) 8)) (-3246 (((-111) $ $) 20)) (-2360 (($ $ $) 55))) -(((-521 |#1|) (-10 -8 (-15 -1753 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3996 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3797 ((-111) |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -3654 ((-731)))) (-522)) (T -521)) -((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-521 *3)) (-4 *3 (-522))))) -(-10 -8 (-15 -1753 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3996 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3797 ((-111) |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -3654 ((-731)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-2675 (($ $ $) 83)) (-3418 (((-3 $ "failed") $ $) 19)) (-3480 (($ $ $ $) 71)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-4099 (((-111) $ $) 123)) (-2537 (((-537) $) 112)) (-3879 (($ $ $) 86)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 104)) (-3958 (((-537) $) 103)) (-3563 (($ $ $) 127)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 102) (((-649 (-537)) (-649 $)) 101)) (-3490 (((-3 $ "failed") $) 32)) (-2484 (((-3 (-391 (-537)) "failed") $) 80)) (-1797 (((-111) $) 82)) (-2616 (((-391 (-537)) $) 81)) (-1618 (($) 79) (($ $) 78)) (-3539 (($ $ $) 126)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 121)) (-2639 (((-111) $) 51)) (-2238 (($ $ $ $) 69)) (-1255 (($ $ $) 84)) (-3797 (((-111) $) 114)) (-2967 (($ $ $) 95)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 98)) (-2836 (((-111) $) 30)) (-2353 (((-111) $) 90)) (-2824 (((-3 $ "failed") $) 92)) (-2840 (((-111) $) 113)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 130)) (-1910 (($ $ $ $) 70)) (-2444 (($ $ $) 115)) (-3889 (($ $ $) 116)) (-1454 (($ $) 73)) (-3845 (($ $) 87)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-1753 (($ $ $) 68)) (-3956 (($) 91 T CONST)) (-4078 (($ $) 75)) (-2528 (((-1064) $) 10) (($ $) 77)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-2871 (($ $) 96)) (-3622 (((-402 $) $) 48)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 128)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 122)) (-2977 (((-111) $) 89)) (-1930 (((-731) $) 124)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 125)) (-3456 (($ $ (-731)) 109) (($ $) 107)) (-3089 (($ $) 74)) (-2494 (($ $) 76)) (-3996 (((-537) $) 106) (((-513) $) 100) (((-845 (-537)) $) 99) (((-363) $) 94) (((-210) $) 93)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 105)) (-3654 (((-731)) 28)) (-3246 (((-111) $ $) 85)) (-2360 (($ $ $) 97)) (-1605 (($) 88)) (-3276 (((-111) $ $) 37)) (-2319 (($ $ $ $) 72)) (-2209 (($ $) 111)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-731)) 110) (($ $) 108)) (-2293 (((-111) $ $) 118)) (-2271 (((-111) $ $) 119)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 117)) (-2263 (((-111) $ $) 120)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-522) (-134)) (T -522)) -((-2353 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-1605 (*1 *1) (-4 *1 (-522))) (-3845 (*1 *1 *1) (-4 *1 (-522))) (-3879 (*1 *1 *1 *1) (-4 *1 (-522))) (-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-1255 (*1 *1 *1 *1) (-4 *1 (-522))) (-2675 (*1 *1 *1 *1) (-4 *1 (-522))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) (-1618 (*1 *1) (-4 *1 (-522))) (-1618 (*1 *1 *1) (-4 *1 (-522))) (-2528 (*1 *1 *1) (-4 *1 (-522))) (-2494 (*1 *1 *1) (-4 *1 (-522))) (-4078 (*1 *1 *1) (-4 *1 (-522))) (-3089 (*1 *1 *1) (-4 *1 (-522))) (-1454 (*1 *1 *1) (-4 *1 (-522))) (-2319 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-3480 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-1910 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-2238 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-1753 (*1 *1 *1 *1) (-4 *1 (-522)))) -(-13 (-1158) (-291) (-780) (-218) (-580 (-537)) (-989 (-537)) (-602 (-537)) (-580 (-513)) (-580 (-845 (-537))) (-839 (-537)) (-137) (-973) (-141) (-1093) (-10 -8 (-15 -2353 ((-111) $)) (-15 -2977 ((-111) $)) (-6 -4299) (-15 -1605 ($)) (-15 -3845 ($ $)) (-15 -3879 ($ $ $)) (-15 -3246 ((-111) $ $)) (-15 -1255 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $)) (-15 -1618 ($)) (-15 -1618 ($ $)) (-15 -2528 ($ $)) (-15 -2494 ($ $)) (-15 -4078 ($ $)) (-15 -3089 ($ $)) (-15 -1454 ($ $)) (-15 -2319 ($ $ $ $)) (-15 -3480 ($ $ $ $)) (-15 -1910 ($ $ $ $)) (-15 -2238 ($ $ $ $)) (-15 -1753 ($ $ $)) (-6 -4298))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-137) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-513)) . T) ((-580 (-537)) . T) ((-580 (-845 (-537))) . T) ((-218) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-602 (-537)) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-780) . T) ((-805) . T) ((-807) . T) ((-839 (-537)) . T) ((-873) . T) ((-973) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) . T) ((-1158) . T)) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-523 |#1| |#2| |#3|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300)))) (T -523)) -NIL -(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) -((-2031 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))) 51))) -(((-524 |#1| |#2|) (-10 -7 (-15 -2031 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))))) (-13 (-807) (-529)) (-13 (-27) (-414 |#1|))) (T -524)) -((-2031 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-1 (-1113 *3) (-1113 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-807) (-529))) (-5 *2 (-554 *3)) (-5 *1 (-524 *6 *3))))) -(-10 -7 (-15 -2031 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))))) -((-2918 (((-554 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3722 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2601 (((-554 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-525 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2601 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2918 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3722 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-807) (-529) (-989 (-537))) (-13 (-27) (-414 |#1|)) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -525)) -((-3722 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-4 *7 (-1176 (-391 *6))) (-5 *1 (-525 *4 *5 *6 *7 *2)) (-4 *2 (-326 *5 *6 *7)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) (-4 *3 (-326 *6 *7 *8)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) (-4 *3 (-326 *6 *7 *8))))) -(-10 -7 (-15 -2601 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2918 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3722 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2578 (((-111) (-537) (-537)) 10)) (-1550 (((-537) (-537)) 7)) (-1885 (((-537) (-537) (-537)) 8))) -(((-526) (-10 -7 (-15 -1550 ((-537) (-537))) (-15 -1885 ((-537) (-537) (-537))) (-15 -2578 ((-111) (-537) (-537))))) (T -526)) -((-2578 (*1 *2 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-526)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) -(-10 -7 (-15 -1550 ((-537) (-537))) (-15 -1885 ((-537) (-537) (-537))) (-15 -2578 ((-111) (-537) (-537)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1786 ((|#1| $) 59)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1403 (($ $) 89)) (-1247 (($ $) 72)) (-2169 ((|#1| $) 60)) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 71)) (-1378 (($ $) 88)) (-4270 (($ $) 73)) (-1429 (($ $) 87)) (-1273 (($ $) 74)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 67)) (-3958 (((-537) $) 66)) (-3490 (((-3 $ "failed") $) 32)) (-1632 (($ |#1| |#1|) 64)) (-3797 (((-111) $) 58)) (-3338 (($) 99)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 70)) (-2840 (((-111) $) 57)) (-2444 (($ $ $) 105)) (-3889 (($ $ $) 104)) (-2180 (($ $) 96)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-4228 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-391 (-537))) 62)) (-3406 ((|#1| $) 61)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-4185 (($ $) 97)) (-1441 (($ $) 86)) (-1286 (($ $) 75)) (-1415 (($ $) 85)) (-1259 (($ $) 76)) (-1389 (($ $) 84)) (-1234 (($ $) 77)) (-1576 (((-111) $ |#1|) 56)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 68)) (-3654 (((-731)) 28)) (-1475 (($ $) 95)) (-1328 (($ $) 83)) (-3276 (((-111) $ $) 37)) (-1453 (($ $) 94)) (-1300 (($ $) 82)) (-1495 (($ $) 93)) (-1352 (($ $) 81)) (-4141 (($ $) 92)) (-1365 (($ $) 80)) (-1485 (($ $) 91)) (-1340 (($ $) 79)) (-1465 (($ $) 90)) (-1314 (($ $) 78)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 102)) (-2271 (((-111) $ $) 101)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 103)) (-2263 (((-111) $ $) 100)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ $) 98) (($ $ (-391 (-537))) 69)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-527 |#1|) (-134) (-13 (-388) (-1139))) (T -527)) -((-4228 (*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-1632 (*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-4228 (*1 *1 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) (-1576 (*1 *2 *1 *3) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111))))) -(-13 (-435) (-807) (-1139) (-954) (-989 (-537)) (-10 -8 (-6 -4150) (-15 -4228 ($ |t#1| |t#1|)) (-15 -1632 ($ |t#1| |t#1|)) (-15 -4228 ($ |t#1|)) (-15 -4228 ($ (-391 (-537)))) (-15 -3406 (|t#1| $)) (-15 -2169 (|t#1| $)) (-15 -1786 (|t#1| $)) (-15 -3797 ((-111) $)) (-15 -2840 ((-111) $)) (-15 -1576 ((-111) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-268) . T) ((-274) . T) ((-435) . T) ((-474) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-954) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) . T) ((-1142) . T)) -((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 9)) (-3377 (($ $) 11)) (-4017 (((-111) $) 18)) (-3490 (((-3 $ "failed") $) 16)) (-3276 (((-111) $ $) 20))) -(((-528 |#1|) (-10 -8 (-15 -4017 ((-111) |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) (-529)) (T -528)) -NIL -(-10 -8 (-15 -4017 ((-111) |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-529) (-134)) (T -529)) -((-3515 (*1 *1 *1 *1) (|partial| -4 *1 (-529))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1397 *1) (|:| -4287 *1) (|:| |associate| *1))) (-4 *1 (-529)))) (-3377 (*1 *1 *1) (-4 *1 (-529))) (-3276 (*1 *2 *1 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) -(-13 (-163) (-37 $) (-274) (-10 -8 (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3079 ((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $)) (-15 -3377 ($ $)) (-15 -3276 ((-111) $ $)) (-15 -4017 ((-111) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1920 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|)) 37)) (-3258 (((-554 |#2|) |#2| (-1117)) 62)) (-2705 (((-3 |#2| "failed") |#2| (-1117)) 152)) (-1483 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))) 155)) (-1481 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|) 40))) -(((-530 |#1| |#2|) (-10 -7 (-15 -1481 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|)) (-15 -1920 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|))) (-15 -2705 ((-3 |#2| "failed") |#2| (-1117))) (-15 -3258 ((-554 |#2|) |#2| (-1117))) (-15 -1483 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -530)) -((-1483 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-606 (-578 *3))) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *7 *3)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-530 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-530 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-1920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-530 *6 *3)))) (-1481 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) -(-10 -7 (-15 -1481 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|)) (-15 -1920 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|))) (-15 -2705 ((-3 |#2| "failed") |#2| (-1117))) (-15 -3258 ((-554 |#2|) |#2| (-1117))) (-15 -1483 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))))) -((-2414 (((-402 |#1|) |#1|) 18)) (-3622 (((-402 |#1|) |#1|) 33)) (-4100 (((-3 |#1| "failed") |#1|) 44)) (-3044 (((-402 |#1|) |#1|) 51))) -(((-531 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3044 ((-402 |#1|) |#1|)) (-15 -4100 ((-3 |#1| "failed") |#1|))) (-522)) (T -531)) -((-4100 (*1 *2 *2) (|partial| -12 (-5 *1 (-531 *2)) (-4 *2 (-522)))) (-3044 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) (-2414 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522))))) -(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3044 ((-402 |#1|) |#1|)) (-15 -4100 ((-3 |#1| "failed") |#1|))) -((-3105 (($) 9)) (-1426 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 35)) (-1688 (((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $) 32)) (-3499 (($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3367 (($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2140 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 39)) (-3010 (((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1763 (((-1205)) 12))) -(((-532) (-10 -8 (-15 -3105 ($)) (-15 -1763 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3367 ($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1426 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3010 ((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2140 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -532)) -((-2140 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-532)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-532)))) (-1426 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-532)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-532)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-532)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-5 *1 (-532)))) (-1763 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-532)))) (-3105 (*1 *1) (-5 *1 (-532)))) -(-10 -8 (-15 -3105 ($)) (-15 -1763 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3367 ($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1426 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3010 ((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2140 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) -((-3588 (((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|)) 32)) (-1301 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|)) 110)) (-2095 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 80) (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|)) 52)) (-4193 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|))) 87) (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|)) 109)) (-3953 (((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|)) 111)) (-3877 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 128 (|has| |#3| (-617 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|)) 127 (|has| |#3| (-617 |#2|)))) (-3746 ((|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|) 50)) (-3183 (((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|)) 31))) -(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3588 ((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|))) (-15 -3746 (|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|)) (-15 -3183 ((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|))) (IF (|has| |#3| (-617 |#2|)) (PROGN (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537))) (-13 (-414 |#1|) (-27) (-1139)) (-1045)) (T -533)) -((-3877 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-391 (-1113 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3877 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-1113 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-1113 (-391 (-1113 *6)))) (-5 *1 (-533 *5 *6 *7)) (-5 *3 (-1113 *6)) (-4 *7 (-1045)))) (-3746 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1113 (-391 (-1113 *2)))) (-5 *4 (-578 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1045)))) (-3588 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-1113 (-391 (-1113 *3)))) (-5 *1 (-533 *6 *3 *7)) (-5 *5 (-1113 *3)) (-4 *7 (-1045)))) (-3953 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-391 (-1113 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) (-3953 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-1113 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) (-1301 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) (-1301 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-1113 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) (-4193 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-4193 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-2095 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-2095 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) -(-10 -7 (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3588 ((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|))) (-15 -3746 (|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|)) (-15 -3183 ((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|))) (IF (|has| |#3| (-617 |#2|)) (PROGN (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))))) |%noBranch|)) -((-2793 (((-537) (-537) (-731)) 66)) (-3954 (((-537) (-537)) 65)) (-3708 (((-537) (-537)) 64)) (-1242 (((-537) (-537)) 69)) (-3784 (((-537) (-537) (-537)) 49)) (-2839 (((-537) (-537) (-537)) 46)) (-2852 (((-391 (-537)) (-537)) 20)) (-2214 (((-537) (-537)) 21)) (-3802 (((-537) (-537)) 58)) (-4012 (((-537) (-537)) 32)) (-1778 (((-606 (-537)) (-537)) 63)) (-3747 (((-537) (-537) (-537) (-537) (-537)) 44)) (-2930 (((-391 (-537)) (-537)) 41))) -(((-534) (-10 -7 (-15 -2930 ((-391 (-537)) (-537))) (-15 -3747 ((-537) (-537) (-537) (-537) (-537))) (-15 -1778 ((-606 (-537)) (-537))) (-15 -4012 ((-537) (-537))) (-15 -3802 ((-537) (-537))) (-15 -2214 ((-537) (-537))) (-15 -2852 ((-391 (-537)) (-537))) (-15 -2839 ((-537) (-537) (-537))) (-15 -3784 ((-537) (-537) (-537))) (-15 -1242 ((-537) (-537))) (-15 -3708 ((-537) (-537))) (-15 -3954 ((-537) (-537))) (-15 -2793 ((-537) (-537) (-731))))) (T -534)) -((-2793 (*1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-731)) (-5 *1 (-534)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-1242 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2852 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-1778 (*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) (-3747 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2930 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) -(-10 -7 (-15 -2930 ((-391 (-537)) (-537))) (-15 -3747 ((-537) (-537) (-537) (-537) (-537))) (-15 -1778 ((-606 (-537)) (-537))) (-15 -4012 ((-537) (-537))) (-15 -3802 ((-537) (-537))) (-15 -2214 ((-537) (-537))) (-15 -2852 ((-391 (-537)) (-537))) (-15 -2839 ((-537) (-537) (-537))) (-15 -3784 ((-537) (-537) (-537))) (-15 -1242 ((-537) (-537))) (-15 -3708 ((-537) (-537))) (-15 -3954 ((-537) (-537))) (-15 -2793 ((-537) (-537) (-731)))) -((-1854 (((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1854 ((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -535)) -((-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4082 *3))) (-5 *1 (-535 *5 *6 *7 *3)) (-4 *3 (-326 *5 *6 *7))))) -(-10 -7 (-15 -1854 ((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1854 (((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)) 18))) -(((-536 |#1| |#2|) (-10 -7 (-15 -1854 ((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -536)) -((-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |answer| (-391 *6)) (|:| -4082 (-391 *6)) (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) (-5 *1 (-536 *5 *6)) (-5 *3 (-391 *6))))) -(-10 -7 (-15 -1854 ((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 25)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 87)) (-3377 (($ $) 88)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) 42)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) 81)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) 80)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 61) (((-649 (-537)) (-649 $)) 57)) (-3490 (((-3 $ "failed") $) 84)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) 63) (($ $) 64)) (-3539 (($ $ $) 79)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) 54)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) 26)) (-2353 (((-111) $) 74)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) 34)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) 43)) (-2444 (($ $ $) 76)) (-3889 (($ $ $) 75)) (-1454 (($ $) NIL)) (-3845 (($ $) 40)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) 53)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) 31)) (-2528 (((-1064) $) NIL) (($ $) 33)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 118)) (-2211 (($ $ $) 85) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) 104)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 83)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 78)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) 32)) (-2494 (($ $) 30)) (-3996 (((-537) $) 39) (((-513) $) 51) (((-845 (-537)) $) NIL) (((-363) $) 46) (((-210) $) 48) (((-1100) $) 52)) (-2341 (((-816) $) 37) (($ (-537)) 38) (($ $) NIL) (($ (-537)) 38)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) 29)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) 41)) (-2209 (($ $) 62)) (-2928 (($) 27 T CONST)) (-2943 (($) 28 T CONST)) (-1379 (((-1100) $) 20) (((-1100) $ (-111)) 22) (((-1205) (-782) $) 23) (((-1205) (-782) $ (-111)) 24)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 65)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 66)) (-2329 (($ $) 67) (($ $ $) 69)) (-2318 (($ $ $) 68)) (** (($ $ (-874)) NIL) (($ $ (-731)) 73)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 71) (($ $ $) 70))) -(((-537) (-13 (-522) (-580 (-1100)) (-788) (-10 -8 (-15 -1618 ($ $)) (-6 -4287) (-6 -4292) (-6 -4288) (-6 -4282)))) (T -537)) -((-1618 (*1 *1 *1) (-5 *1 (-537)))) -(-13 (-522) (-580 (-1100)) (-788) (-10 -8 (-15 -1618 ($ $)) (-6 -4287) (-6 -4292) (-6 -4288) (-6 -4282))) -((-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010)) 108) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729)) 110)) (-3092 (((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117)) 172) (((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100)) 171) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010)) 176) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363)) 177) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363)) 178) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363))))) 179) (((-986) (-300 (-363)) (-1040 (-800 (-363)))) 167) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363)) 166) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363)) 162) (((-986) (-729)) 155) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010)) 161))) -(((-538) (-10 -7 (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010))) (-15 -3092 ((-986) (-729))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117))))) (T -538)) -((-3092 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) (-5 *5 (-1117)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) (-5 *5 (-1100)) (-5 *2 (-986)) (-5 *1 (-538)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-729)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *1 (-538)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538))))) -(-10 -7 (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010))) (-15 -3092 ((-986) (-729))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117)))) -((-1510 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|)) 184)) (-2093 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|)) 98)) (-1399 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|) 180)) (-3977 (((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117))) 189)) (-3268 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117)) 197 (|has| |#3| (-617 |#2|))))) -(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2093 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|))) (-15 -1399 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|)) (-15 -1510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)))) (IF (|has| |#3| (-617 |#2|)) (-15 -3268 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537))) (-13 (-414 |#1|) (-27) (-1139)) (-1045)) (T -539)) -((-3268 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-539 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3977 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-4 *2 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-539 *5 *2 *6)) (-4 *6 (-1045)))) (-1510 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-539 *6 *3 *7)) (-4 *7 (-1045)))) (-1399 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045)))) (-2093 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) -(-10 -7 (-15 -2093 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|))) (-15 -1399 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|)) (-15 -1510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)))) (IF (|has| |#3| (-617 |#2|)) (-15 -3268 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117))) |%noBranch|)) -((-2656 (((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117)) 64)) (-3794 (((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|)) 164 (-12 (|has| |#2| (-1081)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)) 147 (-12 (|has| |#2| (-592)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537)))))) (-3461 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)) 148 (-12 (|has| |#2| (-592)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537))))))) -(((-540 |#1| |#2|) (-10 -7 (-15 -2656 ((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (PROGN (IF (|has| |#2| (-592)) (PROGN (-15 -3461 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) (-15 -3794 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1081)) (-15 -3794 ((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-807) (-989 (-537)) (-435) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -540)) -((-3794 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-800 *2)) (-4 *2 (-1081)) (-4 *2 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *1 (-540 *5 *2)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3461 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| -2228 *3) (|:| |nconst| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) -(-10 -7 (-15 -2656 ((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (PROGN (IF (|has| |#2| (-592)) (PROGN (-15 -3461 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) (-15 -3794 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1081)) (-15 -3794 ((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2346 (((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))) 41)) (-3092 (((-554 (-391 |#2|)) (-391 |#2|)) 28)) (-3764 (((-3 (-391 |#2|) "failed") (-391 |#2|)) 17)) (-1863 (((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|)) 48))) -(((-541 |#1| |#2|) (-10 -7 (-15 -3092 ((-554 (-391 |#2|)) (-391 |#2|))) (-15 -3764 ((-3 (-391 |#2|) "failed") (-391 |#2|))) (-15 -1863 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|))) (-15 -2346 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -541)) -((-2346 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-606 (-391 *6))) (-5 *3 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *5 *6)))) (-1863 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -3121 (-391 *5)) (|:| |coeff| (-391 *5)))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5)))) (-3764 (*1 *2 *2) (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141) (-989 (-537)))) (-5 *1 (-541 *3 *4)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-554 (-391 *5))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5))))) -(-10 -7 (-15 -3092 ((-554 (-391 |#2|)) (-391 |#2|))) (-15 -3764 ((-3 (-391 |#2|) "failed") (-391 |#2|))) (-15 -1863 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|))) (-15 -2346 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))))) -((-3006 (((-3 (-537) "failed") |#1|) 14)) (-1660 (((-111) |#1|) 13)) (-1715 (((-537) |#1|) 9))) -(((-542 |#1|) (-10 -7 (-15 -1715 ((-537) |#1|)) (-15 -1660 ((-111) |#1|)) (-15 -3006 ((-3 (-537) "failed") |#1|))) (-989 (-537))) (T -542)) -((-3006 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2)))) (-1660 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-542 *3)) (-4 *3 (-989 (-537))))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2))))) -(-10 -7 (-15 -1715 ((-537) |#1|)) (-15 -1660 ((-111) |#1|)) (-15 -3006 ((-3 (-537) "failed") |#1|))) -((-3736 (((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|)))) 48)) (-3007 (((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117)) 28)) (-3725 (((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117)) 23)) (-1992 (((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))) 35))) -(((-543 |#1|) (-10 -7 (-15 -3007 ((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -3725 ((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117))) (-15 -3736 ((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|))))) (-15 -1992 ((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))))) (-13 (-529) (-989 (-537)) (-141))) (T -543)) -((-1992 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-2 (|:| -3121 (-391 (-905 *5))) (|:| |coeff| (-391 (-905 *5))))) (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5))))) (-3736 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 (-391 (-905 *6)))) (-5 *3 (-391 (-905 *6))) (-4 *6 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6)))) (-3725 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-989 (-537)) (-141))) (-5 *1 (-543 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-554 (-391 (-905 *5)))) (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5)))))) -(-10 -7 (-15 -3007 ((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -3725 ((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117))) (-15 -3736 ((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|))))) (-15 -1992 ((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))))) -((-2330 (((-111) $ $) 58)) (-1656 (((-111) $) 36)) (-1786 ((|#1| $) 30)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) 62)) (-1403 (($ $) 122)) (-1247 (($ $) 102)) (-2169 ((|#1| $) 28)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL)) (-1378 (($ $) 124)) (-4270 (($ $) 98)) (-1429 (($ $) 126)) (-1273 (($ $) 106)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 77)) (-3958 (((-537) $) 79)) (-3490 (((-3 $ "failed") $) 61)) (-1632 (($ |#1| |#1|) 26)) (-3797 (((-111) $) 33)) (-3338 (($) 88)) (-2836 (((-111) $) 43)) (-2590 (($ $ (-537)) NIL)) (-2840 (((-111) $) 34)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2180 (($ $) 90)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-4228 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-391 (-537))) 76)) (-3406 ((|#1| $) 27)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) 64) (($ (-606 $)) NIL)) (-3515 (((-3 $ "failed") $ $) 63)) (-4185 (($ $) 92)) (-1441 (($ $) 130)) (-1286 (($ $) 104)) (-1415 (($ $) 132)) (-1259 (($ $) 108)) (-1389 (($ $) 128)) (-1234 (($ $) 100)) (-1576 (((-111) $ |#1|) 31)) (-2341 (((-816) $) 84) (($ (-537)) 66) (($ $) NIL) (($ (-537)) 66)) (-3654 (((-731)) 86)) (-1475 (($ $) 144)) (-1328 (($ $) 114)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 142)) (-1300 (($ $) 110)) (-1495 (($ $) 140)) (-1352 (($ $) 120)) (-4141 (($ $) 138)) (-1365 (($ $) 118)) (-1485 (($ $) 136)) (-1340 (($ $) 116)) (-1465 (($ $) 134)) (-1314 (($ $) 112)) (-2928 (($) 21 T CONST)) (-2943 (($) 10 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 37)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35)) (-2329 (($ $) 41) (($ $ $) 42)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) 54) (($ $ (-731)) NIL) (($ $ $) 94) (($ $ (-391 (-537))) 146)) (* (($ (-874) $) 51) (($ (-731) $) NIL) (($ (-537) $) 50) (($ $ $) 48))) -(((-544 |#1|) (-527 |#1|) (-13 (-388) (-1139))) (T -544)) -NIL -(-527 |#1|) -((-2022 (((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537))) 24))) -(((-545) (-10 -7 (-15 -2022 ((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537)))))) (T -545)) -((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 (-537)))) (-5 *3 (-1113 (-537))) (-5 *1 (-545))))) -(-10 -7 (-15 -2022 ((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537))))) -((-1884 (((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117)) 19)) (-3420 (((-606 (-578 |#2|)) (-606 |#2|) (-1117)) 23)) (-4221 (((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|))) 11)) (-3853 ((|#2| |#2| (-1117)) 54 (|has| |#1| (-529)))) (-2834 ((|#2| |#2| (-1117)) 78 (-12 (|has| |#2| (-268)) (|has| |#1| (-435))))) (-1703 (((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117)) 25)) (-2731 (((-578 |#2|) (-606 (-578 |#2|))) 24)) (-2222 (((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) 103 (-12 (|has| |#2| (-268)) (|has| |#2| (-592)) (|has| |#2| (-989 (-1117))) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-435)) (|has| |#1| (-839 (-537))))))) -(((-546 |#1| |#2|) (-10 -7 (-15 -1884 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117))) (-15 -2731 ((-578 |#2|) (-606 (-578 |#2|)))) (-15 -1703 ((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117))) (-15 -4221 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|)))) (-15 -3420 ((-606 (-578 |#2|)) (-606 |#2|) (-1117))) (IF (|has| |#1| (-529)) (-15 -3853 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-435)) (IF (|has| |#2| (-268)) (PROGN (-15 -2834 (|#2| |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (IF (|has| |#2| (-592)) (IF (|has| |#2| (-989 (-1117))) (-15 -2222 ((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-807) (-414 |#1|)) (T -546)) -((-2222 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-554 *3) *3 (-1117))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) (-4 *3 (-268)) (-4 *3 (-592)) (-4 *3 (-989 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1117)) (-4 *7 (-580 (-845 (-537)))) (-4 *7 (-435)) (-4 *7 (-839 (-537))) (-4 *7 (-807)) (-5 *2 (-554 *3)) (-5 *1 (-546 *7 *3)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-435)) (-4 *4 (-807)) (-5 *1 (-546 *4 *2)) (-4 *2 (-268)) (-4 *2 (-414 *4)))) (-3853 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-529)) (-4 *4 (-807)) (-5 *1 (-546 *4 *2)) (-4 *2 (-414 *4)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-1117)) (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *2 (-606 (-578 *6))) (-5 *1 (-546 *5 *6)))) (-4221 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-578 *4))) (-4 *4 (-414 *3)) (-4 *3 (-807)) (-5 *1 (-546 *3 *4)))) (-1703 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-578 *6))) (-5 *4 (-1117)) (-5 *2 (-578 *6)) (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *1 (-546 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-606 (-578 *5))) (-4 *4 (-807)) (-5 *2 (-578 *5)) (-5 *1 (-546 *4 *5)) (-4 *5 (-414 *4)))) (-1884 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-578 *5))) (-5 *3 (-1117)) (-4 *5 (-414 *4)) (-4 *4 (-807)) (-5 *1 (-546 *4 *5))))) -(-10 -7 (-15 -1884 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117))) (-15 -2731 ((-578 |#2|) (-606 (-578 |#2|)))) (-15 -1703 ((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117))) (-15 -4221 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|)))) (-15 -3420 ((-606 (-578 |#2|)) (-606 |#2|) (-1117))) (IF (|has| |#1| (-529)) (-15 -3853 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-435)) (IF (|has| |#2| (-268)) (PROGN (-15 -2834 (|#2| |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (IF (|has| |#2| (-592)) (IF (|has| |#2| (-989 (-1117))) (-15 -2222 ((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1617 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|)) 172)) (-3388 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|))) 148)) (-2846 (((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|))) 145)) (-2565 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2111 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3688 (((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|)) 175)) (-3863 (((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|)) 178)) (-3232 (((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)) 84)) (-3494 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1667 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|))) 152)) (-2603 (((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|)) 137)) (-1956 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|)) 162)) (-2584 (((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|)) 183))) -(((-547 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1956 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -1617 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|))) (-15 -3863 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|))) (-15 -2584 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|))) (-15 -3388 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|)))) (-15 -1667 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|)))) (-15 -3688 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|))) (-15 -2846 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|)))) (-15 -2565 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2603 ((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -3232 ((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -547)) -((-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-547 *5 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |ir| (-554 (-391 *6))) (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6)))) (-2603 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111))) (-537) *4)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *1 (-547 *4 *5)))) (-2565 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-347)) (-5 *1 (-547 *4 *2)) (-4 *2 (-1176 *4)))) (-2846 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-606 (-391 *7))) (-4 *7 (-1176 *6)) (-5 *3 (-391 *7)) (-4 *6 (-347)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *6 *7)))) (-3688 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -3121 (-391 *6)) (|:| |coeff| (-391 *6)))) (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6)))) (-1667 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3278 *7) (|:| |sol?| (-111))) (-537) *7)) (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) (-5 *3 (-391 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-547 *7 *8)))) (-3388 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) (-5 *3 (-391 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-547 *7 *8)))) (-2584 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-3863 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-606 *6) "failed") (-537) *6 *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(-10 -7 (-15 -2111 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1956 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -1617 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|))) (-15 -3863 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|))) (-15 -2584 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|))) (-15 -3388 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|)))) (-15 -1667 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|)))) (-15 -3688 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|))) (-15 -2846 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|)))) (-15 -2565 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2603 ((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -3232 ((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2117 (((-3 |#2| "failed") |#2| (-1117) (-1117)) 10))) -(((-548 |#1| |#2|) (-10 -7 (-15 -2117 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-1081) (-29 |#1|))) (T -548)) -((-2117 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-548 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-1081) (-29 *4)))))) -(-10 -7 (-15 -2117 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) 66)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) 72)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 58)) (-3533 (($ $) 34)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) 15)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) 29)) (-2089 (((-537) $) 32)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) 21)) (-3515 (((-3 $ "failed") $ $) 59)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) 16)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 61)) (-3025 (((-1098 (-537)) $) 18)) (-1577 (($ $) 23)) (-2341 (((-816) $) 87) (($ (-537)) 52) (($ $) NIL)) (-3654 (((-731)) 14)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) 36)) (-2928 (($) 35 T CONST)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 39)) (-2329 (($ $) 51) (($ $ $) 37)) (-2318 (($ $ $) 50)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 54) (($ $ $) 55))) -(((-549 |#1| |#2|) (-822 |#1|) (-537) (-111)) (T -549)) -NIL -(-822 |#1|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 21)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) 47)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 $ "failed") $) 75)) (-3958 (($ $) 74)) (-3447 (($ (-1200 $)) 73)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 49)) (-2974 (((-111) $) NIL)) (-2642 (($ $) NIL) (($ $ (-731)) NIL)) (-2639 (((-111) $) NIL)) (-4231 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2836 (((-111) $) NIL)) (-3522 (($) 37 (|has| $ (-352)))) (-3870 (((-111) $) NIL (|has| $ (-352)))) (-2055 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 $) $ (-874)) NIL (|has| $ (-352))) (((-1113 $) $) 83)) (-2334 (((-874) $) 55)) (-1671 (((-1113 $) $) NIL (|has| $ (-352)))) (-2728 (((-3 (-1113 $) "failed") $ $) NIL (|has| $ (-352))) (((-1113 $) $) NIL (|has| $ (-352)))) (-2841 (($ $ (-1113 $)) NIL (|has| $ (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-2009 (($ (-874)) 48)) (-2933 (((-111) $) 67)) (-2528 (((-1064) $) NIL)) (-1524 (($) 19 (|has| $ (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 42)) (-3622 (((-402 $) $) NIL)) (-2685 (((-874)) 66) (((-793 (-874))) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL) (((-731) $) NIL)) (-1839 (((-131)) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-2872 (((-874) $) 65) (((-793 (-874)) $) NIL)) (-2529 (((-1113 $)) 82)) (-3553 (($) 54)) (-3254 (($) 38 (|has| $ (-352)))) (-1484 (((-649 $) (-1200 $)) NIL) (((-1200 $) $) 71)) (-3996 (((-537) $) 28)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) 30) (($ $) NIL) (($ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3654 (((-731)) 39)) (-2122 (((-1200 $) (-874)) 77) (((-1200 $)) 76)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 22 T CONST)) (-2943 (($) 18 T CONST)) (-1791 (($ $ (-731)) NIL (|has| $ (-352))) (($ $) NIL (|has| $ (-352)))) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 26)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 61) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-550 |#1|) (-13 (-333) (-313 $) (-580 (-537))) (-874)) (T -550)) -NIL -(-13 (-333) (-313 $) (-580 (-537))) -((-2961 (((-1205) (-1100)) 10))) -(((-551) (-10 -7 (-15 -2961 ((-1205) (-1100))))) (T -551)) -((-2961 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-551))))) -(-10 -7 (-15 -2961 ((-1205) (-1100)))) -((-3763 (((-554 |#2|) (-554 |#2|)) 40)) (-1905 (((-606 |#2|) (-554 |#2|)) 42)) (-3470 ((|#2| (-554 |#2|)) 48))) -(((-552 |#1| |#2|) (-10 -7 (-15 -3763 ((-554 |#2|) (-554 |#2|))) (-15 -1905 ((-606 |#2|) (-554 |#2|))) (-15 -3470 (|#2| (-554 |#2|)))) (-13 (-435) (-989 (-537)) (-807) (-602 (-537))) (-13 (-29 |#1|) (-1139))) (T -552)) -((-3470 (*1 *2 *3) (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-29 *4) (-1139))) (-5 *1 (-552 *4 *2)) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-554 *5)) (-4 *5 (-13 (-29 *4) (-1139))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-606 *5)) (-5 *1 (-552 *4 *5)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-554 *4)) (-4 *4 (-13 (-29 *3) (-1139))) (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *1 (-552 *3 *4))))) -(-10 -7 (-15 -3763 ((-554 |#2|) (-554 |#2|))) (-15 -1905 ((-606 |#2|) (-554 |#2|))) (-15 -3470 (|#2| (-554 |#2|)))) -((-1612 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|)) 30))) -(((-553 |#1| |#2|) (-10 -7 (-15 -1612 ((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|))) (-15 -1612 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-347) (-347)) (T -553)) -((-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-553 *5 *6)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-347)) (-4 *2 (-347)) (-5 *1 (-553 *5 *2)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3121 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-2 (|:| -3121 *6) (|:| |coeff| *6))) (-5 *1 (-553 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-554 *5)) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-554 *6)) (-5 *1 (-553 *5 *6))))) -(-10 -7 (-15 -1612 ((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|))) (-15 -1612 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 69)) (-3958 ((|#1| $) NIL)) (-3121 ((|#1| $) 26)) (-3808 (((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1698 (($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-4082 (((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $) 27)) (-1654 (((-1100) $) NIL)) (-1509 (($ |#1| |#1|) 33) (($ |#1| (-1117)) 44 (|has| |#1| (-989 (-1117))))) (-2528 (((-1064) $) NIL)) (-1664 (((-111) $) 30)) (-3456 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1117)) 82 (|has| |#1| (-853 (-1117))))) (-2341 (((-816) $) 96) (($ |#1|) 25)) (-2928 (($) 16 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 15) (($ $ $) NIL)) (-2318 (($ $ $) 78)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 14) (($ (-391 (-537)) $) 36) (($ $ (-391 (-537))) NIL))) -(((-554 |#1|) (-13 (-678 (-391 (-537))) (-989 |#1|) (-10 -8 (-15 -1698 ($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3121 (|#1| $)) (-15 -4082 ((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $)) (-15 -3808 ((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1664 ((-111) $)) (-15 -1509 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-853 (-1117))) (-15 -3456 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-989 (-1117))) (-15 -1509 ($ |#1| (-1117))) |%noBranch|))) (-347)) (T -554)) -((-1698 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *2)) (|:| |logand| (-1113 *2))))) (-5 *4 (-606 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-347)) (-5 *1 (-554 *2)))) (-3121 (*1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *3)) (|:| |logand| (-1113 *3))))) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-1509 (*1 *1 *2 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-3456 (*1 *2 *1 *3) (-12 (-4 *2 (-347)) (-4 *2 (-853 *3)) (-5 *1 (-554 *2)) (-5 *3 (-1117)))) (-1509 (*1 *1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *1 (-554 *2)) (-4 *2 (-989 *3)) (-4 *2 (-347))))) -(-13 (-678 (-391 (-537))) (-989 |#1|) (-10 -8 (-15 -1698 ($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3121 (|#1| $)) (-15 -4082 ((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $)) (-15 -3808 ((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1664 ((-111) $)) (-15 -1509 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-853 (-1117))) (-15 -3456 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-989 (-1117))) (-15 -1509 ($ |#1| (-1117))) |%noBranch|))) -((-3675 (((-111) |#1|) 16)) (-3017 (((-3 |#1| "failed") |#1|) 14)) (-3137 (((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|) 31) (((-3 |#1| "failed") |#1| (-731)) 18)) (-2004 (((-111) |#1| (-731)) 19)) (-2219 ((|#1| |#1|) 32)) (-2614 ((|#1| |#1| (-731)) 34))) -(((-555 |#1|) (-10 -7 (-15 -2004 ((-111) |#1| (-731))) (-15 -3137 ((-3 |#1| "failed") |#1| (-731))) (-15 -3137 ((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|)) (-15 -2614 (|#1| |#1| (-731))) (-15 -3675 ((-111) |#1|)) (-15 -3017 ((-3 |#1| "failed") |#1|)) (-15 -2219 (|#1| |#1|))) (-522)) (T -555)) -((-2219 (*1 *2 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3017 (*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522)))) (-2614 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1605 *3) (|:| -3283 (-731)))) (-5 *1 (-555 *3)) (-4 *3 (-522)))) (-3137 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) -(-10 -7 (-15 -2004 ((-111) |#1| (-731))) (-15 -3137 ((-3 |#1| "failed") |#1| (-731))) (-15 -3137 ((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|)) (-15 -2614 (|#1| |#1| (-731))) (-15 -3675 ((-111) |#1|)) (-15 -3017 ((-3 |#1| "failed") |#1|)) (-15 -2219 (|#1| |#1|))) -((-2548 (((-1113 |#1|) (-874)) 27))) -(((-556 |#1|) (-10 -7 (-15 -2548 ((-1113 |#1|) (-874)))) (-333)) (T -556)) -((-2548 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-556 *4)) (-4 *4 (-333))))) -(-10 -7 (-15 -2548 ((-1113 |#1|) (-874)))) -((-3763 (((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|)))) 27)) (-3092 (((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117)) 34 (|has| |#1| (-141)))) (-1905 (((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|)))) 19)) (-2402 (((-300 |#1|) (-391 (-905 |#1|)) (-1117)) 32 (|has| |#1| (-141)))) (-3470 (((-300 |#1|) (-554 (-391 (-905 |#1|)))) 21))) -(((-557 |#1|) (-10 -7 (-15 -3763 ((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|))))) (-15 -1905 ((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|))))) (-15 -3470 ((-300 |#1|) (-554 (-391 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -3092 ((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -2402 ((-300 |#1|) (-391 (-905 |#1|)) (-1117)))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (T -557)) -((-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-300 *5)) (-5 *1 (-557 *5)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-3 (-300 *5) (-606 (-300 *5)))) (-5 *1 (-557 *5)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-554 (-391 (-905 *4)))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-557 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-554 (-391 (-905 *4)))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-606 (-300 *4))) (-5 *1 (-557 *4)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-554 (-391 (-905 *3)))) (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *1 (-557 *3))))) -(-10 -7 (-15 -3763 ((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|))))) (-15 -1905 ((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|))))) (-15 -3470 ((-300 |#1|) (-554 (-391 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -3092 ((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -2402 ((-300 |#1|) (-391 (-905 |#1|)) (-1117)))) |%noBranch|)) -((-3758 (((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537)))) 46) (((-606 (-649 (-537))) (-606 (-537))) 47) (((-649 (-537)) (-606 (-537)) (-858 (-537))) 42)) (-3871 (((-731) (-606 (-537))) 40))) -(((-558) (-10 -7 (-15 -3871 ((-731) (-606 (-537)))) (-15 -3758 ((-649 (-537)) (-606 (-537)) (-858 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537))))))) (T -558)) -((-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-537))) (-5 *4 (-606 (-858 (-537)))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-537))) (-5 *4 (-858 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-558)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-731)) (-5 *1 (-558))))) -(-10 -7 (-15 -3871 ((-731) (-606 (-537)))) (-15 -3758 ((-649 (-537)) (-606 (-537)) (-858 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537)))))) -((-4167 (((-606 |#5|) |#5| (-111)) 73)) (-2284 (((-111) |#5| (-606 |#5|)) 30))) -(((-559 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4167 ((-606 |#5|) |#5| (-111))) (-15 -2284 ((-111) |#5| (-606 |#5|)))) (-13 (-291) (-141)) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -559)) -((-2284 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-559 *5 *6 *7 *8 *3)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-606 *3)) (-5 *1 (-559 *5 *6 *7 *8 *3)) (-4 *3 (-1054 *5 *6 *7 *8))))) -(-10 -7 (-15 -4167 ((-606 |#5|) |#5| (-111))) (-15 -2284 ((-111) |#5| (-606 |#5|)))) -((-2330 (((-111) $ $) NIL (|has| (-138) (-1045)))) (-1561 (($ $) 34)) (-2099 (($ $) NIL)) (-2594 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 51)) (-1315 (((-111) $ $ (-537)) 46)) (-3763 (((-606 $) $ (-138)) 60) (((-606 $) $ (-135)) 61)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-138) (-807))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-138) $ (-537) (-138)) 45 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2972 (($ $ (-138)) 64) (($ $ (-135)) 65)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-2619 (($ $ (-1167 (-537)) $) 44)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2355 (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) NIL)) (-1367 (((-111) $ $) 72)) (-2299 (((-537) (-1 (-111) (-138)) $) NIL) (((-537) (-138) $) NIL (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 48 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 47) (((-537) (-135) $ (-537)) 50)) (-3661 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 9)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 28 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2187 (((-537) $) 42 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 73)) (-1244 (((-731) $ $ (-138)) 70)) (-4081 (($ (-1 (-138) (-138)) $) 33 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3037 (($ $) 37)) (-2602 (($ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-2985 (($ $ (-138)) 62) (($ $ (-135)) 63)) (-1654 (((-1100) $) 38 (|has| (-138) (-1045)))) (-4049 (($ (-138) $ (-537)) NIL) (($ $ $ (-537)) 23)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-537) $) 69) (((-1064) $) NIL (|has| (-138) (-1045)))) (-3188 (((-138) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-3040 (($ $ (-138)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) NIL)) (-2193 (((-111) $) 12)) (-3425 (($) 10)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) 52) (($ $ (-1167 (-537))) 21) (($ $ $) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1241 (($ $ $ (-537)) 66 (|has| $ (-6 -4301)))) (-2494 (($ $) 17)) (-3996 (((-513) $) NIL (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) NIL)) (-3434 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) 16) (($ (-606 $)) 67)) (-2341 (($ (-138)) NIL) (((-816) $) 27 (|has| (-138) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2244 (((-111) $ $) 14 (|has| (-138) (-1045)))) (-2282 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2263 (((-111) $ $) 15 (|has| (-138) (-807)))) (-2258 (((-731) $) 13 (|has| $ (-6 -4300))))) -(((-560 |#1|) (-13 (-1086) (-10 -8 (-15 -2528 ((-537) $)))) (-537)) (T -560)) -((-2528 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-560 *3)) (-14 *3 *2)))) -(-13 (-1086) (-10 -8 (-15 -2528 ((-537) $)))) -((-4236 (((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|)) 32))) -(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|))) (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|)) (T -561)) -((-4236 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) (-5 *1 (-561 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) (-4236 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1040 *3)) (-4 *3 (-902 *7 *6 *4)) (-4 *6 (-753)) (-4 *4 (-807)) (-4 *7 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) (-5 *1 (-561 *6 *4 *7 *3))))) -(-10 -7 (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|))) (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 63)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 54) (($ $ (-537) (-537)) 55)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 60)) (-3963 (($ $) 100)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1559 (((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537))) 224)) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 34)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2362 (((-111) $) NIL)) (-4231 (((-537) $) 58) (((-537) $ (-537)) 59)) (-2836 (((-111) $) NIL)) (-3172 (($ $ (-874)) 76)) (-3968 (($ (-1 |#1| (-537)) $) 73)) (-1538 (((-111) $) 25)) (-3733 (($ |#1| (-537)) 22) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 67)) (-2805 (($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 13)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $) 150 (|has| |#1| (-37 (-391 (-537)))))) (-4200 (((-3 $ "failed") $ $ (-111)) 99)) (-2393 (($ $ $) 108)) (-2528 (((-1064) $) NIL)) (-1624 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 15)) (-1987 (((-977 (-800 (-537))) $) 14)) (-1540 (($ $ (-537)) 45)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537)))))) (-1922 ((|#1| $ (-537)) 57) (($ $ $) NIL (|has| (-537) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2872 (((-537) $) NIL)) (-1577 (($ $) 46)) (-2341 (((-816) $) NIL) (($ (-537)) 28) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 27 (|has| |#1| (-163)))) (-3500 ((|#1| $ (-537)) 56)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 37)) (-2184 ((|#1| $) NIL)) (-3513 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1405 (($ $) 158 (|has| |#1| (-37 (-391 (-537)))))) (-3686 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1803 (($ $) 163 (|has| |#1| (-37 (-391 (-537)))))) (-3252 (($ $) 189 (|has| |#1| (-37 (-391 (-537)))))) (-4166 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-1344 (($ $ (-391 (-537))) 166 (|has| |#1| (-37 (-391 (-537)))))) (-4033 (($ $ |#1|) 146 (|has| |#1| (-37 (-391 (-537)))))) (-3231 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1522 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-2312 (($ $) 191 (|has| |#1| (-37 (-391 (-537)))))) (-2434 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-3537 (($ $) 187 (|has| |#1| (-37 (-391 (-537)))))) (-2261 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-3789 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-1798 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-2068 (($ $) 197 (|has| |#1| (-37 (-391 (-537)))))) (-2847 (($ $) 173 (|has| |#1| (-37 (-391 (-537)))))) (-3696 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-3987 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-1248 (($ $) 201 (|has| |#1| (-37 (-391 (-537)))))) (-3560 (($ $) 177 (|has| |#1| (-37 (-391 (-537)))))) (-2898 (($ $) 203 (|has| |#1| (-37 (-391 (-537)))))) (-3579 (($ $) 179 (|has| |#1| (-37 (-391 (-537)))))) (-3185 (($ $) 199 (|has| |#1| (-37 (-391 (-537)))))) (-4001 (($ $) 175 (|has| |#1| (-37 (-391 (-537)))))) (-2858 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-2730 (($ $) 171 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-2928 (($) 29 T CONST)) (-2943 (($) 38 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2244 (((-111) $ $) 65)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 84) (($ $ $) 64)) (-2318 (($ $ $) 81)) (** (($ $ (-874)) NIL) (($ $ (-731)) 103)) (* (($ (-874) $) 89) (($ (-731) $) 87) (($ (-537) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-562 |#1|) (-13 (-1178 |#1| (-537)) (-10 -8 (-15 -2805 ($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1987 ((-977 (-800 (-537))) $)) (-15 -1624 ((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $)) (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1538 ((-111) $)) (-15 -3968 ($ (-1 |#1| (-537)) $)) (-15 -4200 ((-3 $ "failed") $ $ (-111))) (-15 -3963 ($ $)) (-15 -2393 ($ $ $)) (-15 -1559 ((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1344 ($ $ (-391 (-537)))) (-15 -1522 ($ $)) (-15 -3231 ($ $)) (-15 -1803 ($ $)) (-15 -1798 ($ $)) (-15 -1405 ($ $)) (-15 -2261 ($ $)) (-15 -4166 ($ $)) (-15 -2434 ($ $)) (-15 -3987 ($ $)) (-15 -2730 ($ $)) (-15 -2847 ($ $)) (-15 -4001 ($ $)) (-15 -3560 ($ $)) (-15 -3579 ($ $)) (-15 -3686 ($ $)) (-15 -3789 ($ $)) (-15 -3513 ($ $)) (-15 -3537 ($ $)) (-15 -3252 ($ $)) (-15 -2312 ($ $)) (-15 -3696 ($ $)) (-15 -2858 ($ $)) (-15 -2068 ($ $)) (-15 -3185 ($ $)) (-15 -1248 ($ $)) (-15 -2898 ($ $))) |%noBranch|))) (-998)) (T -562)) -((-1538 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-2805 (*1 *1 *2 *3) (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *4)))) (-4 *4 (-998)) (-5 *1 (-562 *4)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) (-4200 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-3963 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998)))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998)))) (-1559 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *6)))) (-5 *4 (-977 (-800 (-537)))) (-5 *5 (-1117)) (-5 *7 (-391 (-537))) (-4 *6 (-998)) (-5 *2 (-816)) (-5 *1 (-562 *6)))) (-3092 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4033 (*1 *1 *1 *2) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-562 *3)) (-4 *3 (-37 *2)) (-4 *3 (-998)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3231 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1803 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1798 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2434 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3987 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2730 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2847 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3686 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3513 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3537 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3252 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3696 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2068 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3185 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1248 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2898 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(-13 (-1178 |#1| (-537)) (-10 -8 (-15 -2805 ($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1987 ((-977 (-800 (-537))) $)) (-15 -1624 ((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $)) (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1538 ((-111) $)) (-15 -3968 ($ (-1 |#1| (-537)) $)) (-15 -4200 ((-3 $ "failed") $ $ (-111))) (-15 -3963 ($ $)) (-15 -2393 ($ $ $)) (-15 -1559 ((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1344 ($ $ (-391 (-537)))) (-15 -1522 ($ $)) (-15 -3231 ($ $)) (-15 -1803 ($ $)) (-15 -1798 ($ $)) (-15 -1405 ($ $)) (-15 -2261 ($ $)) (-15 -4166 ($ $)) (-15 -2434 ($ $)) (-15 -3987 ($ $)) (-15 -2730 ($ $)) (-15 -2847 ($ $)) (-15 -4001 ($ $)) (-15 -3560 ($ $)) (-15 -3579 ($ $)) (-15 -3686 ($ $)) (-15 -3789 ($ $)) (-15 -3513 ($ $)) (-15 -3537 ($ $)) (-15 -3252 ($ $)) (-15 -2312 ($ $)) (-15 -3696 ($ $)) (-15 -2858 ($ $)) (-15 -2068 ($ $)) (-15 -3185 ($ $)) (-15 -1248 ($ $)) (-15 -2898 ($ $))) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2411 (($ (-1098 |#1|)) 9)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 42)) (-2362 (((-111) $) 52)) (-4231 (((-731) $) 55) (((-731) $ (-731)) 54)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ $) 44 (|has| |#1| (-529)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-1098 |#1|) $) 23)) (-3654 (((-731)) 51)) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 10 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) 22)) (-2329 (($ $) 30) (($ $ $) 16)) (-2318 (($ $ $) 25)) (** (($ $ (-874)) NIL) (($ $ (-731)) 49)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-537)) 36))) -(((-563 |#1|) (-13 (-998) (-10 -8 (-15 -3459 ((-1098 |#1|) $)) (-15 -2411 ($ (-1098 |#1|))) (-15 -2362 ((-111) $)) (-15 -4231 ((-731) $)) (-15 -4231 ((-731) $ (-731))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-537))) (IF (|has| |#1| (-529)) (-6 (-529)) |%noBranch|))) (-998)) (T -563)) -((-3459 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-563 *3)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-4231 (*1 *2 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-563 *3)) (-4 *3 (-998))))) -(-13 (-998) (-10 -8 (-15 -3459 ((-1098 |#1|) $)) (-15 -2411 ($ (-1098 |#1|))) (-15 -2362 ((-111) $)) (-15 -4231 ((-731) $)) (-15 -4231 ((-731) $ (-731))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-537))) (IF (|has| |#1| (-529)) (-6 (-529)) |%noBranch|))) -((-1612 (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 15))) -(((-564 |#1| |#2|) (-10 -7 (-15 -1612 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)))) (-1154) (-1154)) (T -564)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-567 *6)) (-5 *1 (-564 *5 *6))))) -(-10 -7 (-15 -1612 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)))) -((-1612 (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)) 20) (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|)) 19) (((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|)) 18))) -(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)))) (-1154) (-1154) (-1154)) (T -565)) -((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-1098 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-565 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-567 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-565 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-567 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-567 *8)) (-5 *1 (-565 *6 *7 *8))))) -(-10 -7 (-15 -1612 ((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)))) -((-3566 ((|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))) 55)) (-2686 (((-160 |#2|) |#3|) 117)) (-3520 ((|#3| (-160 |#2|)) 44)) (-3783 ((|#2| |#3|) 19)) (-3915 ((|#3| |#2|) 33))) -(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -3520 (|#3| (-160 |#2|))) (-15 -3783 (|#2| |#3|)) (-15 -3915 (|#3| |#2|)) (-15 -2686 ((-160 |#2|) |#3|)) (-15 -3566 (|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))))) (-13 (-529) (-807)) (-13 (-414 |#1|) (-954) (-1139)) (-13 (-414 (-160 |#1|)) (-954) (-1139))) (T -566)) -((-3566 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-606 (-1117))) (-4 *2 (-13 (-414 (-160 *5)) (-954) (-1139))) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-566 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-954) (-1139))))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-5 *2 (-160 *5)) (-5 *1 (-566 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139))))) (-3915 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) (-5 *1 (-566 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-954) (-1139))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-5 *1 (-566 *4 *2 *3)) (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139))))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-160 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) (-5 *1 (-566 *4 *5 *2))))) -(-10 -7 (-15 -3520 (|#3| (-160 |#2|))) (-15 -3783 (|#2| |#3|)) (-15 -3915 (|#3| |#2|)) (-15 -2686 ((-160 |#2|) |#3|)) (-15 -3566 (|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))))) -((-1936 (($ (-1 (-111) |#1|) $) 17)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1873 (($ (-1 |#1| |#1|) |#1|) 9)) (-1915 (($ (-1 (-111) |#1|) $) 13)) (-1926 (($ (-1 (-111) |#1|) $) 15)) (-2350 (((-1098 |#1|) $) 18)) (-2341 (((-816) $) NIL))) -(((-567 |#1|) (-13 (-579 (-816)) (-10 -8 (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)) (-15 -1936 ($ (-1 (-111) |#1|) $)) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -2350 ((-1098 |#1|) $)))) (-1154)) (T -567)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1915 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1154))))) -(-13 (-579 (-816)) (-10 -8 (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)) (-15 -1936 ($ (-1 (-111) |#1|) $)) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -2350 ((-1098 |#1|) $)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) NIL (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-568 |#1| |#2|) (-1198 |#1|) (-1154) (-537)) (T -568)) -NIL -(-1198 |#1|) -((-1279 (((-1205) $ |#2| |#2|) 36)) (-1659 ((|#2| $) 23)) (-2187 ((|#2| $) 21)) (-4081 (($ (-1 |#3| |#3|) $) 32)) (-1612 (($ (-1 |#3| |#3|) $) 30)) (-3188 ((|#3| $) 26)) (-3040 (($ $ |#3|) 33)) (-2700 (((-111) |#3| $) 17)) (-3010 (((-606 |#3|) $) 15)) (-1922 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-569 |#1| |#2| |#3|) (-10 -8 (-15 -1279 ((-1205) |#1| |#2| |#2|)) (-15 -3040 (|#1| |#1| |#3|)) (-15 -3188 (|#3| |#1|)) (-15 -1659 (|#2| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2700 ((-111) |#3| |#1|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|))) (-570 |#2| |#3|) (-1045) (-1154)) (T -569)) -NIL -(-10 -8 (-15 -1279 ((-1205) |#1| |#2| |#2|)) (-15 -3040 (|#1| |#1| |#3|)) (-15 -3188 (|#3| |#1|)) (-15 -1659 (|#2| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2700 ((-111) |#3| |#1|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#2| (-1045)))) (-1279 (((-1205) $ |#1| |#1|) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-4091 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 51)) (-3661 (((-606 |#2|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 43 (|has| |#1| (-807)))) (-3703 (((-606 |#2|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 44 (|has| |#1| (-807)))) (-4081 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#2| (-1045)))) (-1270 (((-606 |#1|) $) 46)) (-1641 (((-111) |#1| $) 47)) (-2528 (((-1064) $) 21 (|has| |#2| (-1045)))) (-3188 ((|#2| $) 42 (|has| |#1| (-807)))) (-3040 (($ $ |#2|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 26 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 23 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2539 (((-731) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4300))) (((-731) |#2| $) 28 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#2| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#2| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-570 |#1| |#2|) (-134) (-1045) (-1154)) (T -570)) -((-3010 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-606 *4)))) (-1641 (*1 *2 *3 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-606 *3)))) (-2700 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-570 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *3 (-807)) (-4 *2 (-1154)))) (-3040 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-1279 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-1205))))) -(-13 (-471 |t#2|) (-272 |t#1| |t#2|) (-10 -8 (-15 -3010 ((-606 |t#2|) $)) (-15 -1641 ((-111) |t#1| $)) (-15 -1270 ((-606 |t#1|) $)) (IF (|has| |t#2| (-1045)) (IF (|has| $ (-6 -4300)) (-15 -2700 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-15 -2187 (|t#1| $)) (-15 -1659 (|t#1| $)) (-15 -3188 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3040 ($ $ |t#2|)) (-15 -1279 ((-1205) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#2| (-1045)) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816)))) ((-270 |#1| |#2|) . T) ((-272 |#1| |#2|) . T) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-471 |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-1045) |has| |#2| (-1045)) ((-1154) . T)) -((-2341 (((-816) $) 19) (((-128) $) 14) (($ (-128)) 13))) -(((-571) (-13 (-579 (-816)) (-579 (-128)) (-10 -8 (-15 -2341 ($ (-128)))))) (T -571)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-571))))) -(-13 (-579 (-816)) (-579 (-128)) (-10 -8 (-15 -2341 ($ (-128))))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (((-1153) $) 14) (($ (-606 (-1153))) 13)) (-3302 (((-606 (-1153)) $) 10)) (-2244 (((-111) $ $) NIL))) -(((-572) (-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3302 ((-606 (-1153)) $))))) (T -572)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572))))) -(-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3302 ((-606 (-1153)) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-1200 (-649 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2568 (((-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2649 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4263 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2624 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-4246 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3800 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1899 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3112 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2503 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1889 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-1855 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3447 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (($ (-1200 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3705 (((-874)) NIL (|has| |#2| (-351 |#1|)))) (-3364 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1684 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3468 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1652 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3699 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4217 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3486 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3820 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4096 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-2818 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2757 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4207 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-2987 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2077 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2415 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1922 ((|#1| $ (-537)) NIL (|has| |#2| (-401 |#1|)))) (-1484 (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $) (-1200 $)) NIL (|has| |#2| (-351 |#1|))) (((-1200 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3996 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-4183 (((-606 (-905 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-606 (-905 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2341 (((-816) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2122 (((-1200 $)) NIL (|has| |#2| (-401 |#1|)))) (-3678 (((-606 (-1200 |#1|))) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3127 (($ (-649 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3530 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1972 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 24)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-573 |#1| |#2|) (-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) (-163) (-705 |#1|)) (T -573)) -((-2341 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-573 *3 *2)) (-4 *2 (-705 *3))))) -(-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-3160 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) 33)) (-3144 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL) (($) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-1100) |#1|) 43)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#1| "failed") (-1100) $) 46)) (-3832 (($) NIL T CONST)) (-1898 (($ $ (-1100)) 24)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3026 (((-3 |#1| "failed") (-1100) $) 47) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (|has| $ (-6 -4300)))) (-2355 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2151 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) 32)) (-4091 ((|#1| $ (-1100) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-1100)) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1362 (($ $) 48)) (-3309 (($ (-372)) 22) (($ (-372) (-1100)) 21)) (-3923 (((-372) $) 34)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1688 (((-606 (-1100)) $) 39)) (-4011 (((-111) (-1100) $) NIL)) (-3216 (((-1100) $) 35)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 37)) (-1922 ((|#1| $ (-1100) |#1|) NIL) ((|#1| $ (-1100)) 42)) (-1341 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL) (($) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2341 (((-816) $) 20)) (-1338 (($ $) 25)) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 19)) (-2258 (((-731) $) 41 (|has| $ (-6 -4300))))) -(((-574 |#1|) (-13 (-348 (-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-1130 (-1100) |#1|) (-10 -8 (-6 -4300) (-15 -1362 ($ $)))) (-1045)) (T -574)) -((-1362 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1045))))) -(-13 (-348 (-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-1130 (-1100) |#1|) (-10 -8 (-6 -4300) (-15 -1362 ($ $)))) -((-3122 (((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 15)) (-1688 (((-606 |#2|) $) 19)) (-4011 (((-111) |#2| $) 12))) -(((-575 |#1| |#2| |#3|) (-10 -8 (-15 -1688 ((-606 |#2|) |#1|)) (-15 -4011 ((-111) |#2| |#1|)) (-15 -3122 ((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|))) (-576 |#2| |#3|) (-1045) (-1045)) (T -575)) -NIL -(-10 -8 (-15 -1688 ((-606 |#2|) |#1|)) (-15 -4011 ((-111) |#2| |#1|)) (-15 -3122 ((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|))) -((-2330 (((-111) $ $) 19 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40)) (-2528 (((-1064) $) 21 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51)) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50)) (-2341 (((-816) $) 18 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-576 |#1| |#2|) (-134) (-1045) (-1045)) (T -576)) -((-4011 (*1 *2 *3 *1) (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-111)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-606 *3)))) (-3026 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-2859 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(-13 (-214 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))) (-10 -8 (-15 -4011 ((-111) |t#1| $)) (-15 -1688 ((-606 |t#1|) $)) (-15 -3026 ((-3 |t#2| "failed") |t#1| $)) (-15 -2859 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) ((-579 (-816)) -1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #0#) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-293 #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-471 #0#) . T) ((-495 #0# #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-1045) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) ((-1154) . T)) -((-3992 (((-578 |#2|) |#1|) 15)) (-4004 (((-3 |#1| "failed") (-578 |#2|)) 19))) -(((-577 |#1| |#2|) (-10 -7 (-15 -3992 ((-578 |#2|) |#1|)) (-15 -4004 ((-3 |#1| "failed") (-578 |#2|)))) (-807) (-807)) (T -577)) -((-4004 (*1 *2 *3) (|partial| -12 (-5 *3 (-578 *4)) (-4 *4 (-807)) (-4 *2 (-807)) (-5 *1 (-577 *2 *4)))) (-3992 (*1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *1 (-577 *3 *4)) (-4 *3 (-807)) (-4 *4 (-807))))) -(-10 -7 (-15 -3992 ((-578 |#2|) |#1|)) (-15 -4004 ((-3 |#1| "failed") (-578 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-2289 (((-3 (-1117) "failed") $) 37)) (-3219 (((-1205) $ (-731)) 26)) (-2299 (((-731) $) 25)) (-3979 (((-113) $) 12)) (-3923 (((-1117) $) 20)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3381 (($ (-113) (-606 |#1|) (-731)) 30) (($ (-1117)) 31)) (-3215 (((-111) $ (-113)) 18) (((-111) $ (-1117)) 16)) (-2545 (((-731) $) 22)) (-2528 (((-1064) $) NIL)) (-3996 (((-845 (-537)) $) 77 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 84 (|has| |#1| (-580 (-845 (-363))))) (((-513) $) 69 (|has| |#1| (-580 (-513))))) (-2341 (((-816) $) 55)) (-2449 (((-606 |#1|) $) 24)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 41)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 42))) -(((-578 |#1|) (-13 (-130) (-837 |#1|) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3979 ((-113) $)) (-15 -2449 ((-606 |#1|) $)) (-15 -2545 ((-731) $)) (-15 -3381 ($ (-113) (-606 |#1|) (-731))) (-15 -3381 ($ (-1117))) (-15 -2289 ((-3 (-1117) "failed") $)) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) (-807)) (T -578)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-807)) (-5 *1 (-578 *5)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2289 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807))))) -(-13 (-130) (-837 |#1|) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3979 ((-113) $)) (-15 -2449 ((-606 |#1|) $)) (-15 -2545 ((-731) $)) (-15 -3381 ($ (-113) (-606 |#1|) (-731))) (-15 -3381 ($ (-1117))) (-15 -2289 ((-3 (-1117) "failed") $)) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) -((-2341 ((|#1| $) 6))) -(((-579 |#1|) (-134) (-1154)) (T -579)) -((-2341 (*1 *2 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-1154))))) -(-13 (-10 -8 (-15 -2341 (|t#1| $)))) -((-3996 ((|#1| $) 6))) -(((-580 |#1|) (-134) (-1154)) (T -580)) -((-3996 (*1 *2 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-1154))))) -(-13 (-10 -8 (-15 -3996 (|t#1| $)))) -((-3517 (((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)) 15) (((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)) 16))) -(((-581 |#1| |#2|) (-10 -7 (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|))) (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)))) (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -581)) -((-3517 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-1113 (-391 *6))) (-5 *1 (-581 *5 *6)) (-5 *3 (-391 *6)))) (-3517 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-1113 (-391 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-391 *5))))) -(-10 -7 (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|))) (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)))) -((-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10))) -(((-582 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-583 |#2|) (-998)) (T -582)) -NIL -(-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 34)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-583 |#1|) (-134) (-998)) (T -583)) -((-2341 (*1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-998))))) -(-13 (-998) (-609 |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-2836 (((-111) $) NIL)) (-3301 ((|#1| $) 13)) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3315 ((|#3| $) 15)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL)) (-3654 (((-731)) 20)) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) 12 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2340 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-584 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) (-37 |#2|) (-163) (|SubsetCategory| (-687) |#2|)) (T -584)) -((-2340 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-687) *4)))) (-2340 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-584 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-687) *4)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-584 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-687) *3)))) (-3315 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) -((-1595 ((|#2| |#2| (-1117) (-1117)) 18))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1595 (|#2| |#2| (-1117) (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -585)) -((-1595 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-29 *4)))))) -(-10 -7 (-15 -1595 (|#2| |#2| (-1117) (-1117)))) -((-2330 (((-111) $ $) 56)) (-1656 (((-111) $) 52)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3700 ((|#1| $) 49)) (-3418 (((-3 $ "failed") $ $) NIL)) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3655 (((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)) 97 (|has| |#1| (-347)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 24)) (-3490 (((-3 $ "failed") $) 75)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-4231 (((-537) $) 19)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) 36)) (-3733 (($ |#1| (-537)) 21)) (-3912 ((|#1| $) 51)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) 87 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) 79)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1930 (((-731) $) 99 (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 98 (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2872 (((-537) $) 34)) (-3996 (((-391 |#2|) $) 42)) (-2341 (((-816) $) 62) (($ (-537)) 32) (($ $) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 31) (($ |#2|) 22)) (-3500 ((|#1| $ (-537)) 63)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 29)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 9 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) 17)) (-2329 (($ $) 46) (($ $ $) NIL)) (-2318 (($ $ $) 76)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 26) (($ $ $) 44))) -(((-586 |#1| |#2|) (-13 (-216 |#2|) (-529) (-580 (-391 |#2|)) (-395 |#1|) (-989 |#2|) (-10 -8 (-15 -1538 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -4231 ((-537) $)) (-15 -3940 ($ $)) (-15 -3912 (|#1| $)) (-15 -3700 (|#1| $)) (-15 -3500 (|#1| $ (-537))) (-15 -3733 ($ |#1| (-537))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-291)) (-15 -3655 ((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)))) |%noBranch|))) (-529) (-1176 |#1|)) (T -586)) -((-1538 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-111)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-3940 (*1 *1 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3912 (*1 *2 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3700 (*1 *2 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) (-4 *4 (-1176 *2)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) (-4 *4 (-1176 *2)))) (-3655 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *4 (-529)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -4144 (-586 *4 *5)) (|:| -2660 (-391 *5)))) (-5 *1 (-586 *4 *5)) (-5 *3 (-391 *5))))) -(-13 (-216 |#2|) (-529) (-580 (-391 |#2|)) (-395 |#1|) (-989 |#2|) (-10 -8 (-15 -1538 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -4231 ((-537) $)) (-15 -3940 ($ $)) (-15 -3912 (|#1| $)) (-15 -3700 (|#1| $)) (-15 -3500 (|#1| $ (-537))) (-15 -3733 ($ |#1| (-537))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-291)) (-15 -3655 ((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)))) |%noBranch|))) -((-3448 (((-606 |#6|) (-606 |#4|) (-111)) 47)) (-3609 ((|#6| |#6|) 40))) -(((-587 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3609 (|#6| |#6|)) (-15 -3448 ((-606 |#6|) (-606 |#4|) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|) (-1054 |#1| |#2| |#3| |#4|)) (T -587)) -((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *10)) (-5 *1 (-587 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *10 (-1054 *5 *6 *7 *8)))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-587 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *2 (-1054 *3 *4 *5 *6))))) -(-10 -7 (-15 -3609 (|#6| |#6|)) (-15 -3448 ((-606 |#6|) (-606 |#4|) (-111)))) -((-3333 (((-111) |#3| (-731) (-606 |#3|)) 23)) (-2024 (((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)) 55))) -(((-588 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 ((-111) |#3| (-731) (-606 |#3|))) (-15 -2024 ((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)))) (-807) (-753) (-291) (-902 |#3| |#2| |#1|)) (T -588)) -((-2024 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3415 (-606 (-2 (|:| |irr| *10) (|:| -2430 (-537))))))) (-5 *6 (-606 *3)) (-5 *7 (-606 *8)) (-4 *8 (-807)) (-4 *3 (-291)) (-4 *10 (-902 *3 *9 *8)) (-4 *9 (-753)) (-5 *2 (-2 (|:| |polfac| (-606 *10)) (|:| |correct| *3) (|:| |corrfact| (-606 (-1113 *3))))) (-5 *1 (-588 *8 *9 *3 *10)) (-5 *4 (-606 (-1113 *3))))) (-3333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-731)) (-5 *5 (-606 *3)) (-4 *3 (-291)) (-4 *6 (-807)) (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-588 *6 *7 *3 *8)) (-4 *8 (-902 *3 *7 *6))))) -(-10 -7 (-15 -3333 ((-111) |#3| (-731) (-606 |#3|))) (-15 -2024 ((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)))) -((-2330 (((-111) $ $) NIL)) (-2880 (((-1122) $) 11)) (-2869 (((-1122) $) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-589) (-13 (-1029) (-10 -8 (-15 -2869 ((-1122) $)) (-15 -2880 ((-1122) $))))) (T -589)) -((-2869 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589))))) -(-13 (-1029) (-10 -8 (-15 -2869 ((-1122) $)) (-15 -2880 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2177 (($ $) 67)) (-2180 (((-625 |#1| |#2|) $) 52)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 70)) (-3717 (((-606 (-278 |#2|)) $ $) 33)) (-2528 (((-1064) $) NIL)) (-4185 (($ (-625 |#1| |#2|)) 48)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 58) (((-1214 |#1| |#2|) $) NIL) (((-1219 |#1| |#2|) $) 66)) (-2943 (($) 53 T CONST)) (-2842 (((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $) 31)) (-1598 (((-606 (-625 |#1| |#2|)) (-606 |#1|)) 65)) (-1820 (((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $) 37)) (-2244 (((-111) $ $) 54)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 44))) -(((-590 |#1| |#2| |#3|) (-13 (-456) (-10 -8 (-15 -4185 ($ (-625 |#1| |#2|))) (-15 -2180 ((-625 |#1| |#2|) $)) (-15 -1820 ((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $)) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1219 |#1| |#2|) $)) (-15 -2177 ($ $)) (-15 -2163 ((-606 |#1|) $)) (-15 -1598 ((-606 (-625 |#1| |#2|)) (-606 |#1|))) (-15 -2842 ((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $)) (-15 -3717 ((-606 (-278 |#2|)) $ $)))) (-807) (-13 (-163) (-678 (-391 (-537)))) (-874)) (T -590)) -((-4185 (*1 *1 *2) (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-5 *1 (-590 *3 *4 *5)) (-14 *5 (-874)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-625 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-846 *3)) (|:| |c| *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1219 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-13 (-163) (-678 (-391 (-537))))) (-14 *4 (-874)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-625 *4 *5))) (-5 *1 (-590 *4 *5 *6)) (-4 *5 (-13 (-163) (-678 (-391 (-537))))) (-14 *6 (-874)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-633 *3)) (|:| |c| *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-3717 (*1 *2 *1 *1) (-12 (-5 *2 (-606 (-278 *4))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) -(-13 (-456) (-10 -8 (-15 -4185 ($ (-625 |#1| |#2|))) (-15 -2180 ((-625 |#1| |#2|) $)) (-15 -1820 ((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $)) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1219 |#1| |#2|) $)) (-15 -2177 ($ $)) (-15 -2163 ((-606 |#1|) $)) (-15 -1598 ((-606 (-625 |#1| |#2|)) (-606 |#1|))) (-15 -2842 ((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $)) (-15 -3717 ((-606 (-278 |#2|)) $ $)))) -((-3448 (((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)) 72) (((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111)) 58)) (-3759 (((-111) (-606 (-740 |#1| (-818 |#2|)))) 23)) (-2693 (((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)) 71)) (-3961 (((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111)) 57)) (-2597 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|)))) 27)) (-3362 (((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|)))) 26))) -(((-591 |#1| |#2|) (-10 -7 (-15 -3759 ((-111) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3362 ((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|))))) (-15 -2597 ((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3961 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -2693 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)))) (-435) (-606 (-1117))) (T -591)) -((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) (-5 *1 (-591 *5 *6)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-591 *5 *6)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) (-5 *1 (-591 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-591 *5 *6)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4)))) (-3362 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-606 (-740 *4 (-818 *5)))) (-4 *4 (-435)) (-14 *5 (-606 (-1117))) (-5 *2 (-111)) (-5 *1 (-591 *4 *5))))) -(-10 -7 (-15 -3759 ((-111) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3362 ((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|))))) (-15 -2597 ((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3961 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -2693 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)))) -((-1403 (($ $) 38)) (-1247 (($ $) 21)) (-1378 (($ $) 37)) (-4270 (($ $) 22)) (-1429 (($ $) 36)) (-1273 (($ $) 23)) (-3338 (($) 48)) (-2180 (($ $) 45)) (-2126 (($ $) 17)) (-1509 (($ $ (-1038 $)) 7) (($ $ (-1117)) 6)) (-4185 (($ $) 46)) (-4218 (($ $) 15)) (-4256 (($ $) 16)) (-1441 (($ $) 35)) (-1286 (($ $) 24)) (-1415 (($ $) 34)) (-1259 (($ $) 25)) (-1389 (($ $) 33)) (-1234 (($ $) 26)) (-1475 (($ $) 44)) (-1328 (($ $) 32)) (-1453 (($ $) 43)) (-1300 (($ $) 31)) (-1495 (($ $) 42)) (-1352 (($ $) 30)) (-4141 (($ $) 41)) (-1365 (($ $) 29)) (-1485 (($ $) 40)) (-1340 (($ $) 28)) (-1465 (($ $) 39)) (-1314 (($ $) 27)) (-2175 (($ $) 19)) (-2637 (($ $) 20)) (-3191 (($ $) 18)) (** (($ $ $) 47))) -(((-592) (-134)) (T -592)) -((-2637 (*1 *1 *1) (-4 *1 (-592))) (-2175 (*1 *1 *1) (-4 *1 (-592))) (-3191 (*1 *1 *1) (-4 *1 (-592))) (-2126 (*1 *1 *1) (-4 *1 (-592))) (-4256 (*1 *1 *1) (-4 *1 (-592))) (-4218 (*1 *1 *1) (-4 *1 (-592)))) -(-13 (-912) (-1139) (-10 -8 (-15 -2637 ($ $)) (-15 -2175 ($ $)) (-15 -3191 ($ $)) (-15 -2126 ($ $)) (-15 -4256 ($ $)) (-15 -4218 ($ $)))) -(((-34) . T) ((-93) . T) ((-268) . T) ((-474) . T) ((-912) . T) ((-1139) . T) ((-1142) . T)) -((-3979 (((-113) (-113)) 83)) (-2126 ((|#2| |#2|) 30)) (-1509 ((|#2| |#2| (-1038 |#2|)) 79) ((|#2| |#2| (-1117)) 52)) (-4218 ((|#2| |#2|) 29)) (-4256 ((|#2| |#2|) 31)) (-2336 (((-111) (-113)) 34)) (-2175 ((|#2| |#2|) 26)) (-2637 ((|#2| |#2|) 28)) (-3191 ((|#2| |#2|) 27))) -(((-593 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2637 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -1509 (|#2| |#2| (-1117))) (-15 -1509 (|#2| |#2| (-1038 |#2|)))) (-13 (-807) (-529)) (-13 (-414 |#1|) (-954) (-1139))) (T -593)) -((-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)))) (-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2126 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-3191 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *4)) (-4 *4 (-13 (-414 *3) (-954) (-1139))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-593 *4 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139)))))) -(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2637 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -1509 (|#2| |#2| (-1117))) (-15 -1509 (|#2| |#2| (-1038 |#2|)))) -((-2470 (((-463 |#1| |#2|) (-232 |#1| |#2|)) 53)) (-1875 (((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 68)) (-2711 (((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|)) 70) (((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|)) 69)) (-1282 (((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|))) 108)) (-2377 (((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 83)) (-1963 (((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|))) 118)) (-2658 (((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|))) 58)) (-3676 (((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 41)) (-1777 (((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|))) 50)) (-2347 (((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|))) 91))) -(((-594 |#1| |#2|) (-10 -7 (-15 -1282 ((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|)))) (-15 -1963 ((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|)))) (-15 -1875 ((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -3676 ((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2658 ((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|)))) (-15 -2347 ((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2377 ((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -1777 ((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2470 ((-463 |#1| |#2|) (-232 |#1| |#2|)))) (-606 (-1117)) (-435)) (T -594)) -((-2470 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-463 *4 *5)) (-5 *1 (-594 *4 *5)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-232 *4 *5))) (-5 *2 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5)))) (-2377 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-818 *4)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5)))) (-2347 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-232 *5 *6))) (-4 *6 (-435)) (-5 *2 (-232 *5 *6)) (-14 *5 (-606 (-1117))) (-5 *1 (-594 *5 *6)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-463 *5 *6))) (-5 *3 (-463 *5 *6)) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-1200 *6)) (-5 *1 (-594 *5 *6)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-606 (-463 *3 *4))) (-14 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-594 *3 *4)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) (-4 *6 (-435)))) (-2711 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) (-4 *6 (-435)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-606 (-232 *4 *5))) (-5 *1 (-594 *4 *5)))) (-1963 (*1 *2 *3) (-12 (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-2 (|:| |glbase| (-606 (-232 *4 *5))) (|:| |glval| (-606 (-537))))) (-5 *1 (-594 *4 *5)) (-5 *3 (-606 (-232 *4 *5))))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-2 (|:| |gblist| (-606 (-232 *4 *5))) (|:| |gvlist| (-606 (-537))))) (-5 *1 (-594 *4 *5))))) -(-10 -7 (-15 -1282 ((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|)))) (-15 -1963 ((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|)))) (-15 -1875 ((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -3676 ((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2658 ((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|)))) (-15 -2347 ((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2377 ((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -1777 ((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2470 ((-463 |#1| |#2|) (-232 |#1| |#2|)))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-51) $ (-1100) (-51)) 16) (((-51) $ (-1117) (-51)) 17)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1100) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1100) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-51) $ (-1100) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1100)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1362 (($ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4269 (($ (-372)) 9)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1100)) $) NIL)) (-4011 (((-111) (-1100) $) NIL)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3188 (((-51) $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1100)) 14) (((-51) $ (-1100) (-51)) NIL) (((-51) $ (-1117)) 15)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-595) (-13 (-1130 (-1100) (-51)) (-10 -8 (-15 -4269 ($ (-372))) (-15 -1362 ($ $)) (-15 -1922 ((-51) $ (-1117))) (-15 -2476 ((-51) $ (-1117) (-51)))))) (T -595)) -((-4269 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-595)))) (-1362 (*1 *1 *1) (-5 *1 (-595))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-51)) (-5 *1 (-595)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-595))))) -(-13 (-1130 (-1100) (-51)) (-10 -8 (-15 -4269 ($ (-372))) (-15 -1362 ($ $)) (-15 -1922 ((-51) $ (-1117))) (-15 -2476 ((-51) $ (-1117) (-51))))) -((-2340 (($ $ |#2|) 10))) -(((-596 |#1| |#2|) (-10 -8 (-15 -2340 (|#1| |#1| |#2|))) (-597 |#2|) (-163)) (T -596)) -NIL -(-10 -8 (-15 -2340 (|#1| |#1| |#2|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2350 (($ $ $) 29)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 28 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-597 |#1|) (-134) (-163)) (T -597)) -((-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) -(-13 (-678 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2350 ($ $ $)) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-1200 (-649 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2568 (((-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2649 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4263 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2624 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-4246 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3800 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1899 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3112 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2503 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1889 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-1855 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3447 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (($ (-1200 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3705 (((-874)) NIL (|has| |#2| (-351 |#1|)))) (-3364 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1684 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3468 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1652 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3699 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4217 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3486 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3820 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4096 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-2818 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2757 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4207 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-2987 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2077 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2415 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1922 ((|#1| $ (-537)) NIL (|has| |#2| (-401 |#1|)))) (-1484 (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $) (-1200 $)) NIL (|has| |#2| (-351 |#1|))) (((-1200 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3996 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-4183 (((-606 (-905 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-606 (-905 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2341 (((-816) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2122 (((-1200 $)) NIL (|has| |#2| (-401 |#1|)))) (-3678 (((-606 (-1200 |#1|))) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3127 (($ (-649 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3530 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1972 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2928 (($) 15 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 17)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-598 |#1| |#2|) (-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) (-163) (-705 |#1|)) (T -598)) -((-2341 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-598 *3 *2)) (-4 *2 (-705 *3))))) -(-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) -((-2165 (((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)) 82) (((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|))) 104)) (-2195 (((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|))) 109))) -(((-599 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|)))) (-15 -2195 ((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|)))) (-15 -2165 ((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -599)) -((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1100)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-800 *3)) (-5 *1 (-599 *6 *3)))) (-2195 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-278 (-793 *3))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-793 *3)) (-5 *1 (-599 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-800 *3))) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (-800 *3) (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) "failed")) (-5 *1 (-599 *5 *3))))) -(-10 -7 (-15 -2165 ((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|)))) (-15 -2195 ((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|)))) (-15 -2165 ((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)))) -((-2165 (((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)) 80) (((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 20) (((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|)))) 35)) (-2195 (((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 23) (((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|)))) 43))) -(((-600 |#1|) (-10 -7 (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)))) (-435)) (T -600)) -((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 (-391 (-905 *6)))) (-5 *5 (-1100)) (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-800 *3)) (-5 *1 (-600 *6)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-435)) (-5 *2 (-793 *3)) (-5 *1 (-600 *5)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-793 (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-793 (-391 (-905 *5)))) (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-435)) (-5 *2 (-3 (-800 *3) (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) "failed")) (-5 *1 (-600 *5)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-800 (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-3 (-800 (-391 (-905 *5))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 *5))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 *5))) "failed"))) "failed")) (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5)))))) -(-10 -7 (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)))) -((-2609 (((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|) 57 (-3679 (|has| |#1| (-347)))) (((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|) 42 (|has| |#1| (-347)))) (-4274 (((-111) (-1200 |#2|)) 30)) (-2348 (((-3 (-1200 |#1|) "failed") (-1200 |#2|)) 33))) -(((-601 |#1| |#2|) (-10 -7 (-15 -4274 ((-111) (-1200 |#2|))) (-15 -2348 ((-3 (-1200 |#1|) "failed") (-1200 |#2|))) (IF (|has| |#1| (-347)) (-15 -2609 ((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|)) (-15 -2609 ((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|)))) (-529) (-602 |#1|)) (T -601)) -((-2609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-3679 (-4 *5 (-347))) (-4 *5 (-529)) (-5 *2 (-1200 (-391 *5))) (-5 *1 (-601 *5 *4)))) (-2609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-4 *5 (-347)) (-4 *5 (-529)) (-5 *2 (-1200 *5)) (-5 *1 (-601 *5 *4)))) (-2348 (*1 *2 *3) (|partial| -12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) (-5 *2 (-1200 *4)) (-5 *1 (-601 *4 *5)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) (-5 *2 (-111)) (-5 *1 (-601 *4 *5))))) -(-10 -7 (-15 -4274 ((-111) (-1200 |#2|))) (-15 -2348 ((-3 (-1200 |#1|) "failed") (-1200 |#2|))) (IF (|has| |#1| (-347)) (-15 -2609 ((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|)) (-15 -2609 ((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2053 (((-649 |#1|) (-649 $)) 34) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 33)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-602 |#1|) (-134) (-998)) (T -602)) -((-2053 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-602 *4)) (-4 *4 (-998)) (-5 *2 (-649 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *1)) (-5 *4 (-1200 *1)) (-4 *1 (-602 *5)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 *5))))))) -(-13 (-998) (-10 -8 (-15 -2053 ((-649 |t#1|) (-649 $))) (-15 -2053 ((-2 (|:| -2756 (-649 |t#1|)) (|:| |vec| (-1200 |t#1|))) (-649 $) (-1200 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1244 ((|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|) 17) ((|#2| (-606 |#1|) (-606 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|)) 12))) -(((-603 |#1| |#2|) (-10 -7 (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|)) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)))) (-1045) (-1154)) (T -603)) -((-1244 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-603 *5 *6)))) (-1244 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 *5)) (-4 *6 (-1045)) (-4 *5 (-1154)) (-5 *2 (-1 *5 *6)) (-5 *1 (-603 *6 *5)))) (-1244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-603 *5 *6))))) -(-10 -7 (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|)) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)))) -((-2547 (((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|) 18)) (-1612 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 13))) -(((-604 |#1| |#2|) (-10 -7 (-15 -2547 ((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1154) (-1154)) (T -604)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-604 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-604 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-606 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-606 *5)) (-5 *1 (-604 *6 *5))))) -(-10 -7 (-15 -2547 ((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) -((-1612 (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 13))) -(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)))) (-1154) (-1154) (-1154)) (T -605)) -((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-606 *8)) (-5 *1 (-605 *6 *7 *8))))) -(-10 -7 (-15 -1612 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3114 (($ $ $) 32 (|has| |#1| (-1045)))) (-3101 (($ $ $) 34 (|has| |#1| (-1045)))) (-1326 (($ $ $) 37 (|has| |#1| (-1045)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $) NIL) (($ $ (-731)) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) 31 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2902 (((-111) $) 9)) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-4120 (($) 7)) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) 36) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 45 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-1683 (($ |#1| $) 10)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ $) 30) (($ |#1| $) NIL) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2203 (($ $ $) 11)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 26 (|has| |#1| (-788))) (((-1100) $ (-111)) 27 (|has| |#1| (-788))) (((-1205) (-782) $) 28 (|has| |#1| (-788))) (((-1205) (-782) $ (-111)) 29 (|has| |#1| (-788)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-606 |#1|) (-13 (-627 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -2902 ((-111) $)) (-15 -1683 ($ |#1| $)) (-15 -2203 ($ $ $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3114 ($ $ $)) (-15 -3101 ($ $ $)) (-15 -1326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-1154)) (T -606)) -((-4120 (*1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-606 *3)) (-4 *3 (-1154)))) (-1683 (*1 *1 *2 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-2203 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-3114 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)))) (-3101 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)))) (-1326 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) -(-13 (-627 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -2902 ((-111) $)) (-15 -1683 ($ |#1| $)) (-15 -2203 ($ $ $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3114 ($ $ $)) (-15 -3101 ($ $ $)) (-15 -1326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1122) $) NIL) ((|#1| $) 8)) (-2244 (((-111) $ $) NIL))) -(((-607 |#1|) (-13 (-1029) (-579 |#1|)) (-1045)) (T -607)) -NIL -(-13 (-1029) (-579 |#1|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3207 (($ |#1| |#1| $) 43)) (-2506 (((-111) $ (-731)) NIL)) (-3435 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-1376 (($ $) 45)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 52 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 9 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 37)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 46)) (-3499 (($ |#1| $) 26) (($ |#1| $ (-731)) 42)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1599 ((|#1| $) 48)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 21)) (-3425 (($) 25)) (-2752 (((-111) $) 50)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 59)) (-1341 (($) 23) (($ (-606 |#1|)) 18)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) 56 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 19)) (-3996 (((-513) $) 34 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-2341 (((-816) $) 14 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 22)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 61 (|has| |#1| (-1045)))) (-2258 (((-731) $) 16 (|has| $ (-6 -4300))))) -(((-608 |#1|) (-13 (-655 |#1|) (-10 -8 (-6 -4300) (-15 -2752 ((-111) $)) (-15 -3207 ($ |#1| |#1| $)))) (-1045)) (T -608)) -((-2752 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-608 *3)) (-4 *3 (-1045)))) (-3207 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1045))))) -(-13 (-655 |#1|) (-10 -8 (-6 -4300) (-15 -2752 ((-111) $)) (-15 -3207 ($ |#1| |#1| $)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23))) -(((-609 |#1|) (-134) (-1005)) (T -609)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1005))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 59 (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 23 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 21 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) 28 (|has| $ (-6 -4311)))) (-2347 (($ $) 29)) (-4117 (($ $) 18) (($ $ (-735)) 32)) (-2424 (($ $) 55 (|has| |#1| (-1052)))) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) 27 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 31 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) 51 (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) 13) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 12)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) 17)) (-3887 (($) 16)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) NIL) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3955 (((-111) $) 34)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) 36)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) 35)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 26)) (-4109 (($ $ $) 54) (($ $ |#1|) NIL)) (-4120 (($ $ $) NIL) (($ |#1| $) 10) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (((-823) $) 46 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 48 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 9 (|has| $ (-6 -4310))))) +(((-502 |#1| |#2|) (-631 |#1|) (-1159) (-526)) (T -502)) +NIL +(-631 |#1|) +((-3407 ((|#4| |#4|) 27)) (-3406 (((-735) |#4|) 32)) (-3405 (((-735) |#4|) 33)) (-3404 (((-607 |#3|) |#4|) 40 (|has| |#3| (-6 -4311)))) (-3911 (((-3 |#4| "failed") |#4|) 51)) (-2089 ((|#4| |#4|) 44)) (-3647 ((|#1| |#4|) 43))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3407 (|#4| |#4|)) (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (IF (|has| |#3| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|) (-15 -3647 (|#1| |#4|)) (-15 -2089 (|#4| |#4|)) (-15 -3911 ((-3 |#4| "failed") |#4|))) (-348) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -503)) +((-3911 (*1 *2 *2) (|partial| -12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2089 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-348)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) (-3404 (*1 *2 *3) (-12 (|has| *6 (-6 -4311)) (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-607 *6)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(-10 -7 (-15 -3407 (|#4| |#4|)) (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (IF (|has| |#3| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|) (-15 -3647 (|#1| |#4|)) (-15 -2089 (|#4| |#4|)) (-15 -3911 ((-3 |#4| "failed") |#4|))) +((-3407 ((|#8| |#4|) 20)) (-3404 (((-607 |#3|) |#4|) 29 (|has| |#7| (-6 -4311)))) (-3911 (((-3 |#8| "failed") |#4|) 23))) +(((-504 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3407 (|#8| |#4|)) (-15 -3911 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|)) (-533) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|) (-950 |#1|) (-357 |#5|) (-357 |#5|) (-650 |#5| |#6| |#7|)) (T -504)) +((-3404 (*1 *2 *3) (-12 (|has| *9 (-6 -4311)) (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-607 *6)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-650 *4 *5 *6)) (-4 *10 (-650 *7 *8 *9)))) (-3911 (*1 *2 *3) (|partial| -12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) (-3407 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7))))) +(-10 -7 (-15 -3407 (|#8| |#4|)) (-15 -3911 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4311)) (-15 -3404 ((-607 |#3|) |#4|)) |%noBranch|)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) NIL)) (-2400 (($ $ $) NIL)) (-3733 (($ (-572 |#1| |#3|)) NIL) (($ $) NIL)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) 12)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-572 |#1| |#3|)) NIL)) (-1281 (($ $ (-526) (-572 |#1| |#2|)) NIL)) (-3652 (($ (-735) |#1|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 21 (|has| |#1| (-292)))) (-3409 (((-572 |#1| |#3|) $ (-526)) NIL)) (-3406 (((-735) $) 24 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) NIL)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) 26 (|has| |#1| (-533)))) (-3404 (((-607 (-572 |#1| |#2|)) $) 29 (|has| |#1| (-533)))) (-3412 (((-735) $) NIL)) (-3936 (($ (-735) (-735) |#1|) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) 19 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 10)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 11)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#1|))) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) 33 (|has| |#1| (-348)))) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) 17 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3408 (((-572 |#1| |#2|) $ (-526)) NIL)) (-4274 (($ (-572 |#1| |#2|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-572 |#1| |#2|) $ (-572 |#1| |#2|)) NIL) (((-572 |#1| |#3|) (-572 |#1| |#3|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-505 |#1| |#2| |#3|) (-650 |#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) (-1004) (-526) (-526)) (T -505)) +NIL +(-650 |#1| (-572 |#1| |#3|) (-572 |#1| |#2|)) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2090 (((-607 (-1160)) $) 13)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (($ (-607 (-1160))) 11)) (-3353 (((-111) $ $) NIL))) +(((-506) (-13 (-1035) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2090 ((-607 (-1160)) $))))) (T -506)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506))))) +(-13 (-1035) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2090 ((-607 (-1160)) $)))) +((-2865 (((-111) $ $) NIL)) (-2091 (((-1128) $) 13)) (-3554 (((-1106) $) NIL)) (-2092 (((-1123) $) 11)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-507) (-13 (-1035) (-10 -8 (-15 -2092 ((-1123) $)) (-15 -2091 ((-1128) $))))) (T -507)) +((-2092 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-507)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-507))))) +(-13 (-1035) (-10 -8 (-15 -2092 ((-1123) $)) (-15 -2091 ((-1128) $)))) +((-2093 (((-1070) $ (-128)) 17))) +(((-508 |#1|) (-10 -8 (-15 -2093 ((-1070) |#1| (-128)))) (-509)) (T -508)) +NIL +(-10 -8 (-15 -2093 ((-1070) |#1| (-128)))) +((-2093 (((-1070) $ (-128)) 7)) (-2094 (((-1070) $) 8)) (-1792 (($ $) 6))) +(((-509) (-134)) (T -509)) +((-2094 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-1070)))) (-2093 (*1 *2 *1 *3) (-12 (-4 *1 (-509)) (-5 *3 (-128)) (-5 *2 (-1070))))) +(-13 (-164) (-10 -8 (-15 -2094 ((-1070) $)) (-15 -2093 ((-1070) $ (-128))))) +(((-164) . T)) +((-2097 (((-1117 |#1|) (-735)) 76)) (-3649 (((-1205 |#1|) (-1205 |#1|) (-878)) 69)) (-2095 (((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|) 84)) (-2099 (((-1205 |#1|) (-1205 |#1|) (-735)) 36)) (-3294 (((-1205 |#1|) (-878)) 71)) (-2101 (((-1205 |#1|) (-1205 |#1|) (-526)) 24)) (-2096 (((-1117 |#1|) (-1205 |#1|)) 77)) (-2105 (((-1205 |#1|) (-878)) 95)) (-2103 (((-111) (-1205 |#1|)) 80)) (-3429 (((-1205 |#1|) (-1205 |#1|) (-878)) 62)) (-2106 (((-1117 |#1|) (-1205 |#1|)) 89)) (-2102 (((-878) (-1205 |#1|)) 59)) (-2703 (((-1205 |#1|) (-1205 |#1|)) 30)) (-2461 (((-1205 |#1|) (-878) (-878)) 97)) (-2100 (((-1205 |#1|) (-1205 |#1|) (-1070) (-1070)) 23)) (-2098 (((-1205 |#1|) (-1205 |#1|) (-735) (-1070)) 37)) (-2104 (((-1205 (-1205 |#1|)) (-878)) 94)) (-4265 (((-1205 |#1|) (-1205 |#1|) (-1205 |#1|)) 81)) (** (((-1205 |#1|) (-1205 |#1|) (-526)) 45)) (* (((-1205 |#1|) (-1205 |#1|) (-1205 |#1|)) 25))) +(((-510 |#1|) (-10 -7 (-15 -2095 ((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|)) (-15 -3294 ((-1205 |#1|) (-878))) (-15 -2461 ((-1205 |#1|) (-878) (-878))) (-15 -2096 ((-1117 |#1|) (-1205 |#1|))) (-15 -2097 ((-1117 |#1|) (-735))) (-15 -2098 ((-1205 |#1|) (-1205 |#1|) (-735) (-1070))) (-15 -2099 ((-1205 |#1|) (-1205 |#1|) (-735))) (-15 -2100 ((-1205 |#1|) (-1205 |#1|) (-1070) (-1070))) (-15 -2101 ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 ** ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 * ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -4265 ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -3429 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -3649 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -2703 ((-1205 |#1|) (-1205 |#1|))) (-15 -2102 ((-878) (-1205 |#1|))) (-15 -2103 ((-111) (-1205 |#1|))) (-15 -2104 ((-1205 (-1205 |#1|)) (-878))) (-15 -2105 ((-1205 |#1|) (-878))) (-15 -2106 ((-1117 |#1|) (-1205 |#1|)))) (-335)) (T -510)) +((-2106 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 *4))) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-510 *4)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-878)) (-5 *1 (-510 *4)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2100 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1070)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2099 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) (-2098 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1205 *5)) (-5 *3 (-735)) (-5 *4 (-1070)) (-4 *5 (-335)) (-5 *1 (-510 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)))) (-2461 (*1 *2 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) (-4 *4 (-335)) (-5 *2 (-1211)) (-5 *1 (-510 *4))))) +(-10 -7 (-15 -2095 ((-1211) (-1205 (-607 (-2 (|:| -3721 |#1|) (|:| -2461 (-1070))))) |#1|)) (-15 -3294 ((-1205 |#1|) (-878))) (-15 -2461 ((-1205 |#1|) (-878) (-878))) (-15 -2096 ((-1117 |#1|) (-1205 |#1|))) (-15 -2097 ((-1117 |#1|) (-735))) (-15 -2098 ((-1205 |#1|) (-1205 |#1|) (-735) (-1070))) (-15 -2099 ((-1205 |#1|) (-1205 |#1|) (-735))) (-15 -2100 ((-1205 |#1|) (-1205 |#1|) (-1070) (-1070))) (-15 -2101 ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 ** ((-1205 |#1|) (-1205 |#1|) (-526))) (-15 * ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -4265 ((-1205 |#1|) (-1205 |#1|) (-1205 |#1|))) (-15 -3429 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -3649 ((-1205 |#1|) (-1205 |#1|) (-878))) (-15 -2703 ((-1205 |#1|) (-1205 |#1|))) (-15 -2102 ((-878) (-1205 |#1|))) (-15 -2103 ((-111) (-1205 |#1|))) (-15 -2104 ((-1205 (-1205 |#1|)) (-878))) (-15 -2105 ((-1205 |#1|) (-878))) (-15 -2106 ((-1117 |#1|) (-1205 |#1|)))) +((-2108 (((-1 |#1| |#1|) |#1|) 11)) (-2107 (((-1 |#1| |#1|)) 10))) +(((-511 |#1|) (-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -2108 ((-1 |#1| |#1|) |#1|))) (-13 (-691) (-25))) (T -511)) +((-2108 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25))))) (-2107 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) +(-10 -7 (-15 -2107 ((-1 |#1| |#1|))) (-15 -2108 ((-1 |#1| |#1|) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3193 (($ (-735) |#1|) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 (-735) (-735)) $) NIL)) (-2082 ((|#1| $) NIL)) (-3487 (((-735) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20)) (-2957 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL))) +(((-512 |#1|) (-13 (-757) (-491 (-735) |#1|)) (-811)) (T -512)) +NIL +(-13 (-757) (-491 (-735) |#1|)) +((-2110 (((-607 |#2|) (-1117 |#1|) |#3|) 83)) (-2111 (((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))) 100)) (-2109 (((-1117 |#1|) (-653 |#1|)) 95))) +(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2109 ((-1117 |#1|) (-653 |#1|))) (-15 -2110 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2111 ((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))))) (-348) (-348) (-13 (-348) (-809))) (T -513)) +((-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *6)) (-5 *5 (-1 (-390 (-1117 *6)) (-1117 *6))) (-4 *6 (-348)) (-5 *2 (-607 (-2 (|:| |outval| *7) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 *7)))))) (-5 *1 (-513 *6 *7 *4)) (-4 *7 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *5)) (-4 *5 (-348)) (-5 *2 (-607 *6)) (-5 *1 (-513 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *2 (-1117 *4)) (-5 *1 (-513 *4 *5 *6)) (-4 *5 (-348)) (-4 *6 (-13 (-348) (-809)))))) +(-10 -7 (-15 -2109 ((-1117 |#1|) (-653 |#1|))) (-15 -2110 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2111 ((-607 (-2 (|:| |outval| |#2|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#2|))))) (-653 |#1|) |#3| (-1 (-390 (-1117 |#1|)) (-1117 |#1|))))) +((-2832 (((-803 (-526))) 12)) (-2831 (((-803 (-526))) 14)) (-2817 (((-796 (-526))) 9))) +(((-514) (-10 -7 (-15 -2817 ((-796 (-526)))) (-15 -2832 ((-803 (-526)))) (-15 -2831 ((-803 (-526)))))) (T -514)) +((-2831 (*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) (-2832 (*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) (-2817 (*1 *2) (-12 (-5 *2 (-796 (-526))) (-5 *1 (-514))))) +(-10 -7 (-15 -2817 ((-796 (-526)))) (-15 -2832 ((-803 (-526)))) (-15 -2831 ((-803 (-526))))) +((-2865 (((-111) $ $) NIL)) (-2114 (((-1106) $) 48)) (-3572 (((-111) $) 43)) (-3568 (((-1123) $) 44)) (-3573 (((-111) $) 41)) (-3857 (((-1106) $) 42)) (-3575 (((-111) $) NIL)) (-3577 (((-111) $) NIL)) (-3574 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-2116 (($ $ (-607 (-1123))) 20)) (-2119 (((-50) $) 22)) (-3571 (((-111) $) NIL)) (-3567 (((-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-2444 (($ $ (-607 (-1123)) (-1123)) 60)) (-3570 (((-111) $) NIL)) (-3566 (((-211) $) NIL)) (-2115 (($ $) 38)) (-3565 (((-823) $) NIL)) (-3578 (((-111) $ $) NIL)) (-4118 (($ $ (-526)) NIL) (($ $ (-607 (-526))) NIL)) (-3569 (((-607 $) $) 28)) (-2113 (((-1123) (-607 $)) 49)) (-4287 (($ (-607 $)) 53) (($ (-1106)) NIL) (($ (-1123)) 18) (($ (-526)) 8) (($ (-211)) 25) (($ (-823)) NIL) (((-1054) $) 11) (($ (-1054)) 12)) (-2112 (((-1123) (-1123) (-607 $)) 52)) (-4274 (((-823) $) 46)) (-3563 (($ $) 51)) (-3564 (($ $) 50)) (-2117 (($ $ (-607 $)) 57)) (-3576 (((-111) $) 27)) (-2957 (($) 9 T CONST)) (-2964 (($) 10 T CONST)) (-3353 (((-111) $ $) 61)) (-4265 (($ $ $) 66)) (-4158 (($ $ $) 62)) (** (($ $ (-735)) 65) (($ $ (-526)) 64)) (* (($ $ $) 63)) (-4273 (((-526) $) NIL))) +(((-515) (-13 (-1055 (-1106) (-1123) (-526) (-211) (-823)) (-584 (-1054)) (-10 -8 (-15 -2119 ((-50) $)) (-15 -4287 ($ (-1054))) (-15 -2117 ($ $ (-607 $))) (-15 -2444 ($ $ (-607 (-1123)) (-1123))) (-15 -2116 ($ $ (-607 (-1123)))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ (-526))) (-15 0 ($) -4268) (-15 1 ($) -4268) (-15 -2115 ($ $)) (-15 -2114 ((-1106) $)) (-15 -2113 ((-1123) (-607 $))) (-15 -2112 ((-1123) (-1123) (-607 $)))))) (T -515)) +((-2119 (*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-515)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-515)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-515))) (-5 *1 (-515)))) (-2444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1123)) (-5 *1 (-515)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-515)))) (-4158 (*1 *1 *1 *1) (-5 *1 (-515))) (* (*1 *1 *1 *1) (-5 *1 (-515))) (-4265 (*1 *1 *1 *1) (-5 *1 (-515))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-515)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-515)))) (-2957 (*1 *1) (-5 *1 (-515))) (-2964 (*1 *1) (-5 *1 (-515))) (-2115 (*1 *1 *1) (-5 *1 (-515))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-515)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-607 (-515))) (-5 *2 (-1123)) (-5 *1 (-515)))) (-2112 (*1 *2 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-515))) (-5 *1 (-515))))) +(-13 (-1055 (-1106) (-1123) (-526) (-211) (-823)) (-584 (-1054)) (-10 -8 (-15 -2119 ((-50) $)) (-15 -4287 ($ (-1054))) (-15 -2117 ($ $ (-607 $))) (-15 -2444 ($ $ (-607 (-1123)) (-1123))) (-15 -2116 ($ $ (-607 (-1123)))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ (-526))) (-15 (-2957) ($) -4268) (-15 (-2964) ($) -4268) (-15 -2115 ($ $)) (-15 -2114 ((-1106) $)) (-15 -2113 ((-1123) (-607 $))) (-15 -2112 ((-1123) (-1123) (-607 $))))) +((-2118 (((-515) (-1123)) 15)) (-2119 ((|#1| (-515)) 20))) +(((-516 |#1|) (-10 -7 (-15 -2118 ((-515) (-1123))) (-15 -2119 (|#1| (-515)))) (-1159)) (T -516)) +((-2119 (*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *1 (-516 *2)) (-4 *2 (-1159)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-515)) (-5 *1 (-516 *4)) (-4 *4 (-1159))))) +(-10 -7 (-15 -2118 ((-515) (-1123))) (-15 -2119 (|#1| (-515)))) +((-3767 ((|#2| |#2|) 17)) (-3765 ((|#2| |#2|) 13)) (-3768 ((|#2| |#2| (-526) (-526)) 20)) (-3766 ((|#2| |#2|) 15))) +(((-517 |#1| |#2|) (-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) (-13 (-533) (-141)) (-1198 |#1|)) (T -517)) +((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-517 *4 *2)) (-4 *2 (-1198 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3))))) +(-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) +((-2122 (((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))) 32)) (-2120 (((-607 |#2|) (-905 |#1|) |#3|) 53) (((-607 |#2|) (-1117 |#1|) |#3|) 52)) (-2121 (((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|) 91))) +(((-518 |#1| |#2| |#3|) (-10 -7 (-15 -2120 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2120 ((-607 |#2|) (-905 |#1|) |#3|)) (-15 -2121 ((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|)) (-15 -2122 ((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))))) (-436) (-348) (-13 (-348) (-809))) (T -518)) +((-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1123))) (-4 *6 (-348)) (-5 *2 (-607 (-278 (-905 *6)))) (-5 *1 (-518 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-13 (-348) (-809))))) (-2121 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-518 *6 *7 *5)) (-4 *7 (-348)) (-4 *5 (-13 (-348) (-809))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) +(-10 -7 (-15 -2120 ((-607 |#2|) (-1117 |#1|) |#3|)) (-15 -2120 ((-607 |#2|) (-905 |#1|) |#3|)) (-15 -2121 ((-607 (-607 |#2|)) (-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)) |#3|)) (-15 -2122 ((-607 (-278 (-905 |#2|))) (-607 |#2|) (-607 (-1123))))) +((-2125 ((|#2| |#2| |#1|) 17)) (-2123 ((|#2| (-607 |#2|)) 27)) (-2124 ((|#2| (-607 |#2|)) 46))) +(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2123 (|#2| (-607 |#2|))) (-15 -2124 (|#2| (-607 |#2|))) (-15 -2125 (|#2| |#2| |#1|))) (-292) (-1181 |#1|) |#1| (-1 |#1| |#1| (-735))) (T -519)) +((-2125 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-735))) (-5 *1 (-519 *3 *2 *4 *5)) (-4 *2 (-1181 *3)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735))))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) +(-10 -7 (-15 -2123 (|#2| (-607 |#2|))) (-15 -2124 (|#2| (-607 |#2|))) (-15 -2125 (|#2| |#2| |#1|))) +((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))) 80) (((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|))) 169))) +(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|)))) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))))) (-811) (-757) (-13 (-292) (-141)) (-909 |#3| |#2| |#1|)) (T -520)) +((-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-909 *7 *6 *5)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-520 *5 *6 *7 *8)) (-5 *3 (-1117 *8)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-909 *7 *6 *5))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4| (-1 (-390 (-1117 |#3|)) (-1117 |#3|)))) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|) (-1 (-390 (-1117 |#3|)) (-1117 |#3|))))) +((-3767 ((|#4| |#4|) 74)) (-3765 ((|#4| |#4|) 70)) (-3768 ((|#4| |#4| (-526) (-526)) 76)) (-3766 ((|#4| |#4|) 72))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3765 (|#4| |#4|)) (-15 -3766 (|#4| |#4|)) (-15 -3767 (|#4| |#4|)) (-15 -3768 (|#4| |#4| (-526) (-526)))) (-13 (-348) (-353) (-584 (-526))) (-1181 |#1|) (-689 |#1| |#2|) (-1198 |#3|)) (T -521)) +((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-4 *5 (-1181 *4)) (-4 *6 (-689 *4 *5)) (-5 *1 (-521 *4 *5 *6 *2)) (-4 *2 (-1198 *6)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5))))) +(-10 -7 (-15 -3765 (|#4| |#4|)) (-15 -3766 (|#4| |#4|)) (-15 -3767 (|#4| |#4|)) (-15 -3768 (|#4| |#4| (-526) (-526)))) +((-3767 ((|#2| |#2|) 27)) (-3765 ((|#2| |#2|) 23)) (-3768 ((|#2| |#2| (-526) (-526)) 29)) (-3766 ((|#2| |#2|) 25))) +(((-522 |#1| |#2|) (-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) (-13 (-348) (-353) (-584 (-526))) (-1198 |#1|)) (T -522)) +((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-5 *1 (-522 *4 *2)) (-4 *2 (-1198 *4)))) (-3767 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3)))) (-3766 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) (-4 *2 (-1198 *3))))) +(-10 -7 (-15 -3765 (|#2| |#2|)) (-15 -3766 (|#2| |#2|)) (-15 -3767 (|#2| |#2|)) (-15 -3768 (|#2| |#2| (-526) (-526)))) +((-2126 (((-3 (-526) #1="failed") |#2| |#1| (-1 (-3 (-526) #1#) |#1|)) 14) (((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|)) 13) (((-3 (-526) #1#) |#2| (-526) (-1 (-3 (-526) #1#) |#1|)) 26))) +(((-523 |#1| |#2|) (-10 -7 (-15 -2126 ((-3 (-526) #1="failed") |#2| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-1 (-3 (-526) #1#) |#1|)))) (-1004) (-1181 |#1|)) (T -523)) +((-2126 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-526) #1="failed") *4)) (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) (-2126 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) (-2126 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-526) #1#) *5)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-523 *5 *3)) (-4 *3 (-1181 *5))))) +(-10 -7 (-15 -2126 ((-3 (-526) #1="failed") |#2| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-526) (-1 (-3 (-526) #1#) |#1|))) (-15 -2126 ((-3 (-526) #1#) |#2| |#1| (-1 (-3 (-526) #1#) |#1|)))) +((-2135 (($ $ $) 79)) (-4286 (((-390 $) $) 47)) (-3470 (((-3 (-526) "failed") $) 59)) (-3469 (((-526) $) 37)) (-3324 (((-3 (-392 (-526)) "failed") $) 74)) (-3323 (((-111) $) 24)) (-3322 (((-392 (-526)) $) 72)) (-4045 (((-111) $) 50)) (-2128 (($ $ $ $) 86)) (-3500 (((-111) $) 16)) (-1394 (($ $ $) 57)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 69)) (-3763 (((-3 $ "failed") $) 64)) (-2132 (($ $) 23)) (-2127 (($ $ $) 84)) (-3764 (($) 60)) (-1392 (($ $) 53)) (-4051 (((-390 $) $) 45)) (-2974 (((-111) $) 14)) (-1680 (((-735) $) 28)) (-4129 (($ $ (-735)) NIL) (($ $) 10)) (-3719 (($ $) 17)) (-4287 (((-526) $) NIL) (((-515) $) 36) (((-849 (-526)) $) 40) (((-363) $) 31) (((-211) $) 33)) (-3423 (((-735)) 8)) (-2137 (((-111) $ $) 20)) (-3399 (($ $ $) 55))) +(((-524 |#1|) (-10 -8 (-15 -2127 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2137 ((-111) |#1| |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) "failed") |#1|)) (-15 -4287 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3500 ((-111) |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -3423 ((-735)))) (-525)) (T -524)) +((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-524 *3)) (-4 *3 (-525))))) +(-10 -8 (-15 -2127 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2137 ((-111) |#1| |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3399 (|#1| |#1| |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) "failed") |#1|)) (-15 -4287 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -3500 ((-111) |#1|)) (-15 -1680 ((-735) |#1|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4045 ((-111) |#1|)) (-15 -3423 ((-735)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-2135 (($ $ $) 83)) (-1345 (((-3 $ "failed") $ $) 19)) (-2130 (($ $ $ $) 71)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-1681 (((-111) $ $) 123)) (-3945 (((-526) $) 112)) (-2659 (($ $ $) 86)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 104)) (-3469 (((-526) $) 103)) (-2861 (($ $ $) 127)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 102) (((-653 (-526)) (-653 $)) 101)) (-3781 (((-3 $ "failed") $) 32)) (-3324 (((-3 (-392 (-526)) "failed") $) 80)) (-3323 (((-111) $) 82)) (-3322 (((-392 (-526)) $) 81)) (-3294 (($) 79) (($ $) 78)) (-2860 (($ $ $) 126)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 121)) (-4045 (((-111) $) 51)) (-2128 (($ $ $ $) 69)) (-2136 (($ $ $) 84)) (-3500 (((-111) $) 114)) (-1394 (($ $ $) 95)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 98)) (-2471 (((-111) $) 30)) (-2973 (((-111) $) 90)) (-3763 (((-3 $ "failed") $) 92)) (-3501 (((-111) $) 113)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 130)) (-2129 (($ $ $ $) 70)) (-3637 (($ $ $) 115)) (-3638 (($ $ $) 116)) (-2132 (($ $) 73)) (-4152 (($ $) 87)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2127 (($ $ $) 68)) (-3764 (($) 91 T CONST)) (-2134 (($ $) 75)) (-3555 (((-1070) $) 10) (($ $) 77)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1392 (($ $) 96)) (-4051 (((-390 $) $) 48)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 128)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 122)) (-2974 (((-111) $) 89)) (-1680 (((-735) $) 124)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 125)) (-4129 (($ $ (-735)) 109) (($ $) 107)) (-2133 (($ $) 74)) (-3719 (($ $) 76)) (-4287 (((-526) $) 106) (((-515) $) 100) (((-849 (-526)) $) 99) (((-363) $) 94) (((-211) $) 93)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 105)) (-3423 (((-735)) 28)) (-2137 (((-111) $ $) 85)) (-3399 (($ $ $) 97)) (-2994 (($) 88)) (-2150 (((-111) $ $) 37)) (-2131 (($ $ $ $) 72)) (-3702 (($ $) 111)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-735)) 110) (($ $) 108)) (-2863 (((-111) $ $) 118)) (-2864 (((-111) $ $) 119)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 117)) (-2985 (((-111) $ $) 120)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-525) (-134)) (T -525)) +((-2973 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2994 (*1 *1) (-4 *1 (-525))) (-4152 (*1 *1 *1) (-4 *1 (-525))) (-2659 (*1 *1 *1 *1) (-4 *1 (-525))) (-2137 (*1 *2 *1 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-2136 (*1 *1 *1 *1) (-4 *1 (-525))) (-2135 (*1 *1 *1 *1) (-4 *1 (-525))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) (-3294 (*1 *1) (-4 *1 (-525))) (-3294 (*1 *1 *1) (-4 *1 (-525))) (-3555 (*1 *1 *1) (-4 *1 (-525))) (-3719 (*1 *1 *1) (-4 *1 (-525))) (-2134 (*1 *1 *1) (-4 *1 (-525))) (-2133 (*1 *1 *1) (-4 *1 (-525))) (-2132 (*1 *1 *1) (-4 *1 (-525))) (-2131 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2130 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2129 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2128 (*1 *1 *1 *1 *1) (-4 *1 (-525))) (-2127 (*1 *1 *1 *1) (-4 *1 (-525)))) +(-13 (-1164) (-292) (-784) (-219) (-584 (-526)) (-995 (-526)) (-606 (-526)) (-584 (-515)) (-584 (-849 (-526))) (-845 (-526)) (-137) (-977) (-141) (-1099) (-10 -8 (-15 -2973 ((-111) $)) (-15 -2974 ((-111) $)) (-6 -4309) (-15 -2994 ($)) (-15 -4152 ($ $)) (-15 -2659 ($ $ $)) (-15 -2137 ((-111) $ $)) (-15 -2136 ($ $ $)) (-15 -2135 ($ $ $)) (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $)) (-15 -3294 ($)) (-15 -3294 ($ $)) (-15 -3555 ($ $)) (-15 -3719 ($ $)) (-15 -2134 ($ $)) (-15 -2133 ($ $)) (-15 -2132 ($ $)) (-15 -2131 ($ $ $ $)) (-15 -2130 ($ $ $ $)) (-15 -2129 ($ $ $ $)) (-15 -2128 ($ $ $ $)) (-15 -2127 ($ $ $)) (-6 -4308))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-137) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-515)) . T) ((-584 (-526)) . T) ((-584 (-849 (-526))) . T) ((-219) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-606 (-526)) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-784) . T) ((-809) . T) ((-811) . T) ((-845 (-526)) . T) ((-880) . T) ((-977) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) . T) ((-1164) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 25)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 87)) (-2151 (($ $) 88)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) 42)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) 81)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) 80)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 61) (((-653 (-526)) (-653 $)) 57)) (-3781 (((-3 $ "failed") $) 84)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) 63) (($ $) 64)) (-2860 (($ $ $) 79)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) 54)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) 26)) (-2973 (((-111) $) 74)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) 34)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) 43)) (-3637 (($ $ $) 76)) (-3638 (($ $ $) 75)) (-2132 (($ $) NIL)) (-4152 (($ $) 40)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) 53)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) 31)) (-3555 (((-1070) $) NIL) (($ $) 33)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 118)) (-3457 (($ $ $) 85) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) 104)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 83)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 78)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) 32)) (-3719 (($ $) 30)) (-4287 (((-526) $) 39) (((-515) $) 51) (((-849 (-526)) $) NIL) (((-363) $) 46) (((-211) $) 48) (((-1106) $) 52)) (-4274 (((-823) $) 37) (($ (-526)) 38) (($ $) NIL) (($ (-526)) 38)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) 29)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) 41)) (-3702 (($ $) 62)) (-2957 (($) 27 T CONST)) (-2964 (($) 28 T CONST)) (-2803 (((-1106) $) 20) (((-1106) $ (-111)) 22) (((-1211) (-787) $) 23) (((-1211) (-787) $ (-111)) 24)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 65)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 66)) (-4156 (($ $) 67) (($ $ $) 69)) (-4158 (($ $ $) 68)) (** (($ $ (-878)) NIL) (($ $ (-735)) 73)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 71) (($ $ $) 70))) +(((-526) (-13 (-525) (-584 (-1106)) (-785) (-10 -8 (-15 -3294 ($ $)) (-6 -4297) (-6 -4302) (-6 -4298) (-6 -4292)))) (T -526)) +((-3294 (*1 *1 *1) (-5 *1 (-526)))) +(-13 (-525) (-584 (-1106)) (-785) (-10 -8 (-15 -3294 ($ $)) (-6 -4297) (-6 -4302) (-6 -4298) (-6 -4292))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-527 |#1| |#2| |#3|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310)))) (T -527)) +NIL +(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) +((-2138 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))) 51))) +(((-528 |#1| |#2|) (-10 -7 (-15 -2138 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))))) (-13 (-811) (-533)) (-13 (-27) (-406 |#1|))) (T -528)) +((-2138 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-1 (-1117 *3) (-1117 *3))) (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-811) (-533))) (-5 *2 (-556 *3)) (-5 *1 (-528 *6 *3))))) +(-10 -7 (-15 -2138 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-1 (-1117 |#2|) (-1117 |#2|))))) +((-2140 (((-556 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2141 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2139 (((-556 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-529 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2139 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2141 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-811) (-533) (-995 (-526))) (-13 (-27) (-406 |#1|)) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -529)) +((-2141 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-4 *7 (-1181 (-392 *6))) (-5 *1 (-529 *4 *5 *6 *7 *2)) (-4 *2 (-327 *5 *6 *7)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) +(-10 -7 (-15 -2139 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-556 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2141 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2144 (((-111) (-526) (-526)) 10)) (-2142 (((-526) (-526)) 7)) (-2143 (((-526) (-526) (-526)) 8))) +(((-530) (-10 -7 (-15 -2142 ((-526) (-526))) (-15 -2143 ((-526) (-526) (-526))) (-15 -2144 ((-111) (-526) (-526))))) (T -530)) +((-2144 (*1 *2 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-530)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) +(-10 -7 (-15 -2142 ((-526) (-526))) (-15 -2143 ((-526) (-526) (-526))) (-15 -2144 ((-111) (-526) (-526)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2901 ((|#1| $) 59)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-3806 (($ $) 89)) (-3961 (($ $) 72)) (-2702 ((|#1| $) 60)) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 71)) (-3804 (($ $) 88)) (-3960 (($ $) 73)) (-3808 (($ $) 87)) (-3959 (($ $) 74)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) "failed") $) 67)) (-3469 (((-526) $) 66)) (-3781 (((-3 $ "failed") $) 32)) (-2147 (($ |#1| |#1|) 64)) (-3500 (((-111) $) 58)) (-3949 (($) 99)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 70)) (-3501 (((-111) $) 57)) (-3637 (($ $ $) 105)) (-3638 (($ $ $) 104)) (-4259 (($ $) 96)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2148 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-392 (-526))) 62)) (-2146 ((|#1| $) 61)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-4260 (($ $) 97)) (-3809 (($ $) 86)) (-3958 (($ $) 75)) (-3807 (($ $) 85)) (-3957 (($ $) 76)) (-3805 (($ $) 84)) (-3956 (($ $) 77)) (-2145 (((-111) $ |#1|) 56)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-526)) 68)) (-3423 (((-735)) 28)) (-3812 (($ $) 95)) (-3800 (($ $) 83)) (-2150 (((-111) $ $) 37)) (-3810 (($ $) 94)) (-3798 (($ $) 82)) (-3814 (($ $) 93)) (-3802 (($ $) 81)) (-3815 (($ $) 92)) (-3803 (($ $) 80)) (-3813 (($ $) 91)) (-3801 (($ $) 79)) (-3811 (($ $) 90)) (-3799 (($ $) 78)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 102)) (-2864 (((-111) $ $) 101)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 103)) (-2985 (((-111) $ $) 100)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ $) 98) (($ $ (-392 (-526))) 69)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-531 |#1|) (-134) (-13 (-389) (-1145))) (T -531)) +((-2148 (*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2147 (*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2148 (*1 *1 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) (-2145 (*1 *2 *1 *3) (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111))))) +(-13 (-436) (-811) (-1145) (-960) (-995 (-526)) (-10 -8 (-6 -4088) (-15 -2148 ($ |t#1| |t#1|)) (-15 -2147 ($ |t#1| |t#1|)) (-15 -2148 ($ |t#1|)) (-15 -2148 ($ (-392 (-526)))) (-15 -2146 (|t#1| $)) (-15 -2702 (|t#1| $)) (-15 -2901 (|t#1| $)) (-15 -3500 ((-111) $)) (-15 -3501 ((-111) $)) (-15 -2145 ((-111) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-269) . T) ((-275) . T) ((-436) . T) ((-475) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-811) . T) ((-960) . T) ((-995 (-526)) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) . T) ((-1148) . T)) +((-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 9)) (-2151 (($ $) 11)) (-2149 (((-111) $) 18)) (-3781 (((-3 $ "failed") $) 16)) (-2150 (((-111) $ $) 20))) +(((-532 |#1|) (-10 -8 (-15 -2149 ((-111) |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) (-533)) (T -532)) +NIL +(-10 -8 (-15 -2149 ((-111) |#1|)) (-15 -2150 ((-111) |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -2152 ((-2 (|:| -1868 |#1|) (|:| -4297 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-533) (-134)) (T -533)) +((-3780 (*1 *1 *1 *1) (|partial| -4 *1 (-533))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1868 *1) (|:| -4297 *1) (|:| |associate| *1))) (-4 *1 (-533)))) (-2151 (*1 *1 *1) (-4 *1 (-533))) (-2150 (*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) +(-13 (-163) (-37 $) (-275) (-10 -8 (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2152 ((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $)) (-15 -2151 ($ $)) (-15 -2150 ((-111) $ $)) (-15 -2149 ((-111) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2154 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|)) 37)) (-2156 (((-556 |#2|) |#2| (-1123)) 62)) (-2155 (((-3 |#2| "failed") |#2| (-1123)) 152)) (-2157 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))) 155)) (-2153 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) |#2|) 40))) +(((-534 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|))) (-15 -2155 ((-3 |#2| "failed") |#2| (-1123))) (-15 -2156 ((-556 |#2|) |#2| (-1123))) (-15 -2157 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -534)) +((-2157 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1123)) (-5 *6 (-607 (-581 *3))) (-5 *5 (-581 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *7))) (-4 *7 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *7 *3)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2155 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-2154 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *6 *3)))) (-2153 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(-10 -7 (-15 -2153 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1123) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1123) (-607 |#2|))) (-15 -2155 ((-3 |#2| "failed") |#2| (-1123))) (-15 -2156 ((-556 |#2|) |#2| (-1123))) (-15 -2157 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1123) (-581 |#2|) (-607 (-581 |#2|))))) +((-4286 (((-390 |#1|) |#1|) 18)) (-4051 (((-390 |#1|) |#1|) 33)) (-2159 (((-3 |#1| "failed") |#1|) 44)) (-2158 (((-390 |#1|) |#1|) 51))) +(((-535 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -2158 ((-390 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1|))) (-525)) (T -535)) +((-2159 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-525)))) (-2158 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525))))) +(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -2158 ((-390 |#1|) |#1|)) (-15 -2159 ((-3 |#1| "failed") |#1|))) +((-2160 (($) 9)) (-2163 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 35)) (-2713 (((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $) 32)) (-3929 (($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2162 (($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2164 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 39)) (-2283 (((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2161 (((-1211)) 12))) +(((-536) (-10 -8 (-15 -2160 ($)) (-15 -2161 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2162 ($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2163 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2283 ((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2164 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -536)) +((-2164 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-536)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-536)))) (-2163 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-536)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-536)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-536)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-5 *1 (-536)))) (-2161 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-536)))) (-2160 (*1 *1) (-5 *1 (-536)))) +(-10 -8 (-15 -2160 ($)) (-15 -2161 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2162 ($ (-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1537 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2163 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2283 ((-607 (-2 (|:| -4179 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2164 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| #6#))) (|:| -1537 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) +((-3386 (((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|)) 32)) (-2167 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|)) 110)) (-2165 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 80) (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|)) 52)) (-2166 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|))) 87) (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|)) 109)) (-2168 (((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|)) 111)) (-2169 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))) 128 (|has| |#3| (-623 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|)) 127 (|has| |#3| (-623 |#2|)))) (-3387 ((|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|) 50)) (-3379 (((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|)) 31))) +(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2168 ((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|))) (-15 -2168 ((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -3386 ((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|))) (-15 -3387 (|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|)) (-15 -3379 ((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|))) (IF (|has| |#3| (-623 |#2|)) (PROGN (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526))) (-13 (-406 |#1|) (-27) (-1145)) (-1052)) (T -537)) +((-2169 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-392 (-1117 *4))) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-2169 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-1117 *4)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *4 (-581 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-1117 (-392 (-1117 *6)))) (-5 *1 (-537 *5 *6 *7)) (-5 *3 (-1117 *6)) (-4 *7 (-1052)))) (-3387 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1117 (-392 (-1117 *2)))) (-5 *4 (-581 *2)) (-4 *2 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *5 *2 *6)) (-4 *6 (-1052)))) (-3386 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-1117 (-392 (-1117 *3)))) (-5 *1 (-537 *6 *3 *7)) (-5 *5 (-1117 *3)) (-4 *7 (-1052)))) (-2168 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1123))) (-5 *5 (-392 (-1117 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) (-2168 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1123))) (-5 *5 (-1117 *2)) (-4 *2 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) (-2167 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) (-2167 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-1117 *3)) (-4 *3 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) (-2166 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2166 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2165 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) (-2165 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052))))) +(-10 -7 (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2165 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-581 |#2|) (-581 |#2|) |#2| |#2| (-1117 |#2|))) (-15 -2166 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-581 |#2|) (-581 |#2|) |#2| (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) |#2| (-1117 |#2|))) (-15 -2167 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -2168 ((-3 |#2| #3="failed") |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) |#2| (-1117 |#2|))) (-15 -2168 ((-3 |#2| #3#) |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1123)) (-581 |#2|) |#2| (-392 (-1117 |#2|)))) (-15 -3386 ((-1117 (-392 (-1117 |#2|))) |#2| (-581 |#2|) (-581 |#2|) (-1117 |#2|))) (-15 -3387 (|#2| (-1117 (-392 (-1117 |#2|))) (-581 |#2|) |#2|)) (-15 -3379 ((-1117 (-392 (-1117 |#2|))) (-1117 |#2|) (-581 |#2|))) (IF (|has| |#3| (-623 |#2|)) (PROGN (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) |#2| (-1117 |#2|))) (-15 -2169 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-581 |#2|) |#2| (-392 (-1117 |#2|))))) |%noBranch|)) +((-2179 (((-526) (-526) (-735)) 66)) (-2178 (((-526) (-526)) 65)) (-2177 (((-526) (-526)) 64)) (-2176 (((-526) (-526)) 69)) (-3105 (((-526) (-526) (-526)) 49)) (-2175 (((-526) (-526) (-526)) 46)) (-2174 (((-392 (-526)) (-526)) 20)) (-2173 (((-526) (-526)) 21)) (-2172 (((-526) (-526)) 58)) (-3102 (((-526) (-526)) 32)) (-2171 (((-607 (-526)) (-526)) 63)) (-2170 (((-526) (-526) (-526) (-526) (-526)) 44)) (-3098 (((-392 (-526)) (-526)) 41))) +(((-538) (-10 -7 (-15 -3098 ((-392 (-526)) (-526))) (-15 -2170 ((-526) (-526) (-526) (-526) (-526))) (-15 -2171 ((-607 (-526)) (-526))) (-15 -3102 ((-526) (-526))) (-15 -2172 ((-526) (-526))) (-15 -2173 ((-526) (-526))) (-15 -2174 ((-392 (-526)) (-526))) (-15 -2175 ((-526) (-526) (-526))) (-15 -3105 ((-526) (-526) (-526))) (-15 -2176 ((-526) (-526))) (-15 -2177 ((-526) (-526))) (-15 -2178 ((-526) (-526))) (-15 -2179 ((-526) (-526) (-735))))) (T -538)) +((-2179 (*1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-735)) (-5 *1 (-538)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3105 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2175 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2172 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) (-2170 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) +(-10 -7 (-15 -3098 ((-392 (-526)) (-526))) (-15 -2170 ((-526) (-526) (-526) (-526) (-526))) (-15 -2171 ((-607 (-526)) (-526))) (-15 -3102 ((-526) (-526))) (-15 -2172 ((-526) (-526))) (-15 -2173 ((-526) (-526))) (-15 -2174 ((-392 (-526)) (-526))) (-15 -2175 ((-526) (-526) (-526))) (-15 -3105 ((-526) (-526) (-526))) (-15 -2176 ((-526) (-526))) (-15 -2177 ((-526) (-526))) (-15 -2178 ((-526) (-526))) (-15 -2179 ((-526) (-526) (-735)))) +((-2180 (((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2180 ((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -539)) +((-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2221 *3))) (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-327 *5 *6 *7))))) +(-10 -7 (-15 -2180 ((-2 (|:| |answer| |#4|) (|:| -2221 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2180 (((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)) 18))) +(((-540 |#1| |#2|) (-10 -7 (-15 -2180 ((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -540)) +((-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |answer| (-392 *6)) (|:| -2221 (-392 *6)) (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-392 *6))))) +(-10 -7 (-15 -2180 ((-2 (|:| |answer| (-392 |#2|)) (|:| -2221 (-392 |#2|)) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)))) +((-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016)) 108) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733)) 110)) (-4131 (((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123)) 172) (((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106)) 171) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016)) 176) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363)) 177) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363)) 178) (((-992) (-299 (-363)) (-607 (-1041 (-803 (-363))))) 179) (((-992) (-299 (-363)) (-1041 (-803 (-363)))) 167) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363)) 166) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363)) 162) (((-992) (-733)) 155) (((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016)) 161))) +(((-541) (-10 -7 (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016))) (-15 -4131 ((-992) (-733))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123))))) (T -541)) +((-4131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) (-5 *5 (-1123)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) (-5 *5 (-1106)) (-5 *2 (-992)) (-5 *1 (-541)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-733)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *1 (-541)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-992)) (-5 *1 (-541)))) (-4131 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541))))) +(-10 -7 (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363) (-1016))) (-15 -4131 ((-992) (-733))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-1041 (-803 (-363))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363))) (-15 -4131 ((-992) (-299 (-363)) (-607 (-1041 (-803 (-363)))) (-363) (-363) (-1016))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992))) (-733) (-1016))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1106))) (-15 -4131 ((-3 (-992) "failed") (-299 (-363)) (-1044 (-803 (-363))) (-1123)))) +((-2183 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|)) 184)) (-2181 (((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|)) 98)) (-2182 (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|) 180)) (-2184 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123))) 189)) (-2185 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123)) 197 (|has| |#3| (-623 |#2|))))) +(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -2181 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|))) (-15 -2182 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|)) (-15 -2183 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|))) (-15 -2184 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123)))) (IF (|has| |#3| (-623 |#2|)) (-15 -2185 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526))) (-13 (-406 |#1|) (-27) (-1145)) (-1052)) (T -542)) +((-2185 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-581 *4)) (-5 *6 (-1123)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-542 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) (-2184 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1123))) (-4 *2 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *1 (-542 *5 *2 *6)) (-4 *6 (-1052)))) (-2183 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-542 *6 *3 *7)) (-4 *7 (-1052)))) (-2182 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052)))) (-2181 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 (-556 *3)) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052))))) +(-10 -7 (-15 -2181 ((-556 |#2|) |#2| (-581 |#2|) (-581 |#2|))) (-15 -2182 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-581 |#2|) (-581 |#2|) |#2|)) (-15 -2183 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-581 |#2|) (-581 |#2|) (-607 |#2|))) (-15 -2184 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-581 |#2|) (-581 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1123)))) (IF (|has| |#3| (-623 |#2|)) (-15 -2185 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2104 (-607 |#2|))) |#3| |#2| (-581 |#2|) (-581 |#2|) (-1123))) |%noBranch|)) +((-2186 (((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123)) 64)) (-2188 (((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|)) 164 (-12 (|has| |#2| (-1087)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)) 147 (-12 (|has| |#2| (-597)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526)))))) (-2187 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)) 148 (-12 (|has| |#2| (-597)) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-845 (-526))))))) +(((-543 |#1| |#2|) (-10 -7 (-15 -2186 ((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (PROGN (IF (|has| |#2| (-597)) (PROGN (-15 -2187 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) (-15 -2188 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) (IF (|has| |#2| (-1087)) (-15 -2188 ((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-811) (-995 (-526)) (-436) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -543)) +((-2188 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1123)) (-5 *4 (-803 *2)) (-4 *2 (-1087)) (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *1 (-543 *5 *2)))) (-2188 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) (-4 *5 (-845 (-526))) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |nconst| *3))) (-5 *1 (-543 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(-10 -7 (-15 -2186 ((-2 (|:| -2388 |#2|) (|:| |nconst| |#2|)) |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (PROGN (IF (|has| |#2| (-597)) (PROGN (-15 -2187 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) (-15 -2188 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) (IF (|has| |#2| (-1087)) (-15 -2188 ((-3 |#2| "failed") |#2| (-1123) (-803 |#2|) (-803 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2191 (((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))) 41)) (-4131 (((-556 (-392 |#2|)) (-392 |#2|)) 28)) (-2189 (((-3 (-392 |#2|) "failed") (-392 |#2|)) 17)) (-2190 (((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|)) 48))) +(((-544 |#1| |#2|) (-10 -7 (-15 -4131 ((-556 (-392 |#2|)) (-392 |#2|))) (-15 -2189 ((-3 (-392 |#2|) "failed") (-392 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|))) (-15 -2191 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -544)) +((-2191 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-607 (-392 *6))) (-5 *3 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *5 *6)))) (-2190 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2222 (-392 *5)) (|:| |coeff| (-392 *5)))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5)))) (-2189 (*1 *2 *2) (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141) (-995 (-526)))) (-5 *1 (-544 *3 *4)))) (-4131 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-556 (-392 *5))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5))))) +(-10 -7 (-15 -4131 ((-556 (-392 |#2|)) (-392 |#2|))) (-15 -2189 ((-3 (-392 |#2|) "failed") (-392 |#2|))) (-15 -2190 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-392 |#2|))) (-15 -2191 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-607 (-392 |#2|))))) +((-2192 (((-3 (-526) "failed") |#1|) 14)) (-3571 (((-111) |#1|) 13)) (-3567 (((-526) |#1|) 9))) +(((-545 |#1|) (-10 -7 (-15 -3567 ((-526) |#1|)) (-15 -3571 ((-111) |#1|)) (-15 -2192 ((-3 (-526) "failed") |#1|))) (-995 (-526))) (T -545)) +((-2192 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2)))) (-3571 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-545 *3)) (-4 *3 (-995 (-526))))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2))))) +(-10 -7 (-15 -3567 ((-526) |#1|)) (-15 -3571 ((-111) |#1|)) (-15 -2192 ((-3 (-526) "failed") |#1|))) +((-2195 (((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|)))) 48)) (-2193 (((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123)) 28)) (-2194 (((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123)) 23)) (-2196 (((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))) 35))) +(((-546 |#1|) (-10 -7 (-15 -2193 ((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2194 ((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123))) (-15 -2195 ((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|))))) (-15 -2196 ((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))))) (-13 (-533) (-995 (-526)) (-141))) (T -546)) +((-2196 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-2 (|:| -2222 (-392 (-905 *5))) (|:| |coeff| (-392 (-905 *5))))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5))))) (-2195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 (-392 (-905 *6)))) (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *6)))) (-2194 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-995 (-526)) (-141))) (-5 *1 (-546 *4)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) (-5 *2 (-556 (-392 (-905 *5)))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) +(-10 -7 (-15 -2193 ((-556 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2194 ((-3 (-392 (-905 |#1|)) "failed") (-392 (-905 |#1|)) (-1123))) (-15 -2195 ((-3 (-2 (|:| |mainpart| (-392 (-905 |#1|))) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 (-905 |#1|))) (|:| |logand| (-392 (-905 |#1|))))))) "failed") (-392 (-905 |#1|)) (-1123) (-607 (-392 (-905 |#1|))))) (-15 -2196 ((-3 (-2 (|:| -2222 (-392 (-905 |#1|))) (|:| |coeff| (-392 (-905 |#1|)))) "failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))))) +((-2865 (((-111) $ $) 58)) (-3502 (((-111) $) 36)) (-2901 ((|#1| $) 30)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) 62)) (-3806 (($ $) 122)) (-3961 (($ $) 102)) (-2702 ((|#1| $) 28)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL)) (-3804 (($ $) 124)) (-3960 (($ $) 98)) (-3808 (($ $) 126)) (-3959 (($ $) 106)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) 77)) (-3469 (((-526) $) 79)) (-3781 (((-3 $ "failed") $) 61)) (-2147 (($ |#1| |#1|) 26)) (-3500 (((-111) $) 33)) (-3949 (($) 88)) (-2471 (((-111) $) 43)) (-3311 (($ $ (-526)) NIL)) (-3501 (((-111) $) 34)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4259 (($ $) 90)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2148 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-392 (-526))) 76)) (-2146 ((|#1| $) 27)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) 64) (($ (-607 $)) NIL)) (-3780 (((-3 $ "failed") $ $) 63)) (-4260 (($ $) 92)) (-3809 (($ $) 130)) (-3958 (($ $) 104)) (-3807 (($ $) 132)) (-3957 (($ $) 108)) (-3805 (($ $) 128)) (-3956 (($ $) 100)) (-2145 (((-111) $ |#1|) 31)) (-4274 (((-823) $) 84) (($ (-526)) 66) (($ $) NIL) (($ (-526)) 66)) (-3423 (((-735)) 86)) (-3812 (($ $) 144)) (-3800 (($ $) 114)) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) 142)) (-3798 (($ $) 110)) (-3814 (($ $) 140)) (-3802 (($ $) 120)) (-3815 (($ $) 138)) (-3803 (($ $) 118)) (-3813 (($ $) 136)) (-3801 (($ $) 116)) (-3811 (($ $) 134)) (-3799 (($ $) 112)) (-2957 (($) 21 T CONST)) (-2964 (($) 10 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 37)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35)) (-4156 (($ $) 41) (($ $ $) 42)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) 54) (($ $ (-735)) NIL) (($ $ $) 94) (($ $ (-392 (-526))) 146)) (* (($ (-878) $) 51) (($ (-735) $) NIL) (($ (-526) $) 50) (($ $ $) 48))) +(((-547 |#1|) (-531 |#1|) (-13 (-389) (-1145))) (T -547)) +NIL +(-531 |#1|) +((-3004 (((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526))) 24))) +(((-548) (-10 -7 (-15 -3004 ((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526)))))) (T -548)) +((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 (-526)))) (-5 *3 (-1117 (-526))) (-5 *1 (-548))))) +(-10 -7 (-15 -3004 ((-3 (-607 (-1117 (-526))) "failed") (-607 (-1117 (-526))) (-1117 (-526))))) +((-2197 (((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123)) 19)) (-2200 (((-607 (-581 |#2|)) (-607 |#2|) (-1123)) 23)) (-3546 (((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|))) 11)) (-2201 ((|#2| |#2| (-1123)) 54 (|has| |#1| (-533)))) (-2202 ((|#2| |#2| (-1123)) 78 (-12 (|has| |#2| (-269)) (|has| |#1| (-436))))) (-2199 (((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123)) 25)) (-2198 (((-581 |#2|) (-607 (-581 |#2|))) 24)) (-2203 (((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123))) 103 (-12 (|has| |#2| (-269)) (|has| |#2| (-597)) (|has| |#2| (-995 (-1123))) (|has| |#1| (-584 (-849 (-526)))) (|has| |#1| (-436)) (|has| |#1| (-845 (-526))))))) +(((-549 |#1| |#2|) (-10 -7 (-15 -2197 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123))) (-15 -2198 ((-581 |#2|) (-607 (-581 |#2|)))) (-15 -2199 ((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123))) (-15 -3546 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|)))) (-15 -2200 ((-607 (-581 |#2|)) (-607 |#2|) (-1123))) (IF (|has| |#1| (-533)) (-15 -2201 (|#2| |#2| (-1123))) |%noBranch|) (IF (|has| |#1| (-436)) (IF (|has| |#2| (-269)) (PROGN (-15 -2202 (|#2| |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (IF (|has| |#2| (-597)) (IF (|has| |#2| (-995 (-1123))) (-15 -2203 ((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-811) (-406 |#1|)) (T -549)) +((-2203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-556 *3) *3 (-1123))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1123))) (-4 *3 (-269)) (-4 *3 (-597)) (-4 *3 (-995 *4)) (-4 *3 (-406 *7)) (-5 *4 (-1123)) (-4 *7 (-584 (-849 (-526)))) (-4 *7 (-436)) (-4 *7 (-845 (-526))) (-4 *7 (-811)) (-5 *2 (-556 *3)) (-5 *1 (-549 *7 *3)))) (-2202 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-436)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) (-4 *2 (-269)) (-4 *2 (-406 *4)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-533)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) (-4 *2 (-406 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-1123)) (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *2 (-607 (-581 *6))) (-5 *1 (-549 *5 *6)))) (-3546 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-581 *4))) (-4 *4 (-406 *3)) (-4 *3 (-811)) (-5 *1 (-549 *3 *4)))) (-2199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-581 *6))) (-5 *4 (-1123)) (-5 *2 (-581 *6)) (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *1 (-549 *5 *6)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-607 (-581 *5))) (-4 *4 (-811)) (-5 *2 (-581 *5)) (-5 *1 (-549 *4 *5)) (-4 *5 (-406 *4)))) (-2197 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-581 *5))) (-5 *3 (-1123)) (-4 *5 (-406 *4)) (-4 *4 (-811)) (-5 *1 (-549 *4 *5))))) +(-10 -7 (-15 -2197 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-1123))) (-15 -2198 ((-581 |#2|) (-607 (-581 |#2|)))) (-15 -2199 ((-581 |#2|) (-581 |#2|) (-607 (-581 |#2|)) (-1123))) (-15 -3546 ((-607 (-581 |#2|)) (-607 (-581 |#2|)) (-607 (-581 |#2|)))) (-15 -2200 ((-607 (-581 |#2|)) (-607 |#2|) (-1123))) (IF (|has| |#1| (-533)) (-15 -2201 (|#2| |#2| (-1123))) |%noBranch|) (IF (|has| |#1| (-436)) (IF (|has| |#2| (-269)) (PROGN (-15 -2202 (|#2| |#2| (-1123))) (IF (|has| |#1| (-584 (-849 (-526)))) (IF (|has| |#1| (-845 (-526))) (IF (|has| |#2| (-597)) (IF (|has| |#2| (-995 (-1123))) (-15 -2203 ((-556 |#2|) |#2| (-1123) (-1 (-556 |#2|) |#2| (-1123)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1123)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2206 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|)) 172)) (-2209 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-607 (-392 |#2|))) 148)) (-2212 (((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|))) 145)) (-2213 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2204 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2211 (((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|)) 175)) (-2207 (((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|)) 178)) (-2215 (((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|)) 84)) (-2216 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2210 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|))) 152)) (-2214 (((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|)) 137)) (-2205 (((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|)) 162)) (-2208 (((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|)) 183))) +(((-550 |#1| |#2|) (-10 -7 (-15 -2204 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2205 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2206 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|))) (-15 -2207 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|))) (-15 -2208 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|))) (-15 -2209 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-607 (-392 |#2|)))) (-15 -2210 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|)))) (-15 -2211 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|))) (-15 -2212 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|)))) (-15 -2213 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2214 ((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2215 ((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|))) (-15 -2216 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -550)) +((-2216 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-550 *5 *3)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |ir| (-556 (-392 *6))) (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6)))) (-2214 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-590 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111))) (-526) *4)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *1 (-550 *4 *5)))) (-2213 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-348)) (-5 *1 (-550 *4 *2)) (-4 *2 (-1181 *4)))) (-2212 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-607 (-392 *7))) (-4 *7 (-1181 *6)) (-5 *3 (-392 *7)) (-4 *6 (-348)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *6 *7)))) (-2211 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -2222 (-392 *6)) (|:| |coeff| (-392 *6)))) (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6)))) (-2210 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3434 *7) (|:| |sol?| (-111))) (-526) *7)) (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-550 *7 *8)))) (-2209 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-550 *7 *8)))) (-2208 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2207 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-607 *6) "failed") (-526) *6 *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2205 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7)))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) +(-10 -7 (-15 -2204 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2205 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2206 ((-2 (|:| |answer| (-556 (-392 |#2|))) (|:| |a0| |#1|)) (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-607 |#1|) "failed") (-526) |#1| |#1|))) (-15 -2207 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-392 |#2|))) (-15 -2208 ((-3 (-2 (|:| |answer| (-392 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-392 |#2|))) (-15 -2209 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-607 (-392 |#2|)))) (-15 -2210 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|))))))) (|:| |a0| |#1|)) "failed") (-392 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|) (-607 (-392 |#2|)))) (-15 -2211 ((-3 (-2 (|:| -2222 (-392 |#2|)) (|:| |coeff| (-392 |#2|))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-392 |#2|))) (-15 -2212 ((-3 (-2 (|:| |mainpart| (-392 |#2|)) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| (-392 |#2|)) (|:| |logand| (-392 |#2|)))))) "failed") (-392 |#2|) (-1 |#2| |#2|) (-607 (-392 |#2|)))) (-15 -2213 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2214 ((-3 (-590 |#1| |#2|) "failed") (-590 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3434 |#1|) (|:| |sol?| (-111))) (-526) |#1|))) (-15 -2215 ((-2 (|:| |ir| (-556 (-392 |#2|))) (|:| |specpart| (-392 |#2|)) (|:| |polypart| |#2|)) (-392 |#2|) (-1 |#2| |#2|))) (-15 -2216 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2217 (((-3 |#2| "failed") |#2| (-1123) (-1123)) 10))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2| (-1123) (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-1087) (-29 |#1|))) (T -551)) +((-2217 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-1087) (-29 *4)))))) +(-10 -7 (-15 -2217 ((-3 |#2| "failed") |#2| (-1123) (-1123)))) +((-2858 (((-1070) $ (-128)) 12)) (-2859 (((-1070) $ (-127)) 11)) (-2093 (((-1070) $ (-128)) 7)) (-2094 (((-1070) $) 8)) (-1792 (($ $) 6))) +(((-552) (-134)) (T -552)) +NIL +(-13 (-509) (-822)) +(((-164) . T) ((-509) . T) ((-822) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) 66)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) 72)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 58)) (-2907 (($ $) 34)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) 15)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) 29)) (-2908 (((-526) $) 32)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) 21)) (-3780 (((-3 $ "failed") $ $) 59)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) 16)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 61)) (-2910 (((-1101 (-526)) $) 18)) (-3191 (($ $) 23)) (-4274 (((-823) $) 87) (($ (-526)) 52) (($ $) NIL)) (-3423 (((-735)) 14)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) 36)) (-2957 (($) 35 T CONST)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 39)) (-4156 (($ $) 51) (($ $ $) 37)) (-4158 (($ $ $) 50)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 54) (($ $ $) 55))) +(((-553 |#1| |#2|) (-829 |#1|) (-526) (-111)) (T -553)) +NIL +(-829 |#1|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 21)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) 47)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) 75)) (-3469 (($ $) 74)) (-1887 (($ (-1205 $)) 73)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) 49)) (-1772 (((-111) $) NIL)) (-1862 (($ $) NIL) (($ $ (-735)) NIL)) (-4045 (((-111) $) NIL)) (-4090 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-2471 (((-111) $) NIL)) (-2105 (($) 37 (|has| $ (-353)))) (-2103 (((-111) $) NIL (|has| $ (-353)))) (-3429 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 $) $ (-878)) NIL (|has| $ (-353))) (((-1117 $) $) 83)) (-2102 (((-878) $) 55)) (-1700 (((-1117 $) $) NIL (|has| $ (-353)))) (-1699 (((-3 (-1117 $) "failed") $ $) NIL (|has| $ (-353))) (((-1117 $) $) NIL (|has| $ (-353)))) (-1701 (($ $ (-1117 $)) NIL (|has| $ (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL T CONST)) (-2461 (($ (-878)) 48)) (-4248 (((-111) $) 67)) (-3555 (((-1070) $) NIL)) (-2470 (($) 19 (|has| $ (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 42)) (-4051 (((-390 $) $) NIL)) (-4247 (((-878)) 66) (((-796 (-878))) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL) (((-735) $) NIL)) (-4230 (((-131)) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-4264 (((-878) $) 65) (((-796 (-878)) $) NIL)) (-3499 (((-1117 $)) 82)) (-1766 (($) 54)) (-1702 (($) 38 (|has| $ (-353)))) (-3537 (((-653 $) (-1205 $)) NIL) (((-1205 $) $) 71)) (-4287 (((-526) $) 28)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) 30) (($ $) NIL) (($ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3423 (((-735)) 39)) (-2104 (((-1205 $) (-878)) 77) (((-1205 $)) 76)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) 22 T CONST)) (-2964 (($) 18 T CONST)) (-4245 (($ $ (-735)) NIL (|has| $ (-353))) (($ $) NIL (|has| $ (-353)))) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 26)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 61) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-554 |#1|) (-13 (-335) (-314 $) (-584 (-526))) (-878)) (T -554)) +NIL +(-13 (-335) (-314 $) (-584 (-526))) +((-2218 (((-1211) (-1106)) 10))) +(((-555) (-10 -7 (-15 -2218 ((-1211) (-1106))))) (T -555)) +((-2218 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-555))))) +(-10 -7 (-15 -2218 ((-1211) (-1106)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| "failed") $) 69)) (-3469 ((|#1| $) NIL)) (-2222 ((|#1| $) 26)) (-2220 (((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2223 (($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2221 (((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $) 27)) (-3554 (((-1106) $) NIL)) (-3132 (($ |#1| |#1|) 33) (($ |#1| (-1123)) 44 (|has| |#1| (-995 (-1123))))) (-3555 (((-1070) $) NIL)) (-2219 (((-111) $) 30)) (-4129 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1123)) 82 (|has| |#1| (-859 (-1123))))) (-4274 (((-823) $) 96) (($ |#1|) 25)) (-2957 (($) 16 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 15) (($ $ $) NIL)) (-4158 (($ $ $) 78)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 14) (($ (-392 (-526)) $) 36) (($ $ (-392 (-526))) NIL))) +(((-556 |#1|) (-13 (-682 (-392 (-526))) (-995 |#1|) (-10 -8 (-15 -2223 ($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2222 (|#1| $)) (-15 -2221 ((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $)) (-15 -2220 ((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2219 ((-111) $)) (-15 -3132 ($ |#1| |#1|)) (-15 -4129 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-859 (-1123))) (-15 -4129 (|#1| $ (-1123))) |%noBranch|) (IF (|has| |#1| (-995 (-1123))) (-15 -3132 ($ |#1| (-1123))) |%noBranch|))) (-348)) (T -556)) +((-2223 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *2)) (|:| |logand| (-1117 *2))))) (-5 *4 (-607 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-348)) (-5 *1 (-556 *2)))) (-2222 (*1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *3)) (|:| |logand| (-1117 *3))))) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-556 *3)) (-4 *3 (-348)))) (-3132 (*1 *1 *2 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-556 *2)) (-4 *2 (-348)))) (-4129 (*1 *2 *1 *3) (-12 (-4 *2 (-348)) (-4 *2 (-859 *3)) (-5 *1 (-556 *2)) (-5 *3 (-1123)))) (-3132 (*1 *1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *1 (-556 *2)) (-4 *2 (-995 *3)) (-4 *2 (-348))))) +(-13 (-682 (-392 (-526))) (-995 |#1|) (-10 -8 (-15 -2223 ($ |#1| (-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) (-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2222 (|#1| $)) (-15 -2221 ((-607 (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 |#1|)) (|:| |logand| (-1117 |#1|)))) $)) (-15 -2220 ((-607 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2219 ((-111) $)) (-15 -3132 ($ |#1| |#1|)) (-15 -4129 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-859 (-1123))) (-15 -4129 (|#1| $ (-1123))) |%noBranch|) (IF (|has| |#1| (-995 (-1123))) (-15 -3132 ($ |#1| (-1123))) |%noBranch|))) +((-4275 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|)) 30))) +(((-557 |#1| |#2|) (-10 -7 (-15 -4275 ((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|))) (-15 -4275 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4275 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-348) (-348)) (T -557)) +((-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-557 *5 *6)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-348)) (-4 *2 (-348)) (-5 *1 (-557 *5 *2)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2222 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -2222 *6) (|:| |coeff| *6))) (-5 *1 (-557 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-556 *5)) (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 (-556 *6)) (-5 *1 (-557 *5 *6))))) +(-10 -7 (-15 -4275 ((-556 |#2|) (-1 |#2| |#1|) (-556 |#1|))) (-15 -4275 ((-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2222 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4275 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3737 (((-556 |#2|) (-556 |#2|)) 40)) (-4280 (((-607 |#2|) (-556 |#2|)) 42)) (-2231 ((|#2| (-556 |#2|)) 48))) +(((-558 |#1| |#2|) (-10 -7 (-15 -3737 ((-556 |#2|) (-556 |#2|))) (-15 -4280 ((-607 |#2|) (-556 |#2|))) (-15 -2231 (|#2| (-556 |#2|)))) (-13 (-436) (-995 (-526)) (-811) (-606 (-526))) (-13 (-29 |#1|) (-1145))) (T -558)) +((-2231 (*1 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-29 *4) (-1145))) (-5 *1 (-558 *4 *2)) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-13 (-29 *4) (-1145))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 *5)) (-5 *1 (-558 *4 *5)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-556 *4)) (-4 *4 (-13 (-29 *3) (-1145))) (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-558 *3 *4))))) +(-10 -7 (-15 -3737 ((-556 |#2|) (-556 |#2|))) (-15 -4280 ((-607 |#2|) (-556 |#2|))) (-15 -2231 (|#2| (-556 |#2|)))) +((-2227 (((-111) |#1|) 16)) (-2228 (((-3 |#1| "failed") |#1|) 14)) (-2225 (((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|) 31) (((-3 |#1| "failed") |#1| (-735)) 18)) (-2224 (((-111) |#1| (-735)) 19)) (-2229 ((|#1| |#1|) 32)) (-2226 ((|#1| |#1| (-735)) 34))) +(((-559 |#1|) (-10 -7 (-15 -2224 ((-111) |#1| (-735))) (-15 -2225 ((-3 |#1| "failed") |#1| (-735))) (-15 -2225 ((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|)) (-15 -2226 (|#1| |#1| (-735))) (-15 -2227 ((-111) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|)) (-15 -2229 (|#1| |#1|))) (-525)) (T -559)) +((-2229 (*1 *2 *2) (-12 (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2228 (*1 *2 *2) (|partial| -12 (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2227 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525)))) (-2226 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2225 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| -2462 (-735)))) (-5 *1 (-559 *3)) (-4 *3 (-525)))) (-2225 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) +(-10 -7 (-15 -2224 ((-111) |#1| (-735))) (-15 -2225 ((-3 |#1| "failed") |#1| (-735))) (-15 -2225 ((-2 (|:| -2994 |#1|) (|:| -2462 (-735))) |#1|)) (-15 -2226 (|#1| |#1| (-735))) (-15 -2227 ((-111) |#1|)) (-15 -2228 ((-3 |#1| "failed") |#1|)) (-15 -2229 (|#1| |#1|))) +((-2230 (((-1117 |#1|) (-878)) 27))) +(((-560 |#1|) (-10 -7 (-15 -2230 ((-1117 |#1|) (-878)))) (-335)) (T -560)) +((-2230 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-560 *4)) (-4 *4 (-335))))) +(-10 -7 (-15 -2230 ((-1117 |#1|) (-878)))) +((-3737 (((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|)))) 27)) (-4131 (((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123)) 34 (|has| |#1| (-141)))) (-4280 (((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|)))) 19)) (-2232 (((-299 |#1|) (-392 (-905 |#1|)) (-1123)) 32 (|has| |#1| (-141)))) (-2231 (((-299 |#1|) (-556 (-392 (-905 |#1|)))) 21))) +(((-561 |#1|) (-10 -7 (-15 -3737 ((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|))))) (-15 -4280 ((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|))))) (-15 -2231 ((-299 |#1|) (-556 (-392 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -4131 ((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2232 ((-299 |#1|) (-392 (-905 |#1|)) (-1123)))) |%noBranch|)) (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (T -561)) +((-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *5)) (-5 *1 (-561 *5)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-3 (-299 *5) (-607 (-299 *5)))) (-5 *1 (-561 *5)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-556 (-392 (-905 *4)))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *4)) (-5 *1 (-561 *4)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-556 (-392 (-905 *4)))) (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 (-299 *4))) (-5 *1 (-561 *4)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-556 (-392 (-905 *3)))) (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-561 *3))))) +(-10 -7 (-15 -3737 ((-556 (-392 (-905 |#1|))) (-556 (-392 (-905 |#1|))))) (-15 -4280 ((-607 (-299 |#1|)) (-556 (-392 (-905 |#1|))))) (-15 -2231 ((-299 |#1|) (-556 (-392 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -4131 ((-3 (-299 |#1|) (-607 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -2232 ((-299 |#1|) (-392 (-905 |#1|)) (-1123)))) |%noBranch|)) +((-2234 (((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526)))) 46) (((-607 (-653 (-526))) (-607 (-526))) 47) (((-653 (-526)) (-607 (-526)) (-861 (-526))) 42)) (-2233 (((-735) (-607 (-526))) 40))) +(((-562) (-10 -7 (-15 -2233 ((-735) (-607 (-526)))) (-15 -2234 ((-653 (-526)) (-607 (-526)) (-861 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526))))))) (T -562)) +((-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-526))) (-5 *4 (-607 (-861 (-526)))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-526))) (-5 *4 (-861 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-562)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-735)) (-5 *1 (-562))))) +(-10 -7 (-15 -2233 ((-735) (-607 (-526)))) (-15 -2234 ((-653 (-526)) (-607 (-526)) (-861 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -2234 ((-607 (-653 (-526))) (-607 (-526)) (-607 (-861 (-526)))))) +((-3526 (((-607 |#5|) |#5| (-111)) 73)) (-2235 (((-111) |#5| (-607 |#5|)) 30))) +(((-563 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-607 |#5|) |#5| (-111))) (-15 -2235 ((-111) |#5| (-607 |#5|)))) (-13 (-292) (-141)) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1060 |#1| |#2| |#3| |#4|)) (T -563)) +((-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1060 *5 *6 *7 *8)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-563 *5 *6 *7 *8 *3)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-607 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-1060 *5 *6 *7 *8))))) +(-10 -7 (-15 -3526 ((-607 |#5|) |#5| (-111))) (-15 -2235 ((-111) |#5| (-607 |#5|)))) +((-2865 (((-111) $ $) NIL (|has| (-138) (-1052)))) (-3745 (($ $) 34)) (-3746 (($ $) NIL)) (-3736 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 51)) (-3742 (((-111) $ $ (-526)) 46)) (-3737 (((-607 $) $ (-138)) 60) (((-607 $) $ (-135)) 61)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-138) (-811))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-138) $ (-526) (-138)) 45 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3734 (($ $ (-138)) 64) (($ $ (-135)) 65)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-3739 (($ $ (-1172 (-526)) $) 44)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3725 (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) NIL)) (-3744 (((-111) $ $) 72)) (-3738 (((-526) (-1 (-111) (-138)) $) NIL) (((-526) (-138) $) NIL (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 48 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 47) (((-526) (-135) $ (-526)) 50)) (-2044 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 9)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 28 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2279 (((-526) $) 42 (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 73)) (-3741 (((-735) $ $ (-138)) 70)) (-2048 (($ (-1 (-138) (-138)) $) 33 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3747 (($ $) 37)) (-3748 (($ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3735 (($ $ (-138)) 62) (($ $ (-135)) 63)) (-3554 (((-1106) $) 38 (|has| (-138) (-1052)))) (-2351 (($ (-138) $ (-526)) NIL) (($ $ $ (-526)) 23)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-526) $) 69) (((-1070) $) NIL (|has| (-138) (-1052)))) (-4119 (((-138) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-2277 (($ $ (-138)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) NIL)) (-3722 (((-111) $) 12)) (-3887 (($) 10)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) 52) (($ $ (-1172 (-526))) 21) (($ $ $) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-1823 (($ $ $ (-526)) 66 (|has| $ (-6 -4311)))) (-3719 (($ $) 17)) (-4287 (((-515) $) NIL (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) NIL)) (-4120 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) 16) (($ (-607 $)) 67)) (-4274 (($ (-138)) NIL) (((-823) $) 27 (|has| (-138) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-138) (-811)))) (-3353 (((-111) $ $) 14 (|has| (-138) (-1052)))) (-2984 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2985 (((-111) $ $) 15 (|has| (-138) (-811)))) (-4273 (((-735) $) 13 (|has| $ (-6 -4310))))) +(((-564 |#1|) (-13 (-1092) (-10 -8 (-15 -3555 ((-526) $)))) (-526)) (T -564)) +((-3555 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-564 *3)) (-14 *3 *2)))) +(-13 (-1092) (-10 -8 (-15 -3555 ((-526) $)))) +((-3845 (((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|)) 32))) +(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|))) (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|)) (T -565)) +((-3845 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) (-3845 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1041 *3)) (-4 *3 (-909 *7 *6 *4)) (-4 *6 (-757)) (-4 *4 (-811)) (-4 *7 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *6 *4 *7 *3))))) +(-10 -7 (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2| (-1041 |#4|))) (-15 -3845 ((-2 (|:| |num| |#4|) (|:| |den| (-526))) |#4| |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 63)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 54) (($ $ (-526) (-526)) 55)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 60)) (-2266 (($ $) 100)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2264 (((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526))) 224)) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 34)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3192 (((-111) $) NIL)) (-4090 (((-526) $) 58) (((-526) $ (-526)) 59)) (-2471 (((-111) $) NIL)) (-4095 (($ $ (-878)) 76)) (-4134 (($ (-1 |#1| (-526)) $) 73)) (-4254 (((-111) $) 25)) (-3193 (($ |#1| (-526)) 22) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 67)) (-2270 (($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 13)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $) 150 (|has| |#1| (-37 (-392 (-526)))))) (-2267 (((-3 $ "failed") $ $ (-111)) 99)) (-2265 (($ $ $) 108)) (-3555 (((-1070) $) NIL)) (-2268 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 15)) (-2269 (((-983 (-803 (-526))) $) 14)) (-4087 (($ $ (-526)) 45)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526)))))) (-4118 ((|#1| $ (-526)) 57) (($ $ $) NIL (|has| (-526) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-4264 (((-526) $) NIL)) (-3191 (($ $) 46)) (-4274 (((-823) $) NIL) (($ (-526)) 28) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 27 (|has| |#1| (-163)))) (-3999 ((|#1| $ (-526)) 56)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 37)) (-4091 ((|#1| $) NIL)) (-2245 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-2257 (($ $) 158 (|has| |#1| (-37 (-392 (-526)))))) (-2247 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-2259 (($ $) 163 (|has| |#1| (-37 (-392 (-526)))))) (-2243 (($ $) 189 (|has| |#1| (-37 (-392 (-526)))))) (-2255 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-2262 (($ $ (-392 (-526))) 166 (|has| |#1| (-37 (-392 (-526)))))) (-2263 (($ $ |#1|) 146 (|has| |#1| (-37 (-392 (-526)))))) (-2260 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-2261 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-2242 (($ $) 191 (|has| |#1| (-37 (-392 (-526)))))) (-2254 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-2244 (($ $) 187 (|has| |#1| (-37 (-392 (-526)))))) (-2256 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-2246 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-2258 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-2239 (($ $) 197 (|has| |#1| (-37 (-392 (-526)))))) (-2251 (($ $) 173 (|has| |#1| (-37 (-392 (-526)))))) (-2241 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-2253 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-2237 (($ $) 201 (|has| |#1| (-37 (-392 (-526)))))) (-2249 (($ $) 177 (|has| |#1| (-37 (-392 (-526)))))) (-2236 (($ $) 203 (|has| |#1| (-37 (-392 (-526)))))) (-2248 (($ $) 179 (|has| |#1| (-37 (-392 (-526)))))) (-2238 (($ $) 199 (|has| |#1| (-37 (-392 (-526)))))) (-2250 (($ $) 175 (|has| |#1| (-37 (-392 (-526)))))) (-2240 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-2252 (($ $) 171 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-2957 (($) 29 T CONST)) (-2964 (($) 38 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-3353 (((-111) $ $) 65)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 84) (($ $ $) 64)) (-4158 (($ $ $) 81)) (** (($ $ (-878)) NIL) (($ $ (-735)) 103)) (* (($ (-878) $) 89) (($ (-735) $) 87) (($ (-526) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-566 |#1|) (-13 (-1184 |#1| (-526)) (-10 -8 (-15 -2270 ($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -2269 ((-983 (-803 (-526))) $)) (-15 -2268 ((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $)) (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -4254 ((-111) $)) (-15 -4134 ($ (-1 |#1| (-526)) $)) (-15 -2267 ((-3 $ "failed") $ $ (-111))) (-15 -2266 ($ $)) (-15 -2265 ($ $ $)) (-15 -2264 ((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (-15 -2263 ($ $ |#1|)) (-15 -2262 ($ $ (-392 (-526)))) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $)) (-15 -2250 ($ $)) (-15 -2249 ($ $)) (-15 -2248 ($ $)) (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)) (-15 -2241 ($ $)) (-15 -2240 ($ $)) (-15 -2239 ($ $)) (-15 -2238 ($ $)) (-15 -2237 ($ $)) (-15 -2236 ($ $))) |%noBranch|))) (-1004)) (T -566)) +((-4254 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2270 (*1 *1 *2 *3) (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *4)))) (-4 *4 (-1004)) (-5 *1 (-566 *4)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) (-2267 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004)))) (-2265 (*1 *1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004)))) (-2264 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *6)))) (-5 *4 (-983 (-803 (-526)))) (-5 *5 (-1123)) (-5 *7 (-392 (-526))) (-4 *6 (-1004)) (-5 *2 (-823)) (-5 *1 (-566 *6)))) (-4131 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2262 (*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-566 *3)) (-4 *3 (-37 *2)) (-4 *3 (-1004)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2253 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2252 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2250 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2245 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2244 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2243 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2242 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2241 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2240 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2238 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(-13 (-1184 |#1| (-526)) (-10 -8 (-15 -2270 ($ (-983 (-803 (-526))) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -2269 ((-983 (-803 (-526))) $)) (-15 -2268 ((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $)) (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))))) (-15 -4254 ((-111) $)) (-15 -4134 ($ (-1 |#1| (-526)) $)) (-15 -2267 ((-3 $ "failed") $ $ (-111))) (-15 -2266 ($ $)) (-15 -2265 ($ $ $)) (-15 -2264 ((-823) (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) (-983 (-803 (-526))) (-1123) |#1| (-392 (-526)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (-15 -2263 ($ $ |#1|)) (-15 -2262 ($ $ (-392 (-526)))) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $)) (-15 -2250 ($ $)) (-15 -2249 ($ $)) (-15 -2248 ($ $)) (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)) (-15 -2241 ($ $)) (-15 -2240 ($ $)) (-15 -2239 ($ $)) (-15 -2238 ($ $)) (-15 -2237 ($ $)) (-15 -2236 ($ $))) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4137 (($ (-1101 |#1|)) 9)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 42)) (-3192 (((-111) $) 52)) (-4090 (((-735) $) 55) (((-735) $ (-735)) 54)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ $) 44 (|has| |#1| (-533)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-1101 |#1|) $) 23)) (-3423 (((-735)) 51)) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 10 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) 22)) (-4156 (($ $) 30) (($ $ $) 16)) (-4158 (($ $ $) 25)) (** (($ $ (-878)) NIL) (($ $ (-735)) 49)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-526)) 36))) +(((-567 |#1|) (-13 (-1004) (-10 -8 (-15 -4136 ((-1101 |#1|) $)) (-15 -4137 ($ (-1101 |#1|))) (-15 -3192 ((-111) $)) (-15 -4090 ((-735) $)) (-15 -4090 ((-735) $ (-735))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-526))) (IF (|has| |#1| (-533)) (-6 (-533)) |%noBranch|))) (-1004)) (T -567)) +((-4136 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-567 *3)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (-4090 (*1 *2 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-567 *3)) (-4 *3 (-1004))))) +(-13 (-1004) (-10 -8 (-15 -4136 ((-1101 |#1|) $)) (-15 -4137 ($ (-1101 |#1|))) (-15 -3192 ((-111) $)) (-15 -4090 ((-735) $)) (-15 -4090 ((-735) $ (-735))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-526))) (IF (|has| |#1| (-533)) (-6 (-533)) |%noBranch|))) +((-4275 (((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)) 15))) +(((-568 |#1| |#2|) (-10 -7 (-15 -4275 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)))) (-1159) (-1159)) (T -568)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-571 *6)) (-5 *1 (-568 *5 *6))))) +(-10 -7 (-15 -4275 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)))) +((-4275 (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)) 20) (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|)) 19) (((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|)) 18))) +(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)))) (-1159) (-1159) (-1159)) (T -569)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-1101 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-569 *6 *7 *8)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-571 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-569 *6 *7 *8)))) (-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-571 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-571 *8)) (-5 *1 (-569 *6 *7 *8))))) +(-10 -7 (-15 -4275 ((-571 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-571 |#2|))) (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-571 |#1|) (-1101 |#2|)))) +((-2275 ((|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))) 55)) (-2274 (((-159 |#2|) |#3|) 117)) (-2271 ((|#3| (-159 |#2|)) 44)) (-2272 ((|#2| |#3|) 19)) (-2273 ((|#3| |#2|) 33))) +(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -2271 (|#3| (-159 |#2|))) (-15 -2272 (|#2| |#3|)) (-15 -2273 (|#3| |#2|)) (-15 -2274 ((-159 |#2|) |#3|)) (-15 -2275 (|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))))) (-13 (-533) (-811)) (-13 (-406 |#1|) (-960) (-1145)) (-13 (-406 (-159 |#1|)) (-960) (-1145))) (T -570)) +((-2275 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-607 (-1123))) (-4 *2 (-13 (-406 (-159 *5)) (-960) (-1145))) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-570 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-960) (-1145))))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-5 *2 (-159 *5)) (-5 *1 (-570 *4 *5 *3)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145))))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *3 *2)) (-4 *3 (-13 (-406 *4) (-960) (-1145))))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 *4) (-960) (-1145))) (-5 *1 (-570 *4 *2 *3)) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145))))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *5 *2))))) +(-10 -7 (-15 -2271 (|#3| (-159 |#2|))) (-15 -2272 (|#2| |#3|)) (-15 -2273 (|#3| |#2|)) (-15 -2274 ((-159 |#2|) |#3|)) (-15 -2275 (|#3| |#3| (-607 (-581 |#3|)) (-607 (-1123))))) +((-4032 (($ (-1 (-111) |#1|) $) 17)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3771 (($ (-1 |#1| |#1|) |#1|) 9)) (-3770 (($ (-1 (-111) |#1|) $) 13)) (-3769 (($ (-1 (-111) |#1|) $) 15)) (-3844 (((-1101 |#1|) $) 18)) (-4274 (((-823) $) NIL))) +(((-571 |#1|) (-13 (-583 (-823)) (-10 -8 (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)) (-15 -4032 ($ (-1 (-111) |#1|) $)) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3844 ((-1101 |#1|) $)))) (-1159)) (T -571)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3769 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-571 *3)) (-4 *3 (-1159))))) +(-13 (-583 (-823)) (-10 -8 (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)) (-15 -4032 ($ (-1 (-111) |#1|) $)) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3844 ((-1101 |#1|) $)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) NIL (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-572 |#1| |#2|) (-1204 |#1|) (-1159) (-526)) (T -572)) +NIL +(-1204 |#1|) +((-2276 (((-1211) $ |#2| |#2|) 36)) (-2278 ((|#2| $) 23)) (-2279 ((|#2| $) 21)) (-2048 (($ (-1 |#3| |#3|) $) 32)) (-4275 (($ (-1 |#3| |#3|) $) 30)) (-4119 ((|#3| $) 26)) (-2277 (($ $ |#3|) 33)) (-2280 (((-111) |#3| $) 17)) (-2283 (((-607 |#3|) $) 15)) (-4118 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-573 |#1| |#2| |#3|) (-10 -8 (-15 -2276 ((-1211) |#1| |#2| |#2|)) (-15 -2277 (|#1| |#1| |#3|)) (-15 -4119 (|#3| |#1|)) (-15 -2278 (|#2| |#1|)) (-15 -2279 (|#2| |#1|)) (-15 -2280 ((-111) |#3| |#1|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|))) (-574 |#2| |#3|) (-1052) (-1159)) (T -573)) +NIL +(-10 -8 (-15 -2276 ((-1211) |#1| |#2| |#2|)) (-15 -2277 (|#1| |#1| |#3|)) (-15 -4119 (|#3| |#1|)) (-15 -2278 (|#2| |#1|)) (-15 -2279 (|#2| |#1|)) (-15 -2280 ((-111) |#3| |#1|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#2| (-1052)))) (-2276 (((-1211) $ |#1| |#1|) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-1613 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 51)) (-2044 (((-607 |#2|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 43 (|has| |#1| (-811)))) (-2480 (((-607 |#2|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 44 (|has| |#1| (-811)))) (-2048 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#2| (-1052)))) (-2281 (((-607 |#1|) $) 46)) (-2282 (((-111) |#1| $) 47)) (-3555 (((-1070) $) 21 (|has| |#2| (-1052)))) (-4119 ((|#2| $) 42 (|has| |#1| (-811)))) (-2277 (($ $ |#2|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 26 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 23 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2045 (((-735) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4310))) (((-735) |#2| $) 28 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#2| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#2| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-574 |#1| |#2|) (-134) (-1052) (-1159)) (T -574)) +((-2283 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *3)))) (-2280 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-574 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *3 (-811)) (-4 *2 (-1159)))) (-2277 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) (-2276 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-1211))))) +(-13 (-472 |t#2|) (-273 |t#1| |t#2|) (-10 -8 (-15 -2283 ((-607 |t#2|) $)) (-15 -2282 ((-111) |t#1| $)) (-15 -2281 ((-607 |t#1|) $)) (IF (|has| |t#2| (-1052)) (IF (|has| $ (-6 -4310)) (-15 -2280 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-811)) (PROGN (-15 -2279 (|t#1| $)) (-15 -2278 (|t#1| $)) (-15 -4119 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -2277 ($ $ |t#2|)) (-15 -2276 ((-1211) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#2| (-1052)) ((-583 (-823)) -3850 (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-271 |#1| |#2|) . T) ((-273 |#1| |#2|) . T) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-472 |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-1052) |has| |#2| (-1052)) ((-1159) . T)) +((-4274 (((-823) $) 19) (((-127) $) 14) (($ (-127)) 13))) +(((-575) (-13 (-583 (-823)) (-583 (-127)) (-10 -8 (-15 -4274 ($ (-127)))))) (T -575)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-575))))) +(-13 (-583 (-823)) (-583 (-127)) (-10 -8 (-15 -4274 ($ (-127))))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (((-1160) $) 14) (($ (-607 (-1160))) 13)) (-2284 (((-607 (-1160)) $) 10)) (-3353 (((-111) $ $) NIL))) +(((-576) (-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2284 ((-607 (-1160)) $))))) (T -576)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576))))) +(-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-607 (-1160)))) (-15 -2284 ((-607 (-1160)) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-1205 (-653 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1821 (((-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1795 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1883 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1819 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1881 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2465 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1998 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1797 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1885 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1815 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1809 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1887 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (($ (-1205 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3781 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-3406 (((-878)) NIL (|has| |#2| (-352 |#1|)))) (-1806 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1800 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1804 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1796 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1884 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1820 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1882 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2466 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2002 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1798 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1886 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1816 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1810 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1803 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1805 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4118 ((|#1| $ (-526)) NIL (|has| |#2| (-403 |#1|)))) (-3537 (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $) (-1205 $)) NIL (|has| |#2| (-352 |#1|))) (((-1205 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-4287 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-1990 (((-607 (-905 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-607 (-905 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4274 (((-823) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2104 (((-1205 $)) NIL (|has| |#2| (-403 |#1|)))) (-1799 (((-607 (-1205 |#1|))) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2849 (($ (-653 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1811 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1807 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 24)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-577 |#1| |#2|) (-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) (-163) (-709 |#1|)) (T -577)) +((-4274 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-577 *3 *2)) (-4 *2 (-709 *3))))) +(-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-1789 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) 33)) (-3919 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL) (($) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-1106) |#1|) 43)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#1| #1="failed") (-1106) $) 46)) (-3855 (($) NIL T CONST)) (-1793 (($ $ (-1106)) 24)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-3724 (((-3 |#1| #1#) (-1106) $) 47) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (|has| $ (-6 -4310)))) (-3725 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-1790 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) 32)) (-1613 ((|#1| $ (-1106) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-1106)) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2324 (($ $) 48)) (-1794 (($ (-373)) 22) (($ (-373) (-1106)) 21)) (-3864 (((-373) $) 34)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310))) (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-2713 (((-607 (-1106)) $) 39)) (-2286 (((-111) (-1106) $) NIL)) (-1791 (((-1106) $) 35)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 37)) (-4118 ((|#1| $ (-1106) |#1|) NIL) ((|#1| $ (-1106)) 42)) (-1499 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL) (($) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-4274 (((-823) $) 20)) (-1792 (($ $) 25)) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 19)) (-4273 (((-735) $) 41 (|has| $ (-6 -4310))))) +(((-578 |#1|) (-13 (-350 (-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-1136 (-1106) |#1|) (-10 -8 (-6 -4310) (-15 -2324 ($ $)))) (-1052)) (T -578)) +((-2324 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1052))))) +(-13 (-350 (-373) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-1136 (-1106) |#1|) (-10 -8 (-6 -4310) (-15 -2324 ($ $)))) +((-3557 (((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 15)) (-2713 (((-607 |#2|) $) 19)) (-2286 (((-111) |#2| $) 12))) +(((-579 |#1| |#2| |#3|) (-10 -8 (-15 -2713 ((-607 |#2|) |#1|)) (-15 -2286 ((-111) |#2| |#1|)) (-15 -3557 ((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|))) (-580 |#2| |#3|) (-1052) (-1052)) (T -579)) +NIL +(-10 -8 (-15 -2713 ((-607 |#2|) |#1|)) (-15 -2286 ((-111) |#2| |#1|)) (-15 -3557 ((-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|))) +((-2865 (((-111) $ $) 19 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| "failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| "failed") |#1| $) 62)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40)) (-3555 (((-1070) $) 21 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51)) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50)) (-4274 (((-823) $) 18 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-580 |#1| |#2|) (-134) (-1052) (-1052)) (T -580)) +((-2286 (*1 *2 *3 *1) (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-111)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) (-3724 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-2285 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) +(-13 (-215 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))) (-10 -8 (-15 -2286 ((-111) |t#1| $)) (-15 -2713 ((-607 |t#1|) $)) (-15 -3724 ((-3 |t#2| "failed") |t#1| $)) (-15 -2285 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))) ((-145 #1#) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-294 #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-472 #1#) . T) ((-496 #1# #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-1052) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-2287 (((-3 (-1123) "failed") $) 37)) (-1346 (((-1211) $ (-735)) 26)) (-3738 (((-735) $) 25)) (-2307 (((-112) $) 12)) (-3864 (((-1123) $) 20)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2288 (($ (-112) (-607 |#1|) (-735)) 30) (($ (-1123)) 31)) (-2930 (((-111) $ (-112)) 18) (((-111) $ (-1123)) 16)) (-2900 (((-735) $) 22)) (-3555 (((-1070) $) NIL)) (-4287 (((-849 (-526)) $) 77 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 84 (|has| |#1| (-584 (-849 (-363))))) (((-515) $) 69 (|has| |#1| (-584 (-515))))) (-4274 (((-823) $) 55)) (-2289 (((-607 |#1|) $) 24)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 41)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 42))) +(((-581 |#1|) (-13 (-130) (-843 |#1|) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -2307 ((-112) $)) (-15 -2289 ((-607 |#1|) $)) (-15 -2900 ((-735) $)) (-15 -2288 ($ (-112) (-607 |#1|) (-735))) (-15 -2288 ($ (-1123))) (-15 -2287 ((-3 (-1123) "failed") $)) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) (-811)) (T -581)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2288 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-811)) (-5 *1 (-581 *5)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2287 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811))))) +(-13 (-130) (-843 |#1|) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -2307 ((-112) $)) (-15 -2289 ((-607 |#1|) $)) (-15 -2900 ((-735) $)) (-15 -2288 ($ (-112) (-607 |#1|) (-735))) (-15 -2288 ($ (-1123))) (-15 -2287 ((-3 (-1123) "failed") $)) (-15 -2930 ((-111) $ (-112))) (-15 -2930 ((-111) $ (-1123))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) +((-2290 (((-581 |#2|) |#1|) 15)) (-2291 (((-3 |#1| "failed") (-581 |#2|)) 19))) +(((-582 |#1| |#2|) (-10 -7 (-15 -2290 ((-581 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-581 |#2|)))) (-811) (-811)) (T -582)) +((-2291 (*1 *2 *3) (|partial| -12 (-5 *3 (-581 *4)) (-4 *4 (-811)) (-4 *2 (-811)) (-5 *1 (-582 *2 *4)))) (-2290 (*1 *2 *3) (-12 (-5 *2 (-581 *4)) (-5 *1 (-582 *3 *4)) (-4 *3 (-811)) (-4 *4 (-811))))) +(-10 -7 (-15 -2290 ((-581 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-581 |#2|)))) +((-4274 ((|#1| $) 6))) +(((-583 |#1|) (-134) (-1159)) (T -583)) +((-4274 (*1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1159))))) +(-13 (-10 -8 (-15 -4274 (|t#1| $)))) +((-4287 ((|#1| $) 6))) +(((-584 |#1|) (-134) (-1159)) (T -584)) +((-4287 (*1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1159))))) +(-13 (-10 -8 (-15 -4287 (|t#1| $)))) +((-2292 (((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)) 15) (((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)) 16))) +(((-585 |#1| |#2|) (-10 -7 (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|))) (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)))) (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -585)) +((-2292 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-1117 (-392 *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-392 *6)))) (-2292 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-1117 (-392 *5))) (-5 *1 (-585 *4 *5)) (-5 *3 (-392 *5))))) +(-10 -7 (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|))) (-15 -2292 ((-3 (-1117 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 (-390 |#2|) |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2471 (((-111) $) NIL)) (-3298 ((|#1| $) 13)) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3297 ((|#3| $) 15)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL)) (-3423 (((-735)) 20)) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) NIL T CONST)) (-2964 (($) 12 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-809)))) (-4265 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-586 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) (-37 |#2|) (-163) (|SubsetCategory| (-691) |#2|)) (T -586)) +((-4265 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-691) *4)))) (-4265 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-586 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-691) *4)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-586 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-691) *3)))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) +((-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10))) +(((-587 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-588 |#2|) (-1004)) (T -587)) +NIL +(-10 -8 (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 34)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-588 |#1|) (-134) (-1004)) (T -588)) +((-4274 (*1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1004))))) +(-13 (-1004) (-613 |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2293 ((|#2| |#2| (-1123) (-1123)) 18))) +(((-589 |#1| |#2|) (-10 -7 (-15 -2293 (|#2| |#2| (-1123) (-1123)))) (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-919) (-29 |#1|))) (T -589)) +((-2293 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-29 *4)))))) +(-10 -7 (-15 -2293 (|#2| |#2| (-1123) (-1123)))) +((-2865 (((-111) $ $) 56)) (-3502 (((-111) $) 52)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2294 ((|#1| $) 49)) (-1345 (((-3 $ "failed") $ $) NIL)) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4070 (((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)) 97 (|has| |#1| (-348)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 24)) (-3781 (((-3 $ "failed") $) 75)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4090 (((-526) $) 19)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) 36)) (-3193 (($ |#1| (-526)) 21)) (-3487 ((|#1| $) 51)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) 87 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) 79)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1680 (((-735) $) 99 (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 98 (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-4264 (((-526) $) 34)) (-4287 (((-392 |#2|) $) 42)) (-4274 (((-823) $) 62) (($ (-526)) 32) (($ $) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 31) (($ |#2|) 22)) (-3999 ((|#1| $ (-526)) 63)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 29)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 9 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) 17)) (-4156 (($ $) 46) (($ $ $) NIL)) (-4158 (($ $ $) 76)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 26) (($ $ $) 44))) +(((-590 |#1| |#2|) (-13 (-217 |#2|) (-533) (-584 (-392 |#2|)) (-397 |#1|) (-995 |#2|) (-10 -8 (-15 -4254 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4090 ((-526) $)) (-15 -4276 ($ $)) (-15 -3487 (|#1| $)) (-15 -2294 (|#1| $)) (-15 -3999 (|#1| $ (-526))) (-15 -3193 ($ |#1| (-526))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-292)) (-15 -4070 ((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)))) |%noBranch|))) (-533) (-1181 |#1|)) (T -590)) +((-4254 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-111)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4264 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4090 (*1 *2 *1) (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) (-4276 (*1 *1 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-2294 (*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *4 (-533)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -1860 (-590 *4 *5)) (|:| -1859 (-392 *5)))) (-5 *1 (-590 *4 *5)) (-5 *3 (-392 *5))))) +(-13 (-217 |#2|) (-533) (-584 (-392 |#2|)) (-397 |#1|) (-995 |#2|) (-10 -8 (-15 -4254 ((-111) $)) (-15 -4264 ((-526) $)) (-15 -4090 ((-526) $)) (-15 -4276 ($ $)) (-15 -3487 (|#1| $)) (-15 -2294 (|#1| $)) (-15 -3999 (|#1| $ (-526))) (-15 -3193 ($ |#1| (-526))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-6 (-292)) (-15 -4070 ((-2 (|:| -1860 $) (|:| -1859 (-392 |#2|))) (-392 |#2|)))) |%noBranch|))) +((-4004 (((-607 |#6|) (-607 |#4|) (-111)) 47)) (-2295 ((|#6| |#6|) 40))) +(((-591 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2295 (|#6| |#6|)) (-15 -4004 ((-607 |#6|) (-607 |#4|) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|) (-1060 |#1| |#2| |#3| |#4|)) (T -591)) +((-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *10)) (-5 *1 (-591 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *10 (-1060 *5 *6 *7 *8)))) (-2295 (*1 *2 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-591 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *2 (-1060 *3 *4 *5 *6))))) +(-10 -7 (-15 -2295 (|#6| |#6|)) (-15 -4004 ((-607 |#6|) (-607 |#4|) (-111)))) +((-2296 (((-111) |#3| (-735) (-607 |#3|)) 23)) (-2297 (((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)) 55))) +(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-111) |#3| (-735) (-607 |#3|))) (-15 -2297 ((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)))) (-811) (-757) (-292) (-909 |#3| |#2| |#1|)) (T -592)) +((-2297 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2736 (-607 (-2 (|:| |irr| *10) (|:| -2456 (-526))))))) (-5 *6 (-607 *3)) (-5 *7 (-607 *8)) (-4 *8 (-811)) (-4 *3 (-292)) (-4 *10 (-909 *3 *9 *8)) (-4 *9 (-757)) (-5 *2 (-2 (|:| |polfac| (-607 *10)) (|:| |correct| *3) (|:| |corrfact| (-607 (-1117 *3))))) (-5 *1 (-592 *8 *9 *3 *10)) (-5 *4 (-607 (-1117 *3))))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-735)) (-5 *5 (-607 *3)) (-4 *3 (-292)) (-4 *6 (-811)) (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-592 *6 *7 *3 *8)) (-4 *8 (-909 *3 *7 *6))))) +(-10 -7 (-15 -2296 ((-111) |#3| (-735) (-607 |#3|))) (-15 -2297 ((-3 (-2 (|:| |polfac| (-607 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-607 (-1117 |#3|)))) "failed") |#3| (-607 (-1117 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2736 (-607 (-2 (|:| |irr| |#4|) (|:| -2456 (-526)))))) (-607 |#3|) (-607 |#1|) (-607 |#3|)))) +((-2865 (((-111) $ $) NIL)) (-3842 (((-1128) $) 11)) (-3843 (((-1128) $) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-593) (-13 (-1035) (-10 -8 (-15 -3843 ((-1128) $)) (-15 -3842 ((-1128) $))))) (T -593)) +((-3843 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593))))) +(-13 (-1035) (-10 -8 (-15 -3843 ((-1128) $)) (-15 -3842 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-4253 (($ $) 67)) (-4259 (((-629 |#1| |#2|) $) 52)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 70)) (-2298 (((-607 (-278 |#2|)) $ $) 33)) (-3555 (((-1070) $) NIL)) (-4260 (($ (-629 |#1| |#2|)) 48)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 58) (((-1220 |#1| |#2|) $) NIL) (((-1225 |#1| |#2|) $) 66)) (-2964 (($) 53 T CONST)) (-2299 (((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $) 31)) (-2300 (((-607 (-629 |#1| |#2|)) (-607 |#1|)) 65)) (-2963 (((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $) 37)) (-3353 (((-111) $ $) 54)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 44))) +(((-594 |#1| |#2| |#3|) (-13 (-457) (-10 -8 (-15 -4260 ($ (-629 |#1| |#2|))) (-15 -4259 ((-629 |#1| |#2|) $)) (-15 -2963 ((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $)) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1225 |#1| |#2|) $)) (-15 -4253 ($ $)) (-15 -4251 ((-607 |#1|) $)) (-15 -2300 ((-607 (-629 |#1| |#2|)) (-607 |#1|))) (-15 -2299 ((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-607 (-278 |#2|)) $ $)))) (-811) (-13 (-163) (-682 (-392 (-526)))) (-878)) (T -594)) +((-4260 (*1 *1 *2) (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-5 *1 (-594 *3 *4 *5)) (-14 *5 (-878)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-629 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-852 *3)) (|:| |c| *4)))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1225 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-13 (-163) (-682 (-392 (-526))))) (-14 *4 (-878)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-629 *4 *5))) (-5 *1 (-594 *4 *5 *6)) (-4 *5 (-13 (-163) (-682 (-392 (-526))))) (-14 *6 (-878)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-637 *3)) (|:| |c| *4)))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-607 (-278 *4))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) +(-13 (-457) (-10 -8 (-15 -4260 ($ (-629 |#1| |#2|))) (-15 -4259 ((-629 |#1| |#2|) $)) (-15 -2963 ((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $)) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1225 |#1| |#2|) $)) (-15 -4253 ($ $)) (-15 -4251 ((-607 |#1|) $)) (-15 -2300 ((-607 (-629 |#1| |#2|)) (-607 |#1|))) (-15 -2299 ((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-607 (-278 |#2|)) $ $)))) +((-4004 (((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)) 72) (((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111)) 58)) (-2301 (((-111) (-607 (-744 |#1| (-824 |#2|)))) 23)) (-2305 (((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)) 71)) (-2304 (((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111)) 57)) (-2303 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|)))) 27)) (-2302 (((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|)))) 26))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2301 ((-111) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2302 ((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|))))) (-15 -2303 ((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2304 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -2305 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)))) (-436) (-607 (-1123))) (T -595)) +((-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) (-5 *1 (-595 *5 *6)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) (-5 *1 (-595 *5 *6)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4)))) (-2302 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-607 (-744 *4 (-824 *5)))) (-4 *4 (-436)) (-14 *5 (-607 (-1123))) (-5 *2 (-111)) (-5 *1 (-595 *4 *5))))) +(-10 -7 (-15 -2301 ((-111) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2302 ((-3 (-607 (-744 |#1| (-824 |#2|))) "failed") (-607 (-744 |#1| (-824 |#2|))))) (-15 -2303 ((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))))) (-15 -2304 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -2305 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1001 |#1| |#2|)) (-607 (-744 |#1| (-824 |#2|))) (-111))) (-15 -4004 ((-607 (-1094 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|)))) (-607 (-744 |#1| (-824 |#2|))) (-111)))) +((-2307 (((-112) (-112)) 83)) (-2310 ((|#2| |#2|) 30)) (-3132 ((|#2| |#2| (-1044 |#2|)) 79) ((|#2| |#2| (-1123)) 52)) (-2308 ((|#2| |#2|) 29)) (-2309 ((|#2| |#2|) 31)) (-2306 (((-111) (-112)) 34)) (-2312 ((|#2| |#2|) 26)) (-2313 ((|#2| |#2|) 28)) (-2311 ((|#2| |#2|) 27))) +(((-596 |#1| |#2|) (-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -2313 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3132 (|#2| |#2| (-1123))) (-15 -3132 (|#2| |#2| (-1044 |#2|)))) (-13 (-811) (-533)) (-13 (-406 |#1|) (-960) (-1145))) (T -596)) +((-3132 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2308 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2311 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) (-4 *2 (-13 (-406 *3) (-960) (-1145))))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *4)) (-4 *4 (-13 (-406 *3) (-960) (-1145))))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-596 *4 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145)))))) +(-10 -7 (-15 -2306 ((-111) (-112))) (-15 -2307 ((-112) (-112))) (-15 -2313 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2311 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -3132 (|#2| |#2| (-1123))) (-15 -3132 (|#2| |#2| (-1044 |#2|)))) +((-3806 (($ $) 38)) (-3961 (($ $) 21)) (-3804 (($ $) 37)) (-3960 (($ $) 22)) (-3808 (($ $) 36)) (-3959 (($ $) 23)) (-3949 (($) 48)) (-4259 (($ $) 45)) (-2310 (($ $) 17)) (-3132 (($ $ (-1044 $)) 7) (($ $ (-1123)) 6)) (-4260 (($ $) 46)) (-2308 (($ $) 15)) (-2309 (($ $) 16)) (-3809 (($ $) 35)) (-3958 (($ $) 24)) (-3807 (($ $) 34)) (-3957 (($ $) 25)) (-3805 (($ $) 33)) (-3956 (($ $) 26)) (-3812 (($ $) 44)) (-3800 (($ $) 32)) (-3810 (($ $) 43)) (-3798 (($ $) 31)) (-3814 (($ $) 42)) (-3802 (($ $) 30)) (-3815 (($ $) 41)) (-3803 (($ $) 29)) (-3813 (($ $) 40)) (-3801 (($ $) 28)) (-3811 (($ $) 39)) (-3799 (($ $) 27)) (-2312 (($ $) 19)) (-2313 (($ $) 20)) (-2311 (($ $) 18)) (** (($ $ $) 47))) +(((-597) (-134)) (T -597)) +((-2313 (*1 *1 *1) (-4 *1 (-597))) (-2312 (*1 *1 *1) (-4 *1 (-597))) (-2311 (*1 *1 *1) (-4 *1 (-597))) (-2310 (*1 *1 *1) (-4 *1 (-597))) (-2309 (*1 *1 *1) (-4 *1 (-597))) (-2308 (*1 *1 *1) (-4 *1 (-597)))) +(-13 (-919) (-1145) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)))) +(((-34) . T) ((-93) . T) ((-269) . T) ((-475) . T) ((-919) . T) ((-1145) . T) ((-1148) . T)) +((-2323 (((-464 |#1| |#2|) (-233 |#1| |#2|)) 53)) (-2316 (((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 68)) (-2317 (((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|)) 70) (((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|)) 69)) (-2314 (((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|))) 108)) (-2321 (((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 83)) (-2315 (((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|))) 118)) (-2319 (((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|))) 58)) (-2318 (((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|))) 41)) (-2322 (((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|))) 50)) (-2320 (((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|))) 91))) +(((-598 |#1| |#2|) (-10 -7 (-15 -2314 ((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|)))) (-15 -2315 ((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|)))) (-15 -2316 ((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2318 ((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2319 ((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|)))) (-15 -2320 ((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2321 ((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2322 ((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2323 ((-464 |#1| |#2|) (-233 |#1| |#2|)))) (-607 (-1123)) (-436)) (T -598)) +((-2323 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-464 *4 *5)) (-5 *1 (-598 *4 *5)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-233 *4 *5))) (-5 *2 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-598 *4 *5)))) (-2321 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-824 *4)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-598 *4 *5)))) (-2320 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-233 *5 *6))) (-4 *6 (-436)) (-5 *2 (-233 *5 *6)) (-14 *5 (-607 (-1123))) (-5 *1 (-598 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-464 *5 *6))) (-5 *3 (-464 *5 *6)) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) (-5 *2 (-1205 *6)) (-5 *1 (-598 *5 *6)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-607 (-464 *3 *4))) (-14 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-598 *3 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) (-2317 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-607 (-233 *4 *5))) (-5 *1 (-598 *4 *5)))) (-2315 (*1 *2 *3) (-12 (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-2 (|:| |glbase| (-607 (-233 *4 *5))) (|:| |glval| (-607 (-526))))) (-5 *1 (-598 *4 *5)) (-5 *3 (-607 (-233 *4 *5))))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *2 (-2 (|:| |gblist| (-607 (-233 *4 *5))) (|:| |gvlist| (-607 (-526))))) (-5 *1 (-598 *4 *5))))) +(-10 -7 (-15 -2314 ((-2 (|:| |gblist| (-607 (-233 |#1| |#2|))) (|:| |gvlist| (-607 (-526)))) (-607 (-464 |#1| |#2|)))) (-15 -2315 ((-2 (|:| |glbase| (-607 (-233 |#1| |#2|))) (|:| |glval| (-607 (-526)))) (-607 (-233 |#1| |#2|)))) (-15 -2316 ((-607 (-233 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2317 ((-464 |#1| |#2|) (-607 (-464 |#1| |#2|)) (-824 |#1|))) (-15 -2318 ((-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2319 ((-1205 |#2|) (-464 |#1| |#2|) (-607 (-464 |#1| |#2|)))) (-15 -2320 ((-233 |#1| |#2|) (-607 |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2321 ((-607 (-464 |#1| |#2|)) (-824 |#1|) (-607 (-464 |#1| |#2|)) (-607 (-464 |#1| |#2|)))) (-15 -2322 ((-233 |#1| |#2|) (-233 |#1| |#2|) (-607 (-233 |#1| |#2|)))) (-15 -2323 ((-464 |#1| |#2|) (-233 |#1| |#2|)))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-50) $ (-1106) (-50)) 16) (((-50) $ (-1123) (-50)) 17)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1106) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1106) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-50) $ (-1106) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1106)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-2324 (($ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-2325 (($ (-373)) 9)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1106)) $) NIL)) (-2286 (((-111) (-1106) $) NIL)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-4119 (((-50) $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1106)) 14) (((-50) $ (-1106) (-50)) NIL) (((-50) $ (-1123)) 15)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-599) (-13 (-1136 (-1106) (-50)) (-10 -8 (-15 -2325 ($ (-373))) (-15 -2324 ($ $)) (-15 -4118 ((-50) $ (-1123))) (-15 -4106 ((-50) $ (-1123) (-50)))))) (T -599)) +((-2325 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-599)))) (-2324 (*1 *1 *1) (-5 *1 (-599))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-50)) (-5 *1 (-599)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1123)) (-5 *1 (-599))))) +(-13 (-1136 (-1106) (-50)) (-10 -8 (-15 -2325 ($ (-373))) (-15 -2324 ($ $)) (-15 -4118 ((-50) $ (-1123))) (-15 -4106 ((-50) $ (-1123) (-50))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-1205 (-653 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1821 (((-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3855 (($) NIL T CONST)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1795 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1883 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1819 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1881 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2465 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1998 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1797 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1885 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1815 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1809 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1887 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (($ (-1205 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-3781 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-3406 (((-878)) NIL (|has| |#2| (-352 |#1|)))) (-1806 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2493 (($ $ (-878)) NIL)) (-1802 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1800 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1804 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1796 (((-3 $ #1#)) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1884 (((-653 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1820 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1882 (((-653 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2466 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2002 (((-1117 (-905 |#1|))) NIL (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-348))))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#1| $) NIL (|has| |#2| (-352 |#1|)))) (-1798 (((-1117 |#1|) $) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-1886 ((|#1|) NIL (|has| |#2| (-403 |#1|))) ((|#1| (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-1816 (((-1117 |#1|) $) NIL (|has| |#2| (-352 |#1|)))) (-1810 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1803 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1805 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4118 ((|#1| $ (-526)) NIL (|has| |#2| (-403 |#1|)))) (-3537 (((-653 |#1|) (-1205 $)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|))) (((-653 |#1|) (-1205 $) (-1205 $)) NIL (|has| |#2| (-352 |#1|))) (((-1205 |#1|) $ (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-4287 (($ (-1205 |#1|)) NIL (|has| |#2| (-403 |#1|))) (((-1205 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-1990 (((-607 (-905 |#1|))) NIL (|has| |#2| (-403 |#1|))) (((-607 (-905 |#1|)) (-1205 $)) NIL (|has| |#2| (-352 |#1|)))) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-4274 (((-823) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2104 (((-1205 $)) NIL (|has| |#2| (-403 |#1|)))) (-1799 (((-607 (-1205 |#1|))) NIL (-3850 (-12 (|has| |#2| (-352 |#1|)) (|has| |#1| (-533))) (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-533)))))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2849 (($ (-653 |#1|) $) NIL (|has| |#2| (-403 |#1|)))) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1811 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-1807 (((-111)) NIL (|has| |#2| (-352 |#1|)))) (-2957 (($) 15 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 17)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-600 |#1| |#2|) (-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) (-163) (-709 |#1|)) (T -600)) +((-4274 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-600 *3 *2)) (-4 *2 (-709 *3))))) +(-13 (-709 |#1|) (-583 |#2|) (-10 -8 (-15 -4274 ($ |#2|)) (IF (|has| |#2| (-403 |#1|)) (-6 (-403 |#1|)) |%noBranch|) (IF (|has| |#2| (-352 |#1|)) (-6 (-352 |#1|)) |%noBranch|))) +((-4265 (($ $ |#2|) 10))) +(((-601 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#2|))) (-602 |#2|) (-163)) (T -601)) +NIL +(-10 -8 (-15 -4265 (|#1| |#1| |#2|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3844 (($ $ $) 29)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 28 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-602 |#1|) (-134) (-163)) (T -602)) +((-3844 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) +(-13 (-682 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3844 ($ $ $)) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-2327 (((-3 (-803 |#2|) #1="failed") |#2| (-278 |#2|) (-1106)) 82) (((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|))) 104)) (-2326 (((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|))) 109))) +(((-603 |#1| |#2|) (-10 -7 (-15 -2327 ((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|)))) (-15 -2326 ((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|)))) (-15 -2327 ((-3 (-803 |#2|) #1#) |#2| (-278 |#2|) (-1106)))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -603)) +((-2327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1106)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-803 *3)) (-5 *1 (-603 *6 *3)))) (-2326 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-278 (-796 *3))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-796 *3)) (-5 *1 (-603 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-803 *3))) (-4 *3 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-3 (-803 *3) (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-803 *3) #1#))) "failed")) (-5 *1 (-603 *5 *3))))) +(-10 -7 (-15 -2327 ((-3 (-803 |#2|) (-2 (|:| |leftHandLimit| (-3 (-803 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-803 |#2|) #1#))) "failed") |#2| (-278 (-803 |#2|)))) (-15 -2326 ((-3 (-796 |#2|) "failed") |#2| (-278 (-796 |#2|)))) (-15 -2327 ((-3 (-803 |#2|) #1#) |#2| (-278 |#2|) (-1106)))) +((-2327 (((-3 (-803 (-392 (-905 |#1|))) #1="failed") (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)) 80) (((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 20) (((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|)))) 35)) (-2326 (((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 23) (((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|)))) 43))) +(((-604 |#1|) (-10 -7 (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) #1#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)))) (-436)) (T -604)) +((-2327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 (-392 (-905 *6)))) (-5 *5 (-1106)) (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-803 *3)) (-5 *1 (-604 *6)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) (-5 *2 (-796 *3)) (-5 *1 (-604 *5)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-796 (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-796 (-392 (-905 *5)))) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) (-5 *2 (-3 (-803 *3) (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-803 *3) #1#))) #2="failed")) (-5 *1 (-604 *5)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-803 (-905 *5)))) (-4 *5 (-436)) (-5 *2 (-3 (-803 (-392 (-905 *5))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 *5))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 *5))) #1#))) #2#)) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5)))))) +(-10 -7 (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2="failed") (-392 (-905 |#1|)) (-278 (-803 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-803 (-392 (-905 |#1|))) #1#))) #2#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-796 (-905 |#1|))))) (-15 -2326 ((-796 (-392 (-905 |#1|))) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -2327 ((-3 (-803 (-392 (-905 |#1|))) #1#) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))) (-1106)))) +((-2330 (((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|) 57 (-3636 (|has| |#1| (-348)))) (((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|) 42 (|has| |#1| (-348)))) (-2328 (((-111) (-1205 |#2|)) 30)) (-2329 (((-3 (-1205 |#1|) "failed") (-1205 |#2|)) 33))) +(((-605 |#1| |#2|) (-10 -7 (-15 -2328 ((-111) (-1205 |#2|))) (-15 -2329 ((-3 (-1205 |#1|) "failed") (-1205 |#2|))) (IF (|has| |#1| (-348)) (-15 -2330 ((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|)) (-15 -2330 ((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|)))) (-533) (-606 |#1|)) (T -605)) +((-2330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-3636 (-4 *5 (-348))) (-4 *5 (-533)) (-5 *2 (-1205 (-392 *5))) (-5 *1 (-605 *5 *4)))) (-2330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-4 *5 (-348)) (-4 *5 (-533)) (-5 *2 (-1205 *5)) (-5 *1 (-605 *5 *4)))) (-2329 (*1 *2 *3) (|partial| -12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-1205 *4)) (-5 *1 (-605 *4 *5)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-111)) (-5 *1 (-605 *4 *5))))) +(-10 -7 (-15 -2328 ((-111) (-1205 |#2|))) (-15 -2329 ((-3 (-1205 |#1|) "failed") (-1205 |#2|))) (IF (|has| |#1| (-348)) (-15 -2330 ((-3 (-1205 |#1|) "failed") (-1205 |#2|) |#2|)) (-15 -2330 ((-3 (-1205 (-392 |#1|)) "failed") (-1205 |#2|) |#2|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2331 (((-653 |#1|) (-653 $)) 34) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 33)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-606 |#1|) (-134) (-1004)) (T -606)) +((-2331 (*1 *2 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-606 *4)) (-4 *4 (-1004)) (-5 *2 (-653 *4)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *1)) (-5 *4 (-1205 *1)) (-4 *1 (-606 *5)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 *5))))))) +(-13 (-1004) (-10 -8 (-15 -2331 ((-653 |t#1|) (-653 $))) (-15 -2331 ((-2 (|:| -1676 (-653 |t#1|)) (|:| |vec| (-1205 |t#1|))) (-653 $) (-1205 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) $) NIL (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1822 (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-3209 (($ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-2334 (($ $ $) 32 (|has| |#1| (-1052)))) (-2333 (($ $ $) 34 (|has| |#1| (-1052)))) (-2332 (($ $ $) 37 (|has| |#1| (-1052)))) (-1607 (($ (-1 (-111) |#1|) $) NIL)) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-4117 (($ $) NIL) (($ $ (-735)) NIL)) (-2424 (($ $) NIL (|has| |#1| (-1052)))) (-1375 (($ $) 31 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) NIL (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) NIL)) (-3725 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-3738 (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052))) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-2336 (((-111) $) 9)) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2337 (($) 7)) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3159 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3832 (($ $ $) NIL (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3856 (($ |#1|) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-3929 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-3762 (((-111) $) NIL)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) 36) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) NIL)) (-1608 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3955 (((-111) $) NIL)) (-4110 (($ $) NIL)) (-4108 (($ $) NIL (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 45 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-3775 (($ |#1| $) 10)) (-4109 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4120 (($ $ $) 30) (($ |#1| $) NIL) (($ (-607 $)) NIL) (($ $ |#1|) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2335 (($ $ $) 11)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 26 (|has| |#1| (-785))) (((-1106) $ (-111)) 27 (|has| |#1| (-785))) (((-1211) (-787) $) 28 (|has| |#1| (-785))) (((-1211) (-787) $ (-111)) 29 (|has| |#1| (-785)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-607 |#1|) (-13 (-631 |#1|) (-10 -8 (-15 -2337 ($)) (-15 -2336 ((-111) $)) (-15 -3775 ($ |#1| $)) (-15 -2335 ($ $ $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -2334 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2332 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) (-1159)) (T -607)) +((-2337 (*1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-607 *3)) (-4 *3 (-1159)))) (-3775 (*1 *1 *2 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2335 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) (-2334 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)))) (-2332 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) +(-13 (-631 |#1|) (-10 -8 (-15 -2337 ($)) (-15 -2336 ((-111) $)) (-15 -3775 ($ |#1| $)) (-15 -2335 ($ $ $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -2334 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2332 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|))) +((-4160 (((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|) 18)) (-4275 (((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)) 13))) +(((-608 |#1| |#2|) (-10 -7 (-15 -4160 ((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) (-1159) (-1159)) (T -608)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-608 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-608 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-607 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-607 *5)) (-5 *1 (-608 *6 *5))))) +(-10 -7 (-15 -4160 ((-607 |#2|) (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-607 |#1|) |#2|)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) +((-3741 ((|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|) 17) ((|#2| (-607 |#1|) (-607 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|)) 12))) +(((-609 |#1| |#2|) (-10 -7 (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|)) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)))) (-1052) (-1159)) (T -609)) +((-3741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-609 *5 *6)))) (-3741 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 *5)) (-4 *6 (-1052)) (-4 *5 (-1159)) (-5 *2 (-1 *5 *6)) (-5 *1 (-609 *6 *5)))) (-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *2 (-1 *6 *5)) (-5 *1 (-609 *5 *6))))) +(-10 -7 (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) |#2|)) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| |#2|)) (-15 -3741 ((-1 |#2| |#1|) (-607 |#1|) (-607 |#2|) (-1 |#2| |#1|))) (-15 -3741 (|#2| (-607 |#1|) (-607 |#2|) |#1| (-1 |#2| |#1|)))) +((-4275 (((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)) 13))) +(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)))) (-1159) (-1159) (-1159)) (T -610)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-607 *8)) (-5 *1 (-610 *6 *7 *8))))) +(-10 -7 (-15 -4275 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1128) $) NIL) ((|#1| $) 8)) (-3353 (((-111) $ $) NIL))) +(((-611 |#1|) (-13 (-1035) (-583 |#1|)) (-1052)) (T -611)) +NIL +(-13 (-1035) (-583 |#1|)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2338 (($ |#1| |#1| $) 43)) (-1244 (((-111) $ (-735)) NIL)) (-1607 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2424 (($ $) 45)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 52 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 9 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 37)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 46)) (-3929 (($ |#1| $) 26) (($ |#1| $ (-735)) 42)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1307 ((|#1| $) 48)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 21)) (-3887 (($) 25)) (-2339 (((-111) $) 50)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 59)) (-1499 (($) 23) (($ (-607 |#1|)) 18)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) 56 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 19)) (-4287 (((-515) $) 34 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4274 (((-823) $) 14 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 22)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 61 (|has| |#1| (-1052)))) (-4273 (((-735) $) 16 (|has| $ (-6 -4310))))) +(((-612 |#1|) (-13 (-659 |#1|) (-10 -8 (-6 -4310) (-15 -2339 ((-111) $)) (-15 -2338 ($ |#1| |#1| $)))) (-1052)) (T -612)) +((-2339 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-612 *3)) (-4 *3 (-1052)))) (-2338 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-1052))))) +(-13 (-659 |#1|) (-10 -8 (-6 -4310) (-15 -2339 ((-111) $)) (-15 -2338 ($ |#1| |#1| $)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23))) +(((-613 |#1|) (-134) (-1011)) (T -613)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1011))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) 15)) (-3643 (($ $ |#1|) 56)) (-4146 (($ $) 32)) (-3289 (($ $) 31)) (-1516 (((-3 |#1| "failed") $) 48)) (-3958 ((|#1| $) NIL)) (-2290 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3819 (((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537)) 46)) (-4125 ((|#1| $ (-537)) 30)) (-1628 ((|#2| $ (-537)) 29)) (-3572 (($ (-1 |#1| |#1|) $) 34)) (-1325 (($ (-1 |#2| |#2|) $) 38)) (-3614 (($) 10)) (-1518 (($ |#1| |#2|) 22)) (-3432 (($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|)))) 23)) (-4018 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 13)) (-3382 (($ |#1| $) 57)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3261 (((-111) $ $) 60)) (-2341 (((-816) $) 19) (($ |#1|) 16)) (-2244 (((-111) $ $) 25))) -(((-610 |#1| |#2| |#3|) (-13 (-1045) (-989 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537))) (-15 -4018 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $)) (-15 -1518 ($ |#1| |#2|)) (-15 -3432 ($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))))) (-15 -1628 (|#2| $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3289 ($ $)) (-15 -4146 ($ $)) (-15 -3151 ((-731) $)) (-15 -3614 ($)) (-15 -3643 ($ $ |#1|)) (-15 -3382 ($ |#1| $)) (-15 -2290 ($ |#1| |#2| $)) (-15 -2290 ($ $ $)) (-15 -3261 ((-111) $ $)) (-15 -1325 ($ (-1 |#2| |#2|) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)))) (-1045) (-23) |#2|) (T -610)) -((-3819 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-816) (-816) (-816))) (-5 *4 (-537)) (-5 *2 (-816)) (-5 *1 (-610 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-23)) (-14 *7 *6))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-1518 (*1 *1 *2 *3) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-23)) (-5 *1 (-610 *4 *2 *5)) (-4 *4 (-1045)) (-14 *5 *2))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-1045)) (-5 *1 (-610 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3289 (*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-3614 (*1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3643 (*1 *1 *1 *2) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3382 (*1 *1 *2 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3261 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-610 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1045) (-989 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537))) (-15 -4018 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $)) (-15 -1518 ($ |#1| |#2|)) (-15 -3432 ($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))))) (-15 -1628 (|#2| $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3289 ($ $)) (-15 -4146 ($ $)) (-15 -3151 ((-731) $)) (-15 -3614 ($)) (-15 -3643 ($ $ |#1|)) (-15 -3382 ($ |#1| $)) (-15 -2290 ($ |#1| |#2| $)) (-15 -2290 ($ $ $)) (-15 -3261 ((-111) $ $)) (-15 -1325 ($ (-1 |#2| |#2|) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)))) -((-2187 (((-537) $) 24)) (-4049 (($ |#2| $ (-537)) 22) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) 12)) (-1641 (((-111) (-537) $) 15)) (-3434 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-606 $)) NIL))) -(((-611 |#1| |#2|) (-10 -8 (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2187 ((-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -1641 ((-111) (-537) |#1|))) (-612 |#2|) (-1154)) (T -611)) -NIL -(-10 -8 (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2187 ((-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -1641 ((-111) (-537) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-612 |#1|) (-134) (-1154)) (T -612)) -((-3157 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-4049 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-4049 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1167 (-537))) (|has| *1 (-6 -4301)) (-4 *1 (-612 *2)) (-4 *2 (-1154))))) -(-13 (-570 (-537) |t#1|) (-145 |t#1|) (-10 -8 (-15 -3157 ($ (-731) |t#1|)) (-15 -3434 ($ $ |t#1|)) (-15 -3434 ($ |t#1| $)) (-15 -3434 ($ $ $)) (-15 -3434 ($ (-606 $))) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1922 ($ $ (-1167 (-537)))) (-15 -1856 ($ $ (-537))) (-15 -1856 ($ $ (-1167 (-537)))) (-15 -4049 ($ |t#1| $ (-537))) (-15 -4049 ($ $ $ (-537))) (IF (|has| $ (-6 -4301)) (-15 -2476 (|t#1| $ (-1167 (-537)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-1895 (((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117)) 44))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117))) (-15 -1895 ((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912)) (-617 |#2|)) (T -613)) -((-1895 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-613 *6 *2 *3)) (-4 *3 (-617 *2)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-4 *4 (-13 (-29 *6) (-1139) (-912))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) (-5 *1 (-613 *6 *4 *3)) (-4 *3 (-617 *4))))) -(-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117))) (-15 -1895 ((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) NIL (|has| |#1| (-347)))) (-1907 (($ $ (-731)) NIL (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) NIL)) (-3957 (($ $ $) NIL (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) NIL)) (-4273 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-614 |#1|) (-617 |#1|) (-218)) (T -614)) -NIL -(-617 |#1|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) NIL (|has| |#1| (-347)))) (-1907 (($ $ (-731)) NIL (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3957 (($ $ $) NIL (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) NIL)) (-4273 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-615 |#1| |#2|) (-13 (-617 |#1|) (-270 |#2| |#2|)) (-218) (-13 (-609 |#1|) (-10 -8 (-15 -3456 ($ $))))) (T -615)) -NIL -(-13 (-617 |#1|) (-270 |#2| |#2|)) -((-2078 (($ $) 26)) (-4273 (($ $) 24)) (-4230 (($) 12))) -(((-616 |#1| |#2|) (-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -4230 (|#1|))) (-617 |#2|) (-998)) (T -616)) -NIL -(-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -4230 (|#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2078 (($ $) 80 (|has| |#1| (-347)))) (-1691 (($ $ $) 82 (|has| |#1| (-347)))) (-1907 (($ $ (-731)) 81 (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-4279 (($ $ $) 43 (|has| |#1| (-347)))) (-2262 (($ $ $) 44 (|has| |#1| (-347)))) (-2623 (($ $ $) 46 (|has| |#1| (-347)))) (-1704 (($ $ $) 41 (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 40 (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) 42 (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 45 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) 72 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 67)) (-3958 (((-537) $) 73 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 71 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 66)) (-3940 (($ $) 62)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 53 (|has| |#1| (-435)))) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 60)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 56 (|has| |#1| (-529)))) (-1883 (((-731) $) 64)) (-3555 (($ $ $) 50 (|has| |#1| (-347)))) (-3592 (($ $ $) 51 (|has| |#1| (-347)))) (-1690 (($ $ $) 39 (|has| |#1| (-347)))) (-3193 (($ $ $) 48 (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 47 (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) 49 (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 52 (|has| |#1| (-347)))) (-3912 ((|#1| $) 63)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) 85)) (-3957 (($ $ $) 79 (|has| |#1| (-347)))) (-2872 (((-731) $) 65)) (-1835 ((|#1| $) 54 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 69 (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 68)) (-3459 (((-606 |#1|) $) 59)) (-3500 ((|#1| $ (-731)) 61)) (-3654 (((-731)) 28)) (-3127 ((|#1| $ |#1| |#1|) 58)) (-4273 (($ $) 83)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($) 84)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-617 |#1|) (-134) (-998)) (T -617)) -((-4230 (*1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-1907 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-617 *3)) (-4 *3 (-998)) (-4 *3 (-347)))) (-2078 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3957 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(-13 (-809 |t#1|) (-270 |t#1| |t#1|) (-10 -8 (-15 -4230 ($)) (-15 -4273 ($ $)) (IF (|has| |t#1| (-347)) (PROGN (-15 -1691 ($ $ $)) (-15 -1907 ($ $ (-731))) (-15 -2078 ($ $)) (-15 -3957 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-270 |#1| |#1|) . T) ((-395 |#1|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-809 |#1|) . T)) -((-4251 (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))) 74 (|has| |#1| (-27)))) (-3622 (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))) 73 (|has| |#1| (-27))) (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 17))) -(((-618 |#1| |#2|) (-10 -7 (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)))) (-15 -4251 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))))) |%noBranch|)) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -618)) -((-4251 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-614 (-391 *6)))) (-5 *1 (-618 *5 *6)) (-5 *3 (-614 (-391 *6)))))) -(-10 -7 (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)))) (-15 -4251 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) 28 (|has| |#1| (-347)))) (-1907 (($ $ (-731)) 31 (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) 24)) (-3957 (($ $ $) 33 (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) 20) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) 23)) (-4273 (($ $) NIL)) (-2928 (($) 21 T CONST)) (-2943 (($) 8 T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-617 |#1|) (-998) (-1 |#1| |#1|)) (T -619)) -NIL -(-617 |#1|) -((-1691 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1907 ((|#2| |#2| (-731) (-1 |#1| |#1|)) 40)) (-3957 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1691 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1907 (|#2| |#2| (-731) (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-347) (-617 |#1|)) (T -620)) -((-3957 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) (-4 *2 (-617 *4)))) (-1907 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-5 *1 (-620 *5 *2)) (-4 *2 (-617 *5)))) (-1691 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) (-4 *2 (-617 *4))))) -(-10 -7 (-15 -1691 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1907 (|#2| |#2| (-731) (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-1512 (($ $ $) 9))) -(((-621 |#1|) (-10 -8 (-15 -1512 (|#1| |#1| |#1|))) (-622)) (T -621)) -NIL -(-10 -8 (-15 -1512 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-3284 (($ $) 10)) (-1512 (($ $ $) 8)) (-2244 (((-111) $ $) 6)) (-1501 (($ $ $) 9))) -(((-622) (-134)) (T -622)) -((-3284 (*1 *1 *1) (-4 *1 (-622))) (-1501 (*1 *1 *1 *1) (-4 *1 (-622))) (-1512 (*1 *1 *1 *1) (-4 *1 (-622)))) -(-13 (-100) (-10 -8 (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3433 (((-735) $) 15)) (-2344 (($ $ |#1|) 56)) (-2346 (($ $) 32)) (-2347 (($ $) 31)) (-3470 (((-3 |#1| "failed") $) 48)) (-3469 ((|#1| $) NIL)) (-2376 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3846 (((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526)) 46)) (-2737 ((|#1| $ (-526)) 30)) (-2738 ((|#2| $ (-526)) 29)) (-2340 (($ (-1 |#1| |#1|) $) 34)) (-2341 (($ (-1 |#2| |#2|) $) 38)) (-2345 (($) 10)) (-2349 (($ |#1| |#2|) 22)) (-2348 (($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|)))) 23)) (-2350 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $) 13)) (-2343 (($ |#1| $) 57)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2342 (((-111) $ $) 60)) (-4274 (((-823) $) 19) (($ |#1|) 16)) (-3353 (((-111) $ $) 25))) +(((-614 |#1| |#2| |#3|) (-13 (-1052) (-995 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526))) (-15 -2350 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $)) (-15 -2349 ($ |#1| |#2|)) (-15 -2348 ($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))))) (-15 -2738 (|#2| $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -3433 ((-735) $)) (-15 -2345 ($)) (-15 -2344 ($ $ |#1|)) (-15 -2343 ($ |#1| $)) (-15 -2376 ($ |#1| |#2| $)) (-15 -2376 ($ $ $)) (-15 -2342 ((-111) $ $)) (-15 -2341 ($ (-1 |#2| |#2|) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)))) (-1052) (-23) |#2|) (T -614)) +((-3846 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-823) (-823) (-823))) (-5 *4 (-526)) (-5 *2 (-823)) (-5 *1 (-614 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-23)) (-14 *7 *6))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2349 (*1 *1 *2 *3) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-23)) (-5 *1 (-614 *4 *2 *5)) (-4 *4 (-1052)) (-14 *5 *2))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *2 (-1052)) (-5 *1 (-614 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2345 (*1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2344 (*1 *1 *1 *2) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2343 (*1 *1 *2 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2376 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2376 (*1 *1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) (-2342 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-614 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1052) (-995 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-1 (-823) (-823) (-823)) (-1 (-823) (-823) (-823)) (-526))) (-15 -2350 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))) $)) (-15 -2349 ($ |#1| |#2|)) (-15 -2348 ($ (-607 (-2 (|:| |gen| |#1|) (|:| -4260 |#2|))))) (-15 -2738 (|#2| $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -3433 ((-735) $)) (-15 -2345 ($)) (-15 -2344 ($ $ |#1|)) (-15 -2343 ($ |#1| $)) (-15 -2376 ($ |#1| |#2| $)) (-15 -2376 ($ $ $)) (-15 -2342 ((-111) $ $)) (-15 -2341 ($ (-1 |#2| |#2|) $)) (-15 -2340 ($ (-1 |#1| |#1|) $)))) +((-2279 (((-526) $) 24)) (-2351 (($ |#2| $ (-526)) 22) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) 12)) (-2282 (((-111) (-526) $) 15)) (-4120 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-607 $)) NIL))) +(((-615 |#1| |#2|) (-10 -8 (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -2279 ((-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2282 ((-111) (-526) |#1|))) (-616 |#2|) (-1159)) (T -615)) +NIL +(-10 -8 (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -2279 ((-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2282 ((-111) (-526) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-616 |#1|) (-134) (-1159)) (T -616)) +((-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4120 (*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-2351 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-616 *2)) (-4 *2 (-1159)))) (-2351 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1172 (-526))) (|has| *1 (-6 -4311)) (-4 *1 (-616 *2)) (-4 *2 (-1159))))) +(-13 (-574 (-526) |t#1|) (-145 |t#1|) (-10 -8 (-15 -3936 ($ (-735) |t#1|)) (-15 -4120 ($ $ |t#1|)) (-15 -4120 ($ |t#1| $)) (-15 -4120 ($ $ $)) (-15 -4120 ($ (-607 $))) (-15 -4275 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4118 ($ $ (-1172 (-526)))) (-15 -2352 ($ $ (-526))) (-15 -2352 ($ $ (-1172 (-526)))) (-15 -2351 ($ |t#1| $ (-526))) (-15 -2351 ($ $ $ (-526))) (IF (|has| $ (-6 -4311)) (-15 -4106 (|t#1| $ (-1172 (-526)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 15)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3298 ((|#1| $) 21)) (-3637 (($ $ $) NIL (|has| |#1| (-755)))) (-3638 (($ $ $) NIL (|has| |#1| (-755)))) (-3554 (((-1106) $) 46)) (-3555 (((-1070) $) NIL)) (-3297 ((|#3| $) 22)) (-4274 (((-823) $) 42)) (-2957 (($) 10 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-755)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-755)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL (|has| |#1| (-755)))) (-2985 (((-111) $ $) 24 (|has| |#1| (-755)))) (-4265 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4156 (($ $) 17) (($ $ $) NIL)) (-4158 (($ $ $) 27)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-617 |#1| |#2| |#3|) (-13 (-682 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) (-682 |#2|) (-163) (|SubsetCategory| (-691) |#2|)) (T -617)) +((-4265 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)) (-4 *2 (|SubsetCategory| (-691) *4)))) (-4265 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-682 *4)) (-4 *3 (|SubsetCategory| (-691) *4)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-682 *3)) (-5 *1 (-617 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-691) *3)))) (-3297 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4))))) +(-13 (-682 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -4265 ($ $ |#3|)) (-15 -4265 ($ |#1| |#3|)) (-15 -3298 (|#1| $)) (-15 -3297 (|#3| $)))) +((-3895 (((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123)) 44))) +(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123))) (-15 -3895 ((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919)) (-623 |#2|)) (T -618)) +((-3895 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-618 *6 *2 *3)) (-4 *3 (-623 *2)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-4 *4 (-13 (-29 *6) (-1145) (-919))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) (-5 *1 (-618 *6 *4 *3)) (-4 *3 (-623 *4))))) +(-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) "failed") |#3| |#2| (-1123))) (-15 -3895 ((-3 |#2| "failed") |#3| |#2| (-1123) |#2| (-607 |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) 28 (|has| |#1| (-348)))) (-2356 (($ $ (-735)) 31 (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) 24)) (-2357 (($ $ $) 33 (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) 20) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) 23)) (-2823 (($ $) NIL)) (-2957 (($) 21 T CONST)) (-2964 (($) 8 T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-623 |#1|) (-1004) (-1 |#1| |#1|)) (T -619)) +NIL +(-623 |#1|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) NIL (|has| |#1| (-348)))) (-2356 (($ $ (-735)) NIL (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) NIL)) (-2357 (($ $ $) NIL (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) NIL)) (-2823 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-620 |#1|) (-623 |#1|) (-219)) (T -620)) +NIL +(-623 |#1|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2353 (($ $) NIL (|has| |#1| (-348)))) (-2355 (($ $ $) NIL (|has| |#1| (-348)))) (-2356 (($ $ (-735)) NIL (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2357 (($ $ $) NIL (|has| |#1| (-348)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) NIL)) (-2823 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($) NIL)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-621 |#1| |#2|) (-13 (-623 |#1|) (-271 |#2| |#2|)) (-219) (-13 (-613 |#1|) (-10 -8 (-15 -4129 ($ $))))) (T -621)) +NIL +(-13 (-623 |#1|) (-271 |#2| |#2|)) +((-2353 (($ $) 26)) (-2823 (($ $) 24)) (-2969 (($) 12))) +(((-622 |#1| |#2|) (-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2969 (|#1|))) (-623 |#2|) (-1004)) (T -622)) +NIL +(-10 -8 (-15 -2353 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2969 (|#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2353 (($ $) 80 (|has| |#1| (-348)))) (-2355 (($ $ $) 82 (|has| |#1| (-348)))) (-2356 (($ $ (-735)) 81 (|has| |#1| (-348)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2840 (($ $ $) 43 (|has| |#1| (-348)))) (-2841 (($ $ $) 44 (|has| |#1| (-348)))) (-2842 (($ $ $) 46 (|has| |#1| (-348)))) (-2838 (($ $ $) 41 (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 40 (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 45 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) 72 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) 70 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) 67)) (-3469 (((-526) $) 73 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 71 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 66)) (-4276 (($ $) 62)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 53 (|has| |#1| (-436)))) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 60)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 56 (|has| |#1| (-533)))) (-3120 (((-735) $) 64)) (-2846 (($ $ $) 50 (|has| |#1| (-348)))) (-2847 (($ $ $) 51 (|has| |#1| (-348)))) (-2836 (($ $ $) 39 (|has| |#1| (-348)))) (-2844 (($ $ $) 48 (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 47 (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) 49 (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 52 (|has| |#1| (-348)))) (-3487 ((|#1| $) 63)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-533)))) (-4118 ((|#1| $ |#1|) 85)) (-2357 (($ $ $) 79 (|has| |#1| (-348)))) (-4264 (((-735) $) 65)) (-3117 ((|#1| $) 54 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 69 (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 68)) (-4136 (((-607 |#1|) $) 59)) (-3999 ((|#1| $ (-735)) 61)) (-3423 (((-735)) 28)) (-2849 ((|#1| $ |#1| |#1|) 58)) (-2823 (($ $) 83)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($) 84)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-623 |#1|) (-134) (-1004)) (T -623)) +((-2969 (*1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) (-2823 (*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-623 *3)) (-4 *3 (-1004)) (-4 *3 (-348)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2357 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(-13 (-813 |t#1|) (-271 |t#1| |t#1|) (-10 -8 (-15 -2969 ($)) (-15 -2823 ($ $)) (IF (|has| |t#1| (-348)) (PROGN (-15 -2355 ($ $ $)) (-15 -2356 ($ $ (-735))) (-15 -2353 ($ $)) (-15 -2357 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-271 |#1| |#1|) . T) ((-397 |#1|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-813 |#1|) . T)) +((-2354 (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))) 74 (|has| |#1| (-27)))) (-4051 (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))) 73 (|has| |#1| (-27))) (((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 17))) +(((-624 |#1| |#2|) (-10 -7 (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)))) (-15 -2354 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))))) |%noBranch|)) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -624)) +((-2354 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-620 (-392 *5))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-620 (-392 *5))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-620 (-392 *6)))) (-5 *1 (-624 *5 *6)) (-5 *3 (-620 (-392 *6)))))) +(-10 -7 (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4051 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|)))) (-15 -2354 ((-607 (-620 (-392 |#2|))) (-620 (-392 |#2|))))) |%noBranch|)) +((-2355 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2356 ((|#2| |#2| (-735) (-1 |#1| |#1|)) 40)) (-2357 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-625 |#1| |#2|) (-10 -7 (-15 -2355 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| (-735) (-1 |#1| |#1|))) (-15 -2357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-348) (-623 |#1|)) (T -625)) +((-2357 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) (-4 *2 (-623 *4)))) (-2356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-625 *5 *2)) (-4 *2 (-623 *5)))) (-2355 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) (-4 *2 (-623 *4))))) +(-10 -7 (-15 -2355 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2356 (|#2| |#2| (-735) (-1 |#1| |#1|))) (-15 -2357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3641 (($ $ $) 9))) +(((-626 |#1|) (-10 -8 (-15 -3641 (|#1| |#1| |#1|))) (-627)) (T -626)) +NIL +(-10 -8 (-15 -3641 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3639 (($ $) 10)) (-3641 (($ $ $) 8)) (-3353 (((-111) $ $) 6)) (-3640 (($ $ $) 9))) +(((-627) (-134)) (T -627)) +((-3639 (*1 *1 *1) (-4 *1 (-627))) (-3640 (*1 *1 *1 *1) (-4 *1 (-627))) (-3641 (*1 *1 *1 *1) (-4 *1 (-627)))) +(-13 (-100) (-10 -8 (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)))) (((-100) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 15)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3301 ((|#1| $) 21)) (-2444 (($ $ $) NIL (|has| |#1| (-751)))) (-3889 (($ $ $) NIL (|has| |#1| (-751)))) (-1654 (((-1100) $) 46)) (-2528 (((-1064) $) NIL)) (-3315 ((|#3| $) 22)) (-2341 (((-816) $) 42)) (-2928 (($) 10 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2263 (((-111) $ $) 24 (|has| |#1| (-751)))) (-2340 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2329 (($ $) 17) (($ $ $) NIL)) (-2318 (($ $ $) 27)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-623 |#1| |#2| |#3|) (-13 (-678 |#2|) (-10 -8 (IF (|has| |#1| (-751)) (-6 (-751)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) (-678 |#2|) (-163) (|SubsetCategory| (-687) |#2|)) (T -623)) -((-2340 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)) (-4 *2 (|SubsetCategory| (-687) *4)))) (-2340 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-623 *2 *4 *3)) (-4 *2 (-678 *4)) (-4 *3 (|SubsetCategory| (-687) *4)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-678 *3)) (-5 *1 (-623 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-687) *3)))) (-3315 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4))))) -(-13 (-678 |#2|) (-10 -8 (IF (|has| |#1| (-751)) (-6 (-751)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) -((-3328 (((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)) 33))) -(((-624 |#1|) (-10 -7 (-15 -3328 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)))) (-862)) (T -624)) -((-3328 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *4))) (-5 *3 (-1113 *4)) (-4 *4 (-862)) (-5 *1 (-624 *4))))) -(-10 -7 (-15 -3328 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 82)) (-1233 (($ $ (-731)) 90)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3139 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 48)) (-1516 (((-3 (-633 |#1|) "failed") $) NIL)) (-3958 (((-633 |#1|) $) NIL)) (-3940 (($ $) 89)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-633 |#1|) |#2|) 68)) (-2177 (($ $) 86)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 47)) (-2370 (((-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-633 |#1|) $) NIL)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ |#1| $) 30) (($ $ (-606 |#1|) (-606 $)) 32)) (-2872 (((-731) $) 88)) (-2350 (($ $ $) 20) (($ (-633 |#1|) (-633 |#1|)) 77) (($ (-633 |#1|) $) 75) (($ $ (-633 |#1|)) 76)) (-2341 (((-816) $) NIL) (($ |#1|) 74) (((-1214 |#1| |#2|) $) 58) (((-1223 |#1| |#2|) $) 41) (($ (-633 |#1|)) 25)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-633 |#1|)) NIL)) (-3449 ((|#2| (-1223 |#1| |#2|) $) 43)) (-2928 (($) 23 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3836 (((-3 $ "failed") (-1214 |#1| |#2|)) 60)) (-4071 (($ (-633 |#1|)) 14)) (-2244 (((-111) $ $) 44)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) 66) (($ $ $) NIL)) (-2318 (($ $ $) 29)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-633 |#1|)) NIL))) -(((-625 |#1| |#2|) (-13 (-358 |#1| |#2|) (-366 |#2| (-633 |#1|)) (-10 -8 (-15 -3836 ((-3 $ "failed") (-1214 |#1| |#2|))) (-15 -2350 ($ (-633 |#1|) (-633 |#1|))) (-15 -2350 ($ (-633 |#1|) $)) (-15 -2350 ($ $ (-633 |#1|))))) (-807) (-163)) (T -625)) -((-3836 (*1 *1 *2) (|partial| -12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *1 (-625 *3 *4)))) (-2350 (*1 *1 *2 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163)))) (-2350 (*1 *1 *2 *1) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163))))) -(-13 (-358 |#1| |#2|) (-366 |#2| (-633 |#1|)) (-10 -8 (-15 -3836 ((-3 $ "failed") (-1214 |#1| |#2|))) (-15 -2350 ($ (-633 |#1|) (-633 |#1|))) (-15 -2350 ($ (-633 |#1|) $)) (-15 -2350 ($ $ (-633 |#1|))))) -((-2450 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-1543 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-3435 (($ (-1 (-111) |#2|) $) 28)) (-4146 (($ $) 56)) (-1376 (($ $) 64)) (-3026 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2299 (((-537) |#2| $ (-537)) 61) (((-537) |#2| $) NIL) (((-537) (-1 (-111) |#2|) $) 47)) (-3157 (($ (-731) |#2|) 54)) (-1646 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-1470 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-1612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1285 (($ |#2|) 15)) (-3499 (($ $ $ (-537)) 36) (($ |#2| $ (-537)) 34)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3282 (($ $ (-1167 (-537))) 44) (($ $ (-537)) 38)) (-1241 (($ $ $ (-537)) 60)) (-2494 (($ $) 58)) (-2263 (((-111) $ $) 66))) -(((-626 |#1| |#2|) (-10 -8 (-15 -1285 (|#1| |#2|)) (-15 -3282 (|#1| |#1| (-537))) (-15 -3282 (|#1| |#1| (-1167 (-537)))) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3499 (|#1| |#2| |#1| (-537))) (-15 -3499 (|#1| |#1| |#1| (-537))) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -1646 (|#1| |#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -4146 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3157 (|#1| (-731) |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) (-627 |#2|) (-1154)) (T -626)) -NIL -(-10 -8 (-15 -1285 (|#1| |#2|)) (-15 -3282 (|#1| |#1| (-537))) (-15 -3282 (|#1| |#1| (-1167 (-537)))) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3499 (|#1| |#2| |#1| (-537))) (-15 -3499 (|#1| |#1| |#1| (-537))) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -1646 (|#1| |#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -4146 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3157 (|#1| (-731) |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2450 (((-111) $) 142 (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-1543 (($ $) 146 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4301)))) (-1566 (($ $) 141 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 129)) (-1936 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4300)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-4146 (($ $) 144 (|has| $ (-6 -4301)))) (-3289 (($ $) 134)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-1376 (($ $) 131 (|has| |#1| (-1045)))) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 130 (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) 125)) (-2355 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4300))) (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-2299 (((-537) |#1| $ (-537)) 139 (|has| |#1| (-1045))) (((-537) |#1| $) 138 (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) 137)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-2444 (($ $ $) 147 (|has| |#1| (-807)))) (-1646 (($ $ $) 132 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-1470 (($ $ $) 140 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-3889 (($ $ $) 148 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1285 (($ |#1|) 122)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-3499 (($ $ $ (-537)) 127) (($ |#1| $ (-537)) 126)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1492 (((-111) $) 84)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-3282 (($ $ (-1167 (-537))) 124) (($ $ (-537)) 123)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 143 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61) (($ $ |#1|) 60)) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 150 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 151 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 149 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 152 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-627 |#1|) (-134) (-1154)) (T -627)) -((-1285 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1154))))) -(-13 (-1091 |t#1|) (-357 |t#1|) (-266 |t#1|) (-10 -8 (-15 -1285 ($ |t#1|)))) -(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-266 |#1|) . T) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-962 |#1|) . T) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1091 |#1|) . T) ((-1154) . T) ((-1188 |#1|) . T)) -((-1895 (((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|))) 22) (((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)) 14)) (-3705 (((-731) (-649 |#1|) (-1200 |#1|)) 30)) (-1431 (((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|)) 24)) (-2955 (((-111) (-649 |#1|) (-1200 |#1|)) 27))) -(((-628 |#1|) (-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|))) (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|)))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|)))) (-15 -1431 ((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|))) (-15 -2955 ((-111) (-649 |#1|) (-1200 |#1|))) (-15 -3705 ((-731) (-649 |#1|) (-1200 |#1|)))) (-347)) (T -628)) -((-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-5 *2 (-731)) (-5 *1 (-628 *5)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-5 *2 (-111)) (-5 *1 (-628 *5)))) (-1431 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1200 *4)) (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *1 (-628 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5)))))) (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5)))))) (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5))))) (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5))))) (-5 *1 (-628 *5)) (-5 *4 (-1200 *5))))) -(-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|))) (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|)))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|)))) (-15 -1431 ((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|))) (-15 -2955 ((-111) (-649 |#1|) (-1200 |#1|))) (-15 -3705 ((-731) (-649 |#1|) (-1200 |#1|)))) -((-1895 (((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|) 45)) (-3705 (((-731) |#4| |#3|) 17)) (-1431 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2955 (((-111) |#4| |#3|) 13))) -(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|)) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|))) (-15 -1431 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2955 ((-111) |#4| |#3|)) (-15 -3705 ((-731) |#4| |#3|))) (-347) (-13 (-357 |#1|) (-10 -7 (-6 -4301))) (-13 (-357 |#1|) (-10 -7 (-6 -4301))) (-647 |#1| |#2| |#3|)) (T -629)) -((-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-731)) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-2955 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-111)) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-1431 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-347)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4301)))) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))) (-5 *1 (-629 *4 *5 *2 *3)) (-4 *3 (-647 *4 *5 *2)))) (-1895 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-606 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2122 (-606 *7))))) (-5 *1 (-629 *5 *6 *7 *3)) (-5 *4 (-606 *7)) (-4 *3 (-647 *5 *6 *7)))) (-1895 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) -(-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|)) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|))) (-15 -1431 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2955 ((-111) |#4| |#3|)) (-15 -3705 ((-731) |#4| |#3|))) -((-1712 (((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)) 45))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1712 ((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)))) (-529) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -630)) -((-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *7)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 (-391 *8)) "failed")) (|:| -2122 (-606 (-1200 (-391 *8)))))) (-5 *1 (-630 *5 *6 *7 *8))))) -(-10 -7 (-15 -1712 ((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-1428 ((|#2| $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#2|))) NIL) (((-1200 (-649 |#2|)) (-1200 $)) NIL)) (-3348 (((-111) $) NIL)) (-2568 (((-1200 $)) 37)) (-2506 (((-111) $ (-731)) NIL)) (-3110 (($ |#2|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) NIL (|has| |#2| (-291)))) (-2964 (((-225 |#1| |#2|) $ (-537)) NIL)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#2| (-529)))) (-2649 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-4263 (((-649 |#2|)) NIL) (((-649 |#2|) (-1200 $)) NIL)) (-2624 ((|#2| $) NIL)) (-4246 (((-649 |#2|) $) NIL) (((-649 |#2|) $ (-1200 $)) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| |#2| (-529)))) (-1899 (((-1113 (-905 |#2|))) NIL (|has| |#2| (-347)))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#2| $) NIL)) (-3112 (((-1113 |#2|) $) NIL (|has| |#2| (-529)))) (-2503 ((|#2|) NIL) ((|#2| (-1200 $)) NIL)) (-1889 (((-1113 |#2|) $) NIL)) (-1855 (((-111)) NIL)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-3447 (($ (-1200 |#2|)) NIL) (($ (-1200 |#2|) (-1200 $)) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3705 (((-731) $) NIL (|has| |#2| (-529))) (((-874)) 38)) (-4030 ((|#2| $ (-537) (-537)) NIL)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL)) (-2342 (((-731) $) NIL (|has| |#2| (-529)))) (-2630 (((-606 (-225 |#1| |#2|)) $) NIL (|has| |#2| (-529)))) (-2931 (((-731) $) NIL)) (-2186 (((-111)) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#2| $) NIL (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#2|))) NIL)) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3156 (((-606 (-606 |#2|)) $) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#2| (-529)))) (-1652 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-3699 (((-649 |#2|)) NIL) (((-649 |#2|) (-1200 $)) NIL)) (-4217 ((|#2| $) NIL)) (-3486 (((-649 |#2|) $) NIL) (((-649 |#2|) $ (-1200 $)) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| |#2| (-529)))) (-4096 (((-1113 (-905 |#2|))) NIL (|has| |#2| (-347)))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#2| $) NIL)) (-2818 (((-1113 |#2|) $) NIL (|has| |#2| (-529)))) (-2757 ((|#2|) NIL) ((|#2| (-1200 $)) NIL)) (-4207 (((-1113 |#2|) $) NIL)) (-2987 (((-111)) NIL)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL)) (-2077 (((-111)) NIL)) (-2415 (((-111)) NIL)) (-1321 (((-3 $ "failed") $) NIL (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) (-537) |#2|) NIL) ((|#2| $ (-537) (-537)) 22) ((|#2| $ (-537)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-3018 ((|#2| $) NIL)) (-3189 (($ (-606 |#2|)) NIL)) (-3400 (((-111) $) NIL)) (-4089 (((-225 |#1| |#2|) $) NIL)) (-3075 ((|#2| $) NIL (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-1484 (((-649 |#2|) (-1200 $)) NIL) (((-1200 |#2|) $) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $ (-1200 $)) 25)) (-3996 (($ (-1200 |#2|)) NIL) (((-1200 |#2|) $) NIL)) (-4183 (((-606 (-905 |#2|))) NIL) (((-606 (-905 |#2|)) (-1200 $)) NIL)) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL)) (-2198 (((-225 |#1| |#2|) $ (-537)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (((-649 |#2|) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) 36)) (-3678 (((-606 (-1200 |#2|))) NIL (|has| |#2| (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL)) (-3127 (($ (-649 |#2|) $) NIL)) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL)) (-3530 (((-111)) NIL)) (-1972 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) NIL) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-631 |#1| |#2|) (-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-401 |#2|)) (-874) (-163)) (T -631)) -NIL -(-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-401 |#2|)) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2243 (((-606 (-1122)) $) 10)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-632) (-13 (-1029) (-10 -8 (-15 -2243 ((-606 (-1122)) $))))) (T -632)) -((-2243 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-632))))) -(-13 (-1029) (-10 -8 (-15 -2243 ((-606 (-1122)) $)))) -((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) NIL)) (-3278 (($ $) 52)) (-2615 (((-111) $) NIL)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1427 (((-3 $ "failed") (-779 |#1|)) 23)) (-2399 (((-111) (-779 |#1|)) 15)) (-2504 (($ (-779 |#1|)) 24)) (-2680 (((-111) $ $) 30)) (-3845 (((-874) $) 37)) (-3267 (($ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3622 (((-606 $) (-779 |#1|)) 17)) (-2341 (((-816) $) 43) (($ |#1|) 34) (((-779 |#1|) $) 39) (((-637 |#1|) $) 44)) (-2557 (((-57 (-606 $)) (-606 |#1|) (-874)) 57)) (-2301 (((-606 $) (-606 |#1|) (-874)) 60)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 53)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 38))) -(((-633 |#1|) (-13 (-807) (-989 |#1|) (-10 -8 (-15 -2615 ((-111) $)) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ((-637 |#1|) $)) (-15 -3622 ((-606 $) (-779 |#1|))) (-15 -2399 ((-111) (-779 |#1|))) (-15 -2504 ($ (-779 |#1|))) (-15 -1427 ((-3 $ "failed") (-779 |#1|))) (-15 -2163 ((-606 |#1|) $)) (-15 -2557 ((-57 (-606 $)) (-606 |#1|) (-874))) (-15 -2301 ((-606 $) (-606 |#1|) (-874))))) (-807)) (T -633)) -((-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-3267 (*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-633 *4))) (-5 *1 (-633 *4)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-111)) (-5 *1 (-633 *4)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3)))) (-1427 (*1 *1 *2) (|partial| -12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) (-5 *2 (-57 (-606 (-633 *5)))) (-5 *1 (-633 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) (-5 *2 (-606 (-633 *5))) (-5 *1 (-633 *5))))) -(-13 (-807) (-989 |#1|) (-10 -8 (-15 -2615 ((-111) $)) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ((-637 |#1|) $)) (-15 -3622 ((-606 $) (-779 |#1|))) (-15 -2399 ((-111) (-779 |#1|))) (-15 -2504 ($ (-779 |#1|))) (-15 -1427 ((-3 $ "failed") (-779 |#1|))) (-15 -2163 ((-606 |#1|) $)) (-15 -2557 ((-57 (-606 $)) (-606 |#1|) (-874))) (-15 -2301 ((-606 $) (-606 |#1|) (-874))))) -((-3619 ((|#2| $) 76)) (-4199 (($ $) 96)) (-2506 (((-111) $ (-731)) 26)) (-3200 (($ $) 85) (($ $ (-731)) 88)) (-4254 (((-111) $) 97)) (-2570 (((-606 $) $) 72)) (-3868 (((-111) $ $) 71)) (-1642 (((-111) $ (-731)) 24)) (-1659 (((-537) $) 46)) (-2187 (((-537) $) 45)) (-2489 (((-111) $ (-731)) 22)) (-3862 (((-111) $) 74)) (-2375 ((|#2| $) 89) (($ $ (-731)) 92)) (-4049 (($ $ $ (-537)) 62) (($ |#2| $ (-537)) 61)) (-1270 (((-606 (-537)) $) 44)) (-1641 (((-111) (-537) $) 42)) (-3188 ((|#2| $) NIL) (($ $ (-731)) 84)) (-1540 (($ $ (-537)) 100)) (-1492 (((-111) $) 99)) (-3206 (((-111) (-1 (-111) |#2|) $) 32)) (-3010 (((-606 |#2|) $) 33)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1167 (-537))) 58) ((|#2| $ (-537)) 40) ((|#2| $ (-537) |#2|) 41)) (-2364 (((-537) $ $) 70)) (-1856 (($ $ (-1167 (-537))) 57) (($ $ (-537)) 51)) (-3335 (((-111) $) 66)) (-3136 (($ $) 81)) (-3597 (((-731) $) 80)) (-1935 (($ $) 79)) (-2350 (($ (-606 |#2|)) 37)) (-1577 (($ $) 101)) (-2804 (((-606 $) $) 69)) (-4261 (((-111) $ $) 68)) (-2030 (((-111) (-1 (-111) |#2|) $) 31)) (-2244 (((-111) $ $) 18)) (-2258 (((-731) $) 29))) -(((-634 |#1| |#2|) (-10 -8 (-15 -1577 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-537))) (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3010 ((-606 |#2|) |#1|)) (-15 -1641 ((-111) (-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -2187 ((-537) |#1|)) (-15 -1659 ((-537) |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -2364 ((-537) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) (-635 |#2|) (-1154)) (T -634)) -NIL -(-10 -8 (-15 -1577 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-537))) (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3010 ((-606 |#2|) |#1|)) (-15 -1641 ((-111) (-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -2187 ((-537) |#1|)) (-15 -1659 ((-537) |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -2364 ((-537) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 102)) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-2784 (($ $) 124)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 103)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2227 (((-731) $) 123)) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-4201 (($ $) 126)) (-3253 (((-111) $) 127)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-2950 ((|#1| $) 125)) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1540 (($ $ (-537)) 122)) (-1492 (((-111) $) 84)) (-1892 (((-111) $) 128)) (-2848 (((-111) $) 129)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-1577 (($ $) 121)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-635 |#1|) (-134) (-1154)) (T -635)) -((-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-4201 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2784 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) -(-13 (-1091 |t#1|) (-10 -8 (-15 -2355 ($ (-1 (-111) |t#1|) $)) (-15 -1936 ($ (-1 (-111) |t#1|) $)) (-15 -2848 ((-111) $)) (-15 -1892 ((-111) $)) (-15 -3253 ((-111) $)) (-15 -4201 ($ $)) (-15 -2950 (|t#1| $)) (-15 -2784 ($ $)) (-15 -2227 ((-731) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1091 |#1|) . T) ((-1154) . T) ((-1188 |#1|) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1775 (($ (-731) (-731) (-731)) 33 (|has| |#1| (-998)))) (-2506 (((-111) $ (-731)) NIL)) (-4204 ((|#1| $ (-731) (-731) (-731) |#1|) 27)) (-3832 (($) NIL T CONST)) (-2290 (($ $ $) 37 (|has| |#1| (-998)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3249 (((-1200 (-731)) $) 9)) (-2250 (($ (-1117) $ $) 22)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3779 (($ (-731)) 35 (|has| |#1| (-998)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-731) (-731) (-731)) 25)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2350 (($ (-606 (-606 (-606 |#1|)))) 44)) (-2341 (($ (-911 (-911 (-911 |#1|)))) 15) (((-911 (-911 (-911 |#1|))) $) 12) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-636 |#1|) (-13 (-471 |#1|) (-10 -8 (IF (|has| |#1| (-998)) (PROGN (-15 -1775 ($ (-731) (-731) (-731))) (-15 -3779 ($ (-731))) (-15 -2290 ($ $ $))) |%noBranch|) (-15 -2350 ($ (-606 (-606 (-606 |#1|))))) (-15 -1922 (|#1| $ (-731) (-731) (-731))) (-15 -4204 (|#1| $ (-731) (-731) (-731) |#1|)) (-15 -2341 ($ (-911 (-911 (-911 |#1|))))) (-15 -2341 ((-911 (-911 (-911 |#1|))) $)) (-15 -2250 ($ (-1117) $ $)) (-15 -3249 ((-1200 (-731)) $)))) (-1045)) (T -636)) -((-1775 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045)))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-606 *3)))) (-4 *3 (-1045)) (-5 *1 (-636 *3)))) (-1922 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) (-4204 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-4 *3 (-1045)) (-5 *1 (-636 *3)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-5 *1 (-636 *3)) (-4 *3 (-1045)))) (-2250 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-636 *3)) (-4 *3 (-1045)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1200 (-731))) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) -(-13 (-471 |#1|) (-10 -8 (IF (|has| |#1| (-998)) (PROGN (-15 -1775 ($ (-731) (-731) (-731))) (-15 -3779 ($ (-731))) (-15 -2290 ($ $ $))) |%noBranch|) (-15 -2350 ($ (-606 (-606 (-606 |#1|))))) (-15 -1922 (|#1| $ (-731) (-731) (-731))) (-15 -4204 (|#1| $ (-731) (-731) (-731) |#1|)) (-15 -2341 ($ (-911 (-911 (-911 |#1|))))) (-15 -2341 ((-911 (-911 (-911 |#1|))) $)) (-15 -2250 ($ (-1117) $ $)) (-15 -3249 ((-1200 (-731)) $)))) -((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 14)) (-3278 (($ $) 18)) (-2615 (((-111) $) 19)) (-1516 (((-3 |#1| "failed") $) 22)) (-3958 ((|#1| $) 20)) (-3200 (($ $) 36)) (-2177 (($ $) 24)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2680 (((-111) $ $) 42)) (-3845 (((-874) $) 38)) (-3267 (($ $) 17)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) 35)) (-2341 (((-816) $) 31) (($ |#1|) 23) (((-779 |#1|) $) 27)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 12)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 40)) (* (($ $ $) 34))) -(((-637 |#1|) (-13 (-807) (-989 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -3188 (|#1| $)) (-15 -3267 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2177 ($ $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -3278 ($ $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -637)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3267 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807))))) -(-13 (-807) (-989 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -3188 (|#1| $)) (-15 -3267 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2177 ($ $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -3278 ($ $)) (-15 -2163 ((-606 |#1|) $)))) -((-1967 ((|#1| (-1 |#1| (-731) |#1|) (-731) |#1|) 11)) (-4124 ((|#1| (-1 |#1| |#1|) (-731) |#1|) 9))) -(((-638 |#1|) (-10 -7 (-15 -4124 (|#1| (-1 |#1| |#1|) (-731) |#1|)) (-15 -1967 (|#1| (-1 |#1| (-731) |#1|) (-731) |#1|))) (-1045)) (T -638)) -((-1967 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-731) *2)) (-5 *4 (-731)) (-4 *2 (-1045)) (-5 *1 (-638 *2)))) (-4124 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-731)) (-4 *2 (-1045)) (-5 *1 (-638 *2))))) -(-10 -7 (-15 -4124 (|#1| (-1 |#1| |#1|) (-731) |#1|)) (-15 -1967 (|#1| (-1 |#1| (-731) |#1|) (-731) |#1|))) -((-4252 ((|#2| |#1| |#2|) 9)) (-4239 ((|#1| |#1| |#2|) 8))) -(((-639 |#1| |#2|) (-10 -7 (-15 -4239 (|#1| |#1| |#2|)) (-15 -4252 (|#2| |#1| |#2|))) (-1045) (-1045)) (T -639)) -((-4252 (*1 *2 *3 *2) (-12 (-5 *1 (-639 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *1 (-639 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(-10 -7 (-15 -4239 (|#1| |#1| |#2|)) (-15 -4252 (|#2| |#1| |#2|))) -((-3864 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3864 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1045) (-1045) (-1045)) (T -640)) -((-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)) (-5 *1 (-640 *5 *6 *2))))) -(-10 -7 (-15 -3864 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 20)) (-1744 (((-606 (-1153)) $) 18)) (-3687 (($ (-606 (-1153)) (-1153)) 13)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (((-1153) $) 21) (($ (-1062)) 10)) (-2244 (((-111) $ $) NIL))) -(((-641) (-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-1062))) (-15 -3687 ($ (-606 (-1153)) (-1153))) (-15 -1744 ((-606 (-1153)) $)) (-15 -1796 ((-1153) $))))) (T -641)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-641)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1153))) (-5 *3 (-1153)) (-5 *1 (-641)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-641)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-641))))) -(-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-1062))) (-15 -3687 ($ (-606 (-1153)) (-1153))) (-15 -1744 ((-606 (-1153)) $)) (-15 -1796 ((-1153) $)))) -((-1967 (((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)) 23)) (-4085 (((-1 |#1|) |#1|) 8)) (-3119 ((|#1| |#1|) 16)) (-2074 (((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2341 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-731)) 20))) -(((-642 |#1|) (-10 -7 (-15 -4085 ((-1 |#1|) |#1|)) (-15 -2341 ((-1 |#1|) |#1|)) (-15 -2074 (|#1| (-1 |#1| |#1|))) (-15 -2074 ((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537))) (-15 -3119 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-731))) (-15 -1967 ((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)))) (-1045)) (T -642)) -((-1967 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-731) *3)) (-4 *3 (-1045)) (-5 *1 (-642 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *4 (-1045)) (-5 *1 (-642 *4)))) (-3119 (*1 *2 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1045)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-606 *5) (-606 *5))) (-5 *4 (-537)) (-5 *2 (-606 *5)) (-5 *1 (-642 *5)) (-4 *5 (-1045)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-642 *2)) (-4 *2 (-1045)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045)))) (-4085 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045))))) -(-10 -7 (-15 -4085 ((-1 |#1|) |#1|)) (-15 -2341 ((-1 |#1|) |#1|)) (-15 -2074 (|#1| (-1 |#1| |#1|))) (-15 -2074 ((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537))) (-15 -3119 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-731))) (-15 -1967 ((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)))) -((-1804 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3203 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2787 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2228 (((-1 |#2| |#1|) |#2|) 11))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2228 ((-1 |#2| |#1|) |#2|)) (-15 -3203 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2787 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1804 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1045) (-1045)) (T -643)) -((-1804 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5)) (-4 *4 (-1045)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-5 *2 (-1 *5)) (-5 *1 (-643 *4 *5)))) (-2228 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-643 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-1045))))) -(-10 -7 (-15 -2228 ((-1 |#2| |#1|) |#2|)) (-15 -3203 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2787 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1804 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3187 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4034 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3138 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3280 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1621 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3138 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3280 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1621 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3187 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1045) (-1045) (-1045)) (T -644)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-1 *7 *5)) (-5 *1 (-644 *5 *6 *7)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-644 *4 *5 *6)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-1045)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-1045)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1045)) (-4 *4 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *5 *4 *6))))) -(-10 -7 (-15 -4034 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3138 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3280 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1621 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3187 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3195 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1612 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-645 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3195 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-998) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|) (-998) (-357 |#5|) (-357 |#5|) (-647 |#5| |#6| |#7|)) (T -645)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-998)) (-4 *2 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-647 *5 *6 *7)) (-4 *10 (-647 *2 *8 *9)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8))))) -(-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3195 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2591 (($ (-731) (-731)) 33)) (-2417 (($ $ $) 56)) (-3660 (($ |#3|) 52) (($ $) 53)) (-3234 (((-111) $) 28)) (-2324 (($ $ (-537) (-537)) 58)) (-1731 (($ $ (-537) (-537)) 59)) (-4068 (($ $ (-537) (-537) (-537) (-537)) 63)) (-2723 (($ $) 54)) (-3348 (((-111) $) 14)) (-3632 (($ $ (-537) (-537) $) 64)) (-2476 ((|#2| $ (-537) (-537) |#2|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) 62)) (-3110 (($ (-731) |#2|) 39)) (-3299 (($ (-606 (-606 |#2|))) 37)) (-3156 (((-606 (-606 |#2|)) $) 57)) (-3120 (($ $ $) 55)) (-3515 (((-3 $ "failed") $ |#2|) 91)) (-1922 ((|#2| $ (-537) (-537)) NIL) ((|#2| $ (-537) (-537) |#2|) NIL) (($ $ (-606 (-537)) (-606 (-537))) 61)) (-3189 (($ (-606 |#2|)) 40) (($ (-606 $)) 42)) (-3400 (((-111) $) 24)) (-2341 (($ |#4|) 47) (((-816) $) NIL)) (-1830 (((-111) $) 30)) (-2340 (($ $ |#2|) 93)) (-2329 (($ $ $) 68) (($ $) 71)) (-2318 (($ $ $) 66)) (** (($ $ (-731)) 80) (($ $ (-537)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-537) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-646 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#2|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#1| (-537) (-537) |#1|)) (-15 -4068 (|#1| |#1| (-537) (-537) (-537) (-537))) (-15 -1731 (|#1| |#1| (-537) (-537))) (-15 -2324 (|#1| |#1| (-537) (-537))) (-15 -2476 (|#1| |#1| (-606 (-537)) (-606 (-537)) |#1|)) (-15 -1922 (|#1| |#1| (-606 (-537)) (-606 (-537)))) (-15 -3156 ((-606 (-606 |#2|)) |#1|)) (-15 -2417 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3660 (|#1| |#3|)) (-15 -2341 (|#1| |#4|)) (-15 -3189 (|#1| (-606 |#1|))) (-15 -3189 (|#1| (-606 |#2|))) (-15 -3110 (|#1| (-731) |#2|)) (-15 -3299 (|#1| (-606 (-606 |#2|)))) (-15 -2591 (|#1| (-731) (-731))) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537)))) (-647 |#2| |#3| |#4|) (-998) (-357 |#2|) (-357 |#2|)) (T -646)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#2|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#1| (-537) (-537) |#1|)) (-15 -4068 (|#1| |#1| (-537) (-537) (-537) (-537))) (-15 -1731 (|#1| |#1| (-537) (-537))) (-15 -2324 (|#1| |#1| (-537) (-537))) (-15 -2476 (|#1| |#1| (-606 (-537)) (-606 (-537)) |#1|)) (-15 -1922 (|#1| |#1| (-606 (-537)) (-606 (-537)))) (-15 -3156 ((-606 (-606 |#2|)) |#1|)) (-15 -2417 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3660 (|#1| |#3|)) (-15 -2341 (|#1| |#4|)) (-15 -3189 (|#1| (-606 |#1|))) (-15 -3189 (|#1| (-606 |#2|))) (-15 -3110 (|#1| (-731) |#2|)) (-15 -3299 (|#1| (-606 (-606 |#2|)))) (-15 -2591 (|#1| (-731) (-731))) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) 97)) (-2417 (($ $ $) 87)) (-3660 (($ |#2|) 91) (($ $) 90)) (-3234 (((-111) $) 99)) (-2324 (($ $ (-537) (-537)) 83)) (-1731 (($ $ (-537) (-537)) 82)) (-4068 (($ $ (-537) (-537) (-537) (-537)) 81)) (-2723 (($ $) 89)) (-3348 (((-111) $) 101)) (-2506 (((-111) $ (-731)) 8)) (-3632 (($ $ (-537) (-537) $) 80)) (-2476 ((|#1| $ (-537) (-537) |#1|) 44) (($ $ (-606 (-537)) (-606 (-537)) $) 84)) (-2720 (($ $ (-537) |#2|) 42)) (-2573 (($ $ (-537) |#3|) 41)) (-3110 (($ (-731) |#1|) 95)) (-3832 (($) 7 T CONST)) (-3630 (($ $) 67 (|has| |#1| (-291)))) (-2964 ((|#2| $ (-537)) 46)) (-3705 (((-731) $) 66 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) 43)) (-4030 ((|#1| $ (-537) (-537)) 48)) (-3661 (((-606 |#1|) $) 30)) (-2342 (((-731) $) 65 (|has| |#1| (-529)))) (-2630 (((-606 |#3|) $) 64 (|has| |#1| (-529)))) (-2931 (((-731) $) 51)) (-3157 (($ (-731) (-731) |#1|) 57)) (-2945 (((-731) $) 50)) (-1642 (((-111) $ (-731)) 9)) (-3960 ((|#1| $) 62 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 55)) (-2454 (((-537) $) 53)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 54)) (-2485 (((-537) $) 52)) (-3299 (($ (-606 (-606 |#1|))) 96)) (-4081 (($ (-1 |#1| |#1|) $) 34)) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3156 (((-606 (-606 |#1|)) $) 86)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 61 (|has| |#1| (-347)))) (-3120 (($ $ $) 88)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) 56)) (-3515 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) (-537)) 49) ((|#1| $ (-537) (-537) |#1|) 47) (($ $ (-606 (-537)) (-606 (-537))) 85)) (-3189 (($ (-606 |#1|)) 94) (($ (-606 $)) 93)) (-3400 (((-111) $) 100)) (-3075 ((|#1| $) 63 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2198 ((|#3| $ (-537)) 45)) (-2341 (($ |#3|) 92) (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 98)) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) 68 (|has| |#1| (-347)))) (-2329 (($ $ $) 78) (($ $) 77)) (-2318 (($ $ $) 79)) (** (($ $ (-731)) 70) (($ $ (-537)) 60 (|has| |#1| (-347)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-537) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-647 |#1| |#2| |#3|) (-134) (-998) (-357 |t#1|) (-357 |t#1|)) (T -647)) -((-3348 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-2591 (*1 *1 *2 *2) (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *2)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (-3660 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *2 *4)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2723 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3120 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2417 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-606 (-606 *3))))) (-1922 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2476 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2324 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1731 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4068 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3632 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-647 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-647 *3 *2 *4)) (-4 *3 (-998)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-529)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-291)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-606 *5)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-1321 (*1 *1 *1) (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-347))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -3348 ((-111) $)) (-15 -3400 ((-111) $)) (-15 -3234 ((-111) $)) (-15 -1830 ((-111) $)) (-15 -2591 ($ (-731) (-731))) (-15 -3299 ($ (-606 (-606 |t#1|)))) (-15 -3110 ($ (-731) |t#1|)) (-15 -3189 ($ (-606 |t#1|))) (-15 -3189 ($ (-606 $))) (-15 -2341 ($ |t#3|)) (-15 -3660 ($ |t#2|)) (-15 -3660 ($ $)) (-15 -2723 ($ $)) (-15 -3120 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -3156 ((-606 (-606 |t#1|)) $)) (-15 -1922 ($ $ (-606 (-537)) (-606 (-537)))) (-15 -2476 ($ $ (-606 (-537)) (-606 (-537)) $)) (-15 -2324 ($ $ (-537) (-537))) (-15 -1731 ($ $ (-537) (-537))) (-15 -4068 ($ $ (-537) (-537) (-537) (-537))) (-15 -3632 ($ $ (-537) (-537) $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-537) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-731))) (IF (|has| |t#1| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-291)) (-15 -3630 ($ $)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -3705 ((-731) $)) (-15 -2342 ((-731) $)) (-15 -2630 ((-606 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4302 "*"))) (PROGN (-15 -3075 (|t#1| $)) (-15 -3960 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-15 -1321 ((-3 $ "failed") $)) (-15 ** ($ $ (-537)))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-55 |#1| |#2| |#3|) . T) ((-1154) . T)) -((-3630 ((|#4| |#4|) 72 (|has| |#1| (-291)))) (-3705 (((-731) |#4|) 99 (|has| |#1| (-529)))) (-2342 (((-731) |#4|) 76 (|has| |#1| (-529)))) (-2630 (((-606 |#3|) |#4|) 83 (|has| |#1| (-529)))) (-2272 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 111 (|has| |#1| (-291)))) (-3960 ((|#1| |#4|) 35)) (-2883 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-529)))) (-1321 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-347)))) (-4072 ((|#4| |#4|) 68 (|has| |#1| (-529)))) (-2659 ((|#4| |#4| |#1| (-537) (-537)) 43)) (-3041 ((|#4| |#4| (-537) (-537)) 38)) (-4039 ((|#4| |#4| |#1| (-537) (-537)) 48)) (-3075 ((|#1| |#4|) 78)) (-4273 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-529))))) -(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3075 (|#1| |#4|)) (-15 -3960 (|#1| |#4|)) (-15 -3041 (|#4| |#4| (-537) (-537))) (-15 -2659 (|#4| |#4| |#1| (-537) (-537))) (-15 -4039 (|#4| |#4| |#1| (-537) (-537))) (IF (|has| |#1| (-529)) (PROGN (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (-15 -2630 ((-606 |#3|) |#4|)) (-15 -4072 (|#4| |#4|)) (-15 -2883 ((-3 |#4| "failed") |#4|)) (-15 -4273 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-291)) (PROGN (-15 -3630 (|#4| |#4|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-163) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -648)) -((-1321 (*1 *2 *2) (|partial| -12 (-4 *3 (-347)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2272 (*1 *2 *3 *3) (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-648 *3 *4 *5 *6)) (-4 *6 (-647 *3 *4 *5)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4273 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2883 (*1 *2 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-4039 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) (-4 *2 (-647 *3 *5 *6)))) (-2659 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) (-4 *2 (-647 *3 *5 *6)))) (-3041 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *1 (-648 *4 *5 *6 *2)) (-4 *2 (-647 *4 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5))))) -(-10 -7 (-15 -3075 (|#1| |#4|)) (-15 -3960 (|#1| |#4|)) (-15 -3041 (|#4| |#4| (-537) (-537))) (-15 -2659 (|#4| |#4| |#1| (-537) (-537))) (-15 -4039 (|#4| |#4| |#1| (-537) (-537))) (IF (|has| |#1| (-529)) (PROGN (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (-15 -2630 ((-606 |#3|) |#4|)) (-15 -4072 (|#4| |#4|)) (-15 -2883 ((-3 |#4| "failed") |#4|)) (-15 -4273 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-291)) (PROGN (-15 -3630 (|#4| |#4|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) 47)) (-2417 (($ $ $) NIL)) (-3660 (($ (-1200 |#1|)) NIL) (($ $) NIL)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) 12)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-1200 |#1|)) NIL)) (-2573 (($ $ (-537) (-1200 |#1|)) NIL)) (-3110 (($ (-731) |#1|) 22)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 31 (|has| |#1| (-291)))) (-2964 (((-1200 |#1|) $ (-537)) NIL)) (-3705 (((-731) $) 33 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) 51)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) 35 (|has| |#1| (-529)))) (-2630 (((-606 (-1200 |#1|)) $) 38 (|has| |#1| (-529)))) (-2931 (((-731) $) 20)) (-3157 (($ (-731) (-731) |#1|) 16)) (-2945 (((-731) $) 21)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) 29 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 9)) (-2454 (((-537) $) 10)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 11)) (-2485 (((-537) $) 48)) (-3299 (($ (-606 (-606 |#1|))) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) 60)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 45 (|has| |#1| (-347)))) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL) (($ (-1200 |#1|)) 52)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) 27 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 64 (|has| |#1| (-580 (-513))))) (-2198 (((-1200 |#1|) $ (-537)) NIL)) (-2341 (($ (-1200 |#1|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) 23) (($ $ (-537)) 46 (|has| |#1| (-347)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-1200 |#1|) $ (-1200 |#1|)) NIL) (((-1200 |#1|) (-1200 |#1|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-649 |#1|) (-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 -3189 ($ (-1200 |#1|))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 $ "failed") $)) |%noBranch|))) (-998)) (T -649)) -((-1321 (*1 *1 *1) (|partial| -12 (-5 *1 (-649 *2)) (-4 *2 (-347)) (-4 *2 (-998)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-649 *3))))) -(-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 -3189 ($ (-1200 |#1|))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 $ "failed") $)) |%noBranch|))) -((-2758 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 25)) (-3022 (((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|) 21)) (-2232 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731)) 26)) (-2543 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 14)) (-2911 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 18) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 16)) (-3096 (((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|)) 20)) (-3241 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 12)) (** (((-649 |#1|) (-649 |#1|) (-731)) 30))) -(((-650 |#1|) (-10 -7 (-15 -3241 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2543 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3096 ((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|))) (-15 -3022 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -2758 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2232 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731))) (-15 ** ((-649 |#1|) (-649 |#1|) (-731)))) (-998)) (T -650)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-650 *4)))) (-2232 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-650 *4)))) (-2758 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3022 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3096 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2911 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2911 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2543 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) -(-10 -7 (-15 -3241 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2543 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3096 ((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|))) (-15 -3022 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -2758 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2232 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731))) (-15 ** ((-649 |#1|) (-649 |#1|) (-731)))) -((-3557 (($) 8 T CONST)) (-2341 (((-816) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2915 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3557)) 16)) (-2522 ((|#1| $) 11))) -(((-651 |#1|) (-13 (-1195) (-579 (-816)) (-10 -8 (-15 -2915 ((-111) $ (|[\|\|]| |#1|))) (-15 -2915 ((-111) $ (|[\|\|]| -3557))) (-15 -2341 ($ |#1|)) (-15 -2341 (|#1| $)) (-15 -2522 (|#1| $)) (-15 -3557 ($) -2787))) (-579 (-816))) (T -651)) -((-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-579 (-816))) (-5 *2 (-111)) (-5 *1 (-651 *4)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3557)) (-5 *2 (-111)) (-5 *1 (-651 *4)) (-4 *4 (-579 (-816))))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-2341 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-2522 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-3557 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816)))))) -(-13 (-1195) (-579 (-816)) (-10 -8 (-15 -2915 ((-111) $ (|[\|\|]| |#1|))) (-15 -2915 ((-111) $ (|[\|\|]| -3557))) (-15 -2341 ($ |#1|)) (-15 -2341 (|#1| $)) (-15 -2522 (|#1| $)) (-15 -3557 ($) -2787))) -((-1831 ((|#2| |#2| |#4|) 25)) (-2302 (((-649 |#2|) |#3| |#4|) 31)) (-2366 (((-649 |#2|) |#2| |#4|) 30)) (-2803 (((-1200 |#2|) |#2| |#4|) 16)) (-4151 ((|#2| |#3| |#4|) 24)) (-2281 (((-649 |#2|) |#3| |#4| (-731) (-731)) 38)) (-4229 (((-649 |#2|) |#2| |#4| (-731)) 37))) -(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-1200 |#2|) |#2| |#4|)) (-15 -4151 (|#2| |#3| |#4|)) (-15 -1831 (|#2| |#2| |#4|)) (-15 -2366 ((-649 |#2|) |#2| |#4|)) (-15 -4229 ((-649 |#2|) |#2| |#4| (-731))) (-15 -2302 ((-649 |#2|) |#3| |#4|)) (-15 -2281 ((-649 |#2|) |#3| |#4| (-731) (-731)))) (-1045) (-853 |#1|) (-357 |#2|) (-13 (-357 |#1|) (-10 -7 (-6 -4300)))) (T -652)) -((-2281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *7 (-853 *6)) (-5 *2 (-649 *7)) (-5 *1 (-652 *6 *7 *3 *4)) (-4 *3 (-357 *7)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300)))))) (-2302 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *6 (-853 *5)) (-5 *2 (-649 *6)) (-5 *1 (-652 *5 *6 *3 *4)) (-4 *3 (-357 *6)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-4229 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *3 (-853 *6)) (-5 *2 (-649 *3)) (-5 *1 (-652 *6 *3 *7 *4)) (-4 *7 (-357 *3)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300)))))) (-2366 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-649 *3)) (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-1831 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-853 *4)) (-5 *1 (-652 *4 *2 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4300)))))) (-4151 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *2 (-853 *5)) (-5 *1 (-652 *5 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-1200 *3)) (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) -(-10 -7 (-15 -2803 ((-1200 |#2|) |#2| |#4|)) (-15 -4151 (|#2| |#3| |#4|)) (-15 -1831 (|#2| |#2| |#4|)) (-15 -2366 ((-649 |#2|) |#2| |#4|)) (-15 -4229 ((-649 |#2|) |#2| |#4| (-731))) (-15 -2302 ((-649 |#2|) |#3| |#4|)) (-15 -2281 ((-649 |#2|) |#3| |#4| (-731) (-731)))) -((-1478 (((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)) 20)) (-1246 ((|#1| (-649 |#2|)) 9)) (-4067 (((-649 |#1|) (-649 |#2|)) 18))) -(((-653 |#1| |#2|) (-10 -7 (-15 -1246 (|#1| (-649 |#2|))) (-15 -4067 ((-649 |#1|) (-649 |#2|))) (-15 -1478 ((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)))) (-529) (-945 |#1|)) (T -653)) -((-1478 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |num| (-649 *4)) (|:| |den| *4))) (-5 *1 (-653 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) (-5 *2 (-649 *4)) (-5 *1 (-653 *4 *5)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-653 *2 *4))))) -(-10 -7 (-15 -1246 (|#1| (-649 |#2|))) (-15 -4067 ((-649 |#1|) (-649 |#2|))) (-15 -1478 ((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3623 (((-649 (-659))) NIL) (((-649 (-659)) (-1200 $)) NIL)) (-1428 (((-659) $) NIL)) (-1403 (($ $) NIL (|has| (-659) (-1139)))) (-1247 (($ $) NIL (|has| (-659) (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-659) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-1395 (($ $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-2414 (((-402 $) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-3633 (($ $) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-4099 (((-111) $ $) NIL (|has| (-659) (-291)))) (-3151 (((-731)) NIL (|has| (-659) (-352)))) (-1378 (($ $) NIL (|has| (-659) (-1139)))) (-4270 (($ $) NIL (|has| (-659) (-1139)))) (-1429 (($ $) NIL (|has| (-659) (-1139)))) (-1273 (($ $) NIL (|has| (-659) (-1139)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-659) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-659) (-989 (-391 (-537)))))) (-3958 (((-537) $) NIL) (((-659) $) NIL) (((-391 (-537)) $) NIL (|has| (-659) (-989 (-391 (-537)))))) (-3447 (($ (-1200 (-659))) NIL) (($ (-1200 (-659)) (-1200 $)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-659) (-333)))) (-3563 (($ $ $) NIL (|has| (-659) (-291)))) (-2664 (((-649 (-659)) $) NIL) (((-649 (-659)) $ (-1200 $)) NIL)) (-2053 (((-649 (-659)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-659))) (|:| |vec| (-1200 (-659)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-659) (-602 (-537)))) (((-649 (-537)) (-649 $)) NIL (|has| (-659) (-602 (-537))))) (-3195 (((-3 $ "failed") (-391 (-1113 (-659)))) NIL (|has| (-659) (-347))) (($ (-1113 (-659))) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3645 (((-659) $) 29)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| (-659) (-522)))) (-1797 (((-111) $) NIL (|has| (-659) (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| (-659) (-522)))) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-659) (-352)))) (-3539 (($ $ $) NIL (|has| (-659) (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-659) (-291)))) (-4145 (($) NIL (|has| (-659) (-333)))) (-2974 (((-111) $) NIL (|has| (-659) (-333)))) (-2642 (($ $) NIL (|has| (-659) (-333))) (($ $ (-731)) NIL (|has| (-659) (-333)))) (-2639 (((-111) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-4087 (((-2 (|:| |r| (-659)) (|:| |phi| (-659))) $) NIL (-12 (|has| (-659) (-1007)) (|has| (-659) (-1139))))) (-3338 (($) NIL (|has| (-659) (-1139)))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-659) (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-659) (-839 (-537))))) (-4231 (((-793 (-874)) $) NIL (|has| (-659) (-333))) (((-874) $) NIL (|has| (-659) (-333)))) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139))))) (-2055 (((-659) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-659) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-659) (-291)))) (-3199 (((-1113 (-659)) $) NIL (|has| (-659) (-347)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 (-659) (-659)) $) NIL)) (-2334 (((-874) $) NIL (|has| (-659) (-352)))) (-2180 (($ $) NIL (|has| (-659) (-1139)))) (-3183 (((-1113 (-659)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-659) (-291))) (($ $ $) NIL (|has| (-659) (-291)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| (-659) (-347)))) (-3956 (($) NIL (|has| (-659) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-659) (-352)))) (-2629 (($) NIL)) (-3656 (((-659) $) 31)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-659) (-291)))) (-2211 (($ (-606 $)) NIL (|has| (-659) (-291))) (($ $ $) NIL (|has| (-659) (-291)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-659) (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-3622 (((-402 $) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-659) (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-659) (-291)))) (-3515 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-659)) NIL (|has| (-659) (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-659) (-291)))) (-4185 (($ $) NIL (|has| (-659) (-1139)))) (-4116 (($ $ (-1117) (-659)) NIL (|has| (-659) (-495 (-1117) (-659)))) (($ $ (-606 (-1117)) (-606 (-659))) NIL (|has| (-659) (-495 (-1117) (-659)))) (($ $ (-606 (-278 (-659)))) NIL (|has| (-659) (-293 (-659)))) (($ $ (-278 (-659))) NIL (|has| (-659) (-293 (-659)))) (($ $ (-659) (-659)) NIL (|has| (-659) (-293 (-659)))) (($ $ (-606 (-659)) (-606 (-659))) NIL (|has| (-659) (-293 (-659))))) (-1930 (((-731) $) NIL (|has| (-659) (-291)))) (-1922 (($ $ (-659)) NIL (|has| (-659) (-270 (-659) (-659))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-659) (-291)))) (-2067 (((-659)) NIL) (((-659) (-1200 $)) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL (|has| (-659) (-333))) (((-731) $) NIL (|has| (-659) (-333)))) (-3456 (($ $ (-1 (-659) (-659))) NIL) (($ $ (-1 (-659) (-659)) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-731)) NIL (|has| (-659) (-218))) (($ $) NIL (|has| (-659) (-218)))) (-1630 (((-649 (-659)) (-1200 $) (-1 (-659) (-659))) NIL (|has| (-659) (-347)))) (-2529 (((-1113 (-659))) NIL)) (-1441 (($ $) NIL (|has| (-659) (-1139)))) (-1286 (($ $) NIL (|has| (-659) (-1139)))) (-3553 (($) NIL (|has| (-659) (-333)))) (-1415 (($ $) NIL (|has| (-659) (-1139)))) (-1259 (($ $) NIL (|has| (-659) (-1139)))) (-1389 (($ $) NIL (|has| (-659) (-1139)))) (-1234 (($ $) NIL (|has| (-659) (-1139)))) (-1484 (((-649 (-659)) (-1200 $)) NIL) (((-1200 (-659)) $) NIL) (((-649 (-659)) (-1200 $) (-1200 $)) NIL) (((-1200 (-659)) $ (-1200 $)) NIL)) (-3996 (((-513) $) NIL (|has| (-659) (-580 (-513)))) (((-160 (-210)) $) NIL (|has| (-659) (-973))) (((-160 (-363)) $) NIL (|has| (-659) (-973))) (((-845 (-363)) $) NIL (|has| (-659) (-580 (-845 (-363))))) (((-845 (-537)) $) NIL (|has| (-659) (-580 (-845 (-537))))) (($ (-1113 (-659))) NIL) (((-1113 (-659)) $) NIL) (($ (-1200 (-659))) NIL) (((-1200 (-659)) $) NIL)) (-1978 (($ $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| $ (-139)) (|has| (-659) (-862))) (|has| (-659) (-333))))) (-4161 (($ (-659) (-659)) 12)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-659)) NIL) (($ (-160 (-363))) 13) (($ (-160 (-537))) 19) (($ (-160 (-659))) 28) (($ (-160 (-661))) 25) (((-160 (-363)) $) 33) (($ (-391 (-537))) NIL (-1533 (|has| (-659) (-989 (-391 (-537)))) (|has| (-659) (-347))))) (-2644 (($ $) NIL (|has| (-659) (-333))) (((-3 $ "failed") $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| $ (-139)) (|has| (-659) (-862))) (|has| (-659) (-139))))) (-2736 (((-1113 (-659)) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL)) (-1475 (($ $) NIL (|has| (-659) (-1139)))) (-1328 (($ $) NIL (|has| (-659) (-1139)))) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) NIL (|has| (-659) (-1139)))) (-1300 (($ $) NIL (|has| (-659) (-1139)))) (-1495 (($ $) NIL (|has| (-659) (-1139)))) (-1352 (($ $) NIL (|has| (-659) (-1139)))) (-2449 (((-659) $) NIL (|has| (-659) (-1139)))) (-4141 (($ $) NIL (|has| (-659) (-1139)))) (-1365 (($ $) NIL (|has| (-659) (-1139)))) (-1485 (($ $) NIL (|has| (-659) (-1139)))) (-1340 (($ $) NIL (|has| (-659) (-1139)))) (-1465 (($ $) NIL (|has| (-659) (-1139)))) (-1314 (($ $) NIL (|has| (-659) (-1139)))) (-2209 (($ $) NIL (|has| (-659) (-1007)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 (-659) (-659))) NIL) (($ $ (-1 (-659) (-659)) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-731)) NIL (|has| (-659) (-218))) (($ $) NIL (|has| (-659) (-218)))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-659) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ $) NIL (|has| (-659) (-1139))) (($ $ (-391 (-537))) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139)))) (($ $ (-537)) NIL (|has| (-659) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ (-659) $) NIL) (($ $ (-659)) NIL) (($ (-391 (-537)) $) NIL (|has| (-659) (-347))) (($ $ (-391 (-537))) NIL (|has| (-659) (-347))))) -(((-654) (-13 (-371) (-157 (-659)) (-10 -8 (-15 -2341 ($ (-160 (-363)))) (-15 -2341 ($ (-160 (-537)))) (-15 -2341 ($ (-160 (-659)))) (-15 -2341 ($ (-160 (-661)))) (-15 -2341 ((-160 (-363)) $))))) (T -654)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-537))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-659))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-661))) (-5 *1 (-654)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654))))) -(-13 (-371) (-157 (-659)) (-10 -8 (-15 -2341 ($ (-160 (-363)))) (-15 -2341 ($ (-160 (-537)))) (-15 -2341 ($ (-160 (-659)))) (-15 -2341 ($ (-160 (-661)))) (-15 -2341 ((-160 (-363)) $)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-655 |#1|) (-134) (-1045)) (T -655)) -((-3499 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-655 *2)) (-4 *2 (-1045)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1045)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1045)) (-5 *2 (-606 (-2 (|:| -2140 *3) (|:| -2539 (-731)))))))) -(-13 (-220 |t#1|) (-10 -8 (-15 -3499 ($ |t#1| $ (-731))) (-15 -1376 ($ $)) (-15 -1864 ((-606 (-2 (|:| -2140 |t#1|) (|:| -2539 (-731)))) $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-3149 (((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537)) 47)) (-3375 ((|#1| |#1| (-537)) 46)) (-2211 ((|#1| |#1| |#1| (-537)) 36)) (-3622 (((-606 |#1|) |#1| (-537)) 39)) (-4243 ((|#1| |#1| (-537) |#1| (-537)) 32)) (-3829 (((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537)) 45))) -(((-656 |#1|) (-10 -7 (-15 -2211 (|#1| |#1| |#1| (-537))) (-15 -3375 (|#1| |#1| (-537))) (-15 -3622 ((-606 |#1|) |#1| (-537))) (-15 -3829 ((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537))) (-15 -3149 ((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537))) (-15 -4243 (|#1| |#1| (-537) |#1| (-537)))) (-1176 (-537))) (T -656)) -((-4243 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| -3622 *5) (|:| -2872 (-537))))) (-5 *4 (-537)) (-4 *5 (-1176 *4)) (-5 *2 (-606 *5)) (-5 *1 (-656 *5)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -2872 *4)))) (-5 *1 (-656 *3)) (-4 *3 (-1176 *4)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-606 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1176 *4)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) (-2211 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) -(-10 -7 (-15 -2211 (|#1| |#1| |#1| (-537))) (-15 -3375 (|#1| |#1| (-537))) (-15 -3622 ((-606 |#1|) |#1| (-537))) (-15 -3829 ((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537))) (-15 -3149 ((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537))) (-15 -4243 (|#1| |#1| (-537) |#1| (-537)))) -((-2877 (((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))) 17)) (-2241 (((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 40) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 42) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 44)) (-3155 (((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247))) NIL)) (-2291 (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 45))) -(((-657) (-10 -7 (-15 -2241 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2291 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -3155 ((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2877 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210)))))) (T -657)) -((-2877 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1 (-210) (-210) (-210) (-210))) (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *1 (-657)))) (-3155 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2291 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2241 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *1 (-657)))) (-2241 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2241 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657))))) -(-10 -7 (-15 -2241 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2291 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -3155 ((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2877 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))))) -((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|)) 73) (((-402 |#4|) |#4|) 221))) -(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) (-807) (-753) (-333) (-902 |#3| |#2| |#1|)) (T -658)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-658 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-658 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 84)) (-1874 (((-537) $) 30)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3832 (($) NIL T CONST)) (-3981 (($ $) NIL)) (-1516 (((-3 (-537) "failed") $) 73) (((-3 (-391 (-537)) "failed") $) 26) (((-3 (-363) "failed") $) 70)) (-3958 (((-537) $) 75) (((-391 (-537)) $) 67) (((-363) $) 68)) (-3563 (($ $ $) 96)) (-3490 (((-3 $ "failed") $) 87)) (-3539 (($ $ $) 95)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 77) (((-874) (-874)) 76)) (-3797 (((-111) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-4231 (((-537) $) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (($ $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3580 (((-537) (-537)) 81) (((-537)) 82)) (-2444 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3618 (((-537) (-537)) 79) (((-537)) 80)) (-3889 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 16)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 91)) (-3964 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL)) (-3830 (($ $) NIL)) (-2851 (($ (-537) (-537)) NIL) (($ (-537) (-537) (-874)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 92)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 22)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 94)) (-3025 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1398 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-845 (-363)) $) NIL)) (-2341 (((-816) $) 52) (($ (-537)) 63) (($ $) NIL) (($ (-391 (-537))) 66) (($ (-537)) 63) (($ (-391 (-537))) 66) (($ (-363)) 60) (((-363) $) 50) (($ (-661)) 55)) (-3654 (((-731)) 103)) (-4008 (($ (-537) (-537) (-874)) 44)) (-3903 (($ $) NIL)) (-3272 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1605 (((-874)) 35) (((-874) (-874)) 78)) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) 32 T CONST)) (-2943 (($) 17 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 83)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 101)) (-2340 (($ $ $) 65)) (-2329 (($ $) 99) (($ $ $) 100)) (-2318 (($ $ $) 98)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) 90)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 97) (($ $ $) 88) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-659) (-13 (-388) (-371) (-347) (-989 (-363)) (-989 (-391 (-537))) (-141) (-10 -8 (-15 -2300 ((-874) (-874))) (-15 -2300 ((-874))) (-15 -1605 ((-874) (-874))) (-15 -1605 ((-874))) (-15 -3618 ((-537) (-537))) (-15 -3618 ((-537))) (-15 -3580 ((-537) (-537))) (-15 -3580 ((-537))) (-15 -2341 ((-363) $)) (-15 -2341 ($ (-661))) (-15 -4020 ((-537) $)) (-15 -3283 ((-537) $)) (-15 -4008 ($ (-537) (-537) (-874)))))) (T -659)) -((-1605 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-2300 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3618 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3580 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-659)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-661)) (-5 *1 (-659)))) (-4008 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-5 *1 (-659))))) -(-13 (-388) (-371) (-347) (-989 (-363)) (-989 (-391 (-537))) (-141) (-10 -8 (-15 -2300 ((-874) (-874))) (-15 -2300 ((-874))) (-15 -1605 ((-874) (-874))) (-15 -1605 ((-874))) (-15 -3618 ((-537) (-537))) (-15 -3618 ((-537))) (-15 -3580 ((-537) (-537))) (-15 -3580 ((-537))) (-15 -2341 ((-363) $)) (-15 -2341 ($ (-661))) (-15 -4020 ((-537) $)) (-15 -3283 ((-537) $)) (-15 -4008 ($ (-537) (-537) (-874))))) -((-3204 (((-649 |#1|) (-649 |#1|) |#1| |#1|) 65)) (-3630 (((-649 |#1|) (-649 |#1|) |#1|) 48)) (-4014 (((-649 |#1|) (-649 |#1|) |#1|) 66)) (-4080 (((-649 |#1|) (-649 |#1|)) 49)) (-2272 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 64))) -(((-660 |#1|) (-10 -7 (-15 -4080 ((-649 |#1|) (-649 |#1|))) (-15 -3630 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -4014 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -3204 ((-649 |#1|) (-649 |#1|) |#1| |#1|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) (-291)) (T -660)) -((-2272 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-660 *3)) (-4 *3 (-291)))) (-3204 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) -(-10 -7 (-15 -4080 ((-649 |#1|) (-649 |#1|))) (-15 -3630 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -4014 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -3204 ((-649 |#1|) (-649 |#1|) |#1| |#1|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 27)) (-3958 (((-537) $) 25)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($ $) NIL) (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) NIL)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) NIL)) (-2444 (($ $ $) NIL)) (-3770 (((-874) (-874)) 10) (((-874)) 9)) (-3889 (($ $ $) NIL)) (-1454 (($ $) NIL)) (-3845 (($ $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) NIL)) (-2528 (((-1064) $) NIL) (($ $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-3089 (($ $) NIL)) (-2494 (($ $) NIL)) (-3996 (((-210) $) NIL) (((-363) $) NIL) (((-845 (-537)) $) NIL) (((-513) $) NIL) (((-537) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) 24) (($ $) NIL) (($ (-537)) 24) (((-300 $) (-300 (-537))) 18)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) NIL)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL) (($ $ (-731)) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) -(((-661) (-13 (-371) (-522) (-10 -8 (-15 -3770 ((-874) (-874))) (-15 -3770 ((-874))) (-15 -2341 ((-300 $) (-300 (-537))))))) (T -661)) -((-3770 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) (-3770 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-300 (-537))) (-5 *2 (-300 (-661))) (-5 *1 (-661))))) -(-13 (-371) (-522) (-10 -8 (-15 -3770 ((-874) (-874))) (-15 -3770 ((-874))) (-15 -2341 ((-300 $) (-300 (-537)))))) -((-3929 (((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)) 19)) (-1358 (((-1 |#4| |#2| |#3|) (-1117)) 12))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1358 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -3929 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) (-580 (-513)) (-1154) (-1154) (-1154)) (T -662)) -((-3929 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *3 *5 *6 *7)) (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *7 (-1154)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *4 *5 *6 *7)) (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *7 (-1154))))) -(-10 -7 (-15 -1358 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -3929 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) -((-2330 (((-111) $ $) NIL)) (-3219 (((-1205) $ (-731)) 14)) (-2299 (((-731) $) 12)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 25)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 24))) -(((-663 |#1|) (-13 (-130) (-579 |#1|) (-10 -8 (-15 -2341 ($ |#1|)))) (-1045)) (T -663)) -((-2341 (*1 *1 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1045))))) -(-13 (-130) (-579 |#1|) (-10 -8 (-15 -2341 ($ |#1|)))) -((-3786 (((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)) 34) (((-1 (-210) (-210)) |#1| (-1117)) 39))) -(((-664 |#1|) (-10 -7 (-15 -3786 ((-1 (-210) (-210)) |#1| (-1117))) (-15 -3786 ((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)))) (-580 (-513))) (T -664)) -((-3786 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-664 *3)) (-4 *3 (-580 (-513))))) (-3786 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210))) (-5 *1 (-664 *3)) (-4 *3 (-580 (-513)))))) -(-10 -7 (-15 -3786 ((-1 (-210) (-210)) |#1| (-1117))) (-15 -3786 ((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)))) -((-2066 (((-1117) |#1| (-1117) (-606 (-1117))) 9) (((-1117) |#1| (-1117) (-1117) (-1117)) 12) (((-1117) |#1| (-1117) (-1117)) 11) (((-1117) |#1| (-1117)) 10))) -(((-665 |#1|) (-10 -7 (-15 -2066 ((-1117) |#1| (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-606 (-1117))))) (-580 (-513))) (T -665)) -((-2066 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513)))))) -(-10 -7 (-15 -2066 ((-1117) |#1| (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-606 (-1117))))) -((-1996 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-666 |#1| |#2|) (-10 -7 (-15 -1996 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1154) (-1154)) (T -666)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-1154)) (-4 *4 (-1154))))) -(-10 -7 (-15 -1996 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1606 (((-1 |#3| |#2|) (-1117)) 11)) (-3929 (((-1 |#3| |#2|) |#1| (-1117)) 21))) -(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-1 |#3| |#2|) (-1117))) (-15 -3929 ((-1 |#3| |#2|) |#1| (-1117)))) (-580 (-513)) (-1154) (-1154)) (T -667)) -((-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *3 *5 *6)) (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *4 *5 *6)) (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) -(-10 -7 (-15 -1606 ((-1 |#3| |#2|) (-1117))) (-15 -3929 ((-1 |#3| |#2|) |#1| (-1117)))) -((-2653 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|) 62)) (-3239 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|) 75)) (-1729 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|) 34))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1729 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|)) (-15 -3239 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|)) (-15 -2653 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -668)) -((-2653 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-606 (-1113 *13))) (-5 *3 (-1113 *13)) (-5 *4 (-606 *12)) (-5 *5 (-606 *10)) (-5 *6 (-606 *13)) (-5 *7 (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *13))))) (-5 *8 (-606 (-731))) (-5 *9 (-1200 (-606 (-1113 *10)))) (-4 *12 (-807)) (-4 *10 (-291)) (-4 *13 (-902 *10 *11 *12)) (-4 *11 (-753)) (-5 *1 (-668 *11 *12 *10 *13)))) (-3239 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-606 *11)) (-5 *5 (-606 (-1113 *9))) (-5 *6 (-606 *9)) (-5 *7 (-606 *12)) (-5 *8 (-606 (-731))) (-4 *11 (-807)) (-4 *9 (-291)) (-4 *12 (-902 *9 *10 *11)) (-4 *10 (-753)) (-5 *2 (-606 (-1113 *12))) (-5 *1 (-668 *10 *11 *9 *12)) (-5 *3 (-1113 *12)))) (-1729 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-606 (-1113 *11))) (-5 *3 (-1113 *11)) (-5 *4 (-606 *10)) (-5 *5 (-606 *8)) (-5 *6 (-606 (-731))) (-5 *7 (-1200 (-606 (-1113 *8)))) (-4 *10 (-807)) (-4 *8 (-291)) (-4 *11 (-902 *8 *9 *10)) (-4 *9 (-753)) (-5 *1 (-668 *9 *10 *8 *11))))) -(-10 -7 (-15 -1729 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|)) (-15 -3239 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|)) (-15 -2653 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 39)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 37)) (-1883 (((-731) $) 41)) (-3912 ((|#1| $) 40)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 (((-731) $) 42)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 36 (|has| |#1| (-163)))) (-3500 ((|#1| $ (-731)) 38)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-669 |#1|) (-134) (-998)) (T -669)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998))))) -(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2872 ((-731) $)) (-15 -1883 ((-731) $)) (-15 -3912 (|t#1| $)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ (-731))) (-15 -3733 ($ |t#1| (-731))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1612 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-670 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 (|#6| (-1 |#4| |#1|) |#3|))) (-529) (-1176 |#1|) (-1176 (-391 |#2|)) (-529) (-1176 |#4|) (-1176 (-391 |#5|))) (T -670)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-529)) (-4 *7 (-529)) (-4 *6 (-1176 *5)) (-4 *2 (-1176 (-391 *8))) (-5 *1 (-670 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1176 (-391 *6))) (-4 *8 (-1176 *7))))) -(-10 -7 (-15 -1612 (|#6| (-1 |#4| |#1|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1655 (((-1100) (-816)) 31)) (-2356 (((-1205) (-1100)) 28)) (-2297 (((-1100) (-816)) 24)) (-2531 (((-1100) (-816)) 25)) (-2341 (((-816) $) NIL) (((-1100) (-816)) 23)) (-2244 (((-111) $ $) NIL))) -(((-671) (-13 (-1045) (-10 -7 (-15 -2341 ((-1100) (-816))) (-15 -2297 ((-1100) (-816))) (-15 -2531 ((-1100) (-816))) (-15 -1655 ((-1100) (-816))) (-15 -2356 ((-1205) (-1100)))))) (T -671)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-671))))) -(-13 (-1045) (-10 -7 (-15 -2341 ((-1100) (-816))) (-15 -2297 ((-1100) (-816))) (-15 -2531 ((-1100) (-816))) (-15 -1655 ((-1100) (-816))) (-15 -2356 ((-1205) (-1100))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3195 (($ |#1| |#2|) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 ((|#2| $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2048 (((-3 $ "failed") $ $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) ((|#1| $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-672 |#1| |#2| |#3| |#4| |#5|) (-13 (-347) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -672)) -((-2084 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-672 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3195 (*1 *1 *2 *3) (-12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-347) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)))) -((-2330 (((-111) $ $) 78)) (-1656 (((-111) $) 30)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) NIL (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3151 (((-731)) 47 (|has| |#1| (-352)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-1350 ((|#2| |#2|) 44)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) NIL (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 34)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3195 (($ |#2|) 42)) (-3490 (((-3 $ "failed") $) 86)) (-1618 (($) 51 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) NIL (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-2430 (((-911 $)) 80)) (-3240 (($ $ |#1| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 77) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2084 ((|#2|) 45)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-3183 ((|#2| $) 41)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) 28)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2899 (($ $) 79 (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 87 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) 32) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-3264 (((-911 $)) 36)) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) 61) (($ (-537)) NIL) (($ |#1|) 58) (($ (-1027)) NIL) (($ |#2|) 68) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) 63) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 20 T CONST)) (-3684 (((-1200 |#1|) $) 75)) (-4235 (($ (-1200 |#1|)) 50)) (-2943 (($) 8 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1339 (((-1200 |#1|) $) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 69)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 72) (($ $ $) NIL)) (-2318 (($ $ $) 33)) (** (($ $ (-874)) NIL) (($ $ (-731)) 81)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 57) (($ $ $) 74) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-673 |#1| |#2|) (-13 (-1176 |#1|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -2084 (|#2|)) (-15 -3195 ($ |#2|)) (-15 -3183 (|#2| $)) (-15 -2341 ($ |#2|)) (-15 -3684 ((-1200 |#1|) $)) (-15 -4235 ($ (-1200 |#1|))) (-15 -1339 ((-1200 |#1|) $)) (-15 -2430 ((-911 $))) (-15 -3264 ((-911 $))) (IF (|has| |#1| (-333)) (-15 -2899 ($ $)) |%noBranch|) (IF (|has| |#1| (-352)) (-6 (-352)) |%noBranch|))) (-998) (-1176 |#1|)) (T -673)) -((-1350 (*1 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-2084 (*1 *2) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) (-3195 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-3183 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-3684 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-1339 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-2430 (*1 *2) (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-3264 (*1 *2) (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-2899 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *2 (-998)) (-5 *1 (-673 *2 *3)) (-4 *3 (-1176 *2))))) -(-13 (-1176 |#1|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -2084 (|#2|)) (-15 -3195 ($ |#2|)) (-15 -3183 (|#2| $)) (-15 -2341 ($ |#2|)) (-15 -3684 ((-1200 |#1|) $)) (-15 -4235 ($ (-1200 |#1|))) (-15 -1339 ((-1200 |#1|) $)) (-15 -2430 ((-911 $))) (-15 -3264 ((-911 $))) (IF (|has| |#1| (-333)) (-15 -2899 ($ $)) |%noBranch|) (IF (|has| |#1| (-352)) (-6 (-352)) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2009 ((|#1| $) 13)) (-2528 (((-1064) $) NIL)) (-3283 ((|#2| $) 12)) (-2350 (($ |#1| |#2|) 16)) (-2341 (((-816) $) NIL) (($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|))) 15) (((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $) 14)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 11))) -(((-674 |#1| |#2| |#3|) (-13 (-807) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2009 (|#1| $)) (-15 -2341 ($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (-15 -2341 ((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $)) (-15 -2350 ($ |#1| |#2|)))) (-807) (-1045) (-1 (-111) (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (T -674)) -((-3283 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-674 *3 *2 *4)) (-4 *3 (-807)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *2)) (-2 (|:| -2009 *3) (|:| -3283 *2)))))) (-2009 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-674 *2 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) (-2 (|:| -2009 *2) (|:| -3283 *3)))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-4 *3 (-807)) (-4 *4 (-1045)) (-5 *1 (-674 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-1045)) (-14 *5 (-1 (-111) *2 *2)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-1045)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) (-2 (|:| -2009 *2) (|:| -3283 *3))))))) -(-13 (-807) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2009 (|#1| $)) (-15 -2341 ($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (-15 -2341 ((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $)) (-15 -2350 ($ |#1| |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 59)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-3958 ((|#1| $) NIL) (((-113) $) 39)) (-3490 (((-3 $ "failed") $) 90)) (-4177 ((|#2| (-113) |#2|) 82)) (-2836 (((-111) $) NIL)) (-2650 (($ |#1| (-345 (-113))) 14)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3414 (($ $ (-1 |#2| |#2|)) 58)) (-3146 (($ $ (-1 |#2| |#2|)) 44)) (-1922 ((|#2| $ |#2|) 33)) (-1668 ((|#1| |#1|) 105 (|has| |#1| (-163)))) (-2341 (((-816) $) 66) (($ (-537)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 37)) (-4273 (($ $) 99 (|has| |#1| (-163))) (($ $ $) 103 (|has| |#1| (-163)))) (-2928 (($) 21 T CONST)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 48) (($ $ $) NIL)) (-2318 (($ $ $) 73)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ (-113) (-537)) NIL) (($ $ (-537)) 57)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-163))) (($ $ |#1|) 97 (|has| |#1| (-163))))) -(((-675 |#1| |#2|) (-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#2| |#2|))) (-15 -3414 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#2| (-113) |#2|)) (-15 -2650 ($ |#1| (-345 (-113)))))) (-998) (-609 |#1|)) (T -675)) -((-4273 (*1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-1668 (*1 *2 *2) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-675 *4 *5)) (-4 *5 (-609 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)) (-4 *4 (-609 *3)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-998)) (-5 *1 (-675 *4 *2)) (-4 *2 (-609 *4)))) (-2650 (*1 *1 *2 *3) (-12 (-5 *3 (-345 (-113))) (-4 *2 (-998)) (-5 *1 (-675 *2 *4)) (-4 *4 (-609 *2))))) -(-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#2| |#2|))) (-15 -3414 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#2| (-113) |#2|)) (-15 -2650 ($ |#1| (-345 (-113)))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ |#1| |#2|) 25)) (-3490 (((-3 $ "failed") $) 48)) (-2836 (((-111) $) 35)) (-2084 ((|#2| $) 12)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 49)) (-2528 (((-1064) $) NIL)) (-2048 (((-3 $ "failed") $ $) 47)) (-2341 (((-816) $) 24) (($ (-537)) 19) ((|#1| $) 13)) (-3654 (((-731)) 28)) (-2928 (($) 16 T CONST)) (-2943 (($) 30 T CONST)) (-2244 (((-111) $ $) 38)) (-2329 (($ $) 43) (($ $ $) 37)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 21) (($ $ $) 20))) -(((-676 |#1| |#2| |#3| |#4| |#5|) (-13 (-998) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -676)) -((-3490 (*1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2084 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3195 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-998) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)))) -((* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-677 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-678 |#2|) (-163)) (T -677)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-678 |#1|) (-134) (-163)) (T -678)) +((-2358 (((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)) 33))) +(((-628 |#1|) (-10 -7 (-15 -2358 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)))) (-869)) (T -628)) +((-2358 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *4))) (-5 *3 (-1117 *4)) (-4 *4 (-869)) (-5 *1 (-628 *4))))) +(-10 -7 (-15 -2358 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 82)) (-4263 (($ $ (-735)) 90)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4256 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 48)) (-3470 (((-3 (-637 |#1|) "failed") $) NIL)) (-3469 (((-637 |#1|) $) NIL)) (-4276 (($ $) 89)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-637 |#1|) |#2|) 68)) (-4253 (($ $) 86)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (((-1229 |#1| |#2|) (-1229 |#1| |#2|) $) 47)) (-1841 (((-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-637 |#1|) $) NIL)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ |#1| $) 30) (($ $ (-607 |#1|) (-607 $)) 32)) (-4264 (((-735) $) 88)) (-3844 (($ $ $) 20) (($ (-637 |#1|) (-637 |#1|)) 77) (($ (-637 |#1|) $) 75) (($ $ (-637 |#1|)) 76)) (-4274 (((-823) $) NIL) (($ |#1|) 74) (((-1220 |#1| |#2|) $) 58) (((-1229 |#1| |#2|) $) 41) (($ (-637 |#1|)) 25)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-637 |#1|)) NIL)) (-4270 ((|#2| (-1229 |#1| |#2|) $) 43)) (-2957 (($) 23 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-637 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4262 (((-3 $ "failed") (-1220 |#1| |#2|)) 60)) (-1825 (($ (-637 |#1|)) 14)) (-3353 (((-111) $ $) 44)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) 66) (($ $ $) NIL)) (-4158 (($ $ $) 29)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-637 |#1|)) NIL))) +(((-629 |#1| |#2|) (-13 (-359 |#1| |#2|) (-369 |#2| (-637 |#1|)) (-10 -8 (-15 -4262 ((-3 $ "failed") (-1220 |#1| |#2|))) (-15 -3844 ($ (-637 |#1|) (-637 |#1|))) (-15 -3844 ($ (-637 |#1|) $)) (-15 -3844 ($ $ (-637 |#1|))))) (-811) (-163)) (T -629)) +((-4262 (*1 *1 *2) (|partial| -12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *1 (-629 *3 *4)))) (-3844 (*1 *1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) (-3844 (*1 *1 *1 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163))))) +(-13 (-359 |#1| |#2|) (-369 |#2| (-637 |#1|)) (-10 -8 (-15 -4262 ((-3 $ "failed") (-1220 |#1| |#2|))) (-15 -3844 ($ (-637 |#1|) (-637 |#1|))) (-15 -3844 ($ (-637 |#1|) $)) (-15 -3844 ($ $ (-637 |#1|))))) +((-1824 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-1822 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-1607 (($ (-1 (-111) |#2|) $) 28)) (-2346 (($ $) 56)) (-2424 (($ $) 64)) (-3724 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-4161 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3738 (((-526) |#2| $ (-526)) 61) (((-526) |#2| $) NIL) (((-526) (-1 (-111) |#2|) $) 47)) (-3936 (($ (-735) |#2|) 54)) (-3159 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-3832 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-4275 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3856 (($ |#2|) 15)) (-3929 (($ $ $ (-526)) 36) (($ |#2| $ (-526)) 34)) (-1376 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-1608 (($ $ (-1172 (-526))) 44) (($ $ (-526)) 38)) (-1823 (($ $ $ (-526)) 60)) (-3719 (($ $) 58)) (-2985 (((-111) $ $) 66))) +(((-630 |#1| |#2|) (-10 -8 (-15 -3856 (|#1| |#2|)) (-15 -1608 (|#1| |#1| (-526))) (-15 -1608 (|#1| |#1| (-1172 (-526)))) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3929 (|#1| |#2| |#1| (-526))) (-15 -3929 (|#1| |#1| |#1| (-526))) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3832 (|#1| |#1| |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -2346 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3936 (|#1| (-735) |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) (-631 |#2|) (-1159)) (T -630)) +NIL +(-10 -8 (-15 -3856 (|#1| |#2|)) (-15 -1608 (|#1| |#1| (-526))) (-15 -1608 (|#1| |#1| (-1172 (-526)))) (-15 -3724 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3929 (|#1| |#2| |#1| (-526))) (-15 -3929 (|#1| |#1| |#1| (-526))) (-15 -3159 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3724 (|#1| |#2| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3832 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1824 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3738 ((-526) (-1 (-111) |#2|) |#1|)) (-15 -3738 ((-526) |#2| |#1|)) (-15 -3738 ((-526) |#2| |#1| (-526))) (-15 -3832 (|#1| |#1| |#1|)) (-15 -1824 ((-111) |#1|)) (-15 -1823 (|#1| |#1| |#1| (-526))) (-15 -2346 (|#1| |#1|)) (-15 -1822 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4161 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1376 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3936 (|#1| (-735) |#2|)) (-15 -4275 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1824 (((-111) $) 142 (|has| |#1| (-811))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-1822 (($ $) 146 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4311)))) (-3209 (($ $) 141 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-1607 (($ (-1 (-111) |#1|) $) 129)) (-4032 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4310)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-2346 (($ $) 144 (|has| $ (-6 -4311)))) (-2347 (($ $) 134)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-2424 (($ $) 131 (|has| |#1| (-1052)))) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 130 (|has| |#1| (-1052))) (($ (-1 (-111) |#1|) $) 125)) (-3725 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4310))) (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-3738 (((-526) |#1| $ (-526)) 139 (|has| |#1| (-1052))) (((-526) |#1| $) 138 (|has| |#1| (-1052))) (((-526) (-1 (-111) |#1|) $) 137)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-3637 (($ $ $) 147 (|has| |#1| (-811)))) (-3159 (($ $ $) 132 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-3832 (($ $ $) 140 (|has| |#1| (-811))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-3638 (($ $ $) 148 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3856 (($ |#1|) 122)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-3929 (($ $ $ (-526)) 127) (($ |#1| $ (-526)) 126)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-3762 (((-111) $) 84)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-1608 (($ $ (-1172 (-526))) 124) (($ $ (-526)) 123)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 143 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61) (($ $ |#1|) 60)) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 150 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 151 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 149 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 152 (|has| |#1| (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-631 |#1|) (-134) (-1159)) (T -631)) +((-3856 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1159))))) +(-13 (-1097 |t#1|) (-357 |t#1|) (-267 |t#1|) (-10 -8 (-15 -3856 ($ |t#1|)))) +(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-267 |#1|) . T) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-811) |has| |#1| (-811)) ((-968 |#1|) . T) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1097 |#1|) . T) ((-1159) . T) ((-1194 |#1|) . T)) +((-3895 (((-607 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|))) |#4| |#3|) 45)) (-3406 (((-735) |#4| |#3|) 17)) (-3659 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2359 (((-111) |#4| |#3|) 13))) +(((-632 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|)) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|))) (-15 -3659 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2359 ((-111) |#4| |#3|)) (-15 -3406 ((-735) |#4| |#3|))) (-348) (-13 (-357 |#1|) (-10 -7 (-6 -4311))) (-13 (-357 |#1|) (-10 -7 (-6 -4311))) (-650 |#1| |#2| |#3|)) (T -632)) +((-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-735)) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-2359 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-111)) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-3659 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-5 *1 (-632 *4 *5 *2 *3)) (-4 *3 (-650 *4 *5 *2)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-607 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2104 (-607 *7))))) (-5 *1 (-632 *5 *6 *7 *3)) (-5 *4 (-607 *7)) (-4 *3 (-650 *5 *6 *7)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4))))) +(-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|)) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2104 (-607 |#3|)))) |#4| (-607 |#3|))) (-15 -3659 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2359 ((-111) |#4| |#3|)) (-15 -3406 ((-735) |#4| |#3|))) +((-3895 (((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|))) 22) (((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)) 14)) (-3406 (((-735) (-653 |#1|) (-1205 |#1|)) 30)) (-3659 (((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|)) 24)) (-2359 (((-111) (-653 |#1|) (-1205 |#1|)) 27))) +(((-633 |#1|) (-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|))) (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|)))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|)))) (-15 -3659 ((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|))) (-15 -2359 ((-111) (-653 |#1|) (-1205 |#1|))) (-15 -3406 ((-735) (-653 |#1|) (-1205 |#1|)))) (-348)) (T -633)) +((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-735)) (-5 *1 (-633 *5)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-111)) (-5 *1 (-633 *5)))) (-3659 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1205 *4)) (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *1 (-633 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| |particular| (-3 (-1205 *5) #1="failed")) (|:| -2104 (-607 (-1205 *5)))))) (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5)))))) (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5))))) (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *5) #1#)) (|:| -2104 (-607 (-1205 *5))))) (-5 *1 (-633 *5)) (-5 *4 (-1205 *5))))) +(-10 -7 (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1="failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|))) (-15 -3895 ((-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|)))) (-607 (-607 |#1|)) (-1205 |#1|))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-653 |#1|) (-607 (-1205 |#1|)))) (-15 -3895 ((-607 (-2 (|:| |particular| (-3 (-1205 |#1|) #1#)) (|:| -2104 (-607 (-1205 |#1|))))) (-607 (-607 |#1|)) (-607 (-1205 |#1|)))) (-15 -3659 ((-3 (-1205 |#1|) #1#) (-653 |#1|) (-1205 |#1|))) (-15 -2359 ((-111) (-653 |#1|) (-1205 |#1|))) (-15 -3406 ((-735) (-653 |#1|) (-1205 |#1|)))) +((-2360 (((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)) 45))) +(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2360 ((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)))) (-533) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -634)) +((-2360 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *7)) (-4 *7 (-811)) (-4 *8 (-909 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 (-392 *8)) "failed")) (|:| -2104 (-607 (-1205 (-392 *8)))))) (-5 *1 (-634 *5 *6 *7 *8))))) +(-10 -7 (-15 -2360 ((-2 (|:| |particular| (-3 (-1205 (-392 |#4|)) "failed")) (|:| -2104 (-607 (-1205 (-392 |#4|))))) (-607 |#4|) (-607 |#3|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1868 (((-3 $ #1="failed")) NIL (|has| |#2| (-533)))) (-3649 ((|#2| $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3536 (((-1205 (-653 |#2|))) NIL) (((-1205 (-653 |#2|)) (-1205 $)) NIL)) (-3420 (((-111) $) NIL)) (-1821 (((-1205 $)) 37)) (-1244 (((-111) $ (-735)) NIL)) (-3652 (($ |#2|) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) NIL (|has| |#2| (-292)))) (-3409 (((-225 |#1| |#2|) $ (-526)) NIL)) (-2004 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#2| (-533)))) (-1795 (((-3 $ #1#)) NIL (|has| |#2| (-533)))) (-1883 (((-653 |#2|)) NIL) (((-653 |#2|) (-1205 $)) NIL)) (-1819 ((|#2| $) NIL)) (-1881 (((-653 |#2|) $) NIL) (((-653 |#2|) $ (-1205 $)) NIL)) (-2465 (((-3 $ #1#) $) NIL (|has| |#2| (-533)))) (-1998 (((-1117 (-905 |#2|))) NIL (|has| |#2| (-348)))) (-2468 (($ $ (-878)) NIL)) (-1817 ((|#2| $) NIL)) (-1797 (((-1117 |#2|) $) NIL (|has| |#2| (-533)))) (-1885 ((|#2|) NIL) ((|#2| (-1205 $)) NIL)) (-1815 (((-1117 |#2|) $) NIL)) (-1809 (((-111)) NIL)) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-1887 (($ (-1205 |#2|)) NIL) (($ (-1205 |#2|) (-1205 $)) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3406 (((-735) $) NIL (|has| |#2| (-533))) (((-878)) 38)) (-3410 ((|#2| $ (-526) (-526)) NIL)) (-1806 (((-111)) NIL)) (-2493 (($ $ (-878)) NIL)) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL)) (-3405 (((-735) $) NIL (|has| |#2| (-533)))) (-3404 (((-607 (-225 |#1| |#2|)) $) NIL (|has| |#2| (-533)))) (-3412 (((-735) $) NIL)) (-1802 (((-111)) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#2| $) NIL (|has| |#2| (-6 (-4312 #3="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#2|))) NIL)) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3915 (((-607 (-607 |#2|)) $) NIL)) (-1800 (((-111)) NIL)) (-1804 (((-111)) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-2005 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-607 $))) #1#)) NIL (|has| |#2| (-533)))) (-1796 (((-3 $ #1#)) NIL (|has| |#2| (-533)))) (-1884 (((-653 |#2|)) NIL) (((-653 |#2|) (-1205 $)) NIL)) (-1820 ((|#2| $) NIL)) (-1882 (((-653 |#2|) $) NIL) (((-653 |#2|) $ (-1205 $)) NIL)) (-2466 (((-3 $ #1#) $) NIL (|has| |#2| (-533)))) (-2002 (((-1117 (-905 |#2|))) NIL (|has| |#2| (-348)))) (-2467 (($ $ (-878)) NIL)) (-1818 ((|#2| $) NIL)) (-1798 (((-1117 |#2|) $) NIL (|has| |#2| (-533)))) (-1886 ((|#2|) NIL) ((|#2| (-1205 $)) NIL)) (-1816 (((-1117 |#2|) $) NIL)) (-1810 (((-111)) NIL)) (-3554 (((-1106) $) NIL)) (-1801 (((-111)) NIL)) (-1803 (((-111)) NIL)) (-1805 (((-111)) NIL)) (-3911 (((-3 $ "failed") $) NIL (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-1808 (((-111)) NIL)) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) (-526) |#2|) NIL) ((|#2| $ (-526) (-526)) 22) ((|#2| $ (-526)) NIL)) (-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3648 ((|#2| $) NIL)) (-3651 (($ (-607 |#2|)) NIL)) (-3419 (((-111) $) NIL)) (-3650 (((-225 |#1| |#2|) $) NIL)) (-3647 ((|#2| $) NIL (|has| |#2| (-6 (-4312 #3#))))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-3537 (((-653 |#2|) (-1205 $)) NIL) (((-1205 |#2|) $) NIL) (((-653 |#2|) (-1205 $) (-1205 $)) NIL) (((-1205 |#2|) $ (-1205 $)) 25)) (-4287 (($ (-1205 |#2|)) NIL) (((-1205 |#2|) $) NIL)) (-1990 (((-607 (-905 |#2|))) NIL) (((-607 (-905 |#2|)) (-1205 $)) NIL)) (-2655 (($ $ $) NIL)) (-1814 (((-111)) NIL)) (-3408 (((-225 |#1| |#2|) $ (-526)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (((-653 |#2|) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) 36)) (-1799 (((-607 (-1205 |#2|))) NIL (|has| |#2| (-533)))) (-2656 (($ $ $ $) NIL)) (-1812 (((-111)) NIL)) (-2849 (($ (-653 |#2|) $) NIL)) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2654 (($ $ $) NIL)) (-1813 (((-111)) NIL)) (-1811 (((-111)) NIL)) (-1807 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) NIL) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-635 |#1| |#2|) (-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-403 |#2|)) (-878) (-163)) (T -635)) +NIL +(-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-403 |#2|)) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3560 (((-607 (-1128)) $) 10)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-636) (-13 (-1035) (-10 -8 (-15 -3560 ((-607 (-1128)) $))))) (T -636)) +((-3560 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-636))))) +(-13 (-1035) (-10 -8 (-15 -3560 ((-607 (-1128)) $)))) +((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) NIL)) (-3434 (($ $) 52)) (-2962 (((-111) $) NIL)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2363 (((-3 $ "failed") (-783 |#1|)) 23)) (-2365 (((-111) (-783 |#1|)) 15)) (-2364 (($ (-783 |#1|)) 24)) (-2742 (((-111) $ $) 30)) (-4152 (((-878) $) 37)) (-3435 (($ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4051 (((-607 $) (-783 |#1|)) 17)) (-4274 (((-823) $) 43) (($ |#1|) 34) (((-783 |#1|) $) 39) (((-641 |#1|) $) 44)) (-2362 (((-56 (-607 $)) (-607 |#1|) (-878)) 57)) (-2361 (((-607 $) (-607 |#1|) (-878)) 60)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 53)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 38))) +(((-637 |#1|) (-13 (-811) (-995 |#1|) (-10 -8 (-15 -2962 ((-111) $)) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ((-641 |#1|) $)) (-15 -4051 ((-607 $) (-783 |#1|))) (-15 -2365 ((-111) (-783 |#1|))) (-15 -2364 ($ (-783 |#1|))) (-15 -2363 ((-3 $ "failed") (-783 |#1|))) (-15 -4251 ((-607 |#1|) $)) (-15 -2362 ((-56 (-607 $)) (-607 |#1|) (-878))) (-15 -2361 ((-607 $) (-607 |#1|) (-878))))) (-811)) (T -637)) +((-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-637 *4))) (-5 *1 (-637 *4)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-111)) (-5 *1 (-637 *4)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3)))) (-2363 (*1 *1 *2) (|partial| -12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-56 (-607 (-637 *5)))) (-5 *1 (-637 *5)))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-607 (-637 *5))) (-5 *1 (-637 *5))))) +(-13 (-811) (-995 |#1|) (-10 -8 (-15 -2962 ((-111) $)) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ((-641 |#1|) $)) (-15 -4051 ((-607 $) (-783 |#1|))) (-15 -2365 ((-111) (-783 |#1|))) (-15 -2364 ($ (-783 |#1|))) (-15 -2363 ((-3 $ "failed") (-783 |#1|))) (-15 -4251 ((-607 |#1|) $)) (-15 -2362 ((-56 (-607 $)) (-607 |#1|) (-878))) (-15 -2361 ((-607 $) (-607 |#1|) (-878))))) +((-3721 ((|#2| $) 76)) (-4115 (($ $) 96)) (-1244 (((-111) $ (-735)) 26)) (-4117 (($ $) 85) (($ $ (-735)) 88)) (-3761 (((-111) $) 97)) (-3331 (((-607 $) $) 72)) (-3327 (((-111) $ $) 71)) (-4041 (((-111) $ (-735)) 24)) (-2278 (((-526) $) 46)) (-2279 (((-526) $) 45)) (-4038 (((-111) $ (-735)) 22)) (-3841 (((-111) $) 74)) (-4116 ((|#2| $) 89) (($ $ (-735)) 92)) (-2351 (($ $ $ (-526)) 62) (($ |#2| $ (-526)) 61)) (-2281 (((-607 (-526)) $) 44)) (-2282 (((-111) (-526) $) 42)) (-4119 ((|#2| $) NIL) (($ $ (-735)) 84)) (-4087 (($ $ (-526)) 100)) (-3762 (((-111) $) 99)) (-2046 (((-111) (-1 (-111) |#2|) $) 32)) (-2283 (((-607 |#2|) $) 33)) (-4118 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1172 (-526))) 58) ((|#2| $ (-526)) 40) ((|#2| $ (-526) |#2|) 41)) (-3329 (((-526) $ $) 70)) (-2352 (($ $ (-1172 (-526))) 57) (($ $ (-526)) 51)) (-3955 (((-111) $) 66)) (-4110 (($ $) 81)) (-4111 (((-735) $) 80)) (-4112 (($ $) 79)) (-3844 (($ (-607 |#2|)) 37)) (-3191 (($ $) 101)) (-3836 (((-607 $) $) 69)) (-3328 (((-111) $ $) 68)) (-2047 (((-111) (-1 (-111) |#2|) $) 31)) (-3353 (((-111) $ $) 18)) (-4273 (((-735) $) 29))) +(((-638 |#1| |#2|) (-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -4087 (|#1| |#1| (-526))) (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2283 ((-607 |#2|) |#1|)) (-15 -2282 ((-111) (-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2279 ((-526) |#1|)) (-15 -2278 ((-526) |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "first")) (-15 -4119 (|#2| |#1|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -3329 ((-526) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| "value")) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) (-639 |#2|) (-1159)) (T -638)) +NIL +(-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -4087 (|#1| |#1| (-526))) (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2283 ((-607 |#2|) |#1|)) (-15 -2282 ((-111) (-526) |#1|)) (-15 -2281 ((-607 (-526)) |#1|)) (-15 -2279 ((-526) |#1|)) (-15 -2278 ((-526) |#1|)) (-15 -3844 (|#1| (-607 |#2|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -2352 (|#1| |#1| (-526))) (-15 -2352 (|#1| |#1| (-1172 (-526)))) (-15 -2351 (|#1| |#2| |#1| (-526))) (-15 -2351 (|#1| |#1| |#1| (-526))) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "first")) (-15 -4119 (|#2| |#1|)) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -3329 ((-526) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| "value")) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -2046 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 102)) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-2367 (($ $) 124)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 103)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-2366 (((-735) $) 123)) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-2369 (($ $) 126)) (-2370 (((-111) $) 127)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2368 ((|#1| $) 125)) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-4087 (($ $ (-526)) 122)) (-3762 (((-111) $) 84)) (-2371 (((-111) $) 128)) (-2372 (((-111) $) 129)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-3191 (($ $) 121)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-639 |#1|) (-134) (-1159)) (T -639)) +((-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) +(-13 (-1097 |t#1|) (-10 -8 (-15 -3725 ($ (-1 (-111) |t#1|) $)) (-15 -4032 ($ (-1 (-111) |t#1|) $)) (-15 -2372 ((-111) $)) (-15 -2371 ((-111) $)) (-15 -2370 ((-111) $)) (-15 -2369 ($ $)) (-15 -2368 (|t#1| $)) (-15 -2367 ($ $)) (-15 -2366 ((-735) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1097 |#1|) . T) ((-1159) . T) ((-1194 |#1|) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2378 (($ (-735) (-735) (-735)) 33 (|has| |#1| (-1004)))) (-1244 (((-111) $ (-735)) NIL)) (-2375 ((|#1| $ (-735) (-735) (-735) |#1|) 27)) (-3855 (($) NIL T CONST)) (-2376 (($ $ $) 37 (|has| |#1| (-1004)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2373 (((-1205 (-735)) $) 9)) (-2374 (($ (-1123) $ $) 22)) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2377 (($ (-735)) 35 (|has| |#1| (-1004)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-735) (-735) (-735)) 25)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-3844 (($ (-607 (-607 (-607 |#1|)))) 44)) (-4274 (($ (-917 (-917 (-917 |#1|)))) 15) (((-917 (-917 (-917 |#1|))) $) 12) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-640 |#1|) (-13 (-472 |#1|) (-10 -8 (IF (|has| |#1| (-1004)) (PROGN (-15 -2378 ($ (-735) (-735) (-735))) (-15 -2377 ($ (-735))) (-15 -2376 ($ $ $))) |%noBranch|) (-15 -3844 ($ (-607 (-607 (-607 |#1|))))) (-15 -4118 (|#1| $ (-735) (-735) (-735))) (-15 -2375 (|#1| $ (-735) (-735) (-735) |#1|)) (-15 -4274 ($ (-917 (-917 (-917 |#1|))))) (-15 -4274 ((-917 (-917 (-917 |#1|))) $)) (-15 -2374 ($ (-1123) $ $)) (-15 -2373 ((-1205 (-735)) $)))) (-1052)) (T -640)) +((-2378 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052)))) (-2376 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1004)) (-4 *2 (-1052)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-607 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) (-4118 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) (-2375 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) (-2374 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1205 (-735))) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) +(-13 (-472 |#1|) (-10 -8 (IF (|has| |#1| (-1004)) (PROGN (-15 -2378 ($ (-735) (-735) (-735))) (-15 -2377 ($ (-735))) (-15 -2376 ($ $ $))) |%noBranch|) (-15 -3844 ($ (-607 (-607 (-607 |#1|))))) (-15 -4118 (|#1| $ (-735) (-735) (-735))) (-15 -2375 (|#1| $ (-735) (-735) (-735) |#1|)) (-15 -4274 ($ (-917 (-917 (-917 |#1|))))) (-15 -4274 ((-917 (-917 (-917 |#1|))) $)) (-15 -2374 ($ (-1123) $ $)) (-15 -2373 ((-1205 (-735)) $)))) +((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 14)) (-3434 (($ $) 18)) (-2962 (((-111) $) 19)) (-3470 (((-3 |#1| "failed") $) 22)) (-3469 ((|#1| $) 20)) (-4117 (($ $) 36)) (-4253 (($ $) 24)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2742 (((-111) $ $) 42)) (-4152 (((-878) $) 38)) (-3435 (($ $) 17)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) 35)) (-4274 (((-823) $) 31) (($ |#1|) 23) (((-783 |#1|) $) 27)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 12)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 40)) (* (($ $ $) 34))) +(((-641 |#1|) (-13 (-811) (-995 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4119 (|#1| $)) (-15 -3435 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4253 ($ $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -3434 ($ $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -641)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811))))) +(-13 (-811) (-995 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4274 ((-783 |#1|) $)) (-15 -4119 (|#1| $)) (-15 -3435 ($ $)) (-15 -4152 ((-878) $)) (-15 -2742 ((-111) $ $)) (-15 -4253 ($ $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -3434 ($ $)) (-15 -4251 ((-607 |#1|) $)))) +((-2387 ((|#1| (-1 |#1| (-735) |#1|) (-735) |#1|) 11)) (-2379 ((|#1| (-1 |#1| |#1|) (-735) |#1|) 9))) +(((-642 |#1|) (-10 -7 (-15 -2379 (|#1| (-1 |#1| |#1|) (-735) |#1|)) (-15 -2387 (|#1| (-1 |#1| (-735) |#1|) (-735) |#1|))) (-1052)) (T -642)) +((-2387 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-735) *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2)))) (-2379 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2))))) +(-10 -7 (-15 -2379 (|#1| (-1 |#1| |#1|) (-735) |#1|)) (-15 -2387 (|#1| (-1 |#1| (-735) |#1|) (-735) |#1|))) +((-2381 ((|#2| |#1| |#2|) 9)) (-2380 ((|#1| |#1| |#2|) 8))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2380 (|#1| |#1| |#2|)) (-15 -2381 (|#2| |#1| |#2|))) (-1052) (-1052)) (T -643)) +((-2381 (*1 *2 *3 *2) (-12 (-5 *1 (-643 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *1 (-643 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(-10 -7 (-15 -2380 (|#1| |#1| |#2|)) (-15 -2381 (|#2| |#1| |#2|))) +((-2382 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2382 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1052) (-1052) (-1052)) (T -644)) +((-2382 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)) (-5 *1 (-644 *5 *6 *2))))) +(-10 -7 (-15 -2382 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 20)) (-3629 (((-607 (-1160)) $) 18)) (-2383 (($ (-607 (-1160)) (-1160)) 13)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (((-1160) $) 21) (($ (-1066)) 10)) (-3353 (((-111) $ $) NIL))) +(((-645) (-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-1066))) (-15 -2383 ($ (-607 (-1160)) (-1160))) (-15 -3629 ((-607 (-1160)) $)) (-15 -3630 ((-1160) $))))) (T -645)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-645)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1160))) (-5 *3 (-1160)) (-5 *1 (-645)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-645)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-645))))) +(-13 (-1035) (-583 (-1160)) (-10 -8 (-15 -4274 ($ (-1066))) (-15 -2383 ($ (-607 (-1160)) (-1160))) (-15 -3629 ((-607 (-1160)) $)) (-15 -3630 ((-1160) $)))) +((-2387 (((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)) 23)) (-2384 (((-1 |#1|) |#1|) 8)) (-2386 ((|#1| |#1|) 16)) (-2385 (((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4274 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-735)) 20))) +(((-646 |#1|) (-10 -7 (-15 -2384 ((-1 |#1|) |#1|)) (-15 -4274 ((-1 |#1|) |#1|)) (-15 -2385 (|#1| (-1 |#1| |#1|))) (-15 -2385 ((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526))) (-15 -2386 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-735))) (-15 -2387 ((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)))) (-1052)) (T -646)) +((-2387 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-735) *3)) (-4 *3 (-1052)) (-5 *1 (-646 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *4 (-1052)) (-5 *1 (-646 *4)))) (-2386 (*1 *2 *2) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1052)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-607 *5) (-607 *5))) (-5 *4 (-526)) (-5 *2 (-607 *5)) (-5 *1 (-646 *5)) (-4 *5 (-1052)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-646 *2)) (-4 *2 (-1052)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052))))) +(-10 -7 (-15 -2384 ((-1 |#1|) |#1|)) (-15 -4274 ((-1 |#1|) |#1|)) (-15 -2385 (|#1| (-1 |#1| |#1|))) (-15 -2385 ((-607 |#1|) (-1 (-607 |#1|) (-607 |#1|)) (-526))) (-15 -2386 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-735))) (-15 -2387 ((-1 |#1| (-735) |#1|) (-1 |#1| (-735) |#1|)))) +((-2390 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2389 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4268 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2388 (((-1 |#2| |#1|) |#2|) 11))) +(((-647 |#1| |#2|) (-10 -7 (-15 -2388 ((-1 |#2| |#1|) |#2|)) (-15 -2389 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4268 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2390 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1052) (-1052)) (T -647)) +((-2390 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)) (-4 *4 (-1052)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5)) (-5 *1 (-647 *4 *5)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-647 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-1052))))) +(-10 -7 (-15 -2388 ((-1 |#2| |#1|) |#2|)) (-15 -2389 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4268 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2390 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2395 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2391 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2392 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2393 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2394 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -2391 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2392 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2393 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2395 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1052) (-1052) (-1052)) (T -648)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-1 *7 *5)) (-5 *1 (-648 *5 *6 *7)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-648 *4 *5 *6)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-648 *4 *5 *6)) (-4 *4 (-1052)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-648 *4 *5 *6)) (-4 *5 (-1052)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1052)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *4 *6))))) +(-10 -7 (-15 -2391 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2392 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2393 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2395 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4157 (($ (-735) (-735)) 33)) (-2400 (($ $ $) 56)) (-3733 (($ |#3|) 52) (($ $) 53)) (-3418 (((-111) $) 28)) (-2399 (($ $ (-526) (-526)) 58)) (-2398 (($ $ (-526) (-526)) 59)) (-2397 (($ $ (-526) (-526) (-526) (-526)) 63)) (-2402 (($ $) 54)) (-3420 (((-111) $) 14)) (-2396 (($ $ (-526) (-526) $) 64)) (-4106 ((|#2| $ (-526) (-526) |#2|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) 62)) (-3652 (($ (-735) |#2|) 39)) (-3421 (($ (-607 (-607 |#2|))) 37)) (-3915 (((-607 (-607 |#2|)) $) 57)) (-2401 (($ $ $) 55)) (-3780 (((-3 $ "failed") $ |#2|) 91)) (-4118 ((|#2| $ (-526) (-526)) NIL) ((|#2| $ (-526) (-526) |#2|) NIL) (($ $ (-607 (-526)) (-607 (-526))) 61)) (-3651 (($ (-607 |#2|)) 40) (($ (-607 $)) 42)) (-3419 (((-111) $) 24)) (-4274 (($ |#4|) 47) (((-823) $) NIL)) (-3417 (((-111) $) 30)) (-4265 (($ $ |#2|) 93)) (-4156 (($ $ $) 68) (($ $) 71)) (-4158 (($ $ $) 66)) (** (($ $ (-735)) 80) (($ $ (-526)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-526) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-649 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#2|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| (-526) (-526) |#1|)) (-15 -2397 (|#1| |#1| (-526) (-526) (-526) (-526))) (-15 -2398 (|#1| |#1| (-526) (-526))) (-15 -2399 (|#1| |#1| (-526) (-526))) (-15 -4106 (|#1| |#1| (-607 (-526)) (-607 (-526)) |#1|)) (-15 -4118 (|#1| |#1| (-607 (-526)) (-607 (-526)))) (-15 -3915 ((-607 (-607 |#2|)) |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3733 (|#1| |#3|)) (-15 -4274 (|#1| |#4|)) (-15 -3651 (|#1| (-607 |#1|))) (-15 -3651 (|#1| (-607 |#2|))) (-15 -3652 (|#1| (-735) |#2|)) (-15 -3421 (|#1| (-607 (-607 |#2|)))) (-15 -4157 (|#1| (-735) (-735))) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526)))) (-650 |#2| |#3| |#4|) (-1004) (-357 |#2|) (-357 |#2|)) (T -649)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -4265 (|#1| |#1| |#2|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-735))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| (-526) (-526) |#1|)) (-15 -2397 (|#1| |#1| (-526) (-526) (-526) (-526))) (-15 -2398 (|#1| |#1| (-526) (-526))) (-15 -2399 (|#1| |#1| (-526) (-526))) (-15 -4106 (|#1| |#1| (-607 (-526)) (-607 (-526)) |#1|)) (-15 -4118 (|#1| |#1| (-607 (-526)) (-607 (-526)))) (-15 -3915 ((-607 (-607 |#2|)) |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -3733 (|#1| |#3|)) (-15 -4274 (|#1| |#4|)) (-15 -3651 (|#1| (-607 |#1|))) (-15 -3651 (|#1| (-607 |#2|))) (-15 -3652 (|#1| (-735) |#2|)) (-15 -3421 (|#1| (-607 (-607 |#2|)))) (-15 -4157 (|#1| (-735) (-735))) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) (-526)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) 97)) (-2400 (($ $ $) 87)) (-3733 (($ |#2|) 91) (($ $) 90)) (-3418 (((-111) $) 99)) (-2399 (($ $ (-526) (-526)) 83)) (-2398 (($ $ (-526) (-526)) 82)) (-2397 (($ $ (-526) (-526) (-526) (-526)) 81)) (-2402 (($ $) 89)) (-3420 (((-111) $) 101)) (-1244 (((-111) $ (-735)) 8)) (-2396 (($ $ (-526) (-526) $) 80)) (-4106 ((|#1| $ (-526) (-526) |#1|) 44) (($ $ (-607 (-526)) (-607 (-526)) $) 84)) (-1282 (($ $ (-526) |#2|) 42)) (-1281 (($ $ (-526) |#3|) 41)) (-3652 (($ (-735) |#1|) 95)) (-3855 (($) 7 T CONST)) (-3407 (($ $) 67 (|has| |#1| (-292)))) (-3409 ((|#2| $ (-526)) 46)) (-3406 (((-735) $) 66 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) 43)) (-3410 ((|#1| $ (-526) (-526)) 48)) (-2044 (((-607 |#1|) $) 30)) (-3405 (((-735) $) 65 (|has| |#1| (-533)))) (-3404 (((-607 |#3|) $) 64 (|has| |#1| (-533)))) (-3412 (((-735) $) 51)) (-3936 (($ (-735) (-735) |#1|) 57)) (-3411 (((-735) $) 50)) (-4041 (((-111) $ (-735)) 9)) (-3646 ((|#1| $) 62 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 55)) (-3414 (((-526) $) 53)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 54)) (-3413 (((-526) $) 52)) (-3421 (($ (-607 (-607 |#1|))) 96)) (-2048 (($ (-1 |#1| |#1|) $) 34)) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3915 (((-607 (-607 |#1|)) $) 86)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3911 (((-3 $ "failed") $) 61 (|has| |#1| (-348)))) (-2401 (($ $ $) 88)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) 56)) (-3780 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) (-526)) 49) ((|#1| $ (-526) (-526) |#1|) 47) (($ $ (-607 (-526)) (-607 (-526))) 85)) (-3651 (($ (-607 |#1|)) 94) (($ (-607 $)) 93)) (-3419 (((-111) $) 100)) (-3647 ((|#1| $) 63 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-3408 ((|#3| $ (-526)) 45)) (-4274 (($ |#3|) 92) (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 98)) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) 68 (|has| |#1| (-348)))) (-4156 (($ $ $) 78) (($ $) 77)) (-4158 (($ $ $) 79)) (** (($ $ (-735)) 70) (($ $ (-526)) 60 (|has| |#1| (-348)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-526) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-650 |#1| |#2| |#3|) (-134) (-1004) (-357 |t#1|) (-357 |t#1|)) (T -650)) +((-3420 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-4157 (*1 *1 *2 *2) (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3652 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *2)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (-3733 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *2 *4)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2401 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2400 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-607 (-607 *3))))) (-4118 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4106 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2399 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2398 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2397 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2396 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-650 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-650 *3 *2 *4)) (-4 *3 (-1004)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-533)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-348)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-292)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-607 *5)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4312 #1="*"))) (-4 *2 (-1004)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4312 #1#))) (-4 *2 (-1004)))) (-3911 (*1 *1 *1) (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-348)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-348))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3420 ((-111) $)) (-15 -3419 ((-111) $)) (-15 -3418 ((-111) $)) (-15 -3417 ((-111) $)) (-15 -4157 ($ (-735) (-735))) (-15 -3421 ($ (-607 (-607 |t#1|)))) (-15 -3652 ($ (-735) |t#1|)) (-15 -3651 ($ (-607 |t#1|))) (-15 -3651 ($ (-607 $))) (-15 -4274 ($ |t#3|)) (-15 -3733 ($ |t#2|)) (-15 -3733 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $ $)) (-15 -2400 ($ $ $)) (-15 -3915 ((-607 (-607 |t#1|)) $)) (-15 -4118 ($ $ (-607 (-526)) (-607 (-526)))) (-15 -4106 ($ $ (-607 (-526)) (-607 (-526)) $)) (-15 -2399 ($ $ (-526) (-526))) (-15 -2398 ($ $ (-526) (-526))) (-15 -2397 ($ $ (-526) (-526) (-526) (-526))) (-15 -2396 ($ $ (-526) (-526) $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-526) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-735))) (IF (|has| |t#1| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-348)) (-15 -4265 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-292)) (-15 -3407 ($ $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3406 ((-735) $)) (-15 -3405 ((-735) $)) (-15 -3404 ((-607 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4312 "*"))) (PROGN (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-15 -3911 ((-3 $ "failed") $)) (-15 ** ($ $ (-526)))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-55 |#1| |#2| |#3|) . T) ((-1159) . T)) +((-4161 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4275 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-651 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4275 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4161 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1004) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|) (-1004) (-357 |#5|) (-357 |#5|) (-650 |#5| |#6| |#7|)) (T -651)) +((-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) (-5 *1 (-651 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-650 *5 *6 *7)) (-4 *10 (-650 *2 *8 *9)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8))))) +(-10 -7 (-15 -4275 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4275 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4161 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3407 ((|#4| |#4|) 72 (|has| |#1| (-292)))) (-3406 (((-735) |#4|) 99 (|has| |#1| (-533)))) (-3405 (((-735) |#4|) 76 (|has| |#1| (-533)))) (-3404 (((-607 |#3|) |#4|) 83 (|has| |#1| (-533)))) (-2440 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 111 (|has| |#1| (-292)))) (-3646 ((|#1| |#4|) 35)) (-2407 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-533)))) (-3911 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-348)))) (-2406 ((|#4| |#4|) 68 (|has| |#1| (-533)))) (-2404 ((|#4| |#4| |#1| (-526) (-526)) 43)) (-2403 ((|#4| |#4| (-526) (-526)) 38)) (-2405 ((|#4| |#4| |#1| (-526) (-526)) 48)) (-3647 ((|#1| |#4|) 78)) (-2823 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-533))))) +(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3647 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -2403 (|#4| |#4| (-526) (-526))) (-15 -2404 (|#4| |#4| |#1| (-526) (-526))) (-15 -2405 (|#4| |#4| |#1| (-526) (-526))) (IF (|has| |#1| (-533)) (PROGN (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (-15 -3404 ((-607 |#3|) |#4|)) (-15 -2406 (|#4| |#4|)) (-15 -2407 ((-3 |#4| "failed") |#4|)) (-15 -2823 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-292)) (PROGN (-15 -3407 (|#4| |#4|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-163) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -652)) +((-3911 (*1 *2 *2) (|partial| -12 (-4 *3 (-348)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2440 (*1 *2 *3 *3) (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-652 *3 *4 *5 *6)) (-4 *6 (-650 *3 *4 *5)))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-2407 (*1 *2 *2) (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-607 *6)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-2405 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6)))) (-2404 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6)))) (-2403 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-526)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *1 (-652 *4 *5 *6 *2)) (-4 *2 (-650 *4 *5 *6)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5))))) +(-10 -7 (-15 -3647 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -2403 (|#4| |#4| (-526) (-526))) (-15 -2404 (|#4| |#4| |#1| (-526) (-526))) (-15 -2405 (|#4| |#4| |#1| (-526) (-526))) (IF (|has| |#1| (-533)) (PROGN (-15 -3406 ((-735) |#4|)) (-15 -3405 ((-735) |#4|)) (-15 -3404 ((-607 |#3|) |#4|)) (-15 -2406 (|#4| |#4|)) (-15 -2407 ((-3 |#4| "failed") |#4|)) (-15 -2823 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-292)) (PROGN (-15 -3407 (|#4| |#4|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735) (-735)) 47)) (-2400 (($ $ $) NIL)) (-3733 (($ (-1205 |#1|)) NIL) (($ $) NIL)) (-3418 (((-111) $) NIL)) (-2399 (($ $ (-526) (-526)) 12)) (-2398 (($ $ (-526) (-526)) NIL)) (-2397 (($ $ (-526) (-526) (-526) (-526)) NIL)) (-2402 (($ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-2396 (($ $ (-526) (-526) $) NIL)) (-4106 ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526)) $) NIL)) (-1282 (($ $ (-526) (-1205 |#1|)) NIL)) (-1281 (($ $ (-526) (-1205 |#1|)) NIL)) (-3652 (($ (-735) |#1|) 22)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 31 (|has| |#1| (-292)))) (-3409 (((-1205 |#1|) $ (-526)) NIL)) (-3406 (((-735) $) 33 (|has| |#1| (-533)))) (-1613 ((|#1| $ (-526) (-526) |#1|) 51)) (-3410 ((|#1| $ (-526) (-526)) NIL)) (-2044 (((-607 |#1|) $) NIL)) (-3405 (((-735) $) 35 (|has| |#1| (-533)))) (-3404 (((-607 (-1205 |#1|)) $) 38 (|has| |#1| (-533)))) (-3412 (((-735) $) 20)) (-3936 (($ (-735) (-735) |#1|) 16)) (-3411 (((-735) $) 21)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#1| $) 29 (|has| |#1| (-6 (-4312 #1="*"))))) (-3416 (((-526) $) 9)) (-3414 (((-526) $) 10)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3415 (((-526) $) 11)) (-3413 (((-526) $) 48)) (-3421 (($ (-607 (-607 |#1|))) NIL)) (-2048 (($ (-1 |#1| |#1|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3915 (((-607 (-607 |#1|)) $) 60)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3911 (((-3 $ #2="failed") $) 45 (|has| |#1| (-348)))) (-2401 (($ $ $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2277 (($ $ |#1|) NIL)) (-3780 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-533)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) (-526)) NIL) ((|#1| $ (-526) (-526) |#1|) NIL) (($ $ (-607 (-526)) (-607 (-526))) NIL)) (-3651 (($ (-607 |#1|)) NIL) (($ (-607 $)) NIL) (($ (-1205 |#1|)) 52)) (-3419 (((-111) $) NIL)) (-3647 ((|#1| $) 27 (|has| |#1| (-6 (-4312 #1#))))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 64 (|has| |#1| (-584 (-515))))) (-3408 (((-1205 |#1|) $ (-526)) NIL)) (-4274 (($ (-1205 |#1|)) NIL) (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $ $) NIL) (($ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) 23) (($ $ (-526)) 46 (|has| |#1| (-348)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-526) $) NIL) (((-1205 |#1|) $ (-1205 |#1|)) NIL) (((-1205 |#1|) (-1205 |#1|) $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-653 |#1|) (-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 -3651 ($ (-1205 |#1|))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 $ "failed") $)) |%noBranch|))) (-1004)) (T -653)) +((-3911 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2)) (-4 *2 (-348)) (-4 *2 (-1004)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-653 *3))))) +(-13 (-650 |#1| (-1205 |#1|) (-1205 |#1|)) (-10 -8 (-15 -3651 ($ (-1205 |#1|))) (IF (|has| |#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |#1| (-348)) (-15 -3911 ((-3 $ "failed") $)) |%noBranch|))) +((-2413 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 25)) (-2412 (((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|) 21)) (-2414 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735)) 26)) (-2409 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 14)) (-2410 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|)) 18) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 16)) (-2411 (((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|)) 20)) (-2408 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 12)) (** (((-653 |#1|) (-653 |#1|) (-735)) 30))) +(((-654 |#1|) (-10 -7 (-15 -2408 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2409 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2411 ((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|))) (-15 -2412 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2413 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2414 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735))) (-15 ** ((-653 |#1|) (-653 |#1|) (-735)))) (-1004)) (T -654)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) (-2414 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) (-2413 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2412 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2411 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2410 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2410 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2409 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) (-2408 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(-10 -7 (-15 -2408 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2409 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2410 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2411 ((-653 |#1|) (-653 |#1|) |#1| (-653 |#1|))) (-15 -2412 ((-653 |#1|) (-653 |#1|) (-653 |#1|) |#1|)) (-15 -2413 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -2414 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-653 |#1|) (-735))) (-15 ** ((-653 |#1|) (-653 |#1|) (-735)))) +((-2415 (($) 8 T CONST)) (-4274 (((-823) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3888 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -2415)) 16)) (-3894 ((|#1| $) 11))) +(((-655 |#1|) (-13 (-1201) (-583 (-823)) (-10 -8 (-15 -3888 ((-111) $ (|[\|\|]| |#1|))) (-15 -3888 ((-111) $ (|[\|\|]| -2415))) (-15 -4274 ($ |#1|)) (-15 -4274 (|#1| $)) (-15 -3894 (|#1| $)) (-15 -2415 ($) -4268))) (-583 (-823))) (T -655)) +((-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-583 (-823))) (-5 *2 (-111)) (-5 *1 (-655 *4)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2415)) (-5 *2 (-111)) (-5 *1 (-655 *4)) (-4 *4 (-583 (-823))))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-4274 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-3894 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) (-2415 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823)))))) +(-13 (-1201) (-583 (-823)) (-10 -8 (-15 -3888 ((-111) $ (|[\|\|]| |#1|))) (-15 -3888 ((-111) $ (|[\|\|]| -2415))) (-15 -4274 ($ |#1|)) (-15 -4274 (|#1| $)) (-15 -3894 (|#1| $)) (-15 -2415 ($) -4268))) +((-2418 ((|#2| |#2| |#4|) 25)) (-2421 (((-653 |#2|) |#3| |#4|) 31)) (-2419 (((-653 |#2|) |#2| |#4|) 30)) (-2416 (((-1205 |#2|) |#2| |#4|) 16)) (-2417 ((|#2| |#3| |#4|) 24)) (-2422 (((-653 |#2|) |#3| |#4| (-735) (-735)) 38)) (-2420 (((-653 |#2|) |#2| |#4| (-735)) 37))) +(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-1205 |#2|) |#2| |#4|)) (-15 -2417 (|#2| |#3| |#4|)) (-15 -2418 (|#2| |#2| |#4|)) (-15 -2419 ((-653 |#2|) |#2| |#4|)) (-15 -2420 ((-653 |#2|) |#2| |#4| (-735))) (-15 -2421 ((-653 |#2|) |#3| |#4|)) (-15 -2422 ((-653 |#2|) |#3| |#4| (-735) (-735)))) (-1052) (-859 |#1|) (-357 |#2|) (-13 (-357 |#1|) (-10 -7 (-6 -4310)))) (T -656)) +((-2422 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *7 (-859 *6)) (-5 *2 (-653 *7)) (-5 *1 (-656 *6 *7 *3 *4)) (-4 *3 (-357 *7)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310)))))) (-2421 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *6 (-859 *5)) (-5 *2 (-653 *6)) (-5 *1 (-656 *5 *6 *3 *4)) (-4 *3 (-357 *6)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2420 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *3 (-859 *6)) (-5 *2 (-653 *3)) (-5 *1 (-656 *6 *3 *7 *4)) (-4 *7 (-357 *3)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310)))))) (-2419 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-653 *3)) (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2418 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-859 *4)) (-5 *1 (-656 *4 *2 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4310)))))) (-2417 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *2 (-859 *5)) (-5 *1 (-656 *5 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310)))))) (-2416 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-1205 *3)) (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) +(-10 -7 (-15 -2416 ((-1205 |#2|) |#2| |#4|)) (-15 -2417 (|#2| |#3| |#4|)) (-15 -2418 (|#2| |#2| |#4|)) (-15 -2419 ((-653 |#2|) |#2| |#4|)) (-15 -2420 ((-653 |#2|) |#2| |#4| (-735))) (-15 -2421 ((-653 |#2|) |#3| |#4|)) (-15 -2422 ((-653 |#2|) |#3| |#4| (-735) (-735)))) +((-4060 (((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)) 20)) (-4058 ((|#1| (-653 |#2|)) 9)) (-4059 (((-653 |#1|) (-653 |#2|)) 18))) +(((-657 |#1| |#2|) (-10 -7 (-15 -4058 (|#1| (-653 |#2|))) (-15 -4059 ((-653 |#1|) (-653 |#2|))) (-15 -4060 ((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)))) (-533) (-950 |#1|)) (T -657)) +((-4060 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |num| (-653 *4)) (|:| |den| *4))) (-5 *1 (-657 *4 *5)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-653 *4)) (-5 *1 (-657 *4 *5)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-657 *2 *4))))) +(-10 -7 (-15 -4058 (|#1| (-653 |#2|))) (-15 -4059 ((-653 |#1|) (-653 |#2|))) (-15 -4060 ((-2 (|:| |num| (-653 |#1|)) (|:| |den| |#1|)) (-653 |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1877 (((-653 (-663))) NIL) (((-653 (-663)) (-1205 $)) NIL)) (-3649 (((-663) $) NIL)) (-3806 (($ $) NIL (|has| (-663) (-1145)))) (-3961 (($ $) NIL (|has| (-663) (-1145)))) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-663) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-4093 (($ $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-4286 (((-390 $) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-3337 (($ $) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-1681 (((-111) $ $) NIL (|has| (-663) (-292)))) (-3433 (((-735)) NIL (|has| (-663) (-353)))) (-3804 (($ $) NIL (|has| (-663) (-1145)))) (-3960 (($ $) NIL (|has| (-663) (-1145)))) (-3808 (($ $) NIL (|has| (-663) (-1145)))) (-3959 (($ $) NIL (|has| (-663) (-1145)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) NIL) (((-3 (-663) #2#) $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-663) (-995 (-392 (-526)))))) (-3469 (((-526) $) NIL) (((-663) $) NIL) (((-392 (-526)) $) NIL (|has| (-663) (-995 (-392 (-526)))))) (-1887 (($ (-1205 (-663))) NIL) (($ (-1205 (-663)) (-1205 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-663) (-335)))) (-2861 (($ $ $) NIL (|has| (-663) (-292)))) (-1876 (((-653 (-663)) $) NIL) (((-653 (-663)) $ (-1205 $)) NIL)) (-2331 (((-653 (-663)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-663))) (|:| |vec| (-1205 (-663)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-663) (-606 (-526)))) (((-653 (-526)) (-653 $)) NIL (|has| (-663) (-606 (-526))))) (-4161 (((-3 $ "failed") (-392 (-1117 (-663)))) NIL (|has| (-663) (-348))) (($ (-1117 (-663))) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3965 (((-663) $) 29)) (-3324 (((-3 (-392 (-526)) #3="failed") $) NIL (|has| (-663) (-525)))) (-3323 (((-111) $) NIL (|has| (-663) (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| (-663) (-525)))) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-663) (-353)))) (-2860 (($ $ $) NIL (|has| (-663) (-292)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-663) (-292)))) (-3133 (($) NIL (|has| (-663) (-335)))) (-1772 (((-111) $) NIL (|has| (-663) (-335)))) (-1862 (($ $) NIL (|has| (-663) (-335))) (($ $ (-735)) NIL (|has| (-663) (-335)))) (-4045 (((-111) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-1400 (((-2 (|:| |r| (-663)) (|:| |phi| (-663))) $) NIL (-12 (|has| (-663) (-1013)) (|has| (-663) (-1145))))) (-3949 (($) NIL (|has| (-663) (-1145)))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-663) (-845 (-363)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-663) (-845 (-526))))) (-4090 (((-796 (-878)) $) NIL (|has| (-663) (-335))) (((-878) $) NIL (|has| (-663) (-335)))) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145))))) (-3429 (((-663) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-663) (-335)))) (-1678 (((-3 (-607 $) #4="failed") (-607 $) $) NIL (|has| (-663) (-292)))) (-2106 (((-1117 (-663)) $) NIL (|has| (-663) (-348)))) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4275 (($ (-1 (-663) (-663)) $) NIL)) (-2102 (((-878) $) NIL (|has| (-663) (-353)))) (-4259 (($ $) NIL (|has| (-663) (-1145)))) (-3379 (((-1117 (-663)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-663) (-292))) (($ $ $) NIL (|has| (-663) (-292)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| (-663) (-348)))) (-3764 (($) NIL (|has| (-663) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-663) (-353)))) (-1402 (($) NIL)) (-3966 (((-663) $) 31)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-663) (-292)))) (-3457 (($ (-607 $)) NIL (|has| (-663) (-292))) (($ $ $) NIL (|has| (-663) (-292)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-663) (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-663) (-292)) (|has| (-663) (-869))))) (-4051 (((-390 $) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| (-663) (-869))) (|has| (-663) (-348))))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-663) (-292))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-663) (-292)))) (-3780 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-663)) NIL (|has| (-663) (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-663) (-292)))) (-4260 (($ $) NIL (|has| (-663) (-1145)))) (-4086 (($ $ (-1123) (-663)) NIL (|has| (-663) (-496 (-1123) (-663)))) (($ $ (-607 (-1123)) (-607 (-663))) NIL (|has| (-663) (-496 (-1123) (-663)))) (($ $ (-607 (-278 (-663)))) NIL (|has| (-663) (-294 (-663)))) (($ $ (-278 (-663))) NIL (|has| (-663) (-294 (-663)))) (($ $ (-663) (-663)) NIL (|has| (-663) (-294 (-663)))) (($ $ (-607 (-663)) (-607 (-663))) NIL (|has| (-663) (-294 (-663))))) (-1680 (((-735) $) NIL (|has| (-663) (-292)))) (-4118 (($ $ (-663)) NIL (|has| (-663) (-271 (-663) (-663))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-663) (-292)))) (-4076 (((-663)) NIL) (((-663) (-1205 $)) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL (|has| (-663) (-335))) (((-735) $) NIL (|has| (-663) (-335)))) (-4129 (($ $ (-1 (-663) (-663))) NIL) (($ $ (-1 (-663) (-663)) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-735)) NIL (|has| (-663) (-219))) (($ $) NIL (|has| (-663) (-219)))) (-2469 (((-653 (-663)) (-1205 $) (-1 (-663) (-663))) NIL (|has| (-663) (-348)))) (-3499 (((-1117 (-663))) NIL)) (-3809 (($ $) NIL (|has| (-663) (-1145)))) (-3958 (($ $) NIL (|has| (-663) (-1145)))) (-1766 (($) NIL (|has| (-663) (-335)))) (-3807 (($ $) NIL (|has| (-663) (-1145)))) (-3957 (($ $) NIL (|has| (-663) (-1145)))) (-3805 (($ $) NIL (|has| (-663) (-1145)))) (-3956 (($ $) NIL (|has| (-663) (-1145)))) (-3537 (((-653 (-663)) (-1205 $)) NIL) (((-1205 (-663)) $) NIL) (((-653 (-663)) (-1205 $) (-1205 $)) NIL) (((-1205 (-663)) $ (-1205 $)) NIL)) (-4287 (((-515) $) NIL (|has| (-663) (-584 (-515)))) (((-159 (-211)) $) NIL (|has| (-663) (-977))) (((-159 (-363)) $) NIL (|has| (-663) (-977))) (((-849 (-363)) $) NIL (|has| (-663) (-584 (-849 (-363))))) (((-849 (-526)) $) NIL (|has| (-663) (-584 (-849 (-526))))) (($ (-1117 (-663))) NIL) (((-1117 (-663)) $) NIL) (($ (-1205 (-663))) NIL) (((-1205 (-663)) $) NIL)) (-3309 (($ $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| $ (-139)) (|has| (-663) (-869))) (|has| (-663) (-335))))) (-1401 (($ (-663) (-663)) 12)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-526)) NIL) (($ (-663)) NIL) (($ (-159 (-363))) 13) (($ (-159 (-526))) 19) (($ (-159 (-663))) 28) (($ (-159 (-665))) 25) (((-159 (-363)) $) 33) (($ (-392 (-526))) NIL (-3850 (|has| (-663) (-348)) (|has| (-663) (-995 (-392 (-526))))))) (-3002 (($ $) NIL (|has| (-663) (-335))) (((-3 $ #1#) $) NIL (-3850 (-12 (|has| (-663) (-292)) (|has| $ (-139)) (|has| (-663) (-869))) (|has| (-663) (-139))))) (-2667 (((-1117 (-663)) $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $)) NIL)) (-3812 (($ $) NIL (|has| (-663) (-1145)))) (-3800 (($ $) NIL (|has| (-663) (-1145)))) (-2150 (((-111) $ $) NIL)) (-3810 (($ $) NIL (|has| (-663) (-1145)))) (-3798 (($ $) NIL (|has| (-663) (-1145)))) (-3814 (($ $) NIL (|has| (-663) (-1145)))) (-3802 (($ $) NIL (|has| (-663) (-1145)))) (-2289 (((-663) $) NIL (|has| (-663) (-1145)))) (-3815 (($ $) NIL (|has| (-663) (-1145)))) (-3803 (($ $) NIL (|has| (-663) (-1145)))) (-3813 (($ $) NIL (|has| (-663) (-1145)))) (-3801 (($ $) NIL (|has| (-663) (-1145)))) (-3811 (($ $) NIL (|has| (-663) (-1145)))) (-3799 (($ $) NIL (|has| (-663) (-1145)))) (-3702 (($ $) NIL (|has| (-663) (-1013)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 (-663) (-663))) NIL) (($ $ (-1 (-663) (-663)) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-1123)) NIL (|has| (-663) (-859 (-1123)))) (($ $ (-735)) NIL (|has| (-663) (-219))) (($ $) NIL (|has| (-663) (-219)))) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-663) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ $) NIL (|has| (-663) (-1145))) (($ $ (-392 (-526))) NIL (-12 (|has| (-663) (-960)) (|has| (-663) (-1145)))) (($ $ (-526)) NIL (|has| (-663) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ (-663) $) NIL) (($ $ (-663)) NIL) (($ (-392 (-526)) $) NIL (|has| (-663) (-348))) (($ $ (-392 (-526))) NIL (|has| (-663) (-348))))) +(((-658) (-13 (-372) (-157 (-663)) (-10 -8 (-15 -4274 ($ (-159 (-363)))) (-15 -4274 ($ (-159 (-526)))) (-15 -4274 ($ (-159 (-663)))) (-15 -4274 ($ (-159 (-665)))) (-15 -4274 ((-159 (-363)) $))))) (T -658)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-526))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-663))) (-5 *1 (-658)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-159 (-665))) (-5 *1 (-658)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658))))) +(-13 (-372) (-157 (-663)) (-10 -8 (-15 -4274 ($ (-159 (-363)))) (-15 -4274 ($ (-159 (-526)))) (-15 -4274 ($ (-159 (-663)))) (-15 -4274 ($ (-159 (-665)))) (-15 -4274 ((-159 (-363)) $)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-659 |#1|) (-134) (-1052)) (T -659)) +((-3929 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-659 *2)) (-4 *2 (-1052)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1052)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1052)) (-5 *2 (-607 (-2 (|:| -2164 *3) (|:| -2045 (-735)))))))) +(-13 (-221 |t#1|) (-10 -8 (-15 -3929 ($ |t#1| $ (-735))) (-15 -2424 ($ $)) (-15 -2423 ((-607 (-2 (|:| -2164 |t#1|) (|:| -2045 (-735)))) $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2427 (((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526)) 47)) (-2425 ((|#1| |#1| (-526)) 46)) (-3457 ((|#1| |#1| |#1| (-526)) 36)) (-4051 (((-607 |#1|) |#1| (-526)) 39)) (-2428 ((|#1| |#1| (-526) |#1| (-526)) 32)) (-2426 (((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526)) 45))) +(((-660 |#1|) (-10 -7 (-15 -3457 (|#1| |#1| |#1| (-526))) (-15 -2425 (|#1| |#1| (-526))) (-15 -4051 ((-607 |#1|) |#1| (-526))) (-15 -2426 ((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526))) (-15 -2427 ((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526))) (-15 -2428 (|#1| |#1| (-526) |#1| (-526)))) (-1181 (-526))) (T -660)) +((-2428 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| -4051 *5) (|:| -4264 (-526))))) (-5 *4 (-526)) (-4 *5 (-1181 *4)) (-5 *2 (-607 *5)) (-5 *1 (-660 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -4264 *4)))) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-607 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) (-2425 (*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) (-3457 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) +(-10 -7 (-15 -3457 (|#1| |#1| |#1| (-526))) (-15 -2425 (|#1| |#1| (-526))) (-15 -4051 ((-607 |#1|) |#1| (-526))) (-15 -2426 ((-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) |#1| (-526))) (-15 -2427 ((-607 |#1|) (-607 (-2 (|:| -4051 |#1|) (|:| -4264 (-526)))) (-526))) (-15 -2428 (|#1| |#1| (-526) |#1| (-526)))) +((-2432 (((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))) 17)) (-2429 (((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 40) (((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 42) (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 44)) (-2431 (((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246))) NIL)) (-2430 (((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246))) 45))) +(((-661) (-10 -7 (-15 -2429 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2430 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2431 ((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2432 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211)))))) (T -661)) +((-2432 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1 (-211) (-211) (-211) (-211))) (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *1 (-661)))) (-2431 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2430 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined")) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2429 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *1 (-661)))) (-2429 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) (-2429 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) #1#)) (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661))))) +(-10 -7 (-15 -2429 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1="undefined") (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2429 ((-1083 (-211)) (-1083 (-211)) (-1 (-902 (-211)) (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2430 ((-1083 (-211)) (-1 (-211) (-211) (-211)) (-3 (-1 (-211) (-211) (-211) (-211)) #1#) (-1041 (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2431 ((-1083 (-211)) (-299 (-526)) (-299 (-526)) (-299 (-526)) (-1 (-211) (-211)) (-1041 (-211)) (-607 (-246)))) (-15 -2432 ((-1 (-902 (-211)) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211)) (-1 (-211) (-211) (-211) (-211))))) +((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|)) 73) (((-390 |#4|) |#4|) 221))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) (-811) (-757) (-335) (-909 |#3| |#2| |#1|)) (T -662)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-662 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 84)) (-3426 (((-526) $) 30)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4089 (($ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-3855 (($) NIL T CONST)) (-3424 (($ $) NIL)) (-3470 (((-3 (-526) #1="failed") $) 73) (((-3 (-392 (-526)) #1#) $) 26) (((-3 (-363) #1#) $) 70)) (-3469 (((-526) $) 75) (((-392 (-526)) $) 67) (((-363) $) 68)) (-2861 (($ $ $) 96)) (-3781 (((-3 $ "failed") $) 87)) (-2860 (($ $ $) 95)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2435 (((-878)) 77) (((-878) (-878)) 76)) (-3500 (((-111) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL)) (-4090 (((-526) $) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3429 (($ $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL)) (-2433 (((-526) (-526)) 81) (((-526)) 82)) (-3637 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2434 (((-526) (-526)) 79) (((-526)) 80)) (-3638 (($ $ $) NIL) (($) NIL (-12 (-3636 (|has| $ (-6 -4293))) (-3636 (|has| $ (-6 -4301)))))) (-2436 (((-526) $) 16)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 91)) (-1865 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL)) (-3427 (($ $) NIL)) (-3566 (($ (-526) (-526)) NIL) (($ (-526) (-526) (-878)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 92)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2462 (((-526) $) 22)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 94)) (-2910 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-1864 (((-878) (-526)) NIL (|has| $ (-6 -4301)))) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-849 (-363)) $) NIL)) (-4274 (((-823) $) 52) (($ (-526)) 63) (($ $) NIL) (($ (-392 (-526))) 66) (($ (-526)) 63) (($ (-392 (-526))) 66) (($ (-363)) 60) (((-363) $) 50) (($ (-665)) 55)) (-3423 (((-735)) 103)) (-3247 (($ (-526) (-526) (-878)) 44)) (-3428 (($ $) NIL)) (-1866 (((-878)) NIL) (((-878) (-878)) NIL (|has| $ (-6 -4301)))) (-2994 (((-878)) 35) (((-878) (-878)) 78)) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) 32 T CONST)) (-2964 (($) 17 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 83)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 101)) (-4265 (($ $ $) 65)) (-4156 (($ $) 99) (($ $ $) 100)) (-4158 (($ $ $) 98)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) 90)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 97) (($ $ $) 88) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-663) (-13 (-389) (-372) (-348) (-995 (-363)) (-995 (-392 (-526))) (-141) (-10 -8 (-15 -2435 ((-878) (-878))) (-15 -2435 ((-878))) (-15 -2994 ((-878) (-878))) (-15 -2994 ((-878))) (-15 -2434 ((-526) (-526))) (-15 -2434 ((-526))) (-15 -2433 ((-526) (-526))) (-15 -2433 ((-526))) (-15 -4274 ((-363) $)) (-15 -4274 ($ (-665))) (-15 -2436 ((-526) $)) (-15 -2462 ((-526) $)) (-15 -3247 ($ (-526) (-526) (-878)))))) (T -663)) +((-2994 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2435 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2434 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-2433 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-663)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-665)) (-5 *1 (-663)))) (-3247 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-5 *1 (-663))))) +(-13 (-389) (-372) (-348) (-995 (-363)) (-995 (-392 (-526))) (-141) (-10 -8 (-15 -2435 ((-878) (-878))) (-15 -2435 ((-878))) (-15 -2994 ((-878) (-878))) (-15 -2994 ((-878))) (-15 -2434 ((-526) (-526))) (-15 -2434 ((-526))) (-15 -2433 ((-526) (-526))) (-15 -2433 ((-526))) (-15 -4274 ((-363) $)) (-15 -4274 ($ (-665))) (-15 -2436 ((-526) $)) (-15 -2462 ((-526) $)) (-15 -3247 ($ (-526) (-526) (-878))))) +((-2439 (((-653 |#1|) (-653 |#1|) |#1| |#1|) 65)) (-3407 (((-653 |#1|) (-653 |#1|) |#1|) 48)) (-2438 (((-653 |#1|) (-653 |#1|) |#1|) 66)) (-2437 (((-653 |#1|) (-653 |#1|)) 49)) (-2440 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 64))) +(((-664 |#1|) (-10 -7 (-15 -2437 ((-653 |#1|) (-653 |#1|))) (-15 -3407 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2438 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2439 ((-653 |#1|) (-653 |#1|) |#1| |#1|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) (-292)) (T -664)) +((-2440 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-664 *3)) (-4 *3 (-292)))) (-2439 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-3407 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) (-2437 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) +(-10 -7 (-15 -2437 ((-653 |#1|) (-653 |#1|))) (-15 -3407 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2438 ((-653 |#1|) (-653 |#1|) |#1|)) (-15 -2439 ((-653 |#1|) (-653 |#1|) |#1| |#1|)) (-15 -2440 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) 27)) (-3469 (((-526) $) 25)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($ $) NIL) (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) NIL)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) NIL)) (-3637 (($ $ $) NIL)) (-2441 (((-878) (-878)) 10) (((-878)) 9)) (-3638 (($ $ $) NIL)) (-2132 (($ $) NIL)) (-4152 (($ $) NIL)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) NIL)) (-3555 (((-1070) $) NIL) (($ $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-2133 (($ $) NIL)) (-3719 (($ $) NIL)) (-4287 (((-211) $) NIL) (((-363) $) NIL) (((-849 (-526)) $) NIL) (((-515) $) NIL) (((-526) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) 24) (($ $) NIL) (($ (-526)) 24) (((-299 $) (-299 (-526))) 18)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) NIL)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL) (($ $ (-735)) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) +(((-665) (-13 (-372) (-525) (-10 -8 (-15 -2441 ((-878) (-878))) (-15 -2441 ((-878))) (-15 -4274 ((-299 $) (-299 (-526))))))) (T -665)) +((-2441 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) (-2441 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-299 (-526))) (-5 *2 (-299 (-665))) (-5 *1 (-665))))) +(-13 (-372) (-525) (-10 -8 (-15 -2441 ((-878) (-878))) (-15 -2441 ((-878))) (-15 -4274 ((-299 $) (-299 (-526)))))) +((-2447 (((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)) 19)) (-2442 (((-1 |#4| |#2| |#3|) (-1123)) 12))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2442 ((-1 |#4| |#2| |#3|) (-1123))) (-15 -2447 ((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)))) (-584 (-515)) (-1159) (-1159) (-1159)) (T -666)) +((-2447 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *3 *5 *6 *7)) (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *4 *5 *6 *7)) (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159))))) +(-10 -7 (-15 -2442 ((-1 |#4| |#2| |#3|) (-1123))) (-15 -2447 ((-1 |#4| |#2| |#3|) |#1| (-1123) (-1123)))) +((-2865 (((-111) $ $) NIL)) (-1346 (((-1211) $ (-735)) 14)) (-3738 (((-735) $) 12)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 25)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 24))) +(((-667 |#1|) (-13 (-130) (-583 |#1|) (-10 -8 (-15 -4274 ($ |#1|)))) (-1052)) (T -667)) +((-4274 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1052))))) +(-13 (-130) (-583 |#1|) (-10 -8 (-15 -4274 ($ |#1|)))) +((-2443 (((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)) 34) (((-1 (-211) (-211)) |#1| (-1123)) 39))) +(((-668 |#1|) (-10 -7 (-15 -2443 ((-1 (-211) (-211)) |#1| (-1123))) (-15 -2443 ((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)))) (-584 (-515))) (T -668)) +((-2443 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-668 *3)) (-4 *3 (-584 (-515))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211))) (-5 *1 (-668 *3)) (-4 *3 (-584 (-515)))))) +(-10 -7 (-15 -2443 ((-1 (-211) (-211)) |#1| (-1123))) (-15 -2443 ((-1 (-211) (-211) (-211)) |#1| (-1123) (-1123)))) +((-2444 (((-1123) |#1| (-1123) (-607 (-1123))) 9) (((-1123) |#1| (-1123) (-1123) (-1123)) 12) (((-1123) |#1| (-1123) (-1123)) 11) (((-1123) |#1| (-1123)) 10))) +(((-669 |#1|) (-10 -7 (-15 -2444 ((-1123) |#1| (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-607 (-1123))))) (-584 (-515))) (T -669)) +((-2444 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) (-2444 (*1 *2 *3 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515)))))) +(-10 -7 (-15 -2444 ((-1123) |#1| (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-1123) (-1123))) (-15 -2444 ((-1123) |#1| (-1123) (-607 (-1123))))) +((-2445 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-670 |#1| |#2|) (-10 -7 (-15 -2445 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1159) (-1159)) (T -670)) +((-2445 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-670 *3 *4)) (-4 *3 (-1159)) (-4 *4 (-1159))))) +(-10 -7 (-15 -2445 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2446 (((-1 |#3| |#2|) (-1123)) 11)) (-2447 (((-1 |#3| |#2|) |#1| (-1123)) 21))) +(((-671 |#1| |#2| |#3|) (-10 -7 (-15 -2446 ((-1 |#3| |#2|) (-1123))) (-15 -2447 ((-1 |#3| |#2|) |#1| (-1123)))) (-584 (-515)) (-1159) (-1159)) (T -671)) +((-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *3 *5 *6)) (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *4 *5 *6)) (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) +(-10 -7 (-15 -2446 ((-1 |#3| |#2|) (-1123))) (-15 -2447 ((-1 |#3| |#2|) |#1| (-1123)))) +((-2450 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|) 62)) (-2449 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|) 75)) (-2448 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|) 34))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2448 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|)) (-15 -2449 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|)) (-15 -2450 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -672)) +((-2450 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-607 (-1117 *13))) (-5 *3 (-1117 *13)) (-5 *4 (-607 *12)) (-5 *5 (-607 *10)) (-5 *6 (-607 *13)) (-5 *7 (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *13))))) (-5 *8 (-607 (-735))) (-5 *9 (-1205 (-607 (-1117 *10)))) (-4 *12 (-811)) (-4 *10 (-292)) (-4 *13 (-909 *10 *11 *12)) (-4 *11 (-757)) (-5 *1 (-672 *11 *12 *10 *13)))) (-2449 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-607 *11)) (-5 *5 (-607 (-1117 *9))) (-5 *6 (-607 *9)) (-5 *7 (-607 *12)) (-5 *8 (-607 (-735))) (-4 *11 (-811)) (-4 *9 (-292)) (-4 *12 (-909 *9 *10 *11)) (-4 *10 (-757)) (-5 *2 (-607 (-1117 *12))) (-5 *1 (-672 *10 *11 *9 *12)) (-5 *3 (-1117 *12)))) (-2448 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-607 (-1117 *11))) (-5 *3 (-1117 *11)) (-5 *4 (-607 *10)) (-5 *5 (-607 *8)) (-5 *6 (-607 (-735))) (-5 *7 (-1205 (-607 (-1117 *8)))) (-4 *10 (-811)) (-4 *8 (-292)) (-4 *11 (-909 *8 *9 *10)) (-4 *9 (-757)) (-5 *1 (-672 *9 *10 *8 *11))))) +(-10 -7 (-15 -2448 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 |#3|) (-607 (-735)) (-607 (-1117 |#4|)) (-1205 (-607 (-1117 |#3|))) |#3|)) (-15 -2449 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#3|)) (-607 |#3|) (-607 |#4|) (-607 (-735)) |#3|)) (-15 -2450 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-607 |#2|) (-607 (-1117 |#4|)) (-607 |#3|) (-607 |#4|) (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#4|)))) (-607 (-735)) (-1205 (-607 (-1117 |#3|))) |#3|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 39)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 37)) (-3120 (((-735) $) 41)) (-3487 ((|#1| $) 40)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 (((-735) $) 42)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 36 (|has| |#1| (-163)))) (-3999 ((|#1| $ (-735)) 38)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-673 |#1|) (-134) (-1004)) (T -673)) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004))))) +(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -4264 ((-735) $)) (-15 -3120 ((-735) $)) (-15 -3487 (|t#1| $)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ (-735))) (-15 -3193 ($ |t#1| (-735))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-4275 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-674 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 (|#6| (-1 |#4| |#1|) |#3|))) (-533) (-1181 |#1|) (-1181 (-392 |#2|)) (-533) (-1181 |#4|) (-1181 (-392 |#5|))) (T -674)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-533)) (-4 *7 (-533)) (-4 *6 (-1181 *5)) (-4 *2 (-1181 (-392 *8))) (-5 *1 (-674 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1181 (-392 *6))) (-4 *8 (-1181 *7))))) +(-10 -7 (-15 -4275 (|#6| (-1 |#4| |#1|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2451 (((-1106) (-823)) 31)) (-3939 (((-1211) (-1106)) 28)) (-2453 (((-1106) (-823)) 24)) (-2452 (((-1106) (-823)) 25)) (-4274 (((-823) $) NIL) (((-1106) (-823)) 23)) (-3353 (((-111) $ $) NIL))) +(((-675) (-13 (-1052) (-10 -7 (-15 -4274 ((-1106) (-823))) (-15 -2453 ((-1106) (-823))) (-15 -2452 ((-1106) (-823))) (-15 -2451 ((-1106) (-823))) (-15 -3939 ((-1211) (-1106)))))) (T -675)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-675))))) +(-13 (-1052) (-10 -7 (-15 -4274 ((-1106) (-823))) (-15 -2453 ((-1106) (-823))) (-15 -2452 ((-1106) (-823))) (-15 -2451 ((-1106) (-823))) (-15 -3939 ((-1211) (-1106))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-4161 (($ |#1| |#2|) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 ((|#2| $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2463 (((-3 $ "failed") $ $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) ((|#1| $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-676 |#1| |#2| |#3| |#4| |#5|) (-13 (-348) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -676)) +((-2909 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4161 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-348) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)))) +((-2865 (((-111) $ $) 78)) (-3502 (((-111) $) 30)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) NIL (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3433 (((-735)) 47 (|has| |#1| (-353)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-2460 ((|#2| |#2|) 44)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) NIL (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 34)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4161 (($ |#2|) 42)) (-3781 (((-3 $ "failed") $) 86)) (-3294 (($) 51 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) NIL (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-2456 (((-917 $)) 80)) (-1697 (($ $ |#1| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 77) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2909 ((|#2|) 45)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-3379 ((|#2| $) 41)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) 28)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-2454 (($ $) 79 (|has| |#1| (-335)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 87 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) 32) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-2455 (((-917 $)) 36)) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) 61) (($ (-526)) NIL) (($ |#1|) 58) (($ (-1033)) NIL) (($ |#2|) 68) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) 63) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 20 T CONST)) (-2459 (((-1205 |#1|) $) 75)) (-2458 (($ (-1205 |#1|)) 50)) (-2964 (($) 8 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2457 (((-1205 |#1|) $) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 69)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 72) (($ $ $) NIL)) (-4158 (($ $ $) 33)) (** (($ $ (-878)) NIL) (($ $ (-735)) 81)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 57) (($ $ $) 74) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-677 |#1| |#2|) (-13 (-1181 |#1|) (-10 -8 (-15 -2460 (|#2| |#2|)) (-15 -2909 (|#2|)) (-15 -4161 ($ |#2|)) (-15 -3379 (|#2| $)) (-15 -4274 ($ |#2|)) (-15 -2459 ((-1205 |#1|) $)) (-15 -2458 ($ (-1205 |#1|))) (-15 -2457 ((-1205 |#1|) $)) (-15 -2456 ((-917 $))) (-15 -2455 ((-917 $))) (IF (|has| |#1| (-335)) (-15 -2454 ($ $)) |%noBranch|) (IF (|has| |#1| (-353)) (-6 (-353)) |%noBranch|))) (-1004) (-1181 |#1|)) (T -677)) +((-2460 (*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-2909 (*1 *2) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) (-4161 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) (-2459 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2457 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2456 (*1 *2) (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2455 (*1 *2) (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *4 (-1181 *3)))) (-2454 (*1 *1 *1) (-12 (-4 *2 (-335)) (-4 *2 (-1004)) (-5 *1 (-677 *2 *3)) (-4 *3 (-1181 *2))))) +(-13 (-1181 |#1|) (-10 -8 (-15 -2460 (|#2| |#2|)) (-15 -2909 (|#2|)) (-15 -4161 ($ |#2|)) (-15 -3379 (|#2| $)) (-15 -4274 ($ |#2|)) (-15 -2459 ((-1205 |#1|) $)) (-15 -2458 ($ (-1205 |#1|))) (-15 -2457 ((-1205 |#1|) $)) (-15 -2456 ((-917 $))) (-15 -2455 ((-917 $))) (IF (|has| |#1| (-335)) (-15 -2454 ($ $)) |%noBranch|) (IF (|has| |#1| (-353)) (-6 (-353)) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2461 ((|#1| $) 13)) (-3555 (((-1070) $) NIL)) (-2462 ((|#2| $) 12)) (-3844 (($ |#1| |#2|) 16)) (-4274 (((-823) $) NIL) (($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|))) 15) (((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $) 14)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 11))) +(((-678 |#1| |#2| |#3|) (-13 (-811) (-10 -8 (-15 -2462 (|#2| $)) (-15 -2461 (|#1| $)) (-15 -4274 ($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (-15 -4274 ((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $)) (-15 -3844 ($ |#1| |#2|)))) (-811) (-1052) (-1 (-111) (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (T -678)) +((-2462 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-678 *3 *2 *4)) (-4 *3 (-811)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *2)) (-2 (|:| -2461 *3) (|:| -2462 *2)))))) (-2461 (*1 *2 *1) (-12 (-4 *2 (-811)) (-5 *1 (-678 *2 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) (-2 (|:| -2461 *2) (|:| -2462 *3)))))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-4 *3 (-811)) (-4 *4 (-1052)) (-5 *1 (-678 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-5 *1 (-678 *3 *4 *5)) (-4 *3 (-811)) (-4 *4 (-1052)) (-14 *5 (-1 (-111) *2 *2)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-1052)) (-14 *4 (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) (-2 (|:| -2461 *2) (|:| -2462 *3))))))) +(-13 (-811) (-10 -8 (-15 -2462 (|#2| $)) (-15 -2461 (|#1| $)) (-15 -4274 ($ (-2 (|:| -2461 |#1|) (|:| -2462 |#2|)))) (-15 -4274 ((-2 (|:| -2461 |#1|) (|:| -2462 |#2|)) $)) (-15 -3844 ($ |#1| |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 59)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) 89) (((-3 (-112) #1#) $) 95)) (-3469 ((|#1| $) NIL) (((-112) $) 39)) (-3781 (((-3 $ "failed") $) 90)) (-2819 ((|#2| (-112) |#2|) 82)) (-2471 (((-111) $) NIL)) (-2818 (($ |#1| (-346 (-112))) 14)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2820 (($ $ (-1 |#2| |#2|)) 58)) (-2821 (($ $ (-1 |#2| |#2|)) 44)) (-4118 ((|#2| $ |#2|) 33)) (-2822 ((|#1| |#1|) 105 (|has| |#1| (-163)))) (-4274 (((-823) $) 66) (($ (-526)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 37)) (-2823 (($ $) 99 (|has| |#1| (-163))) (($ $ $) 103 (|has| |#1| (-163)))) (-2957 (($) 21 T CONST)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) 48) (($ $ $) NIL)) (-4158 (($ $ $) 73)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ (-112) (-526)) NIL) (($ $ (-526)) 57)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-163))) (($ $ |#1|) 97 (|has| |#1| (-163))))) +(((-679 |#1| |#2|) (-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#2| |#2|))) (-15 -2820 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#2| (-112) |#2|)) (-15 -2818 ($ |#1| (-346 (-112)))))) (-1004) (-613 |#1|)) (T -679)) +((-2823 (*1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2823 (*1 *1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2822 (*1 *2 *2) (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *5)) (-4 *5 (-613 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)) (-4 *4 (-613 *3)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *2)) (-4 *2 (-613 *4)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-4 *2 (-1004)) (-5 *1 (-679 *2 *4)) (-4 *4 (-613 *2))))) +(-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#2| |#2|))) (-15 -2820 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#2| (-112) |#2|)) (-15 -2818 ($ |#1| (-346 (-112)))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 33)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ |#1| |#2|) 25)) (-3781 (((-3 $ "failed") $) 48)) (-2471 (((-111) $) 35)) (-2909 ((|#2| $) 12)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 49)) (-3555 (((-1070) $) NIL)) (-2463 (((-3 $ "failed") $ $) 47)) (-4274 (((-823) $) 24) (($ (-526)) 19) ((|#1| $) 13)) (-3423 (((-735)) 28)) (-2957 (($) 16 T CONST)) (-2964 (($) 30 T CONST)) (-3353 (((-111) $ $) 38)) (-4156 (($ $) 43) (($ $ $) 37)) (-4158 (($ $ $) 40)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 21) (($ $ $) 20))) +(((-680 |#1| |#2| |#3| |#4| |#5|) (-13 (-1004) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -680)) +((-3781 (*1 *1 *1) (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2909 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-680 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4161 (*1 *1 *2 *3) (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2463 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2703 (*1 *1 *1) (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1004) (-10 -8 (-15 -2909 (|#2| $)) (-15 -4274 (|#1| $)) (-15 -4161 ($ |#1| |#2|)) (-15 -2463 ((-3 $ "failed") $ $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -2703 ($ $)))) +((* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-681 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-682 |#2|) (-163)) (T -681)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-682 |#1|) (-134) (-163)) (T -682)) NIL (-13 (-110 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3879 (($ |#1|) 17) (($ $ |#1|) 20)) (-3190 (($ |#1|) 18) (($ $ |#1|) 21)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2836 (((-111) $) NIL)) (-3063 (($ |#1| |#1| |#1| |#1|) 8)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 16)) (-2528 (((-1064) $) NIL)) (-4116 ((|#1| $ |#1|) 24) (((-793 |#1|) $ (-793 |#1|)) 32)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 39)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) 44)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 14))) -(((-679 |#1|) (-13 (-456) (-10 -8 (-15 -3063 ($ |#1| |#1| |#1| |#1|)) (-15 -3879 ($ |#1|)) (-15 -3190 ($ |#1|)) (-15 -3490 ($)) (-15 -3879 ($ $ |#1|)) (-15 -3190 ($ $ |#1|)) (-15 -3490 ($ $)) (-15 -4116 (|#1| $ |#1|)) (-15 -4116 ((-793 |#1|) $ (-793 |#1|))))) (-347)) (T -679)) -((-3063 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3879 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3190 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3490 (*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-347)) (-5 *1 (-679 *3))))) -(-13 (-456) (-10 -8 (-15 -3063 ($ |#1| |#1| |#1| |#1|)) (-15 -3879 ($ |#1|)) (-15 -3190 ($ |#1|)) (-15 -3490 ($)) (-15 -3879 ($ $ |#1|)) (-15 -3190 ($ $ |#1|)) (-15 -3490 ($ $)) (-15 -4116 (|#1| $ |#1|)) (-15 -4116 ((-793 |#1|) $ (-793 |#1|))))) -((-2541 (($ $ (-874)) 12)) (-3060 (($ $ (-874)) 13)) (** (($ $ (-874)) 10))) -(((-680 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) (-681)) (T -680)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-2541 (($ $ (-874)) 15)) (-3060 (($ $ (-874)) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13)) (* (($ $ $) 16))) -(((-681) (-134)) (T -681)) -((* (*1 *1 *1 *1) (-4 *1 (-681))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874))))) -(-13 (-1045) (-10 -8 (-15 * ($ $ $)) (-15 -2541 ($ $ (-874))) (-15 -3060 ($ $ (-874))) (-15 ** ($ $ (-874))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2541 (($ $ (-874)) NIL) (($ $ (-731)) 17)) (-2836 (((-111) $) 10)) (-3060 (($ $ (-874)) NIL) (($ $ (-731)) 18)) (** (($ $ (-874)) NIL) (($ $ (-731)) 15))) -(((-682 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-731))) (-15 -3060 (|#1| |#1| (-731))) (-15 -2541 (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) (-683)) (T -682)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-731))) (-15 -3060 (|#1| |#1| (-731))) (-15 -2541 (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-3800 (((-3 $ "failed") $) 17)) (-2541 (($ $ (-874)) 15) (($ $ (-731)) 22)) (-3490 (((-3 $ "failed") $) 19)) (-2836 (((-111) $) 23)) (-3820 (((-3 $ "failed") $) 18)) (-3060 (($ $ (-874)) 14) (($ $ (-731)) 21)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13) (($ $ (-731)) 20)) (* (($ $ $) 16))) -(((-683) (-134)) (T -683)) -((-2943 (*1 *1) (-4 *1 (-683))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-683)) (-5 *2 (-111)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (-3490 (*1 *1 *1) (|partial| -4 *1 (-683))) (-3820 (*1 *1 *1) (|partial| -4 *1 (-683))) (-3800 (*1 *1 *1) (|partial| -4 *1 (-683)))) -(-13 (-681) (-10 -8 (-15 (-2943) ($) -2787) (-15 -2836 ((-111) $)) (-15 -2541 ($ $ (-731))) (-15 -3060 ($ $ (-731))) (-15 ** ($ $ (-731))) (-15 -3490 ((-3 $ "failed") $)) (-15 -3820 ((-3 $ "failed") $)) (-15 -3800 ((-3 $ "failed") $)))) -(((-100) . T) ((-579 (-816)) . T) ((-681) . T) ((-1045) . T)) -((-3151 (((-731)) 34)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 22)) (-3195 (($ |#3|) NIL) (((-3 $ "failed") (-391 |#3|)) 44)) (-3490 (((-3 $ "failed") $) 64)) (-1618 (($) 38)) (-2055 ((|#2| $) 20)) (-1524 (($) 17)) (-3456 (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-1630 (((-649 |#2|) (-1200 $) (-1 |#2| |#2|)) 59)) (-3996 (((-1200 |#2|) $) NIL) (($ (-1200 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2736 ((|#3| $) 32)) (-2122 (((-1200 $)) 29))) -(((-684 |#1| |#2| |#3|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1618 (|#1|)) (-15 -3151 ((-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -1630 ((-649 |#2|) (-1200 |#1|) (-1 |#2| |#2|))) (-15 -3195 ((-3 |#1| "failed") (-391 |#3|))) (-15 -3996 (|#1| |#3|)) (-15 -3195 (|#1| |#3|)) (-15 -1524 (|#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 (|#3| |#1|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -2122 ((-1200 |#1|))) (-15 -2736 (|#3| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) (-685 |#2| |#3|) (-163) (-1176 |#2|)) (T -684)) -((-3151 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-731)) (-5 *1 (-684 *3 *4 *5)) (-4 *3 (-685 *4 *5))))) -(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1618 (|#1|)) (-15 -3151 ((-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -1630 ((-649 |#2|) (-1200 |#1|) (-1 |#2| |#2|))) (-15 -3195 ((-3 |#1| "failed") (-391 |#3|))) (-15 -3996 (|#1| |#3|)) (-15 -3195 (|#1| |#3|)) (-15 -1524 (|#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 (|#3| |#1|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -2122 ((-1200 |#1|))) (-15 -2736 (|#3| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (|has| |#1| (-347)))) (-3377 (($ $) 92 (|has| |#1| (-347)))) (-4017 (((-111) $) 94 (|has| |#1| (-347)))) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 111 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 112 (|has| |#1| (-347)))) (-4099 (((-111) $ $) 102 (|has| |#1| (-347)))) (-3151 (((-731)) 85 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 163)) (-3958 (((-537) $) 167 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 165 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 162)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-333)))) (-3563 (($ $ $) 106 (|has| |#1| (-347)))) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 159) (((-649 |#1|) (-649 $)) 158)) (-3195 (($ |#2|) 155) (((-3 $ "failed") (-391 |#2|)) 152 (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| |#1| (-352)))) (-3539 (($ $ $) 105 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| |#1| (-347)))) (-4145 (($) 146 (|has| |#1| (-333)))) (-2974 (((-111) $) 147 (|has| |#1| (-333)))) (-2642 (($ $ (-731)) 138 (|has| |#1| (-333))) (($ $) 137 (|has| |#1| (-333)))) (-2639 (((-111) $) 113 (|has| |#1| (-347)))) (-4231 (((-874) $) 149 (|has| |#1| (-333))) (((-793 (-874)) $) 135 (|has| |#1| (-333)))) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-2824 (((-3 $ "failed") $) 139 (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| |#1| (-347)))) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-2334 (((-874) $) 87 (|has| |#1| (-352)))) (-3183 ((|#2| $) 153)) (-2183 (($ (-606 $)) 98 (|has| |#1| (-347))) (($ $ $) 97 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 114 (|has| |#1| (-347)))) (-3956 (($) 140 (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| |#1| (-352)))) (-2528 (((-1064) $) 10)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 96 (|has| |#1| (-347))) (($ $ $) 95 (|has| |#1| (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| |#1| (-333)))) (-3622 (((-402 $) $) 110 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) 90 (|has| |#1| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| |#1| (-347)))) (-1930 (((-731) $) 103 (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| |#1| (-347)))) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-3030 (((-731) $) 148 (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) 136 (|has| |#1| (-333)))) (-3456 (($ $) 134 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) 132 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) 130 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117))) 129 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1117) (-731)) 128 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-731))) 127 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1 |#1| |#1|) (-731)) 120 (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-347)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-347)))) (-2529 ((|#2|) 156)) (-3553 (($) 145 (|has| |#1| (-333)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (|has| |#1| (-333)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-347))) (($ (-391 (-537))) 84 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (($ $) 141 (|has| |#1| (-333))) (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-3276 (((-111) $ $) 93 (|has| |#1| (-347)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 133 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) 131 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) 126 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117))) 125 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1117) (-731)) 124 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-731))) 123 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1 |#1| |#1|) (-731)) 122 (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-347)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 118 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 115 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-391 (-537)) $) 117 (|has| |#1| (-347))) (($ $ (-391 (-537))) 116 (|has| |#1| (-347))))) -(((-685 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -685)) -((-1524 (*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-685 *2 *3)) (-4 *3 (-1176 *2)))) (-2529 (*1 *2) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3195 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) (-3996 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3195 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-347)) (-4 *3 (-163)) (-4 *1 (-685 *3 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-4 *1 (-685 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1176 *5)) (-5 *2 (-649 *5))))) -(-13 (-393 |t#1| |t#2|) (-163) (-580 |t#2|) (-395 |t#1|) (-361 |t#1|) (-10 -8 (-15 -1524 ($)) (-15 -2529 (|t#2|)) (-15 -3195 ($ |t#2|)) (-15 -3996 ($ |t#2|)) (-15 -3183 (|t#2| $)) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-6 (-347)) (-6 (-216 |t#1|)) (-15 -3195 ((-3 $ "failed") (-391 |t#2|))) (-15 -1630 ((-649 |t#1|) (-1200 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-37 |#1|) . T) ((-37 $) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-100) . T) ((-110 #0# #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-333)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 |#2|) . T) ((-216 |#1|) |has| |#1| (-347)) ((-218) -1533 (|has| |#1| (-333)) (-12 (|has| |#1| (-218)) (|has| |#1| (-347)))) ((-228) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-274) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-291) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-347) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-386) |has| |#1| (-333)) ((-352) -1533 (|has| |#1| (-352)) (|has| |#1| (-333))) ((-333) |has| |#1| (-333)) ((-354 |#1| |#2|) . T) ((-393 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-529) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-678 |#1|) . T) ((-678 $) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117)))) ((-873) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-333)) ((-1158) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)))) -((-3832 (($) 11)) (-3490 (((-3 $ "failed") $) 13)) (-2836 (((-111) $) 10)) (** (($ $ (-874)) NIL) (($ $ (-731)) 18))) -(((-686 |#1|) (-10 -8 (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 ** (|#1| |#1| (-874)))) (-687)) (T -686)) -NIL -(-10 -8 (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 ** (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-2836 (((-111) $) 17)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13) (($ $ (-731)) 16)) (* (($ $ $) 14))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-2659 (($ |#1|) 17) (($ $ |#1|) 20)) (-4166 (($ |#1|) 18) (($ $ |#1|) 21)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2471 (((-111) $) NIL)) (-2464 (($ |#1| |#1| |#1| |#1|) 8)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 16)) (-3555 (((-1070) $) NIL)) (-4086 ((|#1| $ |#1|) 24) (((-796 |#1|) $ (-796 |#1|)) 32)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-4274 (((-823) $) 39)) (-2964 (($) 9 T CONST)) (-3353 (((-111) $ $) 44)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 14))) +(((-683 |#1|) (-13 (-457) (-10 -8 (-15 -2464 ($ |#1| |#1| |#1| |#1|)) (-15 -2659 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -3781 ($)) (-15 -2659 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -3781 ($ $)) (-15 -4086 (|#1| $ |#1|)) (-15 -4086 ((-796 |#1|) $ (-796 |#1|))))) (-348)) (T -683)) +((-2464 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-2659 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4166 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-3781 (*1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-2659 (*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4086 (*1 *2 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) (-4086 (*1 *2 *1 *2) (-12 (-5 *2 (-796 *3)) (-4 *3 (-348)) (-5 *1 (-683 *3))))) +(-13 (-457) (-10 -8 (-15 -2464 ($ |#1| |#1| |#1| |#1|)) (-15 -2659 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -3781 ($)) (-15 -2659 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -3781 ($ $)) (-15 -4086 (|#1| $ |#1|)) (-15 -4086 ((-796 |#1|) $ (-796 |#1|))))) +((-2468 (($ $ (-878)) 12)) (-2467 (($ $ (-878)) 13)) (** (($ $ (-878)) 10))) +(((-684 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) (-685)) (T -684)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-2468 (($ $ (-878)) 15)) (-2467 (($ $ (-878)) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13)) (* (($ $ $) 16))) +(((-685) (-134)) (T -685)) +((* (*1 *1 *1 *1) (-4 *1 (-685))) (-2468 (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878))))) +(-13 (-1052) (-10 -8 (-15 * ($ $ $)) (-15 -2468 ($ $ (-878))) (-15 -2467 ($ $ (-878))) (-15 ** ($ $ (-878))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2468 (($ $ (-878)) NIL) (($ $ (-735)) 17)) (-2471 (((-111) $) 10)) (-2467 (($ $ (-878)) NIL) (($ $ (-735)) 18)) (** (($ $ (-878)) NIL) (($ $ (-735)) 15))) +(((-686 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-735))) (-15 -2467 (|#1| |#1| (-735))) (-15 -2468 (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) (-687)) (T -686)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-735))) (-15 -2467 (|#1| |#1| (-735))) (-15 -2468 (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 ** (|#1| |#1| (-878))) (-15 -2467 (|#1| |#1| (-878))) (-15 -2468 (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-2465 (((-3 $ "failed") $) 17)) (-2468 (($ $ (-878)) 15) (($ $ (-735)) 22)) (-3781 (((-3 $ "failed") $) 19)) (-2471 (((-111) $) 23)) (-2466 (((-3 $ "failed") $) 18)) (-2467 (($ $ (-878)) 14) (($ $ (-735)) 21)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13) (($ $ (-735)) 20)) (* (($ $ $) 16))) (((-687) (-134)) (T -687)) -((-2943 (*1 *1) (-4 *1 (-687))) (-3832 (*1 *1) (-4 *1 (-687))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-731)))) (-3490 (*1 *1 *1) (|partial| -4 *1 (-687)))) -(-13 (-1057) (-10 -8 (-15 (-2943) ($) -2787) (-15 -3832 ($) -2787) (-15 -2836 ((-111) $)) (-15 ** ($ $ (-731))) (-15 -3490 ((-3 $ "failed") $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1057) . T) ((-1045) . T)) -((-3405 (((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3763 (((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2128 ((|#2| (-391 |#2|) (-1 |#2| |#2|)) 13)) (-4035 (((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)) 47))) -(((-688 |#1| |#2|) (-10 -7 (-15 -3763 ((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3405 ((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2128 (|#2| (-391 |#2|) (-1 |#2| |#2|))) (-15 -4035 ((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -688)) -((-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2559 (-391 *6)) (|:| |special| (-391 *6)))) (-5 *1 (-688 *5 *6)) (-5 *3 (-391 *6)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-391 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-688 *5 *2)) (-4 *5 (-347)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -2559 (-402 *3)) (|:| |special| (-402 *3)))) (-5 *1 (-688 *5 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -2559 *3) (|:| |special| *3))) (-5 *1 (-688 *5 *3))))) -(-10 -7 (-15 -3763 ((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3405 ((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2128 (|#2| (-391 |#2|) (-1 |#2| |#2|))) (-15 -4035 ((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)))) -((-2192 ((|#7| (-606 |#5|) |#6|) NIL)) (-1612 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-689 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2192 (|#7| (-606 |#5|) |#6|))) (-807) (-753) (-753) (-998) (-998) (-902 |#4| |#2| |#1|) (-902 |#5| |#3| |#1|)) (T -689)) -((-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *9)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *8 (-998)) (-4 *2 (-902 *9 *7 *5)) (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) (-4 *4 (-902 *8 *6 *5)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-998)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *2 (-902 *9 *7 *5)) (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) (-4 *4 (-902 *8 *6 *5))))) -(-10 -7 (-15 -1612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2192 (|#7| (-606 |#5|) |#6|))) -((-1612 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1612 (|#7| (-1 |#2| |#1|) |#6|))) (-807) (-807) (-753) (-753) (-998) (-902 |#5| |#3| |#1|) (-902 |#5| |#4| |#2|)) (T -690)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-4 *7 (-753)) (-4 *9 (-998)) (-4 *2 (-902 *9 *8 *6)) (-5 *1 (-690 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-753)) (-4 *4 (-902 *9 *7 *5))))) -(-10 -7 (-15 -1612 (|#7| (-1 |#2| |#1|) |#6|))) -((-3622 (((-402 |#4|) |#4|) 41))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-291) (-902 (-905 |#3|) |#1| |#2|)) (T -691)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-902 (-905 *6) *4 *5))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-509 (-818 |#1|)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-509 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-509 (-818 |#1|)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-509 (-818 |#1|)) (-509 (-818 |#1|))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-509 (-818 |#1|)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ $) NIL (|has| |#2| (-529))) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537))))))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-509 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-692 |#1| |#2|) (-902 |#2| (-509 (-818 |#1|)) (-818 |#1|)) (-606 (-1117)) (-998)) (T -692)) -NIL -(-902 |#2| (-509 (-818 |#1|)) (-818 |#1|)) -((-1676 (((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|) 14)) (-2210 ((|#4| |#4| |#2|) 33)) (-3626 ((|#4| (-391 (-905 |#3|)) |#2|) 64)) (-2891 ((|#4| (-1113 (-905 |#3|)) |#2|) 77)) (-2420 ((|#4| (-1113 |#4|) |#2|) 51)) (-2412 ((|#4| |#4| |#2|) 54)) (-3622 (((-402 |#4|) |#4|) 40))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1676 ((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|)) (-15 -2412 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1113 |#4|) |#2|)) (-15 -2210 (|#4| |#4| |#2|)) (-15 -2891 (|#4| (-1113 (-905 |#3|)) |#2|)) (-15 -3626 (|#4| (-391 (-905 |#3|)) |#2|)) (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))) (-529) (-902 (-391 (-905 |#3|)) |#1| |#2|)) (T -693)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5)))) (-3626 (*1 *2 *3 *4) (-12 (-4 *6 (-529)) (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-5 *3 (-391 (-905 *6))) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 (-905 *6))) (-4 *6 (-529)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))))) (-2210 (*1 *2 *2 *3) (-12 (-4 *4 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)))) (-2412 (*1 *2 *2 *3) (-12 (-4 *4 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) (-5 *2 (-2 (|:| -2169 (-905 *6)) (|:| -3406 (-905 *6)))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5))))) -(-10 -7 (-15 -1676 ((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|)) (-15 -2412 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1113 |#4|) |#2|)) (-15 -2210 (|#4| |#4| |#2|)) (-15 -2891 (|#4| (-1113 (-905 |#3|)) |#2|)) (-15 -3626 (|#4| (-391 (-905 |#3|)) |#2|)) (-15 -3622 ((-402 |#4|) |#4|))) -((-3622 (((-402 |#4|) |#4|) 52))) -(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-807) (-13 (-291) (-141)) (-902 (-391 |#3|) |#1| |#2|)) (T -694)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-902 (-391 *6) *4 *5))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) -((-1612 (((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)) 18))) -(((-695 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)))) (-998) (-998) (-687)) (T -695)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-696 *5 *7)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *7 (-687)) (-5 *2 (-696 *6 *7)) (-5 *1 (-695 *5 *6 *7))))) -(-10 -7 (-15 -1612 ((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 28)) (-1525 (((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $) 29)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) 20 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3958 ((|#2| $) NIL) ((|#1| $) NIL)) (-3940 (($ $) 79 (|has| |#2| (-807)))) (-3490 (((-3 $ "failed") $) 65)) (-1618 (($) 35 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 55)) (-1645 (((-606 $) $) 39)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| |#2|) 16)) (-1612 (($ (-1 |#1| |#1|) $) 54)) (-2334 (((-874) $) 32 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-3901 ((|#2| $) 78 (|has| |#2| (-807)))) (-3912 ((|#1| $) 77 (|has| |#2| (-807)))) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 27 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 76) (($ (-537)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|)))) 11)) (-3459 (((-606 |#1|) $) 41)) (-3500 ((|#1| $ |#2|) 88)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2928 (($) 12 T CONST)) (-2943 (($) 33 T CONST)) (-2244 (((-111) $ $) 80)) (-2329 (($ $) 47) (($ $ $) NIL)) (-2318 (($ $ $) 26)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-696 |#1| |#2|) (-13 (-998) (-989 |#2|) (-989 |#1|) (-10 -8 (-15 -3733 ($ |#1| |#2|)) (-15 -3500 (|#1| $ |#2|)) (-15 -2341 ($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))))) (-15 -1525 ((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1538 ((-111) $)) (-15 -3459 ((-606 |#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-807)) (PROGN (-15 -3901 (|#2| $)) (-15 -3912 (|#1| $)) (-15 -3940 ($ $))) |%noBranch|))) (-998) (-687)) (T -696)) -((-3733 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3)) (-4 *2 (-998)) (-4 *3 (-687)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-687)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-4 *3 (-998)) (-4 *4 (-687)) (-5 *1 (-696 *3 *4)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-696 *3 *4)) (-4 *4 (-687)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-606 (-696 *3 *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-3901 (*1 *2 *1) (-12 (-4 *2 (-687)) (-4 *2 (-807)) (-5 *1 (-696 *3 *2)) (-4 *3 (-998)))) (-3912 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *3 (-687)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *2 (-998)) (-4 *3 (-687))))) -(-13 (-998) (-989 |#2|) (-989 |#1|) (-10 -8 (-15 -3733 ($ |#1| |#2|)) (-15 -3500 (|#1| $ |#2|)) (-15 -2341 ($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))))) (-15 -1525 ((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1538 ((-111) $)) (-15 -3459 ((-606 |#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-807)) (PROGN (-15 -3901 (|#2| $)) (-15 -3912 (|#1| $)) (-15 -3940 ($ $))) |%noBranch|))) -((-2330 (((-111) $ $) 19)) (-4221 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) 8)) (-1272 (($ (-606 |#1|)) 68) (($) 67)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 64)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 69)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-2867 (($ $ |#1|) 71) (($ $ $) 70)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18)) (-3575 (($ (-606 |#1|)) 66) (($) 65)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-697 |#1|) (-134) (-1045)) (T -697)) -NIL -(-13 (-655 |t#1|) (-1043 |t#1|)) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-655 |#1|) . T) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-4221 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2969 (($ $ $) 79)) (-3495 (((-111) $ $) 83)) (-2506 (((-111) $ (-731)) NIL)) (-1272 (($ (-606 |#1|)) 24) (($) 16)) (-3435 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-1376 (($ $) 71)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 61 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4300))) (($ |#1| $ (-537)) 62) (($ (-1 (-111) |#1|) $ (-537)) 65)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $ (-537)) 67) (($ (-1 (-111) |#1|) $ (-537)) 68)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 32 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 82)) (-2418 (($) 14) (($ |#1|) 26) (($ (-606 |#1|)) 21)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) 38)) (-3122 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 75)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 77)) (-2783 ((|#1| $) 55)) (-3499 (($ |#1| $) 56) (($ |#1| $ (-731)) 72)) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1599 ((|#1| $) 54)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 50)) (-3425 (($) 13)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 48)) (-2867 (($ $ |#1|) NIL) (($ $ $) 78)) (-1341 (($) 15) (($ (-606 |#1|)) 23)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) 60 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 66)) (-3996 (((-513) $) 36 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 20)) (-2341 (((-816) $) 44)) (-3575 (($ (-606 |#1|)) 25) (($) 17)) (-2753 (($ (-606 |#1|)) 22)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 81)) (-2258 (((-731) $) 59 (|has| $ (-6 -4300))))) -(((-698 |#1|) (-13 (-697 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2418 ($)) (-15 -2418 ($ |#1|)) (-15 -2418 ($ (-606 |#1|))) (-15 -3703 ((-606 |#1|) $)) (-15 -2355 ($ |#1| $ (-537))) (-15 -2355 ($ (-1 (-111) |#1|) $ (-537))) (-15 -3026 ($ |#1| $ (-537))) (-15 -3026 ($ (-1 (-111) |#1|) $ (-537))))) (-1045)) (T -698)) -((-2418 (*1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2418 (*1 *1 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-698 *3)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1045)))) (-2355 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2355 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) (-5 *1 (-698 *4)))) (-3026 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-3026 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) (-5 *1 (-698 *4))))) -(-13 (-697 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2418 ($)) (-15 -2418 ($ |#1|)) (-15 -2418 ($ (-606 |#1|))) (-15 -3703 ((-606 |#1|) $)) (-15 -2355 ($ |#1| $ (-537))) (-15 -2355 ($ (-1 (-111) |#1|) $ (-537))) (-15 -3026 ($ |#1| $ (-537))) (-15 -3026 ($ (-1 (-111) |#1|) $ (-537))))) -((-2527 (((-1205) (-1100)) 8))) -(((-699) (-10 -7 (-15 -2527 ((-1205) (-1100))))) (T -699)) -((-2527 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-699))))) -(-10 -7 (-15 -2527 ((-1205) (-1100)))) -((-3023 (((-606 |#1|) (-606 |#1|) (-606 |#1|)) 10))) -(((-700 |#1|) (-10 -7 (-15 -3023 ((-606 |#1|) (-606 |#1|) (-606 |#1|)))) (-807)) (T -700)) -((-3023 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-700 *3))))) -(-10 -7 (-15 -3023 ((-606 |#1|) (-606 |#1|) (-606 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#2|) $) 134)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 127 (|has| |#1| (-529)))) (-3377 (($ $) 126 (|has| |#1| (-529)))) (-4017 (((-111) $) 124 (|has| |#1| (-529)))) (-1403 (($ $) 83 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 66 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 65 (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 82 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 67 (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) 81 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 68 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3940 (($ $) 118)) (-3490 (((-3 $ "failed") $) 32)) (-1706 (((-905 |#1|) $ (-731)) 96) (((-905 |#1|) $ (-731) (-731)) 95)) (-2362 (((-111) $) 135)) (-3338 (($) 93 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ |#2|) 98) (((-731) $ |#2| (-731)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 64 (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) 116)) (-3733 (($ $ (-606 |#2|) (-606 (-509 |#2|))) 133) (($ $ |#2| (-509 |#2|)) 132) (($ |#1| (-509 |#2|)) 117) (($ $ |#2| (-731)) 100) (($ $ (-606 |#2|) (-606 (-731))) 99)) (-1612 (($ (-1 |#1| |#1|) $) 115)) (-2180 (($ $) 90 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 113)) (-3912 ((|#1| $) 112)) (-1654 (((-1100) $) 9)) (-3092 (($ $ |#2|) 94 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) 10)) (-1540 (($ $ (-731)) 101)) (-3515 (((-3 $ "failed") $ $) 128 (|has| |#1| (-529)))) (-4185 (($ $) 91 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ |#2| $) 109) (($ $ (-606 |#2|) (-606 $)) 108) (($ $ (-606 (-278 $))) 107) (($ $ (-278 $)) 106) (($ $ $ $) 105) (($ $ (-606 $) (-606 $)) 104)) (-3456 (($ $ |#2|) 40) (($ $ (-606 |#2|)) 39) (($ $ |#2| (-731)) 38) (($ $ (-606 |#2|) (-606 (-731))) 37)) (-2872 (((-509 |#2|) $) 114)) (-1441 (($ $) 80 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 69 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 79 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 70 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 78 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 71 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 136)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 131 (|has| |#1| (-163))) (($ $) 129 (|has| |#1| (-529))) (($ (-391 (-537))) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3500 ((|#1| $ (-509 |#2|)) 119) (($ $ |#2| (-731)) 103) (($ $ (-606 |#2|) (-606 (-731))) 102)) (-2644 (((-3 $ "failed") $) 130 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1475 (($ $) 89 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 77 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 125 (|has| |#1| (-529)))) (-1453 (($ $) 88 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 76 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 87 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 75 (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) 86 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 74 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 85 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 73 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 84 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 72 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#2|) 36) (($ $ (-606 |#2|)) 35) (($ $ |#2| (-731)) 34) (($ $ (-606 |#2|) (-606 (-731))) 33)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 120 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ $) 92 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 63 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 123 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 122 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-701 |#1| |#2|) (-134) (-998) (-807)) (T -701)) -((-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) (-4 *2 (-807)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-701 *3 *4)) (-4 *3 (-998)) (-4 *4 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)) (-5 *2 (-731)))) (-4231 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-731)) (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)) (-5 *2 (-905 *4)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)) (-5 *2 (-905 *4)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)) (-4 *3 (-37 (-391 (-537))))))) -(-13 (-853 |t#2|) (-926 |t#1| (-509 |t#2|) |t#2|) (-495 |t#2| $) (-293 $) (-10 -8 (-15 -3500 ($ $ |t#2| (-731))) (-15 -3500 ($ $ (-606 |t#2|) (-606 (-731)))) (-15 -1540 ($ $ (-731))) (-15 -3733 ($ $ |t#2| (-731))) (-15 -3733 ($ $ (-606 |t#2|) (-606 (-731)))) (-15 -4231 ((-731) $ |t#2|)) (-15 -4231 ((-731) $ |t#2| (-731))) (-15 -1706 ((-905 |t#1|) $ (-731))) (-15 -1706 ((-905 |t#1|) $ (-731) (-731))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |t#2|)) (-6 (-954)) (-6 (-1139))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-509 |#2|)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-274) |has| |#1| (-529)) ((-293 $) . T) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-495 |#2| $) . T) ((-495 $ $) . T) ((-529) |has| |#1| (-529)) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 |#2|) . T) ((-926 |#1| #0# |#2|) . T) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537))))) -((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|)) 30) (((-402 |#4|) |#4|) 26))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) (-807) (-753) (-13 (-291) (-141)) (-902 |#3| |#2| |#1|)) (T -702)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-702 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-702 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) -(-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) -((-1663 (((-402 |#4|) |#4| |#2|) 120)) (-2292 (((-402 |#4|) |#4|) NIL)) (-2414 (((-402 (-1113 |#4|)) (-1113 |#4|)) 111) (((-402 |#4|) |#4|) 41)) (-1551 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|))) 69)) (-2908 (((-1113 |#3|) (-1113 |#3|) (-537)) 139)) (-2647 (((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731)) 61)) (-3183 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|)) 65)) (-3681 (((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|))) 26)) (-1940 (((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537)) 57)) (-3938 (((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) 136)) (-1781 ((|#4| (-537) (-402 |#4|)) 58)) (-3065 (((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) NIL))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-402 |#4|) |#4|)) (-15 -2414 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2292 ((-402 |#4|) |#4|)) (-15 -3938 ((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -1663 ((-402 |#4|) |#4| |#2|)) (-15 -1940 ((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537))) (-15 -1551 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -3681 ((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -1781 (|#4| (-537) (-402 |#4|))) (-15 -3065 ((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -3183 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|))) (-15 -2647 ((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731))) (-15 -2908 ((-1113 |#3|) (-1113 |#3|) (-537)))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -703)) -((-2908 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 *6)) (-5 *3 (-537)) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2647 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-4 *7 (-807)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-4 *8 (-291)) (-5 *2 (-606 (-731))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *5 (-731)))) (-3183 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1113 *11)) (-5 *6 (-606 *10)) (-5 *7 (-606 (-731))) (-5 *8 (-606 *11)) (-4 *10 (-807)) (-4 *11 (-291)) (-4 *9 (-753)) (-4 *5 (-902 *11 *9 *10)) (-5 *2 (-606 (-1113 *5))) (-5 *1 (-703 *9 *10 *11 *5)) (-5 *3 (-1113 *5)))) (-3065 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-402 *2)) (-4 *2 (-902 *7 *5 *6)) (-5 *1 (-703 *5 *6 *7 *2)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-291)))) (-3681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-5 *2 (-2 (|:| |upol| (-1113 *8)) (|:| |Lval| (-606 *8)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 *8)) (|:| -3283 (-537))))) (|:| |ctpol| *8))) (-5 *1 (-703 *6 *7 *8 *9)))) (-1551 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *6 (-753)) (-4 *9 (-902 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 *9)) (|:| -3283 (-537))))))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-537)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-5 *2 (-2 (|:| -2990 (-1113 *9)) (|:| |polval| (-1113 *8)))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)) (-5 *4 (-1113 *8)))) (-1663 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5))))) -(-10 -7 (-15 -2414 ((-402 |#4|) |#4|)) (-15 -2414 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2292 ((-402 |#4|) |#4|)) (-15 -3938 ((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -1663 ((-402 |#4|) |#4| |#2|)) (-15 -1940 ((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537))) (-15 -1551 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -3681 ((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -1781 (|#4| (-537) (-402 |#4|))) (-15 -3065 ((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -3183 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|))) (-15 -2647 ((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731))) (-15 -2908 ((-1113 |#3|) (-1113 |#3|) (-537)))) -((-1891 (($ $ (-874)) 12))) -(((-704 |#1| |#2|) (-10 -8 (-15 -1891 (|#1| |#1| (-874)))) (-705 |#2|) (-163)) (T -704)) -NIL -(-10 -8 (-15 -1891 (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2541 (($ $ (-874)) 28)) (-1891 (($ $ (-874)) 33)) (-3060 (($ $ (-874)) 29)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-705 |#1|) (-134) (-163)) (T -705)) -((-1891 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-705 *3)) (-4 *3 (-163))))) -(-13 (-722) (-678 |t#1|) (-10 -8 (-15 -1891 ($ $ (-874))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-3523 (((-986) (-649 (-210)) (-537) (-111) (-537)) 25)) (-2956 (((-986) (-649 (-210)) (-537) (-111) (-537)) 24))) -(((-706) (-10 -7 (-15 -2956 ((-986) (-649 (-210)) (-537) (-111) (-537))) (-15 -3523 ((-986) (-649 (-210)) (-537) (-111) (-537))))) (T -706)) -((-3523 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-706)))) (-2956 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-706))))) -(-10 -7 (-15 -2956 ((-986) (-649 (-210)) (-537) (-111) (-537))) (-15 -3523 ((-986) (-649 (-210)) (-537) (-111) (-537)))) -((-1938 (((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) 43)) (-3052 (((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) 39)) (-3574 (((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 32))) -(((-707) (-10 -7 (-15 -3574 ((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3052 ((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN))))) (-15 -1938 ((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN))))))) (T -707)) -((-1938 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) (-5 *2 (-986)) (-5 *1 (-707)))) (-3052 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) (-5 *2 (-986)) (-5 *1 (-707)))) (-3574 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-707))))) -(-10 -7 (-15 -3574 ((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3052 ((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN))))) (-15 -1938 ((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))))) -((-4278 (((-986) (-537) (-537) (-649 (-210)) (-537)) 34)) (-1732 (((-986) (-537) (-537) (-649 (-210)) (-537)) 33)) (-3186 (((-986) (-537) (-649 (-210)) (-537)) 32)) (-1472 (((-986) (-537) (-649 (-210)) (-537)) 31)) (-3455 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 30)) (-3238 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-1832 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-2595 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537)) 27)) (-2049 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 24)) (-3965 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 23)) (-3306 (((-986) (-537) (-649 (-210)) (-537)) 22)) (-1916 (((-986) (-537) (-649 (-210)) (-537)) 21))) -(((-708) (-10 -7 (-15 -1916 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3306 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3965 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2049 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2595 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1832 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3238 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3455 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1472 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3186 ((-986) (-537) (-649 (-210)) (-537))) (-15 -1732 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -4278 ((-986) (-537) (-537) (-649 (-210)) (-537))))) (T -708)) -((-4278 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1732 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3186 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1472 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3455 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3238 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1832 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-2595 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-2049 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3965 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3306 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1916 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708))))) -(-10 -7 (-15 -1916 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3306 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3965 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2049 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2595 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1832 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3238 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3455 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1472 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3186 ((-986) (-537) (-649 (-210)) (-537))) (-15 -1732 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -4278 ((-986) (-537) (-537) (-649 (-210)) (-537)))) -((-1807 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3103 (((-986) (-649 (-210)) (-649 (-210)) (-537) (-537)) 51)) (-3501 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1736 (((-986) (-210) (-210) (-537) (-537) (-537) (-537)) 46)) (-1416 (((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 45)) (-1789 (((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 44)) (-1482 (((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 43)) (-2813 (((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 42)) (-3061 (((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 38)) (-2725 (((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 37)) (-3602 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 33)) (-2669 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 32))) -(((-709) (-10 -7 (-15 -2669 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3602 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2725 ((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3061 ((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2813 ((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1482 ((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1789 ((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1416 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1736 ((-986) (-210) (-210) (-537) (-537) (-537) (-537))) (-15 -3501 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))) (-15 -3103 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-537))) (-15 -1807 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))))) (T -709)) -((-1807 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-3103 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709)))) (-3501 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1736 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709)))) (-1416 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1789 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1482 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2813 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-3061 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2725 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-709)))) (-3602 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2669 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709))))) -(-10 -7 (-15 -2669 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3602 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2725 ((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3061 ((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2813 ((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1482 ((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1789 ((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1416 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1736 ((-986) (-210) (-210) (-537) (-537) (-537) (-537))) (-15 -3501 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))) (-15 -3103 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-537))) (-15 -1807 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))))) -((-2919 (((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-3109 (((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372)) 69) (((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3355 (((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) 57)) (-2779 (((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) 50)) (-3948 (((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 49)) (-4019 (((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2542 (((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) 42)) (-3208 (((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-710) (-10 -7 (-15 -3208 ((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2542 ((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -4019 ((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -3948 ((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -3355 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372))) (-15 -2919 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -710)) -((-2919 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-372)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-986)) (-5 *1 (-710)))) (-3355 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-2779 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *2 (-986)) (-5 *1 (-710)))) (-3948 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-4019 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-2542 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3208 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) -(-10 -7 (-15 -3208 ((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2542 ((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -4019 ((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -3948 ((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -3355 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372))) (-15 -2919 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-1506 (((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537)) 45)) (-2097 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) 41)) (-2410 (((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 23))) -(((-711) (-10 -7 (-15 -2410 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2097 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY))))) (-15 -1506 ((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537))))) (T -711)) -((-1506 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-636 (-210))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-711)))) (-2097 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-986)) (-5 *1 (-711)))) (-2410 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-711))))) -(-10 -7 (-15 -2410 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2097 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY))))) (-15 -1506 ((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537)))) -((-3363 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537)) 35)) (-2519 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537)) 34)) (-1346 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537)) 33)) (-2019 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-2719 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-4210 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537)) 27)) (-4152 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537)) 24)) (-4040 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537)) 23)) (-2670 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 22)) (-1678 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 21))) -(((-712) (-10 -7 (-15 -1678 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -2670 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -4040 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4152 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4210 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2719 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2019 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1346 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2519 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537))) (-15 -3363 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537))))) (T -712)) -((-3363 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-2519 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-1346 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-712)))) (-2019 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-2719 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-4210 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-4152 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-4040 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-2670 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-1678 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712))))) -(-10 -7 (-15 -1678 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -2670 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -4040 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4152 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4210 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2719 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2019 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1346 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2519 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537))) (-15 -3363 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537)))) -((-2249 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 45)) (-3057 (((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537)) 44)) (-1271 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 43)) (-3841 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 42)) (-2437 (((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537)) 41)) (-4240 (((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537)) 40)) (-3497 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537)) 39)) (-3924 (((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537))) 38)) (-2923 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 35)) (-3368 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537)) 34)) (-1944 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537)) 33)) (-4138 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 32)) (-2577 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537)) 31)) (-1430 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537)) 30)) (-2037 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537)) 29)) (-2325 (((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537)) 28)) (-1349 (((-986) (-537) (-649 (-210)) (-210) (-537)) 24)) (-1571 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 21))) -(((-713) (-10 -7 (-15 -1571 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1349 ((-986) (-537) (-649 (-210)) (-210) (-537))) (-15 -2325 ((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537))) (-15 -2037 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1430 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537))) (-15 -2577 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537))) (-15 -4138 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1944 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537))) (-15 -3368 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537))) (-15 -2923 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3924 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)))) (-15 -3497 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537))) (-15 -4240 ((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -2437 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3841 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1271 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -3057 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2249 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))))) (T -713)) -((-2249 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3057 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1271 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3841 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-2437 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-4240 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-3497 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-3924 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2923 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3368 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1944 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-4138 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-2577 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1430 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2037 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2325 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1349 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1571 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713))))) -(-10 -7 (-15 -1571 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1349 ((-986) (-537) (-649 (-210)) (-210) (-537))) (-15 -2325 ((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537))) (-15 -2037 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1430 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537))) (-15 -2577 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537))) (-15 -4138 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1944 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537))) (-15 -3368 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537))) (-15 -2923 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3924 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)))) (-15 -3497 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537))) (-15 -4240 ((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -2437 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3841 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1271 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -3057 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2249 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)))) -((-3888 (((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537)) 63)) (-2558 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2888 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) 58)) (-2812 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537)) 51)) (-1828 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3692 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) 46)) (-4219 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1370 (((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-714) (-10 -7 (-15 -1370 ((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -4219 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1))))) (-15 -3692 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2))))) (-15 -1828 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1))))) (-15 -2812 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537))) (-15 -2888 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS))))) (-15 -2558 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -3888 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537))))) (T -714)) -((-3888 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2558 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2888 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-649 (-210))) (-5 *6 (-111)) (-5 *7 (-649 (-537))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2812 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-714)))) (-1828 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-3692 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-4219 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-1370 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) -(-10 -7 (-15 -1370 ((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -4219 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1))))) (-15 -3692 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2))))) (-15 -1828 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1))))) (-15 -2812 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537))) (-15 -2888 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS))))) (-15 -2558 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -3888 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537)))) -((-1896 (((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)) 47)) (-4135 (((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537)) 46)) (-2925 (((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537)) 45)) (-3045 (((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 40)) (-2423 (((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537)) 39)) (-2679 (((-986) (-537) (-537) (-537) (-649 (-210)) (-537)) 36)) (-1742 (((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537)) 35)) (-1601 (((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537)) 34)) (-4163 (((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537)) 33)) (-3047 (((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537)) 32))) -(((-715) (-10 -7 (-15 -3047 ((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537))) (-15 -4163 ((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537))) (-15 -1601 ((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537))) (-15 -1742 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537))) (-15 -2679 ((-986) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -2423 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537))) (-15 -3045 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2925 ((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4135 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -1896 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537))))) (T -715)) -((-1896 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-4135 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2925 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-3045 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2423 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2679 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-1742 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-715)))) (-1601 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-606 (-111))) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *7 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-715)))) (-4163 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-649 (-537))) (-5 *5 (-111)) (-5 *7 (-649 (-210))) (-5 *3 (-537)) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-715)))) (-3047 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-606 (-111))) (-5 *7 (-649 (-210))) (-5 *8 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-715))))) -(-10 -7 (-15 -3047 ((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537))) (-15 -4163 ((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537))) (-15 -1601 ((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537))) (-15 -1742 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537))) (-15 -2679 ((-986) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -2423 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537))) (-15 -3045 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2925 ((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4135 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -1896 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)))) -((-3931 (((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)) 65)) (-4105 (((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537)) 60)) (-3627 (((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372)) 56) (((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) 55)) (-3605 (((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537)) 37)) (-1817 (((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537)) 33)) (-2043 (((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537)) 30)) (-1749 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-3955 (((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-4241 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 27)) (-3935 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537)) 26)) (-3374 (((-986) (-537) (-537) (-649 (-210)) (-537)) 25)) (-3872 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 24)) (-1440 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 23)) (-3469 (((-986) (-649 (-210)) (-537) (-537) (-537) (-537)) 22)) (-3210 (((-986) (-537) (-537) (-649 (-210)) (-537)) 21))) -(((-716) (-10 -7 (-15 -3210 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3469 ((-986) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -1440 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3872 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3374 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3935 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -4241 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3955 ((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1749 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2043 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1817 ((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537))) (-15 -3605 ((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372))) (-15 -4105 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3931 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537))))) (T -716)) -((-3931 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-716)))) (-4105 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3627 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-372)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3627 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3605 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-1817 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-2043 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-716)))) (-1749 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3955 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-4241 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3935 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3374 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3872 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-1440 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3469 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3210 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716))))) -(-10 -7 (-15 -3210 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3469 ((-986) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -1440 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3872 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3374 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3935 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -4241 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3955 ((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1749 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2043 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1817 ((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537))) (-15 -3605 ((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372))) (-15 -4105 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3931 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)))) -((-3419 (((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) 61)) (-1669 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537)) 57)) (-4061 (((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3524 (((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537)) 37)) (-1816 (((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537)) 36)) (-2732 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 33)) (-1602 (((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210))) 32)) (-3058 (((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537)) 28)) (-1432 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537)) 27)) (-4149 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537)) 26)) (-3846 (((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537)) 22))) -(((-717) (-10 -7 (-15 -3846 ((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4149 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -1432 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -3058 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537))) (-15 -1602 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)))) (-15 -2732 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1816 ((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3524 ((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -4061 ((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE))))) (-15 -1669 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -3419 ((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD))))))) (T -717)) -((-3419 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1669 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-4061 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-986)) (-5 *1 (-717)))) (-3524 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1816 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-717)))) (-2732 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-1602 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-3058 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1432 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-4149 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-3846 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-717))))) -(-10 -7 (-15 -3846 ((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4149 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -1432 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -3058 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537))) (-15 -1602 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)))) (-15 -2732 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1816 ((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3524 ((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -4061 ((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE))))) (-15 -1669 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -3419 ((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))))) -((-1932 (((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210))) 29)) (-1467 (((-986) (-1100) (-537) (-537) (-649 (-210))) 28)) (-1563 (((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210))) 27)) (-2922 (((-986) (-537) (-537) (-537) (-649 (-210))) 21))) -(((-718) (-10 -7 (-15 -2922 ((-986) (-537) (-537) (-537) (-649 (-210)))) (-15 -1563 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210)))) (-15 -1467 ((-986) (-1100) (-537) (-537) (-649 (-210)))) (-15 -1932 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)))))) (T -718)) -((-1932 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718)))) (-1467 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718)))) (-1563 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-718)))) (-2922 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718))))) -(-10 -7 (-15 -2922 ((-986) (-537) (-537) (-537) (-649 (-210)))) (-15 -1563 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210)))) (-15 -1467 ((-986) (-1100) (-537) (-537) (-649 (-210)))) (-15 -1932 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210))))) -((-2951 (((-986) (-210) (-210) (-210) (-210) (-537)) 62)) (-2161 (((-986) (-210) (-210) (-210) (-537)) 61)) (-2386 (((-986) (-210) (-210) (-210) (-537)) 60)) (-2512 (((-986) (-210) (-210) (-537)) 59)) (-3292 (((-986) (-210) (-537)) 58)) (-1665 (((-986) (-210) (-537)) 57)) (-2266 (((-986) (-210) (-537)) 56)) (-1643 (((-986) (-210) (-537)) 55)) (-2105 (((-986) (-210) (-537)) 54)) (-3970 (((-986) (-210) (-537)) 53)) (-2129 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 52)) (-1957 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 51)) (-4148 (((-986) (-210) (-537)) 50)) (-3534 (((-986) (-210) (-537)) 49)) (-3003 (((-986) (-210) (-537)) 48)) (-1450 (((-986) (-210) (-537)) 47)) (-3951 (((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537)) 46)) (-4168 (((-986) (-1100) (-160 (-210)) (-1100) (-537)) 45)) (-4155 (((-986) (-1100) (-160 (-210)) (-1100) (-537)) 44)) (-2475 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 43)) (-3428 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 42)) (-1927 (((-986) (-210) (-537)) 39)) (-3967 (((-986) (-210) (-537)) 38)) (-2810 (((-986) (-210) (-537)) 37)) (-1491 (((-986) (-210) (-537)) 36)) (-2363 (((-986) (-210) (-537)) 35)) (-2124 (((-986) (-210) (-537)) 34)) (-3498 (((-986) (-210) (-537)) 33)) (-3713 (((-986) (-210) (-537)) 32)) (-3179 (((-986) (-210) (-537)) 31)) (-1337 (((-986) (-210) (-537)) 30)) (-2123 (((-986) (-210) (-210) (-210) (-537)) 29)) (-4191 (((-986) (-210) (-537)) 28)) (-3123 (((-986) (-210) (-537)) 27)) (-1975 (((-986) (-210) (-537)) 26)) (-2107 (((-986) (-210) (-537)) 25)) (-3535 (((-986) (-210) (-537)) 24)) (-4208 (((-986) (-160 (-210)) (-537)) 21))) -(((-719) (-10 -7 (-15 -4208 ((-986) (-160 (-210)) (-537))) (-15 -3535 ((-986) (-210) (-537))) (-15 -2107 ((-986) (-210) (-537))) (-15 -1975 ((-986) (-210) (-537))) (-15 -3123 ((-986) (-210) (-537))) (-15 -4191 ((-986) (-210) (-537))) (-15 -2123 ((-986) (-210) (-210) (-210) (-537))) (-15 -1337 ((-986) (-210) (-537))) (-15 -3179 ((-986) (-210) (-537))) (-15 -3713 ((-986) (-210) (-537))) (-15 -3498 ((-986) (-210) (-537))) (-15 -2124 ((-986) (-210) (-537))) (-15 -2363 ((-986) (-210) (-537))) (-15 -1491 ((-986) (-210) (-537))) (-15 -2810 ((-986) (-210) (-537))) (-15 -3967 ((-986) (-210) (-537))) (-15 -1927 ((-986) (-210) (-537))) (-15 -3428 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2475 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -4155 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -4168 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -3951 ((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -1450 ((-986) (-210) (-537))) (-15 -3003 ((-986) (-210) (-537))) (-15 -3534 ((-986) (-210) (-537))) (-15 -4148 ((-986) (-210) (-537))) (-15 -1957 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2129 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -3970 ((-986) (-210) (-537))) (-15 -2105 ((-986) (-210) (-537))) (-15 -1643 ((-986) (-210) (-537))) (-15 -2266 ((-986) (-210) (-537))) (-15 -1665 ((-986) (-210) (-537))) (-15 -3292 ((-986) (-210) (-537))) (-15 -2512 ((-986) (-210) (-210) (-537))) (-15 -2386 ((-986) (-210) (-210) (-210) (-537))) (-15 -2161 ((-986) (-210) (-210) (-210) (-537))) (-15 -2951 ((-986) (-210) (-210) (-210) (-210) (-537))))) (T -719)) -((-2951 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2161 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2386 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2512 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2129 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1957 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3951 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-537)) (-5 *5 (-160 (-210))) (-5 *6 (-1100)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4168 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4155 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2475 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3428 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2123 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-160 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(-10 -7 (-15 -4208 ((-986) (-160 (-210)) (-537))) (-15 -3535 ((-986) (-210) (-537))) (-15 -2107 ((-986) (-210) (-537))) (-15 -1975 ((-986) (-210) (-537))) (-15 -3123 ((-986) (-210) (-537))) (-15 -4191 ((-986) (-210) (-537))) (-15 -2123 ((-986) (-210) (-210) (-210) (-537))) (-15 -1337 ((-986) (-210) (-537))) (-15 -3179 ((-986) (-210) (-537))) (-15 -3713 ((-986) (-210) (-537))) (-15 -3498 ((-986) (-210) (-537))) (-15 -2124 ((-986) (-210) (-537))) (-15 -2363 ((-986) (-210) (-537))) (-15 -1491 ((-986) (-210) (-537))) (-15 -2810 ((-986) (-210) (-537))) (-15 -3967 ((-986) (-210) (-537))) (-15 -1927 ((-986) (-210) (-537))) (-15 -3428 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2475 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -4155 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -4168 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -3951 ((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -1450 ((-986) (-210) (-537))) (-15 -3003 ((-986) (-210) (-537))) (-15 -3534 ((-986) (-210) (-537))) (-15 -4148 ((-986) (-210) (-537))) (-15 -1957 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2129 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -3970 ((-986) (-210) (-537))) (-15 -2105 ((-986) (-210) (-537))) (-15 -1643 ((-986) (-210) (-537))) (-15 -2266 ((-986) (-210) (-537))) (-15 -1665 ((-986) (-210) (-537))) (-15 -3292 ((-986) (-210) (-537))) (-15 -2512 ((-986) (-210) (-210) (-537))) (-15 -2386 ((-986) (-210) (-210) (-210) (-537))) (-15 -2161 ((-986) (-210) (-210) (-210) (-537))) (-15 -2951 ((-986) (-210) (-210) (-210) (-210) (-537)))) -((-3209 (((-1205)) 18)) (-2136 (((-1100)) 22)) (-1726 (((-1100)) 21)) (-2208 (((-1049) (-1117) (-649 (-537))) 37) (((-1049) (-1117) (-649 (-210))) 32)) (-2057 (((-111)) 16)) (-3325 (((-1100) (-1100)) 25))) -(((-720) (-10 -7 (-15 -1726 ((-1100))) (-15 -2136 ((-1100))) (-15 -3325 ((-1100) (-1100))) (-15 -2208 ((-1049) (-1117) (-649 (-210)))) (-15 -2208 ((-1049) (-1117) (-649 (-537)))) (-15 -2057 ((-111))) (-15 -3209 ((-1205))))) (T -720)) -((-3209 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-720)))) (-2057 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-720)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-537))) (-5 *2 (-1049)) (-5 *1 (-720)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-210))) (-5 *2 (-1049)) (-5 *1 (-720)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720)))) (-2136 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720)))) (-1726 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) -(-10 -7 (-15 -1726 ((-1100))) (-15 -2136 ((-1100))) (-15 -3325 ((-1100) (-1100))) (-15 -2208 ((-1049) (-1117) (-649 (-210)))) (-15 -2208 ((-1049) (-1117) (-649 (-537)))) (-15 -2057 ((-111))) (-15 -3209 ((-1205)))) -((-1674 (($ $ $) 10)) (-3727 (($ $ $ $) 9)) (-3212 (($ $ $) 12))) -(((-721 |#1|) (-10 -8 (-15 -3212 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1| |#1| |#1|))) (-722)) (T -721)) -NIL -(-10 -8 (-15 -3212 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2541 (($ $ (-874)) 28)) (-3060 (($ $ (-874)) 29)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27))) -(((-722) (-134)) (T -722)) -((-3727 (*1 *1 *1 *1 *1) (-4 *1 (-722))) (-1674 (*1 *1 *1 *1) (-4 *1 (-722))) (-3212 (*1 *1 *1 *1) (-4 *1 (-722)))) -(-13 (-21) (-681) (-10 -8 (-15 -3727 ($ $ $ $)) (-15 -1674 ($ $ $)) (-15 -3212 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-681) . T) ((-1045) . T)) -((-2341 (((-816) $) NIL) (($ (-537)) 10))) -(((-723 |#1|) (-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-724)) (T -723)) -NIL -(-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3800 (((-3 $ "failed") $) 40)) (-2541 (($ $ (-874)) 28) (($ $ (-731)) 35)) (-3490 (((-3 $ "failed") $) 38)) (-2836 (((-111) $) 34)) (-3820 (((-3 $ "failed") $) 39)) (-3060 (($ $ (-874)) 29) (($ $ (-731)) 36)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11) (($ (-537)) 31)) (-3654 (((-731)) 32)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2943 (($) 33 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30) (($ $ (-731)) 37)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27))) -(((-724) (-134)) (T -724)) -((-3654 (*1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-724))))) -(-13 (-722) (-683) (-10 -8 (-15 -3654 ((-731))) (-15 -2341 ($ (-537))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-681) . T) ((-683) . T) ((-722) . T) ((-1045) . T)) -((-1717 (((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|) 33)) (-3837 (((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|) 23)) (-2736 (((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117)) 20) (((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537))))) 19))) -(((-725 |#1|) (-10 -7 (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))))) (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117))) (-15 -3837 ((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|)) (-15 -1717 ((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|))) (-13 (-347) (-805))) (T -725)) -((-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |outval| (-160 *4)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 *4))))))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *4 (-1117)) (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *5)) (-4 *5 (-13 (-347) (-805))))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) -(-10 -7 (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))))) (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117))) (-15 -3837 ((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|)) (-15 -1717 ((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|))) -((-4225 (((-164 (-537)) |#1|) 25))) -(((-726 |#1|) (-10 -7 (-15 -4225 ((-164 (-537)) |#1|))) (-388)) (T -726)) -((-4225 (*1 *2 *3) (-12 (-5 *2 (-164 (-537))) (-5 *1 (-726 *3)) (-4 *3 (-388))))) -(-10 -7 (-15 -4225 ((-164 (-537)) |#1|))) -((-3555 ((|#1| |#1| |#1|) 24)) (-3592 ((|#1| |#1| |#1|) 23)) (-1690 ((|#1| |#1| |#1|) 32)) (-3193 ((|#1| |#1| |#1|) 28)) (-2733 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3978 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 22))) -(((-727 |#1| |#2|) (-10 -7 (-15 -3978 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#1|))) (-669 |#2|) (-347)) (T -727)) -((-1690 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3193 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-2733 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3555 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3978 (*1 *2 *3 *3) (-12 (-4 *4 (-347)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-727 *3 *4)) (-4 *3 (-669 *4))))) -(-10 -7 (-15 -3978 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#1|))) -((-3337 (((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)) 59)) (-3778 (((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537))))) 57)) (-2067 (((-537)) 71))) -(((-728 |#1| |#2|) (-10 -7 (-15 -2067 ((-537))) (-15 -3778 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))))) (-15 -3337 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)))) (-1176 (-537)) (-393 (-537) |#1|)) (T -728)) -((-3337 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-728 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3778 (*1 *2) (-12 (-4 *3 (-1176 (-537))) (-5 *2 (-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537))))) (-5 *1 (-728 *3 *4)) (-4 *4 (-393 (-537) *3)))) (-2067 (*1 *2) (-12 (-4 *3 (-1176 *2)) (-5 *2 (-537)) (-5 *1 (-728 *3 *4)) (-4 *4 (-393 *2 *3))))) -(-10 -7 (-15 -2067 ((-537))) (-15 -3778 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))))) (-15 -3337 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)))) -((-2330 (((-111) $ $) NIL)) (-3958 (((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20) (($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 13) (($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) 18)) (-2244 (((-111) $ $) NIL))) -(((-729) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $))))) (T -729)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-5 *1 (-729)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-5 *1 (-729))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $)))) -((-3874 (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))) 18) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117))) 17)) (-1895 (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))) 20) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117))) 19))) -(((-730 |#1|) (-10 -7 (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))))) (-529)) (T -730)) -((-1895 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5))))) -(-10 -7 (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) 6)) (-3418 (((-3 $ "failed") $ $) 9)) (-3879 (($ $ (-537)) 7)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2211 (($ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ $ $) NIL))) -(((-731) (-13 (-753) (-687) (-10 -8 (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -2211 ($ $ $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3879 ($ $ (-537))) (-15 -1618 ($ $)) (-6 (-4302 "*"))))) (T -731)) -((-3539 (*1 *1 *1 *1) (-5 *1 (-731))) (-3563 (*1 *1 *1 *1) (-5 *1 (-731))) (-2211 (*1 *1 *1 *1) (-5 *1 (-731))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3413 (-731)) (|:| -1672 (-731)))) (-5 *1 (-731)))) (-3515 (*1 *1 *1 *1) (|partial| -5 *1 (-731))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-731)))) (-1618 (*1 *1 *1) (-5 *1 (-731)))) -(-13 (-753) (-687) (-10 -8 (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -2211 ($ $ $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3879 ($ $ (-537))) (-15 -1618 ($ $)) (-6 (-4302 "*")))) -((-1895 (((-3 |#2| "failed") |#2| |#2| (-113) (-1117)) 35))) -(((-732 |#1| |#2|) (-10 -7 (-15 -1895 ((-3 |#2| "failed") |#2| |#2| (-113) (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -732)) -((-1895 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-732 *5 *2)) (-4 *2 (-13 (-29 *5) (-1139) (-912)))))) -(-10 -7 (-15 -1895 ((-3 |#2| "failed") |#2| |#2| (-113) (-1117)))) -((-2341 (((-734) |#1|) 8))) -(((-733 |#1|) (-10 -7 (-15 -2341 ((-734) |#1|))) (-1154)) (T -733)) -((-2341 (*1 *2 *3) (-12 (-5 *2 (-734)) (-5 *1 (-733 *3)) (-4 *3 (-1154))))) -(-10 -7 (-15 -2341 ((-734) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 9))) -(((-734) (-1045)) (T -734)) -NIL -(-1045) -((-2055 ((|#2| |#4|) 35))) -(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 (|#2| |#4|))) (-435) (-1176 |#1|) (-685 |#1| |#2|) (-1176 |#3|)) (T -735)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-685 *4 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-735 *4 *2 *5 *3)) (-4 *3 (-1176 *5))))) -(-10 -7 (-15 -2055 (|#2| |#4|))) -((-3490 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2110 (((-1205) (-1100) (-1100) |#4| |#5|) 33)) (-1526 ((|#4| |#4| |#5|) 73)) (-2477 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 77)) (-3856 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 16))) -(((-736 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3490 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1526 (|#4| |#4| |#5|)) (-15 -2477 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -2110 ((-1205) (-1100) (-1100) |#4| |#5|)) (-15 -3856 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -736)) -((-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2110 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1100)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *4 (-1012 *6 *7 *8)) (-5 *2 (-1205)) (-5 *1 (-736 *6 *7 *8 *4 *5)) (-4 *5 (-1018 *6 *7 *8 *4)))) (-2477 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1526 (*1 *2 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *2 (-1012 *4 *5 *6)) (-5 *1 (-736 *4 *5 *6 *2 *3)) (-4 *3 (-1018 *4 *5 *6 *2)))) (-3490 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(-10 -7 (-15 -3490 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1526 (|#4| |#4| |#5|)) (-15 -2477 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -2110 ((-1205) (-1100) (-1100) |#4| |#5|)) (-15 -3856 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|))) -((-1516 (((-3 (-1113 (-1113 |#1|)) "failed") |#4|) 43)) (-3850 (((-606 |#4|) |#4|) 15)) (-1791 ((|#4| |#4|) 11))) -(((-737 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3850 ((-606 |#4|) |#4|)) (-15 -1516 ((-3 (-1113 (-1113 |#1|)) "failed") |#4|)) (-15 -1791 (|#4| |#4|))) (-333) (-313 |#1|) (-1176 |#2|) (-1176 |#3|) (-874)) (T -737)) -((-1791 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-313 *3)) (-4 *5 (-1176 *4)) (-5 *1 (-737 *3 *4 *5 *2 *6)) (-4 *2 (-1176 *5)) (-14 *6 (-874)))) (-1516 (*1 *2 *3) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) (-14 *7 (-874)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) (-5 *2 (-606 *3)) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) (-14 *7 (-874))))) -(-10 -7 (-15 -3850 ((-606 |#4|) |#4|)) (-15 -1516 ((-3 (-1113 (-1113 |#1|)) "failed") |#4|)) (-15 -1791 (|#4| |#4|))) -((-2384 (((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|)) 54)) (-2278 (((-606 (-731)) |#1|) 13))) -(((-738 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2384 ((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|))) (-15 -2278 ((-606 (-731)) |#1|))) (-1176 |#4|) (-753) (-807) (-291) (-902 |#4| |#2| |#3|)) (T -738)) -((-2278 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-606 (-731))) (-5 *1 (-738 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *6)) (-4 *7 (-902 *6 *4 *5)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1176 *9)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-291)) (-4 *10 (-902 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-606 (-1113 *10))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *10))))) (|:| |nfacts| (-606 *6)) (|:| |nlead| (-606 *10)))) (-5 *1 (-738 *6 *7 *8 *9 *10)) (-5 *3 (-1113 *10)) (-5 *4 (-606 *6)) (-5 *5 (-606 *10))))) -(-10 -7 (-15 -2384 ((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|))) (-15 -2278 ((-606 (-731)) |#1|))) -((-1238 (((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|) 31)) (-3177 (((-606 |#1|) (-649 (-391 (-537))) |#1|) 21)) (-2736 (((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117)) 18) (((-905 (-391 (-537))) (-649 (-391 (-537)))) 17))) -(((-739 |#1|) (-10 -7 (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))))) (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117))) (-15 -3177 ((-606 |#1|) (-649 (-391 (-537))) |#1|)) (-15 -1238 ((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|))) (-13 (-347) (-805))) (T -739)) -((-1238 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 (-2 (|:| |outval| *4) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 *4)))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *4 (-1117)) (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-347) (-805))))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805)))))) -(-10 -7 (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))))) (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117))) (-15 -3177 ((-606 |#1|) (-649 (-391 (-537))) |#1|)) (-15 -1238 ((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 34)) (-3757 (((-606 |#2|) $) NIL)) (-3588 (((-1113 $) $ |#2|) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#2|)) NIL)) (-4199 (($ $) 28)) (-4062 (((-111) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) 93 (|has| |#1| (-529)))) (-4088 (((-606 $) $ $) 106 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (((-3 $ "failed") (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (((-3 $ "failed") (-905 |#1|)) NIL (-1533 (-12 (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537))))) (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-522)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-945 (-537))))))) (((-3 (-1069 |#1| |#2|) "failed") $) 18)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#2| $) NIL) (($ (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (($ (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (($ (-905 |#1|)) NIL (-1533 (-12 (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537))))) (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-522)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-945 (-537))))))) (((-1069 |#1| |#2|) $) NIL)) (-4086 (($ $ $ |#2|) NIL (|has| |#1| (-163))) (($ $ $) 104 (|has| |#1| (-529)))) (-3940 (($ $) NIL) (($ $ |#2|) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-1369 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2835 (((-111) $) NIL)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 70)) (-4013 (($ $) 119 (|has| |#1| (-435)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-2721 (($ $) NIL (|has| |#1| (-529)))) (-1309 (($ $) NIL (|has| |#1| (-529)))) (-3882 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3472 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3240 (($ $ |#1| (-509 |#2|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3201 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-2276 (($ $ $ $ $) 90 (|has| |#1| (-529)))) (-1464 ((|#2| $) 19)) (-3746 (($ (-1113 |#1|) |#2|) NIL) (($ (-1113 $) |#2|) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 |#2|)) NIL) (($ $ |#2| (-731)) 36) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-3491 (($ $ $) 60)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-2903 (((-111) $) NIL)) (-1883 (((-509 |#2|) $) NIL) (((-731) $ |#2|) NIL) (((-606 (-731)) $ (-606 |#2|)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-2910 (((-731) $) 20)) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#2|) (-509 |#2|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1310 (((-3 |#2| "failed") $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-435)))) (-3895 (($ $) NIL (|has| |#1| (-435)))) (-1250 (((-606 $) $) NIL)) (-2959 (($ $) 37)) (-2500 (($ $) NIL (|has| |#1| (-435)))) (-3081 (((-606 $) $) 41)) (-2270 (($ $) 39)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 82)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 67) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) NIL) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#2|) NIL)) (-1852 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-4047 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1654 (((-1100) $) NIL)) (-1842 (($ $ $) 108 (|has| |#1| (-529)))) (-1806 (((-606 $) $) 30)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-731))) "failed") $) NIL)) (-3812 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-3787 (($ $ $) NIL)) (-3956 (($ $) 21)) (-1981 (((-111) $ $) NIL)) (-2524 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-2021 (($ $ $) NIL)) (-2876 (($ $) 23)) (-2528 (((-1064) $) NIL)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-529)))) (-3876 (((-111) $) 52)) (-3890 ((|#1| $) 55)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 ((|#1| |#1| $) 116 (|has| |#1| (-435))) (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-2287 (($ $ |#1|) 112 (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-3848 (($ $ |#1|) 111 (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-606 |#2|) (-606 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-606 |#2|) (-606 $)) NIL)) (-2067 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) NIL) (((-731) $ |#2|) 43) (((-606 (-731)) $ (-606 |#2|)) NIL)) (-1757 (($ $) NIL)) (-2944 (($ $) 33)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513))))) (($ (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (($ (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (($ (-905 |#1|)) NIL (|has| |#2| (-580 (-1117)))) (((-1100) $) NIL (-12 (|has| |#1| (-989 (-537))) (|has| |#2| (-580 (-1117))))) (((-905 |#1|) $) NIL (|has| |#2| (-580 (-1117))))) (-1835 ((|#1| $) 115 (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-905 |#1|) $) NIL (|has| |#2| (-580 (-1117)))) (((-1069 |#1| |#2|) $) 15) (($ (-1069 |#1| |#2|)) 16) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 |#2|)) NIL) (($ $ |#2| (-731)) 44) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 13 T CONST)) (-2633 (((-3 (-111) "failed") $ $) NIL)) (-2943 (($) 35 T CONST)) (-3031 (($ $ $ $ (-731)) 88 (|has| |#1| (-529)))) (-2593 (($ $ $ (-731)) 87 (|has| |#1| (-529)))) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 54)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 64)) (-2318 (($ $ $) 74)) (** (($ $ (-874)) NIL) (($ $ (-731)) 61)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 59) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-740 |#1| |#2|) (-13 (-1012 |#1| (-509 |#2|) |#2|) (-579 (-1069 |#1| |#2|)) (-989 (-1069 |#1| |#2|))) (-998) (-807)) (T -740)) -NIL -(-13 (-1012 |#1| (-509 |#2|) |#2|) (-579 (-1069 |#1| |#2|)) (-989 (-1069 |#1| |#2|))) -((-1612 (((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)) 13))) -(((-741 |#1| |#2|) (-10 -7 (-15 -1612 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)))) (-998) (-998)) (T -741)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-742 *6)) (-5 *1 (-741 *5 *6))))) -(-10 -7 (-15 -1612 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 12)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3944 (((-606 $) $ $) 39 (|has| |#1| (-529)))) (-1841 (($ $ $) 35 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL) (((-3 (-1113 |#1|) "failed") $) 10)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL) (((-1113 |#1|) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) 43 (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) 71 (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) 70 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3491 (($ $ $) 20)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $) 26)) (-3391 (($ $ $) 29)) (-2002 (($ $ $) 32)) (-2897 (((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 31)) (-1654 (((-1100) $) NIL)) (-1842 (($ $ $) 41 (|has| |#1| (-529)))) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-529)))) (-1448 (((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-529)))) (-3532 (((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-529)))) (-3876 (((-111) $) 13)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-3148 (($ $ (-731) |#1| $) 19)) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-529)))) (-1958 (((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1027)) NIL) (((-1113 |#1|) $) 7) (($ (-1113 |#1|)) 8) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 21 T CONST)) (-2943 (($) 24 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 28) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-742 |#1|) (-13 (-1176 |#1|) (-579 (-1113 |#1|)) (-989 (-1113 |#1|)) (-10 -8 (-15 -3148 ($ $ (-731) |#1| $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $)) (-15 -3391 ($ $ $)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2002 ($ $ $)) (IF (|has| |#1| (-529)) (PROGN (-15 -3944 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -1958 ((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3532 ((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $)) (-15 -1448 ((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-998)) (T -742)) -((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-3491 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-742 *3)) (|:| |polden| *3) (|:| -3669 (-731)))) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-2897 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3449 *3) (|:| |gap| (-731)) (|:| -3413 (-742 *3)) (|:| -1672 (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-2002 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-606 (-742 *3))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1842 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-529)) (-4 *2 (-998)))) (-2141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-2767 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1958 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-3532 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1448 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) -(-13 (-1176 |#1|) (-579 (-1113 |#1|)) (-989 (-1113 |#1|)) (-10 -8 (-15 -3148 ($ $ (-731) |#1| $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $)) (-15 -3391 ($ $ $)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2002 ($ $ $)) (IF (|has| |#1| (-529)) (PROGN (-15 -3944 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -1958 ((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3532 ((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $)) (-15 -1448 ((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1768 ((|#1| (-731) |#1|) 32 (|has| |#1| (-37 (-391 (-537)))))) (-1443 ((|#1| (-731) |#1|) 22)) (-4042 ((|#1| (-731) |#1|) 34 (|has| |#1| (-37 (-391 (-537))))))) -(((-743 |#1|) (-10 -7 (-15 -1443 (|#1| (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -4042 (|#1| (-731) |#1|)) (-15 -1768 (|#1| (-731) |#1|))) |%noBranch|)) (-163)) (T -743)) -((-1768 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-4042 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-163))))) -(-10 -7 (-15 -1443 (|#1| (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -4042 (|#1| (-731) |#1|)) (-15 -1768 (|#1| (-731) |#1|))) |%noBranch|)) -((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-744 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -744)) -NIL -(-13 (-1018 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) -((-2620 (((-3 (-363) "failed") (-300 |#1|) (-874)) 62 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-363) "failed") (-300 |#1|)) 54 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-363) "failed") (-391 (-905 |#1|)) (-874)) 41 (|has| |#1| (-529))) (((-3 (-363) "failed") (-391 (-905 |#1|))) 40 (|has| |#1| (-529))) (((-3 (-363) "failed") (-905 |#1|) (-874)) 31 (|has| |#1| (-998))) (((-3 (-363) "failed") (-905 |#1|)) 30 (|has| |#1| (-998)))) (-1871 (((-363) (-300 |#1|) (-874)) 99 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-363) (-300 |#1|)) 94 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-363) (-391 (-905 |#1|)) (-874)) 91 (|has| |#1| (-529))) (((-363) (-391 (-905 |#1|))) 90 (|has| |#1| (-529))) (((-363) (-905 |#1|) (-874)) 86 (|has| |#1| (-998))) (((-363) (-905 |#1|)) 85 (|has| |#1| (-998))) (((-363) |#1| (-874)) 76) (((-363) |#1|) 22)) (-2498 (((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)) 71 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 (-160 |#1|))) 70 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 |#1|) (-874)) 63 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 |#1|)) 61 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874)) 46 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|)))) 45 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874)) 39 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 |#1|))) 38 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)) 28 (|has| |#1| (-998))) (((-3 (-160 (-363)) "failed") (-905 |#1|)) 26 (|has| |#1| (-998))) (((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)) 18 (|has| |#1| (-163))) (((-3 (-160 (-363)) "failed") (-905 (-160 |#1|))) 15 (|has| |#1| (-163)))) (-3913 (((-160 (-363)) (-300 (-160 |#1|)) (-874)) 102 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 (-160 |#1|))) 101 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 |#1|) (-874)) 100 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 |#1|)) 98 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874)) 93 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 (-160 |#1|)))) 92 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 |#1|)) (-874)) 89 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 |#1|))) 88 (|has| |#1| (-529))) (((-160 (-363)) (-905 |#1|) (-874)) 84 (|has| |#1| (-998))) (((-160 (-363)) (-905 |#1|)) 83 (|has| |#1| (-998))) (((-160 (-363)) (-905 (-160 |#1|)) (-874)) 78 (|has| |#1| (-163))) (((-160 (-363)) (-905 (-160 |#1|))) 77 (|has| |#1| (-163))) (((-160 (-363)) (-160 |#1|) (-874)) 80 (|has| |#1| (-163))) (((-160 (-363)) (-160 |#1|)) 79 (|has| |#1| (-163))) (((-160 (-363)) |#1| (-874)) 27) (((-160 (-363)) |#1|) 25))) -(((-745 |#1|) (-10 -7 (-15 -1871 ((-363) |#1|)) (-15 -1871 ((-363) |#1| (-874))) (-15 -3913 ((-160 (-363)) |#1|)) (-15 -3913 ((-160 (-363)) |#1| (-874))) (IF (|has| |#1| (-163)) (PROGN (-15 -3913 ((-160 (-363)) (-160 |#1|))) (-15 -3913 ((-160 (-363)) (-160 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -1871 ((-363) (-905 |#1|))) (-15 -1871 ((-363) (-905 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 |#1|))) (-15 -3913 ((-160 (-363)) (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -1871 ((-363) (-391 (-905 |#1|)))) (-15 -1871 ((-363) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -1871 ((-363) (-300 |#1|))) (-15 -1871 ((-363) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 |#1|))) (-15 -3913 ((-160 (-363)) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-905 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)))) (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-300 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|)) (-580 (-363))) (T -745)) -((-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-160 *5)) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-160 *4)) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2)))) (-1871 (*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2))))) -(-10 -7 (-15 -1871 ((-363) |#1|)) (-15 -1871 ((-363) |#1| (-874))) (-15 -3913 ((-160 (-363)) |#1|)) (-15 -3913 ((-160 (-363)) |#1| (-874))) (IF (|has| |#1| (-163)) (PROGN (-15 -3913 ((-160 (-363)) (-160 |#1|))) (-15 -3913 ((-160 (-363)) (-160 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -1871 ((-363) (-905 |#1|))) (-15 -1871 ((-363) (-905 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 |#1|))) (-15 -3913 ((-160 (-363)) (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -1871 ((-363) (-391 (-905 |#1|)))) (-15 -1871 ((-363) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -1871 ((-363) (-300 |#1|))) (-15 -1871 ((-363) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 |#1|))) (-15 -3913 ((-160 (-363)) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-905 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)))) (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-300 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|)) -((-3463 (((-874) (-1100)) 66)) (-3133 (((-3 (-363) "failed") (-1100)) 33)) (-2574 (((-363) (-1100)) 31)) (-1251 (((-874) (-1100)) 54)) (-3658 (((-1100) (-874)) 56)) (-1779 (((-1100) (-874)) 53))) -(((-746) (-10 -7 (-15 -1779 ((-1100) (-874))) (-15 -1251 ((-874) (-1100))) (-15 -3658 ((-1100) (-874))) (-15 -3463 ((-874) (-1100))) (-15 -2574 ((-363) (-1100))) (-15 -3133 ((-3 (-363) "failed") (-1100))))) (T -746)) -((-3133 (*1 *2 *3) (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746)))) (-1251 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) -(-10 -7 (-15 -1779 ((-1100) (-874))) (-15 -1251 ((-874) (-1100))) (-15 -3658 ((-1100) (-874))) (-15 -3463 ((-874) (-1100))) (-15 -2574 ((-363) (-1100))) (-15 -3133 ((-3 (-363) "failed") (-1100)))) -((-2330 (((-111) $ $) 7)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 15) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 13)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 16) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-747) (-134)) (T -747)) -((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-747)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986)))))) (-2817 (*1 *2 *3 *2) (-12 (-4 *1 (-747)) (-5 *2 (-986)) (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-747)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986)))))) (-2817 (*1 *2 *3 *2) (-12 (-4 *1 (-747)) (-5 *2 (-986)) (-5 *3 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) -(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2817 ((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2817 ((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-1493 (((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363))) 44) (((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 43)) (-1284 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 50)) (-1489 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 41)) (-2505 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363))) 52) (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 51))) -(((-748) (-10 -7 (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1489 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1284 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))))) (T -748)) -((-1284 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1493 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-537)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1493 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-537)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1489 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-2505 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-2505 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748))))) -(-10 -7 (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1489 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1284 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))))) -((-3164 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 53)) (-3585 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 31)) (-1914 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 52)) (-3366 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 29)) (-3825 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 51)) (-1473 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 19)) (-3304 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 32)) (-3988 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 30)) (-1904 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 28))) -(((-749) (-10 -7 (-15 -1904 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3988 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3304 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -1473 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3366 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3585 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3825 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -1914 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3164 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))))) (T -749)) -((-3164 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1914 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3825 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3585 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3366 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1473 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3304 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3988 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1904 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537))))) -(-10 -7 (-15 -1904 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3988 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3304 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -1473 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3366 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3585 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3825 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -1914 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3164 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)))) -((-3911 (((-1149 |#1|) |#1| (-210) (-537)) 46))) -(((-750 |#1|) (-10 -7 (-15 -3911 ((-1149 |#1|) |#1| (-210) (-537)))) (-927)) (T -750)) -((-3911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-210)) (-5 *5 (-537)) (-5 *2 (-1149 *3)) (-5 *1 (-750 *3)) (-4 *3 (-927))))) -(-10 -7 (-15 -3911 ((-1149 |#1|) |#1| (-210) (-537)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2329 (($ $ $) 28) (($ $) 27)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25) (($ (-537) $) 29))) +((-2964 (*1 *1) (-4 *1 (-687))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) (-2468 (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) (-3781 (*1 *1 *1) (|partial| -4 *1 (-687))) (-2466 (*1 *1 *1) (|partial| -4 *1 (-687))) (-2465 (*1 *1 *1) (|partial| -4 *1 (-687)))) +(-13 (-685) (-10 -8 (-15 (-2964) ($) -4268) (-15 -2471 ((-111) $)) (-15 -2468 ($ $ (-735))) (-15 -2467 ($ $ (-735))) (-15 ** ($ $ (-735))) (-15 -3781 ((-3 $ "failed") $)) (-15 -2466 ((-3 $ "failed") $)) (-15 -2465 ((-3 $ "failed") $)))) +(((-100) . T) ((-583 (-823)) . T) ((-685) . T) ((-1052) . T)) +((-3433 (((-735)) 34)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 22)) (-4161 (($ |#3|) NIL) (((-3 $ "failed") (-392 |#3|)) 44)) (-3781 (((-3 $ "failed") $) 64)) (-3294 (($) 38)) (-3429 ((|#2| $) 20)) (-2470 (($) 17)) (-4129 (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-2469 (((-653 |#2|) (-1205 $) (-1 |#2| |#2|)) 59)) (-4287 (((-1205 |#2|) $) NIL) (($ (-1205 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2667 ((|#3| $) 32)) (-2104 (((-1205 $)) 29))) +(((-688 |#1| |#2| |#3|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -3294 (|#1|)) (-15 -3433 ((-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2469 ((-653 |#2|) (-1205 |#1|) (-1 |#2| |#2|))) (-15 -4161 ((-3 |#1| "failed") (-392 |#3|))) (-15 -4287 (|#1| |#3|)) (-15 -4161 (|#1| |#3|)) (-15 -2470 (|#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 (|#3| |#1|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -2104 ((-1205 |#1|))) (-15 -2667 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) (-689 |#2| |#3|) (-163) (-1181 |#2|)) (T -688)) +((-3433 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-735)) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-689 *4 *5))))) +(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -3294 (|#1|)) (-15 -3433 ((-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -2469 ((-653 |#2|) (-1205 |#1|) (-1 |#2| |#2|))) (-15 -4161 ((-3 |#1| "failed") (-392 |#3|))) (-15 -4287 (|#1| |#3|)) (-15 -4161 (|#1| |#3|)) (-15 -2470 (|#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4287 (|#3| |#1|)) (-15 -4287 (|#1| (-1205 |#2|))) (-15 -4287 ((-1205 |#2|) |#1|)) (-15 -2104 ((-1205 |#1|))) (-15 -2667 (|#3| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 91 (|has| |#1| (-348)))) (-2151 (($ $) 92 (|has| |#1| (-348)))) (-2149 (((-111) $) 94 (|has| |#1| (-348)))) (-1877 (((-653 |#1|) (-1205 $)) 44) (((-653 |#1|)) 59)) (-3649 ((|#1| $) 50)) (-1767 (((-1132 (-878) (-735)) (-526)) 144 (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 111 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 112 (|has| |#1| (-348)))) (-1681 (((-111) $ $) 102 (|has| |#1| (-348)))) (-3433 (((-735)) 85 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 166 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 164 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 163)) (-3469 (((-526) $) 167 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 165 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 162)) (-1887 (($ (-1205 |#1|) (-1205 $)) 46) (($ (-1205 |#1|)) 62)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-335)))) (-2861 (($ $ $) 106 (|has| |#1| (-348)))) (-1876 (((-653 |#1|) $ (-1205 $)) 51) (((-653 |#1|) $) 57)) (-2331 (((-653 (-526)) (-653 $)) 161 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 160 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 159) (((-653 |#1|) (-653 $)) 158)) (-4161 (($ |#2|) 155) (((-3 $ "failed") (-392 |#2|)) 152 (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-878)) 52)) (-3294 (($) 88 (|has| |#1| (-353)))) (-2860 (($ $ $) 105 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 100 (|has| |#1| (-348)))) (-3133 (($) 146 (|has| |#1| (-335)))) (-1772 (((-111) $) 147 (|has| |#1| (-335)))) (-1862 (($ $ (-735)) 138 (|has| |#1| (-335))) (($ $) 137 (|has| |#1| (-335)))) (-4045 (((-111) $) 113 (|has| |#1| (-348)))) (-4090 (((-878) $) 149 (|has| |#1| (-335))) (((-796 (-878)) $) 135 (|has| |#1| (-335)))) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 49)) (-3763 (((-3 $ "failed") $) 139 (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 109 (|has| |#1| (-348)))) (-2106 ((|#2| $) 42 (|has| |#1| (-348)))) (-2102 (((-878) $) 87 (|has| |#1| (-353)))) (-3379 ((|#2| $) 153)) (-1989 (($ (-607 $)) 98 (|has| |#1| (-348))) (($ $ $) 97 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 114 (|has| |#1| (-348)))) (-3764 (($) 140 (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 86 (|has| |#1| (-353)))) (-3555 (((-1070) $) 10)) (-2470 (($) 157)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 99 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 96 (|has| |#1| (-348))) (($ $ $) 95 (|has| |#1| (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) 143 (|has| |#1| (-335)))) (-4051 (((-390 $) $) 110 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 107 (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) 90 (|has| |#1| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 101 (|has| |#1| (-348)))) (-1680 (((-735) $) 103 (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 104 (|has| |#1| (-348)))) (-4076 ((|#1| (-1205 $)) 45) ((|#1|) 58)) (-1863 (((-735) $) 148 (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) 136 (|has| |#1| (-335)))) (-4129 (($ $) 134 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) 132 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) 130 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123))) 129 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1123) (-735)) 128 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-735))) 127 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1 |#1| |#1|) (-735)) 120 (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-348)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-348)))) (-3499 ((|#2|) 156)) (-1766 (($) 145 (|has| |#1| (-335)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 48) (((-653 |#1|) (-1205 $) (-1205 $)) 47) (((-1205 |#1|) $) 64) (((-653 |#1|) (-1205 $)) 63)) (-4287 (((-1205 |#1|) $) 61) (($ (-1205 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 142 (|has| |#1| (-335)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-348))) (($ (-392 (-526))) 84 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (($ $) 141 (|has| |#1| (-335))) (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2667 ((|#2| $) 43)) (-3423 (((-735)) 28)) (-2104 (((-1205 $)) 65)) (-2150 (((-111) $ $) 93 (|has| |#1| (-348)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 133 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) 131 (-3850 (-3155 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) 126 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123))) 125 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1123) (-735)) 124 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-735))) 123 (-3155 (|has| |#1| (-859 (-1123))) (|has| |#1| (-348)))) (($ $ (-1 |#1| |#1|) (-735)) 122 (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-348)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 118 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 115 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-392 (-526)) $) 117 (|has| |#1| (-348))) (($ $ (-392 (-526))) 116 (|has| |#1| (-348))))) +(((-689 |#1| |#2|) (-134) (-163) (-1181 |t#1|)) (T -689)) +((-2470 (*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-689 *2 *3)) (-4 *3 (-1181 *2)))) (-3499 (*1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-4161 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) (-4287 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) (-4161 (*1 *1 *2) (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-348)) (-4 *3 (-163)) (-4 *1 (-689 *3 *4)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1205 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-4 *1 (-689 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *5))))) +(-13 (-395 |t#1| |t#2|) (-163) (-584 |t#2|) (-397 |t#1|) (-362 |t#1|) (-10 -8 (-15 -2470 ($)) (-15 -3499 (|t#2|)) (-15 -4161 ($ |t#2|)) (-15 -4287 ($ |t#2|)) (-15 -3379 (|t#2| $)) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-6 (-348)) (-6 (-217 |t#1|)) (-15 -4161 ((-3 $ "failed") (-392 |t#2|))) (-15 -2469 ((-653 |t#1|) (-1205 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-335)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-37 |#1|) . T) ((-37 $) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-100) . T) ((-110 #1# #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-335)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 |#2|) . T) ((-217 |#1|) |has| |#1| (-348)) ((-219) -3850 (|has| |#1| (-335)) (-12 (|has| |#1| (-219)) (|has| |#1| (-348)))) ((-229) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-275) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-292) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-348) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-387) |has| |#1| (-335)) ((-353) -3850 (|has| |#1| (-335)) (|has| |#1| (-353))) ((-335) |has| |#1| (-335)) ((-355 |#1| |#2|) . T) ((-395 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-533) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-682 |#1|) . T) ((-682 $) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123)))) ((-880) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) -3850 (|has| |#1| (-335)) (|has| |#1| (-348))) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-335)) ((-1164) -3850 (|has| |#1| (-335)) (|has| |#1| (-348)))) +((-3855 (($) 11)) (-3781 (((-3 $ "failed") $) 13)) (-2471 (((-111) $) 10)) (** (($ $ (-878)) NIL) (($ $ (-735)) 18))) +(((-690 |#1|) (-10 -8 (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 ** (|#1| |#1| (-878)))) (-691)) (T -690)) +NIL +(-10 -8 (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-735))) (-15 -2471 ((-111) |#1|)) (-15 -3855 (|#1|)) (-15 ** (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2471 (((-111) $) 17)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13) (($ $ (-735)) 16)) (* (($ $ $) 14))) +(((-691) (-134)) (T -691)) +((-2964 (*1 *1) (-4 *1 (-691))) (-3855 (*1 *1) (-4 *1 (-691))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-691)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-735)))) (-3781 (*1 *1 *1) (|partial| -4 *1 (-691)))) +(-13 (-1063) (-10 -8 (-15 (-2964) ($) -4268) (-15 -3855 ($) -4268) (-15 -2471 ((-111) $)) (-15 ** ($ $ (-735))) (-15 -3781 ((-3 $ "failed") $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1063) . T) ((-1052) . T)) +((-2472 (((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3737 (((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2473 ((|#2| (-392 |#2|) (-1 |#2| |#2|)) 13)) (-3754 (((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)) 47))) +(((-692 |#1| |#2|) (-10 -7 (-15 -3737 ((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2472 ((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2473 (|#2| (-392 |#2|) (-1 |#2| |#2|))) (-15 -3754 ((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)))) (-348) (-1181 |#1|)) (T -692)) +((-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3392 (-392 *6)) (|:| |special| (-392 *6)))) (-5 *1 (-692 *5 *6)) (-5 *3 (-392 *6)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-692 *5 *2)) (-4 *5 (-348)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3392 (-390 *3)) (|:| |special| (-390 *3)))) (-5 *1 (-692 *5 *3)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3392 *3) (|:| |special| *3))) (-5 *1 (-692 *5 *3))))) +(-10 -7 (-15 -3737 ((-2 (|:| -3392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2472 ((-2 (|:| -3392 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2473 (|#2| (-392 |#2|) (-1 |#2| |#2|))) (-15 -3754 ((-2 (|:| |poly| |#2|) (|:| -3392 (-392 |#2|)) (|:| |special| (-392 |#2|))) (-392 |#2|) (-1 |#2| |#2|)))) +((-2474 ((|#7| (-607 |#5|) |#6|) NIL)) (-4275 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-693 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4275 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2474 (|#7| (-607 |#5|) |#6|))) (-811) (-757) (-757) (-1004) (-1004) (-909 |#4| |#2| |#1|) (-909 |#5| |#3| |#1|)) (T -693)) +((-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *9)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-1004)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1004)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5))))) +(-10 -7 (-15 -4275 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2474 (|#7| (-607 |#5|) |#6|))) +((-4275 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-694 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4275 (|#7| (-1 |#2| |#1|) |#6|))) (-811) (-811) (-757) (-757) (-1004) (-909 |#5| |#3| |#1|) (-909 |#5| |#4| |#2|)) (T -694)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-4 *7 (-757)) (-4 *9 (-1004)) (-4 *2 (-909 *9 *8 *6)) (-5 *1 (-694 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-757)) (-4 *4 (-909 *9 *7 *5))))) +(-10 -7 (-15 -4275 (|#7| (-1 |#2| |#1|) |#6|))) +((-4051 (((-390 |#4|) |#4|) 41))) +(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-292) (-909 (-905 |#3|) |#1| |#2|)) (T -695)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-695 *4 *5 *6 *3)) (-4 *3 (-909 (-905 *6) *4 *5))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-824 |#1|)) $) NIL)) (-3386 (((-1117 $) $ (-824 |#1|)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-824 |#1|))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-824 |#1|) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-824 |#1|) $) NIL)) (-4075 (($ $ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-512 (-824 |#1|)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-824 |#1|) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#2|) (-824 |#1|)) NIL) (($ (-1117 $) (-824 |#1|)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-512 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-824 |#1|)) NIL)) (-3120 (((-512 (-824 |#1|)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-512 (-824 |#1|)) (-512 (-824 |#1|))) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-3385 (((-3 (-824 |#1|) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-824 |#1|)) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-824 |#1|) |#2|) NIL) (($ $ (-607 (-824 |#1|)) (-607 |#2|)) NIL) (($ $ (-824 |#1|) $) NIL) (($ $ (-607 (-824 |#1|)) (-607 $)) NIL)) (-4076 (($ $ (-824 |#1|)) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-4264 (((-512 (-824 |#1|)) $) NIL) (((-735) $ (-824 |#1|)) NIL) (((-607 (-735)) $ (-607 (-824 |#1|))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-824 |#1|) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-824 |#1|) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-824 |#1|)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-824 |#1|)) NIL) (($ $) NIL (|has| |#2| (-533))) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526))))))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-512 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-824 |#1|)) NIL) (($ $ (-607 (-824 |#1|))) NIL) (($ $ (-824 |#1|) (-735)) NIL) (($ $ (-607 (-824 |#1|)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-696 |#1| |#2|) (-909 |#2| (-512 (-824 |#1|)) (-824 |#1|)) (-607 (-1123)) (-1004)) (T -696)) +NIL +(-909 |#2| (-512 (-824 |#1|)) (-824 |#1|)) +((-2475 (((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|) 14)) (-3286 ((|#4| |#4| |#2|) 33)) (-2478 ((|#4| (-392 (-905 |#3|)) |#2|) 64)) (-2477 ((|#4| (-1117 (-905 |#3|)) |#2|) 77)) (-2476 ((|#4| (-1117 |#4|) |#2|) 51)) (-3285 ((|#4| |#4| |#2|) 54)) (-4051 (((-390 |#4|) |#4|) 40))) +(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 ((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|)) (-15 -3285 (|#4| |#4| |#2|)) (-15 -2476 (|#4| (-1117 |#4|) |#2|)) (-15 -3286 (|#4| |#4| |#2|)) (-15 -2477 (|#4| (-1117 (-905 |#3|)) |#2|)) (-15 -2478 (|#4| (-392 (-905 |#3|)) |#2|)) (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))) (-533) (-909 (-392 (-905 |#3|)) |#1| |#2|)) (T -697)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5)))) (-2478 (*1 *2 *3 *4) (-12 (-4 *6 (-533)) (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-5 *3 (-392 (-905 *6))) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 (-905 *6))) (-4 *6 (-533)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))))) (-3286 (*1 *2 *2 *3) (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)))) (-3285 (*1 *2 *2 *3) (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533)) (-5 *2 (-2 (|:| -2702 (-905 *6)) (|:| -2146 (-905 *6)))) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5))))) +(-10 -7 (-15 -2475 ((-2 (|:| -2702 (-905 |#3|)) (|:| -2146 (-905 |#3|))) |#4|)) (-15 -3285 (|#4| |#4| |#2|)) (-15 -2476 (|#4| (-1117 |#4|) |#2|)) (-15 -3286 (|#4| |#4| |#2|)) (-15 -2477 (|#4| (-1117 (-905 |#3|)) |#2|)) (-15 -2478 (|#4| (-392 (-905 |#3|)) |#2|)) (-15 -4051 ((-390 |#4|) |#4|))) +((-4051 (((-390 |#4|) |#4|) 52))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) (-757) (-811) (-13 (-292) (-141)) (-909 (-392 |#3|) |#1| |#2|)) (T -698)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-909 (-392 *6) *4 *5))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4|))) +((-4275 (((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)) 18))) +(((-699 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)))) (-1004) (-1004) (-691)) (T -699)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5 *7)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-691)) (-5 *2 (-700 *6 *7)) (-5 *1 (-699 *5 *6 *7))))) +(-10 -7 (-15 -4275 ((-700 |#2| |#3|) (-1 |#2| |#1|) (-700 |#1| |#3|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 28)) (-4092 (((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $) 29)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) 20 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3469 ((|#2| $) NIL) ((|#1| $) NIL)) (-4276 (($ $) 79 (|has| |#2| (-811)))) (-3781 (((-3 $ "failed") $) 65)) (-3294 (($) 35 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 55)) (-3121 (((-607 $) $) 39)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| |#2|) 16)) (-4275 (($ (-1 |#1| |#1|) $) 54)) (-2102 (((-878) $) 32 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3194 ((|#2| $) 78 (|has| |#2| (-811)))) (-3487 ((|#1| $) 77 (|has| |#2| (-811)))) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 27 (-12 (|has| |#2| (-353)) (|has| |#1| (-353))))) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 76) (($ (-526)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|)))) 11)) (-4136 (((-607 |#1|) $) 41)) (-3999 ((|#1| $ |#2|) 88)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-2957 (($) 12 T CONST)) (-2964 (($) 33 T CONST)) (-3353 (((-111) $ $) 80)) (-4156 (($ $) 47) (($ $ $) NIL)) (-4158 (($ $ $) 26)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-700 |#1| |#2|) (-13 (-1004) (-995 |#2|) (-995 |#1|) (-10 -8 (-15 -3193 ($ |#1| |#2|)) (-15 -3999 (|#1| $ |#2|)) (-15 -4274 ($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))))) (-15 -4092 ((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -4254 ((-111) $)) (-15 -4136 ((-607 |#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-811)) (PROGN (-15 -3194 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -4276 ($ $))) |%noBranch|))) (-1004) (-691)) (T -700)) +((-3193 (*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-691)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-691)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-4 *3 (-1004)) (-4 *4 (-691)) (-5 *1 (-700 *3 *4)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-700 *3 *4)) (-4 *4 (-691)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-607 (-700 *3 *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) (-3194 (*1 *2 *1) (-12 (-4 *2 (-691)) (-4 *2 (-811)) (-5 *1 (-700 *3 *2)) (-4 *3 (-1004)))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *3 (-691)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1004)) (-4 *3 (-691))))) +(-13 (-1004) (-995 |#2|) (-995 |#1|) (-10 -8 (-15 -3193 ($ |#1| |#2|)) (-15 -3999 (|#1| $ |#2|)) (-15 -4274 ($ (-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))))) (-15 -4092 ((-607 (-2 (|:| -4270 |#1|) (|:| -4255 |#2|))) $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (-15 -4254 ((-111) $)) (-15 -4136 ((-607 |#1|) $)) (-15 -3121 ((-607 $) $)) (-15 -2479 ((-735) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-811)) (PROGN (-15 -3194 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -4276 ($ $))) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3546 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3548 (($ $ $) 79)) (-3547 (((-111) $ $) 83)) (-1244 (((-111) $ (-735)) NIL)) (-3551 (($ (-607 |#1|)) 24) (($) 16)) (-1607 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2424 (($ $) 71)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 61 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4310))) (($ |#1| $ (-526)) 62) (($ (-1 (-111) |#1|) $ (-526)) 65)) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (($ |#1| $ (-526)) 67) (($ (-1 (-111) |#1|) $ (-526)) 68)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 32 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 82)) (-2481 (($) 14) (($ |#1|) 26) (($ (-607 |#1|)) 21)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) 38)) (-3557 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 75)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 77)) (-1306 ((|#1| $) 55)) (-3929 (($ |#1| $) 56) (($ |#1| $ (-735)) 72)) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1307 ((|#1| $) 54)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 50)) (-3887 (($) 13)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 48)) (-3549 (($ $ |#1|) NIL) (($ $ $) 78)) (-1499 (($) 15) (($ (-607 |#1|)) 23)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) 60 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 66)) (-4287 (((-515) $) 36 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 20)) (-4274 (((-823) $) 44)) (-3552 (($ (-607 |#1|)) 25) (($) 17)) (-1308 (($ (-607 |#1|)) 22)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 81)) (-4273 (((-735) $) 59 (|has| $ (-6 -4310))))) +(((-701 |#1|) (-13 (-702 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -2481 ($)) (-15 -2481 ($ |#1|)) (-15 -2481 ($ (-607 |#1|))) (-15 -2480 ((-607 |#1|) $)) (-15 -3725 ($ |#1| $ (-526))) (-15 -3725 ($ (-1 (-111) |#1|) $ (-526))) (-15 -3724 ($ |#1| $ (-526))) (-15 -3724 ($ (-1 (-111) |#1|) $ (-526))))) (-1052)) (T -701)) +((-2481 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-2481 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-701 *3)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1052)))) (-3725 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-3725 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) (-5 *1 (-701 *4)))) (-3724 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) (-3724 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) (-5 *1 (-701 *4))))) +(-13 (-702 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -2481 ($)) (-15 -2481 ($ |#1|)) (-15 -2481 ($ (-607 |#1|))) (-15 -2480 ((-607 |#1|) $)) (-15 -3725 ($ |#1| $ (-526))) (-15 -3725 ($ (-1 (-111) |#1|) $ (-526))) (-15 -3724 ($ |#1| $ (-526))) (-15 -3724 ($ (-1 (-111) |#1|) $ (-526))))) +((-2865 (((-111) $ $) 19)) (-3546 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) 8)) (-3551 (($ (-607 |#1|)) 68) (($) 67)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 64)) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 69)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-3549 (($ $ |#1|) 71) (($ $ $) 70)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18)) (-3552 (($ (-607 |#1|)) 66) (($) 65)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-702 |#1|) (-134) (-1052)) (T -702)) +NIL +(-13 (-659 |t#1|) (-1050 |t#1|)) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-659 |#1|) . T) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) +((-2482 (((-1211) (-1106)) 8))) +(((-703) (-10 -7 (-15 -2482 ((-1211) (-1106))))) (T -703)) +((-2482 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-703))))) +(-10 -7 (-15 -2482 ((-1211) (-1106)))) +((-2483 (((-607 |#1|) (-607 |#1|) (-607 |#1|)) 10))) +(((-704 |#1|) (-10 -7 (-15 -2483 ((-607 |#1|) (-607 |#1|) (-607 |#1|)))) (-811)) (T -704)) +((-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-704 *3))))) +(-10 -7 (-15 -2483 ((-607 |#1|) (-607 |#1|) (-607 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#2|) $) 134)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 127 (|has| |#1| (-533)))) (-2151 (($ $) 126 (|has| |#1| (-533)))) (-2149 (((-111) $) 124 (|has| |#1| (-533)))) (-3806 (($ $) 83 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 66 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 65 (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 82 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 67 (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) 81 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 68 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-4276 (($ $) 118)) (-3781 (((-3 $ "failed") $) 32)) (-4133 (((-905 |#1|) $ (-735)) 96) (((-905 |#1|) $ (-735) (-735)) 95)) (-3192 (((-111) $) 135)) (-3949 (($) 93 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ |#2|) 98) (((-735) $ |#2| (-735)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 64 (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) 116)) (-3193 (($ $ (-607 |#2|) (-607 (-512 |#2|))) 133) (($ $ |#2| (-512 |#2|)) 132) (($ |#1| (-512 |#2|)) 117) (($ $ |#2| (-735)) 100) (($ $ (-607 |#2|) (-607 (-735))) 99)) (-4275 (($ (-1 |#1| |#1|) $) 115)) (-4259 (($ $) 90 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 113)) (-3487 ((|#1| $) 112)) (-3554 (((-1106) $) 9)) (-4131 (($ $ |#2|) 94 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) 10)) (-4087 (($ $ (-735)) 101)) (-3780 (((-3 $ "failed") $ $) 128 (|has| |#1| (-533)))) (-4260 (($ $) 91 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ |#2| $) 109) (($ $ (-607 |#2|) (-607 $)) 108) (($ $ (-607 (-278 $))) 107) (($ $ (-278 $)) 106) (($ $ $ $) 105) (($ $ (-607 $) (-607 $)) 104)) (-4129 (($ $ |#2|) 40) (($ $ (-607 |#2|)) 39) (($ $ |#2| (-735)) 38) (($ $ (-607 |#2|) (-607 (-735))) 37)) (-4264 (((-512 |#2|) $) 114)) (-3809 (($ $) 80 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 69 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 79 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 70 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 78 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 71 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 136)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 131 (|has| |#1| (-163))) (($ $) 129 (|has| |#1| (-533))) (($ (-392 (-526))) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3999 ((|#1| $ (-512 |#2|)) 119) (($ $ |#2| (-735)) 103) (($ $ (-607 |#2|) (-607 (-735))) 102)) (-3002 (((-3 $ "failed") $) 130 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3812 (($ $) 89 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 77 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 125 (|has| |#1| (-533)))) (-3810 (($ $) 88 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 76 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 87 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 75 (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) 86 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 74 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 85 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 73 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 84 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 72 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#2|) 36) (($ $ (-607 |#2|)) 35) (($ $ |#2| (-735)) 34) (($ $ (-607 |#2|) (-607 (-735))) 33)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 120 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ $) 92 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 63 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 123 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 122 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-705 |#1| |#2|) (-134) (-1004) (-811)) (T -705)) +((-3999 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-705 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4090 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-735)) (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) (-5 *2 (-905 *4)))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) (-5 *2 (-905 *4)))) (-4131 (*1 *1 *1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)) (-4 *3 (-37 (-392 (-526))))))) +(-13 (-859 |t#2|) (-932 |t#1| (-512 |t#2|) |t#2|) (-496 |t#2| $) (-294 $) (-10 -8 (-15 -3999 ($ $ |t#2| (-735))) (-15 -3999 ($ $ (-607 |t#2|) (-607 (-735)))) (-15 -4087 ($ $ (-735))) (-15 -3193 ($ $ |t#2| (-735))) (-15 -3193 ($ $ (-607 |t#2|) (-607 (-735)))) (-15 -4090 ((-735) $ |t#2|)) (-15 -4090 ((-735) $ |t#2| (-735))) (-15 -4133 ((-905 |t#1|) $ (-735))) (-15 -4133 ((-905 |t#1|) $ (-735) (-735))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |t#2|)) (-6 (-960)) (-6 (-1145))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-512 |#2|)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-275) |has| |#1| (-533)) ((-294 $) . T) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-496 |#2| $) . T) ((-496 $ $) . T) ((-533) |has| |#1| (-533)) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 |#2|) . T) ((-932 |#1| #1# |#2|) . T) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526))))) +((-4051 (((-390 (-1117 |#4|)) (-1117 |#4|)) 30) (((-390 |#4|) |#4|) 26))) +(((-706 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) (-811) (-757) (-13 (-292) (-141)) (-909 |#3| |#2| |#1|)) (T -706)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) +(-10 -7 (-15 -4051 ((-390 |#4|) |#4|)) (-15 -4051 ((-390 (-1117 |#4|)) (-1117 |#4|)))) +((-2486 (((-390 |#4|) |#4| |#2|) 120)) (-2484 (((-390 |#4|) |#4|) NIL)) (-4286 (((-390 (-1117 |#4|)) (-1117 |#4|)) 111) (((-390 |#4|) |#4|) 41)) (-2488 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|))) 69)) (-2492 (((-1117 |#3|) (-1117 |#3|) (-526)) 139)) (-2491 (((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735)) 61)) (-3379 (((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|)) 65)) (-2489 (((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|))) 26)) (-2487 (((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526)) 57)) (-2485 (((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) 136)) (-2490 ((|#4| (-526) (-390 |#4|)) 58)) (-3676 (((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) NIL))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-390 |#4|) |#4|)) (-15 -4286 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2484 ((-390 |#4|) |#4|)) (-15 -2485 ((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -2486 ((-390 |#4|) |#4| |#2|)) (-15 -2487 ((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526))) (-15 -2488 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2489 ((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2490 (|#4| (-526) (-390 |#4|))) (-15 -3676 ((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -3379 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|))) (-15 -2491 ((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735))) (-15 -2492 ((-1117 |#3|) (-1117 |#3|) (-526)))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -707)) +((-2492 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *6)) (-5 *3 (-526)) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-4 *7 (-811)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-4 *8 (-292)) (-5 *2 (-607 (-735))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *5 (-735)))) (-3379 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1117 *11)) (-5 *6 (-607 *10)) (-5 *7 (-607 (-735))) (-5 *8 (-607 *11)) (-4 *10 (-811)) (-4 *11 (-292)) (-4 *9 (-757)) (-4 *5 (-909 *11 *9 *10)) (-5 *2 (-607 (-1117 *5))) (-5 *1 (-707 *9 *10 *11 *5)) (-5 *3 (-1117 *5)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-390 *2)) (-4 *2 (-909 *7 *5 *6)) (-5 *1 (-707 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-292)))) (-2489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-2 (|:| |upol| (-1117 *8)) (|:| |Lval| (-607 *8)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 *8)) (|:| -2462 (-526))))) (|:| |ctpol| *8))) (-5 *1 (-707 *6 *7 *8 *9)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *6 (-757)) (-4 *9 (-909 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 *9)) (|:| -2462 (-526))))))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)))) (-2487 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-526)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-5 *2 (-2 (|:| -2096 (-1117 *9)) (|:| |polval| (-1117 *8)))) (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)) (-5 *4 (-1117 *8)))) (-2486 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5)))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5))))) +(-10 -7 (-15 -4286 ((-390 |#4|) |#4|)) (-15 -4286 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2484 ((-390 |#4|) |#4|)) (-15 -2485 ((-526) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -2486 ((-390 |#4|) |#4| |#2|)) (-15 -2487 ((-2 (|:| -2096 (-1117 |#4|)) (|:| |polval| (-1117 |#3|))) (-1117 |#4|) (-1117 |#3|) (-526))) (-15 -2488 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 |#4|)) (|:| -2462 (-526)))))) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2489 ((-2 (|:| |upol| (-1117 |#3|)) (|:| |Lval| (-607 |#3|)) (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526))))) (|:| |ctpol| |#3|)) (-1117 |#4|) (-607 |#2|) (-607 (-607 |#3|)))) (-15 -2490 (|#4| (-526) (-390 |#4|))) (-15 -3676 ((-111) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))) (-607 (-2 (|:| -4051 (-1117 |#3|)) (|:| -2462 (-526)))))) (-15 -3379 ((-3 (-607 (-1117 |#4|)) "failed") (-1117 |#4|) (-1117 |#3|) (-1117 |#3|) |#4| (-607 |#2|) (-607 (-735)) (-607 |#3|))) (-15 -2491 ((-607 (-735)) (-1117 |#4|) (-607 |#2|) (-735))) (-15 -2492 ((-1117 |#3|) (-1117 |#3|) (-526)))) +((-2493 (($ $ (-878)) 12))) +(((-708 |#1| |#2|) (-10 -8 (-15 -2493 (|#1| |#1| (-878)))) (-709 |#2|) (-163)) (T -708)) +NIL +(-10 -8 (-15 -2493 (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2468 (($ $ (-878)) 28)) (-2493 (($ $ (-878)) 33)) (-2467 (($ $ (-878)) 29)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-709 |#1|) (-134) (-163)) (T -709)) +((-2493 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-709 *3)) (-4 *3 (-163))))) +(-13 (-726) (-682 |t#1|) (-10 -8 (-15 -2493 ($ $ (-878))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-685) . T) ((-726) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-2495 (((-992) (-653 (-211)) (-526) (-111) (-526)) 25)) (-2494 (((-992) (-653 (-211)) (-526) (-111) (-526)) 24))) +(((-710) (-10 -7 (-15 -2494 ((-992) (-653 (-211)) (-526) (-111) (-526))) (-15 -2495 ((-992) (-653 (-211)) (-526) (-111) (-526))))) (T -710)) +((-2495 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-710)))) (-2494 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-710))))) +(-10 -7 (-15 -2494 ((-992) (-653 (-211)) (-526) (-111) (-526))) (-15 -2495 ((-992) (-653 (-211)) (-526) (-111) (-526)))) +((-2498 (((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) 43)) (-2497 (((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) 39)) (-2496 (((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 32))) +(((-711) (-10 -7 (-15 -2496 ((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2497 ((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN))))) (-15 -2498 ((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN))))))) (T -711)) +((-2498 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) (-5 *2 (-992)) (-5 *1 (-711)))) (-2497 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) (-5 *2 (-992)) (-5 *1 (-711)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-711))))) +(-10 -7 (-15 -2496 ((-992) (-211) (-211) (-211) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2497 ((-992) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN))))) (-15 -2498 ((-992) (-526) (-526) (-526) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))))) +((-2510 (((-992) (-526) (-526) (-653 (-211)) (-526)) 34)) (-2509 (((-992) (-526) (-526) (-653 (-211)) (-526)) 33)) (-2508 (((-992) (-526) (-653 (-211)) (-526)) 32)) (-2507 (((-992) (-526) (-653 (-211)) (-526)) 31)) (-2506 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 30)) (-2505 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2504 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2503 (((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526)) 27)) (-2502 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 24)) (-2501 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 23)) (-2500 (((-992) (-526) (-653 (-211)) (-526)) 22)) (-2499 (((-992) (-526) (-653 (-211)) (-526)) 21))) +(((-712) (-10 -7 (-15 -2499 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2500 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2501 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2502 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2503 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2504 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2505 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2506 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2507 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2508 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2509 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2510 ((-992) (-526) (-526) (-653 (-211)) (-526))))) (T -712)) +((-2510 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2509 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2508 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2507 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2506 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2505 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2504 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2503 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2502 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2501 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2500 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712)))) (-2499 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(-10 -7 (-15 -2499 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2500 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2501 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2502 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2503 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2504 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2505 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2506 ((-992) (-526) (-526) (-1106) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2507 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2508 ((-992) (-526) (-653 (-211)) (-526))) (-15 -2509 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2510 ((-992) (-526) (-526) (-653 (-211)) (-526)))) +((-2522 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) 52)) (-2521 (((-992) (-653 (-211)) (-653 (-211)) (-526) (-526)) 51)) (-2520 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) 50)) (-2519 (((-992) (-211) (-211) (-526) (-526) (-526) (-526)) 46)) (-2518 (((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 45)) (-2517 (((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 44)) (-2516 (((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 43)) (-2515 (((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) 42)) (-2514 (((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 38)) (-2513 (((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 37)) (-2512 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 33)) (-2511 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) 32))) +(((-713) (-10 -7 (-15 -2511 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2512 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2513 ((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2514 ((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2515 ((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2516 ((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2517 ((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2518 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2519 ((-992) (-211) (-211) (-526) (-526) (-526) (-526))) (-15 -2520 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))) (-15 -2521 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-526))) (-15 -2522 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))))) (T -713)) +((-2522 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2521 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2520 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2519 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2518 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2517 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2516 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2515 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2514 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2513 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-713)))) (-2512 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713)))) (-2511 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) (-5 *1 (-713))))) +(-10 -7 (-15 -2511 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2512 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2513 ((-992) (-211) (-211) (-526) (-653 (-211)) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2514 ((-992) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395))))) (-15 -2515 ((-992) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2516 ((-992) (-211) (-211) (-211) (-211) (-526) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2517 ((-992) (-211) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2518 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G))))) (-15 -2519 ((-992) (-211) (-211) (-526) (-526) (-526) (-526))) (-15 -2520 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN))))) (-15 -2521 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-526))) (-15 -2522 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-211) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))))) +((-2530 (((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2529 (((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373)) 69) (((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2528 (((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) 57)) (-2527 (((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) 50)) (-2526 (((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 49)) (-2525 (((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 45)) (-2524 (((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) 42)) (-2523 (((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) 38))) +(((-714) (-10 -7 (-15 -2523 ((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2524 ((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2525 ((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2526 ((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2527 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2528 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373))) (-15 -2530 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -714)) +((-2530 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2529 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-373)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2529 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-992)) (-5 *1 (-714)))) (-2528 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2527 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *2 (-992)) (-5 *1 (-714)))) (-2526 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2525 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2524 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714)))) (-2523 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-714))))) +(-10 -7 (-15 -2523 ((-992) (-211) (-526) (-526) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2524 ((-992) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2525 ((-992) (-211) (-526) (-526) (-211) (-1106) (-211) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2526 ((-992) (-211) (-526) (-526) (-1106) (-526) (-211) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT))))) (-15 -2527 ((-992) (-653 (-211)) (-653 (-211)) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN))))) (-15 -2528 ((-992) (-211) (-211) (-526) (-211) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))))) (-15 -2529 ((-992) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL))) (-373) (-373))) (-15 -2530 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-2533 (((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526)) 45)) (-2532 (((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) 41)) (-2531 (((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 23))) +(((-715) (-10 -7 (-15 -2531 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2532 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY))))) (-15 -2533 ((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526))))) (T -715)) +((-2533 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-640 (-211))) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-715)))) (-2532 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-992)) (-5 *1 (-715)))) (-2531 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-715))))) +(-10 -7 (-15 -2531 ((-992) (-526) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2532 ((-992) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-1106) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY))))) (-15 -2533 ((-992) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-640 (-211)) (-526)))) +((-2543 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526)) 35)) (-2542 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526)) 34)) (-2541 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526)) 33)) (-2540 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2539 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2538 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526)) 27)) (-2537 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526)) 24)) (-2536 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526)) 23)) (-2535 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 22)) (-2534 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 21))) +(((-716) (-10 -7 (-15 -2534 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2535 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2536 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2537 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2538 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2539 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2540 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2541 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2542 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526))) (-15 -2543 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526))))) (T -716)) +((-2543 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2542 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2541 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2540 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2539 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2538 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-716)))) (-2537 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2536 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2535 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716)))) (-2534 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(-10 -7 (-15 -2534 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2535 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2536 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2537 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2538 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2539 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2540 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2541 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-653 (-211)) (-211) (-211) (-526))) (-15 -2542 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-211) (-211) (-526))) (-15 -2543 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-653 (-211)) (-211) (-211) (-526)))) +((-2561 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 45)) (-2560 (((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526)) 44)) (-2559 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)) 43)) (-2558 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 42)) (-2557 (((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526)) 41)) (-2556 (((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526)) 40)) (-2555 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526)) 39)) (-2554 (((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526))) 38)) (-2553 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-526)) 35)) (-2552 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526)) 34)) (-2551 (((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526)) 33)) (-2550 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 32)) (-2549 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526)) 31)) (-2548 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526)) 30)) (-2547 (((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526)) 29)) (-2546 (((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526)) 28)) (-2545 (((-992) (-526) (-653 (-211)) (-211) (-526)) 24)) (-2544 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 21))) +(((-717) (-10 -7 (-15 -2544 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2545 ((-992) (-526) (-653 (-211)) (-211) (-526))) (-15 -2546 ((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526))) (-15 -2547 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2548 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526))) (-15 -2549 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526))) (-15 -2550 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2551 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526))) (-15 -2552 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526))) (-15 -2553 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2554 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)))) (-15 -2555 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526))) (-15 -2556 ((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2557 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2558 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2559 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2560 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2561 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))))) (T -717)) +((-2561 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2560 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2559 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2558 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2557 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2556 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2555 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2554 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2553 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2552 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2551 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2550 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717)))) (-2549 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2548 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2547 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2546 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2545 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) (-5 *1 (-717)))) (-2544 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(-10 -7 (-15 -2544 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2545 ((-992) (-526) (-653 (-211)) (-211) (-526))) (-15 -2546 ((-992) (-526) (-526) (-526) (-211) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-526)) (-526) (-526) (-526))) (-15 -2547 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2548 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526) (-526) (-526))) (-15 -2549 ((-992) (-526) (-211) (-211) (-653 (-211)) (-526) (-526) (-211) (-526))) (-15 -2550 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2551 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526))) (-15 -2552 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526))) (-15 -2553 ((-992) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2554 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)))) (-15 -2555 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526) (-526) (-526) (-211) (-653 (-211)) (-526))) (-15 -2556 ((-992) (-1106) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2557 ((-992) (-1106) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2558 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2559 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526))) (-15 -2560 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2561 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526) (-653 (-211)) (-653 (-211)) (-526) (-526) (-526)))) +((-2569 (((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526)) 63)) (-2568 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2567 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) 58)) (-2566 (((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526)) 51)) (-2565 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2564 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2563 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2562 (((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-718) (-10 -7 (-15 -2562 ((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2563 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1))))) (-15 -2564 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2))))) (-15 -2565 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1))))) (-15 -2566 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526))) (-15 -2567 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS))))) (-15 -2568 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2569 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526))))) (T -718)) +((-2569 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2568 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2567 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-653 (-211))) (-5 *6 (-111)) (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2566 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-718)))) (-2565 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2564 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2563 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-992)) (-5 *1 (-718)))) (-2562 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718))))) +(-10 -7 (-15 -2562 ((-992) (-526) (-211) (-211) (-526) (-211) (-111) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2563 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1))))) (-15 -2564 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2))))) (-15 -2565 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1))))) (-15 -2566 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-526) (-526) (-653 (-211)) (-526))) (-15 -2567 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-211) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-111) (-111) (-111) (-526) (-526) (-653 (-211)) (-653 (-526)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS))))) (-15 -2568 ((-992) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-526) (-111) (-211) (-526) (-211) (-211) (-111) (-211) (-211) (-211) (-211) (-111) (-526) (-526) (-526) (-526) (-526) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-526) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN))))) (-15 -2569 ((-992) (-526) (-526) (-526) (-211) (-653 (-211)) (-526) (-653 (-211)) (-526)))) +((-2579 (((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)) 47)) (-2578 (((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526)) 46)) (-2577 (((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526)) 45)) (-2576 (((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 40)) (-2575 (((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526)) 39)) (-2574 (((-992) (-526) (-526) (-526) (-653 (-211)) (-526)) 36)) (-2573 (((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526)) 35)) (-2572 (((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526)) 34)) (-2571 (((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526)) 33)) (-2570 (((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526)) 32))) +(((-719) (-10 -7 (-15 -2570 ((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526))) (-15 -2571 ((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526))) (-15 -2572 ((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526))) (-15 -2573 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526))) (-15 -2574 ((-992) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2575 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526))) (-15 -2576 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2577 ((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2578 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2579 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526))))) (T -719)) +((-2579 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2578 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2577 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2576 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2575 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2574 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719)))) (-2573 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2572 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-607 (-111))) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *7 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2571 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-653 (-526))) (-5 *5 (-111)) (-5 *7 (-653 (-211))) (-5 *3 (-526)) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-719)))) (-2570 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-607 (-111))) (-5 *7 (-653 (-211))) (-5 *8 (-653 (-526))) (-5 *3 (-526)) (-5 *4 (-211)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-719))))) +(-10 -7 (-15 -2570 ((-992) (-526) (-526) (-526) (-526) (-211) (-111) (-111) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-526))) (-15 -2571 ((-992) (-526) (-526) (-526) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-653 (-526)) (-111) (-211) (-111) (-653 (-526)) (-653 (-211)) (-526))) (-15 -2572 ((-992) (-526) (-526) (-526) (-526) (-607 (-111)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-211) (-211) (-526))) (-15 -2573 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526))) (-15 -2574 ((-992) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2575 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)) (-526))) (-15 -2576 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2577 ((-992) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2578 ((-992) (-1106) (-1106) (-526) (-526) (-653 (-159 (-211))) (-526) (-653 (-159 (-211))) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2579 ((-992) (-1106) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)))) +((-2594 (((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)) 65)) (-2593 (((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526)) 60)) (-2592 (((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373)) 56) (((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) 55)) (-2591 (((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526)) 37)) (-2590 (((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526)) 33)) (-2589 (((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526)) 30)) (-2588 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 29)) (-2587 (((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 28)) (-2586 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 27)) (-2585 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526)) 26)) (-2584 (((-992) (-526) (-526) (-653 (-211)) (-526)) 25)) (-2583 (((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 24)) (-2582 (((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526)) 23)) (-2581 (((-992) (-653 (-211)) (-526) (-526) (-526) (-526)) 22)) (-2580 (((-992) (-526) (-526) (-653 (-211)) (-526)) 21))) +(((-720) (-10 -7 (-15 -2580 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2581 ((-992) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2582 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2583 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2584 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2585 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2586 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2587 ((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2588 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2589 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2590 ((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526))) (-15 -2591 ((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373))) (-15 -2593 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2594 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526))))) (T -720)) +((-2594 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2593 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-373)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2591 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2590 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2589 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2588 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2587 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2586 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2584 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2583 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2582 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720)))) (-2581 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720)))) (-2580 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(-10 -7 (-15 -2580 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2581 ((-992) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2582 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2583 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2584 ((-992) (-526) (-526) (-653 (-211)) (-526))) (-15 -2585 ((-992) (-526) (-526) (-526) (-526) (-653 (-211)) (-526))) (-15 -2586 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2587 ((-992) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2588 ((-992) (-526) (-526) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2589 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526) (-526))) (-15 -2590 ((-992) (-526) (-526) (-211) (-211) (-526) (-526) (-653 (-211)) (-526))) (-15 -2591 ((-992) (-526) (-526) (-526) (-211) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))))) (-15 -2592 ((-992) (-526) (-526) (-211) (-526) (-526) (-526) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE))) (-373))) (-15 -2593 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2594 ((-992) (-526) (-526) (-526) (-526) (-526) (-111) (-526) (-111) (-526) (-653 (-159 (-211))) (-653 (-159 (-211))) (-526)))) +((-2605 (((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) 61)) (-2604 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526)) 57)) (-2603 (((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2602 (((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526)) 37)) (-2601 (((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526)) 36)) (-2600 (((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526)) 33)) (-2599 (((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211))) 32)) (-2598 (((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526)) 28)) (-2597 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526)) 27)) (-2596 (((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526)) 26)) (-2595 (((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526)) 22))) +(((-721) (-10 -7 (-15 -2595 ((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2596 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2597 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2598 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526))) (-15 -2599 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)))) (-15 -2600 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2601 ((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2602 ((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2603 ((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE))))) (-15 -2604 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2605 ((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD))))))) (T -721)) +((-2605 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2604 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2603 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2602 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2601 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2600 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2599 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2598 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-721)))) (-2597 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2596 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721)))) (-2595 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) (-5 *1 (-721))))) +(-10 -7 (-15 -2595 ((-992) (-526) (-653 (-159 (-211))) (-526) (-526) (-526) (-526) (-653 (-159 (-211))) (-526))) (-15 -2596 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2597 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-526))) (-15 -2598 ((-992) (-653 (-211)) (-526) (-653 (-211)) (-526) (-526) (-526))) (-15 -2599 ((-992) (-526) (-653 (-211)) (-526) (-653 (-526)) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)))) (-15 -2600 ((-992) (-526) (-526) (-653 (-211)) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2601 ((-992) (-526) (-526) (-526) (-211) (-526) (-653 (-211)) (-653 (-211)) (-526))) (-15 -2602 ((-992) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-526)) (-653 (-211)) (-653 (-526)) (-653 (-526)) (-653 (-211)) (-653 (-211)) (-653 (-526)) (-526))) (-15 -2603 ((-992) (-526) (-653 (-211)) (-111) (-211) (-526) (-526) (-526) (-526) (-211) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE))))) (-15 -2604 ((-992) (-526) (-653 (-211)) (-526) (-653 (-211)) (-653 (-526)) (-526) (-653 (-211)) (-526) (-526) (-526) (-526))) (-15 -2605 ((-992) (-526) (-526) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-653 (-211)) (-526) (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))))) +((-2609 (((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211))) 29)) (-2608 (((-992) (-1106) (-526) (-526) (-653 (-211))) 28)) (-2607 (((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211))) 27)) (-2606 (((-992) (-526) (-526) (-526) (-653 (-211))) 21))) +(((-722) (-10 -7 (-15 -2606 ((-992) (-526) (-526) (-526) (-653 (-211)))) (-15 -2607 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211)))) (-15 -2608 ((-992) (-1106) (-526) (-526) (-653 (-211)))) (-15 -2609 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211)))))) (T -722)) +((-2609 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722)))) (-2608 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722)))) (-2607 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-722)))) (-2606 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722))))) +(-10 -7 (-15 -2606 ((-992) (-526) (-526) (-526) (-653 (-211)))) (-15 -2607 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-653 (-526)) (-526) (-653 (-211)))) (-15 -2608 ((-992) (-1106) (-526) (-526) (-653 (-211)))) (-15 -2609 ((-992) (-1106) (-526) (-526) (-653 (-211)) (-526) (-526) (-653 (-211))))) +((-2647 (((-992) (-211) (-211) (-211) (-211) (-526)) 62)) (-2646 (((-992) (-211) (-211) (-211) (-526)) 61)) (-2645 (((-992) (-211) (-211) (-211) (-526)) 60)) (-2644 (((-992) (-211) (-211) (-526)) 59)) (-2643 (((-992) (-211) (-526)) 58)) (-2642 (((-992) (-211) (-526)) 57)) (-2641 (((-992) (-211) (-526)) 56)) (-2640 (((-992) (-211) (-526)) 55)) (-2639 (((-992) (-211) (-526)) 54)) (-2638 (((-992) (-211) (-526)) 53)) (-2637 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 52)) (-2636 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 51)) (-2635 (((-992) (-211) (-526)) 50)) (-2634 (((-992) (-211) (-526)) 49)) (-2633 (((-992) (-211) (-526)) 48)) (-2632 (((-992) (-211) (-526)) 47)) (-2631 (((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526)) 46)) (-2630 (((-992) (-1106) (-159 (-211)) (-1106) (-526)) 45)) (-2629 (((-992) (-1106) (-159 (-211)) (-1106) (-526)) 44)) (-2628 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 43)) (-2627 (((-992) (-211) (-159 (-211)) (-526) (-1106) (-526)) 42)) (-2626 (((-992) (-211) (-526)) 39)) (-2625 (((-992) (-211) (-526)) 38)) (-2624 (((-992) (-211) (-526)) 37)) (-2623 (((-992) (-211) (-526)) 36)) (-2622 (((-992) (-211) (-526)) 35)) (-2621 (((-992) (-211) (-526)) 34)) (-2620 (((-992) (-211) (-526)) 33)) (-2619 (((-992) (-211) (-526)) 32)) (-2618 (((-992) (-211) (-526)) 31)) (-2617 (((-992) (-211) (-526)) 30)) (-2616 (((-992) (-211) (-211) (-211) (-526)) 29)) (-2615 (((-992) (-211) (-526)) 28)) (-2614 (((-992) (-211) (-526)) 27)) (-2613 (((-992) (-211) (-526)) 26)) (-2612 (((-992) (-211) (-526)) 25)) (-2611 (((-992) (-211) (-526)) 24)) (-2610 (((-992) (-159 (-211)) (-526)) 21))) +(((-723) (-10 -7 (-15 -2610 ((-992) (-159 (-211)) (-526))) (-15 -2611 ((-992) (-211) (-526))) (-15 -2612 ((-992) (-211) (-526))) (-15 -2613 ((-992) (-211) (-526))) (-15 -2614 ((-992) (-211) (-526))) (-15 -2615 ((-992) (-211) (-526))) (-15 -2616 ((-992) (-211) (-211) (-211) (-526))) (-15 -2617 ((-992) (-211) (-526))) (-15 -2618 ((-992) (-211) (-526))) (-15 -2619 ((-992) (-211) (-526))) (-15 -2620 ((-992) (-211) (-526))) (-15 -2621 ((-992) (-211) (-526))) (-15 -2622 ((-992) (-211) (-526))) (-15 -2623 ((-992) (-211) (-526))) (-15 -2624 ((-992) (-211) (-526))) (-15 -2625 ((-992) (-211) (-526))) (-15 -2626 ((-992) (-211) (-526))) (-15 -2627 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2628 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2629 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2630 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2631 ((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2632 ((-992) (-211) (-526))) (-15 -2633 ((-992) (-211) (-526))) (-15 -2634 ((-992) (-211) (-526))) (-15 -2635 ((-992) (-211) (-526))) (-15 -2636 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2637 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2638 ((-992) (-211) (-526))) (-15 -2639 ((-992) (-211) (-526))) (-15 -2640 ((-992) (-211) (-526))) (-15 -2641 ((-992) (-211) (-526))) (-15 -2642 ((-992) (-211) (-526))) (-15 -2643 ((-992) (-211) (-526))) (-15 -2644 ((-992) (-211) (-211) (-526))) (-15 -2645 ((-992) (-211) (-211) (-211) (-526))) (-15 -2646 ((-992) (-211) (-211) (-211) (-526))) (-15 -2647 ((-992) (-211) (-211) (-211) (-211) (-526))))) (T -723)) +((-2647 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2646 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2645 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2644 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2637 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2636 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2631 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-526)) (-5 *5 (-159 (-211))) (-5 *6 (-1106)) (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2630 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2629 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2628 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2627 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2616 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(-10 -7 (-15 -2610 ((-992) (-159 (-211)) (-526))) (-15 -2611 ((-992) (-211) (-526))) (-15 -2612 ((-992) (-211) (-526))) (-15 -2613 ((-992) (-211) (-526))) (-15 -2614 ((-992) (-211) (-526))) (-15 -2615 ((-992) (-211) (-526))) (-15 -2616 ((-992) (-211) (-211) (-211) (-526))) (-15 -2617 ((-992) (-211) (-526))) (-15 -2618 ((-992) (-211) (-526))) (-15 -2619 ((-992) (-211) (-526))) (-15 -2620 ((-992) (-211) (-526))) (-15 -2621 ((-992) (-211) (-526))) (-15 -2622 ((-992) (-211) (-526))) (-15 -2623 ((-992) (-211) (-526))) (-15 -2624 ((-992) (-211) (-526))) (-15 -2625 ((-992) (-211) (-526))) (-15 -2626 ((-992) (-211) (-526))) (-15 -2627 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2628 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2629 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2630 ((-992) (-1106) (-159 (-211)) (-1106) (-526))) (-15 -2631 ((-992) (-526) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2632 ((-992) (-211) (-526))) (-15 -2633 ((-992) (-211) (-526))) (-15 -2634 ((-992) (-211) (-526))) (-15 -2635 ((-992) (-211) (-526))) (-15 -2636 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2637 ((-992) (-211) (-159 (-211)) (-526) (-1106) (-526))) (-15 -2638 ((-992) (-211) (-526))) (-15 -2639 ((-992) (-211) (-526))) (-15 -2640 ((-992) (-211) (-526))) (-15 -2641 ((-992) (-211) (-526))) (-15 -2642 ((-992) (-211) (-526))) (-15 -2643 ((-992) (-211) (-526))) (-15 -2644 ((-992) (-211) (-211) (-526))) (-15 -2645 ((-992) (-211) (-211) (-211) (-526))) (-15 -2646 ((-992) (-211) (-211) (-211) (-526))) (-15 -2647 ((-992) (-211) (-211) (-211) (-211) (-526)))) +((-2653 (((-1211)) 18)) (-2649 (((-1106)) 22)) (-2648 (((-1106)) 21)) (-2651 (((-1054) (-1123) (-653 (-526))) 37) (((-1054) (-1123) (-653 (-211))) 32)) (-2652 (((-111)) 16)) (-2650 (((-1106) (-1106)) 25))) +(((-724) (-10 -7 (-15 -2648 ((-1106))) (-15 -2649 ((-1106))) (-15 -2650 ((-1106) (-1106))) (-15 -2651 ((-1054) (-1123) (-653 (-211)))) (-15 -2651 ((-1054) (-1123) (-653 (-526)))) (-15 -2652 ((-111))) (-15 -2653 ((-1211))))) (T -724)) +((-2653 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-724)))) (-2652 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-724)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-526))) (-5 *2 (-1054)) (-5 *1 (-724)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-211))) (-5 *2 (-1054)) (-5 *1 (-724)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724)))) (-2649 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724)))) (-2648 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) +(-10 -7 (-15 -2648 ((-1106))) (-15 -2649 ((-1106))) (-15 -2650 ((-1106) (-1106))) (-15 -2651 ((-1054) (-1123) (-653 (-211)))) (-15 -2651 ((-1054) (-1123) (-653 (-526)))) (-15 -2652 ((-111))) (-15 -2653 ((-1211)))) +((-2655 (($ $ $) 10)) (-2656 (($ $ $ $) 9)) (-2654 (($ $ $) 12))) +(((-725 |#1|) (-10 -8 (-15 -2654 (|#1| |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1| |#1|))) (-726)) (T -725)) +NIL +(-10 -8 (-15 -2654 (|#1| |#1| |#1|)) (-15 -2655 (|#1| |#1| |#1|)) (-15 -2656 (|#1| |#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2468 (($ $ (-878)) 28)) (-2467 (($ $ (-878)) 29)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27))) +(((-726) (-134)) (T -726)) +((-2656 (*1 *1 *1 *1 *1) (-4 *1 (-726))) (-2655 (*1 *1 *1 *1) (-4 *1 (-726))) (-2654 (*1 *1 *1 *1) (-4 *1 (-726)))) +(-13 (-21) (-685) (-10 -8 (-15 -2656 ($ $ $ $)) (-15 -2655 ($ $ $)) (-15 -2654 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-685) . T) ((-1052) . T)) +((-4274 (((-823) $) NIL) (($ (-526)) 10))) +(((-727 |#1|) (-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-728)) (T -727)) +NIL +(-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2465 (((-3 $ #1="failed") $) 40)) (-2468 (($ $ (-878)) 28) (($ $ (-735)) 35)) (-3781 (((-3 $ #1#) $) 38)) (-2471 (((-111) $) 34)) (-2466 (((-3 $ #1#) $) 39)) (-2467 (($ $ (-878)) 29) (($ $ (-735)) 36)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-2655 (($ $ $) 25)) (-4274 (((-823) $) 11) (($ (-526)) 31)) (-3423 (((-735)) 32)) (-2656 (($ $ $ $) 26)) (-2654 (($ $ $) 24)) (-2957 (($) 18 T CONST)) (-2964 (($) 33 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 30) (($ $ (-735)) 37)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 27))) +(((-728) (-134)) (T -728)) +((-3423 (*1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-728))))) +(-13 (-726) (-687) (-10 -8 (-15 -3423 ((-735))) (-15 -4274 ($ (-526))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-685) . T) ((-687) . T) ((-726) . T) ((-1052) . T)) +((-2658 (((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|) 33)) (-2657 (((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|) 23)) (-2667 (((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123)) 20) (((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526))))) 19))) +(((-729 |#1|) (-10 -7 (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))))) (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123))) (-15 -2657 ((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|)) (-15 -2658 ((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|))) (-13 (-348) (-809))) (T -729)) +((-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 *4))))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-159 *4))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *4 (-1123)) (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *5)) (-4 *5 (-13 (-348) (-809))))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) +(-10 -7 (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))))) (-15 -2667 ((-905 (-159 (-392 (-526)))) (-653 (-159 (-392 (-526)))) (-1123))) (-15 -2657 ((-607 (-159 |#1|)) (-653 (-159 (-392 (-526)))) |#1|)) (-15 -2658 ((-607 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 (-159 |#1|)))))) (-653 (-159 (-392 (-526)))) |#1|))) +((-2911 (((-165 (-526)) |#1|) 25))) +(((-730 |#1|) (-10 -7 (-15 -2911 ((-165 (-526)) |#1|))) (-389)) (T -730)) +((-2911 (*1 *2 *3) (-12 (-5 *2 (-165 (-526))) (-5 *1 (-730 *3)) (-4 *3 (-389))))) +(-10 -7 (-15 -2911 ((-165 (-526)) |#1|))) +((-2846 ((|#1| |#1| |#1|) 24)) (-2847 ((|#1| |#1| |#1|) 23)) (-2836 ((|#1| |#1| |#1|) 32)) (-2844 ((|#1| |#1| |#1|) 28)) (-2845 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2852 (((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|) 22))) +(((-731 |#1| |#2|) (-10 -7 (-15 -2852 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|))) (-673 |#2|) (-348)) (T -731)) +((-2836 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2844 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2845 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2846 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2847 (*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) (-2852 (*1 *2 *3 *3) (-12 (-4 *4 (-348)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-731 *3 *4)) (-4 *3 (-673 *4))))) +(-10 -7 (-15 -2852 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2836 (|#1| |#1| |#1|))) +((-4238 (((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)) 59)) (-4237 (((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526))))) 57)) (-4076 (((-526)) 71))) +(((-732 |#1| |#2|) (-10 -7 (-15 -4076 ((-526))) (-15 -4237 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))))) (-15 -4238 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)))) (-1181 (-526)) (-395 (-526) |#1|)) (T -732)) +((-4238 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-732 *4 *5)) (-4 *5 (-395 *3 *4)))) (-4237 (*1 *2) (-12 (-4 *3 (-1181 (-526))) (-5 *2 (-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526))))) (-5 *1 (-732 *3 *4)) (-4 *4 (-395 (-526) *3)))) (-4076 (*1 *2) (-12 (-4 *3 (-1181 *2)) (-5 *2 (-526)) (-5 *1 (-732 *3 *4)) (-4 *4 (-395 *2 *3))))) +(-10 -7 (-15 -4076 ((-526))) (-15 -4237 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))))) (-15 -4238 ((-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) (|:| |basisInv| (-653 (-526)))) (-526)))) +((-2865 (((-111) $ $) NIL)) (-3469 (((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20) (($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 13) (($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) 18)) (-3353 (((-111) $ $) NIL))) +(((-733) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $))))) (T -733)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-733)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-5 *1 (-733)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-5 *1 (-733))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |nia| (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| |mdnia| (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) $)))) +((-2733 (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))) 18) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123))) 17)) (-3895 (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))) 20) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123))) 19))) +(((-734 |#1|) (-10 -7 (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))))) (-533)) (T -734)) +((-3895 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5))))) +(-10 -7 (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -2733 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-905 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2702 (($ $ $) 6)) (-1345 (((-3 $ "failed") $ $) 9)) (-2659 (($ $ (-526)) 7)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3457 (($ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ $ $) NIL))) +(((-735) (-13 (-757) (-691) (-10 -8 (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ (-526))) (-15 -3294 ($ $)) (-6 (-4312 "*"))))) (T -735)) +((-2860 (*1 *1 *1 *1) (-5 *1 (-735))) (-2861 (*1 *1 *1 *1) (-5 *1 (-735))) (-3457 (*1 *1 *1 *1) (-5 *1 (-735))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2072 (-735)) (|:| -3202 (-735)))) (-5 *1 (-735)))) (-3780 (*1 *1 *1 *1) (|partial| -5 *1 (-735))) (-2659 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-735)))) (-3294 (*1 *1 *1) (-5 *1 (-735)))) +(-13 (-757) (-691) (-10 -8 (-15 -2860 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -3457 ($ $ $)) (-15 -3181 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3780 ((-3 $ "failed") $ $)) (-15 -2659 ($ $ (-526))) (-15 -3294 ($ $)) (-6 (-4312 "*")))) +((-3895 (((-3 |#2| "failed") |#2| |#2| (-112) (-1123)) 35))) +(((-736 |#1| |#2|) (-10 -7 (-15 -3895 ((-3 |#2| "failed") |#2| |#2| (-112) (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -736)) +((-3895 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-736 *5 *2)) (-4 *2 (-13 (-29 *5) (-1145) (-919)))))) +(-10 -7 (-15 -3895 ((-3 |#2| "failed") |#2| |#2| (-112) (-1123)))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 7)) (-3353 (((-111) $ $) 9))) +(((-737) (-1052)) (T -737)) +NIL +(-1052) +((-4274 (((-737) |#1|) 8))) +(((-738 |#1|) (-10 -7 (-15 -4274 ((-737) |#1|))) (-1159)) (T -738)) +((-4274 (*1 *2 *3) (-12 (-5 *2 (-737)) (-5 *1 (-738 *3)) (-4 *3 (-1159))))) +(-10 -7 (-15 -4274 ((-737) |#1|))) +((-3429 ((|#2| |#4|) 35))) +(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3429 (|#2| |#4|))) (-436) (-1181 |#1|) (-689 |#1| |#2|) (-1181 |#3|)) (T -739)) +((-3429 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-689 *4 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *3 (-1181 *5))))) +(-10 -7 (-15 -3429 (|#2| |#4|))) +((-3781 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2662 (((-1211) (-1106) (-1106) |#4| |#5|) 33)) (-2660 ((|#4| |#4| |#5|) 73)) (-2661 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 77)) (-2663 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 16))) +(((-740 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3781 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2660 (|#4| |#4| |#5|)) (-15 -2661 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -2662 ((-1211) (-1106) (-1106) |#4| |#5|)) (-15 -2663 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -740)) +((-2663 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-2662 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1106)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *4 (-1018 *6 *7 *8)) (-5 *2 (-1211)) (-5 *1 (-740 *6 *7 *8 *4 *5)) (-4 *5 (-1024 *6 *7 *8 *4)))) (-2661 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-2660 (*1 *2 *2 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *2 (-1018 *4 *5 *6)) (-5 *1 (-740 *4 *5 *6 *2 *3)) (-4 *3 (-1024 *4 *5 *6 *2)))) (-3781 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(-10 -7 (-15 -3781 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2660 (|#4| |#4| |#5|)) (-15 -2661 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -2662 ((-1211) (-1106) (-1106) |#4| |#5|)) (-15 -2663 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|))) +((-3470 (((-3 (-1117 (-1117 |#1|)) "failed") |#4|) 43)) (-2664 (((-607 |#4|) |#4|) 15)) (-4245 ((|#4| |#4|) 11))) +(((-741 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2664 ((-607 |#4|) |#4|)) (-15 -3470 ((-3 (-1117 (-1117 |#1|)) "failed") |#4|)) (-15 -4245 (|#4| |#4|))) (-335) (-314 |#1|) (-1181 |#2|) (-1181 |#3|) (-878)) (T -741)) +((-4245 (*1 *2 *2) (-12 (-4 *3 (-335)) (-4 *4 (-314 *3)) (-4 *5 (-1181 *4)) (-5 *1 (-741 *3 *4 *5 *2 *6)) (-4 *2 (-1181 *5)) (-14 *6 (-878)))) (-3470 (*1 *2 *3) (|partial| -12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878)))) (-2664 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-607 *3)) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878))))) +(-10 -7 (-15 -2664 ((-607 |#4|) |#4|)) (-15 -3470 ((-3 (-1117 (-1117 |#1|)) "failed") |#4|)) (-15 -4245 (|#4| |#4|))) +((-2665 (((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|)) 54)) (-2666 (((-607 (-735)) |#1|) 13))) +(((-742 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2665 ((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|))) (-15 -2666 ((-607 (-735)) |#1|))) (-1181 |#4|) (-757) (-811) (-292) (-909 |#4| |#2| |#3|)) (T -742)) +((-2666 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-607 (-735))) (-5 *1 (-742 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *6)) (-4 *7 (-909 *6 *4 *5)))) (-2665 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1181 *9)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-292)) (-4 *10 (-909 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-607 (-1117 *10))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *10))))) (|:| |nfacts| (-607 *6)) (|:| |nlead| (-607 *10)))) (-5 *1 (-742 *6 *7 *8 *9 *10)) (-5 *3 (-1117 *10)) (-5 *4 (-607 *6)) (-5 *5 (-607 *10))))) +(-10 -7 (-15 -2665 ((-2 (|:| |deter| (-607 (-1117 |#5|))) (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-607 |#1|)) (|:| |nlead| (-607 |#5|))) (-1117 |#5|) (-607 |#1|) (-607 |#5|))) (-15 -2666 ((-607 (-735)) |#1|))) +((-2669 (((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|) 31)) (-2668 (((-607 |#1|) (-653 (-392 (-526))) |#1|) 21)) (-2667 (((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123)) 18) (((-905 (-392 (-526))) (-653 (-392 (-526)))) 17))) +(((-743 |#1|) (-10 -7 (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))))) (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123))) (-15 -2668 ((-607 |#1|) (-653 (-392 (-526))) |#1|)) (-15 -2669 ((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|))) (-13 (-348) (-809))) (T -743)) +((-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 (-2 (|:| |outval| *4) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 *4)))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *4 (-1123)) (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-348) (-809))))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809)))))) +(-10 -7 (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))))) (-15 -2667 ((-905 (-392 (-526))) (-653 (-392 (-526))) (-1123))) (-15 -2668 ((-607 |#1|) (-653 (-392 (-526))) |#1|)) (-15 -2669 ((-607 (-2 (|:| |outval| |#1|) (|:| |outmult| (-526)) (|:| |outvect| (-607 (-653 |#1|))))) (-653 (-392 (-526))) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 34)) (-3384 (((-607 |#2|) $) NIL)) (-3386 (((-1117 $) $ |#2|) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#2|)) NIL)) (-4115 (($ $) 28)) (-3479 (((-111) $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) 93 (|has| |#1| (-533)))) (-3461 (((-607 $) $ $) 106 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (((-3 $ #3#) (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (((-3 $ #3#) (-905 |#1|)) NIL (-3850 (-12 (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526))))) (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-525)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-950 (-526))))))) (((-3 (-1075 |#1| |#2|) #2#) $) 18)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#2| $) NIL) (($ (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (($ (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (($ (-905 |#1|)) NIL (-3850 (-12 (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526))))) (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-525)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-950 (-526))))))) (((-1075 |#1| |#2|) $) NIL)) (-4075 (($ $ $ |#2|) NIL (|has| |#1| (-163))) (($ $ $) 104 (|has| |#1| (-533)))) (-4276 (($ $) NIL) (($ $ |#2|) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-4016 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3485 (((-111) $) NIL)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 70)) (-3456 (($ $) 119 (|has| |#1| (-436)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-3467 (($ $) NIL (|has| |#1| (-533)))) (-3468 (($ $) NIL (|has| |#1| (-533)))) (-3478 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3477 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1697 (($ $ |#1| (-512 |#2|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-4017 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-3458 (($ $ $ $ $) 90 (|has| |#1| (-533)))) (-3493 ((|#2| $) 19)) (-3387 (($ (-1117 |#1|) |#2|) NIL) (($ (-1117 $) |#2|) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 |#2|)) NIL) (($ $ |#2| (-735)) 36) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3472 (($ $ $) 60)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3486 (((-111) $) NIL)) (-3120 (((-512 |#2|) $) NIL) (((-735) $ |#2|) NIL) (((-607 (-735)) $ (-607 |#2|)) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3492 (((-735) $) 20)) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#2|) (-512 |#2|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3385 (((-3 |#2| #4="failed") $) NIL)) (-3453 (($ $) NIL (|has| |#1| (-436)))) (-3454 (($ $) NIL (|has| |#1| (-436)))) (-3481 (((-607 $) $) NIL)) (-3484 (($ $) 37)) (-3455 (($ $) NIL (|has| |#1| (-436)))) (-3482 (((-607 $) $) 41)) (-3483 (($ $) 39)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 82)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 67) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) NIL) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#2|) NIL)) (-3476 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3475 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3554 (((-1106) $) NIL)) (-3504 (($ $ $) 108 (|has| |#1| (-533)))) (-3489 (((-607 $) $) 30)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-735))) #4#) $) NIL)) (-4013 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-4008 (($ $ $) NIL)) (-3764 (($ $) 21)) (-4021 (((-111) $ $) NIL)) (-4014 (((-111) $ $) NIL) (((-111) $ (-607 $)) NIL)) (-4009 (($ $ $) NIL)) (-3491 (($ $) 23)) (-3555 (((-1070) $) NIL)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-533)))) (-1892 (((-111) $) 52)) (-1891 ((|#1| $) 55)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 ((|#1| |#1| $) 116 (|has| |#1| (-436))) (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3465 (($ $ |#1|) 112 (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-3466 (($ $ |#1|) 111 (|has| |#1| (-533))) (($ $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-607 |#2|) (-607 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-607 |#2|) (-607 $)) NIL)) (-4076 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) NIL) (((-735) $ |#2|) 43) (((-607 (-735)) $ (-607 |#2|)) NIL)) (-3490 (($ $) NIL)) (-3488 (($ $) 33)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515))))) (($ (-905 (-392 (-526)))) NIL (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123))))) (($ (-905 (-526))) NIL (-3850 (-12 (|has| |#1| (-37 (-526))) (|has| |#2| (-584 (-1123))) (-3636 (|has| |#1| (-37 (-392 (-526)))))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#2| (-584 (-1123)))))) (($ (-905 |#1|)) NIL (|has| |#2| (-584 (-1123)))) (((-1106) $) NIL (-12 (|has| |#1| (-995 (-526))) (|has| |#2| (-584 (-1123))))) (((-905 |#1|) $) NIL (|has| |#2| (-584 (-1123))))) (-3117 ((|#1| $) 115 (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-905 |#1|) $) NIL (|has| |#2| (-584 (-1123)))) (((-1075 |#1| |#2|) $) 15) (($ (-1075 |#1| |#2|)) 16) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 |#2|)) NIL) (($ $ |#2| (-735)) 44) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 13 T CONST)) (-3480 (((-3 (-111) #3#) $ $) NIL)) (-2964 (($) 35 T CONST)) (-3459 (($ $ $ $ (-735)) 88 (|has| |#1| (-533)))) (-3460 (($ $ $ (-735)) 87 (|has| |#1| (-533)))) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 54)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 64)) (-4158 (($ $ $) 74)) (** (($ $ (-878)) NIL) (($ $ (-735)) 61)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 59) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-744 |#1| |#2|) (-13 (-1018 |#1| (-512 |#2|) |#2|) (-583 (-1075 |#1| |#2|)) (-995 (-1075 |#1| |#2|))) (-1004) (-811)) (T -744)) +NIL +(-13 (-1018 |#1| (-512 |#2|) |#2|) (-583 (-1075 |#1| |#2|)) (-995 (-1075 |#1| |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 12)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2673 (((-607 $) $ $) 39 (|has| |#1| (-533)))) (-4074 (($ $ $) 35 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL) (((-3 (-1117 |#1|) #2#) $) 10)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL) (((-1117 |#1|) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) 43 (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) 71 (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) 70 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3472 (($ $ $) 20)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $) 26)) (-2675 (($ $ $) 29)) (-2674 (($ $ $) 32)) (-3473 (((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 31)) (-3554 (((-1106) $) NIL)) (-3504 (($ $ $) 41 (|has| |#1| (-533)))) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-533)))) (-2670 (((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-533)))) (-2671 (((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-533)))) (-1892 (((-111) $) 13)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-4057 (($ $ (-735) |#1| $) 19)) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-533)))) (-2672 (((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-533)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1033)) NIL) (((-1117 |#1|) $) 7) (($ (-1117 |#1|)) 8) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 21 T CONST)) (-2964 (($) 24 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) 28) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-745 |#1|) (-13 (-1181 |#1|) (-583 (-1117 |#1|)) (-995 (-1117 |#1|)) (-10 -8 (-15 -4057 ($ $ (-735) |#1| $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $)) (-15 -2675 ($ $ $)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2674 ($ $ $)) (IF (|has| |#1| (-533)) (PROGN (-15 -2673 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -2672 ((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2671 ((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $)) (-15 -2670 ((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1004)) (T -745)) +((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-3472 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-3471 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-745 *3)) (|:| |polden| *3) (|:| -3795 (-735)))) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-2675 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-3473 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4270 *3) (|:| |gap| (-735)) (|:| -2072 (-745 *3)) (|:| -3202 (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) (-2674 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) (-2673 (*1 *2 *1 *1) (-12 (-5 *2 (-607 (-745 *3))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3504 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-533)) (-4 *2 (-1004)))) (-3464 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3463 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2672 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) (-2670 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) +(-13 (-1181 |#1|) (-583 (-1117 |#1|)) (-995 (-1117 |#1|)) (-10 -8 (-15 -4057 ($ $ (-735) |#1| $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3795 (-735))) $ $)) (-15 -2675 ($ $ $)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2674 ($ $ $)) (IF (|has| |#1| (-533)) (PROGN (-15 -2673 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -2672 ((-2 (|:| -4075 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2671 ((-2 (|:| -4075 |#1|) (|:| |coef1| $)) $ $)) (-15 -2670 ((-2 (|:| -4075 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4275 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 13))) +(((-746 |#1| |#2|) (-10 -7 (-15 -4275 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)))) (-1004) (-1004)) (T -746)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) +(-10 -7 (-15 -4275 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)))) +((-2677 ((|#1| (-735) |#1|) 32 (|has| |#1| (-37 (-392 (-526)))))) (-3101 ((|#1| (-735) |#1|) 22)) (-2676 ((|#1| (-735) |#1|) 34 (|has| |#1| (-37 (-392 (-526))))))) +(((-747 |#1|) (-10 -7 (-15 -3101 (|#1| (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -2676 (|#1| (-735) |#1|)) (-15 -2677 (|#1| (-735) |#1|))) |%noBranch|)) (-163)) (T -747)) +((-2677 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-2676 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-3101 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-163))))) +(-10 -7 (-15 -3101 (|#1| (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -2676 (|#1| (-735) |#1|)) (-15 -2677 (|#1| (-735) |#1|))) |%noBranch|)) +((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-748 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -748)) +NIL +(-13 (-1024 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) +((-2680 (((-3 (-363) "failed") (-299 |#1|) (-878)) 62 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-363) "failed") (-299 |#1|)) 54 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-363) "failed") (-392 (-905 |#1|)) (-878)) 41 (|has| |#1| (-533))) (((-3 (-363) "failed") (-392 (-905 |#1|))) 40 (|has| |#1| (-533))) (((-3 (-363) "failed") (-905 |#1|) (-878)) 31 (|has| |#1| (-1004))) (((-3 (-363) "failed") (-905 |#1|)) 30 (|has| |#1| (-1004)))) (-2678 (((-363) (-299 |#1|) (-878)) 99 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-363) (-299 |#1|)) 94 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-363) (-392 (-905 |#1|)) (-878)) 91 (|has| |#1| (-533))) (((-363) (-392 (-905 |#1|))) 90 (|has| |#1| (-533))) (((-363) (-905 |#1|) (-878)) 86 (|has| |#1| (-1004))) (((-363) (-905 |#1|)) 85 (|has| |#1| (-1004))) (((-363) |#1| (-878)) 76) (((-363) |#1|) 22)) (-2681 (((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)) 71 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 (-159 |#1|))) 70 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 |#1|) (-878)) 63 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-299 |#1|)) 61 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878)) 46 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|)))) 45 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878)) 39 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-392 (-905 |#1|))) 38 (|has| |#1| (-533))) (((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)) 28 (|has| |#1| (-1004))) (((-3 (-159 (-363)) "failed") (-905 |#1|)) 26 (|has| |#1| (-1004))) (((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)) 18 (|has| |#1| (-163))) (((-3 (-159 (-363)) "failed") (-905 (-159 |#1|))) 15 (|has| |#1| (-163)))) (-2679 (((-159 (-363)) (-299 (-159 |#1|)) (-878)) 102 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 (-159 |#1|))) 101 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 |#1|) (-878)) 100 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-299 |#1|)) 98 (-12 (|has| |#1| (-533)) (|has| |#1| (-811)))) (((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878)) 93 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 (-159 |#1|)))) 92 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 |#1|)) (-878)) 89 (|has| |#1| (-533))) (((-159 (-363)) (-392 (-905 |#1|))) 88 (|has| |#1| (-533))) (((-159 (-363)) (-905 |#1|) (-878)) 84 (|has| |#1| (-1004))) (((-159 (-363)) (-905 |#1|)) 83 (|has| |#1| (-1004))) (((-159 (-363)) (-905 (-159 |#1|)) (-878)) 78 (|has| |#1| (-163))) (((-159 (-363)) (-905 (-159 |#1|))) 77 (|has| |#1| (-163))) (((-159 (-363)) (-159 |#1|) (-878)) 80 (|has| |#1| (-163))) (((-159 (-363)) (-159 |#1|)) 79 (|has| |#1| (-163))) (((-159 (-363)) |#1| (-878)) 27) (((-159 (-363)) |#1|) 25))) +(((-749 |#1|) (-10 -7 (-15 -2678 ((-363) |#1|)) (-15 -2678 ((-363) |#1| (-878))) (-15 -2679 ((-159 (-363)) |#1|)) (-15 -2679 ((-159 (-363)) |#1| (-878))) (IF (|has| |#1| (-163)) (PROGN (-15 -2679 ((-159 (-363)) (-159 |#1|))) (-15 -2679 ((-159 (-363)) (-159 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2678 ((-363) (-905 |#1|))) (-15 -2678 ((-363) (-905 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 |#1|))) (-15 -2679 ((-159 (-363)) (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2678 ((-363) (-392 (-905 |#1|)))) (-15 -2678 ((-363) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2678 ((-363) (-299 |#1|))) (-15 -2678 ((-363) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 |#1|))) (-15 -2679 ((-159 (-363)) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-905 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)))) (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-299 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|)) (-584 (-363))) (T -749)) +((-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2680 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2681 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-163)) (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) (-2679 (*1 *2 *3) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) (-2678 (*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2))))) +(-10 -7 (-15 -2678 ((-363) |#1|)) (-15 -2678 ((-363) |#1| (-878))) (-15 -2679 ((-159 (-363)) |#1|)) (-15 -2679 ((-159 (-363)) |#1| (-878))) (IF (|has| |#1| (-163)) (PROGN (-15 -2679 ((-159 (-363)) (-159 |#1|))) (-15 -2679 ((-159 (-363)) (-159 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2678 ((-363) (-905 |#1|))) (-15 -2678 ((-363) (-905 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-905 |#1|))) (-15 -2679 ((-159 (-363)) (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2678 ((-363) (-392 (-905 |#1|)))) (-15 -2678 ((-363) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)))) (-15 -2679 ((-159 (-363)) (-392 (-905 |#1|)) (-878))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))))) (-15 -2679 ((-159 (-363)) (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2678 ((-363) (-299 |#1|))) (-15 -2678 ((-363) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 |#1|))) (-15 -2679 ((-159 (-363)) (-299 |#1|) (-878))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)))) (-15 -2679 ((-159 (-363)) (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 (-159 |#1|)) (-878)))) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-905 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-905 |#1|) (-878)))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)))) (-15 -2680 ((-3 (-363) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 |#1|)) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-392 (-905 (-159 |#1|))) (-878))) (IF (|has| |#1| (-811)) (PROGN (-15 -2680 ((-3 (-363) "failed") (-299 |#1|))) (-15 -2680 ((-3 (-363) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 |#1|) (-878))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)))) (-15 -2681 ((-3 (-159 (-363)) "failed") (-299 (-159 |#1|)) (-878)))) |%noBranch|)) |%noBranch|)) +((-2685 (((-878) (-1106)) 66)) (-2687 (((-3 (-363) "failed") (-1106)) 33)) (-2686 (((-363) (-1106)) 31)) (-2683 (((-878) (-1106)) 54)) (-2684 (((-1106) (-878)) 56)) (-2682 (((-1106) (-878)) 53))) +(((-750) (-10 -7 (-15 -2682 ((-1106) (-878))) (-15 -2683 ((-878) (-1106))) (-15 -2684 ((-1106) (-878))) (-15 -2685 ((-878) (-1106))) (-15 -2686 ((-363) (-1106))) (-15 -2687 ((-3 (-363) "failed") (-1106))))) (T -750)) +((-2687 (*1 *2 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) +(-10 -7 (-15 -2682 ((-1106) (-878))) (-15 -2683 ((-878) (-1106))) (-15 -2684 ((-1106) (-878))) (-15 -2685 ((-878) (-1106))) (-15 -2686 ((-363) (-1106))) (-15 -2687 ((-3 (-363) "failed") (-1106)))) +((-2865 (((-111) $ $) 7)) (-2688 (((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 15) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992)) 13)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 16) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) (((-751) (-134)) (T -751)) -NIL -(-13 (-755) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) -(((-752) (-134)) (T -752)) -NIL -(-13 (-754) (-23)) -(((-23) . T) ((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-754) . T) ((-807) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-2169 (($ $ $) 27)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) -(((-753) (-134)) (T -753)) -((-2169 (*1 *1 *1 *1) (-4 *1 (-753)))) -(-13 (-755) (-10 -8 (-15 -2169 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21))) -(((-754) (-134)) (T -754)) -NIL -(-13 (-807) (-25)) -(((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) +((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-751)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992)))))) (-2688 (*1 *2 *3 *2) (-12 (-4 *1 (-751)) (-5 *2 (-992)) (-5 *3 (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) (-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-751)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992)))))) (-2688 (*1 *2 *3 *2) (-12 (-4 *1 (-751)) (-5 *2 (-992)) (-5 *3 (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) +(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2688 ((-992) (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) (|:| |extra| (-992))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2688 ((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) (-992))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2691 (((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363))) 44) (((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 43)) (-2692 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 50)) (-2690 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 41)) (-2689 (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363))) 52) (((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))) 51))) +(((-752) (-10 -7 (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2690 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2692 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))))) (T -752)) +((-2692 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-526)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-526)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2690 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) +(-10 -7 (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2689 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2690 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)))) (-15 -2691 ((-1211) (-1205 (-363)) (-526) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363))) (-363) (-1205 (-363)) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)) (-1205 (-363)))) (-15 -2692 ((-1211) (-1205 (-363)) (-526) (-363) (-363) (-526) (-1 (-1211) (-1205 (-363)) (-1205 (-363)) (-363))))) +((-2701 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 53)) (-2698 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 31)) (-2700 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 52)) (-2697 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 29)) (-2699 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 51)) (-2696 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)) 19)) (-2695 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 32)) (-2694 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 30)) (-2693 (((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526)) 28))) +(((-753) (-10 -7 (-15 -2693 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2694 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2695 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2696 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2697 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2698 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2699 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2700 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2701 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))))) (T -753)) +((-2701 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2700 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2699 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2698 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2697 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2696 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2695 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2694 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526)))) (-2693 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) (|:| |success| (-111)))) (-5 *1 (-753)) (-5 *5 (-526))))) +(-10 -7 (-15 -2693 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2694 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2695 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526) (-526))) (-15 -2696 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2697 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2698 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2699 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2700 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526))) (-15 -2701 ((-2 (|:| -3721 (-363)) (|:| -1632 (-363)) (|:| |totalpts| (-526)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-526) (-526)))) +((-4027 (((-1155 |#1|) |#1| (-211) (-526)) 46))) +(((-754 |#1|) (-10 -7 (-15 -4027 ((-1155 |#1|) |#1| (-211) (-526)))) (-933)) (T -754)) +((-4027 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-211)) (-5 *5 (-526)) (-5 *2 (-1155 *3)) (-5 *1 (-754 *3)) (-4 *3 (-933))))) +(-10 -7 (-15 -4027 ((-1155 |#1|) |#1| (-211) (-526)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4156 (($ $ $) 28) (($ $) 27)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25) (($ (-526) $) 29))) (((-755) (-134)) (T -755)) NIL -(-13 (-752) (-129)) -(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-807) . T) ((-1045) . T)) -((-1656 (((-111) $) 41)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 42)) (-2484 (((-3 (-391 (-537)) "failed") $) 78)) (-1797 (((-111) $) 72)) (-2616 (((-391 (-537)) $) 76)) (-2055 ((|#2| $) 26)) (-1612 (($ (-1 |#2| |#2|) $) 23)) (-3865 (($ $) 61)) (-3996 (((-513) $) 67)) (-1978 (($ $) 21)) (-2341 (((-816) $) 56) (($ (-537)) 39) (($ |#2|) 37) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 10)) (-2209 ((|#2| $) 71)) (-2244 (((-111) $ $) 29)) (-2263 (((-111) $ $) 69)) (-2329 (($ $) 31) (($ $ $) NIL)) (-2318 (($ $ $) 30)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-756 |#1| |#2|) (-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-757 |#2|) (-163)) (T -756)) -((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-756 *3 *4)) (-4 *3 (-757 *4))))) -(-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3151 (((-731)) 51 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 92 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 90 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 88)) (-3958 (((-537) $) 93 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 91 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 87)) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 77)) (-2484 (((-3 (-391 (-537)) "failed") $) 64 (|has| |#1| (-522)))) (-1797 (((-111) $) 66 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 65 (|has| |#1| (-522)))) (-1618 (($) 54 (|has| |#1| (-352)))) (-2836 (((-111) $) 30)) (-2683 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2055 ((|#1| $) 69)) (-2444 (($ $ $) 60 (|has| |#1| (-807)))) (-3889 (($ $ $) 59 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 79)) (-2334 (((-874) $) 53 (|has| |#1| (-352)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 63 (|has| |#1| (-347)))) (-2009 (($ (-874)) 52 (|has| |#1| (-352)))) (-3454 ((|#1| $) 74)) (-3971 ((|#1| $) 75)) (-4054 ((|#1| $) 76)) (-1821 ((|#1| $) 70)) (-2168 ((|#1| $) 71)) (-2963 ((|#1| $) 72)) (-2134 ((|#1| $) 73)) (-2528 (((-1064) $) 10)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 85 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 83 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 82 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 81 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 80 (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) 86 (|has| |#1| (-270 |#1| |#1|)))) (-3996 (((-513) $) 61 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 78)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 89 (|has| |#1| (-989 (-391 (-537)))))) (-2644 (((-3 $ "failed") $) 62 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2209 ((|#1| $) 67 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 57 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 56 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 58 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 55 (|has| |#1| (-807)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-757 |#1|) (-134) (-163)) (T -757)) -((-1978 (*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2683 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) -(-13 (-37 |t#1|) (-395 |t#1|) (-322 |t#1|) (-10 -8 (-15 -1978 ($ $)) (-15 -3645 (|t#1| $)) (-15 -4054 (|t#1| $)) (-15 -3971 (|t#1| $)) (-15 -3454 (|t#1| $)) (-15 -2134 (|t#1| $)) (-15 -2963 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -1821 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -2683 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-347)) (-15 -3865 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-352) |has| |#1| (-352)) ((-322 |#1|) . T) ((-395 |#1|) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-757 |#2|) (-163) (-757 |#4|) (-163)) (T -758)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-757 *6)) (-5 *1 (-758 *4 *5 *2 *6)) (-4 *4 (-757 *5))))) -(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-951 |#1|) "failed") $) 35) (((-3 (-537) "failed") $) NIL (-1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537))))) (((-3 (-391 (-537)) "failed") $) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 ((|#1| $) NIL) (((-951 |#1|) $) 33) (((-537) $) NIL (-1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537))))) (((-391 (-537)) $) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 16)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-1618 (($) NIL (|has| |#1| (-352)))) (-2836 (((-111) $) NIL)) (-2683 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-951 |#1|) (-951 |#1|)) 29)) (-2055 ((|#1| $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-3454 ((|#1| $) 22)) (-3971 ((|#1| $) 20)) (-4054 ((|#1| $) 18)) (-1821 ((|#1| $) 26)) (-2168 ((|#1| $) 25)) (-2963 ((|#1| $) 24)) (-2134 ((|#1| $) 23)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-951 |#1|)) 30) (($ (-391 (-537))) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2209 ((|#1| $) NIL (|has| |#1| (-1007)))) (-2928 (($) 8 T CONST)) (-2943 (($) 12 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-759 |#1|) (-13 (-757 |#1|) (-395 (-951 |#1|)) (-10 -8 (-15 -2683 ($ (-951 |#1|) (-951 |#1|))))) (-163)) (T -759)) -((-2683 (*1 *1 *2 *2) (-12 (-5 *2 (-951 *3)) (-4 *3 (-163)) (-5 *1 (-759 *3))))) -(-13 (-757 |#1|) (-395 (-951 |#1|)) (-10 -8 (-15 -2683 ($ (-951 |#1|) (-951 |#1|))))) -((-2330 (((-111) $ $) 7)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 13)) (-2244 (((-111) $ $) 6))) -(((-760) (-134)) (T -760)) -((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-760)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-1723 (*1 *2 *3) (-12 (-4 *1 (-760)) (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-986))))) -(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -1723 ((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-1925 (((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)) 19))) -(((-761 |#1| |#2| |#3|) (-10 -7 (-15 -1925 ((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912)) (-617 |#2|)) (T -761)) -((-1925 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-4 *4 (-13 (-29 *6) (-1139) (-912))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) (-5 *1 (-761 *6 *4 *3)) (-4 *3 (-617 *4))))) -(-10 -7 (-15 -1925 ((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)))) -((-1895 (((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)) 28) (((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117)) 18) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117)) 24) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117)) 26) (((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117)) 37) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117)) 35))) -(((-762 |#1| |#2|) (-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117))) (-15 -1895 ((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117))) (-15 -1895 ((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -1895 ((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -762)) -((-1895 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-278 *2)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-762 *6 *2)))) (-1895 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-113)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-5 *1 (-762 *6 *2)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2122 (-606 *3))) *3 "failed")) (-5 *1 (-762 *6 *3)) (-4 *3 (-13 (-29 *6) (-1139) (-912))))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2122 (-606 *7))) *7 "failed")) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 *6)) (-5 *4 (-1117)) (-4 *6 (-13 (-29 *5) (-1139) (-912))) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-1200 *6))) (-5 *1 (-762 *5 *6)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)) (-5 *4 (-1200 *7))))) -(-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117))) (-15 -1895 ((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117))) (-15 -1895 ((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -1895 ((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)))) -((-3506 (($) 9)) (-3821 (((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 31)) (-1688 (((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $) 28)) (-3499 (($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) 25)) (-3507 (($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) 23)) (-2206 (((-1205)) 12))) -(((-763) (-10 -8 (-15 -3506 ($)) (-15 -2206 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3507 ($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -3821 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -763)) -((-3821 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *1 (-763)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) (-5 *1 (-763)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-5 *1 (-763)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-5 *1 (-763)))) (-2206 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-763)))) (-3506 (*1 *1) (-5 *1 (-763)))) -(-10 -8 (-15 -3506 ($)) (-15 -2206 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3507 ($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -3821 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) -((-3129 ((|#2| |#2| (-1117)) 16)) (-1596 ((|#2| |#2| (-1117)) 51)) (-1303 (((-1 |#2| |#2|) (-1117)) 11))) -(((-764 |#1| |#2|) (-10 -7 (-15 -3129 (|#2| |#2| (-1117))) (-15 -1596 (|#2| |#2| (-1117))) (-15 -1303 ((-1 |#2| |#2|) (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -764)) -((-1303 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-1 *5 *5)) (-5 *1 (-764 *4 *5)) (-4 *5 (-13 (-29 *4) (-1139) (-912))))) (-1596 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912))))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912)))))) -(-10 -7 (-15 -3129 (|#2| |#2| (-1117))) (-15 -1596 (|#2| |#2| (-1117))) (-15 -1303 ((-1 |#2| |#2|) (-1117)))) -((-1895 (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363)) 116) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363)) 117) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363)) 119) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363)) 120) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363)) 121) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363))) 122) (((-986) (-768) (-1010)) 108) (((-986) (-768)) 109)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010)) 75) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768)) 77))) -(((-765) (-10 -7 (-15 -1895 ((-986) (-768))) (-15 -1895 ((-986) (-768) (-1010))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010))))) (T -765)) -((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-765)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-986)) (-5 *1 (-765))))) -(-10 -7 (-15 -1895 ((-986) (-768))) (-15 -1895 ((-986) (-768) (-1010))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010)))) -((-3102 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|) 35))) -(((-766 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|))) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -766)) -((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *4)) (-4 *4 (-326 *5 *6 *7)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-766 *5 *6 *7 *4))))) -(-10 -7 (-15 -3102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|))) -((-1478 (((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))) 52)) (-1770 (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|) 60) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|) 59) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|) 20) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|) 21)) (-1689 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3636 ((|#2| |#3| (-606 (-391 |#2|))) 93) (((-3 |#2| "failed") |#3| (-391 |#2|)) 90))) -(((-767 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-391 |#2|))) (-15 -3636 (|#2| |#3| (-606 (-391 |#2|)))) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|)) (-15 -1689 (|#2| |#3| |#1|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|)) (-15 -1689 (|#2| |#4| |#1|)) (-15 -1478 ((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))))) (-13 (-347) (-141) (-989 (-391 (-537)))) (-1176 |#1|) (-617 |#2|) (-617 (-391 |#2|))) (T -767)) -((-1478 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-2 (|:| -4113 *7) (|:| |rh| (-606 (-391 *6))))) (-5 *1 (-767 *5 *6 *7 *3)) (-5 *4 (-606 (-391 *6))) (-4 *7 (-617 *6)) (-4 *3 (-617 (-391 *6))))) (-1689 (*1 *2 *3 *4) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *5 *3)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-617 *2)) (-4 *3 (-617 (-391 *2))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) (-5 *1 (-767 *5 *4 *6 *3)) (-4 *6 (-617 *4)) (-4 *3 (-617 (-391 *4))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) (-5 *1 (-767 *4 *5 *6 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 (-391 *5))))) (-1689 (*1 *2 *3 *4) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *3 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *5 (-617 (-391 *2))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) (-5 *1 (-767 *5 *4 *3 *6)) (-4 *3 (-617 *4)) (-4 *6 (-617 (-391 *4))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) (-5 *1 (-767 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-617 (-391 *5))))) (-3636 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-391 *2))) (-4 *2 (-1176 *5)) (-5 *1 (-767 *5 *2 *3 *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *6 (-617 (-391 *2))))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-391 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-767 *5 *2 *3 *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *6 (-617 *4))))) -(-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-391 |#2|))) (-15 -3636 (|#2| |#3| (-606 (-391 |#2|)))) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|)) (-15 -1689 (|#2| |#3| |#1|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|)) (-15 -1689 (|#2| |#4| |#1|)) (-15 -1478 ((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))))) -((-2330 (((-111) $ $) NIL)) (-3958 (((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $) 13)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 15) (($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 12)) (-2244 (((-111) $ $) NIL))) -(((-768) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $))))) (T -768)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-768)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-768)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-768))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $)))) -((-1377 (((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|)) 118)) (-2785 (((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|)) 46)) (-2511 (((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|) 95)) (-3581 ((|#2| |#3|) 37)) (-3867 (((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|)) 82)) (-2332 ((|#3| |#3| (-391 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3581 (|#2| |#3|)) (-15 -2511 ((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|)) (-15 -3867 ((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2332 (|#3| |#3| |#2|)) (-15 -2332 (|#3| |#3| (-391 |#2|)))) (-13 (-347) (-141) (-989 (-391 (-537)))) (-1176 |#1|) (-617 |#2|) (-617 (-391 |#2|))) (T -769)) -((-2332 (*1 *2 *2 *3) (-12 (-5 *3 (-391 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *1 (-769 *4 *5 *2 *6)) (-4 *2 (-617 *5)) (-4 *6 (-617 *3)))) (-2332 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-1176 *4)) (-5 *1 (-769 *4 *3 *2 *5)) (-4 *2 (-617 *3)) (-4 *5 (-617 (-391 *3))))) (-1377 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-606 *7) *7 (-1113 *7))) (-5 *5 (-1 (-402 *7) *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |frac| (-391 *7)) (|:| -4113 *3)))) (-5 *1 (-769 *6 *7 *3 *8)) (-4 *3 (-617 *7)) (-4 *8 (-617 (-391 *7))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 *3)))) (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) (-4 *7 (-617 (-391 *6))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2787 *5) (|:| -4113 *3)))) (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) (-4 *7 (-617 (-391 *6))))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -4113 *5)))) (-5 *1 (-769 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-617 (-391 *5))))) (-3581 (*1 *2 *3) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-769 *4 *2 *3 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *5 (-617 (-391 *2)))))) -(-10 -7 (-15 -3581 (|#2| |#3|)) (-15 -2511 ((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|)) (-15 -3867 ((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2332 (|#3| |#3| |#2|)) (-15 -2332 (|#3| |#3| (-391 |#2|)))) -((-2625 (((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|))) 121) (((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|)) 120) (((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|))) 115) (((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|)) 113)) (-1692 ((|#2| (-615 |#2| (-391 |#2|))) 80) ((|#2| (-614 (-391 |#2|))) 83))) -(((-770 |#1| |#2|) (-10 -7 (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -1692 (|#2| (-614 (-391 |#2|)))) (-15 -1692 (|#2| (-615 |#2| (-391 |#2|))))) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -770)) -((-1692 (*1 *2 *3) (-12 (-5 *3 (-615 *2 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-614 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-770 *5 *6)))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-770 *5 *6))))) -(-10 -7 (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -1692 (|#2| (-614 (-391 |#2|)))) (-15 -1692 (|#2| (-615 |#2| (-391 |#2|))))) -((-4192 (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|) 48))) -(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4192 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|))) (-347) (-617 |#1|) (-1176 |#1|) (-685 |#1| |#3|) (-617 |#4|)) (T -771)) -((-4192 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *7 (-1176 *5)) (-4 *4 (-685 *5 *7)) (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) (-5 *1 (-771 *5 *6 *7 *4 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 *4))))) -(-10 -7 (-15 -4192 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|))) -((-1377 (((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 47)) (-1625 (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|))) 138 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-614 (-391 |#2|))) 140 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|)) 38) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 39) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|)) 36) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 37)) (-2785 (((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 83))) -(((-772 |#1| |#2|) (-10 -7 (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)))) |%noBranch|)) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -772)) -((-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-615 *5 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-614 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) (-2785 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 (-615 *6 (-391 *6)))))) (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6))))) (-1377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |frac| (-391 *6)) (|:| -4113 (-615 *6 (-391 *6)))))) (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6))))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-615 *7 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) (-5 *5 (-1 (-402 *7) *7)) (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-614 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) (-5 *5 (-1 (-402 *7) *7)) (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6))))) -(-10 -7 (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)))) |%noBranch|)) -((-4103 (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|)) 85) (((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|)) 15)) (-3874 (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)) 92)) (-1895 (((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|)) 43))) -(((-773 |#1| |#2|) (-10 -7 (-15 -4103 ((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|))) (-15 -4103 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|))) (-15 -3874 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)))) (-347) (-617 |#1|)) (T -773)) -((-3874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2122 (-606 *6))) *7 *6)) (-4 *6 (-347)) (-4 *7 (-617 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *6) "failed")) (|:| -2122 (-606 (-1200 *6))))) (-5 *1 (-773 *6 *7)) (-5 *4 (-1200 *6)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2122 (-606 *6))) "failed") *7 *6)) (-4 *6 (-347)) (-4 *7 (-617 *6)) (-5 *2 (-2 (|:| |particular| (-1200 *6)) (|:| -2122 (-649 *6)))) (-5 *1 (-773 *6 *7)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *6)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-617 *5)) (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *5)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| A (-649 *5)) (|:| |eqs| (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5)) (|:| -4113 *6) (|:| |rh| *5)))))) (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *6 (-617 *5))))) -(-10 -7 (-15 -4103 ((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|))) (-15 -4103 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|))) (-15 -3874 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)))) -((-3064 (((-649 |#1|) (-606 |#1|) (-731)) 13) (((-649 |#1|) (-606 |#1|)) 14)) (-2935 (((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|)) 34)) (-1431 (((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)) 42))) -(((-774 |#1| |#2|) (-10 -7 (-15 -3064 ((-649 |#1|) (-606 |#1|))) (-15 -3064 ((-649 |#1|) (-606 |#1|) (-731))) (-15 -2935 ((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|))) (-15 -1431 ((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)))) (-347) (-617 |#1|)) (T -774)) -((-1431 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-606 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-347)) (-5 *1 (-774 *2 *3)) (-4 *3 (-617 *2)))) (-2935 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-1200 *4)) (-5 *1 (-774 *4 *3)) (-4 *3 (-617 *4)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-347)) (-5 *2 (-649 *5)) (-5 *1 (-774 *5 *6)) (-4 *6 (-617 *5)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)) (-5 *1 (-774 *4 *5)) (-4 *5 (-617 *4))))) -(-10 -7 (-15 -3064 ((-649 |#1|) (-606 |#1|))) (-15 -3064 ((-649 |#1|) (-606 |#1|) (-731))) (-15 -2935 ((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|))) (-15 -1431 ((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) NIL (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) NIL (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) NIL)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) NIL (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) NIL (|has| |#2| (-129)) CONST)) (-2943 (($) NIL (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 11 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) NIL (|has| |#2| (-687))) (($ $ |#2|) NIL (|has| |#2| (-687))) (($ |#2| $) NIL (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-775 |#1| |#2| |#3|) (-223 |#1| |#2|) (-731) (-753) (-1 (-111) (-1200 |#2|) (-1200 |#2|))) (T -775)) -NIL -(-223 |#1| |#2|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ (-1117)) NIL)) (-3073 (((-731) $) NIL) (((-731) $ (-1117)) NIL)) (-3757 (((-606 (-778 (-1117))) $) NIL)) (-3588 (((-1113 $) $ (-778 (-1117))) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-778 (-1117)))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-778 (-1117)) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL) (((-3 (-1069 |#1| (-1117)) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-778 (-1117)) $) NIL) (((-1117) $) NIL) (((-1069 |#1| (-1117)) $) NIL)) (-4086 (($ $ $ (-778 (-1117))) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-778 (-1117))) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-778 (-1117))) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-778 (-1117)) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-778 (-1117)) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-778 (-1117))) NIL) (($ (-1113 $) (-778 (-1117))) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-778 (-1117))) NIL)) (-1883 (((-509 (-778 (-1117))) $) NIL) (((-731) $ (-778 (-1117))) NIL) (((-606 (-731)) $ (-606 (-778 (-1117)))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-778 (-1117))) (-509 (-778 (-1117)))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) (-1117)) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 (-778 (-1117)) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 (((-778 (-1117)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-778 (-1117))) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-778 (-1117)) |#1|) NIL) (($ $ (-606 (-778 (-1117))) (-606 |#1|)) NIL) (($ $ (-778 (-1117)) $) NIL) (($ $ (-606 (-778 (-1117))) (-606 $)) NIL) (($ $ (-1117) $) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 $)) NIL (|has| |#1| (-218))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ (-778 (-1117))) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-778 (-1117))) NIL) (($ $ (-606 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 (-1117)) $) NIL)) (-2872 (((-509 (-778 (-1117))) $) NIL) (((-731) $ (-778 (-1117))) NIL) (((-606 (-731)) $ (-606 (-778 (-1117)))) NIL) (((-731) $ (-1117)) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-778 (-1117))) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-778 (-1117))) NIL) (($ (-1117)) NIL) (($ (-1069 |#1| (-1117))) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-778 (-1117))) NIL) (($ $ (-606 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-776 |#1|) (-13 (-237 |#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) (-989 (-1069 |#1| (-1117)))) (-998)) (T -776)) -NIL -(-13 (-237 |#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) (-989 (-1069 |#1| (-1117)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-347)))) (-3377 (($ $) NIL (|has| |#2| (-347)))) (-4017 (((-111) $) NIL (|has| |#2| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#2| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-347)))) (-4099 (((-111) $ $) NIL (|has| |#2| (-347)))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#2| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#2| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#2| (-347)))) (-2639 (((-111) $) NIL (|has| |#2| (-347)))) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-2183 (($ (-606 $)) NIL (|has| |#2| (-347))) (($ $ $) NIL (|has| |#2| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 20 (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-347))) (($ $ $) NIL (|has| |#2| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-1930 (((-731) $) NIL (|has| |#2| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-3456 (($ $ (-731)) NIL) (($ $) 13)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-391 (-537))) NIL (|has| |#2| (-347))) (($ $) NIL (|has| |#2| (-347)))) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL (|has| |#2| (-347)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) 15 (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL) (($ $ (-537)) 18 (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-391 (-537)) $) NIL (|has| |#2| (-347))) (($ $ (-391 (-537))) NIL (|has| |#2| (-347))))) -(((-777 |#1| |#2| |#3|) (-13 (-110 $ $) (-218) (-10 -8 (IF (|has| |#2| (-347)) (-6 (-347)) |%noBranch|) (-15 -2341 ($ |#2|)) (-15 -2341 (|#2| $)))) (-1045) (-853 |#1|) |#1|) (T -777)) -((-2341 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-14 *4 *3) (-5 *1 (-777 *3 *2 *4)) (-4 *2 (-853 *3)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-853 *3)) (-5 *1 (-777 *3 *2 *4)) (-4 *3 (-1045)) (-14 *4 *3)))) -(-13 (-110 $ $) (-218) (-10 -8 (IF (|has| |#2| (-347)) (-6 (-347)) |%noBranch|) (-15 -2341 ($ |#2|)) (-15 -2341 (|#2| $)))) -((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) NIL)) (-1890 ((|#1| $) 10)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4231 (((-731) $) 11)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2441 (($ |#1| (-731)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL))) -(((-778 |#1|) (-250 |#1|) (-807)) (T -778)) -NIL -(-250 |#1|) -((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 29)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3200 (($ $) 31)) (-3490 (((-3 $ "failed") $) NIL)) (-1308 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2836 (((-111) $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-731) $ (-537)) NIL)) (-2177 (($ $) 36)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2680 (((-111) $ $) 34)) (-3845 (((-731) $) 25)) (-1654 (((-1100) $) NIL)) (-4041 (($ $ $) NIL)) (-2532 (($ $ $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) 30)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) NIL)) (-3527 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2943 (($) 15 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ |#1| (-731)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-779 |#1|) (-13 (-803) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -3188 (|#1| $)) (-15 -3200 ($ $)) (-15 -2177 ($ $)) (-15 -2680 ((-111) $ $)) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -2896 ((-3 $ "failed") $ |#1|)) (-15 -3139 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -3845 ((-731) $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -779)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-2532 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-4041 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3139 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3139 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3527 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |rm| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-1308 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |mm| (-779 *3)) (|:| |rm| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-779 *4)) (-4 *4 (-807)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-779 *3)) (-4 *3 (-807))))) -(-13 (-803) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -3188 (|#1| $)) (-15 -3200 ($ $)) (-15 -2177 ($ $)) (-15 -2680 ((-111) $ $)) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -2896 ((-3 $ "failed") $ |#1|)) (-15 -3139 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -3845 ((-731) $)) (-15 -2163 ((-606 |#1|) $)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-2537 (((-537) $) 51)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-3797 (((-111) $) 49)) (-2836 (((-111) $) 30)) (-2840 (((-111) $) 50)) (-2444 (($ $ $) 48)) (-3889 (($ $ $) 47)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 52)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 45)) (-2271 (((-111) $ $) 44)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 46)) (-2263 (((-111) $ $) 43)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-780) (-134)) (T -780)) -NIL -(-13 (-529) (-805)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-3043 (($ (-1064)) 7)) (-3972 (((-111) $ (-1100) (-1064)) 15)) (-3067 (((-782) $) 12)) (-2094 (((-782) $) 11)) (-4083 (((-1205) $) 9)) (-3225 (((-111) $ (-1064)) 16))) -(((-781) (-10 -8 (-15 -3043 ($ (-1064))) (-15 -4083 ((-1205) $)) (-15 -2094 ((-782) $)) (-15 -3067 ((-782) $)) (-15 -3972 ((-111) $ (-1100) (-1064))) (-15 -3225 ((-111) $ (-1064))))) (T -781)) -((-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-111)) (-5 *1 (-781)))) (-3972 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-1064)) (-5 *2 (-111)) (-5 *1 (-781)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-781)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-781))))) -(-10 -8 (-15 -3043 ($ (-1064))) (-15 -4083 ((-1205) $)) (-15 -2094 ((-782) $)) (-15 -3067 ((-782) $)) (-15 -3972 ((-111) $ (-1100) (-1064))) (-15 -3225 ((-111) $ (-1064)))) -((-3386 (((-1205) $ (-783)) 12)) (-1243 (((-1205) $ (-1117)) 32)) (-3327 (((-1205) $ (-1100) (-1100)) 34)) (-3150 (((-1205) $ (-1100)) 33)) (-2976 (((-1205) $) 19)) (-2957 (((-1205) $ (-537)) 28)) (-1725 (((-1205) $ (-210)) 30)) (-1718 (((-1205) $) 18)) (-3526 (((-1205) $) 26)) (-4037 (((-1205) $) 25)) (-1945 (((-1205) $) 23)) (-2046 (((-1205) $) 24)) (-2204 (((-1205) $) 22)) (-2837 (((-1205) $) 21)) (-2929 (((-1205) $) 20)) (-2924 (((-1205) $) 16)) (-3392 (((-1205) $) 17)) (-3152 (((-1205) $) 15)) (-4169 (((-1205) $) 14)) (-1263 (((-1205) $) 13)) (-2717 (($ (-1100) (-783)) 9)) (-3482 (($ (-1100) (-1100) (-783)) 8)) (-3710 (((-1117) $) 51)) (-2761 (((-1117) $) 55)) (-2038 (((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $) 54)) (-2064 (((-1100) $) 52)) (-2303 (((-1205) $) 41)) (-3489 (((-537) $) 49)) (-1463 (((-210) $) 50)) (-1986 (((-1205) $) 40)) (-2643 (((-1205) $) 48)) (-3336 (((-1205) $) 47)) (-4253 (((-1205) $) 45)) (-1776 (((-1205) $) 46)) (-3379 (((-1205) $) 44)) (-4021 (((-1205) $) 43)) (-1476 (((-1205) $) 42)) (-3180 (((-1205) $) 38)) (-3407 (((-1205) $) 39)) (-2914 (((-1205) $) 37)) (-3346 (((-1205) $) 36)) (-1312 (((-1205) $) 35)) (-2428 (((-1205) $) 11))) -(((-782) (-10 -8 (-15 -3482 ($ (-1100) (-1100) (-783))) (-15 -2717 ($ (-1100) (-783))) (-15 -2428 ((-1205) $)) (-15 -3386 ((-1205) $ (-783))) (-15 -1263 ((-1205) $)) (-15 -4169 ((-1205) $)) (-15 -3152 ((-1205) $)) (-15 -2924 ((-1205) $)) (-15 -3392 ((-1205) $)) (-15 -1718 ((-1205) $)) (-15 -2976 ((-1205) $)) (-15 -2929 ((-1205) $)) (-15 -2837 ((-1205) $)) (-15 -2204 ((-1205) $)) (-15 -1945 ((-1205) $)) (-15 -2046 ((-1205) $)) (-15 -4037 ((-1205) $)) (-15 -3526 ((-1205) $)) (-15 -2957 ((-1205) $ (-537))) (-15 -1725 ((-1205) $ (-210))) (-15 -1243 ((-1205) $ (-1117))) (-15 -3150 ((-1205) $ (-1100))) (-15 -3327 ((-1205) $ (-1100) (-1100))) (-15 -1312 ((-1205) $)) (-15 -3346 ((-1205) $)) (-15 -2914 ((-1205) $)) (-15 -3180 ((-1205) $)) (-15 -3407 ((-1205) $)) (-15 -1986 ((-1205) $)) (-15 -2303 ((-1205) $)) (-15 -1476 ((-1205) $)) (-15 -4021 ((-1205) $)) (-15 -3379 ((-1205) $)) (-15 -4253 ((-1205) $)) (-15 -1776 ((-1205) $)) (-15 -3336 ((-1205) $)) (-15 -2643 ((-1205) $)) (-15 -3489 ((-537) $)) (-15 -1463 ((-210) $)) (-15 -3710 ((-1117) $)) (-15 -2064 ((-1100) $)) (-15 -2038 ((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $)) (-15 -2761 ((-1117) $)))) (T -782)) -((-2761 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1100)) (|:| -3923 (-1100)))) (-5 *1 (-782)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-782)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-782)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-782)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3327 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-3150 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-1243 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-1725 (*1 *2 *1 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-2957 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2717 (*1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782)))) (-3482 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) -(-10 -8 (-15 -3482 ($ (-1100) (-1100) (-783))) (-15 -2717 ($ (-1100) (-783))) (-15 -2428 ((-1205) $)) (-15 -3386 ((-1205) $ (-783))) (-15 -1263 ((-1205) $)) (-15 -4169 ((-1205) $)) (-15 -3152 ((-1205) $)) (-15 -2924 ((-1205) $)) (-15 -3392 ((-1205) $)) (-15 -1718 ((-1205) $)) (-15 -2976 ((-1205) $)) (-15 -2929 ((-1205) $)) (-15 -2837 ((-1205) $)) (-15 -2204 ((-1205) $)) (-15 -1945 ((-1205) $)) (-15 -2046 ((-1205) $)) (-15 -4037 ((-1205) $)) (-15 -3526 ((-1205) $)) (-15 -2957 ((-1205) $ (-537))) (-15 -1725 ((-1205) $ (-210))) (-15 -1243 ((-1205) $ (-1117))) (-15 -3150 ((-1205) $ (-1100))) (-15 -3327 ((-1205) $ (-1100) (-1100))) (-15 -1312 ((-1205) $)) (-15 -3346 ((-1205) $)) (-15 -2914 ((-1205) $)) (-15 -3180 ((-1205) $)) (-15 -3407 ((-1205) $)) (-15 -1986 ((-1205) $)) (-15 -2303 ((-1205) $)) (-15 -1476 ((-1205) $)) (-15 -4021 ((-1205) $)) (-15 -3379 ((-1205) $)) (-15 -4253 ((-1205) $)) (-15 -1776 ((-1205) $)) (-15 -3336 ((-1205) $)) (-15 -2643 ((-1205) $)) (-15 -3489 ((-537) $)) (-15 -1463 ((-210) $)) (-15 -3710 ((-1117) $)) (-15 -2064 ((-1100) $)) (-15 -2038 ((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $)) (-15 -2761 ((-1117) $))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 12)) (-2452 (($) 15)) (-3711 (($) 13)) (-2391 (($) 16)) (-1700 (($) 14)) (-2244 (((-111) $ $) 8))) -(((-783) (-13 (-1045) (-10 -8 (-15 -3711 ($)) (-15 -2452 ($)) (-15 -2391 ($)) (-15 -1700 ($))))) (T -783)) -((-3711 (*1 *1) (-5 *1 (-783))) (-2452 (*1 *1) (-5 *1 (-783))) (-2391 (*1 *1) (-5 *1 (-783))) (-1700 (*1 *1) (-5 *1 (-783)))) -(-13 (-1045) (-10 -8 (-15 -3711 ($)) (-15 -2452 ($)) (-15 -2391 ($)) (-15 -1700 ($)))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21) (($ (-1117)) 17)) (-1592 (((-111) $) 10)) (-3818 (((-111) $) 9)) (-3339 (((-111) $) 11)) (-4026 (((-111) $) 8)) (-2244 (((-111) $ $) 19))) -(((-784) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -4026 ((-111) $)) (-15 -3818 ((-111) $)) (-15 -1592 ((-111) $)) (-15 -3339 ((-111) $))))) (T -784)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-784)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -4026 ((-111) $)) (-15 -3818 ((-111) $)) (-15 -1592 ((-111) $)) (-15 -3339 ((-111) $)))) -((-2330 (((-111) $ $) NIL)) (-2200 (($ (-784) (-606 (-1117))) 24)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4126 (((-784) $) 25)) (-2579 (((-606 (-1117)) $) 26)) (-2341 (((-816) $) 23)) (-2244 (((-111) $ $) NIL))) -(((-785) (-13 (-1045) (-10 -8 (-15 -4126 ((-784) $)) (-15 -2579 ((-606 (-1117)) $)) (-15 -2200 ($ (-784) (-606 (-1117))))))) (T -785)) -((-4126 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-785)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-785)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-606 (-1117))) (-5 *1 (-785))))) -(-13 (-1045) (-10 -8 (-15 -4126 ((-784) $)) (-15 -2579 ((-606 (-1117)) $)) (-15 -2200 ($ (-784) (-606 (-1117)))))) -((-1379 (((-1205) (-782) (-300 |#1|) (-111)) 23) (((-1205) (-782) (-300 |#1|)) 79) (((-1100) (-300 |#1|) (-111)) 78) (((-1100) (-300 |#1|)) 77))) -(((-786 |#1|) (-10 -7 (-15 -1379 ((-1100) (-300 |#1|))) (-15 -1379 ((-1100) (-300 |#1|) (-111))) (-15 -1379 ((-1205) (-782) (-300 |#1|))) (-15 -1379 ((-1205) (-782) (-300 |#1|) (-111)))) (-13 (-788) (-807) (-998))) (T -786)) -((-1379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782)) (-5 *4 (-300 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) (-5 *1 (-786 *6)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-300 *5)) (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) (-5 *1 (-786 *5)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) (-5 *1 (-786 *5)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) (-5 *1 (-786 *4))))) -(-10 -7 (-15 -1379 ((-1100) (-300 |#1|))) (-15 -1379 ((-1100) (-300 |#1|) (-111))) (-15 -1379 ((-1205) (-782) (-300 |#1|))) (-15 -1379 ((-1205) (-782) (-300 |#1|) (-111)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1984 ((|#1| $) 10)) (-4157 (($ |#1|) 9)) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) NIL)) (-1883 (((-731) $) NIL)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2872 (((-731) $) NIL)) (-2341 (((-816) $) 17) (($ (-537)) NIL) (($ |#2|) NIL (|has| |#2| (-163)))) (-3500 ((|#2| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-787 |#1| |#2|) (-13 (-669 |#2|) (-10 -8 (IF (|has| |#1| (-218)) (-6 (-218)) |%noBranch|) (-15 -4157 ($ |#1|)) (-15 -1984 (|#1| $)))) (-669 |#2|) (-998)) (T -787)) -((-4157 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-787 *2 *3)) (-4 *2 (-669 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *2 (-669 *3)) (-5 *1 (-787 *2 *3)) (-4 *3 (-998))))) -(-13 (-669 |#2|) (-10 -8 (IF (|has| |#1| (-218)) (-6 (-218)) |%noBranch|) (-15 -4157 ($ |#1|)) (-15 -1984 (|#1| $)))) -((-1379 (((-1205) (-782) $ (-111)) 9) (((-1205) (-782) $) 8) (((-1100) $ (-111)) 7) (((-1100) $) 6))) -(((-788) (-134)) (T -788)) -((-1379 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *4 (-111)) (-5 *2 (-1205)))) (-1379 (*1 *2 *3 *1) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *2 (-1205)))) (-1379 (*1 *2 *1 *3) (-12 (-4 *1 (-788)) (-5 *3 (-111)) (-5 *2 (-1100)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-788)) (-5 *2 (-1100))))) -(-13 (-10 -8 (-15 -1379 ((-1100) $)) (-15 -1379 ((-1100) $ (-111))) (-15 -1379 ((-1205) (-782) $)) (-15 -1379 ((-1205) (-782) $ (-111))))) -((-2786 (((-296) (-1100) (-1100)) 12)) (-2246 (((-111) (-1100) (-1100)) 34)) (-4101 (((-111) (-1100)) 33)) (-4244 (((-51) (-1100)) 25)) (-2828 (((-51) (-1100)) 23)) (-1240 (((-51) (-782)) 17)) (-2665 (((-606 (-1100)) (-1100)) 28)) (-1666 (((-606 (-1100))) 27))) -(((-789) (-10 -7 (-15 -1240 ((-51) (-782))) (-15 -2828 ((-51) (-1100))) (-15 -4244 ((-51) (-1100))) (-15 -1666 ((-606 (-1100)))) (-15 -2665 ((-606 (-1100)) (-1100))) (-15 -4101 ((-111) (-1100))) (-15 -2246 ((-111) (-1100) (-1100))) (-15 -2786 ((-296) (-1100) (-1100))))) (T -789)) -((-2786 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-789)))) (-2246 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789)))) (-2665 (*1 *2 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)) (-5 *3 (-1100)))) (-1666 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789)))) (-1240 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-51)) (-5 *1 (-789))))) -(-10 -7 (-15 -1240 ((-51) (-782))) (-15 -2828 ((-51) (-1100))) (-15 -4244 ((-51) (-1100))) (-15 -1666 ((-606 (-1100)))) (-15 -2665 ((-606 (-1100)) (-1100))) (-15 -4101 ((-111) (-1100))) (-15 -2246 ((-111) (-1100) (-1100))) (-15 -2786 ((-296) (-1100) (-1100)))) -((-2330 (((-111) $ $) 19)) (-4221 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) 8)) (-1272 (($ (-606 |#1|)) 68) (($) 67)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 64)) (-1642 (((-111) $ (-731)) 9)) (-2444 ((|#1| $) 78)) (-1646 (($ $ $) 81)) (-1470 (($ $ $) 80)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 79)) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 69)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-2867 (($ $ |#1|) 71) (($ $ $) 70)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18)) (-3575 (($ (-606 |#1|)) 66) (($) 65)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-790 |#1|) (-134) (-807)) (T -790)) -((-2444 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-807))))) -(-13 (-697 |t#1|) (-921 |t#1|) (-10 -8 (-15 -2444 (|t#1| $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-655 |#1|) . T) ((-697 |#1|) . T) ((-921 |#1|) . T) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) -((-3637 (((-1205) (-1064) (-1064)) 47)) (-1942 (((-1205) (-781) (-51)) 44)) (-1793 (((-51) (-781)) 16))) -(((-791) (-10 -7 (-15 -1793 ((-51) (-781))) (-15 -1942 ((-1205) (-781) (-51))) (-15 -3637 ((-1205) (-1064) (-1064))))) (T -791)) -((-3637 (*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1205)) (-5 *1 (-791)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-51)) (-5 *2 (-1205)) (-5 *1 (-791)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-51)) (-5 *1 (-791))))) -(-10 -7 (-15 -1793 ((-51) (-781))) (-15 -1942 ((-1205) (-781) (-51))) (-15 -3637 ((-1205) (-1064) (-1064)))) -((-1612 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)) 12) (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 13))) -(((-792 |#1| |#2|) (-10 -7 (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|))) (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)))) (-1045) (-1045)) (T -792)) -((-1612 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-792 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) -(-10 -7 (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|))) (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL (|has| |#1| (-21)) CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 15)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 9)) (-3490 (((-3 $ "failed") $) 40 (|has| |#1| (-805)))) (-2484 (((-3 (-391 (-537)) "failed") $) 49 (|has| |#1| (-522)))) (-1797 (((-111) $) 43 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 46 (|has| |#1| (-522)))) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-2836 (((-111) $) NIL (|has| |#1| (-805)))) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-3349 (($) 13)) (-3973 (((-111) $) 12)) (-2528 (((-1064) $) NIL)) (-3344 (((-111) $) 11)) (-2341 (((-816) $) 18) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 8) (($ (-537)) NIL (-1533 (|has| |#1| (-805)) (|has| |#1| (-989 (-537)))))) (-3654 (((-731)) 34 (|has| |#1| (-805)))) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) 22 (|has| |#1| (-21)) CONST)) (-2943 (($) 31 (|has| |#1| (-805)) CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) 42 (|has| |#1| (-805)))) (-2329 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2318 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-874)) NIL (|has| |#1| (-805))) (($ $ (-731)) NIL (|has| |#1| (-805)))) (* (($ $ $) 37 (|has| |#1| (-805))) (($ (-537) $) 25 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-21))))) -(((-793 |#1|) (-13 (-1045) (-395 |#1|) (-10 -8 (-15 -3349 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) (-1045)) (T -793)) -((-3349 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1045)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045))))) -(-13 (-1045) (-395 |#1|) (-10 -8 (-15 -3349 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-113) $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-4177 ((|#1| (-113) |#1|) NIL)) (-2836 (((-111) $) NIL)) (-2650 (($ |#1| (-345 (-113))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3414 (($ $ (-1 |#1| |#1|)) NIL)) (-3146 (($ $ (-1 |#1| |#1|)) NIL)) (-1922 ((|#1| $ |#1|) NIL)) (-1668 ((|#1| |#1|) NIL (|has| |#1| (-163)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-4273 (($ $) NIL (|has| |#1| (-163))) (($ $ $) NIL (|has| |#1| (-163)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ (-113) (-537)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-794 |#1|) (-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#1| |#1|))) (-15 -3414 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#1| (-113) |#1|)) (-15 -2650 ($ |#1| (-345 (-113)))))) (-998)) (T -794)) -((-4273 (*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-4273 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-1668 (*1 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-5 *1 (-794 *4)) (-4 *4 (-998)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-794 *3)) (-4 *3 (-998)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-794 *2)) (-4 *2 (-998)))) (-2650 (*1 *1 *2 *3) (-12 (-5 *3 (-345 (-113))) (-5 *1 (-794 *2)) (-4 *2 (-998))))) -(-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#1| |#1|))) (-15 -3414 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#1| (-113) |#1|)) (-15 -2650 ($ |#1| (-345 (-113)))))) -((-3620 (((-200 (-483)) (-1100)) 9))) -(((-795) (-10 -7 (-15 -3620 ((-200 (-483)) (-1100))))) (T -795)) -((-3620 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-200 (-483))) (-5 *1 (-795))))) -(-10 -7 (-15 -3620 ((-200 (-483)) (-1100)))) -((-2330 (((-111) $ $) 7)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 14) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 13)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 16) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 15)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-796) (-134)) (T -796)) -((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-4118 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-986)))) (-4118 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *2 (-986))))) -(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -4118 ((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -4118 ((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2371 (((-986) (-606 (-300 (-363))) (-606 (-363))) 147) (((-986) (-300 (-363)) (-606 (-363))) 145) (((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363)))) 144) (((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363)))) 143) (((-986) (-798)) 117) (((-986) (-798) (-1010)) 116)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010)) 82) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798)) 84)) (-2419 (((-986) (-606 (-300 (-363))) (-606 (-363))) 148) (((-986) (-798)) 133))) -(((-797) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010))) (-15 -2371 ((-986) (-798) (-1010))) (-15 -2371 ((-986) (-798))) (-15 -2419 ((-986) (-798))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)))) (-15 -2371 ((-986) (-606 (-300 (-363))) (-606 (-363)))) (-15 -2419 ((-986) (-606 (-300 (-363))) (-606 (-363)))))) (T -797)) -((-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) (-5 *6 (-606 (-300 (-363)))) (-5 *3 (-300 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-797)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-797)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-797))))) -(-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010))) (-15 -2371 ((-986) (-798) (-1010))) (-15 -2371 ((-986) (-798))) (-15 -2419 ((-986) (-798))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)))) (-15 -2371 ((-986) (-606 (-300 (-363))) (-606 (-363)))) (-15 -2419 ((-986) (-606 (-300 (-363))) (-606 (-363))))) -((-2330 (((-111) $ $) NIL)) (-3958 (((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20) (($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 14) (($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) 18)) (-2244 (((-111) $ $) NIL))) -(((-798) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -2341 ($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2341 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $))))) (T -798)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *1 (-798)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *1 (-798))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -2341 ($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2341 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $)))) -((-1612 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)) 13) (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14))) -(((-799 |#1| |#2|) (-10 -7 (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))) (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)))) (-1045) (-1045)) (T -799)) -((-1612 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-800 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-799 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))) -(-10 -7 (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))) (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-2946 (((-1064) $) 24)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL (|has| |#1| (-21)) CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 16)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 9)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-805)))) (-2484 (((-3 (-391 (-537)) "failed") $) 54 (|has| |#1| (-522)))) (-1797 (((-111) $) 49 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 52 (|has| |#1| (-522)))) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-1548 (($) 13)) (-2836 (((-111) $) NIL (|has| |#1| (-805)))) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-1557 (($) 14)) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-3973 (((-111) $) 12)) (-2528 (((-1064) $) NIL)) (-3344 (((-111) $) 11)) (-2341 (((-816) $) 22) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 8) (($ (-537)) NIL (-1533 (|has| |#1| (-805)) (|has| |#1| (-989 (-537)))))) (-3654 (((-731)) 41 (|has| |#1| (-805)))) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) 29 (|has| |#1| (-21)) CONST)) (-2943 (($) 38 (|has| |#1| (-805)) CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) 27)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) 48 (|has| |#1| (-805)))) (-2329 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2318 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-874)) NIL (|has| |#1| (-805))) (($ $ (-731)) NIL (|has| |#1| (-805)))) (* (($ $ $) 44 (|has| |#1| (-805))) (($ (-537) $) 32 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-21))))) -(((-800 |#1|) (-13 (-1045) (-395 |#1|) (-10 -8 (-15 -1548 ($)) (-15 -1557 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (-15 -2946 ((-1064) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) (-1045)) (T -800)) -((-1548 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045)))) (-1557 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045))))) -(-13 (-1045) (-395 |#1|) (-10 -8 (-15 -1548 ($)) (-15 -1557 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (-15 -2946 ((-1064) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) -((-2330 (((-111) $ $) 7)) (-3151 (((-731)) 20)) (-1618 (($) 23)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-2334 (((-874) $) 22)) (-1654 (((-1100) $) 9)) (-2009 (($ (-874)) 21)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) -(((-801) (-134)) (T -801)) -NIL -(-13 (-807) (-352)) -(((-100) . T) ((-579 (-816)) . T) ((-352) . T) ((-807) . T) ((-1045) . T)) -((-3792 (((-111) (-1200 |#2|) (-1200 |#2|)) 17)) (-3546 (((-111) (-1200 |#2|) (-1200 |#2|)) 18)) (-3244 (((-111) (-1200 |#2|) (-1200 |#2|)) 14))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3244 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3792 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3546 ((-111) (-1200 |#2|) (-1200 |#2|)))) (-731) (-752)) (T -802)) -((-3546 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731)))) (-3792 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731)))) (-3244 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) -(-10 -7 (-15 -3244 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3792 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3546 ((-111) (-1200 |#2|) (-1200 |#2|)))) -((-2330 (((-111) $ $) 7)) (-3832 (($) 23 T CONST)) (-3490 (((-3 $ "failed") $) 26)) (-2836 (((-111) $) 24)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (** (($ $ (-874)) 21) (($ $ (-731)) 25)) (* (($ $ $) 20))) -(((-803) (-134)) (T -803)) -NIL -(-13 (-814) (-687)) -(((-100) . T) ((-579 (-816)) . T) ((-687) . T) ((-814) . T) ((-807) . T) ((-1057) . T) ((-1045) . T)) -((-2537 (((-537) $) 17)) (-3797 (((-111) $) 10)) (-2840 (((-111) $) 11)) (-2209 (($ $) 19))) -(((-804 |#1|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2537 ((-537) |#1|)) (-15 -2840 ((-111) |#1|)) (-15 -3797 ((-111) |#1|))) (-805)) (T -804)) -NIL -(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2537 ((-537) |#1|)) (-15 -2840 ((-111) |#1|)) (-15 -3797 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-2537 (((-537) $) 33)) (-3832 (($) 23 T CONST)) (-3490 (((-3 $ "failed") $) 38)) (-3797 (((-111) $) 35)) (-2836 (((-111) $) 40)) (-2840 (((-111) $) 34)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 43)) (-3654 (((-731)) 42)) (-2209 (($ $) 32)) (-2928 (($) 22 T CONST)) (-2943 (($) 41 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2329 (($ $ $) 28) (($ $) 27)) (-2318 (($ $ $) 20)) (** (($ $ (-731)) 39) (($ $ (-874)) 36)) (* (($ (-874) $) 21) (($ (-731) $) 25) (($ (-537) $) 29) (($ $ $) 37))) +(-13 (-761) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) +(((-756) (-134)) (T -756)) +NIL +(-13 (-758) (-23)) +(((-23) . T) ((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-758) . T) ((-811) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-2702 (($ $ $) 27)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) +(((-757) (-134)) (T -757)) +((-2702 (*1 *1 *1 *1) (-4 *1 (-757)))) +(-13 (-761) (-10 -8 (-15 -2702 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21))) +(((-758) (-134)) (T -758)) +NIL +(-13 (-811) (-25)) +(((-25) . T) ((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1052) . T)) +((-3502 (((-111) $) 41)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 42)) (-3324 (((-3 (-392 (-526)) "failed") $) 78)) (-3323 (((-111) $) 72)) (-3322 (((-392 (-526)) $) 76)) (-3429 ((|#2| $) 26)) (-4275 (($ (-1 |#2| |#2|) $) 23)) (-2703 (($ $) 61)) (-4287 (((-515) $) 67)) (-3309 (($ $) 21)) (-4274 (((-823) $) 56) (($ (-526)) 39) (($ |#2|) 37) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 10)) (-3702 ((|#2| $) 71)) (-3353 (((-111) $ $) 29)) (-2985 (((-111) $ $) 69)) (-4156 (($ $) 31) (($ $ $) NIL)) (-4158 (($ $ $) 30)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-759 |#1| |#2|) (-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-760 |#2|) (-163)) (T -759)) +((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-759 *3 *4)) (-4 *3 (-760 *4))))) +(-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3433 (((-735)) 51 (|has| |#1| (-353)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 92 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 90 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 88)) (-3469 (((-526) $) 93 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 91 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 87)) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 77)) (-3324 (((-3 (-392 (-526)) "failed") $) 64 (|has| |#1| (-525)))) (-3323 (((-111) $) 66 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 65 (|has| |#1| (-525)))) (-3294 (($) 54 (|has| |#1| (-353)))) (-2471 (((-111) $) 30)) (-2708 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3429 ((|#1| $) 69)) (-3637 (($ $ $) 60 (|has| |#1| (-811)))) (-3638 (($ $ $) 59 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 79)) (-2102 (((-878) $) 53 (|has| |#1| (-353)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 63 (|has| |#1| (-348)))) (-2461 (($ (-878)) 52 (|has| |#1| (-353)))) (-2705 ((|#1| $) 74)) (-2706 ((|#1| $) 75)) (-2707 ((|#1| $) 76)) (-3306 ((|#1| $) 70)) (-3307 ((|#1| $) 71)) (-3308 ((|#1| $) 72)) (-2704 ((|#1| $) 73)) (-3555 (((-1070) $) 10)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 85 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 83 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 82 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 81 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 80 (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) 86 (|has| |#1| (-271 |#1| |#1|)))) (-4287 (((-515) $) 61 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 78)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 89 (|has| |#1| (-995 (-392 (-526)))))) (-3002 (((-3 $ "failed") $) 62 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3702 ((|#1| $) 67 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 57 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 56 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 58 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 55 (|has| |#1| (-811)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-760 |#1|) (-134) (-163)) (T -760)) +((-3309 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2705 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-2708 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-2703 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) +(-13 (-37 |t#1|) (-397 |t#1|) (-323 |t#1|) (-10 -8 (-15 -3309 ($ $)) (-15 -3965 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -2706 (|t#1| $)) (-15 -2705 (|t#1| $)) (-15 -2704 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -2708 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-348)) (-15 -2703 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-353) |has| |#1| (-353)) ((-323 |#1|) . T) ((-397 |#1|) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3855 (($) 23 T CONST)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4158 (($ $ $) 20)) (* (($ (-878) $) 21) (($ (-735) $) 25))) +(((-761) (-134)) (T -761)) +NIL +(-13 (-756) (-129)) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-756) . T) ((-758) . T) ((-811) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) NIL) (((-3 (-954 |#1|) #1#) $) 35) (((-3 (-526) #1#) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-526))) (|has| |#1| (-995 (-526))))) (((-3 (-392 (-526)) #1#) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3469 ((|#1| $) NIL) (((-954 |#1|) $) 33) (((-526) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-526))) (|has| |#1| (-995 (-526))))) (((-392 (-526)) $) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 16)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3294 (($) NIL (|has| |#1| (-353)))) (-2471 (((-111) $) NIL)) (-2708 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-954 |#1|) (-954 |#1|)) 29)) (-3429 ((|#1| $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-2705 ((|#1| $) 22)) (-2706 ((|#1| $) 20)) (-2707 ((|#1| $) 18)) (-3306 ((|#1| $) 26)) (-3307 ((|#1| $) 25)) (-3308 ((|#1| $) 24)) (-2704 ((|#1| $) 23)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-954 |#1|)) 30) (($ (-392 (-526))) NIL (-3850 (|has| (-954 |#1|) (-995 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3702 ((|#1| $) NIL (|has| |#1| (-1013)))) (-2957 (($) 8 T CONST)) (-2964 (($) 12 T CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-762 |#1|) (-13 (-760 |#1|) (-397 (-954 |#1|)) (-10 -8 (-15 -2708 ($ (-954 |#1|) (-954 |#1|))))) (-163)) (T -762)) +((-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-163)) (-5 *1 (-762 *3))))) +(-13 (-760 |#1|) (-397 (-954 |#1|)) (-10 -8 (-15 -2708 ($ (-954 |#1|) (-954 |#1|))))) +((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-760 |#2|) (-163) (-760 |#4|) (-163)) (T -763)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-760 *6)) (-5 *1 (-763 *4 *5 *2 *6)) (-4 *4 (-760 *5))))) +(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) +((-2865 (((-111) $ $) 7)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2709 (((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 13)) (-3353 (((-111) $ $) 6))) +(((-764) (-134)) (T -764)) +((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-764)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-764)) (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-992))))) +(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -2709 ((-992) (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2710 (((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)) 19))) +(((-765 |#1| |#2| |#3|) (-10 -7 (-15 -2710 ((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919)) (-623 |#2|)) (T -765)) +((-2710 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-4 *4 (-13 (-29 *6) (-1145) (-919))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) (-5 *1 (-765 *6 *4 *3)) (-4 *3 (-623 *4))))) +(-10 -7 (-15 -2710 ((-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#3| |#2| (-1123)))) +((-3895 (((-3 |#2| #1="failed") |#2| (-112) (-278 |#2|) (-607 |#2|)) 28) (((-3 |#2| #1#) (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #2="failed") |#2| (-112) (-1123)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #2#) (-278 |#2|) (-112) (-1123)) 18) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123)) 24) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123)) 26) (((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123)) 37) (((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123)) 35))) +(((-766 |#1| |#2|) (-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123))) (-15 -3895 ((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1="failed") (-278 |#2|) (-112) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1#) |#2| (-112) (-1123))) (-15 -3895 ((-3 |#2| #2="failed") (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -3895 ((-3 |#2| #2#) |#2| (-112) (-278 |#2|) (-607 |#2|)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -766)) +((-3895 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-278 *2)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-766 *6 *2)))) (-3895 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-112)) (-5 *5 (-607 *2)) (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-5 *1 (-766 *6 *2)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1123)) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2104 (-607 *3))) *3 #1="failed")) (-5 *1 (-766 *6 *3)) (-4 *3 (-13 (-29 *6) (-1145) (-919))))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2104 (-607 *7))) *7 #1#)) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)))) (-3895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 *6)) (-5 *4 (-1123)) (-4 *6 (-13 (-29 *5) (-1145) (-919))) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-1205 *6))) (-5 *1 (-766 *5 *6)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 *7)) (-5 *5 (-1123)) (-4 *7 (-13 (-29 *6) (-1145) (-919))) (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) (-5 *1 (-766 *6 *7)) (-5 *4 (-1205 *7))))) +(-10 -7 (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-653 |#2|) (-1205 |#2|) (-1123))) (-15 -3895 ((-3 (-607 (-1205 |#2|)) "failed") (-653 |#2|) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 (-278 |#2|)) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#2|)) (|:| -2104 (-607 (-1205 |#2|)))) "failed") (-607 |#2|) (-607 (-112)) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1="failed") (-278 |#2|) (-112) (-1123))) (-15 -3895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-607 |#2|))) |#2| #1#) |#2| (-112) (-1123))) (-15 -3895 ((-3 |#2| #2="failed") (-278 |#2|) (-112) (-278 |#2|) (-607 |#2|))) (-15 -3895 ((-3 |#2| #2#) |#2| (-112) (-278 |#2|) (-607 |#2|)))) +((-2711 (($) 9)) (-2715 (((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 31)) (-2713 (((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $) 28)) (-3929 (($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) 25)) (-2714 (($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) 23)) (-2712 (((-1211)) 12))) +(((-767) (-10 -8 (-15 -2711 ($)) (-15 -2712 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2714 ($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -2715 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))))) (T -767)) +((-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *1 (-767)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) (-5 *1 (-767)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-5 *1 (-767)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-5 *1 (-767)))) (-2712 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-767)))) (-2711 (*1 *1) (-5 *1 (-767)))) +(-10 -8 (-15 -2711 ($)) (-15 -2712 ((-1211))) (-15 -2713 ((-607 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) $)) (-15 -2714 ($ (-607 (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3929 ($ (-2 (|:| -4179 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -2715 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) +((-3784 ((|#2| |#2| (-1123)) 16)) (-2716 ((|#2| |#2| (-1123)) 51)) (-2717 (((-1 |#2| |#2|) (-1123)) 11))) +(((-768 |#1| |#2|) (-10 -7 (-15 -3784 (|#2| |#2| (-1123))) (-15 -2716 (|#2| |#2| (-1123))) (-15 -2717 ((-1 |#2| |#2|) (-1123)))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141)) (-13 (-29 |#1|) (-1145) (-919))) (T -768)) +((-2717 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-1 *5 *5)) (-5 *1 (-768 *4 *5)) (-4 *5 (-13 (-29 *4) (-1145) (-919))))) (-2716 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919))))) (-3784 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919)))))) +(-10 -7 (-15 -3784 (|#2| |#2| (-1123))) (-15 -2716 (|#2| |#2| (-1123))) (-15 -2717 ((-1 |#2| |#2|) (-1123)))) +((-3895 (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363)) 116) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363)) 117) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363)) 119) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363)) 120) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363)) 121) (((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363))) 122) (((-992) (-772) (-1016)) 108) (((-992) (-772)) 109)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016)) 75) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772)) 77))) +(((-769) (-10 -7 (-15 -3895 ((-992) (-772))) (-15 -3895 ((-992) (-772) (-1016))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016))))) (T -769)) +((-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-769)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-769)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-992)) (-5 *1 (-769))))) +(-10 -7 (-15 -3895 ((-992) (-772))) (-15 -3895 ((-992) (-772) (-1016))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363))) (-15 -3895 ((-992) (-1205 (-299 (-363))) (-363) (-363) (-607 (-363)) (-299 (-363)) (-607 (-363)) (-363) (-363))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-772) (-1016)))) +((-2718 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|) 35))) +(((-770 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2718 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|))) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|)) (T -770)) +((-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *4)) (-4 *4 (-327 *5 *6 *7)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-770 *5 *6 *7 *4))))) +(-10 -7 (-15 -2718 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-607 |#4|))) (-620 |#4|) |#4|))) +((-4060 (((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))) 52)) (-2720 (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|) 60) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|) 59) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|) 20) (((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|) 21)) (-2721 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2719 ((|#2| |#3| (-607 (-392 |#2|))) 93) (((-3 |#2| "failed") |#3| (-392 |#2|)) 90))) +(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2719 ((-3 |#2| "failed") |#3| (-392 |#2|))) (-15 -2719 (|#2| |#3| (-607 (-392 |#2|)))) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|)) (-15 -2721 (|#2| |#3| |#1|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|)) (-15 -2721 (|#2| |#4| |#1|)) (-15 -4060 ((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))))) (-13 (-348) (-141) (-995 (-392 (-526)))) (-1181 |#1|) (-623 |#2|) (-623 (-392 |#2|))) (T -771)) +((-4060 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-2 (|:| -3578 *7) (|:| |rh| (-607 (-392 *6))))) (-5 *1 (-771 *5 *6 *7 *3)) (-5 *4 (-607 (-392 *6))) (-4 *7 (-623 *6)) (-4 *3 (-623 (-392 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-623 *2)) (-4 *3 (-623 (-392 *2))))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *6 *3)) (-4 *6 (-623 *4)) (-4 *3 (-623 (-392 *4))))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *6 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 (-392 *5))))) (-2721 (*1 *2 *3 *4) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *3 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *5 (-623 (-392 *2))))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *3 *6)) (-4 *3 (-623 *4)) (-4 *6 (-623 (-392 *4))))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *6 (-623 (-392 *2))))) (-2719 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-392 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *6 (-623 *4))))) +(-10 -7 (-15 -2719 ((-3 |#2| "failed") |#3| (-392 |#2|))) (-15 -2719 (|#2| |#3| (-607 (-392 |#2|)))) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#3| |#2|)) (-15 -2721 (|#2| |#3| |#1|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4|)) (-15 -2720 ((-607 (-2 (|:| -4091 |#2|) (|:| -3539 |#2|))) |#4| |#2|)) (-15 -2721 (|#2| |#4| |#1|)) (-15 -4060 ((-2 (|:| -3578 |#3|) (|:| |rh| (-607 (-392 |#2|)))) |#4| (-607 (-392 |#2|))))) +((-2865 (((-111) $ $) NIL)) (-3469 (((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $) 13)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 15) (($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) 12)) (-3353 (((-111) $ $) NIL))) +(((-772) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $))))) (T -772)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-772)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-772)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *1 (-772))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) (|:| |abserr| (-211)) (|:| |relerr| (-211))) $)))) +((-2729 (((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|)) 118)) (-2730 (((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|)) 46)) (-2723 (((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|) 95)) (-2722 ((|#2| |#3|) 37)) (-2724 (((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|)) 82)) (-2725 ((|#3| |#3| (-392 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-773 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2722 (|#2| |#3|)) (-15 -2723 ((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|)) (-15 -2724 ((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2725 (|#3| |#3| |#2|)) (-15 -2725 (|#3| |#3| (-392 |#2|)))) (-13 (-348) (-141) (-995 (-392 (-526)))) (-1181 |#1|) (-623 |#2|) (-623 (-392 |#2|))) (T -773)) +((-2725 (*1 *2 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *1 (-773 *4 *5 *2 *6)) (-4 *2 (-623 *5)) (-4 *6 (-623 *3)))) (-2725 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-1181 *4)) (-5 *1 (-773 *4 *3 *2 *5)) (-4 *2 (-623 *3)) (-4 *5 (-623 (-392 *3))))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-607 *7) *7 (-1117 *7))) (-5 *5 (-1 (-390 *7) *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |frac| (-392 *7)) (|:| -3578 *3)))) (-5 *1 (-773 *6 *7 *3 *8)) (-4 *3 (-623 *7)) (-4 *8 (-623 (-392 *7))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| -4268 *5) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -3578 *5)))) (-5 *1 (-773 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) (-2722 (*1 *2 *3) (-12 (-4 *2 (-1181 *4)) (-5 *1 (-773 *4 *2 *3 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) (-4 *5 (-623 (-392 *2)))))) +(-10 -7 (-15 -2722 (|#2| |#3|)) (-15 -2723 ((-607 (-2 (|:| |deg| (-735)) (|:| -3578 |#2|))) |#3|)) (-15 -2724 ((-607 (-2 (|:| -4268 |#1|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 |#3|))) |#3| (-1 (-607 |#1|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 |#3|))) |#3| (-1 (-607 |#2|) |#2| (-1117 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2725 (|#3| |#3| |#2|)) (-15 -2725 (|#3| |#3| (-392 |#2|)))) +((-2726 (((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|))) 121) (((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|)) 120) (((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|))) 115) (((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|)) 113)) (-2727 ((|#2| (-621 |#2| (-392 |#2|))) 80) ((|#2| (-620 (-392 |#2|))) 83))) +(((-774 |#1| |#2|) (-10 -7 (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2727 (|#2| (-620 (-392 |#2|)))) (-15 -2727 (|#2| (-621 |#2| (-392 |#2|))))) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -774)) +((-2727 (*1 *2 *3) (-12 (-5 *3 (-621 *2 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-620 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-774 *5 *6)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) (-5 *1 (-774 *5 *6))))) +(-10 -7 (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1="failed")) (|:| -2104 (-607 (-392 |#2|)))) (-620 (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-620 (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2726 ((-2 (|:| |particular| (-3 (-392 |#2|) #1#)) (|:| -2104 (-607 (-392 |#2|)))) (-621 |#2| (-392 |#2|)) (-392 |#2|))) (-15 -2726 ((-2 (|:| -2104 (-607 (-392 |#2|))) (|:| -1676 (-653 |#1|))) (-621 |#2| (-392 |#2|)) (-607 (-392 |#2|)))) (-15 -2727 (|#2| (-620 (-392 |#2|)))) (-15 -2727 (|#2| (-621 |#2| (-392 |#2|))))) +((-2728 (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|) 48))) +(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2728 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|))) (-348) (-623 |#1|) (-1181 |#1|) (-689 |#1| |#3|) (-623 |#4|)) (T -775)) +((-2728 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *7 (-1181 *5)) (-4 *4 (-689 *5 *7)) (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) (-5 *1 (-775 *5 *6 *7 *4 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 *4))))) +(-10 -7 (-15 -2728 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) |#5| |#4|))) +((-2729 (((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 47)) (-2731 (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|))) 138 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-620 (-392 |#2|))) 140 (|has| |#1| (-27))) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 38) (((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 39) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 36) (((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 37)) (-2730 (((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|)) 83))) +(((-776 |#1| |#2|) (-10 -7 (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))) (-1181 |#1|)) (T -776)) +((-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-621 *5 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-620 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 (-621 *6 (-392 *6)))))) (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6))))) (-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-5 *2 (-607 (-2 (|:| |frac| (-392 *6)) (|:| -3578 (-621 *6 (-392 *6)))))) (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6))))) (-2731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) (-2731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6))))) +(-10 -7 (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -2729 ((-607 (-2 (|:| |frac| (-392 |#2|)) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2730 ((-607 (-2 (|:| |poly| |#2|) (|:| -3578 (-621 |#2| (-392 |#2|))))) (-621 |#2| (-392 |#2|)) (-1 (-607 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-620 (-392 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)))) (-15 -2731 ((-607 (-392 |#2|)) (-621 |#2| (-392 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) +((-2732 (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|)) 85) (((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|)) 15)) (-2733 (((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)) 92)) (-3895 (((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|)) 43))) +(((-777 |#1| |#2|) (-10 -7 (-15 -2732 ((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|))) (-15 -2732 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|))) (-15 -2733 ((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)))) (-348) (-623 |#1|)) (T -777)) +((-2733 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-607 *6))) *7 *6)) (-4 *6 (-348)) (-4 *7 (-623 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1205 *6) "failed")) (|:| -2104 (-607 (-1205 *6))))) (-5 *1 (-777 *6 *7)) (-5 *4 (-1205 *6)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2104 (-607 *6))) "failed") *7 *6)) (-4 *6 (-348)) (-4 *7 (-623 *6)) (-5 *2 (-2 (|:| |particular| (-1205 *6)) (|:| -2104 (-653 *6)))) (-5 *1 (-777 *6 *7)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *6)))) (-2732 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-4 *6 (-623 *5)) (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *5)))) (-2732 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| A (-653 *5)) (|:| |eqs| (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5)) (|:| -3578 *6) (|:| |rh| *5)))))) (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *6 (-623 *5))))) +(-10 -7 (-15 -2732 ((-2 (|:| A (-653 |#1|)) (|:| |eqs| (-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)) (|:| -3578 |#2|) (|:| |rh| |#1|))))) (-653 |#1|) (-1205 |#1|))) (-15 -2732 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#1|))) (-653 |#2|) (-1205 |#1|))) (-15 -3895 ((-3 (-2 (|:| |particular| (-1205 |#1|)) (|:| -2104 (-653 |#1|))) "failed") (-653 |#1|) (-1205 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-607 |#1|))) "failed") |#2| |#1|))) (-15 -2733 ((-2 (|:| |particular| (-3 (-1205 |#1|) "failed")) (|:| -2104 (-607 (-1205 |#1|)))) (-653 |#2|) (-1205 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-607 |#1|))) |#2| |#1|)))) +((-2734 (((-653 |#1|) (-607 |#1|) (-735)) 13) (((-653 |#1|) (-607 |#1|)) 14)) (-2735 (((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|)) 34)) (-3659 (((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)) 42))) +(((-778 |#1| |#2|) (-10 -7 (-15 -2734 ((-653 |#1|) (-607 |#1|))) (-15 -2734 ((-653 |#1|) (-607 |#1|) (-735))) (-15 -2735 ((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|))) (-15 -3659 ((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)))) (-348) (-623 |#1|)) (T -778)) +((-3659 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-607 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-348)) (-5 *1 (-778 *2 *3)) (-4 *3 (-623 *2)))) (-2735 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-1205 *4)) (-5 *1 (-778 *4 *3)) (-4 *3 (-623 *4)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-653 *5)) (-5 *1 (-778 *5 *6)) (-4 *6 (-623 *5)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)) (-5 *1 (-778 *4 *5)) (-4 *5 (-623 *4))))) +(-10 -7 (-15 -2734 ((-653 |#1|) (-607 |#1|))) (-15 -2734 ((-653 |#1|) (-607 |#1|) (-735))) (-15 -2735 ((-3 (-1205 |#1|) "failed") |#2| |#1| (-607 |#1|))) (-15 -3659 ((-3 |#1| "failed") |#2| |#1| (-607 |#1|) (-1 |#1| |#1|)))) +((-2865 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-3502 (((-111) $) NIL (|has| |#2| (-129)))) (-4029 (($ (-878)) NIL (|has| |#2| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#2| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#2| (-353)))) (-3945 (((-526) $) NIL (|has| |#2| (-809)))) (-4106 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) ((|#2| $) NIL (|has| |#2| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#2| (-606 (-526))) (|has| |#2| (-1004)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#2| (-1004))) (((-653 |#2|) (-653 $)) NIL (|has| |#2| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#2| (-691)))) (-3294 (($) NIL (|has| |#2| (-353)))) (-1613 ((|#2| $ (-526) |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ (-526)) NIL)) (-3500 (((-111) $) NIL (|has| |#2| (-809)))) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#2| (-691)))) (-3501 (((-111) $) NIL (|has| |#2| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#2| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#2| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#2| (-353)))) (-3555 (((-1070) $) NIL (|has| |#2| (-1052)))) (-4119 ((|#2| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) |#2|) NIL) ((|#2| $ (-526)) NIL)) (-4155 ((|#2| $ $) NIL (|has| |#2| (-1004)))) (-1501 (($ (-1205 |#2|)) NIL)) (-4230 (((-131)) NIL (|has| |#2| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#2|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#2| (-995 (-526))) (|has| |#2| (-1052))) (|has| |#2| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#2| (-995 (-392 (-526)))) (|has| |#2| (-1052)))) (($ |#2|) NIL (|has| |#2| (-1052))) (((-823) $) NIL (|has| |#2| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#2| (-1004)))) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#2| (-809)))) (-2957 (($) NIL (|has| |#2| (-129)) CONST)) (-2964 (($) NIL (|has| |#2| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#2| (-219)) (|has| |#2| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#2| (-859 (-1123))) (|has| |#2| (-1004)))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#2| (-1004))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#2| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-2985 (((-111) $ $) 11 (-3850 (|has| |#2| (-757)) (|has| |#2| (-809))))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $ $) NIL (|has| |#2| (-1004))) (($ $) NIL (|has| |#2| (-1004)))) (-4158 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-735)) NIL (|has| |#2| (-691))) (($ $ (-878)) NIL (|has| |#2| (-691)))) (* (($ (-526) $) NIL (|has| |#2| (-1004))) (($ $ $) NIL (|has| |#2| (-691))) (($ $ |#2|) NIL (|has| |#2| (-691))) (($ |#2| $) NIL (|has| |#2| (-691))) (($ (-735) $) NIL (|has| |#2| (-129))) (($ (-878) $) NIL (|has| |#2| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-779 |#1| |#2| |#3|) (-224 |#1| |#2|) (-735) (-757) (-1 (-111) (-1205 |#2|) (-1205 |#2|))) (T -779)) +NIL +(-224 |#1| |#2|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ (-1123)) NIL)) (-1553 (((-735) $) NIL) (((-735) $ (-1123)) NIL)) (-3384 (((-607 (-782 (-1123))) $) NIL)) (-3386 (((-1117 $) $ (-782 (-1123))) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-782 (-1123)))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-782 (-1123)) #2#) $) NIL) (((-3 (-1123) #2#) $) NIL) (((-3 (-1075 |#1| (-1123)) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-782 (-1123)) $) NIL) (((-1123) $) NIL) (((-1075 |#1| (-1123)) $) NIL)) (-4075 (($ $ $ (-782 (-1123))) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-782 (-1123))) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-782 (-1123))) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-782 (-1123)) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-782 (-1123)) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-782 (-1123))) NIL) (($ (-1117 $) (-782 (-1123))) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-782 (-1123))) NIL)) (-3120 (((-512 (-782 (-1123))) $) NIL) (((-735) $ (-782 (-1123))) NIL) (((-607 (-735)) $ (-607 (-782 (-1123)))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-782 (-1123))) (-512 (-782 (-1123)))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) (-1123)) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 (-782 (-1123)) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 (((-782 (-1123)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-782 (-1123))) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-782 (-1123)) |#1|) NIL) (($ $ (-607 (-782 (-1123))) (-607 |#1|)) NIL) (($ $ (-782 (-1123)) $) NIL) (($ $ (-607 (-782 (-1123))) (-607 $)) NIL) (($ $ (-1123) $) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 $)) NIL (|has| |#1| (-219))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ (-782 (-1123))) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-782 (-1123))) NIL) (($ $ (-607 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 (-1123)) $) NIL)) (-4264 (((-512 (-782 (-1123))) $) NIL) (((-735) $ (-782 (-1123))) NIL) (((-607 (-735)) $ (-607 (-782 (-1123)))) NIL) (((-735) $ (-1123)) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-782 (-1123)) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-782 (-1123))) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-782 (-1123))) NIL) (($ (-1123)) NIL) (($ (-1075 |#1| (-1123))) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-782 (-1123))) NIL) (($ $ (-607 (-782 (-1123)))) NIL) (($ $ (-782 (-1123)) (-735)) NIL) (($ $ (-607 (-782 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-780 |#1|) (-13 (-238 |#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) (-995 (-1075 |#1| (-1123)))) (-1004)) (T -780)) +NIL +(-13 (-238 |#1| (-1123) (-782 (-1123)) (-512 (-782 (-1123)))) (-995 (-1075 |#1| (-1123)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-348)))) (-2151 (($ $) NIL (|has| |#2| (-348)))) (-2149 (((-111) $) NIL (|has| |#2| (-348)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#2| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-348)))) (-1681 (((-111) $ $) NIL (|has| |#2| (-348)))) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL (|has| |#2| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#2| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#2| (-348)))) (-4045 (((-111) $) NIL (|has| |#2| (-348)))) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-1989 (($ (-607 $)) NIL (|has| |#2| (-348))) (($ $ $) NIL (|has| |#2| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 20 (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-348))) (($ $ $) NIL (|has| |#2| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#2| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-1680 (((-735) $) NIL (|has| |#2| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-4129 (($ $ (-735)) NIL) (($ $) 13)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-392 (-526))) NIL (|has| |#2| (-348))) (($ $) NIL (|has| |#2| (-348)))) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL (|has| |#2| (-348)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) 15 (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL) (($ $ (-526)) 18 (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-392 (-526)) $) NIL (|has| |#2| (-348))) (($ $ (-392 (-526))) NIL (|has| |#2| (-348))))) +(((-781 |#1| |#2| |#3|) (-13 (-110 $ $) (-219) (-10 -8 (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) (-15 -4274 ($ |#2|)) (-15 -4274 (|#2| $)))) (-1052) (-859 |#1|) |#1|) (T -781)) +((-4274 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-14 *4 *3) (-5 *1 (-781 *3 *2 *4)) (-4 *2 (-859 *3)))) (-4274 (*1 *2 *1) (-12 (-4 *2 (-859 *3)) (-5 *1 (-781 *3 *2 *4)) (-4 *3 (-1052)) (-14 *4 *3)))) +(-13 (-110 $ $) (-219) (-10 -8 (IF (|has| |#2| (-348)) (-6 (-348)) |%noBranch|) (-15 -4274 ($ |#2|)) (-15 -4274 (|#2| $)))) +((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) NIL)) (-4150 ((|#1| $) 10)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4090 (((-735) $) 11)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1554 (($ |#1| (-735)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL))) +(((-782 |#1|) (-251 |#1|) (-811)) (T -782)) +NIL +(-251 |#1|) +((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 29)) (-3433 (((-735) $) NIL)) (-3855 (($) NIL T CONST)) (-4256 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4117 (($ $) 31)) (-3781 (((-3 $ "failed") $) NIL)) (-2739 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2471 (((-111) $) NIL)) (-2737 ((|#1| $ (-526)) NIL)) (-2738 (((-735) $ (-526)) NIL)) (-4253 (($ $) 36)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4257 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2742 (((-111) $ $) 34)) (-4152 (((-735) $) 25)) (-3554 (((-1106) $) NIL)) (-2740 (($ $ $) NIL)) (-2741 (($ $ $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 ((|#1| $) 30)) (-2736 (((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $) NIL)) (-2862 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2964 (($) 15 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ |#1| (-735)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-783 |#1|) (-13 (-807) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -4119 (|#1| $)) (-15 -4117 ($ $)) (-15 -4253 ($ $)) (-15 -2742 ((-111) $ $)) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -4257 ((-3 $ "failed") $ |#1|)) (-15 -4256 ((-3 $ "failed") $ |#1|)) (-15 -2862 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -4152 ((-735) $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -783)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2742 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2741 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2740 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4256 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4257 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-4256 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2862 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |rm| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2739 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |mm| (-783 *3)) (|:| |rm| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-783 *4)) (-4 *4 (-811)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-783 *3)) (-4 *3 (-811))))) +(-13 (-807) (-995 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-735))) (-15 -4119 (|#1| $)) (-15 -4117 ($ $)) (-15 -4253 ($ $)) (-15 -2742 ((-111) $ $)) (-15 -2741 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -4257 ((-3 $ "failed") $ $)) (-15 -4256 ((-3 $ "failed") $ $)) (-15 -4257 ((-3 $ "failed") $ |#1|)) (-15 -4256 ((-3 $ "failed") $ |#1|)) (-15 -2862 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2739 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3433 ((-735) $)) (-15 -2738 ((-735) $ (-526))) (-15 -2737 (|#1| $ (-526))) (-15 -2736 ((-607 (-2 (|:| |gen| |#1|) (|:| -4260 (-735)))) $)) (-15 -4152 ((-735) $)) (-15 -4251 ((-607 |#1|) $)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3945 (((-526) $) 51)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-3500 (((-111) $) 49)) (-2471 (((-111) $) 30)) (-3501 (((-111) $) 50)) (-3637 (($ $ $) 48)) (-3638 (($ $ $) 47)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 52)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 45)) (-2864 (((-111) $ $) 44)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 46)) (-2985 (((-111) $ $) 43)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-784) (-134)) (T -784)) +NIL +(-13 (-533) (-809)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2803 (((-1211) (-787) $ (-111)) 9) (((-1211) (-787) $) 8) (((-1106) $ (-111)) 7) (((-1106) $) 6))) +(((-785) (-134)) (T -785)) +((-2803 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *4 (-111)) (-5 *2 (-1211)))) (-2803 (*1 *2 *3 *1) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *2 (-1211)))) (-2803 (*1 *2 *1 *3) (-12 (-4 *1 (-785)) (-5 *3 (-111)) (-5 *2 (-1106)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-785)) (-5 *2 (-1106))))) +(-13 (-10 -8 (-15 -2803 ((-1106) $)) (-15 -2803 ((-1106) $ (-111))) (-15 -2803 ((-1211) (-787) $)) (-15 -2803 ((-1211) (-787) $ (-111))))) +((-2743 (($ (-1070)) 7)) (-2747 (((-111) $ (-1106) (-1070)) 15)) (-2746 (((-787) $) 12)) (-2745 (((-787) $) 11)) (-2744 (((-1211) $) 9)) (-2748 (((-111) $ (-1070)) 16))) +(((-786) (-10 -8 (-15 -2743 ($ (-1070))) (-15 -2744 ((-1211) $)) (-15 -2745 ((-787) $)) (-15 -2746 ((-787) $)) (-15 -2747 ((-111) $ (-1106) (-1070))) (-15 -2748 ((-111) $ (-1070))))) (T -786)) +((-2748 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-111)) (-5 *1 (-786)))) (-2747 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-1070)) (-5 *2 (-111)) (-5 *1 (-786)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-786)))) (-2743 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786))))) +(-10 -8 (-15 -2743 ($ (-1070))) (-15 -2744 ((-1211) $)) (-15 -2745 ((-787) $)) (-15 -2746 ((-787) $)) (-15 -2747 ((-111) $ (-1106) (-1070))) (-15 -2748 ((-111) $ (-1070)))) +((-2752 (((-1211) $ (-788)) 12)) (-2769 (((-1211) $ (-1123)) 32)) (-2771 (((-1211) $ (-1106) (-1106)) 34)) (-2770 (((-1211) $ (-1106)) 33)) (-2759 (((-1211) $) 19)) (-2767 (((-1211) $ (-526)) 28)) (-2768 (((-1211) $ (-211)) 30)) (-2758 (((-1211) $) 18)) (-2766 (((-1211) $) 26)) (-2765 (((-1211) $) 25)) (-2763 (((-1211) $) 23)) (-2764 (((-1211) $) 24)) (-2762 (((-1211) $) 22)) (-2761 (((-1211) $) 21)) (-2760 (((-1211) $) 20)) (-2756 (((-1211) $) 16)) (-2757 (((-1211) $) 17)) (-2755 (((-1211) $) 15)) (-2754 (((-1211) $) 14)) (-2753 (((-1211) $) 13)) (-2750 (($ (-1106) (-788)) 9)) (-2749 (($ (-1106) (-1106) (-788)) 8)) (-2788 (((-1123) $) 51)) (-2791 (((-1123) $) 55)) (-2790 (((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $) 54)) (-2789 (((-1106) $) 52)) (-2778 (((-1211) $) 41)) (-2786 (((-526) $) 49)) (-2787 (((-211) $) 50)) (-2777 (((-1211) $) 40)) (-2785 (((-1211) $) 48)) (-2784 (((-1211) $) 47)) (-2782 (((-1211) $) 45)) (-2783 (((-1211) $) 46)) (-2781 (((-1211) $) 44)) (-2780 (((-1211) $) 43)) (-2779 (((-1211) $) 42)) (-2775 (((-1211) $) 38)) (-2776 (((-1211) $) 39)) (-2774 (((-1211) $) 37)) (-2773 (((-1211) $) 36)) (-2772 (((-1211) $) 35)) (-2751 (((-1211) $) 11))) +(((-787) (-10 -8 (-15 -2749 ($ (-1106) (-1106) (-788))) (-15 -2750 ($ (-1106) (-788))) (-15 -2751 ((-1211) $)) (-15 -2752 ((-1211) $ (-788))) (-15 -2753 ((-1211) $)) (-15 -2754 ((-1211) $)) (-15 -2755 ((-1211) $)) (-15 -2756 ((-1211) $)) (-15 -2757 ((-1211) $)) (-15 -2758 ((-1211) $)) (-15 -2759 ((-1211) $)) (-15 -2760 ((-1211) $)) (-15 -2761 ((-1211) $)) (-15 -2762 ((-1211) $)) (-15 -2763 ((-1211) $)) (-15 -2764 ((-1211) $)) (-15 -2765 ((-1211) $)) (-15 -2766 ((-1211) $)) (-15 -2767 ((-1211) $ (-526))) (-15 -2768 ((-1211) $ (-211))) (-15 -2769 ((-1211) $ (-1123))) (-15 -2770 ((-1211) $ (-1106))) (-15 -2771 ((-1211) $ (-1106) (-1106))) (-15 -2772 ((-1211) $)) (-15 -2773 ((-1211) $)) (-15 -2774 ((-1211) $)) (-15 -2775 ((-1211) $)) (-15 -2776 ((-1211) $)) (-15 -2777 ((-1211) $)) (-15 -2778 ((-1211) $)) (-15 -2779 ((-1211) $)) (-15 -2780 ((-1211) $)) (-15 -2781 ((-1211) $)) (-15 -2782 ((-1211) $)) (-15 -2783 ((-1211) $)) (-15 -2784 ((-1211) $)) (-15 -2785 ((-1211) $)) (-15 -2786 ((-526) $)) (-15 -2787 ((-211) $)) (-15 -2788 ((-1123) $)) (-15 -2789 ((-1106) $)) (-15 -2790 ((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $)) (-15 -2791 ((-1123) $)))) (T -787)) +((-2791 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1106)) (|:| -3864 (-1106)))) (-5 *1 (-787)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-787)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-787)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-787)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2771 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2770 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1211)) (-5 *1 (-787)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787)))) (-2750 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787)))) (-2749 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) +(-10 -8 (-15 -2749 ($ (-1106) (-1106) (-788))) (-15 -2750 ($ (-1106) (-788))) (-15 -2751 ((-1211) $)) (-15 -2752 ((-1211) $ (-788))) (-15 -2753 ((-1211) $)) (-15 -2754 ((-1211) $)) (-15 -2755 ((-1211) $)) (-15 -2756 ((-1211) $)) (-15 -2757 ((-1211) $)) (-15 -2758 ((-1211) $)) (-15 -2759 ((-1211) $)) (-15 -2760 ((-1211) $)) (-15 -2761 ((-1211) $)) (-15 -2762 ((-1211) $)) (-15 -2763 ((-1211) $)) (-15 -2764 ((-1211) $)) (-15 -2765 ((-1211) $)) (-15 -2766 ((-1211) $)) (-15 -2767 ((-1211) $ (-526))) (-15 -2768 ((-1211) $ (-211))) (-15 -2769 ((-1211) $ (-1123))) (-15 -2770 ((-1211) $ (-1106))) (-15 -2771 ((-1211) $ (-1106) (-1106))) (-15 -2772 ((-1211) $)) (-15 -2773 ((-1211) $)) (-15 -2774 ((-1211) $)) (-15 -2775 ((-1211) $)) (-15 -2776 ((-1211) $)) (-15 -2777 ((-1211) $)) (-15 -2778 ((-1211) $)) (-15 -2779 ((-1211) $)) (-15 -2780 ((-1211) $)) (-15 -2781 ((-1211) $)) (-15 -2782 ((-1211) $)) (-15 -2783 ((-1211) $)) (-15 -2784 ((-1211) $)) (-15 -2785 ((-1211) $)) (-15 -2786 ((-526) $)) (-15 -2787 ((-211) $)) (-15 -2788 ((-1123) $)) (-15 -2789 ((-1106) $)) (-15 -2790 ((-2 (|:| |cd| (-1106)) (|:| -3864 (-1106))) $)) (-15 -2791 ((-1123) $))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 12)) (-2794 (($) 15)) (-2795 (($) 13)) (-2793 (($) 16)) (-2792 (($) 14)) (-3353 (((-111) $ $) 8))) +(((-788) (-13 (-1052) (-10 -8 (-15 -2795 ($)) (-15 -2794 ($)) (-15 -2793 ($)) (-15 -2792 ($))))) (T -788)) +((-2795 (*1 *1) (-5 *1 (-788))) (-2794 (*1 *1) (-5 *1 (-788))) (-2793 (*1 *1) (-5 *1 (-788))) (-2792 (*1 *1) (-5 *1 (-788)))) +(-13 (-1052) (-10 -8 (-15 -2795 ($)) (-15 -2794 ($)) (-15 -2793 ($)) (-15 -2792 ($)))) +((-2865 (((-111) $ $) NIL)) (-2796 (($ (-790) (-607 (-1123))) 24)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2798 (((-790) $) 25)) (-2797 (((-607 (-1123)) $) 26)) (-4274 (((-823) $) 23)) (-3353 (((-111) $ $) NIL))) +(((-789) (-13 (-1052) (-10 -8 (-15 -2798 ((-790) $)) (-15 -2797 ((-607 (-1123)) $)) (-15 -2796 ($ (-790) (-607 (-1123))))))) (T -789)) +((-2798 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-789)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-789)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-607 (-1123))) (-5 *1 (-789))))) +(-13 (-1052) (-10 -8 (-15 -2798 ((-790) $)) (-15 -2797 ((-607 (-1123)) $)) (-15 -2796 ($ (-790) (-607 (-1123)))))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21) (($ (-1123)) 17)) (-2800 (((-111) $) 10)) (-2801 (((-111) $) 9)) (-2799 (((-111) $) 11)) (-2802 (((-111) $) 8)) (-3353 (((-111) $ $) 19))) +(((-790) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -2802 ((-111) $)) (-15 -2801 ((-111) $)) (-15 -2800 ((-111) $)) (-15 -2799 ((-111) $))))) (T -790)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-790)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -2802 ((-111) $)) (-15 -2801 ((-111) $)) (-15 -2800 ((-111) $)) (-15 -2799 ((-111) $)))) +((-2803 (((-1211) (-787) (-299 |#1|) (-111)) 23) (((-1211) (-787) (-299 |#1|)) 79) (((-1106) (-299 |#1|) (-111)) 78) (((-1106) (-299 |#1|)) 77))) +(((-791 |#1|) (-10 -7 (-15 -2803 ((-1106) (-299 |#1|))) (-15 -2803 ((-1106) (-299 |#1|) (-111))) (-15 -2803 ((-1211) (-787) (-299 |#1|))) (-15 -2803 ((-1211) (-787) (-299 |#1|) (-111)))) (-13 (-785) (-811) (-1004))) (T -791)) +((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787)) (-5 *4 (-299 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-299 *5)) (-4 *5 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *5)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-299 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) (-5 *1 (-791 *5)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-299 *4)) (-4 *4 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) (-5 *1 (-791 *4))))) +(-10 -7 (-15 -2803 ((-1106) (-299 |#1|))) (-15 -2803 ((-1106) (-299 |#1|) (-111))) (-15 -2803 ((-1211) (-787) (-299 |#1|))) (-15 -2803 ((-1211) (-787) (-299 |#1|) (-111)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2804 ((|#1| $) 10)) (-2805 (($ |#1|) 9)) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) NIL)) (-3120 (((-735) $) NIL)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-4264 (((-735) $) NIL)) (-4274 (((-823) $) 17) (($ (-526)) NIL) (($ |#2|) NIL (|has| |#2| (-163)))) (-3999 ((|#2| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $) NIL (|has| |#1| (-219)))) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-792 |#1| |#2|) (-13 (-673 |#2|) (-10 -8 (IF (|has| |#1| (-219)) (-6 (-219)) |%noBranch|) (-15 -2805 ($ |#1|)) (-15 -2804 (|#1| $)))) (-673 |#2|) (-1004)) (T -792)) +((-2805 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-792 *2 *3)) (-4 *2 (-673 *3)))) (-2804 (*1 *2 *1) (-12 (-4 *2 (-673 *3)) (-5 *1 (-792 *2 *3)) (-4 *3 (-1004))))) +(-13 (-673 |#2|) (-10 -8 (IF (|has| |#1| (-219)) (-6 (-219)) |%noBranch|) (-15 -2805 ($ |#1|)) (-15 -2804 (|#1| $)))) +((-2813 (((-296) (-1106) (-1106)) 12)) (-2812 (((-111) (-1106) (-1106)) 34)) (-2811 (((-111) (-1106)) 33)) (-2808 (((-50) (-1106)) 25)) (-2807 (((-50) (-1106)) 23)) (-2806 (((-50) (-787)) 17)) (-2810 (((-607 (-1106)) (-1106)) 28)) (-2809 (((-607 (-1106))) 27))) +(((-793) (-10 -7 (-15 -2806 ((-50) (-787))) (-15 -2807 ((-50) (-1106))) (-15 -2808 ((-50) (-1106))) (-15 -2809 ((-607 (-1106)))) (-15 -2810 ((-607 (-1106)) (-1106))) (-15 -2811 ((-111) (-1106))) (-15 -2812 ((-111) (-1106) (-1106))) (-15 -2813 ((-296) (-1106) (-1106))))) (T -793)) +((-2813 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-793)))) (-2812 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793)))) (-2810 (*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)) (-5 *3 (-1106)))) (-2809 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-50)) (-5 *1 (-793))))) +(-10 -7 (-15 -2806 ((-50) (-787))) (-15 -2807 ((-50) (-1106))) (-15 -2808 ((-50) (-1106))) (-15 -2809 ((-607 (-1106)))) (-15 -2810 ((-607 (-1106)) (-1106))) (-15 -2811 ((-111) (-1106))) (-15 -2812 ((-111) (-1106) (-1106))) (-15 -2813 ((-296) (-1106) (-1106)))) +((-2865 (((-111) $ $) 19)) (-3546 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) 8)) (-3551 (($ (-607 |#1|)) 68) (($) 67)) (-1607 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2424 (($ $) 62)) (-1375 (($ $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ |#1| $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 64)) (-4041 (((-111) $ (-735)) 9)) (-3637 ((|#1| $) 78)) (-3159 (($ $ $) 81)) (-3832 (($ $ $) 80)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 79)) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22)) (-3550 (($ $ $) 69)) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40) (($ |#1| $ (-735)) 63)) (-3555 (((-1070) $) 21)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2423 (((-607 (-2 (|:| -2164 |#1|) (|:| -2045 (-735)))) $) 61)) (-3549 (($ $ |#1|) 71) (($ $ $) 70)) (-1499 (($) 49) (($ (-607 |#1|)) 48)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 50)) (-4274 (((-823) $) 18)) (-3552 (($ (-607 |#1|)) 66) (($) 65)) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20)) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-794 |#1|) (-134) (-811)) (T -794)) +((-3637 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-811))))) +(-13 (-702 |t#1|) (-927 |t#1|) (-10 -8 (-15 -3637 (|t#1| $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-221 |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-659 |#1|) . T) ((-702 |#1|) . T) ((-927 |#1|) . T) ((-1050 |#1|) . T) ((-1052) . T) ((-1159) . T)) +((-2816 (((-1211) (-1070) (-1070)) 47)) (-2815 (((-1211) (-786) (-50)) 44)) (-2814 (((-50) (-786)) 16))) +(((-795) (-10 -7 (-15 -2814 ((-50) (-786))) (-15 -2815 ((-1211) (-786) (-50))) (-15 -2816 ((-1211) (-1070) (-1070))))) (T -795)) +((-2816 (*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1211)) (-5 *1 (-795)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-50)) (-5 *2 (-1211)) (-5 *1 (-795)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-50)) (-5 *1 (-795))))) +(-10 -7 (-15 -2814 ((-50) (-786))) (-15 -2815 ((-1211) (-786) (-50))) (-15 -2816 ((-1211) (-1070) (-1070)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL (|has| |#1| (-21)) CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 15)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 9)) (-3781 (((-3 $ "failed") $) 40 (|has| |#1| (-809)))) (-3324 (((-3 (-392 (-526)) "failed") $) 49 (|has| |#1| (-525)))) (-3323 (((-111) $) 43 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 46 (|has| |#1| (-525)))) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2471 (((-111) $) NIL (|has| |#1| (-809)))) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-2817 (($) 13)) (-2829 (((-111) $) 12)) (-3555 (((-1070) $) NIL)) (-2830 (((-111) $) 11)) (-4274 (((-823) $) 18) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 8) (($ (-526)) NIL (-3850 (|has| |#1| (-809)) (|has| |#1| (-995 (-526)))))) (-3423 (((-735)) 34 (|has| |#1| (-809)))) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) 22 (|has| |#1| (-21)) CONST)) (-2964 (($) 31 (|has| |#1| (-809)) CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) 42 (|has| |#1| (-809)))) (-4156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4158 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-878)) NIL (|has| |#1| (-809))) (($ $ (-735)) NIL (|has| |#1| (-809)))) (* (($ $ $) 37 (|has| |#1| (-809))) (($ (-526) $) 25 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-21))))) +(((-796 |#1|) (-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2817 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) (-1052)) (T -796)) +((-2817 (*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1052)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052))))) +(-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2817 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) +((-4275 (((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)) 12) (((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|)) 13))) +(((-797 |#1| |#2|) (-10 -7 (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|))) (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)))) (-1052) (-1052)) (T -797)) +((-4275 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *1 (-797 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-796 *6)) (-5 *1 (-797 *5 *6))))) +(-10 -7 (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|))) (-15 -4275 ((-796 |#2|) (-1 |#2| |#1|) (-796 |#1|) (-796 |#2|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #1="failed") $) NIL) (((-3 (-112) #1#) $) NIL)) (-3469 ((|#1| $) NIL) (((-112) $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2819 ((|#1| (-112) |#1|) NIL)) (-2471 (((-111) $) NIL)) (-2818 (($ |#1| (-346 (-112))) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2820 (($ $ (-1 |#1| |#1|)) NIL)) (-2821 (($ $ (-1 |#1| |#1|)) NIL)) (-4118 ((|#1| $ |#1|) NIL)) (-2822 ((|#1| |#1|) NIL (|has| |#1| (-163)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-2823 (($ $) NIL (|has| |#1| (-163))) (($ $ $) NIL (|has| |#1| (-163)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ (-112) (-526)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-798 |#1|) (-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#1| |#1|))) (-15 -2820 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#1| (-112) |#1|)) (-15 -2818 ($ |#1| (-346 (-112)))))) (-1004)) (T -798)) +((-2823 (*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2823 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2822 (*1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-5 *1 (-798 *4)) (-4 *4 (-1004)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-798 *3)) (-4 *3 (-1004)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-798 *2)) (-4 *2 (-1004)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) +(-13 (-1004) (-995 |#1|) (-995 (-112)) (-271 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -2823 ($ $)) (-15 -2823 ($ $ $)) (-15 -2822 (|#1| |#1|))) |%noBranch|) (-15 -2821 ($ $ (-1 |#1| |#1|))) (-15 -2820 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-526))) (-15 ** ($ $ (-526))) (-15 -2819 (|#1| (-112) |#1|)) (-15 -2818 ($ |#1| (-346 (-112)))))) +((-2824 (((-201 (-484)) (-1106)) 9))) +(((-799) (-10 -7 (-15 -2824 ((-201 (-484)) (-1106))))) (T -799)) +((-2824 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-201 (-484))) (-5 *1 (-799))))) +(-10 -7 (-15 -2824 ((-201 (-484)) (-1106)))) +((-2865 (((-111) $ $) 7)) (-2825 (((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 14) (((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 13)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 16) (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 15)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) +(((-800) (-134)) (T -800)) +((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2825 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *2 (-992)))) (-2825 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *2 (-992))))) +(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -2825 ((-992) (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -2825 ((-992) (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2826 (((-992) (-607 (-299 (-363))) (-607 (-363))) 147) (((-992) (-299 (-363)) (-607 (-363))) 145) (((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363)))) 144) (((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363)))) 143) (((-992) (-802)) 117) (((-992) (-802) (-1016)) 116)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016)) 82) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802)) 84)) (-2827 (((-992) (-607 (-299 (-363))) (-607 (-363))) 148) (((-992) (-802)) 133))) +(((-801) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016))) (-15 -2826 ((-992) (-802) (-1016))) (-15 -2826 ((-992) (-802))) (-15 -2827 ((-992) (-802))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)))) (-15 -2826 ((-992) (-607 (-299 (-363))) (-607 (-363)))) (-15 -2827 ((-992) (-607 (-299 (-363))) (-607 (-363)))))) (T -801)) +((-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) (-5 *6 (-607 (-299 (-363)))) (-5 *3 (-299 (-363))) (-5 *2 (-992)) (-5 *1 (-801)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-801)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-801)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-801))))) +(-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-802) (-1016))) (-15 -2826 ((-992) (-802) (-1016))) (-15 -2826 ((-992) (-802))) (-15 -2827 ((-992) (-802))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-299 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)) (-607 (-803 (-363))) (-607 (-803 (-363))))) (-15 -2826 ((-992) (-299 (-363)) (-607 (-363)))) (-15 -2826 ((-992) (-607 (-299 (-363))) (-607 (-363)))) (-15 -2827 ((-992) (-607 (-299 (-363))) (-607 (-363))))) +((-2865 (((-111) $ $) NIL)) (-3469 (((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20) (($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) 14) (($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) 18)) (-3353 (((-111) $ $) NIL))) +(((-802) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -4274 ($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4274 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $))))) (T -802)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) (-5 *1 (-802)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *1 (-802)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) (-5 *1 (-802))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211))))))) (-15 -4274 ($ (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) (-15 -4274 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-3 (|:| |noa| (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211)))))) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (|has| |#1| (-21)))) (-2828 (((-1070) $) 24)) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3945 (((-526) $) NIL (|has| |#1| (-809)))) (-3855 (($) NIL (|has| |#1| (-21)) CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 16)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 9)) (-3781 (((-3 $ "failed") $) 47 (|has| |#1| (-809)))) (-3324 (((-3 (-392 (-526)) "failed") $) 54 (|has| |#1| (-525)))) (-3323 (((-111) $) 49 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 52 (|has| |#1| (-525)))) (-3500 (((-111) $) NIL (|has| |#1| (-809)))) (-2832 (($) 13)) (-2471 (((-111) $) NIL (|has| |#1| (-809)))) (-3501 (((-111) $) NIL (|has| |#1| (-809)))) (-2831 (($) 14)) (-3637 (($ $ $) NIL (|has| |#1| (-809)))) (-3638 (($ $ $) NIL (|has| |#1| (-809)))) (-3554 (((-1106) $) NIL)) (-2829 (((-111) $) 12)) (-3555 (((-1070) $) NIL)) (-2830 (((-111) $) 11)) (-4274 (((-823) $) 22) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 8) (($ (-526)) NIL (-3850 (|has| |#1| (-809)) (|has| |#1| (-995 (-526)))))) (-3423 (((-735)) 41 (|has| |#1| (-809)))) (-3702 (($ $) NIL (|has| |#1| (-809)))) (-2957 (($) 29 (|has| |#1| (-21)) CONST)) (-2964 (($) 38 (|has| |#1| (-809)) CONST)) (-2863 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-809)))) (-3353 (((-111) $ $) 27)) (-2984 (((-111) $ $) NIL (|has| |#1| (-809)))) (-2985 (((-111) $ $) 48 (|has| |#1| (-809)))) (-4156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4158 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-878)) NIL (|has| |#1| (-809))) (($ $ (-735)) NIL (|has| |#1| (-809)))) (* (($ $ $) 44 (|has| |#1| (-809))) (($ (-526) $) 32 (|has| |#1| (-21))) (($ (-735) $) NIL (|has| |#1| (-21))) (($ (-878) $) NIL (|has| |#1| (-21))))) +(((-803 |#1|) (-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2832 ($)) (-15 -2831 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (-15 -2828 ((-1070) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) (-1052)) (T -803)) +((-2832 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052)))) (-2831 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-803 *3)) (-4 *3 (-1052)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052))))) +(-13 (-1052) (-397 |#1|) (-10 -8 (-15 -2832 ($)) (-15 -2831 ($)) (-15 -2830 ((-111) $)) (-15 -2829 ((-111) $)) (-15 -2828 ((-1070) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) +((-4275 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)) 13) (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 14))) +(((-804 |#1| |#2|) (-10 -7 (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))) (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)))) (-1052) (-1052)) (T -804)) +((-4275 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-803 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *1 (-804 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6))))) +(-10 -7 (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))) (-15 -4275 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|) (-803 |#2|) (-803 |#2|)))) +((-2865 (((-111) $ $) 7)) (-3433 (((-735)) 20)) (-3294 (($) 23)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-2102 (((-878) $) 22)) (-3554 (((-1106) $) 9)) (-2461 (($ (-878)) 21)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) (((-805) (-134)) (T -805)) -((-3797 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-537)))) (-2209 (*1 *1 *1) (-4 *1 (-805)))) -(-13 (-751) (-998) (-687) (-10 -8 (-15 -3797 ((-111) $)) (-15 -2840 ((-111) $)) (-15 -2537 ((-537) $)) (-15 -2209 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2444 (($ $ $) 10)) (-3889 (($ $ $) 9)) (-2293 (((-111) $ $) 13)) (-2271 (((-111) $ $) 11)) (-2282 (((-111) $ $) 14))) -(((-806 |#1|) (-10 -8 (-15 -2444 (|#1| |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2282 ((-111) |#1| |#1|)) (-15 -2293 ((-111) |#1| |#1|)) (-15 -2271 ((-111) |#1| |#1|))) (-807)) (T -806)) -NIL -(-10 -8 (-15 -2444 (|#1| |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2282 ((-111) |#1| |#1|)) (-15 -2293 ((-111) |#1| |#1|)) (-15 -2271 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +NIL +(-13 (-811) (-353)) +(((-100) . T) ((-583 (-823)) . T) ((-353) . T) ((-811) . T) ((-1052) . T)) +((-2834 (((-111) (-1205 |#2|) (-1205 |#2|)) 17)) (-2835 (((-111) (-1205 |#2|) (-1205 |#2|)) 18)) (-2833 (((-111) (-1205 |#2|) (-1205 |#2|)) 14))) +(((-806 |#1| |#2|) (-10 -7 (-15 -2833 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2834 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2835 ((-111) (-1205 |#2|) (-1205 |#2|)))) (-735) (-756)) (T -806)) +((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735)))) (-2834 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735)))) (-2833 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) (-14 *4 (-735))))) +(-10 -7 (-15 -2833 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2834 ((-111) (-1205 |#2|) (-1205 |#2|))) (-15 -2835 ((-111) (-1205 |#2|) (-1205 |#2|)))) +((-2865 (((-111) $ $) 7)) (-3855 (($) 23 T CONST)) (-3781 (((-3 $ "failed") $) 26)) (-2471 (((-111) $) 24)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2964 (($) 22 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (** (($ $ (-878)) 21) (($ $ (-735)) 25)) (* (($ $ $) 20))) (((-807) (-134)) (T -807)) -((-2263 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2271 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2293 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2282 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-3889 (*1 *1 *1 *1) (-4 *1 (-807))) (-2444 (*1 *1 *1 *1) (-4 *1 (-807)))) -(-13 (-1045) (-10 -8 (-15 -2263 ((-111) $ $)) (-15 -2271 ((-111) $ $)) (-15 -2293 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3889 ($ $ $)) (-15 -2444 ($ $ $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-4279 (($ $ $) 45)) (-2262 (($ $ $) 44)) (-2623 (($ $ $) 42)) (-1704 (($ $ $) 51)) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 46)) (-2058 (((-3 $ "failed") $ $) 49)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1351 (($ $) 35)) (-3555 (($ $ $) 39)) (-3592 (($ $ $) 38)) (-1690 (($ $ $) 47)) (-3193 (($ $ $) 53)) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 41)) (-2733 (((-3 $ "failed") $ $) 48)) (-3515 (((-3 $ "failed") $ |#2|) 28)) (-1835 ((|#2| $) 32)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#2|) 12)) (-3459 (((-606 |#2|) $) 18)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-808 |#1| |#2|) (-10 -8 (-15 -1690 (|#1| |#1| |#1|)) (-15 -2704 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2058 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4279 (|#1| |#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2623 (|#1| |#1| |#1|)) (-15 -2610 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2341 ((-816) |#1|))) (-809 |#2|) (-998)) (T -808)) -NIL -(-10 -8 (-15 -1690 (|#1| |#1| |#1|)) (-15 -2704 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2058 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4279 (|#1| |#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2623 (|#1| |#1| |#1|)) (-15 -2610 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-4279 (($ $ $) 43 (|has| |#1| (-347)))) (-2262 (($ $ $) 44 (|has| |#1| (-347)))) (-2623 (($ $ $) 46 (|has| |#1| (-347)))) (-1704 (($ $ $) 41 (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 40 (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) 42 (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 45 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) 72 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 67)) (-3958 (((-537) $) 73 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 71 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 66)) (-3940 (($ $) 62)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 53 (|has| |#1| (-435)))) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 60)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 56 (|has| |#1| (-529)))) (-1883 (((-731) $) 64)) (-3555 (($ $ $) 50 (|has| |#1| (-347)))) (-3592 (($ $ $) 51 (|has| |#1| (-347)))) (-1690 (($ $ $) 39 (|has| |#1| (-347)))) (-3193 (($ $ $) 48 (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 47 (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) 49 (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 52 (|has| |#1| (-347)))) (-3912 ((|#1| $) 63)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-529)))) (-2872 (((-731) $) 65)) (-1835 ((|#1| $) 54 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 69 (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 68)) (-3459 (((-606 |#1|) $) 59)) (-3500 ((|#1| $ (-731)) 61)) (-3654 (((-731)) 28)) (-3127 ((|#1| $ |#1| |#1|) 58)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-809 |#1|) (-134) (-998)) (T -809)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-606 *3)))) (-3127 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-3412 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) (-3978 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-3592 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3555 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2733 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3193 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2610 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-809 *3)))) (-2623 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-2262 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-4279 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2058 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-1704 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2704 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-809 *3)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(-13 (-998) (-110 |t#1| |t#1|) (-395 |t#1|) (-10 -8 (-15 -2872 ((-731) $)) (-15 -1883 ((-731) $)) (-15 -3912 (|t#1| $)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ (-731))) (-15 -3733 ($ |t#1| (-731))) (-15 -3459 ((-606 |t#1|) $)) (-15 -3127 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -3515 ((-3 $ "failed") $ |t#1|)) (-15 -3412 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3558 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -1835 (|t#1| $)) (-15 -1351 ($ $))) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3592 ($ $ $)) (-15 -3555 ($ $ $)) (-15 -2733 ((-3 $ "failed") $ $)) (-15 -3193 ($ $ $)) (-15 -2610 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -2623 ($ $ $)) (-15 -2996 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2262 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -2058 ((-3 $ "failed") $ $)) (-15 -1704 ($ $ $)) (-15 -2704 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -1690 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-395 |#1|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2326 ((|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|)) 20)) (-2996 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 43 (|has| |#1| (-347)))) (-3558 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 40 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 39 (|has| |#1| (-529)))) (-3978 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 42 (|has| |#1| (-347)))) (-3127 ((|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|)) 31))) -(((-810 |#1| |#2|) (-10 -7 (-15 -2326 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -3127 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-529)) (PROGN (-15 -3412 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -3558 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2996 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) (-998) (-809 |#1|)) (T -810)) -((-2996 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3978 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3558 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3127 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-998)) (-5 *1 (-810 *2 *3)) (-4 *3 (-809 *2)))) (-2326 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-998)) (-5 *1 (-810 *5 *2)) (-4 *2 (-809 *5))))) -(-10 -7 (-15 -2326 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -3127 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-529)) (PROGN (-15 -3412 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -3558 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2996 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 32 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3819 (((-816) $ (-816)) NIL)) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 28 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 26 (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 30 (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) 15)) (-2928 (($) NIL T CONST)) (-2943 (($) 20 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 19) (($ $ (-731)) 22)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1| |#2| |#3|) (-13 (-809 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))))) (-998) (-97 |#1|) (-1 |#1| |#1|)) (T -811)) -((-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-811 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-809 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#2| (-347)))) (-2262 (($ $ $) NIL (|has| |#2| (-347)))) (-2623 (($ $ $) NIL (|has| |#2| (-347)))) (-1704 (($ $ $) NIL (|has| |#2| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) 16)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#2| (-347)))) (-3592 (($ $ $) NIL (|has| |#2| (-347)))) (-1690 (($ $ $) NIL (|has| |#2| (-347)))) (-3193 (($ $ $) NIL (|has| |#2| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-2872 (((-731) $) NIL)) (-1835 ((|#2| $) NIL (|has| |#2| (-435)))) (-2341 (((-816) $) 23) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (($ (-1196 |#1|)) 18)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#2| $ |#2| |#2|) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) 13 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-812 |#1| |#2| |#3| |#4|) (-13 (-809 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))))) (-1117) (-998) (-97 |#2|) (-1 |#2| |#2|)) (T -812)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-812 *3 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-809 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))))) -((-3621 ((|#1| (-731) |#1|) 35 (|has| |#1| (-37 (-391 (-537)))))) (-3312 ((|#1| (-731) (-731) |#1|) 27) ((|#1| (-731) |#1|) 20)) (-3851 ((|#1| (-731) |#1|) 31)) (-4136 ((|#1| (-731) |#1|) 29)) (-2463 ((|#1| (-731) |#1|) 28))) -(((-813 |#1|) (-10 -7 (-15 -2463 (|#1| (-731) |#1|)) (-15 -4136 (|#1| (-731) |#1|)) (-15 -3851 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3621 (|#1| (-731) |#1|)) |%noBranch|)) (-163)) (T -813)) -((-3621 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-3312 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-3312 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-3851 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-4136 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-2463 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) -(-10 -7 (-15 -2463 (|#1| (-731) |#1|)) (-15 -4136 (|#1| (-731) |#1|)) (-15 -3851 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3621 (|#1| (-731) |#1|)) |%noBranch|)) -((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (** (($ $ (-874)) 21)) (* (($ $ $) 20))) -(((-814) (-134)) (T -814)) -NIL -(-13 (-807) (-1057)) -(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3619 (((-537) $) 12)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 18) (($ (-537)) 11)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 8)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 9))) -(((-815) (-13 (-807) (-10 -8 (-15 -2341 ($ (-537))) (-15 -3619 ((-537) $))))) (T -815)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-815))))) -(-13 (-807) (-10 -8 (-15 -2341 ($ (-537))) (-15 -3619 ((-537) $)))) -((-2330 (((-111) $ $) NIL) (($ $ $) 77)) (-3383 (($ $ $) 115)) (-1786 (((-537) $) 30) (((-537)) 35)) (-4028 (($ (-537)) 44)) (-2229 (($ $ $) 45) (($ (-606 $)) 76)) (-3549 (($ $ (-606 $)) 74)) (-2295 (((-537) $) 33)) (-3729 (($ $ $) 63)) (-4236 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3949 (((-537) $) 32)) (-1737 (($ $ $) 62)) (-3035 (($ $) 105)) (-2317 (($ $ $) 119)) (-1764 (($ (-606 $)) 52)) (-3858 (($ $ (-606 $)) 69)) (-3228 (($ (-537) (-537)) 46)) (-1858 (($ $) 116) (($ $ $) 117)) (-3278 (($ $ (-537)) 40) (($ $) 43)) (-3563 (($ $ $) 89)) (-1458 (($ $ $) 122)) (-3649 (($ $) 106)) (-3539 (($ $ $) 90)) (-1277 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1302 (((-1205) $) 8)) (-2909 (($ $) 109) (($ $ (-731)) 112)) (-2447 (($ $ $) 65)) (-3838 (($ $ $) 64)) (-2273 (($ $ (-606 $)) 100)) (-4031 (($ $ $) 104)) (-4206 (($ (-606 $)) 50)) (-3886 (($ $) 60) (($ (-606 $)) 61)) (-4114 (($ $ $) 113)) (-4110 (($ $) 107)) (-1581 (($ $ $) 118)) (-3819 (($ (-537)) 20) (($ (-1117)) 22) (($ (-1100)) 29) (($ (-210)) 24)) (-2681 (($ $ $) 93)) (-3679 (($ $) 94)) (-3930 (((-1205) (-1100)) 14)) (-2196 (($ (-1100)) 13)) (-3299 (($ (-606 (-606 $))) 49)) (-3267 (($ $ (-537)) 39) (($ $) 42)) (-1654 (((-1100) $) NIL)) (-2999 (($ $ $) 121)) (-3129 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1442 (((-111) $) 98)) (-1336 (($ $ (-606 $)) 102) (($ $ $ $) 103)) (-2833 (($ (-537)) 36)) (-2545 (((-537) $) 31) (((-537)) 34)) (-2383 (($ $ $) 37) (($ (-606 $)) 75)) (-2528 (((-1064) $) NIL)) (-3515 (($ $ $) 91)) (-3425 (($) 12)) (-1922 (($ $ (-606 $)) 99)) (-3416 (($ $) 108) (($ $ (-731)) 111)) (-3527 (($ $ $) 88)) (-3456 (($ $ (-731)) 127)) (-4158 (($ (-606 $)) 51)) (-2341 (((-816) $) 18)) (-2184 (($ $ (-537)) 38) (($ $) 41)) (-1511 (($ $) 58) (($ (-606 $)) 59)) (-3575 (($ $) 56) (($ (-606 $)) 57)) (-1822 (($ $) 114)) (-3090 (($ (-606 $)) 55)) (-2360 (($ $ $) 97)) (-2893 (($ $ $) 120)) (-3319 (($ $ $) 92)) (-3401 (($ $ $) 95) (($ $) 96)) (-2293 (($ $ $) 81)) (-2271 (($ $ $) 79)) (-2244 (((-111) $ $) 15) (($ $ $) 16)) (-2282 (($ $ $) 80)) (-2263 (($ $ $) 78)) (-2340 (($ $ $) 86)) (-2329 (($ $ $) 83) (($ $) 84)) (-2318 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-816) (-13 (-1045) (-10 -8 (-15 -1302 ((-1205) $)) (-15 -2196 ($ (-1100))) (-15 -3930 ((-1205) (-1100))) (-15 -3819 ($ (-537))) (-15 -3819 ($ (-1117))) (-15 -3819 ($ (-1100))) (-15 -3819 ($ (-210))) (-15 -3425 ($)) (-15 -1786 ((-537) $)) (-15 -2545 ((-537) $)) (-15 -1786 ((-537))) (-15 -2545 ((-537))) (-15 -3949 ((-537) $)) (-15 -2295 ((-537) $)) (-15 -2833 ($ (-537))) (-15 -4028 ($ (-537))) (-15 -3228 ($ (-537) (-537))) (-15 -3267 ($ $ (-537))) (-15 -3278 ($ $ (-537))) (-15 -2184 ($ $ (-537))) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -2184 ($ $)) (-15 -2383 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -2383 ($ (-606 $))) (-15 -2229 ($ (-606 $))) (-15 -2273 ($ $ (-606 $))) (-15 -1336 ($ $ (-606 $))) (-15 -1336 ($ $ $ $)) (-15 -4031 ($ $ $)) (-15 -1442 ((-111) $)) (-15 -1922 ($ $ (-606 $))) (-15 -3035 ($ $)) (-15 -2999 ($ $ $)) (-15 -1822 ($ $)) (-15 -3299 ($ (-606 (-606 $)))) (-15 -3383 ($ $ $)) (-15 -1858 ($ $)) (-15 -1858 ($ $ $)) (-15 -1581 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -3456 ($ $ (-731))) (-15 -2360 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3858 ($ $ (-606 $))) (-15 -3549 ($ $ (-606 $))) (-15 -3649 ($ $)) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-731))) (-15 -2909 ($ $)) (-15 -2909 ($ $ (-731))) (-15 -4110 ($ $)) (-15 -4114 ($ $ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ $)) (-15 -4236 ($ $ $ $)) (-15 -1277 ($ $)) (-15 -1277 ($ $ $)) (-15 -1277 ($ $ $ $)) (-15 -3129 ($ $)) (-15 -3129 ($ $ $)) (-15 -3129 ($ $ $ $)) (-15 -3575 ($ $)) (-15 -3575 ($ (-606 $))) (-15 -1511 ($ $)) (-15 -1511 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -4206 ($ (-606 $))) (-15 -4158 ($ (-606 $))) (-15 -1764 ($ (-606 $))) (-15 -3090 ($ (-606 $))) (-15 -2244 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2293 ($ $ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -3679 ($ $)) (-15 -3401 ($ $ $)) (-15 -3401 ($ $))))) (T -816)) -((-1302 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-816)))) (-2196 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-816)))) (-3425 (*1 *1) (-5 *1 (-816))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-1786 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2545 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3228 (*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3278 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3267 (*1 *1 *1) (-5 *1 (-816))) (-3278 (*1 *1 *1) (-5 *1 (-816))) (-2184 (*1 *1 *1) (-5 *1 (-816))) (-2383 (*1 *1 *1 *1) (-5 *1 (-816))) (-2229 (*1 *1 *1 *1) (-5 *1 (-816))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1336 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-4031 (*1 *1 *1 *1) (-5 *1 (-816))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3035 (*1 *1 *1) (-5 *1 (-816))) (-2999 (*1 *1 *1 *1) (-5 *1 (-816))) (-1822 (*1 *1 *1) (-5 *1 (-816))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-816)))) (-3383 (*1 *1 *1 *1) (-5 *1 (-816))) (-1858 (*1 *1 *1) (-5 *1 (-816))) (-1858 (*1 *1 *1 *1) (-5 *1 (-816))) (-1581 (*1 *1 *1 *1) (-5 *1 (-816))) (-2317 (*1 *1 *1 *1) (-5 *1 (-816))) (-2893 (*1 *1 *1 *1) (-5 *1 (-816))) (-1458 (*1 *1 *1 *1) (-5 *1 (-816))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-2360 (*1 *1 *1 *1) (-5 *1 (-816))) (-1737 (*1 *1 *1 *1) (-5 *1 (-816))) (-3729 (*1 *1 *1 *1) (-5 *1 (-816))) (-3838 (*1 *1 *1 *1) (-5 *1 (-816))) (-2447 (*1 *1 *1 *1) (-5 *1 (-816))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3649 (*1 *1 *1) (-5 *1 (-816))) (-3416 (*1 *1 *1) (-5 *1 (-816))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-2909 (*1 *1 *1) (-5 *1 (-816))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-4110 (*1 *1 *1) (-5 *1 (-816))) (-4114 (*1 *1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-3575 (*1 *1 *1) (-5 *1 (-816))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1511 (*1 *1 *1) (-5 *1 (-816))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3886 (*1 *1 *1) (-5 *1 (-816))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-4206 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2244 (*1 *1 *1 *1) (-5 *1 (-816))) (-2330 (*1 *1 *1 *1) (-5 *1 (-816))) (-2263 (*1 *1 *1 *1) (-5 *1 (-816))) (-2271 (*1 *1 *1 *1) (-5 *1 (-816))) (-2282 (*1 *1 *1 *1) (-5 *1 (-816))) (-2293 (*1 *1 *1 *1) (-5 *1 (-816))) (-2318 (*1 *1 *1 *1) (-5 *1 (-816))) (-2329 (*1 *1 *1 *1) (-5 *1 (-816))) (-2329 (*1 *1 *1) (-5 *1 (-816))) (* (*1 *1 *1 *1) (-5 *1 (-816))) (-2340 (*1 *1 *1 *1) (-5 *1 (-816))) (** (*1 *1 *1 *1) (-5 *1 (-816))) (-3527 (*1 *1 *1 *1) (-5 *1 (-816))) (-3563 (*1 *1 *1 *1) (-5 *1 (-816))) (-3539 (*1 *1 *1 *1) (-5 *1 (-816))) (-3515 (*1 *1 *1 *1) (-5 *1 (-816))) (-3319 (*1 *1 *1 *1) (-5 *1 (-816))) (-2681 (*1 *1 *1 *1) (-5 *1 (-816))) (-3679 (*1 *1 *1) (-5 *1 (-816))) (-3401 (*1 *1 *1 *1) (-5 *1 (-816))) (-3401 (*1 *1 *1) (-5 *1 (-816)))) -(-13 (-1045) (-10 -8 (-15 -1302 ((-1205) $)) (-15 -2196 ($ (-1100))) (-15 -3930 ((-1205) (-1100))) (-15 -3819 ($ (-537))) (-15 -3819 ($ (-1117))) (-15 -3819 ($ (-1100))) (-15 -3819 ($ (-210))) (-15 -3425 ($)) (-15 -1786 ((-537) $)) (-15 -2545 ((-537) $)) (-15 -1786 ((-537))) (-15 -2545 ((-537))) (-15 -3949 ((-537) $)) (-15 -2295 ((-537) $)) (-15 -2833 ($ (-537))) (-15 -4028 ($ (-537))) (-15 -3228 ($ (-537) (-537))) (-15 -3267 ($ $ (-537))) (-15 -3278 ($ $ (-537))) (-15 -2184 ($ $ (-537))) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -2184 ($ $)) (-15 -2383 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -2383 ($ (-606 $))) (-15 -2229 ($ (-606 $))) (-15 -2273 ($ $ (-606 $))) (-15 -1336 ($ $ (-606 $))) (-15 -1336 ($ $ $ $)) (-15 -4031 ($ $ $)) (-15 -1442 ((-111) $)) (-15 -1922 ($ $ (-606 $))) (-15 -3035 ($ $)) (-15 -2999 ($ $ $)) (-15 -1822 ($ $)) (-15 -3299 ($ (-606 (-606 $)))) (-15 -3383 ($ $ $)) (-15 -1858 ($ $)) (-15 -1858 ($ $ $)) (-15 -1581 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -3456 ($ $ (-731))) (-15 -2360 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3858 ($ $ (-606 $))) (-15 -3549 ($ $ (-606 $))) (-15 -3649 ($ $)) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-731))) (-15 -2909 ($ $)) (-15 -2909 ($ $ (-731))) (-15 -4110 ($ $)) (-15 -4114 ($ $ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ $)) (-15 -4236 ($ $ $ $)) (-15 -1277 ($ $)) (-15 -1277 ($ $ $)) (-15 -1277 ($ $ $ $)) (-15 -3129 ($ $)) (-15 -3129 ($ $ $)) (-15 -3129 ($ $ $ $)) (-15 -3575 ($ $)) (-15 -3575 ($ (-606 $))) (-15 -1511 ($ $)) (-15 -1511 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -4206 ($ (-606 $))) (-15 -4158 ($ (-606 $))) (-15 -1764 ($ (-606 $))) (-15 -3090 ($ (-606 $))) (-15 -2244 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2293 ($ $ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -3679 ($ $)) (-15 -3401 ($ $ $)) (-15 -3401 ($ $)))) -((-3024 (((-1205) (-606 (-51))) 24)) (-3569 (((-1205) (-1100) (-816)) 14) (((-1205) (-816)) 9) (((-1205) (-1100)) 11))) -(((-817) (-10 -7 (-15 -3569 ((-1205) (-1100))) (-15 -3569 ((-1205) (-816))) (-15 -3569 ((-1205) (-1100) (-816))) (-15 -3024 ((-1205) (-606 (-51)))))) (T -817)) -((-3024 (*1 *2 *3) (-12 (-5 *3 (-606 (-51))) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-817))))) -(-10 -7 (-15 -3569 ((-1205) (-1100))) (-15 -3569 ((-1205) (-816))) (-15 -3569 ((-1205) (-1100) (-816))) (-15 -3024 ((-1205) (-606 (-51))))) -((-2330 (((-111) $ $) NIL)) (-1890 (((-3 $ "failed") (-1117)) 33)) (-3151 (((-731)) 31)) (-1618 (($) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2334 (((-874) $) 29)) (-1654 (((-1100) $) 39)) (-2009 (($ (-874)) 28)) (-2528 (((-1064) $) NIL)) (-3996 (((-1117) $) 13) (((-513) $) 19) (((-845 (-363)) $) 26) (((-845 (-537)) $) 22)) (-2341 (((-816) $) 16)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 36)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35))) -(((-818 |#1|) (-13 (-801) (-580 (-1117)) (-580 (-513)) (-580 (-845 (-363))) (-580 (-845 (-537))) (-10 -8 (-15 -1890 ((-3 $ "failed") (-1117))))) (-606 (-1117))) (T -818)) -((-1890 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-818 *3)) (-14 *3 (-606 *2))))) -(-13 (-801) (-580 (-1117)) (-580 (-513)) (-580 (-845 (-363))) (-580 (-845 (-537))) (-10 -8 (-15 -1890 ((-3 $ "failed") (-1117))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (((-905 |#1|) $) NIL) (($ (-905 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-163)))) (-3654 (((-731)) NIL)) (-4216 (((-1205) (-731)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-819 |#1| |#2| |#3| |#4|) (-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 ((-905 |#1|) $)) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4216 ((-1205) (-731))))) (-998) (-606 (-1117)) (-606 (-731)) (-731)) (T -819)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-819 *3 *4 *5 *6)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-819 *3 *4 *5 *6)) (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) (-2340 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-731))) (-14 *5 (-731)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-819 *4 *5 *6 *7)) (-4 *4 (-998)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 *3)) (-14 *7 *3)))) -(-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 ((-905 |#1|) $)) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4216 ((-1205) (-731))))) -((-2052 (((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|) 31)) (-1881 (((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|) 24))) -(((-820 |#1| |#2| |#3|) (-10 -7 (-15 -1881 ((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|)) (-15 -2052 ((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|))) (-347) (-1191 |#1|) (-1176 |#1|)) (T -820)) -((-2052 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-164 *6)) (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5)))) (-1881 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-391 *6)) (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5))))) -(-10 -7 (-15 -1881 ((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|)) (-15 -2052 ((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|))) -((-1881 (((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)) 28) (((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) 26))) -(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)))) (-347) (-1117) |#1|) (T -821)) -((-1881 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) (-5 *1 (-821 *5 *6 *7)))) (-1881 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) (-5 *1 (-821 *5 *6 *7))))) -(-10 -7 (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $ (-537)) 60)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1858 (($ (-1113 (-537)) (-537)) 59)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3533 (($ $) 62)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4231 (((-731) $) 67)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2084 (((-537)) 64)) (-2089 (((-537) $) 63)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1540 (($ $ (-537)) 66)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3025 (((-1098 (-537)) $) 68)) (-1577 (($ $) 65)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-4150 (((-537) $ (-537)) 61)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-822 |#1|) (-134) (-537)) (T -822)) -((-3025 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-1098 (-537))))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-731)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-1577 (*1 *1 *1) (-4 *1 (-822 *2))) (-2084 (*1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-3533 (*1 *1 *1) (-4 *1 (-822 *2))) (-4150 (*1 *2 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-3633 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *3 (-537)) (-4 *1 (-822 *4))))) -(-13 (-291) (-141) (-10 -8 (-15 -3025 ((-1098 (-537)) $)) (-15 -4231 ((-731) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)) (-15 -2084 ((-537))) (-15 -2089 ((-537) $)) (-15 -3533 ($ $)) (-15 -4150 ((-537) $ (-537))) (-15 -3633 ($ $ (-537))) (-15 -1858 ($ (-1113 (-537)) (-537))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) NIL)) (-2089 (((-537) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-1098 (-537)) $) NIL)) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) -(((-823 |#1|) (-822 |#1|) (-537)) (T -823)) -NIL -(-822 |#1|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-823 |#1|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-823 |#1|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-823 |#1|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-823 |#1|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-823 |#1|) (-989 (-537))))) (-3958 (((-823 |#1|) $) NIL) (((-1117) $) NIL (|has| (-823 |#1|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-823 |#1|) (-989 (-537)))) (((-537) $) NIL (|has| (-823 |#1|) (-989 (-537))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-823 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-823 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-823 |#1|))) (|:| |vec| (-1200 (-823 |#1|)))) (-649 $) (-1200 $)) NIL) (((-649 (-823 |#1|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-823 |#1|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-823 |#1|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-823 |#1|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-823 |#1|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-823 |#1|) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-823 |#1|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-823 |#1|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-823 |#1|) (-807)))) (-3889 (($ $ $) NIL (|has| (-823 |#1|) (-807)))) (-1612 (($ (-1 (-823 |#1|) (-823 |#1|)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-823 |#1|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-823 |#1|) (-291)))) (-3830 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-823 |#1|)) (-606 (-823 |#1|))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-823 |#1|) (-823 |#1|)) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-278 (-823 |#1|))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-606 (-278 (-823 |#1|)))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-606 (-1117)) (-606 (-823 |#1|))) NIL (|has| (-823 |#1|) (-495 (-1117) (-823 |#1|)))) (($ $ (-1117) (-823 |#1|)) NIL (|has| (-823 |#1|) (-495 (-1117) (-823 |#1|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-823 |#1|)) NIL (|has| (-823 |#1|) (-270 (-823 |#1|) (-823 |#1|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-823 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-823 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1 (-823 |#1|) (-823 |#1|)) (-731)) NIL) (($ $ (-1 (-823 |#1|) (-823 |#1|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-823 |#1|) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-823 |#1|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-823 |#1|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-823 |#1|) (-580 (-513)))) (((-363) $) NIL (|has| (-823 |#1|) (-973))) (((-210) $) NIL (|has| (-823 |#1|) (-973)))) (-4225 (((-164 (-391 (-537))) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-823 |#1|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-823 |#1|)) NIL) (($ (-1117)) NIL (|has| (-823 |#1|) (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-823 |#1|) (-862))) (|has| (-823 |#1|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) NIL)) (-2209 (($ $) NIL (|has| (-823 |#1|) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-823 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-823 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1 (-823 |#1|) (-823 |#1|)) (-731)) NIL) (($ $ (-1 (-823 |#1|) (-823 |#1|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2340 (($ $ $) NIL) (($ (-823 |#1|) (-823 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-823 |#1|) $) NIL) (($ $ (-823 |#1|)) NIL))) -(((-824 |#1|) (-13 (-945 (-823 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537)) (T -824)) -((-4150 (*1 *2 *1 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-824 *4)) (-14 *4 *3) (-5 *3 (-537)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-824 *3)) (-14 *3 (-537)))) (-4000 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-14 *2 (-537)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-824 *3)) (-14 *3 *2)))) -(-13 (-945 (-823 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#2| $) NIL (|has| |#2| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#2| (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| |#2| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537))))) (-3958 ((|#2| $) NIL) (((-1117) $) NIL (|has| |#2| (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-537)))) (((-537) $) NIL (|has| |#2| (-989 (-537))))) (-4000 (($ $) 31) (($ (-537) $) 32)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 53)) (-1618 (($) NIL (|has| |#2| (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| |#2| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#2| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#2| (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 ((|#2| $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#2| (-1093)))) (-2840 (((-111) $) NIL (|has| |#2| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 49)) (-3956 (($) NIL (|has| |#2| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| |#2| (-291)))) (-3830 ((|#2| $) NIL (|has| |#2| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 |#2|) (-606 |#2|)) NIL (|has| |#2| (-293 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-293 |#2|))) (($ $ (-278 |#2|)) NIL (|has| |#2| (-293 |#2|))) (($ $ (-606 (-278 |#2|))) NIL (|has| |#2| (-293 |#2|))) (($ $ (-606 (-1117)) (-606 |#2|)) NIL (|has| |#2| (-495 (-1117) |#2|))) (($ $ (-1117) |#2|) NIL (|has| |#2| (-495 (-1117) |#2|)))) (-1930 (((-731) $) NIL)) (-1922 (($ $ |#2|) NIL (|has| |#2| (-270 |#2| |#2|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#2| (-218))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2395 (($ $) NIL)) (-3315 ((|#2| $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| |#2| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#2| (-580 (-845 (-363))))) (((-513) $) NIL (|has| |#2| (-580 (-513)))) (((-363) $) NIL (|has| |#2| (-973))) (((-210) $) NIL (|has| |#2| (-973)))) (-4225 (((-164 (-391 (-537))) $) 68)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) 87) (($ (-537)) 19) (($ $) NIL) (($ (-391 (-537))) 24) (($ |#2|) 18) (($ (-1117)) NIL (|has| |#2| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-3903 ((|#2| $) NIL (|has| |#2| (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) 60)) (-2209 (($ $) NIL (|has| |#2| (-780)))) (-2928 (($) 14 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $) NIL (|has| |#2| (-218))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) 35)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2329 (($ $) 39) (($ $ $) 41)) (-2318 (($ $ $) 37)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 50)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 42) (($ $ $) 44) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-825 |#1| |#2|) (-13 (-945 |#2|) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537) (-822 |#1|)) (T -825)) -((-4150 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-391 (-537))) (-5 *1 (-825 *4 *5)) (-5 *3 (-537)) (-4 *5 (-822 *4)))) (-4225 (*1 *2 *1) (-12 (-14 *3 (-537)) (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3)))) (-4000 (*1 *1 *1) (-12 (-14 *2 (-537)) (-5 *1 (-825 *2 *3)) (-4 *3 (-822 *2)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-14 *3 *2) (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3))))) -(-13 (-945 |#2|) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) -((-2330 (((-111) $ $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-1647 ((|#2| $) 12)) (-2039 (($ |#1| |#2|) 9)) (-1654 (((-1100) $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-2528 (((-1064) $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#1| $) 11)) (-2350 (($ |#1| |#2|) 10)) (-2341 (((-816) $) 18 (-1533 (-12 (|has| |#1| (-579 (-816))) (|has| |#2| (-579 (-816)))) (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045)))))) (-2244 (((-111) $ $) 22 (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045)))))) -(((-826 |#1| |#2|) (-13 (-1154) (-10 -8 (IF (|has| |#1| (-579 (-816))) (IF (|has| |#2| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1045)) (IF (|has| |#2| (-1045)) (-6 (-1045)) |%noBranch|) |%noBranch|) (-15 -2039 ($ |#1| |#2|)) (-15 -2350 ($ |#1| |#2|)) (-15 -3188 (|#1| $)) (-15 -1647 (|#2| $)))) (-1154) (-1154)) (T -826)) -((-2039 (*1 *1 *2 *3) (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) (-3188 (*1 *2 *1) (-12 (-4 *2 (-1154)) (-5 *1 (-826 *2 *3)) (-4 *3 (-1154)))) (-1647 (*1 *2 *1) (-12 (-4 *2 (-1154)) (-5 *1 (-826 *3 *2)) (-4 *3 (-1154))))) -(-13 (-1154) (-10 -8 (IF (|has| |#1| (-579 (-816))) (IF (|has| |#2| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1045)) (IF (|has| |#2| (-1045)) (-6 (-1045)) |%noBranch|) |%noBranch|) (-15 -2039 ($ |#1| |#2|)) (-15 -2350 ($ |#1| |#2|)) (-15 -3188 (|#1| $)) (-15 -1647 (|#2| $)))) -((-2330 (((-111) $ $) NIL)) (-1950 (((-537) $) 15)) (-1471 (($ (-149)) 11)) (-2844 (($ (-149)) 12)) (-1654 (((-1100) $) NIL)) (-1826 (((-149) $) 13)) (-2528 (((-1064) $) NIL)) (-1532 (($ (-149)) 9)) (-2938 (($ (-149)) 8)) (-2341 (((-816) $) 23) (($ (-149)) 16)) (-1792 (($ (-149)) 10)) (-2244 (((-111) $ $) NIL))) -(((-827) (-13 (-1045) (-10 -8 (-15 -2938 ($ (-149))) (-15 -1532 ($ (-149))) (-15 -1792 ($ (-149))) (-15 -1471 ($ (-149))) (-15 -2844 ($ (-149))) (-15 -1826 ((-149) $)) (-15 -1950 ((-537) $)) (-15 -2341 ($ (-149)))))) (T -827)) -((-2938 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-827)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) -(-13 (-1045) (-10 -8 (-15 -2938 ($ (-149))) (-15 -1532 ($ (-149))) (-15 -1792 ($ (-149))) (-15 -1471 ($ (-149))) (-15 -2844 ($ (-149))) (-15 -1826 ((-149) $)) (-15 -1950 ((-537) $)) (-15 -2341 ($ (-149))))) -((-2341 (((-300 (-537)) (-391 (-905 (-47)))) 23) (((-300 (-537)) (-905 (-47))) 18))) -(((-828) (-10 -7 (-15 -2341 ((-300 (-537)) (-905 (-47)))) (-15 -2341 ((-300 (-537)) (-391 (-905 (-47))))))) (T -828)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 (-47)))) (-5 *2 (-300 (-537))) (-5 *1 (-828)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-300 (-537))) (-5 *1 (-828))))) -(-10 -7 (-15 -2341 ((-300 (-537)) (-905 (-47)))) (-15 -2341 ((-300 (-537)) (-391 (-905 (-47)))))) -((-1612 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 14))) -(((-829 |#1| |#2|) (-10 -7 (-15 -1612 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)))) (-1154) (-1154)) (T -829)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6))))) -(-10 -7 (-15 -1612 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)))) -((-1943 (($ |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) -(((-830 |#1|) (-10 -8 (-15 -1943 ($ |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -830)) -((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-830 *2)) (-4 *2 (-1154)))) (-1943 (*1 *1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1154))))) -(-10 -8 (-15 -1943 ($ |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) -((-1612 (((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)) 14))) -(((-831 |#1| |#2|) (-10 -7 (-15 -1612 ((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)))) (-1154) (-1154)) (T -831)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-832 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-832 *6)) (-5 *1 (-831 *5 *6))))) -(-10 -7 (-15 -1612 ((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)))) -((-1943 (($ |#1| |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) -(((-832 |#1|) (-10 -8 (-15 -1943 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -832)) -((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-832 *2)) (-4 *2 (-1154)))) (-1943 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1154))))) -(-10 -8 (-15 -1943 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) -((-3716 (((-606 (-1122)) (-1100)) 9))) -(((-833) (-10 -7 (-15 -3716 ((-606 (-1122)) (-1100))))) (T -833)) -((-3716 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-833))))) -(-10 -7 (-15 -3716 ((-606 (-1122)) (-1100)))) -((-1612 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 14))) -(((-834 |#1| |#2|) (-10 -7 (-15 -1612 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) (-1154) (-1154)) (T -834)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6))))) -(-10 -7 (-15 -1612 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) -((-3698 (($ |#1| |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) -(((-835 |#1|) (-10 -8 (-15 -3698 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -835)) -((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-835 *2)) (-4 *2 (-1154)))) (-3698 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1154))))) -(-10 -8 (-15 -3698 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) -((-3256 (((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537)))) 32)) (-1580 (((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537))) 28)) (-4094 (((-1098 (-606 (-537))) (-606 (-537))) 41) (((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537))) 40)) (-2638 (((-1098 (-606 (-537))) (-537)) 42)) (-2188 (((-1098 (-606 (-537))) (-537) (-537)) 22) (((-1098 (-606 (-537))) (-537)) 16) (((-1098 (-606 (-537))) (-537) (-537) (-537)) 12)) (-1977 (((-1098 (-606 (-537))) (-1098 (-606 (-537)))) 26)) (-1978 (((-606 (-537)) (-606 (-537))) 25))) -(((-836) (-10 -7 (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537))) (-15 -1978 ((-606 (-537)) (-606 (-537)))) (-15 -1977 ((-1098 (-606 (-537))) (-1098 (-606 (-537))))) (-15 -1580 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -3256 ((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537))))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)))) (-15 -2638 ((-1098 (-606 (-537))) (-537))))) (T -836)) -((-2638 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-4094 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-3256 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *3 (-606 (-537))) (-5 *1 (-836)))) (-1580 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-836)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-2188 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) -(-10 -7 (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537))) (-15 -1978 ((-606 (-537)) (-606 (-537)))) (-15 -1977 ((-1098 (-606 (-537))) (-1098 (-606 (-537))))) (-15 -1580 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -3256 ((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537))))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)))) (-15 -2638 ((-1098 (-606 (-537))) (-537)))) -((-3996 (((-845 (-363)) $) 9 (|has| |#1| (-580 (-845 (-363))))) (((-845 (-537)) $) 8 (|has| |#1| (-580 (-845 (-537))))))) -(((-837 |#1|) (-134) (-1154)) (T -837)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-580 (-845 (-537)))) (-6 (-580 (-845 (-537)))) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-363)))) (-6 (-580 (-845 (-363)))) |%noBranch|))) -(((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537))))) -((-2330 (((-111) $ $) NIL)) (-3157 (($) 14)) (-3519 (($ (-842 |#1| |#2|) (-842 |#1| |#3|)) 27)) (-3774 (((-842 |#1| |#3|) $) 16)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3644 (((-111) $) 22)) (-4053 (($) 19)) (-2341 (((-816) $) 30)) (-2533 (((-842 |#1| |#2|) $) 15)) (-2244 (((-111) $ $) 25))) -(((-838 |#1| |#2| |#3|) (-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -3519 ($ (-842 |#1| |#2|) (-842 |#1| |#3|))) (-15 -2533 ((-842 |#1| |#2|) $)) (-15 -3774 ((-842 |#1| |#3|) $)))) (-1045) (-1045) (-627 |#2|)) (T -838)) -((-3644 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4)))) (-4053 (*1 *1) (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) (-4 *4 (-627 *3)))) (-3157 (*1 *1) (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) (-4 *4 (-627 *3)))) (-3519 (*1 *1 *2 *3) (-12 (-5 *2 (-842 *4 *5)) (-5 *3 (-842 *4 *6)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-627 *5)) (-5 *1 (-838 *4 *5 *6)))) (-2533 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *4)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4)))) (-3774 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *5)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4))))) -(-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -3519 ($ (-842 |#1| |#2|) (-842 |#1| |#3|))) (-15 -2533 ((-842 |#1| |#2|) $)) (-15 -3774 ((-842 |#1| |#3|) $)))) -((-2330 (((-111) $ $) 7)) (-4196 (((-842 |#1| $) $ (-845 |#1|) (-842 |#1| $)) 13)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-839 |#1|) (-134) (-1045)) (T -839)) -((-4196 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-842 *4 *1)) (-5 *3 (-845 *4)) (-4 *1 (-839 *4)) (-4 *4 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -4196 ((-842 |t#1| $) $ (-845 |t#1|) (-842 |t#1| $))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-3215 (((-111) (-606 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2321 (((-842 |#1| |#2|) |#2| |#3|) 43 (-12 (-3679 (|has| |#2| (-989 (-1117)))) (-3679 (|has| |#2| (-998))))) (((-606 (-278 (-905 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-998)) (-3679 (|has| |#2| (-989 (-1117)))))) (((-606 (-278 |#2|)) |#2| |#3|) 35 (|has| |#2| (-989 (-1117)))) (((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|) 21))) -(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -3215 ((-111) |#2| |#3|)) (-15 -3215 ((-111) (-606 |#2|) |#3|)) (-15 -2321 ((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|)) (IF (|has| |#2| (-989 (-1117))) (-15 -2321 ((-606 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-998)) (-15 -2321 ((-606 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2321 ((-842 |#1| |#2|) |#2| |#3|))))) (-1045) (-839 |#1|) (-580 (-845 |#1|))) (T -840)) -((-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-842 *5 *3)) (-5 *1 (-840 *5 *3 *4)) (-3679 (-4 *3 (-989 (-1117)))) (-3679 (-4 *3 (-998))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 (-905 *3)))) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-998)) (-3679 (-4 *3 (-989 (-1117)))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 *3))) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-989 (-1117))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-5 *2 (-838 *5 *6 (-606 *6))) (-5 *1 (-840 *5 *6 *4)) (-5 *3 (-606 *6)) (-4 *4 (-580 (-845 *5))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-4 *6 (-839 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *6 *4)) (-4 *4 (-580 (-845 *5))))) (-3215 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5)))))) -(-10 -7 (-15 -3215 ((-111) |#2| |#3|)) (-15 -3215 ((-111) (-606 |#2|) |#3|)) (-15 -2321 ((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|)) (IF (|has| |#2| (-989 (-1117))) (-15 -2321 ((-606 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-998)) (-15 -2321 ((-606 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2321 ((-842 |#1| |#2|) |#2| |#3|))))) -((-1612 (((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)) 22))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)))) (-1045) (-1045) (-1045)) (T -841)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-842 *5 *6)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-842 *5 *7)) (-5 *1 (-841 *5 *6 *7))))) -(-10 -7 (-15 -1612 ((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)))) -((-2330 (((-111) $ $) NIL)) (-4221 (($ $ $) 39)) (-2237 (((-3 (-111) "failed") $ (-845 |#1|)) 36)) (-3157 (($) 12)) (-1654 (((-1100) $) NIL)) (-3070 (($ (-845 |#1|) |#2| $) 20)) (-2528 (((-1064) $) NIL)) (-4132 (((-3 |#2| "failed") (-845 |#1|) $) 50)) (-3644 (((-111) $) 15)) (-4053 (($) 13)) (-3690 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $) 25)) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|)))) 23)) (-2341 (((-816) $) 44)) (-2936 (($ (-845 |#1|) |#2| $ |#2|) 48)) (-1653 (($ (-845 |#1|) |#2| $) 47)) (-2244 (((-111) $ $) 41))) -(((-842 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -4221 ($ $ $)) (-15 -4132 ((-3 |#2| "failed") (-845 |#1|) $)) (-15 -1653 ($ (-845 |#1|) |#2| $)) (-15 -3070 ($ (-845 |#1|) |#2| $)) (-15 -2936 ($ (-845 |#1|) |#2| $ |#2|)) (-15 -3690 ((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))))) (-15 -2237 ((-3 (-111) "failed") $ (-845 |#1|))))) (-1045) (-1045)) (T -842)) -((-3644 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-4053 (*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3157 (*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-4221 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-4132 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-4 *2 (-1045)) (-5 *1 (-842 *4 *2)))) (-1653 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-3070 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-2936 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) (-4 *4 (-1045)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)))) (-2237 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -4221 ($ $ $)) (-15 -4132 ((-3 |#2| "failed") (-845 |#1|) $)) (-15 -1653 ($ (-845 |#1|) |#2| $)) (-15 -3070 ($ (-845 |#1|) |#2| $)) (-15 -2936 ($ (-845 |#1|) |#2| $ |#2|)) (-15 -3690 ((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))))) (-15 -2237 ((-3 (-111) "failed") $ (-845 |#1|))))) -((-2738 (((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|))) 32) (((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|))) 43) (((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|)) 35)) (-2237 (((-111) (-606 |#2|) (-845 |#1|)) 40) (((-111) |#2| (-845 |#1|)) 36)) (-1434 (((-1 (-111) |#2|) (-845 |#1|)) 16)) (-3842 (((-606 |#2|) (-845 |#1|)) 24)) (-2773 (((-845 |#1|) (-845 |#1|) |#2|) 20))) -(((-843 |#1| |#2|) (-10 -7 (-15 -2738 ((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|)))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|)))) (-15 -1434 ((-1 (-111) |#2|) (-845 |#1|))) (-15 -2237 ((-111) |#2| (-845 |#1|))) (-15 -2237 ((-111) (-606 |#2|) (-845 |#1|))) (-15 -2773 ((-845 |#1|) (-845 |#1|) |#2|)) (-15 -3842 ((-606 |#2|) (-845 |#1|)))) (-1045) (-1154)) (T -843)) -((-3842 (*1 *2 *3) (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-606 *5)) (-5 *1 (-843 *4 *5)) (-4 *5 (-1154)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-843 *4 *3)) (-4 *3 (-1154)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *2 (-111)) (-5 *1 (-843 *5 *6)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-843 *5 *3)) (-4 *3 (-1154)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-843 *4 *5)) (-4 *5 (-1154)))) (-2738 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-845 *5)) (-5 *3 (-606 (-1117))) (-5 *4 (-1 (-111) (-606 *6))) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-843 *5 *6)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-5 *3 (-606 (-1 (-111) *5))) (-4 *4 (-1045)) (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1045)) (-4 *5 (-1154)) (-5 *1 (-843 *4 *5))))) -(-10 -7 (-15 -2738 ((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|)))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|)))) (-15 -1434 ((-1 (-111) |#2|) (-845 |#1|))) (-15 -2237 ((-111) |#2| (-845 |#1|))) (-15 -2237 ((-111) (-606 |#2|) (-845 |#1|))) (-15 -2773 ((-845 |#1|) (-845 |#1|) |#2|)) (-15 -3842 ((-606 |#2|) (-845 |#1|)))) -((-1612 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 19))) -(((-844 |#1| |#2|) (-10 -7 (-15 -1612 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)))) (-1045) (-1045)) (T -844)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -1612 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1983 (($ $ (-606 (-51))) 64)) (-3757 (((-606 $) $) 118)) (-2520 (((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $) 24)) (-3128 (((-111) $) 30)) (-2397 (($ $ (-606 (-1117)) (-51)) 25)) (-1868 (($ $ (-606 (-51))) 63)) (-1516 (((-3 |#1| "failed") $) 61) (((-3 (-1117) "failed") $) 140)) (-3958 ((|#1| $) 58) (((-1117) $) NIL)) (-2376 (($ $) 108)) (-1469 (((-111) $) 47)) (-1418 (((-606 (-51)) $) 45)) (-2242 (($ (-1117) (-111) (-111) (-111)) 65)) (-4194 (((-3 (-606 $) "failed") (-606 $)) 72)) (-1721 (((-111) $) 50)) (-2855 (((-111) $) 49)) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) 36)) (-2496 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $) 83)) (-2566 (((-3 (-606 $) "failed") $) 33)) (-1697 (((-3 (-606 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $) 95)) (-2777 (((-3 (-606 $) "failed") $) 37)) (-2983 (((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $) 40)) (-1745 (((-111) $) 29)) (-2528 (((-1064) $) NIL)) (-2142 (((-111) $) 21)) (-2113 (((-111) $) 46)) (-2892 (((-606 (-51)) $) 111)) (-3790 (((-111) $) 48)) (-1922 (($ (-113) (-606 $)) 92)) (-3731 (((-731) $) 28)) (-2494 (($ $) 62)) (-3996 (($ (-606 $)) 59)) (-2162 (((-111) $) 26)) (-2341 (((-816) $) 53) (($ |#1|) 18) (($ (-1117)) 66)) (-2773 (($ $ (-51)) 110)) (-2928 (($) 91 T CONST)) (-2943 (($) 73 T CONST)) (-2244 (((-111) $ $) 79)) (-2340 (($ $ $) 100)) (-2318 (($ $ $) 104)) (** (($ $ (-731)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-845 |#1|) (-13 (-1045) (-989 |#1|) (-989 (-1117)) (-10 -8 (-15 0 ($) -2787) (-15 1 ($) -2787) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -1697 ((-3 (-606 $) "failed") $ (-113))) (-15 -1697 ((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $)) (-15 -2496 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2777 ((-3 (-606 $) "failed") $)) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3731 ((-731) $)) (-15 -3996 ($ (-606 $))) (-15 -2494 ($ $)) (-15 -1745 ((-111) $)) (-15 -1469 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -2162 ((-111) $)) (-15 -3790 ((-111) $)) (-15 -2855 ((-111) $)) (-15 -1721 ((-111) $)) (-15 -2113 ((-111) $)) (-15 -1418 ((-606 (-51)) $)) (-15 -1868 ($ $ (-606 (-51)))) (-15 -1983 ($ $ (-606 (-51)))) (-15 -2242 ($ (-1117) (-111) (-111) (-111))) (-15 -2397 ($ $ (-606 (-1117)) (-51))) (-15 -2520 ((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $)) (-15 -2142 ((-111) $)) (-15 -2376 ($ $)) (-15 -2773 ($ $ (-51))) (-15 -2892 ((-606 (-51)) $)) (-15 -3757 ((-606 $) $)) (-15 -4194 ((-3 (-606 $) "failed") (-606 $))))) (-1045)) (T -845)) -((-2928 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2943 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2566 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3898 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1697 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-845 *4))) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-1697 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 (-845 *3))))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2983 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-731)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2496 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-845 *3)) (|:| |den| (-845 *3)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2777 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1570 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-845 *3)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 (-845 *4))) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2340 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1868 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2242 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-111)) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2397 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-51)) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-4194 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(-13 (-1045) (-989 |#1|) (-989 (-1117)) (-10 -8 (-15 (-2928) ($) -2787) (-15 (-2943) ($) -2787) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -1697 ((-3 (-606 $) "failed") $ (-113))) (-15 -1697 ((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $)) (-15 -2496 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2777 ((-3 (-606 $) "failed") $)) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3731 ((-731) $)) (-15 -3996 ($ (-606 $))) (-15 -2494 ($ $)) (-15 -1745 ((-111) $)) (-15 -1469 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -2162 ((-111) $)) (-15 -3790 ((-111) $)) (-15 -2855 ((-111) $)) (-15 -1721 ((-111) $)) (-15 -2113 ((-111) $)) (-15 -1418 ((-606 (-51)) $)) (-15 -1868 ($ $ (-606 (-51)))) (-15 -1983 ($ $ (-606 (-51)))) (-15 -2242 ($ (-1117) (-111) (-111) (-111))) (-15 -2397 ($ $ (-606 (-1117)) (-51))) (-15 -2520 ((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $)) (-15 -2142 ((-111) $)) (-15 -2376 ($ $)) (-15 -2773 ($ $ (-51))) (-15 -2892 ((-606 (-51)) $)) (-15 -3757 ((-606 $) $)) (-15 -4194 ((-3 (-606 $) "failed") (-606 $))))) -((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 16)) (-2615 (((-111) $) 38)) (-1516 (((-3 (-633 |#1|) "failed") $) 43)) (-3958 (((-633 |#1|) $) 41)) (-3200 (($ $) 18)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-3845 (((-731) $) 46)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-633 |#1|) $) 17)) (-2341 (((-816) $) 37) (($ (-633 |#1|)) 21) (((-779 |#1|) $) 27) (($ |#1|) 20)) (-2943 (($) 8 T CONST)) (-1820 (((-606 (-633 |#1|)) $) 23)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 11)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 49))) -(((-846 |#1|) (-13 (-807) (-989 (-633 |#1|)) (-10 -8 (-15 1 ($) -2787) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ($ |#1|)) (-15 -3188 ((-633 |#1|) $)) (-15 -3845 ((-731) $)) (-15 -1820 ((-606 (-633 |#1|)) $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -846)) -((-2943 (*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-606 (-633 *3))) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807))))) -(-13 (-807) (-989 (-633 |#1|)) (-10 -8 (-15 (-2943) ($) -2787) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ($ |#1|)) (-15 -3188 ((-633 |#1|) $)) (-15 -3845 ((-731) $)) (-15 -1820 ((-606 (-633 |#1|)) $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -2163 ((-606 |#1|) $)))) -((-3353 ((|#1| |#1| |#1|) 19))) -(((-847 |#1| |#2|) (-10 -7 (-15 -3353 (|#1| |#1| |#1|))) (-1176 |#2|) (-998)) (T -847)) -((-3353 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-847 *2 *3)) (-4 *2 (-1176 *3))))) -(-10 -7 (-15 -3353 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 13)) (-2244 (((-111) $ $) 6))) -(((-848) (-134)) (T -848)) -((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-2158 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-986))))) -(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2158 ((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-3439 ((|#1| |#1| (-731)) 24)) (-4079 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4035 (((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731)) 27) (((-606 |#1|) |#1|) 29))) -(((-849 |#1| |#2|) (-10 -7 (-15 -4035 ((-606 |#1|) |#1|)) (-15 -4035 ((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731))) (-15 -4079 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3439 (|#1| |#1| (-731)))) (-1176 |#2|) (-347)) (T -849)) -((-3439 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-5 *1 (-849 *2 *4)) (-4 *2 (-1176 *4)))) (-4079 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-347)) (-5 *1 (-849 *2 *3)) (-4 *2 (-1176 *3)))) (-4035 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-731)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-849 *3 *5)) (-4 *3 (-1176 *5)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-849 *3 *4)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -4035 ((-606 |#1|) |#1|)) (-15 -4035 ((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731))) (-15 -4079 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3439 (|#1| |#1| (-731)))) -((-1895 (((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100)) 96) (((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210)) 91) (((-986) (-851) (-1010)) 83) (((-986) (-851)) 84)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010)) 59) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851)) 61))) -(((-850) (-10 -7 (-15 -1895 ((-986) (-851))) (-15 -1895 ((-986) (-851) (-1010))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010))))) (T -850)) -((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-850)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) (-5 *8 (-210)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-986)) (-5 *1 (-850))))) -(-10 -7 (-15 -1895 ((-986) (-851))) (-15 -1895 ((-986) (-851) (-1010))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010)))) -((-2330 (((-111) $ $) NIL)) (-3958 (((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $) 19)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21) (($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 18)) (-2244 (((-111) $ $) NIL))) -(((-851) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $))))) (T -851)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-851)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *1 (-851)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *1 (-851))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $)))) -((-3456 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) 10) (($ $ |#2| (-731)) 12) (($ $ (-606 |#2|) (-606 (-731))) 15)) (-4230 (($ $ |#2|) 16) (($ $ (-606 |#2|)) 18) (($ $ |#2| (-731)) 19) (($ $ (-606 |#2|) (-606 (-731))) 21))) -(((-852 |#1| |#2|) (-10 -8 (-15 -4230 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -4230 (|#1| |#1| |#2| (-731))) (-15 -4230 (|#1| |#1| (-606 |#2|))) (-15 -4230 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#2| (-731))) (-15 -3456 (|#1| |#1| (-606 |#2|))) (-15 -3456 (|#1| |#1| |#2|))) (-853 |#2|) (-1045)) (T -852)) -NIL -(-10 -8 (-15 -4230 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -4230 (|#1| |#1| |#2| (-731))) (-15 -4230 (|#1| |#1| (-606 |#2|))) (-15 -4230 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#2| (-731))) (-15 -3456 (|#1| |#1| (-606 |#2|))) (-15 -3456 (|#1| |#1| |#2|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $ |#1|) 40) (($ $ (-606 |#1|)) 39) (($ $ |#1| (-731)) 38) (($ $ (-606 |#1|) (-606 (-731))) 37)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#1|) 36) (($ $ (-606 |#1|)) 35) (($ $ |#1| (-731)) 34) (($ $ (-606 |#1|) (-606 (-731))) 33)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-853 |#1|) (-134) (-1045)) (T -853)) -((-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) (-4 *4 (-1045)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) (-4 *4 (-1045))))) -(-13 (-998) (-10 -8 (-15 -3456 ($ $ |t#1|)) (-15 -3456 ($ $ (-606 |t#1|))) (-15 -3456 ($ $ |t#1| (-731))) (-15 -3456 ($ $ (-606 |t#1|) (-606 (-731)))) (-15 -4230 ($ $ |t#1|)) (-15 -4230 ($ $ (-606 |t#1|))) (-15 -4230 ($ $ |t#1| (-731))) (-15 -4230 ($ $ (-606 |t#1|) (-606 (-731)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 26)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-3271 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2980 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 25)) (-1861 (($ |#1|) 12) (($ $ $) 17)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 23)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 20)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1140 |#1|) $) 9) (((-816) $) 29 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 21 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-854 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -1861 ($ |#1|)) (-15 -1861 ($ $ $)) (-15 -2341 ((-1140 |#1|) $)))) (-1045)) (T -854)) -((-1861 (*1 *1 *2) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) (-1861 (*1 *1 *1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1140 *3)) (-5 *1 (-854 *3)) (-4 *3 (-1045))))) -(-13 (-118 |#1|) (-10 -8 (-15 -1861 ($ |#1|)) (-15 -1861 ($ $ $)) (-15 -2341 ((-1140 |#1|) $)))) -((-2849 ((|#2| (-1084 |#1| |#2|)) 40))) -(((-855 |#1| |#2|) (-10 -7 (-15 -2849 (|#2| (-1084 |#1| |#2|)))) (-874) (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (T -855)) -((-2849 (*1 *2 *3) (-12 (-5 *3 (-1084 *4 *2)) (-14 *4 (-874)) (-4 *2 (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (-5 *1 (-855 *4 *2))))) -(-10 -7 (-15 -2849 (|#2| (-1084 |#1| |#2|)))) -((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-3745 (((-1047 |#1|) $ |#1|) 32)) (-2836 (((-111) $) 17)) (-2444 (($ $ $) 30 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-3889 (($ $ $) 29 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 24)) (-2528 (((-1064) $) 10)) (-4116 ((|#1| $ |#1|) 34)) (-1922 ((|#1| $ |#1|) 33)) (-3409 (($ (-606 (-606 |#1|))) 35)) (-1497 (($ (-606 |#1|)) 36)) (-1978 (($ $ $) 21)) (-1674 (($ $ $) 20)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2293 (((-111) $ $) 27 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2271 (((-111) $ $) 26 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 28 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2263 (((-111) $ $) 31)) (-2340 (($ $ $) 23)) (** (($ $ (-874)) 13) (($ $ (-731)) 16) (($ $ (-537)) 22)) (* (($ $ $) 14))) -(((-856 |#1|) (-134) (-1045)) (T -856)) -((-1497 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-856 *3)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-4 *1 (-856 *3)))) (-4116 (*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) (-1922 (*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-1047 *3)))) (-2263 (*1 *2 *1 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) -(-13 (-456) (-10 -8 (-15 -1497 ($ (-606 |t#1|))) (-15 -3409 ($ (-606 (-606 |t#1|)))) (-15 -4116 (|t#1| $ |t#1|)) (-15 -1922 (|t#1| $ |t#1|)) (-15 -3745 ((-1047 |t#1|) $ |t#1|)) (-15 -2263 ((-111) $ $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-352)) (-6 (-807)) |%noBranch|))) -(((-100) . T) ((-579 (-816)) . T) ((-456) . T) ((-687) . T) ((-807) -1533 (|has| |#1| (-807)) (|has| |#1| (-352))) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-2646 (((-606 (-606 (-731))) $) 108)) (-2379 (((-606 (-731)) (-858 |#1|) $) 130)) (-4212 (((-606 (-731)) (-858 |#1|) $) 131)) (-3885 (((-606 (-858 |#1|)) $) 98)) (-1618 (((-858 |#1|) $ (-537)) 103) (((-858 |#1|) $) 104)) (-2103 (($ (-606 (-858 |#1|))) 110)) (-4231 (((-731) $) 105)) (-2684 (((-1047 (-1047 |#1|)) $) 128)) (-3745 (((-1047 |#1|) $ |#1|) 121) (((-1047 (-1047 |#1|)) $ (-1047 |#1|)) 139) (((-1047 (-606 |#1|)) $ (-606 |#1|)) 142)) (-2150 (((-1047 |#1|) $) 101)) (-3122 (((-111) (-858 |#1|) $) 92)) (-1654 (((-1100) $) NIL)) (-3785 (((-1205) $) 95) (((-1205) $ (-537) (-537)) 143)) (-2528 (((-1064) $) NIL)) (-2269 (((-606 (-858 |#1|)) $) 96)) (-1922 (((-858 |#1|) $ (-731)) 99)) (-2872 (((-731) $) 106)) (-2341 (((-816) $) 119) (((-606 (-858 |#1|)) $) 23) (($ (-606 (-858 |#1|))) 109)) (-1605 (((-606 |#1|) $) 107)) (-2244 (((-111) $ $) 136)) (-2282 (((-111) $ $) 134)) (-2263 (((-111) $ $) 133))) -(((-857 |#1|) (-13 (-1045) (-10 -8 (-15 -2341 ((-606 (-858 |#1|)) $)) (-15 -2269 ((-606 (-858 |#1|)) $)) (-15 -1922 ((-858 |#1|) $ (-731))) (-15 -1618 ((-858 |#1|) $ (-537))) (-15 -1618 ((-858 |#1|) $)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $)) (-15 -1605 ((-606 |#1|) $)) (-15 -3885 ((-606 (-858 |#1|)) $)) (-15 -2646 ((-606 (-606 (-731))) $)) (-15 -2341 ($ (-606 (-858 |#1|)))) (-15 -2103 ($ (-606 (-858 |#1|)))) (-15 -3745 ((-1047 |#1|) $ |#1|)) (-15 -2684 ((-1047 (-1047 |#1|)) $)) (-15 -3745 ((-1047 (-1047 |#1|)) $ (-1047 |#1|))) (-15 -3745 ((-1047 (-606 |#1|)) $ (-606 |#1|))) (-15 -3122 ((-111) (-858 |#1|) $)) (-15 -2379 ((-606 (-731)) (-858 |#1|) $)) (-15 -4212 ((-606 (-731)) (-858 |#1|) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2263 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3785 ((-1205) $)) (-15 -3785 ((-1205) $ (-537) (-537))))) (-1045)) (T -857)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) (-4 *4 (-1045)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) (-4 *4 (-1045)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-858 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-731)))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) (-3745 (*1 *2 *1 *3) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1047 (-1047 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-1047 *4))) (-5 *1 (-857 *4)) (-5 *3 (-1047 *4)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-606 *4))) (-5 *1 (-857 *4)) (-5 *3 (-606 *4)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-857 *4)))) (-2379 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) (-5 *1 (-857 *4)))) (-4212 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) (-5 *1 (-857 *4)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2263 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2282 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-857 *4)) (-4 *4 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -2341 ((-606 (-858 |#1|)) $)) (-15 -2269 ((-606 (-858 |#1|)) $)) (-15 -1922 ((-858 |#1|) $ (-731))) (-15 -1618 ((-858 |#1|) $ (-537))) (-15 -1618 ((-858 |#1|) $)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $)) (-15 -1605 ((-606 |#1|) $)) (-15 -3885 ((-606 (-858 |#1|)) $)) (-15 -2646 ((-606 (-606 (-731))) $)) (-15 -2341 ($ (-606 (-858 |#1|)))) (-15 -2103 ($ (-606 (-858 |#1|)))) (-15 -3745 ((-1047 |#1|) $ |#1|)) (-15 -2684 ((-1047 (-1047 |#1|)) $)) (-15 -3745 ((-1047 (-1047 |#1|)) $ (-1047 |#1|))) (-15 -3745 ((-1047 (-606 |#1|)) $ (-606 |#1|))) (-15 -3122 ((-111) (-858 |#1|) $)) (-15 -2379 ((-606 (-731)) (-858 |#1|) $)) (-15 -4212 ((-606 (-731)) (-858 |#1|) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2263 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3785 ((-1205) $)) (-15 -3785 ((-1205) $ (-537) (-537))))) -((-2330 (((-111) $ $) NIL)) (-1566 (((-606 $) (-606 $)) 77)) (-2537 (((-537) $) 60)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-4231 (((-731) $) 58)) (-3745 (((-1047 |#1|) $ |#1|) 49)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) 63)) (-1385 (((-731) $) 61)) (-2150 (((-1047 |#1|) $) 42)) (-2444 (($ $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-3889 (($ $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2885 (((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $) 37)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 93)) (-2528 (((-1064) $) NIL)) (-1347 (((-1047 |#1|) $) 100 (|has| |#1| (-352)))) (-2977 (((-111) $) 59)) (-4116 ((|#1| $ |#1|) 47)) (-1922 ((|#1| $ |#1|) 94)) (-2872 (((-731) $) 44)) (-3409 (($ (-606 (-606 |#1|))) 85)) (-2640 (((-924) $) 53)) (-1497 (($ (-606 |#1|)) 21)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-3892 (($ (-606 (-606 |#1|))) 39)) (-3167 (($ (-606 (-606 |#1|))) 88)) (-1589 (($ (-606 |#1|)) 96)) (-2341 (((-816) $) 84) (($ (-606 (-606 |#1|))) 66) (($ (-606 |#1|)) 67)) (-2943 (($) 16 T CONST)) (-2293 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2244 (((-111) $ $) 45)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2263 (((-111) $ $) 65)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 22))) -(((-858 |#1|) (-13 (-856 |#1|) (-10 -8 (-15 -2885 ((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $)) (-15 -3892 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 |#1|))) (-15 -3167 ($ (-606 (-606 |#1|)))) (-15 -2872 ((-731) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2640 ((-924) $)) (-15 -4231 ((-731) $)) (-15 -1385 ((-731) $)) (-15 -2537 ((-537) $)) (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $)) (-15 -1566 ((-606 $) (-606 $))) (IF (|has| |#1| (-352)) (-15 -1347 ((-1047 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -1589 ($ (-606 |#1|))) (IF (|has| |#1| (-352)) (-15 -1589 ($ (-606 |#1|))) |%noBranch|)))) (-1045)) (T -858)) -((-2885 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-606 *3)) (|:| |image| (-606 *3)))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-3892 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-924)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-352)) (-4 *3 (-1045)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) -(-13 (-856 |#1|) (-10 -8 (-15 -2885 ((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $)) (-15 -3892 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 |#1|))) (-15 -3167 ($ (-606 (-606 |#1|)))) (-15 -2872 ((-731) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2640 ((-924) $)) (-15 -4231 ((-731) $)) (-15 -1385 ((-731) $)) (-15 -2537 ((-537) $)) (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $)) (-15 -1566 ((-606 $) (-606 $))) (IF (|has| |#1| (-352)) (-15 -1347 ((-1047 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -1589 ($ (-606 |#1|))) (IF (|has| |#1| (-352)) (-15 -1589 ($ (-606 |#1|))) |%noBranch|)))) -((-2212 (((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|)) 128)) (-1541 ((|#1|) 77)) (-2628 (((-402 (-1113 |#4|)) (-1113 |#4|)) 137)) (-2988 (((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)) 69)) (-2274 (((-402 (-1113 |#4|)) (-1113 |#4|)) 147)) (-1380 (((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|) 92))) -(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|))) (-15 -2274 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2628 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -1541 (|#1|)) (-15 -1380 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|)) (-15 -2988 ((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)))) (-862) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -859)) -((-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *7)) (-4 *7 (-807)) (-4 *5 (-862)) (-4 *6 (-753)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-402 (-1113 *8))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-1113 *8)))) (-1380 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) (-4 *7 (-902 *5 *6 *4)) (-4 *5 (-862)) (-4 *6 (-753)) (-4 *4 (-807)) (-5 *1 (-859 *5 *6 *4 *7)))) (-1541 (*1 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) (-5 *1 (-859 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2212 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-859 *4 *5 *6 *7))))) -(-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|))) (-15 -2274 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2628 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -1541 (|#1|)) (-15 -1380 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|)) (-15 -2988 ((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)))) -((-2212 (((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)) 36)) (-1541 ((|#1|) 54)) (-2628 (((-402 (-1113 |#2|)) (-1113 |#2|)) 102)) (-2988 (((-402 (-1113 |#2|)) (-1113 |#2|)) 90)) (-2274 (((-402 (-1113 |#2|)) (-1113 |#2|)) 113))) -(((-860 |#1| |#2|) (-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|))) (-15 -2274 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -2628 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -1541 (|#1|)) (-15 -2988 ((-402 (-1113 |#2|)) (-1113 |#2|)))) (-862) (-1176 |#1|)) (T -860)) -((-2988 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-1541 (*1 *2) (-12 (-4 *2 (-862)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1176 *2)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-2212 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-862)) (-5 *1 (-860 *4 *5))))) -(-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|))) (-15 -2274 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -2628 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -1541 (|#1|)) (-15 -2988 ((-402 (-1113 |#2|)) (-1113 |#2|)))) -((-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 41)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 18)) (-2644 (((-3 $ "failed") $) 35))) -(((-861 |#1|) (-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) (-862)) (T -861)) -NIL -(-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 58)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 55)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2639 (((-111) $) 51)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1319 (((-402 (-1113 $)) (-1113 $)) 56)) (-3370 (((-402 (-1113 $)) (-1113 $)) 57)) (-3622 (((-402 $) $) 48)) (-3515 (((-3 $ "failed") $ $) 40)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 54 (|has| $ (-139)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-2644 (((-3 $ "failed") $) 53 (|has| $ (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-862) (-134)) (T -862)) -((-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-862)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-3370 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-1319 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *1))) (-5 *3 (-1113 *1)) (-4 *1 (-862)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-139)) (-4 *1 (-862)) (-5 *2 (-1200 *1)))) (-2644 (*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-862))))) -(-13 (-1158) (-10 -8 (-15 -1649 ((-402 (-1113 $)) (-1113 $))) (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1319 ((-402 (-1113 $)) (-1113 $))) (-15 -2298 ((-1113 $) (-1113 $) (-1113 $))) (-15 -2022 ((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $))) (IF (|has| $ (-139)) (PROGN (-15 -2466 ((-3 (-1200 $) "failed") (-649 $))) (-15 -2644 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 $ "failed") $) NIL)) (-3958 (($ $) NIL)) (-3447 (($ (-1200 $)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL)) (-2974 (((-111) $) NIL)) (-2642 (($ $) NIL) (($ $ (-731)) NIL)) (-2639 (((-111) $) NIL)) (-4231 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| $ (-352)))) (-3870 (((-111) $) NIL (|has| $ (-352)))) (-2055 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 $) $ (-874)) NIL (|has| $ (-352))) (((-1113 $) $) NIL)) (-2334 (((-874) $) NIL)) (-1671 (((-1113 $) $) NIL (|has| $ (-352)))) (-2728 (((-3 (-1113 $) "failed") $ $) NIL (|has| $ (-352))) (((-1113 $) $) NIL (|has| $ (-352)))) (-2841 (($ $ (-1113 $)) NIL (|has| $ (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-2009 (($ (-874)) NIL)) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| $ (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL)) (-3622 (((-402 $) $) NIL)) (-2685 (((-874)) NIL) (((-793 (-874))) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL) (((-731) $) NIL)) (-1839 (((-131)) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-2872 (((-874) $) NIL) (((-793 (-874)) $) NIL)) (-2529 (((-1113 $)) NIL)) (-3553 (($) NIL)) (-3254 (($) NIL (|has| $ (-352)))) (-1484 (((-649 $) (-1200 $)) NIL) (((-1200 $) $) NIL)) (-3996 (((-537) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $) (-874)) NIL) (((-1200 $)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $ (-731)) NIL (|has| $ (-352))) (($ $) NIL (|has| $ (-352)))) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-863 |#1|) (-13 (-333) (-313 $) (-580 (-537))) (-874)) (T -863)) -NIL -(-13 (-333) (-313 $) (-580 (-537))) -((-2861 (((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)) 79)) (-3942 (((-111) (-320 |#2| |#3| |#4| |#5|)) 17)) (-4231 (((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|)) 15))) -(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|))) (-15 -3942 ((-111) (-320 |#2| |#3| |#4| |#5|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)))) (-13 (-807) (-529) (-989 (-537))) (-414 |#1|) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -864)) -((-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *8))) (-5 *1 (-864 *4 *5 *6 *7 *8)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-111)) (-5 *1 (-864 *4 *5 *6 *7 *8)))) (-4231 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-731)) (-5 *1 (-864 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|))) (-15 -3942 ((-111) (-320 |#2| |#3| |#4| |#5|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)))) -((-2861 (((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)) 56)) (-3942 (((-111) (-320 (-391 (-537)) |#1| |#2| |#3|)) 16)) (-4231 (((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)) 14))) -(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -3942 ((-111) (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)))) (-1176 (-391 (-537))) (-1176 (-391 |#1|)) (-326 (-391 (-537)) |#1| |#2|)) (T -865)) -((-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *6))) (-5 *1 (-865 *4 *5 *6)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-865 *4 *5 *6)))) (-4231 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-731)) (-5 *1 (-865 *4 *5 *6))))) -(-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -3942 ((-111) (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)))) -((-3906 ((|#2| |#2|) 26)) (-3652 (((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) 15)) (-2481 (((-874) (-537)) 35)) (-3905 (((-537) |#2|) 42)) (-3662 (((-537) |#2|) 21) (((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|) 20))) -(((-866 |#1| |#2|) (-10 -7 (-15 -2481 ((-874) (-537))) (-15 -3662 ((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|)) (-15 -3662 ((-537) |#2|)) (-15 -3652 ((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))))) (-15 -3905 ((-537) |#2|)) (-15 -3906 (|#2| |#2|))) (-1176 (-391 (-537))) (-1176 (-391 |#1|))) (T -866)) -((-3906 (*1 *2 *2) (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *1 (-866 *3 *2)) (-4 *2 (-1176 (-391 *3))))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4))))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-3662 (*1 *2 *3) (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *2 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))) (-5 *1 (-866 *3 *4)) (-4 *4 (-1176 (-391 *3))))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-1176 (-391 *3))) (-5 *2 (-874)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4)))))) -(-10 -7 (-15 -2481 ((-874) (-537))) (-15 -3662 ((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|)) (-15 -3662 ((-537) |#2|)) (-15 -3652 ((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))))) (-15 -3905 ((-537) |#2|)) (-15 -3906 (|#2| |#2|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#1| $) 81)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 75)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-1973 (($ |#1| (-402 |#1|)) 73)) (-3976 (((-1113 |#1|) |#1| |#1|) 41)) (-1959 (($ $) 49)) (-2836 (((-111) $) NIL)) (-2230 (((-537) $) 78)) (-2149 (($ $ (-537)) 80)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-4022 ((|#1| $) 77)) (-3485 (((-402 |#1|) $) 76)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 74)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3556 (($ $) 39)) (-2341 (((-816) $) 99) (($ (-537)) 54) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 31) (((-391 |#1|) $) 59) (($ (-391 (-402 |#1|))) 67)) (-3654 (((-731)) 52)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 23 T CONST)) (-2943 (($) 12 T CONST)) (-2244 (((-111) $ $) 68)) (-2340 (($ $ $) NIL)) (-2329 (($ $) 88) (($ $ $) NIL)) (-2318 (($ $ $) 38)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 90) (($ $ $) 37) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-867 |#1|) (-13 (-347) (-37 |#1|) (-10 -8 (-15 -2341 ((-391 |#1|) $)) (-15 -2341 ($ (-391 (-402 |#1|)))) (-15 -3556 ($ $)) (-15 -3485 ((-402 |#1|) $)) (-15 -4022 (|#1| $)) (-15 -2149 ($ $ (-537))) (-15 -2230 ((-537) $)) (-15 -3976 ((-1113 |#1|) |#1| |#1|)) (-15 -1959 ($ $)) (-15 -1973 ($ |#1| (-402 |#1|))) (-15 -1874 (|#1| $)))) (-291)) (T -867)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 (-402 *3))) (-4 *3 (-291)) (-5 *1 (-867 *3)))) (-3556 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-4022 (*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-3976 (*1 *2 *3 *3) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-1959 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-1973 (*1 *1 *2 *3) (-12 (-5 *3 (-402 *2)) (-4 *2 (-291)) (-5 *1 (-867 *2)))) (-1874 (*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) -(-13 (-347) (-37 |#1|) (-10 -8 (-15 -2341 ((-391 |#1|) $)) (-15 -2341 ($ (-391 (-402 |#1|)))) (-15 -3556 ($ $)) (-15 -3485 ((-402 |#1|) $)) (-15 -4022 (|#1| $)) (-15 -2149 ($ $ (-537))) (-15 -2230 ((-537) $)) (-15 -3976 ((-1113 |#1|) |#1| |#1|)) (-15 -1959 ($ $)) (-15 -1973 ($ |#1| (-402 |#1|))) (-15 -1874 (|#1| $)))) -((-1973 (((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)) 17) (((-51) (-391 (-905 |#1|)) (-1117)) 18))) -(((-868 |#1|) (-10 -7 (-15 -1973 ((-51) (-391 (-905 |#1|)) (-1117))) (-15 -1973 ((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)))) (-13 (-291) (-141))) (T -868)) -((-1973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-402 (-905 *6))) (-5 *5 (-1117)) (-5 *3 (-905 *6)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *6)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *5))))) -(-10 -7 (-15 -1973 ((-51) (-391 (-905 |#1|)) (-1117))) (-15 -1973 ((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)))) -((-3995 ((|#4| (-606 |#4|)) 121) (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2211 (((-1113 |#4|) (-606 (-1113 |#4|))) 114) (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 50) ((|#4| (-606 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-869 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2211 (|#4| |#4| |#4|)) (-15 -2211 (|#4| (-606 |#4|))) (-15 -2211 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -2211 ((-1113 |#4|) (-606 (-1113 |#4|)))) (-15 -3995 (|#4| |#4| |#4|)) (-15 -3995 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -3995 (|#4| (-606 |#4|)))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -869)) -((-3995 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)))) (-3995 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) (-3995 (*1 *2 *2 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 (-1113 *7))) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-1113 *7)) (-5 *1 (-869 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2211 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)))) (-2211 (*1 *2 *2 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4))))) -(-10 -7 (-15 -2211 (|#4| |#4| |#4|)) (-15 -2211 (|#4| (-606 |#4|))) (-15 -2211 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -2211 ((-1113 |#4|) (-606 (-1113 |#4|)))) (-15 -3995 (|#4| |#4| |#4|)) (-15 -3995 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -3995 (|#4| (-606 |#4|)))) -((-3950 (((-857 (-537)) (-924)) 23) (((-857 (-537)) (-606 (-537))) 20)) (-4154 (((-857 (-537)) (-606 (-537))) 48) (((-857 (-537)) (-874)) 49)) (-1969 (((-857 (-537))) 24)) (-1330 (((-857 (-537))) 38) (((-857 (-537)) (-606 (-537))) 37)) (-2146 (((-857 (-537))) 36) (((-857 (-537)) (-606 (-537))) 35)) (-2118 (((-857 (-537))) 34) (((-857 (-537)) (-606 (-537))) 33)) (-2358 (((-857 (-537))) 32) (((-857 (-537)) (-606 (-537))) 31)) (-2782 (((-857 (-537))) 30) (((-857 (-537)) (-606 (-537))) 29)) (-3788 (((-857 (-537))) 40) (((-857 (-537)) (-606 (-537))) 39)) (-3607 (((-857 (-537)) (-606 (-537))) 52) (((-857 (-537)) (-874)) 53)) (-2552 (((-857 (-537)) (-606 (-537))) 50) (((-857 (-537)) (-874)) 51)) (-2845 (((-857 (-537)) (-606 (-537))) 46) (((-857 (-537)) (-874)) 47)) (-3612 (((-857 (-537)) (-606 (-874))) 43))) -(((-870) (-10 -7 (-15 -4154 ((-857 (-537)) (-874))) (-15 -4154 ((-857 (-537)) (-606 (-537)))) (-15 -2845 ((-857 (-537)) (-874))) (-15 -2845 ((-857 (-537)) (-606 (-537)))) (-15 -3612 ((-857 (-537)) (-606 (-874)))) (-15 -2552 ((-857 (-537)) (-874))) (-15 -2552 ((-857 (-537)) (-606 (-537)))) (-15 -3607 ((-857 (-537)) (-874))) (-15 -3607 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)))) (-15 -2358 ((-857 (-537)) (-606 (-537)))) (-15 -2358 ((-857 (-537)))) (-15 -2118 ((-857 (-537)) (-606 (-537)))) (-15 -2118 ((-857 (-537)))) (-15 -2146 ((-857 (-537)) (-606 (-537)))) (-15 -2146 ((-857 (-537)))) (-15 -1330 ((-857 (-537)) (-606 (-537)))) (-15 -1330 ((-857 (-537)))) (-15 -3788 ((-857 (-537)) (-606 (-537)))) (-15 -3788 ((-857 (-537)))) (-15 -1969 ((-857 (-537)))) (-15 -3950 ((-857 (-537)) (-606 (-537)))) (-15 -3950 ((-857 (-537)) (-924))))) (T -870)) -((-3950 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1969 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3788 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1330 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2146 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2118 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2358 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2782 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-606 (-874))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(-10 -7 (-15 -4154 ((-857 (-537)) (-874))) (-15 -4154 ((-857 (-537)) (-606 (-537)))) (-15 -2845 ((-857 (-537)) (-874))) (-15 -2845 ((-857 (-537)) (-606 (-537)))) (-15 -3612 ((-857 (-537)) (-606 (-874)))) (-15 -2552 ((-857 (-537)) (-874))) (-15 -2552 ((-857 (-537)) (-606 (-537)))) (-15 -3607 ((-857 (-537)) (-874))) (-15 -3607 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)))) (-15 -2358 ((-857 (-537)) (-606 (-537)))) (-15 -2358 ((-857 (-537)))) (-15 -2118 ((-857 (-537)) (-606 (-537)))) (-15 -2118 ((-857 (-537)))) (-15 -2146 ((-857 (-537)) (-606 (-537)))) (-15 -2146 ((-857 (-537)))) (-15 -1330 ((-857 (-537)) (-606 (-537)))) (-15 -1330 ((-857 (-537)))) (-15 -3788 ((-857 (-537)) (-606 (-537)))) (-15 -3788 ((-857 (-537)))) (-15 -1969 ((-857 (-537)))) (-15 -3950 ((-857 (-537)) (-606 (-537)))) (-15 -3950 ((-857 (-537)) (-924)))) -((-2406 (((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))) 12)) (-4162 (((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))) 11))) -(((-871 |#1|) (-10 -7 (-15 -4162 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -2406 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))))) (-435)) (T -871)) -((-2406 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-871 *4)))) (-4162 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-871 *4))))) -(-10 -7 (-15 -4162 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -2406 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))))) -((-2341 (((-300 |#1|) (-460)) 16))) -(((-872 |#1|) (-10 -7 (-15 -2341 ((-300 |#1|) (-460)))) (-13 (-807) (-529))) (T -872)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-300 *4)) (-5 *1 (-872 *4)) (-4 *4 (-13 (-807) (-529)))))) -(-10 -7 (-15 -2341 ((-300 |#1|) (-460)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-873) (-134)) (T -873)) -((-4121 (*1 *2 *3) (-12 (-4 *1 (-873)) (-5 *2 (-2 (|:| -3449 (-606 *1)) (|:| -1524 *1))) (-5 *3 (-606 *1)))) (-4245 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-873))))) -(-13 (-435) (-10 -8 (-15 -4121 ((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $))) (-15 -4245 ((-3 (-606 $) "failed") (-606 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2211 (($ $ $) NIL)) (-2341 (((-816) $) NIL)) (-2943 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ $ $) NIL))) -(((-874) (-13 (-754) (-687) (-10 -8 (-15 -2211 ($ $ $)) (-6 (-4302 "*"))))) (T -874)) -((-2211 (*1 *1 *1 *1) (-5 *1 (-874)))) -(-13 (-754) (-687) (-10 -8 (-15 -2211 ($ $ $)) (-6 (-4302 "*")))) -((-2823 ((|#2| (-606 |#1|) (-606 |#1|)) 24))) -(((-875 |#1| |#2|) (-10 -7 (-15 -2823 (|#2| (-606 |#1|) (-606 |#1|)))) (-347) (-1176 |#1|)) (T -875)) -((-2823 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-4 *2 (-1176 *4)) (-5 *1 (-875 *4 *2))))) -(-10 -7 (-15 -2823 (|#2| (-606 |#1|) (-606 |#1|)))) -((-3568 (((-1113 |#2|) (-606 |#2|) (-606 |#2|)) 17) (((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|)) 13))) -(((-876 |#1| |#2|) (-10 -7 (-15 -3568 ((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|))) (-15 -3568 ((-1113 |#2|) (-606 |#2|) (-606 |#2|)))) (-1117) (-347)) (T -876)) -((-3568 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-347)) (-5 *2 (-1113 *5)) (-5 *1 (-876 *4 *5)) (-14 *4 (-1117)))) (-3568 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4 *5)) (-5 *3 (-606 *5)) (-14 *4 (-1117)) (-4 *5 (-347)) (-5 *1 (-876 *4 *5))))) -(-10 -7 (-15 -3568 ((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|))) (-15 -3568 ((-1113 |#2|) (-606 |#2|) (-606 |#2|)))) -((-3429 (((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100)) 139)) (-3554 ((|#4| |#4|) 155)) (-1934 (((-606 (-391 (-905 |#1|))) (-606 (-1117))) 118)) (-2742 (((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537)) 75)) (-2865 (((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|)) 59)) (-3181 (((-649 |#4|) (-649 |#4|) (-606 |#4|)) 55)) (-4044 (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100)) 151)) (-2862 (((-537) (-649 |#4|) (-874) (-1100)) 132) (((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100)) 131) (((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100)) 130) (((-537) (-649 |#4|) (-1100)) 127) (((-537) (-649 |#4|) (-606 (-1117)) (-1100)) 126) (((-537) (-649 |#4|) (-606 |#4|) (-1100)) 125) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874)) 124) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874)) 123) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874)) 122) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|)) 120) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117))) 119) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|)) 115)) (-1504 ((|#4| (-905 |#1|)) 68)) (-2790 (((-111) (-606 |#4|) (-606 (-606 |#4|))) 152)) (-1332 (((-606 (-606 (-537))) (-537) (-537)) 129)) (-3504 (((-606 (-606 |#4|)) (-606 (-606 |#4|))) 88)) (-3994 (((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|))))) 86)) (-2975 (((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|))))) 85)) (-4213 (((-111) (-606 (-905 |#1|))) 17) (((-111) (-606 |#4|)) 13)) (-2739 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|)) 71)) (-2873 (((-606 |#4|) |#4|) 49)) (-2934 (((-606 (-391 (-905 |#1|))) (-606 |#4|)) 114) (((-649 (-391 (-905 |#1|))) (-649 |#4|)) 56) (((-391 (-905 |#1|)) |#4|) 111)) (-1701 (((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537)) 93)) (-4265 (((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731)) 84)) (-2582 (((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731)) 101)) (-3624 (((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) 48))) -(((-877 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-874) (-1100))) (-15 -3429 ((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -4044 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -1701 ((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537))) (-15 -2934 ((-391 (-905 |#1|)) |#4|)) (-15 -2934 ((-649 (-391 (-905 |#1|))) (-649 |#4|))) (-15 -2934 ((-606 (-391 (-905 |#1|))) (-606 |#4|))) (-15 -1934 ((-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1504 (|#4| (-905 |#1|))) (-15 -2739 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|))) (-15 -4265 ((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731))) (-15 -2865 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|))) (-15 -3624 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-15 -2873 ((-606 |#4|) |#4|)) (-15 -2975 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3994 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3504 ((-606 (-606 |#4|)) (-606 (-606 |#4|)))) (-15 -1332 ((-606 (-606 (-537))) (-537) (-537))) (-15 -2790 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2582 ((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731))) (-15 -3181 ((-649 |#4|) (-649 |#4|) (-606 |#4|))) (-15 -2742 ((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537))) (-15 -3554 (|#4| |#4|)) (-15 -4213 ((-111) (-606 |#4|))) (-15 -4213 ((-111) (-606 (-905 |#1|))))) (-13 (-291) (-141)) (-13 (-807) (-580 (-1117))) (-753) (-902 |#1| |#3| |#2|)) (T -877)) -((-4213 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *2)) (-4 *2 (-902 *3 *5 *4)))) (-2742 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-5 *4 (-649 *12)) (-5 *5 (-606 (-391 (-905 *9)))) (-5 *6 (-606 (-606 *12))) (-5 *7 (-731)) (-5 *8 (-537)) (-4 *9 (-13 (-291) (-141))) (-4 *12 (-902 *9 *11 *10)) (-4 *10 (-13 (-807) (-580 (-1117)))) (-4 *11 (-753)) (-5 *2 (-2 (|:| |eqzro| (-606 *12)) (|:| |neqzro| (-606 *12)) (|:| |wcond| (-606 (-905 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *9)))) (|:| -2122 (-606 (-1200 (-391 (-905 *9))))))))) (-5 *1 (-877 *9 *10 *11 *12)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-731)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *5 *6 *7 *8)))) (-1332 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *6 *5)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-606 (-606 *6))) (-4 *6 (-902 *3 *5 *4)) (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *6)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *7))))) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *7))))) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 *3)) (-5 *1 (-877 *4 *5 *6 *3)) (-4 *3 (-902 *4 *6 *5)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2756 (-649 (-391 (-905 *4)))) (|:| |vec| (-606 (-391 (-905 *4)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-2865 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) (-5 *3 (-606 *7)) (-4 *4 (-13 (-291) (-141))) (-4 *7 (-902 *4 *6 *5)) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *8))))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-731)))) (-2739 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-4 *7 (-902 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-606 *7)) (|:| |n0| (-606 *7)))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-291) (-141))) (-4 *2 (-902 *4 *6 *5)) (-5 *1 (-877 *4 *5 *6 *2)) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-649 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-391 (-905 *4))) (-5 *1 (-877 *4 *5 *6 *3)) (-4 *3 (-902 *4 *6 *5)))) (-1701 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-649 *11)) (-5 *4 (-606 (-391 (-905 *8)))) (-5 *5 (-731)) (-5 *6 (-1100)) (-4 *8 (-13 (-291) (-141))) (-4 *11 (-902 *8 *10 *9)) (-4 *9 (-13 (-807) (-580 (-1117)))) (-4 *10 (-753)) (-5 *2 (-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 *11)) (|:| |neqzro| (-606 *11)) (|:| |wcond| (-606 (-905 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *8)))) (|:| -2122 (-606 (-1200 (-391 (-905 *8)))))))))) (|:| |rgsz| (-537)))) (-5 *1 (-877 *8 *9 *10 *11)) (-5 *7 (-537)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) (|:| |wcond| (-606 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *4 (-1100)) (-4 *5 (-13 (-291) (-141))) (-4 *8 (-902 *5 *7 *6)) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-874)) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *7 *8 *9 *10)))) (-2862 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 *10)) (-5 *5 (-874)) (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *7 *8 *9 *10)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-1100)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 *9)) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-874)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) (|:| |wcond| (-606 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) (|:| |wcond| (-606 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) (-5 *1 (-877 *6 *7 *8 *9)) (-5 *4 (-606 *9)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) (|:| |wcond| (-606 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-606 (-1117))) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) -(-10 -7 (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-874) (-1100))) (-15 -3429 ((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -4044 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -1701 ((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537))) (-15 -2934 ((-391 (-905 |#1|)) |#4|)) (-15 -2934 ((-649 (-391 (-905 |#1|))) (-649 |#4|))) (-15 -2934 ((-606 (-391 (-905 |#1|))) (-606 |#4|))) (-15 -1934 ((-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1504 (|#4| (-905 |#1|))) (-15 -2739 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|))) (-15 -4265 ((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731))) (-15 -2865 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|))) (-15 -3624 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-15 -2873 ((-606 |#4|) |#4|)) (-15 -2975 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3994 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3504 ((-606 (-606 |#4|)) (-606 (-606 |#4|)))) (-15 -1332 ((-606 (-606 (-537))) (-537) (-537))) (-15 -2790 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2582 ((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731))) (-15 -3181 ((-649 |#4|) (-649 |#4|) (-606 |#4|))) (-15 -2742 ((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537))) (-15 -3554 (|#4| |#4|)) (-15 -4213 ((-111) (-606 |#4|))) (-15 -4213 ((-111) (-606 (-905 |#1|))))) -((-1714 (((-880) |#1| (-1117)) 17) (((-880) |#1| (-1117) (-1040 (-210))) 21)) (-1254 (((-880) |#1| |#1| (-1117) (-1040 (-210))) 19) (((-880) |#1| (-1117) (-1040 (-210))) 15))) -(((-878 |#1|) (-10 -7 (-15 -1254 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1254 ((-880) |#1| |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117)))) (-580 (-513))) (T -878)) -((-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1254 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513)))))) -(-10 -7 (-15 -1254 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1254 ((-880) |#1| |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117)))) -((-4052 (($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 70)) (-4070 (((-1040 (-210)) $) 40)) (-4059 (((-1040 (-210)) $) 39)) (-4050 (((-1040 (-210)) $) 38)) (-1474 (((-606 (-606 (-210))) $) 43)) (-3857 (((-1040 (-210)) $) 41)) (-3939 (((-537) (-537)) 32)) (-1756 (((-537) (-537)) 28)) (-3094 (((-537) (-537)) 30)) (-2171 (((-111) (-111)) 35)) (-3080 (((-537)) 31)) (-3878 (($ $ (-1040 (-210))) 73) (($ $) 74)) (-3402 (($ (-1 (-896 (-210)) (-210)) (-1040 (-210))) 78) (($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 79)) (-1254 (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210))) 81) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 82) (($ $ (-1040 (-210))) 76)) (-3887 (((-537)) 36)) (-4188 (((-537)) 27)) (-3369 (((-537)) 29)) (-1477 (((-606 (-606 (-896 (-210)))) $) 95)) (-1554 (((-111) (-111)) 37)) (-2341 (((-816) $) 94)) (-3916 (((-111)) 34))) -(((-879) (-13 (-927) (-10 -8 (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -1474 ((-606 (-606 (-210))) $)) (-15 -4188 ((-537))) (-15 -1756 ((-537) (-537))) (-15 -3369 ((-537))) (-15 -3094 ((-537) (-537))) (-15 -3080 ((-537))) (-15 -3939 ((-537) (-537))) (-15 -3916 ((-111))) (-15 -2171 ((-111) (-111))) (-15 -3887 ((-537))) (-15 -1554 ((-111) (-111)))))) (T -879)) -((-3402 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-3402 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-4052 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-3878 (*1 *1 *1) (-5 *1 (-879))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-879)))) (-4188 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3369 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3080 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3916 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879)))) (-3887 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) -(-13 (-927) (-10 -8 (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -1474 ((-606 (-606 (-210))) $)) (-15 -4188 ((-537))) (-15 -1756 ((-537) (-537))) (-15 -3369 ((-537))) (-15 -3094 ((-537) (-537))) (-15 -3080 ((-537))) (-15 -3939 ((-537) (-537))) (-15 -3916 ((-111))) (-15 -2171 ((-111) (-111))) (-15 -3887 ((-537))) (-15 -1554 ((-111) (-111))))) -((-4052 (($ $ (-1040 (-210))) 70) (($ $ (-1040 (-210)) (-1040 (-210))) 71)) (-4059 (((-1040 (-210)) $) 44)) (-4050 (((-1040 (-210)) $) 43)) (-3857 (((-1040 (-210)) $) 45)) (-3685 (((-537) (-537)) 37)) (-2962 (((-537) (-537)) 33)) (-3175 (((-537) (-537)) 35)) (-2431 (((-111) (-111)) 39)) (-1709 (((-537)) 36)) (-3878 (($ $ (-1040 (-210))) 74) (($ $) 75)) (-3402 (($ (-1 (-896 (-210)) (-210)) (-1040 (-210))) 84) (($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 85)) (-1714 (($ (-1 (-210) (-210)) (-1040 (-210))) 92) (($ (-1 (-210) (-210))) 95)) (-1254 (($ (-1 (-210) (-210)) (-1040 (-210))) 79) (($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210))) 80) (($ (-606 (-1 (-210) (-210))) (-1040 (-210))) 87) (($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210))) 88) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210))) 81) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 82) (($ $ (-1040 (-210))) 76)) (-1264 (((-111) $) 40)) (-3989 (((-537)) 41)) (-2634 (((-537)) 32)) (-1513 (((-537)) 34)) (-1477 (((-606 (-606 (-896 (-210)))) $) 23)) (-4220 (((-111) (-111)) 42)) (-2341 (((-816) $) 106)) (-3756 (((-111)) 38))) -(((-880) (-13 (-908) (-10 -8 (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -1264 ((-111) $)) (-15 -4052 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -2634 ((-537))) (-15 -2962 ((-537) (-537))) (-15 -1513 ((-537))) (-15 -3175 ((-537) (-537))) (-15 -1709 ((-537))) (-15 -3685 ((-537) (-537))) (-15 -3756 ((-111))) (-15 -2431 ((-111) (-111))) (-15 -3989 ((-537))) (-15 -4220 ((-111) (-111)))))) (T -880)) -((-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-3402 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-3402 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1714 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-4052 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-3878 (*1 *1 *1) (-5 *1 (-880))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-2634 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-2962 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-1513 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-1709 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3756 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-3989 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) -(-13 (-908) (-10 -8 (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -1264 ((-111) $)) (-15 -4052 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -2634 ((-537))) (-15 -2962 ((-537) (-537))) (-15 -1513 ((-537))) (-15 -3175 ((-537) (-537))) (-15 -1709 ((-537))) (-15 -3685 ((-537) (-537))) (-15 -3756 ((-111))) (-15 -2431 ((-111) (-111))) (-15 -3989 ((-537))) (-15 -4220 ((-111) (-111))))) -((-1634 (((-606 (-1040 (-210))) (-606 (-606 (-896 (-210))))) 24))) -(((-881) (-10 -7 (-15 -1634 ((-606 (-1040 (-210))) (-606 (-606 (-896 (-210)))))))) (T -881)) -((-1634 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-1040 (-210)))) (-5 *1 (-881))))) -(-10 -7 (-15 -1634 ((-606 (-1040 (-210))) (-606 (-606 (-896 (-210))))))) -((-1849 ((|#2| |#2|) 26)) (-2678 ((|#2| |#2|) 27)) (-2787 ((|#2| |#2|) 25)) (-3945 ((|#2| |#2| (-1100)) 24))) -(((-882 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2| (-1100))) (-15 -2787 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -2678 (|#2| |#2|))) (-807) (-414 |#1|)) (T -882)) -((-2678 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-2787 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-807)) (-5 *1 (-882 *4 *2)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -3945 (|#2| |#2| (-1100))) (-15 -2787 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -2678 (|#2| |#2|))) -((-1849 (((-300 (-537)) (-1117)) 16)) (-2678 (((-300 (-537)) (-1117)) 14)) (-2787 (((-300 (-537)) (-1117)) 12)) (-3945 (((-300 (-537)) (-1117) (-1100)) 19))) -(((-883) (-10 -7 (-15 -3945 ((-300 (-537)) (-1117) (-1100))) (-15 -2787 ((-300 (-537)) (-1117))) (-15 -1849 ((-300 (-537)) (-1117))) (-15 -2678 ((-300 (-537)) (-1117))))) (T -883)) -((-2678 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1100)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) -(-10 -7 (-15 -3945 ((-300 (-537)) (-1117) (-1100))) (-15 -2787 ((-300 (-537)) (-1117))) (-15 -1849 ((-300 (-537)) (-1117))) (-15 -2678 ((-300 (-537)) (-1117)))) -((-4196 (((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)) 25)) (-2821 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) -(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2821 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4196 ((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-839 |#1|) (-13 (-1045) (-989 |#2|))) (T -884)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-13 (-1045) (-989 *3))) (-4 *3 (-839 *5)) (-5 *1 (-884 *5 *3 *6)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1045) (-989 *5))) (-4 *5 (-839 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-884 *4 *5 *6))))) -(-10 -7 (-15 -2821 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4196 ((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)))) -((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 30))) -(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-13 (-529) (-807) (-839 |#1|)) (-13 (-414 |#2|) (-580 (-845 |#1|)) (-839 |#1|) (-989 (-578 $)))) (T -885)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-13 (-414 *6) (-580 *4) (-839 *5) (-989 (-578 $)))) (-5 *4 (-845 *5)) (-4 *6 (-13 (-529) (-807) (-839 *5))) (-5 *1 (-885 *5 *6 *3))))) -(-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) -((-4196 (((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)) 13))) -(((-886 |#1|) (-10 -7 (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)))) (-522)) (T -886)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 (-537) *3)) (-5 *4 (-845 (-537))) (-4 *3 (-522)) (-5 *1 (-886 *3))))) -(-10 -7 (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)))) -((-4196 (((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)) 54))) -(((-887 |#1| |#2|) (-10 -7 (-15 -4196 ((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)))) (-1045) (-13 (-807) (-989 (-578 $)) (-580 (-845 |#1|)) (-839 |#1|))) (T -887)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *6)) (-5 *3 (-578 *6)) (-4 *5 (-1045)) (-4 *6 (-13 (-807) (-989 (-578 $)) (-580 *4) (-839 *5))) (-5 *4 (-845 *5)) (-5 *1 (-887 *5 *6))))) -(-10 -7 (-15 -4196 ((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)))) -((-4196 (((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)) 15))) -(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)))) (-1045) (-839 |#1|) (-627 |#2|)) (T -888)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *5 *6 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-4 *3 (-627 *6)) (-5 *1 (-888 *5 *6 *3))))) -(-10 -7 (-15 -4196 ((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)))) -((-4196 (((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|)) 17 (|has| |#3| (-839 |#1|))) (((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|))) 16))) -(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|)))) (IF (|has| |#3| (-839 |#1|)) (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|))) |%noBranch|)) (-1045) (-753) (-807) (-13 (-998) (-807) (-839 |#1|)) (-13 (-902 |#4| |#2| |#3|) (-580 (-845 |#1|)))) (T -889)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-13 (-902 *8 *6 *7) (-580 *4))) (-5 *4 (-845 *5)) (-4 *7 (-839 *5)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-13 (-998) (-807) (-839 *5))) (-5 *1 (-889 *5 *6 *7 *8 *3)))) (-4196 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-842 *6 *3) *8 (-845 *6) (-842 *6 *3))) (-4 *8 (-807)) (-5 *2 (-842 *6 *3)) (-5 *4 (-845 *6)) (-4 *6 (-1045)) (-4 *3 (-13 (-902 *9 *7 *8) (-580 *4))) (-4 *7 (-753)) (-4 *9 (-13 (-998) (-807) (-839 *6))) (-5 *1 (-889 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|)))) (IF (|has| |#3| (-839 |#1|)) (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|))) |%noBranch|)) -((-2738 ((|#2| |#2| (-606 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) -(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -2738 (|#2| |#2| (-1 (-111) |#3|))) (-15 -2738 (|#2| |#2| (-606 (-1 (-111) |#3|))))) (-807) (-414 |#1|) (-1154)) (T -890)) -((-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-4 *4 (-807)) (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1154)) (-4 *4 (-807)) (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -2738 (|#2| |#2| (-1 (-111) |#3|))) (-15 -2738 (|#2| |#2| (-606 (-1 (-111) |#3|))))) -((-2738 (((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))) 18) (((-300 (-537)) (-1117) (-1 (-111) |#1|)) 15))) -(((-891 |#1|) (-10 -7 (-15 -2738 ((-300 (-537)) (-1117) (-1 (-111) |#1|))) (-15 -2738 ((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))))) (-1154)) (T -891)) -((-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1154)) (-5 *2 (-300 (-537))) (-5 *1 (-891 *5))))) -(-10 -7 (-15 -2738 ((-300 (-537)) (-1117) (-1 (-111) |#1|))) (-15 -2738 ((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))))) -((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 25))) -(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-13 (-529) (-839 |#1|) (-580 (-845 |#1|))) (-945 |#2|)) (T -892)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-945 *6)) (-4 *6 (-13 (-529) (-839 *5) (-580 *4))) (-5 *4 (-845 *5)) (-5 *1 (-892 *5 *6 *3))))) -(-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) -((-4196 (((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))) 17))) -(((-893 |#1|) (-10 -7 (-15 -4196 ((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))))) (-1045)) (T -893)) -((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *1 (-893 *5))))) -(-10 -7 (-15 -4196 ((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))))) -((-4055 (((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) 33)) (-4196 (((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) 32))) -(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-15 -4055 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))))) (-1045) (-13 (-998) (-807)) (-13 (-998) (-580 (-845 |#1|)) (-989 |#2|))) (T -894)) -((-4055 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-845 *6))) (-5 *5 (-1 (-842 *6 *8) *8 (-845 *6) (-842 *6 *8))) (-4 *6 (-1045)) (-4 *8 (-13 (-998) (-580 (-845 *6)) (-989 *7))) (-5 *2 (-842 *6 *8)) (-4 *7 (-13 (-998) (-807))) (-5 *1 (-894 *6 *7 *8)))) (-4196 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-606 (-845 *7))) (-5 *5 (-1 *9 (-606 *9))) (-5 *6 (-1 (-842 *7 *9) *9 (-845 *7) (-842 *7 *9))) (-4 *7 (-1045)) (-4 *9 (-13 (-998) (-580 (-845 *7)) (-989 *8))) (-5 *2 (-842 *7 *9)) (-5 *3 (-606 *9)) (-4 *8 (-13 (-998) (-807))) (-5 *1 (-894 *7 *8 *9))))) -(-10 -7 (-15 -4196 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-15 -4055 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))))) -((-3784 (((-1113 (-391 (-537))) (-537)) 63)) (-2127 (((-1113 (-537)) (-537)) 66)) (-3116 (((-1113 (-537)) (-537)) 60)) (-1746 (((-537) (-1113 (-537))) 55)) (-4012 (((-1113 (-391 (-537))) (-537)) 49)) (-1443 (((-1113 (-537)) (-537)) 38)) (-4136 (((-1113 (-537)) (-537)) 68)) (-2463 (((-1113 (-537)) (-537)) 67)) (-2930 (((-1113 (-391 (-537))) (-537)) 51))) -(((-895) (-10 -7 (-15 -2930 ((-1113 (-391 (-537))) (-537))) (-15 -2463 ((-1113 (-537)) (-537))) (-15 -4136 ((-1113 (-537)) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -4012 ((-1113 (-391 (-537))) (-537))) (-15 -1746 ((-537) (-1113 (-537)))) (-15 -3116 ((-1113 (-537)) (-537))) (-15 -2127 ((-1113 (-537)) (-537))) (-15 -3784 ((-1113 (-391 (-537))) (-537))))) (T -895)) -((-3784 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2127 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-3116 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-537)) (-5 *1 (-895)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-4136 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2930 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) -(-10 -7 (-15 -2930 ((-1113 (-391 (-537))) (-537))) (-15 -2463 ((-1113 (-537)) (-537))) (-15 -4136 ((-1113 (-537)) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -4012 ((-1113 (-391 (-537))) (-537))) (-15 -1746 ((-537) (-1113 (-537)))) (-15 -3116 ((-1113 (-537)) (-537))) (-15 -2127 ((-1113 (-537)) (-537))) (-15 -3784 ((-1113 (-391 (-537))) (-537)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 11 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-2385 (($ (-606 |#1|)) 13)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 8)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 10 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1540 (($ $ (-606 |#1|)) 26)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 20) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1839 (((-874) $) 16)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) 24)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513)))) (($ (-606 |#1|)) 17)) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) 14 (|has| $ (-6 -4300))))) -(((-896 |#1|) (-933 |#1|) (-998)) (T -896)) -NIL -(-933 |#1|) -((-3352 (((-463 |#1| |#2|) (-905 |#2|)) 20)) (-2215 (((-232 |#1| |#2|) (-905 |#2|)) 33)) (-2850 (((-905 |#2|) (-463 |#1| |#2|)) 25)) (-3277 (((-232 |#1| |#2|) (-463 |#1| |#2|)) 55)) (-2006 (((-905 |#2|) (-232 |#1| |#2|)) 30)) (-1679 (((-463 |#1| |#2|) (-232 |#1| |#2|)) 46))) -(((-897 |#1| |#2|) (-10 -7 (-15 -1679 ((-463 |#1| |#2|) (-232 |#1| |#2|))) (-15 -3277 ((-232 |#1| |#2|) (-463 |#1| |#2|))) (-15 -3352 ((-463 |#1| |#2|) (-905 |#2|))) (-15 -2850 ((-905 |#2|) (-463 |#1| |#2|))) (-15 -2006 ((-905 |#2|) (-232 |#1| |#2|))) (-15 -2215 ((-232 |#1| |#2|) (-905 |#2|)))) (-606 (-1117)) (-998)) (T -897)) -((-2215 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117))))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5))))) -(-10 -7 (-15 -1679 ((-463 |#1| |#2|) (-232 |#1| |#2|))) (-15 -3277 ((-232 |#1| |#2|) (-463 |#1| |#2|))) (-15 -3352 ((-463 |#1| |#2|) (-905 |#2|))) (-15 -2850 ((-905 |#2|) (-463 |#1| |#2|))) (-15 -2006 ((-905 |#2|) (-232 |#1| |#2|))) (-15 -2215 ((-232 |#1| |#2|) (-905 |#2|)))) -((-2621 (((-606 |#2|) |#2| |#2|) 10)) (-1785 (((-731) (-606 |#1|)) 37 (|has| |#1| (-805)))) (-1629 (((-606 |#2|) |#2|) 11)) (-2771 (((-731) (-606 |#1|) (-537) (-537)) 39 (|has| |#1| (-805)))) (-2635 ((|#1| |#2|) 32 (|has| |#1| (-805))))) -(((-898 |#1| |#2|) (-10 -7 (-15 -2621 ((-606 |#2|) |#2| |#2|)) (-15 -1629 ((-606 |#2|) |#2|)) (IF (|has| |#1| (-805)) (PROGN (-15 -2635 (|#1| |#2|)) (-15 -1785 ((-731) (-606 |#1|))) (-15 -2771 ((-731) (-606 |#1|) (-537) (-537)))) |%noBranch|)) (-347) (-1176 |#1|)) (T -898)) -((-2771 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-537)) (-4 *5 (-805)) (-4 *5 (-347)) (-5 *2 (-731)) (-5 *1 (-898 *5 *6)) (-4 *6 (-1176 *5)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-805)) (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1176 *4)))) (-2635 (*1 *2 *3) (-12 (-4 *2 (-347)) (-4 *2 (-805)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1176 *2)))) (-1629 (*1 *2 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1176 *4)))) (-2621 (*1 *2 *3 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -2621 ((-606 |#2|) |#2| |#2|)) (-15 -1629 ((-606 |#2|) |#2|)) (IF (|has| |#1| (-805)) (PROGN (-15 -2635 (|#1| |#2|)) (-15 -1785 ((-731) (-606 |#1|))) (-15 -2771 ((-731) (-606 |#1|) (-537) (-537)))) |%noBranch|)) -((-1612 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) -(((-899 |#1| |#2|) (-10 -7 (-15 -1612 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-998) (-998)) (T -899)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-905 *6)) (-5 *1 (-899 *5 *6))))) -(-10 -7 (-15 -1612 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) -((-3588 (((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)) 18))) -(((-900 |#1| |#2|) (-10 -7 (-15 -3588 ((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)))) (-1117) (-998)) (T -900)) -((-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-1196 *5)) (-14 *5 (-1117)) (-4 *6 (-998)) (-5 *2 (-1173 *5 (-905 *6))) (-5 *1 (-900 *5 *6)) (-5 *3 (-905 *6))))) -(-10 -7 (-15 -3588 ((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)))) -((-1394 (((-731) $) 71) (((-731) $ (-606 |#4|)) 74)) (-1395 (($ $) 173)) (-2414 (((-402 $) $) 165)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 116)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL) ((|#4| $) 59)) (-4086 (($ $ $ |#4|) 76)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 106) (((-649 |#2|) (-649 $)) 99)) (-1351 (($ $) 180) (($ $ |#4|) 183)) (-3926 (((-606 $) $) 63)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 199) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 192)) (-1645 (((-606 $) $) 28)) (-3733 (($ |#2| |#3|) NIL) (($ $ |#4| (-731)) NIL) (($ $ (-606 |#4|) (-606 (-731))) 57)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#4|) 162)) (-3898 (((-3 (-606 $) "failed") $) 42)) (-2566 (((-3 (-606 $) "failed") $) 31)) (-2983 (((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") $) 47)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 109)) (-1319 (((-402 (-1113 $)) (-1113 $)) 122)) (-3370 (((-402 (-1113 $)) (-1113 $)) 120)) (-3622 (((-402 $) $) 140)) (-4116 (($ $ (-606 (-278 $))) 21) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-606 |#4|) (-606 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-606 |#4|) (-606 $)) NIL)) (-2067 (($ $ |#4|) 78)) (-3996 (((-845 (-363)) $) 213) (((-845 (-537)) $) 206) (((-513) $) 221)) (-1835 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 154)) (-3500 ((|#2| $ |#3|) NIL) (($ $ |#4| (-731)) 52) (($ $ (-606 |#4|) (-606 (-731))) 55)) (-2644 (((-3 $ "failed") $) 156)) (-2263 (((-111) $ $) 186))) -(((-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -1351 (|#1| |#1| |#4|)) (-15 -1835 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#4|)) (-15 -4086 (|#1| |#1| |#1| |#4|)) (-15 -3926 ((-606 |#1|) |#1|)) (-15 -1394 ((-731) |#1| (-606 |#4|))) (-15 -1394 ((-731) |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3733 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3733 (|#1| |#1| |#4| (-731))) (-15 -3932 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1645 ((-606 |#1|) |#1|)) (-15 -3500 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3500 (|#1| |#1| |#4| (-731))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -3733 (|#1| |#2| |#3|)) (-15 -3500 (|#2| |#1| |#3|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1351 (|#1| |#1|))) (-902 |#2| |#3| |#4|) (-998) (-753) (-807)) (T -901)) -NIL -(-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -1351 (|#1| |#1| |#4|)) (-15 -1835 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#4|)) (-15 -4086 (|#1| |#1| |#1| |#4|)) (-15 -3926 ((-606 |#1|) |#1|)) (-15 -1394 ((-731) |#1| (-606 |#4|))) (-15 -1394 ((-731) |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3733 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3733 (|#1| |#1| |#4| (-731))) (-15 -3932 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1645 ((-606 |#1|) |#1|)) (-15 -3500 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3500 (|#1| |#1| |#4| (-731))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -3733 (|#1| |#2| |#3|)) (-15 -3500 (|#2| |#1| |#3|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1351 (|#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133)) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| |#2| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#2|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-1883 ((|#2| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#2| |#2|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-1310 (((-3 |#3| "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136)) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37)) (-2872 ((|#2| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-529))) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#2|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-902 |#1| |#2| |#3|) (-134) (-998) (-753) (-807)) (T -902)) -((-1351 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-731)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *2 (-807)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) (-1645 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-3588 (*1 *2 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-1113 *3)))) (-1310 (*1 *2 *1) (|partial| -12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1883 (*1 *2 *1 *3) (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-731)))) (-1883 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) (-3932 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-902 *4 *5 *3)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *4)) (-4 *4 (-998)) (-4 *1 (-902 *4 *5 *3)) (-4 *5 (-753)) (-4 *3 (-807)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)))) (-2566 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-3898 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-2983 (*1 *2 *1) (|partial| -12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-731)))))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-731)))) (-1394 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *5)))) (-3926 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-4086 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-163)))) (-2067 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-163)))) (-1835 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-435)))) (-1351 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-435)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2414 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-402 *1)) (-4 *1 (-902 *3 *4 *5))))) -(-13 (-853 |t#3|) (-310 |t#1| |t#2|) (-293 $) (-495 |t#3| |t#1|) (-495 |t#3| $) (-989 |t#3|) (-361 |t#1|) (-10 -8 (-15 -2872 ((-731) $ |t#3|)) (-15 -2872 ((-606 (-731)) $ (-606 |t#3|))) (-15 -3500 ($ $ |t#3| (-731))) (-15 -3500 ($ $ (-606 |t#3|) (-606 (-731)))) (-15 -1645 ((-606 $) $)) (-15 -3588 ((-1113 $) $ |t#3|)) (-15 -3588 ((-1113 |t#1|) $)) (-15 -1310 ((-3 |t#3| "failed") $)) (-15 -1883 ((-731) $ |t#3|)) (-15 -1883 ((-606 (-731)) $ (-606 |t#3|))) (-15 -3932 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |t#3|)) (-15 -3733 ($ $ |t#3| (-731))) (-15 -3733 ($ $ (-606 |t#3|) (-606 (-731)))) (-15 -3746 ($ (-1113 |t#1|) |t#3|)) (-15 -3746 ($ (-1113 $) |t#3|)) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |var| |t#3|) (|:| -3283 (-731))) "failed") $)) (-15 -1394 ((-731) $)) (-15 -1394 ((-731) $ (-606 |t#3|))) (-15 -3757 ((-606 |t#3|) $)) (-15 -3926 ((-606 $) $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (IF (|has| |t#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-537)))) (IF (|has| |t#3| (-580 (-845 (-537)))) (-6 (-580 (-845 (-537)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-363)))) (IF (|has| |t#3| (-580 (-845 (-363)))) (-6 (-580 (-845 (-363)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-839 (-537))) (IF (|has| |t#3| (-839 (-537))) (-6 (-839 (-537))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-839 (-363))) (IF (|has| |t#3| (-839 (-363))) (-6 (-839 (-363))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4086 ($ $ $ |t#3|)) (-15 -2067 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-6 (-435)) (-15 -1835 ($ $ |t#3|)) (-15 -1351 ($ $)) (-15 -1351 ($ $ |t#3|)) (-15 -2414 ((-402 $) $)) (-15 -1395 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4298)) (-6 -4298) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) -((-3757 (((-606 |#2|) |#5|) 36)) (-3588 (((-1113 |#5|) |#5| |#2| (-1113 |#5|)) 23) (((-391 (-1113 |#5|)) |#5| |#2|) 16)) (-3746 ((|#5| (-391 (-1113 |#5|)) |#2|) 30)) (-1310 (((-3 |#2| "failed") |#5|) 65)) (-3898 (((-3 (-606 |#5|) "failed") |#5|) 59)) (-1570 (((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|) 47)) (-2566 (((-3 (-606 |#5|) "failed") |#5|) 61)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|) 51))) -(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 ((-606 |#2|) |#5|)) (-15 -1310 ((-3 |#2| "failed") |#5|)) (-15 -3588 ((-391 (-1113 |#5|)) |#5| |#2|)) (-15 -3746 (|#5| (-391 (-1113 |#5|)) |#2|)) (-15 -3588 ((-1113 |#5|) |#5| |#2| (-1113 |#5|))) (-15 -2566 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -3898 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -2983 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|)) (-15 -1570 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|) (-13 (-347) (-10 -8 (-15 -2341 ($ |#4|)) (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $))))) (T -903)) -((-1570 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-537)))) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-2983 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-537)))) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-3898 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-2566 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-3588 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) (-4 *7 (-902 *6 *5 *4)) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-5 *1 (-903 *5 *4 *6 *7 *3)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-1113 *2))) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-4 *2 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) (-5 *1 (-903 *5 *4 *6 *7 *2)) (-4 *7 (-902 *6 *5 *4)))) (-3588 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-391 (-1113 *3))) (-5 *1 (-903 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-1310 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-998)) (-4 *6 (-902 *5 *4 *2)) (-4 *2 (-807)) (-5 *1 (-903 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *6)) (-15 -3301 (*6 $)) (-15 -3315 (*6 $))))))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *5)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $)))))))) -(-10 -7 (-15 -3757 ((-606 |#2|) |#5|)) (-15 -1310 ((-3 |#2| "failed") |#5|)) (-15 -3588 ((-391 (-1113 |#5|)) |#5| |#2|)) (-15 -3746 (|#5| (-391 (-1113 |#5|)) |#2|)) (-15 -3588 ((-1113 |#5|) |#5| |#2| (-1113 |#5|))) (-15 -2566 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -3898 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -2983 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|)) (-15 -1570 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|))) -((-1612 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) (T -904)) -((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-807)) (-4 *8 (-998)) (-4 *6 (-753)) (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) (-5 *1 (-904 *6 *7 *8 *5 *2)) (-4 *5 (-902 *8 *6 *7))))) -(-10 -7 (-15 -1612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) 16)) (-3588 (((-1113 $) $ (-1117)) 21) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1117))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 8) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1117) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1117) $) NIL)) (-4086 (($ $ $ (-1117)) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1117)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-1117)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1117) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1117) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-1117)) NIL) (($ (-1113 $) (-1117)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1117)) NIL)) (-1883 (((-509 (-1117)) $) NIL) (((-731) $ (-1117)) NIL) (((-606 (-731)) $ (-606 (-1117))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-1117)) (-509 (-1117))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1310 (((-3 (-1117) "failed") $) 19)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1117)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $ (-1117)) 29 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1117) |#1|) NIL) (($ $ (-606 (-1117)) (-606 |#1|)) NIL) (($ $ (-1117) $) NIL) (($ $ (-606 (-1117)) (-606 $)) NIL)) (-2067 (($ $ (-1117)) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2872 (((-509 (-1117)) $) NIL) (((-731) $ (-1117)) NIL) (((-606 (-731)) $ (-606 (-1117))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1117) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1117) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1117) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1117)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 25) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1117)) 27) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-905 |#1|) (-13 (-902 |#1| (-509 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1117))) |%noBranch|))) (-998)) (T -905)) -((-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998))))) -(-13 (-902 |#1| (-509 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1117))) |%noBranch|))) -((-2407 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731)) 38)) (-3354 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731)) 34)) (-3290 (((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)) 54)) (-2380 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731)) 64 (|has| |#3| (-435))))) -(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2407 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731))) (-15 -3354 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731))) (IF (|has| |#3| (-435)) (-15 -2380 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731))) |%noBranch|) (-15 -3290 ((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|) (-13 (-347) (-10 -8 (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $)) (-15 -2341 ($ |#4|))))) (T -906)) -((-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *3 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| (-606 *3)))) (-5 *1 (-906 *5 *6 *7 *3 *8)) (-5 *4 (-731)) (-4 *8 (-13 (-347) (-10 -8 (-15 -3301 (*3 $)) (-15 -3315 (*3 $)) (-15 -2341 ($ *3))))))) (-2380 (*1 *2 *3 *4) (-12 (-4 *7 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *3))) (-5 *1 (-906 *5 *6 *7 *8 *3)) (-5 *4 (-731)) (-4 *3 (-13 (-347) (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8))))))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-537))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *9) (|:| |radicand| *9))) (-5 *1 (-906 *5 *6 *7 *8 *9)) (-5 *4 (-731)) (-4 *9 (-13 (-347) (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8))))))) (-2407 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-529)) (-4 *7 (-902 *3 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *8) (|:| |radicand| *8))) (-5 *1 (-906 *5 *6 *3 *7 *8)) (-5 *4 (-731)) (-4 *8 (-13 (-347) (-10 -8 (-15 -3301 (*7 $)) (-15 -3315 (*7 $)) (-15 -2341 ($ *7)))))))) -(-10 -7 (-15 -2407 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731))) (-15 -3354 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731))) (IF (|has| |#3| (-435)) (-15 -2380 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731))) |%noBranch|) (-15 -3290 ((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)))) -((-2330 (((-111) $ $) NIL)) (-3709 (($ (-1064)) 8)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 14) (((-1064) $) 11)) (-2244 (((-111) $ $) 10))) -(((-907) (-13 (-1045) (-579 (-1064)) (-10 -8 (-15 -3709 ($ (-1064)))))) (T -907)) -((-3709 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-907))))) -(-13 (-1045) (-579 (-1064)) (-10 -8 (-15 -3709 ($ (-1064))))) -((-4059 (((-1040 (-210)) $) 8)) (-4050 (((-1040 (-210)) $) 9)) (-1477 (((-606 (-606 (-896 (-210)))) $) 10)) (-2341 (((-816) $) 6))) -(((-908) (-134)) (T -908)) -((-1477 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-606 (-606 (-896 (-210))))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210)))))) -(-13 (-579 (-816)) (-10 -8 (-15 -1477 ((-606 (-606 (-896 (-210)))) $)) (-15 -4050 ((-1040 (-210)) $)) (-15 -4059 ((-1040 (-210)) $)))) -(((-579 (-816)) . T)) -((-3020 (((-3 (-649 |#1|) "failed") |#2| (-874)) 15))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3020 ((-3 (-649 |#1|) "failed") |#2| (-874)))) (-529) (-617 |#1|)) (T -909)) -((-3020 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-874)) (-4 *5 (-529)) (-5 *2 (-649 *5)) (-5 *1 (-909 *5 *3)) (-4 *3 (-617 *5))))) -(-10 -7 (-15 -3020 ((-3 (-649 |#1|) "failed") |#2| (-874)))) -((-2547 (((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|) 18)) (-1612 (((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)) 13))) -(((-910 |#1| |#2|) (-10 -7 (-15 -2547 ((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -1612 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) (-1154) (-1154)) (T -910)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-910 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-911 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-911 *5)) (-5 *1 (-910 *6 *5))))) -(-10 -7 (-15 -2547 ((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -1612 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 16 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 15 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 13)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 12)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 10 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 17 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 11)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 14) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 8 (|has| $ (-6 -4300))))) -(((-911 |#1|) (-19 |#1|) (-1154)) (T -911)) +NIL +(-13 (-818) (-691)) +(((-100) . T) ((-583 (-823)) . T) ((-691) . T) ((-818) . T) ((-811) . T) ((-1063) . T) ((-1052) . T)) +((-3945 (((-526) $) 17)) (-3500 (((-111) $) 10)) (-3501 (((-111) $) 11)) (-3702 (($ $) 19))) +(((-808 |#1|) (-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3945 ((-526) |#1|)) (-15 -3501 ((-111) |#1|)) (-15 -3500 ((-111) |#1|))) (-809)) (T -808)) +NIL +(-10 -8 (-15 -3702 (|#1| |#1|)) (-15 -3945 ((-526) |#1|)) (-15 -3501 ((-111) |#1|)) (-15 -3500 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 24)) (-1345 (((-3 $ "failed") $ $) 26)) (-3945 (((-526) $) 33)) (-3855 (($) 23 T CONST)) (-3781 (((-3 $ "failed") $) 38)) (-3500 (((-111) $) 35)) (-2471 (((-111) $) 40)) (-3501 (((-111) $) 34)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 43)) (-3423 (((-735)) 42)) (-3702 (($ $) 32)) (-2957 (($) 22 T CONST)) (-2964 (($) 41 T CONST)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (-4156 (($ $ $) 28) (($ $) 27)) (-4158 (($ $ $) 20)) (** (($ $ (-735)) 39) (($ $ (-878)) 36)) (* (($ (-878) $) 21) (($ (-735) $) 25) (($ (-526) $) 29) (($ $ $) 37))) +(((-809) (-134)) (T -809)) +((-3500 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-526)))) (-3702 (*1 *1 *1) (-4 *1 (-809)))) +(-13 (-755) (-1004) (-691) (-10 -8 (-15 -3500 ((-111) $)) (-15 -3501 ((-111) $)) (-15 -3945 ((-526) $)) (-15 -3702 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-811) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3637 (($ $ $) 10)) (-3638 (($ $ $) 9)) (-2863 (((-111) $ $) 13)) (-2864 (((-111) $ $) 11)) (-2984 (((-111) $ $) 14))) +(((-810 |#1|) (-10 -8 (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -2984 ((-111) |#1| |#1|)) (-15 -2863 ((-111) |#1| |#1|)) (-15 -2864 ((-111) |#1| |#1|))) (-811)) (T -810)) +NIL +(-10 -8 (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -2984 ((-111) |#1| |#1|)) (-15 -2863 ((-111) |#1| |#1|)) (-15 -2864 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18))) +(((-811) (-134)) (T -811)) +((-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2863 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) (-3638 (*1 *1 *1 *1) (-4 *1 (-811))) (-3637 (*1 *1 *1 *1) (-4 *1 (-811)))) +(-13 (-1052) (-10 -8 (-15 -2985 ((-111) $ $)) (-15 -2864 ((-111) $ $)) (-15 -2863 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -3638 ($ $ $)) (-15 -3637 ($ $ $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2840 (($ $ $) 45)) (-2841 (($ $ $) 44)) (-2842 (($ $ $) 42)) (-2838 (($ $ $) 51)) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 46)) (-2839 (((-3 $ "failed") $ $) 49)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3817 (($ $) 35)) (-2846 (($ $ $) 39)) (-2847 (($ $ $) 38)) (-2836 (($ $ $) 47)) (-2844 (($ $ $) 53)) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 41)) (-2845 (((-3 $ "failed") $ $) 48)) (-3780 (((-3 $ "failed") $ |#2|) 28)) (-3117 ((|#2| $) 32)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#2|) 12)) (-4136 (((-607 |#2|) $) 18)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-812 |#1| |#2|) (-10 -8 (-15 -2836 (|#1| |#1| |#1|)) (-15 -2837 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4274 ((-823) |#1|))) (-813 |#2|) (-1004)) (T -812)) +NIL +(-10 -8 (-15 -2836 (|#1| |#1| |#1|)) (-15 -2837 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2843 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2470 |#1|)) |#1| |#1|)) (-15 -2844 (|#1| |#1| |#1|)) (-15 -2845 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3817 (|#1| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3780 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4136 ((-607 |#2|) |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-2840 (($ $ $) 43 (|has| |#1| (-348)))) (-2841 (($ $ $) 44 (|has| |#1| (-348)))) (-2842 (($ $ $) 46 (|has| |#1| (-348)))) (-2838 (($ $ $) 41 (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 40 (|has| |#1| (-348)))) (-2839 (((-3 $ "failed") $ $) 42 (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 45 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #1="failed") $) 72 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 70 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 67)) (-3469 (((-526) $) 73 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 71 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 66)) (-4276 (($ $) 62)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 53 (|has| |#1| (-436)))) (-2471 (((-111) $) 30)) (-3193 (($ |#1| (-735)) 60)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 56 (|has| |#1| (-533)))) (-3120 (((-735) $) 64)) (-2846 (($ $ $) 50 (|has| |#1| (-348)))) (-2847 (($ $ $) 51 (|has| |#1| (-348)))) (-2836 (($ $ $) 39 (|has| |#1| (-348)))) (-2844 (($ $ $) 48 (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 47 (|has| |#1| (-348)))) (-2845 (((-3 $ "failed") $ $) 49 (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 52 (|has| |#1| (-348)))) (-3487 ((|#1| $) 63)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-533)))) (-4264 (((-735) $) 65)) (-3117 ((|#1| $) 54 (|has| |#1| (-436)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 69 (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) 68)) (-4136 (((-607 |#1|) $) 59)) (-3999 ((|#1| $ (-735)) 61)) (-3423 (((-735)) 28)) (-2849 ((|#1| $ |#1| |#1|) 58)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-813 |#1|) (-134) (-1004)) (T -813)) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-607 *3)))) (-2849 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-2850 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2851 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) (-2852 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2846 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2845 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2844 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2843 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-813 *3)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) (-2841 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2840 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2839 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2838 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-2837 (*1 *2 *1 *1) (-12 (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) (-4 *1 (-813 *3)))) (-2836 (*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(-13 (-1004) (-110 |t#1| |t#1|) (-397 |t#1|) (-10 -8 (-15 -4264 ((-735) $)) (-15 -3120 ((-735) $)) (-15 -3487 (|t#1| $)) (-15 -4276 ($ $)) (-15 -3999 (|t#1| $ (-735))) (-15 -3193 ($ |t#1| (-735))) (-15 -4136 ((-607 |t#1|) $)) (-15 -2849 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3780 ((-3 $ "failed") $ |t#1|)) (-15 -2850 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2851 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3117 (|t#1| $)) (-15 -3817 ($ $))) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2847 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -2845 ((-3 $ "failed") $ $)) (-15 -2844 ($ $ $)) (-15 -2843 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -2842 ($ $ $)) (-15 -2853 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -2841 ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -2838 ($ $ $)) (-15 -2837 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $)) (-15 -2836 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-397 |#1|) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2848 ((|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|)) 20)) (-2853 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 43 (|has| |#1| (-348)))) (-2851 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 40 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 39 (|has| |#1| (-533)))) (-2852 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)) 42 (|has| |#1| (-348)))) (-2849 ((|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|)) 31))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2848 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -2849 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-533)) (PROGN (-15 -2850 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2851 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2853 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) (-1004) (-813 |#1|)) (T -814)) +((-2853 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2852 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2851 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2850 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) (-4 *3 (-813 *5)))) (-2849 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-814 *2 *3)) (-4 *3 (-813 *2)))) (-2848 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1004)) (-5 *1 (-814 *5 *2)) (-4 *2 (-813 *5))))) +(-10 -7 (-15 -2848 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -2849 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-533)) (PROGN (-15 -2850 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2851 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -2852 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2853 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#1| (-348)))) (-2841 (($ $ $) NIL (|has| |#1| (-348)))) (-2842 (($ $ $) NIL (|has| |#1| (-348)))) (-2838 (($ $ $) NIL (|has| |#1| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 32 (|has| |#1| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-3846 (((-823) $ (-823)) NIL)) (-2471 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) NIL)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 28 (|has| |#1| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 26 (|has| |#1| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#1| (-348)))) (-2847 (($ $ $) NIL (|has| |#1| (-348)))) (-2836 (($ $ $) NIL (|has| |#1| (-348)))) (-2844 (($ $ $) NIL (|has| |#1| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#1| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 30 (|has| |#1| (-348)))) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-533)))) (-4264 (((-735) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-995 (-392 (-526))))) (($ |#1|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#1| $ |#1| |#1|) 15)) (-2957 (($) NIL T CONST)) (-2964 (($) 20 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 19) (($ $ (-735)) 22)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-815 |#1| |#2| |#3|) (-13 (-813 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))))) (-1004) (-97 |#1|) (-1 |#1| |#1|)) (T -815)) +((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-815 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-813 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-2840 (($ $ $) NIL (|has| |#2| (-348)))) (-2841 (($ $ $) NIL (|has| |#2| (-348)))) (-2842 (($ $ $) NIL (|has| |#2| (-348)))) (-2838 (($ $ $) NIL (|has| |#2| (-348)))) (-2837 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-2839 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-348)))) (-2853 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-3470 (((-3 (-526) #2="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #2#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#2| (-436)))) (-2471 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) 16)) (-2851 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-2850 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-3120 (((-735) $) NIL)) (-2846 (($ $ $) NIL (|has| |#2| (-348)))) (-2847 (($ $ $) NIL (|has| |#2| (-348)))) (-2836 (($ $ $) NIL (|has| |#2| (-348)))) (-2844 (($ $ $) NIL (|has| |#2| (-348)))) (-2843 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-2845 (((-3 $ #1#) $ $) NIL (|has| |#2| (-348)))) (-2852 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-533)))) (-4264 (((-735) $) NIL)) (-3117 ((|#2| $) NIL (|has| |#2| (-436)))) (-4274 (((-823) $) 23) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (($ (-1202 |#1|)) 18)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-735)) NIL)) (-3423 (((-735)) NIL)) (-2849 ((|#2| $ |#2| |#2|) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) 13 T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-816 |#1| |#2| |#3| |#4|) (-13 (-813 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))))) (-1123) (-1004) (-97 |#2|) (-1 |#2| |#2|)) (T -816)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-816 *3 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-813 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))))) +((-2856 ((|#1| (-735) |#1|) 35 (|has| |#1| (-37 (-392 (-526)))))) (-2855 ((|#1| (-735) (-735) |#1|) 27) ((|#1| (-735) |#1|) 20)) (-2854 ((|#1| (-735) |#1|) 31)) (-3100 ((|#1| (-735) |#1|) 29)) (-3099 ((|#1| (-735) |#1|) 28))) +(((-817 |#1|) (-10 -7 (-15 -3099 (|#1| (-735) |#1|)) (-15 -3100 (|#1| (-735) |#1|)) (-15 -2854 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -2856 (|#1| (-735) |#1|)) |%noBranch|)) (-163)) (T -817)) +((-2856 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-163)))) (-2855 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-2854 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-3100 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) (-3099 (*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) +(-10 -7 (-15 -3099 (|#1| (-735) |#1|)) (-15 -3100 (|#1| (-735) |#1|)) (-15 -2854 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) |#1|)) (-15 -2855 (|#1| (-735) (-735) |#1|)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -2856 (|#1| (-735) |#1|)) |%noBranch|)) +((-2865 (((-111) $ $) 7)) (-3637 (($ $ $) 13)) (-3638 (($ $ $) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2863 (((-111) $ $) 16)) (-2864 (((-111) $ $) 17)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 15)) (-2985 (((-111) $ $) 18)) (** (($ $ (-878)) 21)) (* (($ $ $) 20))) +(((-818) (-134)) (T -818)) +NIL +(-13 (-811) (-1063)) +(((-100) . T) ((-583 (-823)) . T) ((-811) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3721 (((-526) $) 12)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 18) (($ (-526)) 11)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 8)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 9))) +(((-819) (-13 (-811) (-10 -8 (-15 -4274 ($ (-526))) (-15 -3721 ((-526) $))))) (T -819)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-819))))) +(-13 (-811) (-10 -8 (-15 -4274 ($ (-526))) (-15 -3721 ((-526) $)))) +((-2857 (((-1211) (-607 (-50))) 24)) (-3774 (((-1211) (-1106) (-823)) 14) (((-1211) (-823)) 9) (((-1211) (-1106)) 11))) +(((-820) (-10 -7 (-15 -3774 ((-1211) (-1106))) (-15 -3774 ((-1211) (-823))) (-15 -3774 ((-1211) (-1106) (-823))) (-15 -2857 ((-1211) (-607 (-50)))))) (T -820)) +((-2857 (*1 *2 *3) (-12 (-5 *3 (-607 (-50))) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-820))))) +(-10 -7 (-15 -3774 ((-1211) (-1106))) (-15 -3774 ((-1211) (-823))) (-15 -3774 ((-1211) (-1106) (-823))) (-15 -2857 ((-1211) (-607 (-50))))) +((-2858 (((-1070) $ (-128)) 17))) +(((-821 |#1|) (-10 -8 (-15 -2858 ((-1070) |#1| (-128)))) (-822)) (T -821)) +NIL +(-10 -8 (-15 -2858 ((-1070) |#1| (-128)))) +((-2858 (((-1070) $ (-128)) 7)) (-2859 (((-1070) $ (-127)) 8)) (-1792 (($ $) 6))) +(((-822) (-134)) (T -822)) +((-2859 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-127)) (-5 *2 (-1070)))) (-2858 (*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-128)) (-5 *2 (-1070))))) +(-13 (-164) (-10 -8 (-15 -2859 ((-1070) $ (-127))) (-15 -2858 ((-1070) $ (-128))))) +(((-164) . T)) +((-2865 (((-111) $ $) NIL) (($ $ $) 77)) (-2886 (($ $ $) 115)) (-2901 (((-526) $) 30) (((-526)) 35)) (-2896 (($ (-526)) 44)) (-2893 (($ $ $) 45) (($ (-607 $)) 76)) (-2877 (($ $ (-607 $)) 74)) (-2898 (((-526) $) 33)) (-2880 (($ $ $) 63)) (-3845 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2899 (((-526) $) 32)) (-2881 (($ $ $) 62)) (-3857 (($ $) 105)) (-2884 (($ $ $) 119)) (-2867 (($ (-607 $)) 52)) (-3862 (($ $ (-607 $)) 69)) (-2895 (($ (-526) (-526)) 46)) (-2906 (($ $) 116) (($ $ $) 117)) (-3434 (($ $ (-526)) 40) (($ $) 43)) (-2861 (($ $ $) 89)) (-2882 (($ $ $) 122)) (-2876 (($ $) 106)) (-2860 (($ $ $) 90)) (-2872 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3137 (((-1211) $) 8)) (-2875 (($ $) 109) (($ $ (-735)) 112)) (-2878 (($ $ $) 65)) (-2879 (($ $ $) 64)) (-2892 (($ $ (-607 $)) 100)) (-2890 (($ $ $) 104)) (-2869 (($ (-607 $)) 50)) (-2870 (($ $) 60) (($ (-607 $)) 61)) (-2873 (($ $ $) 113)) (-2874 (($ $) 107)) (-2885 (($ $ $) 118)) (-3846 (($ (-526)) 20) (($ (-1123)) 22) (($ (-1106)) 29) (($ (-211)) 24)) (-3156 (($ $ $) 93)) (-3636 (($ $) 94)) (-2902 (((-1211) (-1106)) 14)) (-2903 (($ (-1106)) 13)) (-3421 (($ (-607 (-607 $))) 49)) (-3435 (($ $ (-526)) 39) (($ $) 42)) (-3554 (((-1106) $) NIL)) (-2888 (($ $ $) 121)) (-3784 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2889 (((-111) $) 98)) (-2891 (($ $ (-607 $)) 102) (($ $ $ $) 103)) (-2897 (($ (-526)) 36)) (-2900 (((-526) $) 31) (((-526)) 34)) (-2894 (($ $ $) 37) (($ (-607 $)) 75)) (-3555 (((-1070) $) NIL)) (-3780 (($ $ $) 91)) (-3887 (($) 12)) (-4118 (($ $ (-607 $)) 99)) (-4155 (($ $) 108) (($ $ (-735)) 111)) (-2862 (($ $ $) 88)) (-4129 (($ $ (-735)) 127)) (-2868 (($ (-607 $)) 51)) (-4274 (((-823) $) 18)) (-4091 (($ $ (-526)) 38) (($ $) 41)) (-2871 (($ $) 58) (($ (-607 $)) 59)) (-3552 (($ $) 56) (($ (-607 $)) 57)) (-2887 (($ $) 114)) (-2866 (($ (-607 $)) 55)) (-3399 (($ $ $) 97)) (-2883 (($ $ $) 120)) (-3155 (($ $ $) 92)) (-4056 (($ $ $) 95) (($ $) 96)) (-2863 (($ $ $) 81)) (-2864 (($ $ $) 79)) (-3353 (((-111) $ $) 15) (($ $ $) 16)) (-2984 (($ $ $) 80)) (-2985 (($ $ $) 78)) (-4265 (($ $ $) 86)) (-4156 (($ $ $) 83) (($ $) 84)) (-4158 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-823) (-13 (-1052) (-10 -8 (-15 -3137 ((-1211) $)) (-15 -2903 ($ (-1106))) (-15 -2902 ((-1211) (-1106))) (-15 -3846 ($ (-526))) (-15 -3846 ($ (-1123))) (-15 -3846 ($ (-1106))) (-15 -3846 ($ (-211))) (-15 -3887 ($)) (-15 -2901 ((-526) $)) (-15 -2900 ((-526) $)) (-15 -2901 ((-526))) (-15 -2900 ((-526))) (-15 -2899 ((-526) $)) (-15 -2898 ((-526) $)) (-15 -2897 ($ (-526))) (-15 -2896 ($ (-526))) (-15 -2895 ($ (-526) (-526))) (-15 -3435 ($ $ (-526))) (-15 -3434 ($ $ (-526))) (-15 -4091 ($ $ (-526))) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4091 ($ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ (-607 $))) (-15 -2893 ($ (-607 $))) (-15 -2892 ($ $ (-607 $))) (-15 -2891 ($ $ (-607 $))) (-15 -2891 ($ $ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ((-111) $)) (-15 -4118 ($ $ (-607 $))) (-15 -3857 ($ $)) (-15 -2888 ($ $ $)) (-15 -2887 ($ $)) (-15 -3421 ($ (-607 (-607 $)))) (-15 -2886 ($ $ $)) (-15 -2906 ($ $)) (-15 -2906 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -4129 ($ $ (-735))) (-15 -3399 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2879 ($ $ $)) (-15 -2878 ($ $ $)) (-15 -3862 ($ $ (-607 $))) (-15 -2877 ($ $ (-607 $))) (-15 -2876 ($ $)) (-15 -4155 ($ $)) (-15 -4155 ($ $ (-735))) (-15 -2875 ($ $)) (-15 -2875 ($ $ (-735))) (-15 -2874 ($ $)) (-15 -2873 ($ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -2872 ($ $)) (-15 -2872 ($ $ $)) (-15 -2872 ($ $ $ $)) (-15 -3784 ($ $)) (-15 -3784 ($ $ $)) (-15 -3784 ($ $ $ $)) (-15 -3552 ($ $)) (-15 -3552 ($ (-607 $))) (-15 -2871 ($ $)) (-15 -2871 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -2869 ($ (-607 $))) (-15 -2868 ($ (-607 $))) (-15 -2867 ($ (-607 $))) (-15 -2866 ($ (-607 $))) (-15 -3353 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3780 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3636 ($ $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ $))))) (T -823)) +((-3137 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-823)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-823)))) (-3887 (*1 *1) (-5 *1 (-823))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2901 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2900 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-2895 (*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) (-3435 (*1 *1 *1) (-5 *1 (-823))) (-3434 (*1 *1 *1) (-5 *1 (-823))) (-4091 (*1 *1 *1) (-5 *1 (-823))) (-2894 (*1 *1 *1 *1) (-5 *1 (-823))) (-2893 (*1 *1 *1 *1) (-5 *1 (-823))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2892 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2891 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2891 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-2890 (*1 *1 *1 *1) (-5 *1 (-823))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-3857 (*1 *1 *1) (-5 *1 (-823))) (-2888 (*1 *1 *1 *1) (-5 *1 (-823))) (-2887 (*1 *1 *1) (-5 *1 (-823))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-823)))) (-2886 (*1 *1 *1 *1) (-5 *1 (-823))) (-2906 (*1 *1 *1) (-5 *1 (-823))) (-2906 (*1 *1 *1 *1) (-5 *1 (-823))) (-2885 (*1 *1 *1 *1) (-5 *1 (-823))) (-2884 (*1 *1 *1 *1) (-5 *1 (-823))) (-2883 (*1 *1 *1 *1) (-5 *1 (-823))) (-2882 (*1 *1 *1 *1) (-5 *1 (-823))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-3399 (*1 *1 *1 *1) (-5 *1 (-823))) (-2881 (*1 *1 *1 *1) (-5 *1 (-823))) (-2880 (*1 *1 *1 *1) (-5 *1 (-823))) (-2879 (*1 *1 *1 *1) (-5 *1 (-823))) (-2878 (*1 *1 *1 *1) (-5 *1 (-823))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2876 (*1 *1 *1) (-5 *1 (-823))) (-4155 (*1 *1 *1) (-5 *1 (-823))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-2875 (*1 *1 *1) (-5 *1 (-823))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) (-2874 (*1 *1 *1) (-5 *1 (-823))) (-2873 (*1 *1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1 *1) (-5 *1 (-823))) (-3845 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1 *1) (-5 *1 (-823))) (-2872 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1 *1) (-5 *1 (-823))) (-3784 (*1 *1 *1 *1 *1) (-5 *1 (-823))) (-3552 (*1 *1 *1) (-5 *1 (-823))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2871 (*1 *1 *1) (-5 *1 (-823))) (-2871 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2870 (*1 *1 *1) (-5 *1 (-823))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2867 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) (-3353 (*1 *1 *1 *1) (-5 *1 (-823))) (-2865 (*1 *1 *1 *1) (-5 *1 (-823))) (-2985 (*1 *1 *1 *1) (-5 *1 (-823))) (-2864 (*1 *1 *1 *1) (-5 *1 (-823))) (-2984 (*1 *1 *1 *1) (-5 *1 (-823))) (-2863 (*1 *1 *1 *1) (-5 *1 (-823))) (-4158 (*1 *1 *1 *1) (-5 *1 (-823))) (-4156 (*1 *1 *1 *1) (-5 *1 (-823))) (-4156 (*1 *1 *1) (-5 *1 (-823))) (* (*1 *1 *1 *1) (-5 *1 (-823))) (-4265 (*1 *1 *1 *1) (-5 *1 (-823))) (** (*1 *1 *1 *1) (-5 *1 (-823))) (-2862 (*1 *1 *1 *1) (-5 *1 (-823))) (-2861 (*1 *1 *1 *1) (-5 *1 (-823))) (-2860 (*1 *1 *1 *1) (-5 *1 (-823))) (-3780 (*1 *1 *1 *1) (-5 *1 (-823))) (-3155 (*1 *1 *1 *1) (-5 *1 (-823))) (-3156 (*1 *1 *1 *1) (-5 *1 (-823))) (-3636 (*1 *1 *1) (-5 *1 (-823))) (-4056 (*1 *1 *1 *1) (-5 *1 (-823))) (-4056 (*1 *1 *1) (-5 *1 (-823)))) +(-13 (-1052) (-10 -8 (-15 -3137 ((-1211) $)) (-15 -2903 ($ (-1106))) (-15 -2902 ((-1211) (-1106))) (-15 -3846 ($ (-526))) (-15 -3846 ($ (-1123))) (-15 -3846 ($ (-1106))) (-15 -3846 ($ (-211))) (-15 -3887 ($)) (-15 -2901 ((-526) $)) (-15 -2900 ((-526) $)) (-15 -2901 ((-526))) (-15 -2900 ((-526))) (-15 -2899 ((-526) $)) (-15 -2898 ((-526) $)) (-15 -2897 ($ (-526))) (-15 -2896 ($ (-526))) (-15 -2895 ($ (-526) (-526))) (-15 -3435 ($ $ (-526))) (-15 -3434 ($ $ (-526))) (-15 -4091 ($ $ (-526))) (-15 -3435 ($ $)) (-15 -3434 ($ $)) (-15 -4091 ($ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ (-607 $))) (-15 -2893 ($ (-607 $))) (-15 -2892 ($ $ (-607 $))) (-15 -2891 ($ $ (-607 $))) (-15 -2891 ($ $ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ((-111) $)) (-15 -4118 ($ $ (-607 $))) (-15 -3857 ($ $)) (-15 -2888 ($ $ $)) (-15 -2887 ($ $)) (-15 -3421 ($ (-607 (-607 $)))) (-15 -2886 ($ $ $)) (-15 -2906 ($ $)) (-15 -2906 ($ $ $)) (-15 -2885 ($ $ $)) (-15 -2884 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -2882 ($ $ $)) (-15 -4129 ($ $ (-735))) (-15 -3399 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2879 ($ $ $)) (-15 -2878 ($ $ $)) (-15 -3862 ($ $ (-607 $))) (-15 -2877 ($ $ (-607 $))) (-15 -2876 ($ $)) (-15 -4155 ($ $)) (-15 -4155 ($ $ (-735))) (-15 -2875 ($ $)) (-15 -2875 ($ $ (-735))) (-15 -2874 ($ $)) (-15 -2873 ($ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -2872 ($ $)) (-15 -2872 ($ $ $)) (-15 -2872 ($ $ $ $)) (-15 -3784 ($ $)) (-15 -3784 ($ $ $)) (-15 -3784 ($ $ $ $)) (-15 -3552 ($ $)) (-15 -3552 ($ (-607 $))) (-15 -2871 ($ $)) (-15 -2871 ($ (-607 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-607 $))) (-15 -2869 ($ (-607 $))) (-15 -2868 ($ (-607 $))) (-15 -2867 ($ (-607 $))) (-15 -2866 ($ (-607 $))) (-15 -3353 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -4158 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ $)) (-15 * ($ $ $)) (-15 -4265 ($ $ $)) (-15 ** ($ $ $)) (-15 -2862 ($ $ $)) (-15 -2861 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3780 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3636 ($ $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ $)))) +((-2865 (((-111) $ $) NIL)) (-4150 (((-3 $ "failed") (-1123)) 33)) (-3433 (((-735)) 31)) (-3294 (($) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2102 (((-878) $) 29)) (-3554 (((-1106) $) 39)) (-2461 (($ (-878)) 28)) (-3555 (((-1070) $) NIL)) (-4287 (((-1123) $) 13) (((-515) $) 19) (((-849 (-363)) $) 26) (((-849 (-526)) $) 22)) (-4274 (((-823) $) 16)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 36)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 35))) +(((-824 |#1|) (-13 (-805) (-584 (-1123)) (-584 (-515)) (-584 (-849 (-363))) (-584 (-849 (-526))) (-10 -8 (-15 -4150 ((-3 $ "failed") (-1123))))) (-607 (-1123))) (T -824)) +((-4150 (*1 *1 *2) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-824 *3)) (-14 *3 (-607 *2))))) +(-13 (-805) (-584 (-1123)) (-584 (-515)) (-584 (-849 (-363))) (-584 (-849 (-526))) (-10 -8 (-15 -4150 ((-3 $ "failed") (-1123))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (((-905 |#1|) $) NIL) (($ (-905 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-163)))) (-3423 (((-735)) NIL)) (-4240 (((-1211) (-735)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-825 |#1| |#2| |#3| |#4|) (-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 ((-905 |#1|) $)) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4240 ((-1211) (-735))))) (-1004) (-607 (-1123)) (-607 (-735)) (-735)) (T -825)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-825 *3 *4 *5 *6)) (-4 *3 (-1004)) (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-825 *3 *4 *5 *6)) (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) (-4265 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-825 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-735))) (-14 *5 (-735)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-825 *4 *5 *6 *7)) (-4 *4 (-1004)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 *3)) (-14 *7 *3)))) +(-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 ((-905 |#1|) $)) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4240 ((-1211) (-735))))) +((-2904 (((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|) 31)) (-2905 (((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|) 24))) +(((-826 |#1| |#2| |#3|) (-10 -7 (-15 -2905 ((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|)) (-15 -2904 ((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|))) (-348) (-1198 |#1|) (-1181 |#1|)) (T -826)) +((-2904 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-165 *6)) (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5)))) (-2905 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-392 *6)) (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5))))) +(-10 -7 (-15 -2905 ((-3 (-392 |#3|) "failed") (-735) (-735) |#2| |#2|)) (-15 -2904 ((-3 (-165 |#3|) "failed") (-735) (-735) |#2| |#2|))) +((-2905 (((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)) 28) (((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 26))) +(((-827 |#1| |#2| |#3|) (-10 -7 (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)))) (-348) (-1123) |#1|) (T -827)) +((-2905 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) (-5 *1 (-827 *5 *6 *7)))) (-2905 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) (-5 *1 (-827 *5 *6 *7))))) +(-10 -7 (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (-15 -2905 ((-3 (-392 (-1174 |#2| |#1|)) "failed") (-735) (-735) (-1195 |#1| |#2| |#3|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2906 (($ (-1117 (-526)) (-526)) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2907 (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4090 (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2909 (((-526)) NIL)) (-2908 (((-526) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-2910 (((-1101 (-526)) $) NIL)) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-526) $ (-526)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) +(((-828 |#1|) (-829 |#1|) (-526)) (T -828)) +NIL +(-829 |#1|) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $ (-526)) 60)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-2906 (($ (-1117 (-526)) (-526)) 59)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2907 (($ $) 62)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4090 (((-735) $) 67)) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-2909 (((-526)) 64)) (-2908 (((-526) $) 63)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4087 (($ $ (-526)) 66)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-2910 (((-1101 (-526)) $) 68)) (-3191 (($ $) 65)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-4088 (((-526) $ (-526)) 61)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-829 |#1|) (-134) (-526)) (T -829)) +((-2910 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-1101 (-526))))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-735)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-3191 (*1 *1 *1) (-4 *1 (-829 *2))) (-2909 (*1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2907 (*1 *1 *1) (-4 *1 (-829 *2))) (-4088 (*1 *2 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-3337 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) (-2906 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *3 (-526)) (-4 *1 (-829 *4))))) +(-13 (-292) (-141) (-10 -8 (-15 -2910 ((-1101 (-526)) $)) (-15 -4090 ((-735) $)) (-15 -4087 ($ $ (-526))) (-15 -3191 ($ $)) (-15 -2909 ((-526))) (-15 -2908 ((-526) $)) (-15 -2907 ($ $)) (-15 -4088 ((-526) $ (-526))) (-15 -3337 ($ $ (-526))) (-15 -2906 ($ (-1117 (-526)) (-526))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-292) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-828 |#1|) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-828 |#1|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| (-828 |#1|) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| (-828 |#1|) (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| (-828 |#1|) (-995 (-526))))) (-3469 (((-828 |#1|) $) NIL) (((-1123) $) NIL (|has| (-828 |#1|) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-828 |#1|) (-995 (-526)))) (((-526) $) NIL (|has| (-828 |#1|) (-995 (-526))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-828 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-828 |#1|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-828 |#1|))) (|:| |vec| (-1205 (-828 |#1|)))) (-653 $) (-1205 $)) NIL) (((-653 (-828 |#1|)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-828 |#1|) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| (-828 |#1|) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-828 |#1|) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-828 |#1|) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-828 |#1|) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| (-828 |#1|) (-1099)))) (-3501 (((-111) $) NIL (|has| (-828 |#1|) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-828 |#1|) (-811)))) (-3638 (($ $ $) NIL (|has| (-828 |#1|) (-811)))) (-4275 (($ (-1 (-828 |#1|) (-828 |#1|)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-828 |#1|) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-828 |#1|) (-292)))) (-3427 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-828 |#1|) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-828 |#1|)) (-607 (-828 |#1|))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-828 |#1|) (-828 |#1|)) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-278 (-828 |#1|))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-607 (-278 (-828 |#1|)))) NIL (|has| (-828 |#1|) (-294 (-828 |#1|)))) (($ $ (-607 (-1123)) (-607 (-828 |#1|))) NIL (|has| (-828 |#1|) (-496 (-1123) (-828 |#1|)))) (($ $ (-1123) (-828 |#1|)) NIL (|has| (-828 |#1|) (-496 (-1123) (-828 |#1|))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-828 |#1|)) NIL (|has| (-828 |#1|) (-271 (-828 |#1|) (-828 |#1|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| (-828 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-828 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1 (-828 |#1|) (-828 |#1|)) (-735)) NIL) (($ $ (-1 (-828 |#1|) (-828 |#1|))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-828 |#1|) $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| (-828 |#1|) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-828 |#1|) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-828 |#1|) (-584 (-515)))) (((-363) $) NIL (|has| (-828 |#1|) (-977))) (((-211) $) NIL (|has| (-828 |#1|) (-977)))) (-2911 (((-165 (-392 (-526))) $) NIL)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-828 |#1|) (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL) (($ (-828 |#1|)) NIL) (($ (-1123)) NIL (|has| (-828 |#1|) (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-828 |#1|) (-869))) (|has| (-828 |#1|) (-139))))) (-3423 (((-735)) NIL)) (-3428 (((-828 |#1|) $) NIL (|has| (-828 |#1|) (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) NIL)) (-3702 (($ $) NIL (|has| (-828 |#1|) (-784)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $) NIL (|has| (-828 |#1|) (-219))) (($ $ (-735)) NIL (|has| (-828 |#1|) (-219))) (($ $ (-1123)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-828 |#1|) (-859 (-1123)))) (($ $ (-1 (-828 |#1|) (-828 |#1|)) (-735)) NIL) (($ $ (-1 (-828 |#1|) (-828 |#1|))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-828 |#1|) (-811)))) (-4265 (($ $ $) NIL) (($ (-828 |#1|) (-828 |#1|)) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-828 |#1|) $) NIL) (($ $ (-828 |#1|)) NIL))) +(((-830 |#1|) (-13 (-950 (-828 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526)) (T -830)) +((-4088 (*1 *2 *1 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-830 *4)) (-14 *4 *3) (-5 *3 (-526)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-830 *3)) (-14 *3 (-526)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-14 *2 (-526)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-830 *3)) (-14 *3 *2)))) +(-13 (-950 (-828 |#1|)) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#2| $) NIL (|has| |#2| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| |#2| (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (|has| |#2| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526))))) (-3469 ((|#2| $) NIL) (((-1123) $) NIL (|has| |#2| (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-526)))) (((-526) $) NIL (|has| |#2| (-995 (-526))))) (-4049 (($ $) 31) (($ (-526) $) 32)) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 53)) (-3294 (($) NIL (|has| |#2| (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) NIL (|has| |#2| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| |#2| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| |#2| (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 ((|#2| $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#2| (-1099)))) (-3501 (((-111) $) NIL (|has| |#2| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 49)) (-3764 (($) NIL (|has| |#2| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| |#2| (-292)))) (-3427 ((|#2| $) NIL (|has| |#2| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 |#2|) (-607 |#2|)) NIL (|has| |#2| (-294 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-294 |#2|))) (($ $ (-278 |#2|)) NIL (|has| |#2| (-294 |#2|))) (($ $ (-607 (-278 |#2|))) NIL (|has| |#2| (-294 |#2|))) (($ $ (-607 (-1123)) (-607 |#2|)) NIL (|has| |#2| (-496 (-1123) |#2|))) (($ $ (-1123) |#2|) NIL (|has| |#2| (-496 (-1123) |#2|)))) (-1680 (((-735) $) NIL)) (-4118 (($ $ |#2|) NIL (|has| |#2| (-271 |#2| |#2|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) NIL (|has| |#2| (-219))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3295 (($ $) NIL)) (-3297 ((|#2| $) NIL)) (-4287 (((-849 (-526)) $) NIL (|has| |#2| (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| |#2| (-584 (-849 (-363))))) (((-515) $) NIL (|has| |#2| (-584 (-515)))) (((-363) $) NIL (|has| |#2| (-977))) (((-211) $) NIL (|has| |#2| (-977)))) (-2911 (((-165 (-392 (-526))) $) 68)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4274 (((-823) $) 87) (($ (-526)) 19) (($ $) NIL) (($ (-392 (-526))) 24) (($ |#2|) 18) (($ (-1123)) NIL (|has| |#2| (-995 (-1123))))) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-3428 ((|#2| $) NIL (|has| |#2| (-525)))) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ (-526)) 60)) (-3702 (($ $) NIL (|has| |#2| (-784)))) (-2957 (($) 14 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $) NIL (|has| |#2| (-219))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) 35)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4156 (($ $) 39) (($ $ $) 41)) (-4158 (($ $ $) 37)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) 50)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 42) (($ $ $) 44) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-831 |#1| |#2|) (-13 (-950 |#2|) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) (-526) (-829 |#1|)) (T -831)) +((-4088 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-392 (-526))) (-5 *1 (-831 *4 *5)) (-5 *3 (-526)) (-4 *5 (-829 *4)))) (-2911 (*1 *2 *1) (-12 (-14 *3 (-526)) (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3)))) (-4049 (*1 *1 *1) (-12 (-14 *2 (-526)) (-5 *1 (-831 *2 *3)) (-4 *3 (-829 *2)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-14 *3 *2) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3))))) +(-13 (-950 |#2|) (-10 -8 (-15 -4088 ((-392 (-526)) $ (-526))) (-15 -2911 ((-165 (-392 (-526))) $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)))) +((-2865 (((-111) $ $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-4114 ((|#2| $) 12)) (-2912 (($ |#1| |#2|) 9)) (-3554 (((-1106) $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-3555 (((-1070) $) NIL (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#1| $) 11)) (-3844 (($ |#1| |#2|) 10)) (-4274 (((-823) $) 18 (-3850 (-12 (|has| |#1| (-583 (-823))) (|has| |#2| (-583 (-823)))) (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052)))))) (-3353 (((-111) $ $) 22 (-12 (|has| |#1| (-1052)) (|has| |#2| (-1052)))))) +(((-832 |#1| |#2|) (-13 (-1159) (-10 -8 (IF (|has| |#1| (-583 (-823))) (IF (|has| |#2| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1052)) (IF (|has| |#2| (-1052)) (-6 (-1052)) |%noBranch|) |%noBranch|) (-15 -2912 ($ |#1| |#2|)) (-15 -3844 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -4114 (|#2| $)))) (-1159) (-1159)) (T -832)) +((-2912 (*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) (-4119 (*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1159)))) (-4114 (*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *3 *2)) (-4 *3 (-1159))))) +(-13 (-1159) (-10 -8 (IF (|has| |#1| (-583 (-823))) (IF (|has| |#2| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1052)) (IF (|has| |#2| (-1052)) (-6 (-1052)) |%noBranch|) |%noBranch|) (-15 -2912 ($ |#1| |#2|)) (-15 -3844 ($ |#1| |#2|)) (-15 -4119 (|#1| $)) (-15 -4114 (|#2| $)))) +((-2865 (((-111) $ $) NIL)) (-3257 (((-526) $) 15)) (-2914 (($ (-149)) 11)) (-2913 (($ (-149)) 12)) (-3554 (((-1106) $) NIL)) (-3256 (((-149) $) 13)) (-3555 (((-1070) $) NIL)) (-2916 (($ (-149)) 9)) (-2917 (($ (-149)) 8)) (-4274 (((-823) $) 23) (($ (-149)) 16)) (-2915 (($ (-149)) 10)) (-3353 (((-111) $ $) NIL))) +(((-833) (-13 (-1052) (-10 -8 (-15 -2917 ($ (-149))) (-15 -2916 ($ (-149))) (-15 -2915 ($ (-149))) (-15 -2914 ($ (-149))) (-15 -2913 ($ (-149))) (-15 -3256 ((-149) $)) (-15 -3257 ((-526) $)) (-15 -4274 ($ (-149)))))) (T -833)) +((-2917 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-833)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(-13 (-1052) (-10 -8 (-15 -2917 ($ (-149))) (-15 -2916 ($ (-149))) (-15 -2915 ($ (-149))) (-15 -2914 ($ (-149))) (-15 -2913 ($ (-149))) (-15 -3256 ((-149) $)) (-15 -3257 ((-526) $)) (-15 -4274 ($ (-149))))) +((-4274 (((-299 (-526)) (-392 (-905 (-47)))) 23) (((-299 (-526)) (-905 (-47))) 18))) +(((-834) (-10 -7 (-15 -4274 ((-299 (-526)) (-905 (-47)))) (-15 -4274 ((-299 (-526)) (-392 (-905 (-47))))))) (T -834)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 (-47)))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-299 (-526))) (-5 *1 (-834))))) +(-10 -7 (-15 -4274 ((-299 (-526)) (-905 (-47)))) (-15 -4274 ((-299 (-526)) (-392 (-905 (-47)))))) +((-4275 (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)) 14))) +(((-835 |#1| |#2|) (-10 -7 (-15 -4275 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)))) (-1159) (-1159)) (T -835)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-836 *6)) (-5 *1 (-835 *5 *6))))) +(-10 -7 (-15 -4275 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)))) +((-3690 (($ |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) +(((-836 |#1|) (-10 -8 (-15 -3690 ($ |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -836)) +((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-836 *2)) (-4 *2 (-1159)))) (-3690 (*1 *1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1159))))) +(-10 -8 (-15 -3690 ($ |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) +((-4275 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 14))) +(((-837 |#1| |#2|) (-10 -7 (-15 -4275 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)))) (-1159) (-1159)) (T -837)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))) +(-10 -7 (-15 -4275 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)))) +((-3690 (($ |#1| |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) +(((-838 |#1|) (-10 -8 (-15 -3690 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -838)) +((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-838 *2)) (-4 *2 (-1159)))) (-3690 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1159))))) +(-10 -8 (-15 -3690 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) +((-2918 (((-607 (-1128)) (-1106)) 9))) +(((-839) (-10 -7 (-15 -2918 ((-607 (-1128)) (-1106))))) (T -839)) +((-2918 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-839))))) +(-10 -7 (-15 -2918 ((-607 (-1128)) (-1106)))) +((-4275 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 14))) +(((-840 |#1| |#2|) (-10 -7 (-15 -4275 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)))) (-1159) (-1159)) (T -840)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))) +(-10 -7 (-15 -4275 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)))) +((-2919 (($ |#1| |#1| |#1|) 8)) (-2920 ((|#1| $ (-735)) 10))) +(((-841 |#1|) (-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) (-1159)) (T -841)) +((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-841 *2)) (-4 *2 (-1159)))) (-2919 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1159))))) +(-10 -8 (-15 -2919 ($ |#1| |#1| |#1|)) (-15 -2920 (|#1| $ (-735)))) +((-2924 (((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526)))) 32)) (-2923 (((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526))) 28)) (-2925 (((-1101 (-607 (-526))) (-607 (-526))) 41) (((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526))) 40)) (-2926 (((-1101 (-607 (-526))) (-526)) 42)) (-2921 (((-1101 (-607 (-526))) (-526) (-526)) 22) (((-1101 (-607 (-526))) (-526)) 16) (((-1101 (-607 (-526))) (-526) (-526) (-526)) 12)) (-2922 (((-1101 (-607 (-526))) (-1101 (-607 (-526)))) 26)) (-3309 (((-607 (-526)) (-607 (-526))) 25))) +(((-842) (-10 -7 (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526))) (-15 -3309 ((-607 (-526)) (-607 (-526)))) (-15 -2922 ((-1101 (-607 (-526))) (-1101 (-607 (-526))))) (-15 -2923 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2924 ((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526))))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)))) (-15 -2926 ((-1101 (-607 (-526))) (-526))))) (T -842)) +((-2926 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2925 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2925 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *3 (-607 (-526))) (-5 *1 (-842)))) (-2923 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-842)))) (-2921 (*1 *2 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) (-2921 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) +(-10 -7 (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526))) (-15 -2921 ((-1101 (-607 (-526))) (-526) (-526))) (-15 -3309 ((-607 (-526)) (-607 (-526)))) (-15 -2922 ((-1101 (-607 (-526))) (-1101 (-607 (-526))))) (-15 -2923 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2924 ((-1101 (-607 (-526))) (-607 (-526)) (-1101 (-607 (-526))))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)) (-607 (-526)))) (-15 -2925 ((-1101 (-607 (-526))) (-607 (-526)))) (-15 -2926 ((-1101 (-607 (-526))) (-526)))) +((-4287 (((-849 (-363)) $) 9 (|has| |#1| (-584 (-849 (-363))))) (((-849 (-526)) $) 8 (|has| |#1| (-584 (-849 (-526))))))) +(((-843 |#1|) (-134) (-1159)) (T -843)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-584 (-849 (-526)))) (-6 (-584 (-849 (-526)))) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-363)))) (-6 (-584 (-849 (-363)))) |%noBranch|))) +(((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526))))) +((-2865 (((-111) $ $) NIL)) (-3936 (($) 14)) (-2929 (($ (-847 |#1| |#2|) (-847 |#1| |#3|)) 27)) (-2927 (((-847 |#1| |#3|) $) 16)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-2937 (((-111) $) 22)) (-2936 (($) 19)) (-4274 (((-823) $) 30)) (-2928 (((-847 |#1| |#2|) $) 15)) (-3353 (((-111) $ $) 25))) +(((-844 |#1| |#2| |#3|) (-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -2929 ($ (-847 |#1| |#2|) (-847 |#1| |#3|))) (-15 -2928 ((-847 |#1| |#2|) $)) (-15 -2927 ((-847 |#1| |#3|) $)))) (-1052) (-1052) (-631 |#2|)) (T -844)) +((-2937 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4)))) (-2936 (*1 *1) (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) (-4 *4 (-631 *3)))) (-3936 (*1 *1) (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) (-4 *4 (-631 *3)))) (-2929 (*1 *1 *2 *3) (-12 (-5 *2 (-847 *4 *5)) (-5 *3 (-847 *4 *6)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-631 *5)) (-5 *1 (-844 *4 *5 *6)))) (-2928 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *4)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4)))) (-2927 (*1 *2 *1) (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *5)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) (-4 *5 (-631 *4))))) +(-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -2929 ($ (-847 |#1| |#2|) (-847 |#1| |#3|))) (-15 -2928 ((-847 |#1| |#2|) $)) (-15 -2927 ((-847 |#1| |#3|) $)))) +((-2865 (((-111) $ $) 7)) (-3096 (((-847 |#1| $) $ (-849 |#1|) (-847 |#1| $)) 13)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) +(((-845 |#1|) (-134) (-1052)) (T -845)) +((-3096 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-847 *4 *1)) (-5 *3 (-849 *4)) (-4 *1 (-845 *4)) (-4 *4 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -3096 ((-847 |t#1| $) $ (-849 |t#1|) (-847 |t#1| $))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2930 (((-111) (-607 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2931 (((-847 |#1| |#2|) |#2| |#3|) 43 (-12 (-3636 (|has| |#2| (-995 (-1123)))) (-3636 (|has| |#2| (-1004))))) (((-607 (-278 (-905 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1004)) (-3636 (|has| |#2| (-995 (-1123)))))) (((-607 (-278 |#2|)) |#2| |#3|) 35 (|has| |#2| (-995 (-1123)))) (((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|) 21))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2930 ((-111) |#2| |#3|)) (-15 -2930 ((-111) (-607 |#2|) |#3|)) (-15 -2931 ((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|)) (IF (|has| |#2| (-995 (-1123))) (-15 -2931 ((-607 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1004)) (-15 -2931 ((-607 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2931 ((-847 |#1| |#2|) |#2| |#3|))))) (-1052) (-845 |#1|) (-584 (-849 |#1|))) (T -846)) +((-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-847 *5 *3)) (-5 *1 (-846 *5 *3 *4)) (-3636 (-4 *3 (-995 (-1123)))) (-3636 (-4 *3 (-1004))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 (-905 *3)))) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-1004)) (-3636 (-4 *3 (-995 (-1123)))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 *3))) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-995 (-1123))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) (-2931 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-5 *2 (-844 *5 *6 (-607 *6))) (-5 *1 (-846 *5 *6 *4)) (-5 *3 (-607 *6)) (-4 *4 (-584 (-849 *5))))) (-2930 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-4 *6 (-845 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *6 *4)) (-4 *4 (-584 (-849 *5))))) (-2930 (*1 *2 *3 *4) (-12 (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5)))))) +(-10 -7 (-15 -2930 ((-111) |#2| |#3|)) (-15 -2930 ((-111) (-607 |#2|) |#3|)) (-15 -2931 ((-844 |#1| |#2| (-607 |#2|)) (-607 |#2|) |#3|)) (IF (|has| |#2| (-995 (-1123))) (-15 -2931 ((-607 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1004)) (-15 -2931 ((-607 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2931 ((-847 |#1| |#2|) |#2| |#3|))))) +((-2865 (((-111) $ $) NIL)) (-3546 (($ $ $) 39)) (-2959 (((-3 (-111) "failed") $ (-849 |#1|)) 36)) (-3936 (($) 12)) (-3554 (((-1106) $) NIL)) (-2933 (($ (-849 |#1|) |#2| $) 20)) (-3555 (((-1070) $) NIL)) (-2935 (((-3 |#2| "failed") (-849 |#1|) $) 50)) (-2937 (((-111) $) 15)) (-2936 (($) 13)) (-3569 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $) 25)) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|)))) 23)) (-4274 (((-823) $) 44)) (-2932 (($ (-849 |#1|) |#2| $ |#2|) 48)) (-2934 (($ (-849 |#1|) |#2| $) 47)) (-3353 (((-111) $ $) 41))) +(((-847 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -3546 ($ $ $)) (-15 -2935 ((-3 |#2| "failed") (-849 |#1|) $)) (-15 -2934 ($ (-849 |#1|) |#2| $)) (-15 -2933 ($ (-849 |#1|) |#2| $)) (-15 -2932 ($ (-849 |#1|) |#2| $ |#2|)) (-15 -3569 ((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))))) (-15 -2959 ((-3 (-111) "failed") $ (-849 |#1|))))) (-1052) (-1052)) (T -847)) +((-2937 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-2936 (*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3936 (*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3546 (*1 *1 *1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-2935 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-4 *2 (-1052)) (-5 *1 (-847 *4 *2)))) (-2934 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-2933 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-2932 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-4 *4 (-1052)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)))) (-2959 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -2937 ((-111) $)) (-15 -2936 ($)) (-15 -3936 ($)) (-15 -3546 ($ $ $)) (-15 -2935 ((-3 |#2| "failed") (-849 |#1|) $)) (-15 -2934 ($ (-849 |#1|) |#2| $)) (-15 -2933 ($ (-849 |#1|) |#2| $)) (-15 -2932 ($ (-849 |#1|) |#2| $ |#2|)) (-15 -3569 ((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))) $)) (-15 -3844 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 |#2|))))) (-15 -2959 ((-3 (-111) "failed") $ (-849 |#1|))))) +((-4275 (((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)) 22))) +(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)))) (-1052) (-1052) (-1052)) (T -848)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-847 *5 *6)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-847 *5 *7)) (-5 *1 (-848 *5 *6 *7))))) +(-10 -7 (-15 -4275 ((-847 |#1| |#3|) (-1 |#3| |#2|) (-847 |#1| |#2|)))) +((-2865 (((-111) $ $) NIL)) (-2945 (($ $ (-607 (-50))) 64)) (-3384 (((-607 $) $) 118)) (-2942 (((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $) 24)) (-3572 (((-111) $) 30)) (-2943 (($ $ (-607 (-1123)) (-50)) 25)) (-2946 (($ $ (-607 (-50))) 63)) (-3470 (((-3 |#1| #1="failed") $) 61) (((-3 (-1123) #1#) $) 140)) (-3469 ((|#1| $) 58) (((-1123) $) NIL)) (-2940 (($ $) 108)) (-2952 (((-111) $) 47)) (-2947 (((-607 (-50)) $) 45)) (-2944 (($ (-1123) (-111) (-111) (-111)) 65)) (-2938 (((-3 (-607 $) "failed") (-607 $)) 72)) (-2949 (((-111) $) 50)) (-2950 (((-111) $) 49)) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) "failed") $) 36)) (-2955 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3125 (((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $) 83)) (-3122 (((-3 (-607 $) "failed") $) 33)) (-2956 (((-3 (-607 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $) 95)) (-2954 (((-3 (-607 $) "failed") $) 37)) (-3124 (((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $) 40)) (-2953 (((-111) $) 29)) (-3555 (((-1070) $) NIL)) (-2941 (((-111) $) 21)) (-2948 (((-111) $) 46)) (-2939 (((-607 (-50)) $) 111)) (-2951 (((-111) $) 48)) (-4118 (($ (-112) (-607 $)) 92)) (-3642 (((-735) $) 28)) (-3719 (($ $) 62)) (-4287 (($ (-607 $)) 59)) (-4269 (((-111) $) 26)) (-4274 (((-823) $) 53) (($ |#1|) 18) (($ (-1123)) 66)) (-2960 (($ $ (-50)) 110)) (-2957 (($) 91 T CONST)) (-2964 (($) 73 T CONST)) (-3353 (((-111) $ $) 79)) (-4265 (($ $ $) 100)) (-4158 (($ $ $) 104)) (** (($ $ (-735)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-849 |#1|) (-13 (-1052) (-995 |#1|) (-995 (-1123)) (-10 -8 (-15 0 ($) -4268) (-15 1 ($) -4268) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -2956 ((-3 (-607 $) "failed") $ (-112))) (-15 -2956 ((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $)) (-15 -2955 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2954 ((-3 (-607 $) "failed") $)) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ $)) (-15 -4265 ($ $ $)) (-15 -3642 ((-735) $)) (-15 -4287 ($ (-607 $))) (-15 -3719 ($ $)) (-15 -2953 ((-111) $)) (-15 -2952 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -4269 ((-111) $)) (-15 -2951 ((-111) $)) (-15 -2950 ((-111) $)) (-15 -2949 ((-111) $)) (-15 -2948 ((-111) $)) (-15 -2947 ((-607 (-50)) $)) (-15 -2946 ($ $ (-607 (-50)))) (-15 -2945 ($ $ (-607 (-50)))) (-15 -2944 ($ (-1123) (-111) (-111) (-111))) (-15 -2943 ($ $ (-607 (-1123)) (-50))) (-15 -2942 ((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $)) (-15 -2941 ((-111) $)) (-15 -2940 ($ $)) (-15 -2960 ($ $ (-50))) (-15 -2939 ((-607 (-50)) $)) (-15 -3384 ((-607 $) $)) (-15 -2938 ((-3 (-607 $) "failed") (-607 $))))) (-1052)) (T -849)) +((-2957 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2964 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-3122 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3123 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2956 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-849 *4))) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2956 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 (-849 *3))))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3124 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-735)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2955 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-849 *3)) (|:| |den| (-849 *3)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2954 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3125 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-849 *3)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 (-849 *4))) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-4265 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3719 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2945 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2944 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-111)) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2943 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-50)) (-5 *1 (-849 *4)) (-4 *4 (-1052)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50)))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2940 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) (-2938 (*1 *2 *2) (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(-13 (-1052) (-995 |#1|) (-995 (-1123)) (-10 -8 (-15 (-2957) ($) -4268) (-15 (-2964) ($) -4268) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -2956 ((-3 (-607 $) "failed") $ (-112))) (-15 -2956 ((-3 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 $))) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |val| $) (|:| -2462 (-735))) "failed") $)) (-15 -2955 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2954 ((-3 (-607 $) "failed") $)) (-15 -3125 ((-3 (-2 (|:| |val| $) (|:| -2462 $)) "failed") $)) (-15 -4118 ($ (-112) (-607 $))) (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735))) (-15 ** ($ $ $)) (-15 -4265 ($ $ $)) (-15 -3642 ((-735) $)) (-15 -4287 ($ (-607 $))) (-15 -3719 ($ $)) (-15 -2953 ((-111) $)) (-15 -2952 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -4269 ((-111) $)) (-15 -2951 ((-111) $)) (-15 -2950 ((-111) $)) (-15 -2949 ((-111) $)) (-15 -2948 ((-111) $)) (-15 -2947 ((-607 (-50)) $)) (-15 -2946 ($ $ (-607 (-50)))) (-15 -2945 ($ $ (-607 (-50)))) (-15 -2944 ($ (-1123) (-111) (-111) (-111))) (-15 -2943 ($ $ (-607 (-1123)) (-50))) (-15 -2942 ((-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50))) $)) (-15 -2941 ((-111) $)) (-15 -2940 ($ $)) (-15 -2960 ($ $ (-50))) (-15 -2939 ((-607 (-50)) $)) (-15 -3384 ((-607 $) $)) (-15 -2938 ((-3 (-607 $) "failed") (-607 $))))) +((-3522 (((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|))) 32) (((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|))) 43) (((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|)) 35)) (-2959 (((-111) (-607 |#2|) (-849 |#1|)) 40) (((-111) |#2| (-849 |#1|)) 36)) (-2958 (((-1 (-111) |#2|) (-849 |#1|)) 16)) (-2961 (((-607 |#2|) (-849 |#1|)) 24)) (-2960 (((-849 |#1|) (-849 |#1|) |#2|) 20))) +(((-850 |#1| |#2|) (-10 -7 (-15 -3522 ((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|)))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|)))) (-15 -2958 ((-1 (-111) |#2|) (-849 |#1|))) (-15 -2959 ((-111) |#2| (-849 |#1|))) (-15 -2959 ((-111) (-607 |#2|) (-849 |#1|))) (-15 -2960 ((-849 |#1|) (-849 |#1|) |#2|)) (-15 -2961 ((-607 |#2|) (-849 |#1|)))) (-1052) (-1159)) (T -850)) +((-2961 (*1 *2 *3) (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-607 *5)) (-5 *1 (-850 *4 *5)) (-4 *5 (-1159)))) (-2960 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1159)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *2 (-111)) (-5 *1 (-850 *5 *6)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-850 *5 *3)) (-4 *3 (-1159)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-850 *4 *5)) (-4 *5 (-1159)))) (-3522 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-849 *5)) (-5 *3 (-607 (-1123))) (-5 *4 (-1 (-111) (-607 *6))) (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-850 *5 *6)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-5 *3 (-607 (-1 (-111) *5))) (-4 *4 (-1052)) (-4 *5 (-1159)) (-5 *1 (-850 *4 *5)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-849 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1052)) (-4 *5 (-1159)) (-5 *1 (-850 *4 *5))))) +(-10 -7 (-15 -3522 ((-849 |#1|) (-849 |#1|) (-1 (-111) |#2|))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1 (-111) |#2|)))) (-15 -3522 ((-849 |#1|) (-849 |#1|) (-607 (-1123)) (-1 (-111) (-607 |#2|)))) (-15 -2958 ((-1 (-111) |#2|) (-849 |#1|))) (-15 -2959 ((-111) |#2| (-849 |#1|))) (-15 -2959 ((-111) (-607 |#2|) (-849 |#1|))) (-15 -2960 ((-849 |#1|) (-849 |#1|) |#2|)) (-15 -2961 ((-607 |#2|) (-849 |#1|)))) +((-4275 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 19))) +(((-851 |#1| |#2|) (-10 -7 (-15 -4275 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)))) (-1052) (-1052)) (T -851)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-849 *6)) (-5 *1 (-851 *5 *6))))) +(-10 -7 (-15 -4275 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)))) +((-2865 (((-111) $ $) NIL)) (-4251 (((-607 |#1|) $) 16)) (-2962 (((-111) $) 38)) (-3470 (((-3 (-637 |#1|) "failed") $) 43)) (-3469 (((-637 |#1|) $) 41)) (-4117 (($ $) 18)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-4152 (((-735) $) 46)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-637 |#1|) $) 17)) (-4274 (((-823) $) 37) (($ (-637 |#1|)) 21) (((-783 |#1|) $) 27) (($ |#1|) 20)) (-2964 (($) 8 T CONST)) (-2963 (((-607 (-637 |#1|)) $) 23)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 11)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 49))) +(((-852 |#1|) (-13 (-811) (-995 (-637 |#1|)) (-10 -8 (-15 1 ($) -4268) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ($ |#1|)) (-15 -4119 ((-637 |#1|) $)) (-15 -4152 ((-735) $)) (-15 -2963 ((-607 (-637 |#1|)) $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -4251 ((-607 |#1|) $)))) (-811)) (T -852)) +((-2964 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-607 (-637 *3))) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811))))) +(-13 (-811) (-995 (-637 |#1|)) (-10 -8 (-15 (-2964) ($) -4268) (-15 -4274 ((-783 |#1|) $)) (-15 -4274 ($ |#1|)) (-15 -4119 ((-637 |#1|) $)) (-15 -4152 ((-735) $)) (-15 -2963 ((-607 (-637 |#1|)) $)) (-15 -4117 ($ $)) (-15 -2962 ((-111) $)) (-15 -4251 ((-607 |#1|) $)))) +((-3788 ((|#1| |#1| |#1|) 19))) +(((-853 |#1| |#2|) (-10 -7 (-15 -3788 (|#1| |#1| |#1|))) (-1181 |#2|) (-1004)) (T -853)) +((-3788 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-853 *2 *3)) (-4 *2 (-1181 *3))))) +(-10 -7 (-15 -3788 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-2968 (((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 14)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2965 (((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 13)) (-3353 (((-111) $ $) 6))) +(((-854) (-134)) (T -854)) +((-2968 (*1 *2 *3 *4) (-12 (-4 *1 (-854)) (-5 *3 (-1016)) (-5 *4 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) (-2965 (*1 *2 *3) (-12 (-4 *1 (-854)) (-5 *3 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *2 (-992))))) +(-13 (-1052) (-10 -7 (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| |explanations| (-1106))) (-1016) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -2965 ((-992) (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2967 ((|#1| |#1| (-735)) 24)) (-2966 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3754 (((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735)) 27) (((-607 |#1|) |#1|) 29))) +(((-855 |#1| |#2|) (-10 -7 (-15 -3754 ((-607 |#1|) |#1|)) (-15 -3754 ((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735))) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2967 (|#1| |#1| (-735)))) (-1181 |#2|) (-348)) (T -855)) +((-2967 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-5 *1 (-855 *2 *4)) (-4 *2 (-1181 *4)))) (-2966 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-348)) (-5 *1 (-855 *2 *3)) (-4 *2 (-1181 *3)))) (-3754 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-855 *3 *5)) (-4 *3 (-1181 *5)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-855 *3 *4)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -3754 ((-607 |#1|) |#1|)) (-15 -3754 ((-3 (-2 (|:| -3435 |#1|) (|:| -3434 |#1|)) "failed") |#1| (-735) (-735))) (-15 -2966 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2967 (|#1| |#1| (-735)))) +((-3895 (((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106)) 96) (((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211)) 91) (((-992) (-857) (-1016)) 83) (((-992) (-857)) 84)) (-2968 (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016)) 59) (((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857)) 61))) +(((-856) (-10 -7 (-15 -3895 ((-992) (-857))) (-15 -3895 ((-992) (-857) (-1016))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016))))) (T -856)) +((-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-856)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106))))) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) (-5 *8 (-211)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-856)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-992)) (-5 *1 (-856))))) +(-10 -7 (-15 -3895 ((-992) (-857))) (-15 -3895 ((-992) (-857) (-1016))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106) (-211))) (-15 -3895 ((-992) (-363) (-363) (-363) (-363) (-735) (-735) (-607 (-299 (-363))) (-607 (-607 (-299 (-363)))) (-1106))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857))) (-15 -2968 ((-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) (|:| |explanations| (-607 (-1106)))) (-857) (-1016)))) +((-2865 (((-111) $ $) NIL)) (-3469 (((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $) 19)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 21) (($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) 18)) (-3353 (((-111) $ $) NIL))) +(((-857) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $))))) (T -857)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-857)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *1 (-857)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211)))) (-5 *1 (-857))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))))) (-15 -4274 ((-823) $)) (-15 -3469 ((-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| (-607 (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) (|:| |dFinish| (-653 (-211)))))) (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) (|:| |tol| (-211))) $)))) +((-4129 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) 10) (($ $ |#2| (-735)) 12) (($ $ (-607 |#2|) (-607 (-735))) 15)) (-2969 (($ $ |#2|) 16) (($ $ (-607 |#2|)) 18) (($ $ |#2| (-735)) 19) (($ $ (-607 |#2|) (-607 (-735))) 21))) +(((-858 |#1| |#2|) (-10 -8 (-15 -2969 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -2969 (|#1| |#1| |#2| (-735))) (-15 -2969 (|#1| |#1| (-607 |#2|))) (-15 -2969 (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#2| (-735))) (-15 -4129 (|#1| |#1| (-607 |#2|))) (-15 -4129 (|#1| |#1| |#2|))) (-859 |#2|) (-1052)) (T -858)) +NIL +(-10 -8 (-15 -2969 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -2969 (|#1| |#1| |#2| (-735))) (-15 -2969 (|#1| |#1| (-607 |#2|))) (-15 -2969 (|#1| |#1| |#2|)) (-15 -4129 (|#1| |#1| (-607 |#2|) (-607 (-735)))) (-15 -4129 (|#1| |#1| |#2| (-735))) (-15 -4129 (|#1| |#1| (-607 |#2|))) (-15 -4129 (|#1| |#1| |#2|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4129 (($ $ |#1|) 40) (($ $ (-607 |#1|)) 39) (($ $ |#1| (-735)) 38) (($ $ (-607 |#1|) (-607 (-735))) 37)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#1|) 36) (($ $ (-607 |#1|)) 35) (($ $ |#1| (-735)) 34) (($ $ (-607 |#1|) (-607 (-735))) 33)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-859 |#1|) (-134) (-1052)) (T -859)) +((-4129 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) (-4 *4 (-1052)))) (-2969 (*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-2969 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) (-2969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) (-4 *4 (-1052))))) +(-13 (-1004) (-10 -8 (-15 -4129 ($ $ |t#1|)) (-15 -4129 ($ $ (-607 |t#1|))) (-15 -4129 ($ $ |t#1| (-735))) (-15 -4129 ($ $ (-607 |t#1|) (-607 (-735)))) (-15 -2969 ($ $ |t#1|)) (-15 -2969 ($ $ (-607 |t#1|))) (-15 -2969 ($ $ |t#1| (-735))) (-15 -2969 ($ $ (-607 |t#1|) (-607 (-735)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 26)) (-1244 (((-111) $ (-735)) NIL)) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-1330 (($ $ $) NIL (|has| $ (-6 -4311)))) (-1331 (($ $ $) NIL (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) (($ $ #2="left" $) NIL (|has| $ (-6 -4311))) (($ $ #3="right" $) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3434 (($ $) 25)) (-2970 (($ |#1|) 12) (($ $ $) 17)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3435 (($ $) 23)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) 20)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1146 |#1|) $) 9) (((-823) $) 29 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 21 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-860 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -2970 ($ |#1|)) (-15 -2970 ($ $ $)) (-15 -4274 ((-1146 |#1|) $)))) (-1052)) (T -860)) +((-2970 (*1 *1 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) (-2970 (*1 *1 *1 *1) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-860 *3)) (-4 *3 (-1052))))) +(-13 (-118 |#1|) (-10 -8 (-15 -2970 ($ |#1|)) (-15 -2970 ($ $ $)) (-15 -4274 ((-1146 |#1|) $)))) +((-2865 (((-111) $ $) NIL)) (-3209 (((-607 $) (-607 $)) 77)) (-3945 (((-526) $) 60)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-4090 (((-735) $) 58)) (-2990 (((-1048 |#1|) $ |#1|) 49)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) 63)) (-2975 (((-735) $) 61)) (-2986 (((-1048 |#1|) $) 42)) (-3637 (($ $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-3638 (($ $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2979 (((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $) 37)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 93)) (-3555 (((-1070) $) NIL)) (-2972 (((-1048 |#1|) $) 100 (|has| |#1| (-353)))) (-2974 (((-111) $) 59)) (-4086 ((|#1| $ |#1|) 47)) (-4118 ((|#1| $ |#1|) 94)) (-4264 (((-735) $) 44)) (-2981 (($ (-607 (-607 |#1|))) 85)) (-2976 (((-930) $) 53)) (-2982 (($ (-607 |#1|)) 21)) (-3309 (($ $ $) NIL)) (-2655 (($ $ $) NIL)) (-2978 (($ (-607 (-607 |#1|))) 39)) (-2977 (($ (-607 (-607 |#1|))) 88)) (-2971 (($ (-607 |#1|)) 96)) (-4274 (((-823) $) 84) (($ (-607 (-607 |#1|))) 66) (($ (-607 |#1|)) 67)) (-2964 (($) 16 T CONST)) (-2863 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-3353 (((-111) $ $) 45)) (-2984 (((-111) $ $) NIL (-3850 (|has| |#1| (-353)) (|has| |#1| (-811))))) (-2985 (((-111) $ $) 65)) (-4265 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ $ $) 22))) +(((-861 |#1|) (-13 (-863 |#1|) (-10 -8 (-15 -2979 ((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $)) (-15 -2978 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 |#1|))) (-15 -2977 ($ (-607 (-607 |#1|)))) (-15 -4264 ((-735) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2976 ((-930) $)) (-15 -4090 ((-735) $)) (-15 -2975 ((-735) $)) (-15 -3945 ((-526) $)) (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $)) (-15 -3209 ((-607 $) (-607 $))) (IF (|has| |#1| (-353)) (-15 -2972 ((-1048 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-525)) (-15 -2971 ($ (-607 |#1|))) (IF (|has| |#1| (-353)) (-15 -2971 ($ (-607 |#1|))) |%noBranch|)))) (-1052)) (T -861)) +((-2979 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-607 *3)) (|:| |image| (-607 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2978 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-353)) (-4 *3 (-1052)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) +(-13 (-863 |#1|) (-10 -8 (-15 -2979 ((-2 (|:| |preimage| (-607 |#1|)) (|:| |image| (-607 |#1|))) $)) (-15 -2978 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 (-607 |#1|)))) (-15 -4274 ($ (-607 |#1|))) (-15 -2977 ($ (-607 (-607 |#1|)))) (-15 -4264 ((-735) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2976 ((-930) $)) (-15 -4090 ((-735) $)) (-15 -2975 ((-735) $)) (-15 -3945 ((-526) $)) (-15 -2974 ((-111) $)) (-15 -2973 ((-111) $)) (-15 -3209 ((-607 $) (-607 $))) (IF (|has| |#1| (-353)) (-15 -2972 ((-1048 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-525)) (-15 -2971 ($ (-607 |#1|))) (IF (|has| |#1| (-353)) (-15 -2971 ($ (-607 |#1|))) |%noBranch|)))) +((-2980 ((|#2| (-1090 |#1| |#2|)) 40))) +(((-862 |#1| |#2|) (-10 -7 (-15 -2980 (|#2| (-1090 |#1| |#2|)))) (-878) (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (T -862)) +((-2980 (*1 *2 *3) (-12 (-5 *3 (-1090 *4 *2)) (-14 *4 (-878)) (-4 *2 (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (-5 *1 (-862 *4 *2))))) +(-10 -7 (-15 -2980 (|#2| (-1090 |#1| |#2|)))) +((-2865 (((-111) $ $) 7)) (-3855 (($) 18 T CONST)) (-3781 (((-3 $ "failed") $) 15)) (-2990 (((-1048 |#1|) $ |#1|) 32)) (-2471 (((-111) $) 17)) (-3637 (($ $ $) 30 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3638 (($ $ $) 29 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 24)) (-3555 (((-1070) $) 10)) (-4086 ((|#1| $ |#1|) 34)) (-4118 ((|#1| $ |#1|) 33)) (-2981 (($ (-607 (-607 |#1|))) 35)) (-2982 (($ (-607 |#1|)) 36)) (-3309 (($ $ $) 21)) (-2655 (($ $ $) 20)) (-4274 (((-823) $) 11)) (-2964 (($) 19 T CONST)) (-2863 (((-111) $ $) 27 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-2864 (((-111) $ $) 26 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 28 (-3850 (|has| |#1| (-811)) (|has| |#1| (-353))))) (-2985 (((-111) $ $) 31)) (-4265 (($ $ $) 23)) (** (($ $ (-878)) 13) (($ $ (-735)) 16) (($ $ (-526)) 22)) (* (($ $ $) 14))) +(((-863 |#1|) (-134) (-1052)) (T -863)) +((-2982 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-863 *3)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-4 *1 (-863 *3)))) (-4086 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) (-4118 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-1048 *3)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(-13 (-457) (-10 -8 (-15 -2982 ($ (-607 |t#1|))) (-15 -2981 ($ (-607 (-607 |t#1|)))) (-15 -4086 (|t#1| $ |t#1|)) (-15 -4118 (|t#1| $ |t#1|)) (-15 -2990 ((-1048 |t#1|) $ |t#1|)) (-15 -2985 ((-111) $ $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-811)) |%noBranch|))) +(((-100) . T) ((-583 (-823)) . T) ((-457) . T) ((-691) . T) ((-811) -3850 (|has| |#1| (-811)) (|has| |#1| (-353))) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-2992 (((-607 (-607 (-735))) $) 108)) (-2988 (((-607 (-735)) (-861 |#1|) $) 130)) (-2987 (((-607 (-735)) (-861 |#1|) $) 131)) (-2993 (((-607 (-861 |#1|)) $) 98)) (-3294 (((-861 |#1|) $ (-526)) 103) (((-861 |#1|) $) 104)) (-2991 (($ (-607 (-861 |#1|))) 110)) (-4090 (((-735) $) 105)) (-2989 (((-1048 (-1048 |#1|)) $) 128)) (-2990 (((-1048 |#1|) $ |#1|) 121) (((-1048 (-1048 |#1|)) $ (-1048 |#1|)) 139) (((-1048 (-607 |#1|)) $ (-607 |#1|)) 142)) (-2986 (((-1048 |#1|) $) 101)) (-3557 (((-111) (-861 |#1|) $) 92)) (-3554 (((-1106) $) NIL)) (-2983 (((-1211) $) 95) (((-1211) $ (-526) (-526)) 143)) (-3555 (((-1070) $) NIL)) (-2995 (((-607 (-861 |#1|)) $) 96)) (-4118 (((-861 |#1|) $ (-735)) 99)) (-4264 (((-735) $) 106)) (-4274 (((-823) $) 119) (((-607 (-861 |#1|)) $) 23) (($ (-607 (-861 |#1|))) 109)) (-2994 (((-607 |#1|) $) 107)) (-3353 (((-111) $ $) 136)) (-2984 (((-111) $ $) 134)) (-2985 (((-111) $ $) 133))) +(((-864 |#1|) (-13 (-1052) (-10 -8 (-15 -4274 ((-607 (-861 |#1|)) $)) (-15 -2995 ((-607 (-861 |#1|)) $)) (-15 -4118 ((-861 |#1|) $ (-735))) (-15 -3294 ((-861 |#1|) $ (-526))) (-15 -3294 ((-861 |#1|) $)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $)) (-15 -2994 ((-607 |#1|) $)) (-15 -2993 ((-607 (-861 |#1|)) $)) (-15 -2992 ((-607 (-607 (-735))) $)) (-15 -4274 ($ (-607 (-861 |#1|)))) (-15 -2991 ($ (-607 (-861 |#1|)))) (-15 -2990 ((-1048 |#1|) $ |#1|)) (-15 -2989 ((-1048 (-1048 |#1|)) $)) (-15 -2990 ((-1048 (-1048 |#1|)) $ (-1048 |#1|))) (-15 -2990 ((-1048 (-607 |#1|)) $ (-607 |#1|))) (-15 -3557 ((-111) (-861 |#1|) $)) (-15 -2988 ((-607 (-735)) (-861 |#1|) $)) (-15 -2987 ((-607 (-735)) (-861 |#1|) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2985 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -2983 ((-1211) $)) (-15 -2983 ((-1211) $ (-526) (-526))))) (-1052)) (T -864)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) (-3294 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-861 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-735)))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) (-2990 (*1 *2 *1 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-1048 (-1048 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-1048 *4))) (-5 *1 (-864 *4)) (-5 *3 (-1048 *4)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-607 *4))) (-5 *1 (-864 *4)) (-5 *3 (-607 *4)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-864 *4)))) (-2988 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) (-5 *1 (-864 *4)))) (-2987 (*1 *2 *3 *1) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) (-5 *1 (-864 *4)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2985 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2984 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) (-2983 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-864 *4)) (-4 *4 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -4274 ((-607 (-861 |#1|)) $)) (-15 -2995 ((-607 (-861 |#1|)) $)) (-15 -4118 ((-861 |#1|) $ (-735))) (-15 -3294 ((-861 |#1|) $ (-526))) (-15 -3294 ((-861 |#1|) $)) (-15 -4090 ((-735) $)) (-15 -4264 ((-735) $)) (-15 -2994 ((-607 |#1|) $)) (-15 -2993 ((-607 (-861 |#1|)) $)) (-15 -2992 ((-607 (-607 (-735))) $)) (-15 -4274 ($ (-607 (-861 |#1|)))) (-15 -2991 ($ (-607 (-861 |#1|)))) (-15 -2990 ((-1048 |#1|) $ |#1|)) (-15 -2989 ((-1048 (-1048 |#1|)) $)) (-15 -2990 ((-1048 (-1048 |#1|)) $ (-1048 |#1|))) (-15 -2990 ((-1048 (-607 |#1|)) $ (-607 |#1|))) (-15 -3557 ((-111) (-861 |#1|) $)) (-15 -2988 ((-607 (-735)) (-861 |#1|) $)) (-15 -2987 ((-607 (-735)) (-861 |#1|) $)) (-15 -2986 ((-1048 |#1|) $)) (-15 -2985 ((-111) $ $)) (-15 -2984 ((-111) $ $)) (-15 -2983 ((-1211) $)) (-15 -2983 ((-1211) $ (-526) (-526))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-4249 (((-111) $) NIL)) (-4246 (((-735)) NIL)) (-3649 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3433 (((-735)) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 $ "failed") $) NIL)) (-3469 (($ $) NIL)) (-1887 (($ (-1205 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-3133 (($) NIL)) (-1772 (((-111) $) NIL)) (-1862 (($ $) NIL) (($ $ (-735)) NIL)) (-4045 (((-111) $) NIL)) (-4090 (((-796 (-878)) $) NIL) (((-878) $) NIL)) (-2471 (((-111) $) NIL)) (-2105 (($) NIL (|has| $ (-353)))) (-2103 (((-111) $) NIL (|has| $ (-353)))) (-3429 (($ $ (-878)) NIL (|has| $ (-353))) (($ $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2106 (((-1117 $) $ (-878)) NIL (|has| $ (-353))) (((-1117 $) $) NIL)) (-2102 (((-878) $) NIL)) (-1700 (((-1117 $) $) NIL (|has| $ (-353)))) (-1699 (((-3 (-1117 $) "failed") $ $) NIL (|has| $ (-353))) (((-1117 $) $) NIL (|has| $ (-353)))) (-1701 (($ $ (-1117 $)) NIL (|has| $ (-353)))) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL T CONST)) (-2461 (($ (-878)) NIL)) (-4248 (((-111) $) NIL)) (-3555 (((-1070) $) NIL)) (-2470 (($) NIL (|has| $ (-353)))) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL)) (-4051 (((-390 $) $) NIL)) (-4247 (((-878)) NIL) (((-796 (-878))) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-1863 (((-3 (-735) "failed") $ $) NIL) (((-735) $) NIL)) (-4230 (((-131)) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-4264 (((-878) $) NIL) (((-796 (-878)) $) NIL)) (-3499 (((-1117 $)) NIL)) (-1766 (($) NIL)) (-1702 (($) NIL (|has| $ (-353)))) (-3537 (((-653 $) (-1205 $)) NIL) (((-1205 $) $) NIL)) (-4287 (((-526) $) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3423 (((-735)) NIL)) (-2104 (((-1205 $) (-878)) NIL) (((-1205 $)) NIL)) (-2150 (((-111) $ $) NIL)) (-4250 (((-111) $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-4245 (($ $ (-735)) NIL (|has| $ (-353))) (($ $) NIL (|has| $ (-353)))) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-865 |#1|) (-13 (-335) (-314 $) (-584 (-526))) (-878)) (T -865)) +NIL +(-13 (-335) (-314 $) (-584 (-526))) +((-2997 (((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|)) 128)) (-3000 ((|#1|) 77)) (-2999 (((-390 (-1117 |#4|)) (-1117 |#4|)) 137)) (-3001 (((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)) 69)) (-2998 (((-390 (-1117 |#4|)) (-1117 |#4|)) 147)) (-2996 (((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|) 92))) +(((-866 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|))) (-15 -2998 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2999 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -3000 (|#1|)) (-15 -2996 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|)) (-15 -3001 ((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)))) (-869) (-757) (-811) (-909 |#1| |#2| |#3|)) (T -866)) +((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *7)) (-4 *7 (-811)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-866 *5 *6 *7 *8)) (-5 *4 (-1117 *8)))) (-2996 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) (-4 *7 (-909 *5 *6 *4)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *4 (-811)) (-5 *1 (-866 *5 *6 *4 *7)))) (-3000 (*1 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-866 *2 *3 *4 *5)) (-4 *5 (-909 *2 *3 *4)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) (-2997 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-866 *4 *5 *6 *7))))) +(-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|))) (-15 -2998 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -2999 ((-390 (-1117 |#4|)) (-1117 |#4|))) (-15 -3000 (|#1|)) (-15 -2996 ((-3 (-607 (-1117 |#4|)) "failed") (-607 (-1117 |#4|)) (-1117 |#4|) |#3|)) (-15 -3001 ((-390 (-1117 |#4|)) (-607 |#3|) (-1117 |#4|)))) +((-2997 (((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|)) 36)) (-3000 ((|#1|) 54)) (-2999 (((-390 (-1117 |#2|)) (-1117 |#2|)) 102)) (-3001 (((-390 (-1117 |#2|)) (-1117 |#2|)) 90)) (-2998 (((-390 (-1117 |#2|)) (-1117 |#2|)) 113))) +(((-867 |#1| |#2|) (-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|))) (-15 -2998 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -2999 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -3000 (|#1|)) (-15 -3001 ((-390 (-1117 |#2|)) (-1117 |#2|)))) (-869) (-1181 |#1|)) (T -867)) +((-3001 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-3000 (*1 *2) (-12 (-4 *2 (-869)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1181 *2)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5)))) (-2997 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-869)) (-5 *1 (-867 *4 *5))))) +(-10 -7 (-15 -2997 ((-3 (-607 (-1117 |#2|)) "failed") (-607 (-1117 |#2|)) (-1117 |#2|))) (-15 -2998 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -2999 ((-390 (-1117 |#2|)) (-1117 |#2|))) (-15 -3000 (|#1|)) (-15 -3001 ((-390 (-1117 |#2|)) (-1117 |#2|)))) +((-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 41)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 18)) (-3002 (((-3 $ "failed") $) 35))) +(((-868 |#1|) (-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) (-869)) (T -868)) +NIL +(-10 -8 (-15 -3002 ((-3 |#1| "failed") |#1|)) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 58)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 55)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-4045 (((-111) $) 51)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3005 (((-390 (-1117 $)) (-1117 $)) 56)) (-3006 (((-390 (-1117 $)) (-1117 $)) 57)) (-4051 (((-390 $) $) 48)) (-3780 (((-3 $ "failed") $ $) 40)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) 54 (|has| $ (-139)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3002 (((-3 $ "failed") $) 53 (|has| $ (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-869) (-134)) (T -869)) +((-3008 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-869)))) (-3007 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3006 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1)))) (-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 (-1117 *1))) (-5 *3 (-1117 *1)) (-4 *1 (-869)))) (-3003 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-139)) (-4 *1 (-869)) (-5 *2 (-1205 *1)))) (-3002 (*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-869))))) +(-13 (-1164) (-10 -8 (-15 -3007 ((-390 (-1117 $)) (-1117 $))) (-15 -3006 ((-390 (-1117 $)) (-1117 $))) (-15 -3005 ((-390 (-1117 $)) (-1117 $))) (-15 -3008 ((-1117 $) (-1117 $) (-1117 $))) (-15 -3004 ((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $))) (IF (|has| $ (-139)) (PROGN (-15 -3003 ((-3 (-1205 $) "failed") (-653 $))) (-15 -3002 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-3010 (((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)) 79)) (-3009 (((-111) (-318 |#2| |#3| |#4| |#5|)) 17)) (-4090 (((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|)) 15))) +(((-870 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|))) (-15 -3009 ((-111) (-318 |#2| |#3| |#4| |#5|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)))) (-13 (-811) (-533) (-995 (-526))) (-406 |#1|) (-1181 |#2|) (-1181 (-392 |#3|)) (-327 |#2| |#3| |#4|)) (T -870)) +((-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *8))) (-5 *1 (-870 *4 *5 *6 *7 *8)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-111)) (-5 *1 (-870 *4 *5 *6 *7 *8)))) (-4090 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-735)) (-5 *1 (-870 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 |#2| |#3| |#4| |#5|))) (-15 -3009 ((-111) (-318 |#2| |#3| |#4| |#5|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#5|)) "failed") (-318 |#2| |#3| |#4| |#5|)))) +((-3010 (((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)) 56)) (-3009 (((-111) (-318 (-392 (-526)) |#1| |#2| |#3|)) 16)) (-4090 (((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)) 14))) +(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3009 ((-111) (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)))) (-1181 (-392 (-526))) (-1181 (-392 |#1|)) (-327 (-392 (-526)) |#1| |#2|)) (T -871)) +((-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *6))) (-5 *1 (-871 *4 *5 *6)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-871 *4 *5 *6)))) (-4090 (*1 *2 *3) (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-735)) (-5 *1 (-871 *4 *5 *6))))) +(-10 -7 (-15 -4090 ((-3 (-735) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3009 ((-111) (-318 (-392 (-526)) |#1| |#2| |#3|))) (-15 -3010 ((-3 (-2 (|:| -4090 (-735)) (|:| -2444 |#3|)) "failed") (-318 (-392 (-526)) |#1| |#2| |#3|)))) +((-3015 ((|#2| |#2|) 26)) (-3013 (((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) 15)) (-3011 (((-878) (-526)) 35)) (-3014 (((-526) |#2|) 42)) (-3012 (((-526) |#2|) 21) (((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|) 20))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3011 ((-878) (-526))) (-15 -3012 ((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|)) (-15 -3012 ((-526) |#2|)) (-15 -3013 ((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))))) (-15 -3014 ((-526) |#2|)) (-15 -3015 (|#2| |#2|))) (-1181 (-392 (-526))) (-1181 (-392 |#1|))) (T -872)) +((-3015 (*1 *2 *2) (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *1 (-872 *3 *2)) (-4 *2 (-1181 (-392 *3))))) (-3014 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4))))) (-3012 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1181 (-392 *4))))) (-3012 (*1 *2 *3) (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *2 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-1181 (-392 *3))))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-526)) (-4 *4 (-1181 (-392 *3))) (-5 *2 (-878)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4)))))) +(-10 -7 (-15 -3011 ((-878) (-526))) (-15 -3012 ((-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))) |#1|)) (-15 -3012 ((-526) |#2|)) (-15 -3013 ((-526) (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))))) (-15 -3014 ((-526) |#2|)) (-15 -3015 (|#2| |#2|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 ((|#1| $) 81)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-2861 (($ $ $) NIL)) (-3781 (((-3 $ "failed") $) 75)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3023 (($ |#1| (-390 |#1|)) 73)) (-3017 (((-1117 |#1|) |#1| |#1|) 41)) (-3016 (($ $) 49)) (-2471 (((-111) $) NIL)) (-3018 (((-526) $) 78)) (-3019 (($ $ (-526)) 80)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3020 ((|#1| $) 77)) (-3021 (((-390 |#1|) $) 76)) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) 74)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3022 (($ $) 39)) (-4274 (((-823) $) 99) (($ (-526)) 54) (($ $) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 31) (((-392 |#1|) $) 59) (($ (-392 (-390 |#1|))) 67)) (-3423 (((-735)) 52)) (-2150 (((-111) $ $) NIL)) (-2957 (($) 23 T CONST)) (-2964 (($) 12 T CONST)) (-3353 (((-111) $ $) 68)) (-4265 (($ $ $) NIL)) (-4156 (($ $) 88) (($ $ $) NIL)) (-4158 (($ $ $) 38)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 90) (($ $ $) 37) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-873 |#1|) (-13 (-348) (-37 |#1|) (-10 -8 (-15 -4274 ((-392 |#1|) $)) (-15 -4274 ($ (-392 (-390 |#1|)))) (-15 -3022 ($ $)) (-15 -3021 ((-390 |#1|) $)) (-15 -3020 (|#1| $)) (-15 -3019 ($ $ (-526))) (-15 -3018 ((-526) $)) (-15 -3017 ((-1117 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3023 ($ |#1| (-390 |#1|))) (-15 -3426 (|#1| $)))) (-292)) (T -873)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-392 (-390 *3))) (-4 *3 (-292)) (-5 *1 (-873 *3)))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3020 (*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3019 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3017 (*1 *2 *3 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) (-3023 (*1 *1 *2 *3) (-12 (-5 *3 (-390 *2)) (-4 *2 (-292)) (-5 *1 (-873 *2)))) (-3426 (*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) +(-13 (-348) (-37 |#1|) (-10 -8 (-15 -4274 ((-392 |#1|) $)) (-15 -4274 ($ (-392 (-390 |#1|)))) (-15 -3022 ($ $)) (-15 -3021 ((-390 |#1|) $)) (-15 -3020 (|#1| $)) (-15 -3019 ($ $ (-526))) (-15 -3018 ((-526) $)) (-15 -3017 ((-1117 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3023 ($ |#1| (-390 |#1|))) (-15 -3426 (|#1| $)))) +((-3023 (((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)) 17) (((-50) (-392 (-905 |#1|)) (-1123)) 18))) +(((-874 |#1|) (-10 -7 (-15 -3023 ((-50) (-392 (-905 |#1|)) (-1123))) (-15 -3023 ((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)))) (-13 (-292) (-141))) (T -874)) +((-3023 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-390 (-905 *6))) (-5 *5 (-1123)) (-5 *3 (-905 *6)) (-4 *6 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *6)))) (-3023 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *5))))) +(-10 -7 (-15 -3023 ((-50) (-392 (-905 |#1|)) (-1123))) (-15 -3023 ((-50) (-905 |#1|) (-390 (-905 |#1|)) (-1123)))) +((-3024 ((|#4| (-607 |#4|)) 121) (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3457 (((-1117 |#4|) (-607 (-1117 |#4|))) 114) (((-1117 |#4|) (-1117 |#4|) (-1117 |#4|)) 50) ((|#4| (-607 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 (|#4| |#4| |#4|)) (-15 -3457 (|#4| (-607 |#4|))) (-15 -3457 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3457 ((-1117 |#4|) (-607 (-1117 |#4|)))) (-15 -3024 (|#4| |#4| |#4|)) (-15 -3024 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3024 (|#4| (-607 |#4|)))) (-757) (-811) (-292) (-909 |#3| |#1| |#2|)) (T -875)) +((-3024 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) (-3024 (*1 *2 *2 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) (-4 *2 (-909 *5 *3 *4)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 (-1117 *7))) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-1117 *7)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) (-3457 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) (-3457 (*1 *2 *2 *2) (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) (-4 *2 (-909 *5 *3 *4))))) +(-10 -7 (-15 -3457 (|#4| |#4| |#4|)) (-15 -3457 (|#4| (-607 |#4|))) (-15 -3457 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3457 ((-1117 |#4|) (-607 (-1117 |#4|)))) (-15 -3024 (|#4| |#4| |#4|)) (-15 -3024 ((-1117 |#4|) (-1117 |#4|) (-1117 |#4|))) (-15 -3024 (|#4| (-607 |#4|)))) +((-3037 (((-864 (-526)) (-930)) 23) (((-864 (-526)) (-607 (-526))) 20)) (-3025 (((-864 (-526)) (-607 (-526))) 48) (((-864 (-526)) (-878)) 49)) (-3036 (((-864 (-526))) 24)) (-3034 (((-864 (-526))) 38) (((-864 (-526)) (-607 (-526))) 37)) (-3033 (((-864 (-526))) 36) (((-864 (-526)) (-607 (-526))) 35)) (-3032 (((-864 (-526))) 34) (((-864 (-526)) (-607 (-526))) 33)) (-3031 (((-864 (-526))) 32) (((-864 (-526)) (-607 (-526))) 31)) (-3030 (((-864 (-526))) 30) (((-864 (-526)) (-607 (-526))) 29)) (-3035 (((-864 (-526))) 40) (((-864 (-526)) (-607 (-526))) 39)) (-3029 (((-864 (-526)) (-607 (-526))) 52) (((-864 (-526)) (-878)) 53)) (-3028 (((-864 (-526)) (-607 (-526))) 50) (((-864 (-526)) (-878)) 51)) (-3026 (((-864 (-526)) (-607 (-526))) 46) (((-864 (-526)) (-878)) 47)) (-3027 (((-864 (-526)) (-607 (-878))) 43))) +(((-876) (-10 -7 (-15 -3025 ((-864 (-526)) (-878))) (-15 -3025 ((-864 (-526)) (-607 (-526)))) (-15 -3026 ((-864 (-526)) (-878))) (-15 -3026 ((-864 (-526)) (-607 (-526)))) (-15 -3027 ((-864 (-526)) (-607 (-878)))) (-15 -3028 ((-864 (-526)) (-878))) (-15 -3028 ((-864 (-526)) (-607 (-526)))) (-15 -3029 ((-864 (-526)) (-878))) (-15 -3029 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)))) (-15 -3031 ((-864 (-526)) (-607 (-526)))) (-15 -3031 ((-864 (-526)))) (-15 -3032 ((-864 (-526)) (-607 (-526)))) (-15 -3032 ((-864 (-526)))) (-15 -3033 ((-864 (-526)) (-607 (-526)))) (-15 -3033 ((-864 (-526)))) (-15 -3034 ((-864 (-526)) (-607 (-526)))) (-15 -3034 ((-864 (-526)))) (-15 -3035 ((-864 (-526)) (-607 (-526)))) (-15 -3035 ((-864 (-526)))) (-15 -3036 ((-864 (-526)))) (-15 -3037 ((-864 (-526)) (-607 (-526)))) (-15 -3037 ((-864 (-526)) (-930))))) (T -876)) +((-3037 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3036 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3035 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3034 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3033 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3032 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3031 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3030 (*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(-10 -7 (-15 -3025 ((-864 (-526)) (-878))) (-15 -3025 ((-864 (-526)) (-607 (-526)))) (-15 -3026 ((-864 (-526)) (-878))) (-15 -3026 ((-864 (-526)) (-607 (-526)))) (-15 -3027 ((-864 (-526)) (-607 (-878)))) (-15 -3028 ((-864 (-526)) (-878))) (-15 -3028 ((-864 (-526)) (-607 (-526)))) (-15 -3029 ((-864 (-526)) (-878))) (-15 -3029 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)) (-607 (-526)))) (-15 -3030 ((-864 (-526)))) (-15 -3031 ((-864 (-526)) (-607 (-526)))) (-15 -3031 ((-864 (-526)))) (-15 -3032 ((-864 (-526)) (-607 (-526)))) (-15 -3032 ((-864 (-526)))) (-15 -3033 ((-864 (-526)) (-607 (-526)))) (-15 -3033 ((-864 (-526)))) (-15 -3034 ((-864 (-526)) (-607 (-526)))) (-15 -3034 ((-864 (-526)))) (-15 -3035 ((-864 (-526)) (-607 (-526)))) (-15 -3035 ((-864 (-526)))) (-15 -3036 ((-864 (-526)))) (-15 -3037 ((-864 (-526)) (-607 (-526)))) (-15 -3037 ((-864 (-526)) (-930)))) +((-3039 (((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))) 12)) (-3038 (((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))) 11))) +(((-877 |#1|) (-10 -7 (-15 -3038 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3039 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))))) (-436)) (T -877)) +((-3039 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-877 *4)))) (-3038 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) (-5 *1 (-877 *4))))) +(-10 -7 (-15 -3038 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3039 ((-607 (-905 |#1|)) (-607 (-905 |#1|)) (-607 (-1123))))) +((-2865 (((-111) $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3457 (($ $ $) NIL)) (-4274 (((-823) $) NIL)) (-2964 (($) NIL T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ $ $) NIL))) +(((-878) (-13 (-758) (-691) (-10 -8 (-15 -3457 ($ $ $)) (-6 (-4312 "*"))))) (T -878)) +((-3457 (*1 *1 *1 *1) (-5 *1 (-878)))) +(-13 (-758) (-691) (-10 -8 (-15 -3457 ($ $ $)) (-6 (-4312 "*")))) +((-4274 (((-299 |#1|) (-461)) 16))) +(((-879 |#1|) (-10 -7 (-15 -4274 ((-299 |#1|) (-461)))) (-13 (-811) (-533))) (T -879)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-299 *4)) (-5 *1 (-879 *4)) (-4 *4 (-13 (-811) (-533)))))) +(-10 -7 (-15 -4274 ((-299 |#1|) (-461)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-880) (-134)) (T -880)) +((-3041 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-2 (|:| -4270 (-607 *1)) (|:| -2470 *1))) (-5 *3 (-607 *1)))) (-3040 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-880))))) +(-13 (-436) (-10 -8 (-15 -3041 ((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $))) (-15 -3040 ((-3 (-607 $) "failed") (-607 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3403 (((-1117 |#2|) (-607 |#2|) (-607 |#2|)) 17) (((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|)) 13))) +(((-881 |#1| |#2|) (-10 -7 (-15 -3403 ((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|))) (-15 -3403 ((-1117 |#2|) (-607 |#2|) (-607 |#2|)))) (-1123) (-348)) (T -881)) +((-3403 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-348)) (-5 *2 (-1117 *5)) (-5 *1 (-881 *4 *5)) (-14 *4 (-1123)))) (-3403 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4 *5)) (-5 *3 (-607 *5)) (-14 *4 (-1123)) (-4 *5 (-348)) (-5 *1 (-881 *4 *5))))) +(-10 -7 (-15 -3403 ((-1174 |#1| |#2|) (-1174 |#1| |#2|) (-607 |#2|) (-607 |#2|))) (-15 -3403 ((-1117 |#2|) (-607 |#2|) (-607 |#2|)))) +((-3042 ((|#2| (-607 |#1|) (-607 |#1|)) 24))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3042 (|#2| (-607 |#1|) (-607 |#1|)))) (-348) (-1181 |#1|)) (T -882)) +((-3042 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-4 *2 (-1181 *4)) (-5 *1 (-882 *4 *2))))) +(-10 -7 (-15 -3042 (|#2| (-607 |#1|) (-607 |#1|)))) +((-3044 (((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106)) 139)) (-3063 ((|#4| |#4|) 155)) (-3048 (((-607 (-392 (-905 |#1|))) (-607 (-1123))) 118)) (-3062 (((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526)) 75)) (-3052 (((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|)) 59)) (-3061 (((-653 |#4|) (-653 |#4|) (-607 |#4|)) 55)) (-3045 (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106)) 151)) (-3043 (((-526) (-653 |#4|) (-878) (-1106)) 132) (((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106)) 131) (((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106)) 130) (((-526) (-653 |#4|) (-1106)) 127) (((-526) (-653 |#4|) (-607 (-1123)) (-1106)) 126) (((-526) (-653 |#4|) (-607 |#4|) (-1106)) 125) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878)) 124) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878)) 123) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878)) 122) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|)) 120) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123))) 119) (((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|)) 115)) (-3049 ((|#4| (-905 |#1|)) 68)) (-3059 (((-111) (-607 |#4|) (-607 (-607 |#4|))) 152)) (-3058 (((-607 (-607 (-526))) (-526) (-526)) 129)) (-3057 (((-607 (-607 |#4|)) (-607 (-607 |#4|))) 88)) (-3056 (((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|))))) 86)) (-3055 (((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|))))) 85)) (-3064 (((-111) (-607 (-905 |#1|))) 17) (((-111) (-607 |#4|)) 13)) (-3050 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|)) 71)) (-3054 (((-607 |#4|) |#4|) 49)) (-3047 (((-607 (-392 (-905 |#1|))) (-607 |#4|)) 114) (((-653 (-392 (-905 |#1|))) (-653 |#4|)) 56) (((-392 (-905 |#1|)) |#4|) 111)) (-3046 (((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526)) 93)) (-3051 (((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735)) 84)) (-3060 (((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735)) 101)) (-3053 (((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) 48))) +(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-878) (-1106))) (-15 -3044 ((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3045 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3046 ((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526))) (-15 -3047 ((-392 (-905 |#1|)) |#4|)) (-15 -3047 ((-653 (-392 (-905 |#1|))) (-653 |#4|))) (-15 -3047 ((-607 (-392 (-905 |#1|))) (-607 |#4|))) (-15 -3048 ((-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3049 (|#4| (-905 |#1|))) (-15 -3050 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|))) (-15 -3051 ((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735))) (-15 -3052 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|))) (-15 -3053 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-15 -3054 ((-607 |#4|) |#4|)) (-15 -3055 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3056 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3057 ((-607 (-607 |#4|)) (-607 (-607 |#4|)))) (-15 -3058 ((-607 (-607 (-526))) (-526) (-526))) (-15 -3059 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3060 ((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735))) (-15 -3061 ((-653 |#4|) (-653 |#4|) (-607 |#4|))) (-15 -3062 ((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526))) (-15 -3063 (|#4| |#4|)) (-15 -3064 ((-111) (-607 |#4|))) (-15 -3064 ((-111) (-607 (-905 |#1|))))) (-13 (-292) (-141)) (-13 (-811) (-584 (-1123))) (-757) (-909 |#1| |#3| |#2|)) (T -883)) +((-3064 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *2)) (-4 *2 (-909 *3 *5 *4)))) (-3062 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-5 *4 (-653 *12)) (-5 *5 (-607 (-392 (-905 *9)))) (-5 *6 (-607 (-607 *12))) (-5 *7 (-735)) (-5 *8 (-526)) (-4 *9 (-13 (-292) (-141))) (-4 *12 (-909 *9 *11 *10)) (-4 *10 (-13 (-811) (-584 (-1123)))) (-4 *11 (-757)) (-5 *2 (-2 (|:| |eqzro| (-607 *12)) (|:| |neqzro| (-607 *12)) (|:| |wcond| (-607 (-905 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *9)))) (|:| -2104 (-607 (-1205 (-392 (-905 *9))))))))) (-5 *1 (-883 *9 *10 *11 *12)))) (-3061 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-735)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3058 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *6 *5)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-607 (-607 *6))) (-4 *6 (-909 *3 *5 *4)) (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *6)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *7))))) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *7))))) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-909 *4 *6 *5)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1676 (-653 (-392 (-905 *4)))) (|:| |vec| (-607 (-392 (-905 *4)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) (-5 *3 (-607 *7)) (-4 *4 (-13 (-292) (-141))) (-4 *7 (-909 *4 *6 *5)) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 *8))))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-735)))) (-3050 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-4 *7 (-909 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-607 *7)) (|:| |n0| (-607 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-292) (-141))) (-4 *2 (-909 *4 *6 *5)) (-5 *1 (-883 *4 *5 *6 *2)) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-653 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-392 (-905 *4))) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-909 *4 *6 *5)))) (-3046 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-653 *11)) (-5 *4 (-607 (-392 (-905 *8)))) (-5 *5 (-735)) (-5 *6 (-1106)) (-4 *8 (-13 (-292) (-141))) (-4 *11 (-909 *8 *10 *9)) (-4 *9 (-13 (-811) (-584 (-1123)))) (-4 *10 (-757)) (-5 *2 (-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 *11)) (|:| |neqzro| (-607 *11)) (|:| |wcond| (-607 (-905 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *8)))) (|:| -2104 (-607 (-1205 (-392 (-905 *8)))))))))) (|:| |rgsz| (-526)))) (-5 *1 (-883 *8 *9 *10 *11)) (-5 *7 (-526)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) (|:| |wcond| (-607 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *4 (-1106)) (-4 *5 (-13 (-292) (-141))) (-4 *8 (-909 *5 *7 *6)) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-878)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-5 *6 (-1106)) (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 *10)) (-5 *5 (-878)) (-5 *6 (-1106)) (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-1106)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 *9)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-878)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) (-5 *1 (-883 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) (-5 *1 (-883 *6 *7 *8 *9)) (-5 *4 (-607 *9)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) (|:| |wcond| (-607 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) (-5 *1 (-883 *4 *5 *6 *7)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-607 (-1123))) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-607 (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) +(-10 -7 (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 |#4|) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-607 (-1123)) (-878))) (-15 -3043 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-653 |#4|) (-878))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 |#4|) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-607 (-1123)) (-878) (-1106))) (-15 -3043 ((-526) (-653 |#4|) (-878) (-1106))) (-15 -3044 ((-526) (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3045 ((-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|))))))))) (-1106))) (-15 -3046 ((-2 (|:| |rgl| (-607 (-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))))) (|:| |rgsz| (-526))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-735) (-1106) (-526))) (-15 -3047 ((-392 (-905 |#1|)) |#4|)) (-15 -3047 ((-653 (-392 (-905 |#1|))) (-653 |#4|))) (-15 -3047 ((-607 (-392 (-905 |#1|))) (-607 |#4|))) (-15 -3048 ((-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3049 (|#4| (-905 |#1|))) (-15 -3050 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-607 |#4|)) (|:| |n0| (-607 |#4|))) (-607 |#4|) (-607 |#4|))) (-15 -3051 ((-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))) (-653 |#4|) (-735))) (-15 -3052 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-607 |#4|))) (-15 -3053 ((-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))) (-2 (|:| -1676 (-653 (-392 (-905 |#1|)))) (|:| |vec| (-607 (-392 (-905 |#1|)))) (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (-15 -3054 ((-607 |#4|) |#4|)) (-15 -3055 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3056 ((-735) (-607 (-2 (|:| -3406 (-735)) (|:| |eqns| (-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))))) (|:| |fgb| (-607 |#4|)))))) (-15 -3057 ((-607 (-607 |#4|)) (-607 (-607 |#4|)))) (-15 -3058 ((-607 (-607 (-526))) (-526) (-526))) (-15 -3059 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3060 ((-607 (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) (-653 |#4|) (-735))) (-15 -3061 ((-653 |#4|) (-653 |#4|) (-607 |#4|))) (-15 -3062 ((-2 (|:| |eqzro| (-607 |#4|)) (|:| |neqzro| (-607 |#4|)) (|:| |wcond| (-607 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1205 (-392 (-905 |#1|)))) (|:| -2104 (-607 (-1205 (-392 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526)))) (-653 |#4|) (-607 (-392 (-905 |#1|))) (-607 (-607 |#4|)) (-735) (-735) (-526))) (-15 -3063 (|#4| |#4|)) (-15 -3064 ((-111) (-607 |#4|))) (-15 -3064 ((-111) (-607 (-905 |#1|))))) +((-4193 (($ $ (-1041 (-211))) 70) (($ $ (-1041 (-211)) (-1041 (-211))) 71)) (-3196 (((-1041 (-211)) $) 44)) (-3197 (((-1041 (-211)) $) 43)) (-3088 (((-1041 (-211)) $) 45)) (-3069 (((-526) (-526)) 37)) (-3073 (((-526) (-526)) 33)) (-3071 (((-526) (-526)) 35)) (-3067 (((-111) (-111)) 39)) (-3070 (((-526)) 36)) (-3431 (($ $ (-1041 (-211))) 74) (($ $) 75)) (-3090 (($ (-1 (-902 (-211)) (-211)) (-1041 (-211))) 84) (($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 85)) (-3076 (($ (-1 (-211) (-211)) (-1041 (-211))) 92) (($ (-1 (-211) (-211))) 95)) (-3089 (($ (-1 (-211) (-211)) (-1041 (-211))) 79) (($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211))) 80) (($ (-607 (-1 (-211) (-211))) (-1041 (-211))) 87) (($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211))) 88) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211))) 81) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 82) (($ $ (-1041 (-211))) 76)) (-3075 (((-111) $) 40)) (-3066 (((-526)) 41)) (-3074 (((-526)) 32)) (-3072 (((-526)) 34)) (-3198 (((-607 (-607 (-902 (-211)))) $) 23)) (-3065 (((-111) (-111)) 42)) (-4274 (((-823) $) 106)) (-3068 (((-111)) 38))) +(((-884) (-13 (-914) (-10 -8 (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -3075 ((-111) $)) (-15 -4193 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3074 ((-526))) (-15 -3073 ((-526) (-526))) (-15 -3072 ((-526))) (-15 -3071 ((-526) (-526))) (-15 -3070 ((-526))) (-15 -3069 ((-526) (-526))) (-15 -3068 ((-111))) (-15 -3067 ((-111) (-111))) (-15 -3066 ((-526))) (-15 -3065 ((-111) (-111)))))) (T -884)) +((-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3090 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3076 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-884)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-4193 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-4193 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3431 (*1 *1 *1) (-5 *1 (-884))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) (-3074 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3072 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3070 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3068 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884)))) (-3066 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) +(-13 (-914) (-10 -8 (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)))) (-15 -3089 ($ (-607 (-1 (-211) (-211))) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3076 ($ (-1 (-211) (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -3075 ((-111) $)) (-15 -4193 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3074 ((-526))) (-15 -3073 ((-526) (-526))) (-15 -3072 ((-526))) (-15 -3071 ((-526) (-526))) (-15 -3070 ((-526))) (-15 -3069 ((-526) (-526))) (-15 -3068 ((-111))) (-15 -3067 ((-111) (-111))) (-15 -3066 ((-526))) (-15 -3065 ((-111) (-111))))) +((-3076 (((-884) |#1| (-1123)) 17) (((-884) |#1| (-1123) (-1041 (-211))) 21)) (-3089 (((-884) |#1| |#1| (-1123) (-1041 (-211))) 19) (((-884) |#1| (-1123) (-1041 (-211))) 15))) +(((-885 |#1|) (-10 -7 (-15 -3089 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3089 ((-884) |#1| |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123)))) (-584 (-515))) (T -885)) +((-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3089 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515))))) (-3089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515)))))) +(-10 -7 (-15 -3089 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3089 ((-884) |#1| |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123) (-1041 (-211)))) (-15 -3076 ((-884) |#1| (-1123)))) +((-4193 (($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 70)) (-3195 (((-1041 (-211)) $) 40)) (-3196 (((-1041 (-211)) $) 39)) (-3197 (((-1041 (-211)) $) 38)) (-3087 (((-607 (-607 (-211))) $) 43)) (-3088 (((-1041 (-211)) $) 41)) (-3081 (((-526) (-526)) 32)) (-3085 (((-526) (-526)) 28)) (-3083 (((-526) (-526)) 30)) (-3079 (((-111) (-111)) 35)) (-3082 (((-526)) 31)) (-3431 (($ $ (-1041 (-211))) 73) (($ $) 74)) (-3090 (($ (-1 (-902 (-211)) (-211)) (-1041 (-211))) 78) (($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 79)) (-3089 (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211))) 81) (($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211))) 82) (($ $ (-1041 (-211))) 76)) (-3078 (((-526)) 36)) (-3086 (((-526)) 27)) (-3084 (((-526)) 29)) (-3198 (((-607 (-607 (-902 (-211)))) $) 95)) (-3077 (((-111) (-111)) 37)) (-4274 (((-823) $) 94)) (-3080 (((-111)) 34))) +(((-886) (-13 (-933) (-10 -8 (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3087 ((-607 (-607 (-211))) $)) (-15 -3086 ((-526))) (-15 -3085 ((-526) (-526))) (-15 -3084 ((-526))) (-15 -3083 ((-526) (-526))) (-15 -3082 ((-526))) (-15 -3081 ((-526) (-526))) (-15 -3080 ((-111))) (-15 -3079 ((-111) (-111))) (-15 -3078 ((-526))) (-15 -3077 ((-111) (-111)))))) (T -886)) +((-3090 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3090 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-4193 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3431 (*1 *1 *1) (-5 *1 (-886))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-886)))) (-3086 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3084 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3082 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3080 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886)))) (-3078 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) +(-13 (-933) (-10 -8 (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)))) (-15 -3090 ($ (-1 (-902 (-211)) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)))) (-15 -3089 ($ (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1 (-211) (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3089 ($ $ (-1041 (-211)))) (-15 -4193 ($ $ (-1041 (-211)) (-1041 (-211)) (-1041 (-211)))) (-15 -3431 ($ $ (-1041 (-211)))) (-15 -3431 ($ $)) (-15 -3088 ((-1041 (-211)) $)) (-15 -3087 ((-607 (-607 (-211))) $)) (-15 -3086 ((-526))) (-15 -3085 ((-526) (-526))) (-15 -3084 ((-526))) (-15 -3083 ((-526) (-526))) (-15 -3082 ((-526))) (-15 -3081 ((-526) (-526))) (-15 -3080 ((-111))) (-15 -3079 ((-111) (-111))) (-15 -3078 ((-526))) (-15 -3077 ((-111) (-111))))) +((-3091 (((-607 (-1041 (-211))) (-607 (-607 (-902 (-211))))) 24))) +(((-887) (-10 -7 (-15 -3091 ((-607 (-1041 (-211))) (-607 (-607 (-902 (-211)))))))) (T -887)) +((-3091 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-1041 (-211)))) (-5 *1 (-887))))) +(-10 -7 (-15 -3091 ((-607 (-1041 (-211))) (-607 (-607 (-902 (-211))))))) +((-3093 (((-299 (-526)) (-1123)) 16)) (-3094 (((-299 (-526)) (-1123)) 14)) (-4268 (((-299 (-526)) (-1123)) 12)) (-3092 (((-299 (-526)) (-1123) (-1106)) 19))) +(((-888) (-10 -7 (-15 -3092 ((-299 (-526)) (-1123) (-1106))) (-15 -4268 ((-299 (-526)) (-1123))) (-15 -3093 ((-299 (-526)) (-1123))) (-15 -3094 ((-299 (-526)) (-1123))))) (T -888)) +((-3094 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1106)) (-5 *2 (-299 (-526))) (-5 *1 (-888))))) +(-10 -7 (-15 -3092 ((-299 (-526)) (-1123) (-1106))) (-15 -4268 ((-299 (-526)) (-1123))) (-15 -3093 ((-299 (-526)) (-1123))) (-15 -3094 ((-299 (-526)) (-1123)))) +((-3093 ((|#2| |#2|) 26)) (-3094 ((|#2| |#2|) 27)) (-4268 ((|#2| |#2|) 25)) (-3092 ((|#2| |#2| (-1106)) 24))) +(((-889 |#1| |#2|) (-10 -7 (-15 -3092 (|#2| |#2| (-1106))) (-15 -4268 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3094 (|#2| |#2|))) (-811) (-406 |#1|)) (T -889)) +((-3094 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-811)) (-5 *1 (-889 *4 *2)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3092 (|#2| |#2| (-1106))) (-15 -4268 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3094 (|#2| |#2|))) +((-3096 (((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)) 25)) (-3095 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3095 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -3096 ((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-845 |#1|) (-13 (-1052) (-995 |#2|))) (T -890)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-13 (-1052) (-995 *3))) (-4 *3 (-845 *5)) (-5 *1 (-890 *5 *3 *6)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1052) (-995 *5))) (-4 *5 (-845 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-890 *4 *5 *6))))) +(-10 -7 (-15 -3095 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -3096 ((-847 |#1| |#3|) |#2| (-849 |#1|) (-847 |#1| |#3|)))) +((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 30))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-13 (-533) (-811) (-845 |#1|)) (-13 (-406 |#2|) (-584 (-849 |#1|)) (-845 |#1|) (-995 (-581 $)))) (T -891)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-13 (-406 *6) (-584 *4) (-845 *5) (-995 (-581 $)))) (-5 *4 (-849 *5)) (-4 *6 (-13 (-533) (-811) (-845 *5))) (-5 *1 (-891 *5 *6 *3))))) +(-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) +((-3096 (((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)) 13))) +(((-892 |#1|) (-10 -7 (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)))) (-525)) (T -892)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 (-526) *3)) (-5 *4 (-849 (-526))) (-4 *3 (-525)) (-5 *1 (-892 *3))))) +(-10 -7 (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|)))) +((-3096 (((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)) 54))) +(((-893 |#1| |#2|) (-10 -7 (-15 -3096 ((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)))) (-1052) (-13 (-811) (-995 (-581 $)) (-584 (-849 |#1|)) (-845 |#1|))) (T -893)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *6)) (-5 *3 (-581 *6)) (-4 *5 (-1052)) (-4 *6 (-13 (-811) (-995 (-581 $)) (-584 *4) (-845 *5))) (-5 *4 (-849 *5)) (-5 *1 (-893 *5 *6))))) +(-10 -7 (-15 -3096 ((-847 |#1| |#2|) (-581 |#2|) (-849 |#1|) (-847 |#1| |#2|)))) +((-3096 (((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)) 15))) +(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)))) (-1052) (-845 |#1|) (-631 |#2|)) (T -894)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-844 *5 *6 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-4 *3 (-631 *6)) (-5 *1 (-894 *5 *6 *3))))) +(-10 -7 (-15 -3096 ((-844 |#1| |#2| |#3|) |#3| (-849 |#1|) (-844 |#1| |#2| |#3|)))) +((-3096 (((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|)) 17 (|has| |#3| (-845 |#1|))) (((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|))) 16))) +(((-895 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|)))) (IF (|has| |#3| (-845 |#1|)) (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|))) |%noBranch|)) (-1052) (-757) (-811) (-13 (-1004) (-811) (-845 |#1|)) (-13 (-909 |#4| |#2| |#3|) (-584 (-849 |#1|)))) (T -895)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-13 (-909 *8 *6 *7) (-584 *4))) (-5 *4 (-849 *5)) (-4 *7 (-845 *5)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-13 (-1004) (-811) (-845 *5))) (-5 *1 (-895 *5 *6 *7 *8 *3)))) (-3096 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-847 *6 *3) *8 (-849 *6) (-847 *6 *3))) (-4 *8 (-811)) (-5 *2 (-847 *6 *3)) (-5 *4 (-849 *6)) (-4 *6 (-1052)) (-4 *3 (-13 (-909 *9 *7 *8) (-584 *4))) (-4 *7 (-757)) (-4 *9 (-13 (-1004) (-811) (-845 *6))) (-5 *1 (-895 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|) (-1 (-847 |#1| |#5|) |#3| (-849 |#1|) (-847 |#1| |#5|)))) (IF (|has| |#3| (-845 |#1|)) (-15 -3096 ((-847 |#1| |#5|) |#5| (-849 |#1|) (-847 |#1| |#5|))) |%noBranch|)) +((-3522 (((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))) 18) (((-299 (-526)) (-1123) (-1 (-111) |#1|)) 15))) +(((-896 |#1|) (-10 -7 (-15 -3522 ((-299 (-526)) (-1123) (-1 (-111) |#1|))) (-15 -3522 ((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))))) (-1159)) (T -896)) +((-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1159)) (-5 *2 (-299 (-526))) (-5 *1 (-896 *5))))) +(-10 -7 (-15 -3522 ((-299 (-526)) (-1123) (-1 (-111) |#1|))) (-15 -3522 ((-299 (-526)) (-1123) (-607 (-1 (-111) |#1|))))) +((-3522 ((|#2| |#2| (-607 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) +(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -3522 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3522 (|#2| |#2| (-607 (-1 (-111) |#3|))))) (-811) (-406 |#1|) (-1159)) (T -897)) +((-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-4 *4 (-811)) (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1159)) (-4 *4 (-811)) (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4))))) +(-10 -7 (-15 -3522 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3522 (|#2| |#2| (-607 (-1 (-111) |#3|))))) +((-3096 (((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)) 25))) +(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-1052) (-13 (-533) (-845 |#1|) (-584 (-849 |#1|))) (-950 |#2|)) (T -898)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-950 *6)) (-4 *6 (-13 (-533) (-845 *5) (-584 *4))) (-5 *4 (-849 *5)) (-5 *1 (-898 *5 *6 *3))))) +(-10 -7 (-15 -3096 ((-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) +((-3096 (((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))) 17))) +(((-899 |#1|) (-10 -7 (-15 -3096 ((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))))) (-1052)) (T -899)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-847 *5 (-1123))) (-5 *3 (-1123)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *1 (-899 *5))))) +(-10 -7 (-15 -3096 ((-847 |#1| (-1123)) (-1123) (-849 |#1|) (-847 |#1| (-1123))))) +((-3097 (((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) 33)) (-3096 (((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))) 32))) +(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3096 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-15 -3097 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))))) (-1052) (-13 (-1004) (-811)) (-13 (-1004) (-584 (-849 |#1|)) (-995 |#2|))) (T -900)) +((-3097 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-849 *6))) (-5 *5 (-1 (-847 *6 *8) *8 (-849 *6) (-847 *6 *8))) (-4 *6 (-1052)) (-4 *8 (-13 (-1004) (-584 (-849 *6)) (-995 *7))) (-5 *2 (-847 *6 *8)) (-4 *7 (-13 (-1004) (-811))) (-5 *1 (-900 *6 *7 *8)))) (-3096 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-607 (-849 *7))) (-5 *5 (-1 *9 (-607 *9))) (-5 *6 (-1 (-847 *7 *9) *9 (-849 *7) (-847 *7 *9))) (-4 *7 (-1052)) (-4 *9 (-13 (-1004) (-584 (-849 *7)) (-995 *8))) (-5 *2 (-847 *7 *9)) (-5 *3 (-607 *9)) (-4 *8 (-13 (-1004) (-811))) (-5 *1 (-900 *7 *8 *9))))) +(-10 -7 (-15 -3096 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-1 |#3| (-607 |#3|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|)))) (-15 -3097 ((-847 |#1| |#3|) (-607 |#3|) (-607 (-849 |#1|)) (-847 |#1| |#3|) (-1 (-847 |#1| |#3|) |#3| (-849 |#1|) (-847 |#1| |#3|))))) +((-3105 (((-1117 (-392 (-526))) (-526)) 63)) (-3104 (((-1117 (-526)) (-526)) 66)) (-3653 (((-1117 (-526)) (-526)) 60)) (-3103 (((-526) (-1117 (-526))) 55)) (-3102 (((-1117 (-392 (-526))) (-526)) 49)) (-3101 (((-1117 (-526)) (-526)) 38)) (-3100 (((-1117 (-526)) (-526)) 68)) (-3099 (((-1117 (-526)) (-526)) 67)) (-3098 (((-1117 (-392 (-526))) (-526)) 51))) +(((-901) (-10 -7 (-15 -3098 ((-1117 (-392 (-526))) (-526))) (-15 -3099 ((-1117 (-526)) (-526))) (-15 -3100 ((-1117 (-526)) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -3102 ((-1117 (-392 (-526))) (-526))) (-15 -3103 ((-526) (-1117 (-526)))) (-15 -3653 ((-1117 (-526)) (-526))) (-15 -3104 ((-1117 (-526)) (-526))) (-15 -3105 ((-1117 (-392 (-526))) (-526))))) (T -901)) +((-3105 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3653 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-526)) (-5 *1 (-901)))) (-3102 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) +(-10 -7 (-15 -3098 ((-1117 (-392 (-526))) (-526))) (-15 -3099 ((-1117 (-526)) (-526))) (-15 -3100 ((-1117 (-526)) (-526))) (-15 -3101 ((-1117 (-526)) (-526))) (-15 -3102 ((-1117 (-392 (-526))) (-526))) (-15 -3103 ((-526) (-1117 (-526)))) (-15 -3653 ((-1117 (-526)) (-526))) (-15 -3104 ((-1117 (-526)) (-526))) (-15 -3105 ((-1117 (-392 (-526))) (-526)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 11 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-4028 (($ (-607 |#1|)) 13)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 8)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 10 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-4087 (($ $ (-607 |#1|)) 26)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 20) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-4230 (((-878) $) 16)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) 24)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515)))) (($ (-607 |#1|)) 17)) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) 14 (|has| $ (-6 -4310))))) +(((-902 |#1|) (-939 |#1|) (-1004)) (T -902)) +NIL +(-939 |#1|) +((-3108 (((-464 |#1| |#2|) (-905 |#2|)) 20)) (-3111 (((-233 |#1| |#2|) (-905 |#2|)) 33)) (-3109 (((-905 |#2|) (-464 |#1| |#2|)) 25)) (-3107 (((-233 |#1| |#2|) (-464 |#1| |#2|)) 55)) (-3110 (((-905 |#2|) (-233 |#1| |#2|)) 30)) (-3106 (((-464 |#1| |#2|) (-233 |#1| |#2|)) 46))) +(((-903 |#1| |#2|) (-10 -7 (-15 -3106 ((-464 |#1| |#2|) (-233 |#1| |#2|))) (-15 -3107 ((-233 |#1| |#2|) (-464 |#1| |#2|))) (-15 -3108 ((-464 |#1| |#2|) (-905 |#2|))) (-15 -3109 ((-905 |#2|) (-464 |#1| |#2|))) (-15 -3110 ((-905 |#2|) (-233 |#1| |#2|))) (-15 -3111 ((-233 |#1| |#2|) (-905 |#2|)))) (-607 (-1123)) (-1004)) (T -903)) +((-3111 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123))))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5))))) +(-10 -7 (-15 -3106 ((-464 |#1| |#2|) (-233 |#1| |#2|))) (-15 -3107 ((-233 |#1| |#2|) (-464 |#1| |#2|))) (-15 -3108 ((-464 |#1| |#2|) (-905 |#2|))) (-15 -3109 ((-905 |#2|) (-464 |#1| |#2|))) (-15 -3110 ((-905 |#2|) (-233 |#1| |#2|))) (-15 -3111 ((-233 |#1| |#2|) (-905 |#2|)))) +((-3112 (((-607 |#2|) |#2| |#2|) 10)) (-3115 (((-735) (-607 |#1|)) 37 (|has| |#1| (-809)))) (-3113 (((-607 |#2|) |#2|) 11)) (-3116 (((-735) (-607 |#1|) (-526) (-526)) 39 (|has| |#1| (-809)))) (-3114 ((|#1| |#2|) 32 (|has| |#1| (-809))))) +(((-904 |#1| |#2|) (-10 -7 (-15 -3112 ((-607 |#2|) |#2| |#2|)) (-15 -3113 ((-607 |#2|) |#2|)) (IF (|has| |#1| (-809)) (PROGN (-15 -3114 (|#1| |#2|)) (-15 -3115 ((-735) (-607 |#1|))) (-15 -3116 ((-735) (-607 |#1|) (-526) (-526)))) |%noBranch|)) (-348) (-1181 |#1|)) (T -904)) +((-3116 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-526)) (-4 *5 (-809)) (-4 *5 (-348)) (-5 *2 (-735)) (-5 *1 (-904 *5 *6)) (-4 *6 (-1181 *5)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-809)) (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-904 *4 *5)) (-4 *5 (-1181 *4)))) (-3114 (*1 *2 *3) (-12 (-4 *2 (-348)) (-4 *2 (-809)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1181 *2)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1181 *4)))) (-3112 (*1 *2 *3 *3) (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -3112 ((-607 |#2|) |#2| |#2|)) (-15 -3113 ((-607 |#2|) |#2|)) (IF (|has| |#1| (-809)) (PROGN (-15 -3114 (|#1| |#2|)) (-15 -3115 ((-735) (-607 |#1|))) (-15 -3116 ((-735) (-607 |#1|) (-526) (-526)))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) 16)) (-3386 (((-1117 $) $ (-1123)) 21) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1123))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 8) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1123) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1123) $) NIL)) (-4075 (($ $ $ (-1123)) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1123)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-1123)) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1123) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1123) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-1123)) NIL) (($ (-1117 $) (-1123)) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1123)) NIL)) (-3120 (((-512 (-1123)) $) NIL) (((-735) $ (-1123)) NIL) (((-607 (-735)) $ (-607 (-1123))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-1123)) (-512 (-1123))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3385 (((-3 (-1123) #3="failed") $) 19)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1123)) (|:| -2462 (-735))) #3#) $) NIL)) (-4131 (($ $ (-1123)) 29 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1123) |#1|) NIL) (($ $ (-607 (-1123)) (-607 |#1|)) NIL) (($ $ (-1123) $) NIL) (($ $ (-607 (-1123)) (-607 $)) NIL)) (-4076 (($ $ (-1123)) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4264 (((-512 (-1123)) $) NIL) (((-735) $ (-1123)) NIL) (((-607 (-735)) $ (-607 (-1123))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1123) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1123) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1123) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1123)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 25) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1123)) 27) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-905 |#1|) (-13 (-909 |#1| (-512 (-1123)) (-1123)) (-10 -8 (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1123))) |%noBranch|))) (-1004)) (T -905)) +((-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004))))) +(-13 (-909 |#1| (-512 (-1123)) (-1123)) (-10 -8 (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1123))) |%noBranch|))) +((-4275 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) +(((-906 |#1| |#2|) (-10 -7 (-15 -4275 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1004) (-1004)) (T -906)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-905 *6)) (-5 *1 (-906 *5 *6))))) +(-10 -7 (-15 -4275 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) +((-3386 (((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)) 18))) +(((-907 |#1| |#2|) (-10 -7 (-15 -3386 ((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)))) (-1123) (-1004)) (T -907)) +((-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-1202 *5)) (-14 *5 (-1123)) (-4 *6 (-1004)) (-5 *2 (-1174 *5 (-905 *6))) (-5 *1 (-907 *5 *6)) (-5 *3 (-905 *6))))) +(-10 -7 (-15 -3386 ((-1174 |#1| (-905 |#2|)) (-905 |#2|) (-1202 |#1|)))) +((-3119 (((-735) $) 71) (((-735) $ (-607 |#4|)) 74)) (-4093 (($ $) 173)) (-4286 (((-390 $) $) 165)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 116)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL) (((-3 (-526) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL) ((|#4| $) 59)) (-4075 (($ $ $ |#4|) 76)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 106) (((-653 |#2|) (-653 $)) 99)) (-3817 (($ $) 180) (($ $ |#4|) 183)) (-3118 (((-607 $) $) 63)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 199) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 192)) (-3121 (((-607 $) $) 28)) (-3193 (($ |#2| |#3|) NIL) (($ $ |#4| (-735)) NIL) (($ $ (-607 |#4|) (-607 (-735))) 57)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#4|) 162)) (-3123 (((-3 (-607 $) "failed") $) 42)) (-3122 (((-3 (-607 $) "failed") $) 31)) (-3124 (((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") $) 47)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 109)) (-3005 (((-390 (-1117 $)) (-1117 $)) 122)) (-3006 (((-390 (-1117 $)) (-1117 $)) 120)) (-4051 (((-390 $) $) 140)) (-4086 (($ $ (-607 (-278 $))) 21) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-607 |#4|) (-607 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-607 |#4|) (-607 $)) NIL)) (-4076 (($ $ |#4|) 78)) (-4287 (((-849 (-363)) $) 213) (((-849 (-526)) $) 206) (((-515) $) 221)) (-3117 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 154)) (-3999 ((|#2| $ |#3|) NIL) (($ $ |#4| (-735)) 52) (($ $ (-607 |#4|) (-607 (-735))) 55)) (-3002 (((-3 $ #1#) $) 156)) (-2985 (((-111) $ $) 186))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3002 ((-3 |#1| #1="failed") |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) #1#) (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3003 ((-3 (-1205 |#1|) #1#) (-653 |#1|))) (-15 -3817 (|#1| |#1| |#4|)) (-15 -3117 (|#1| |#1| |#4|)) (-15 -4076 (|#1| |#1| |#4|)) (-15 -4075 (|#1| |#1| |#1| |#4|)) (-15 -3118 ((-607 |#1|) |#1|)) (-15 -3119 ((-735) |#1| (-607 |#4|))) (-15 -3119 ((-735) |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3193 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3193 (|#1| |#1| |#4| (-735))) (-15 -4081 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3121 ((-607 |#1|) |#1|)) (-15 -3999 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3999 (|#1| |#1| |#4| (-735))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #2="failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -3193 (|#1| |#2| |#3|)) (-15 -3999 (|#2| |#1| |#3|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #2#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #2#) |#1|)) (-15 -3470 ((-3 |#2| #2#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3817 (|#1| |#1|))) (-909 |#2| |#3| |#4|) (-1004) (-757) (-811)) (T -908)) +NIL +(-10 -8 (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3002 ((-3 |#1| #1="failed") |#1|)) (-15 -2985 ((-111) |#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) #1#) (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3003 ((-3 (-1205 |#1|) #1#) (-653 |#1|))) (-15 -3817 (|#1| |#1| |#4|)) (-15 -3117 (|#1| |#1| |#4|)) (-15 -4076 (|#1| |#1| |#4|)) (-15 -4075 (|#1| |#1| |#1| |#4|)) (-15 -3118 ((-607 |#1|) |#1|)) (-15 -3119 ((-735) |#1| (-607 |#4|))) (-15 -3119 ((-735) |#1|)) (-15 -3124 ((-3 (-2 (|:| |var| |#4|) (|:| -2462 (-735))) "failed") |#1|)) (-15 -3123 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3122 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -3193 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3193 (|#1| |#1| |#4| (-735))) (-15 -4081 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3121 ((-607 |#1|) |#1|)) (-15 -3999 (|#1| |#1| (-607 |#4|) (-607 (-735)))) (-15 -3999 (|#1| |#1| |#4| (-735))) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #2="failed") |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#4| |#1|)) (-15 -4086 (|#1| |#1| (-607 |#4|) (-607 |#2|))) (-15 -4086 (|#1| |#1| |#4| |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -3193 (|#1| |#2| |#3|)) (-15 -3999 (|#2| |#1| |#3|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #2#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #2#) |#1|)) (-15 -3470 ((-3 |#2| #2#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3817 (|#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133)) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| |#2| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#2|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3120 ((|#2| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#2| |#2|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-3385 (((-3 |#3| "failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-3123 (((-3 (-607 $) "failed") $) 112)) (-3122 (((-3 (-607 $) "failed") $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) "failed") $) 111)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136)) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37)) (-4264 ((|#2| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-533))) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#2|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ "failed") $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-909 |#1| |#2| |#3|) (-134) (-1004) (-757) (-811)) (T -909)) +((-3817 (*1 *1 *1) (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-735)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-735))))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *2 (-811)))) (-3999 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3386 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-1117 *3)))) (-3385 (*1 *2 *1) (|partial| -12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3120 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-735)))) (-3120 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-735))))) (-4081 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-909 *4 *5 *3)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) (-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *4)) (-4 *4 (-1004)) (-4 *1 (-909 *4 *5 *3)) (-4 *5 (-757)) (-4 *3 (-811)))) (-3387 (*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)))) (-3122 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3123 (*1 *2 *1) (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-735)))))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-735)))) (-3119 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *5)))) (-3118 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) (-4075 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-163)))) (-4076 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-163)))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-436)))) (-3817 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *3 (-436)))) (-4093 (*1 *1 *1) (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-4286 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-390 *1)) (-4 *1 (-909 *3 *4 *5))))) +(-13 (-859 |t#3|) (-311 |t#1| |t#2|) (-294 $) (-496 |t#3| |t#1|) (-496 |t#3| $) (-995 |t#3|) (-362 |t#1|) (-10 -8 (-15 -4264 ((-735) $ |t#3|)) (-15 -4264 ((-607 (-735)) $ (-607 |t#3|))) (-15 -3999 ($ $ |t#3| (-735))) (-15 -3999 ($ $ (-607 |t#3|) (-607 (-735)))) (-15 -3121 ((-607 $) $)) (-15 -3386 ((-1117 $) $ |t#3|)) (-15 -3386 ((-1117 |t#1|) $)) (-15 -3385 ((-3 |t#3| "failed") $)) (-15 -3120 ((-735) $ |t#3|)) (-15 -3120 ((-607 (-735)) $ (-607 |t#3|))) (-15 -4081 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |t#3|)) (-15 -3193 ($ $ |t#3| (-735))) (-15 -3193 ($ $ (-607 |t#3|) (-607 (-735)))) (-15 -3387 ($ (-1117 |t#1|) |t#3|)) (-15 -3387 ($ (-1117 $) |t#3|)) (-15 -3122 ((-3 (-607 $) "failed") $)) (-15 -3123 ((-3 (-607 $) "failed") $)) (-15 -3124 ((-3 (-2 (|:| |var| |t#3|) (|:| -2462 (-735))) "failed") $)) (-15 -3119 ((-735) $)) (-15 -3119 ((-735) $ (-607 |t#3|))) (-15 -3384 ((-607 |t#3|) $)) (-15 -3118 ((-607 $) $)) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (IF (|has| |t#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-526)))) (IF (|has| |t#3| (-584 (-849 (-526)))) (-6 (-584 (-849 (-526)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-584 (-849 (-363)))) (IF (|has| |t#3| (-584 (-849 (-363)))) (-6 (-584 (-849 (-363)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845 (-526))) (IF (|has| |t#3| (-845 (-526))) (-6 (-845 (-526))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845 (-363))) (IF (|has| |t#3| (-845 (-363))) (-6 (-845 (-363))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4075 ($ $ $ |t#3|)) (-15 -4076 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-6 (-436)) (-15 -3117 ($ $ |t#3|)) (-15 -3817 ($ $)) (-15 -3817 ($ $ |t#3|)) (-15 -4286 ((-390 $) $)) (-15 -4093 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4308)) (-6 -4308) |%noBranch|) (IF (|has| |t#1| (-869)) (-6 (-869)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) +((-3384 (((-607 |#2|) |#5|) 36)) (-3386 (((-1117 |#5|) |#5| |#2| (-1117 |#5|)) 23) (((-392 (-1117 |#5|)) |#5| |#2|) 16)) (-3387 ((|#5| (-392 (-1117 |#5|)) |#2|) 30)) (-3385 (((-3 |#2| "failed") |#5|) 65)) (-3123 (((-3 (-607 |#5|) "failed") |#5|) 59)) (-3125 (((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|) 47)) (-3122 (((-3 (-607 |#5|) "failed") |#5|) 61)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|) 51))) +(((-910 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3384 ((-607 |#2|) |#5|)) (-15 -3385 ((-3 |#2| "failed") |#5|)) (-15 -3386 ((-392 (-1117 |#5|)) |#5| |#2|)) (-15 -3387 (|#5| (-392 (-1117 |#5|)) |#2|)) (-15 -3386 ((-1117 |#5|) |#5| |#2| (-1117 |#5|))) (-15 -3122 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3123 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3124 ((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|)) (-15 -3125 ((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|) (-13 (-348) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $))))) (T -910)) +((-3125 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2462 (-526)))) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3124 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-526)))) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3123 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3122 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) (-4 *7 (-909 *6 *5 *4)) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-5 *1 (-910 *5 *4 *6 *7 *3)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-1117 *2))) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *2 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) (-5 *1 (-910 *5 *4 *6 *7 *2)) (-4 *7 (-909 *6 *5 *4)))) (-3386 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-392 (-1117 *3))) (-5 *1 (-910 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) (-3385 (*1 *2 *3) (|partial| -12 (-4 *4 (-757)) (-4 *5 (-1004)) (-4 *6 (-909 *5 *4 *2)) (-4 *2 (-811)) (-5 *1 (-910 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *6)) (-15 -3298 (*6 $)) (-15 -3297 (*6 $))))))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *5)) (-5 *1 (-910 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-348) (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(-10 -7 (-15 -3384 ((-607 |#2|) |#5|)) (-15 -3385 ((-3 |#2| "failed") |#5|)) (-15 -3386 ((-392 (-1117 |#5|)) |#5| |#2|)) (-15 -3387 (|#5| (-392 (-1117 |#5|)) |#2|)) (-15 -3386 ((-1117 |#5|) |#5| |#2| (-1117 |#5|))) (-15 -3122 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3123 ((-3 (-607 |#5|) "failed") |#5|)) (-15 -3124 ((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-526))) "failed") |#5|)) (-15 -3125 ((-3 (-2 (|:| |val| |#5|) (|:| -2462 (-526))) "failed") |#5|))) +((-4275 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4275 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-757) (-811) (-1004) (-909 |#3| |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) (T -911)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) (-4 *6 (-757)) (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) (-5 *1 (-911 *6 *7 *8 *5 *2)) (-4 *5 (-909 *8 *6 *7))))) +(-10 -7 (-15 -4275 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3126 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735)) 38)) (-3127 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735)) 34)) (-3129 (((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)) 54)) (-3128 (((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735)) 64 (|has| |#3| (-436))))) +(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3126 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735))) (-15 -3127 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735))) (IF (|has| |#3| (-436)) (-15 -3128 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735))) |%noBranch|) (-15 -3129 ((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)))) (-757) (-811) (-533) (-909 |#3| |#1| |#2|) (-13 (-348) (-10 -8 (-15 -3298 (|#4| $)) (-15 -3297 (|#4| $)) (-15 -4274 ($ |#4|))))) (T -912)) +((-3129 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *3 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| (-607 *3)))) (-5 *1 (-912 *5 *6 *7 *3 *8)) (-5 *4 (-735)) (-4 *8 (-13 (-348) (-10 -8 (-15 -3298 (*3 $)) (-15 -3297 (*3 $)) (-15 -4274 ($ *3))))))) (-3128 (*1 *2 *3 *4) (-12 (-4 *7 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *8 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *3))) (-5 *1 (-912 *5 *6 *7 *8 *3)) (-5 *4 (-735)) (-4 *3 (-13 (-348) (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8))))))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-526))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *8 (-909 *7 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *9) (|:| |radicand| *9))) (-5 *1 (-912 *5 *6 *7 *8 *9)) (-5 *4 (-735)) (-4 *9 (-13 (-348) (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8))))))) (-3126 (*1 *2 *3 *4) (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-533)) (-4 *7 (-909 *3 *5 *6)) (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *8) (|:| |radicand| *8))) (-5 *1 (-912 *5 *6 *3 *7 *8)) (-5 *4 (-735)) (-4 *8 (-13 (-348) (-10 -8 (-15 -3298 (*7 $)) (-15 -3297 (*7 $)) (-15 -4274 ($ *7)))))))) +(-10 -7 (-15 -3126 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#3| (-735))) (-15 -3127 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) (-392 (-526)) (-735))) (IF (|has| |#3| (-436)) (-15 -3128 ((-2 (|:| -2462 (-735)) (|:| -4270 |#5|) (|:| |radicand| |#5|)) |#5| (-735))) |%noBranch|) (-15 -3129 ((-2 (|:| -2462 (-735)) (|:| -4270 |#4|) (|:| |radicand| (-607 |#4|))) |#4| (-735)))) +((-2865 (((-111) $ $) NIL)) (-3130 (($ (-1070)) 8)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 14) (((-1070) $) 11)) (-3353 (((-111) $ $) 10))) +(((-913) (-13 (-1052) (-583 (-1070)) (-10 -8 (-15 -3130 ($ (-1070)))))) (T -913)) +((-3130 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-913))))) +(-13 (-1052) (-583 (-1070)) (-10 -8 (-15 -3130 ($ (-1070))))) +((-3196 (((-1041 (-211)) $) 8)) (-3197 (((-1041 (-211)) $) 9)) (-3198 (((-607 (-607 (-902 (-211)))) $) 10)) (-4274 (((-823) $) 6))) +(((-914) (-134)) (T -914)) +((-3198 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-607 (-607 (-902 (-211))))))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211)))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3198 ((-607 (-607 (-902 (-211)))) $)) (-15 -3197 ((-1041 (-211)) $)) (-15 -3196 ((-1041 (-211)) $)))) +(((-583 (-823)) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 61 (|has| |#1| (-533)))) (-2151 (($ $) 62 (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 28)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) 24)) (-3781 (((-3 $ "failed") $) 35)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-1697 (($ $ |#1| |#2| $) 48)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 16)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| |#2|) NIL)) (-3120 ((|#2| $) 19)) (-1698 (($ (-1 |#2| |#2|) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3194 (($ $) 23)) (-3487 ((|#1| $) 21)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 40)) (-1891 ((|#1| $) NIL)) (-4057 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-533))))) (-3780 (((-3 $ "failed") $ $) 74 (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-533)))) (-4264 ((|#2| $) 17)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) 39) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 34) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ |#2|) 31)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 15)) (-1696 (($ $ $ (-735)) 57 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 67 (|has| |#1| (-533)))) (-2957 (($) 22 T CONST)) (-2964 (($) 12 T CONST)) (-3353 (((-111) $ $) 66)) (-4265 (($ $ |#1|) 75 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) 54) (($ $ (-735)) 52)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-915 |#1| |#2|) (-13 (-311 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| |#2| (-129)) (-15 -4057 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004) (-756)) (T -915)) +((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-915 *3 *2)) (-4 *2 (-129)) (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *2 (-756))))) +(-13 (-311 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| |#2| (-129)) (-15 -4057 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) +((-3131 (((-3 (-653 |#1|) "failed") |#2| (-878)) 15))) +(((-916 |#1| |#2|) (-10 -7 (-15 -3131 ((-3 (-653 |#1|) "failed") |#2| (-878)))) (-533) (-623 |#1|)) (T -916)) +((-3131 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-878)) (-4 *5 (-533)) (-5 *2 (-653 *5)) (-5 *1 (-916 *5 *3)) (-4 *3 (-623 *5))))) +(-10 -7 (-15 -3131 ((-3 (-653 |#1|) "failed") |#2| (-878)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) 16 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 15 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 13)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) |#1|) 12)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) 10 (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) 17 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) 11)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) 14) (($ $ (-1172 (-526))) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) NIL)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4273 (((-735) $) 8 (|has| $ (-6 -4310))))) +(((-917 |#1|) (-19 |#1|) (-1159)) (T -917)) NIL (-19 |#1|) -((-1509 (($ $ (-1038 $)) 7) (($ $ (-1117)) 6))) -(((-912) (-134)) (T -912)) -((-1509 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-912)))) (-1509 (*1 *1 *1 *2) (-12 (-4 *1 (-912)) (-5 *2 (-1117))))) -(-13 (-10 -8 (-15 -1509 ($ $ (-1117))) (-15 -1509 ($ $ (-1038 $))))) -((-4145 (((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)) 25) (((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117))) 26) (((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117)) 43))) -(((-913 |#1|) (-10 -7 (-15 -4145 ((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)))) (-13 (-347) (-141))) (T -913)) -((-4145 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-5 *5 (-1117)) (-4 *6 (-13 (-347) (-141))) (-5 *2 (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *6))) (|:| |prim| (-1113 *6)))) (-5 *1 (-913 *6)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-347) (-141))) (-5 *2 (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *5))) (|:| |prim| (-1113 *5)))) (-5 *1 (-913 *5)))) (-4145 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-347) (-141))) (-5 *2 (-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 *5)))) (-5 *1 (-913 *5))))) -(-10 -7 (-15 -4145 ((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)))) -((-2587 (((-606 |#1|) |#1| |#1|) 42)) (-2639 (((-111) |#1|) 39)) (-1528 ((|#1| |#1|) 65)) (-1739 ((|#1| |#1|) 64))) -(((-914 |#1|) (-10 -7 (-15 -2639 ((-111) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2587 ((-606 |#1|) |#1| |#1|))) (-522)) (T -914)) -((-2587 (*1 *2 *3 *3) (-12 (-5 *2 (-606 *3)) (-5 *1 (-914 *3)) (-4 *3 (-522)))) (-1528 (*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522)))) (-1739 (*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522)))) (-2639 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-914 *3)) (-4 *3 (-522))))) -(-10 -7 (-15 -2639 ((-111) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2587 ((-606 |#1|) |#1| |#1|))) -((-1302 (((-1205) (-816)) 9))) -(((-915) (-10 -7 (-15 -1302 ((-1205) (-816))))) (T -915)) -((-1302 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-915))))) -(-10 -7 (-15 -1302 ((-1205) (-816)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 61 (|has| |#1| (-529)))) (-3377 (($ $) 62 (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 28)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) 24)) (-3490 (((-3 $ "failed") $) 35)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3240 (($ $ |#1| |#2| $) 48)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 16)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1883 ((|#2| $) 19)) (-2199 (($ (-1 |#2| |#2|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3901 (($ $) 23)) (-3912 ((|#1| $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 40)) (-3890 ((|#1| $) NIL)) (-3148 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-529))))) (-3515 (((-3 $ "failed") $ $) 74 (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-529)))) (-2872 ((|#2| $) 17)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) 39) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 34) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ |#2|) 31)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 15)) (-1345 (($ $ $ (-731)) 57 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 67 (|has| |#1| (-529)))) (-2928 (($) 22 T CONST)) (-2943 (($) 12 T CONST)) (-2244 (((-111) $ $) 66)) (-2340 (($ $ |#1|) 75 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 54) (($ $ (-731)) 52)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-916 |#1| |#2|) (-13 (-310 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| |#2| (-129)) (-15 -3148 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998) (-752)) (T -916)) -((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-916 *3 *2)) (-4 *2 (-129)) (-4 *3 (-529)) (-4 *3 (-998)) (-4 *2 (-752))))) -(-13 (-310 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| |#2| (-129)) (-15 -3148 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (-2169 (($ $ $) 63 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (-3418 (((-3 $ "failed") $ $) 50 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (-3151 (((-731)) 34 (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2101 ((|#2| $) 21)) (-3796 ((|#1| $) 20)) (-3832 (($) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) CONST)) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (-1618 (($) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (-2444 (($ $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2135 (($ |#1| |#2|) 19)) (-2334 (((-874) $) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 37 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2009 (($ (-874)) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2528 (((-1064) $) NIL)) (-1978 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-1674 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2341 (((-816) $) 14)) (-2928 (($) 40 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) CONST)) (-2943 (($) 24 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) CONST)) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2244 (((-111) $ $) 18)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2263 (((-111) $ $) 66 (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2340 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2329 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2318 (($ $ $) 43 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (** (($ $ (-537)) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456)))) (($ $ (-731)) 31 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (* (($ (-537) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-731) $) 46 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (($ (-874) $) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (($ $ $) 27 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))))))) -(((-917 |#1| |#2|) (-13 (-1045) (-10 -8 (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-687)) (IF (|has| |#2| (-687)) (-6 (-687)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-456)) (-6 (-456)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-753)) (IF (|has| |#2| (-753)) (-6 (-753)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-807)) (IF (|has| |#2| (-807)) (-6 (-807)) |%noBranch|) |%noBranch|) (-15 -2135 ($ |#1| |#2|)) (-15 -3796 (|#1| $)) (-15 -2101 (|#2| $)))) (-1045) (-1045)) (T -917)) -((-2135 (*1 *1 *2 *3) (-12 (-5 *1 (-917 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1045)))) (-2101 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-917 *3 *2)) (-4 *3 (-1045))))) -(-13 (-1045) (-10 -8 (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-687)) (IF (|has| |#2| (-687)) (-6 (-687)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-456)) (-6 (-456)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-753)) (IF (|has| |#2| (-753)) (-6 (-753)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-807)) (IF (|has| |#2| (-807)) (-6 (-807)) |%noBranch|) |%noBranch|) (-15 -2135 ($ |#1| |#2|)) (-15 -3796 (|#1| $)) (-15 -2101 (|#2| $)))) -((-3619 (((-1049) $) 12)) (-1507 (($ (-1117) (-1049)) 13)) (-3923 (((-1117) $) 10)) (-2341 (((-816) $) 22))) -(((-918) (-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3619 ((-1049) $)) (-15 -1507 ($ (-1117) (-1049)))))) (T -918)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-918)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-918)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-918))))) -(-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3619 ((-1049) $)) (-15 -1507 ($ (-1117) (-1049))))) -((-3757 (((-1047 (-1117)) $) 19)) (-3263 (((-111) $) 26)) (-1890 (((-1117) $) 27)) (-2866 (((-111) $) 24)) (-4180 ((|#1| $) 25)) (-1565 (((-826 $ $) $) 34)) (-2556 (((-111) $) 33)) (-2681 (($ $ $) 12)) (-2831 (($ $) 29)) (-2966 (((-111) $) 28)) (-3679 (($ $) 10)) (-2492 (((-826 $ $) $) 36)) (-4211 (((-111) $) 35)) (-1408 (($ $ $) 13)) (-2575 (((-826 $ $) $) 38)) (-2535 (((-111) $) 37)) (-4058 (($ $ $) 14)) (-2341 (($ |#1|) 7) (($ (-1117)) 9) (((-816) $) 40 (|has| |#1| (-579 (-816))))) (-3205 (((-826 $ $) $) 32)) (-2572 (((-111) $) 30)) (-3319 (($ $ $) 11))) -(((-919 |#1|) (-13 (-920) (-10 -8 (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-1117))) (-15 -3757 ((-1047 (-1117)) $)) (-15 -2866 ((-111) $)) (-15 -4180 (|#1| $)) (-15 -3263 ((-111) $)) (-15 -1890 ((-1117) $)) (-15 -2966 ((-111) $)) (-15 -2831 ($ $)) (-15 -2572 ((-111) $)) (-15 -3205 ((-826 $ $) $)) (-15 -2556 ((-111) $)) (-15 -1565 ((-826 $ $) $)) (-15 -4211 ((-111) $)) (-15 -2492 ((-826 $ $) $)) (-15 -2535 ((-111) $)) (-15 -2575 ((-826 $ $) $)))) (-920)) (T -919)) -((-2341 (*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1047 (-1117))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-4180 (*1 *2 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2831 (*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(-13 (-920) (-10 -8 (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-1117))) (-15 -3757 ((-1047 (-1117)) $)) (-15 -2866 ((-111) $)) (-15 -4180 (|#1| $)) (-15 -3263 ((-111) $)) (-15 -1890 ((-1117) $)) (-15 -2966 ((-111) $)) (-15 -2831 ($ $)) (-15 -2572 ((-111) $)) (-15 -3205 ((-826 $ $) $)) (-15 -2556 ((-111) $)) (-15 -1565 ((-826 $ $) $)) (-15 -4211 ((-111) $)) (-15 -2492 ((-826 $ $) $)) (-15 -2535 ((-111) $)) (-15 -2575 ((-826 $ $) $)))) -((-2681 (($ $ $) 8)) (-3679 (($ $) 6)) (-1408 (($ $ $) 9)) (-4058 (($ $ $) 10)) (-3319 (($ $ $) 7))) -(((-920) (-134)) (T -920)) -((-4058 (*1 *1 *1 *1) (-4 *1 (-920))) (-1408 (*1 *1 *1 *1) (-4 *1 (-920))) (-2681 (*1 *1 *1 *1) (-4 *1 (-920))) (-3319 (*1 *1 *1 *1) (-4 *1 (-920))) (-3679 (*1 *1 *1) (-4 *1 (-920)))) -(-13 (-10 -8 (-15 -3679 ($ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -1408 ($ $ $)) (-15 -4058 ($ $ $)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1646 (($ $ $) 43)) (-1470 (($ $ $) 44)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 45)) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-921 |#1|) (-134) (-807)) (T -921)) -((-3889 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) (-1646 (*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -3889 (|t#1| $)) (-15 -1470 ($ $ $)) (-15 -1646 ($ $ $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-1488 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 85)) (-1841 ((|#2| |#2| |#2|) 83)) (-3673 (((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 87)) (-1392 (((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 89)) (-1998 (((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 107 (|has| |#1| (-435)))) (-4076 (((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 46)) (-3473 (((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 64)) (-1287 (((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 66)) (-4214 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1445 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 71)) (-2252 (((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|) 97)) (-2474 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 74)) (-2251 (((-606 (-731)) |#2| |#2|) 82)) (-2061 ((|#1| |#2| |#2|) 42)) (-3646 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 105 (|has| |#1| (-435)))) (-2495 ((|#1| |#2| |#2|) 103 (|has| |#1| (-435)))) (-3245 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 44)) (-2349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 63)) (-4086 ((|#1| |#2| |#2|) 61)) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|) 35)) (-1307 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3134 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1842 ((|#2| |#2| |#2|) 75)) (-1500 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 69)) (-3072 ((|#2| |#2| |#2| (-731)) 67)) (-2211 ((|#2| |#2| |#2|) 111 (|has| |#1| (-435)))) (-3515 (((-1200 |#2|) (-1200 |#2|) |#1|) 21)) (-3998 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|) 39)) (-3071 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|) 95)) (-2067 ((|#1| |#2|) 92)) (-2949 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 73)) (-3672 ((|#2| |#2| |#2| (-731)) 72)) (-1258 (((-606 |#2|) |#2| |#2|) 80)) (-2797 ((|#2| |#2| |#1| |#1| (-731)) 50)) (-3095 ((|#1| |#1| |#1| (-731)) 49)) (* (((-1200 |#2|) |#1| (-1200 |#2|)) 16))) -(((-922 |#1| |#2|) (-10 -7 (-15 -4086 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -1287 ((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2| (-731))) (-15 -1500 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -3672 (|#2| |#2| |#2| (-731))) (-15 -2949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1842 (|#2| |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4214 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -3673 ((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -2067 (|#1| |#2|)) (-15 -3071 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -1258 ((-606 |#2|) |#2| |#2|)) (-15 -2251 ((-606 (-731)) |#2| |#2|)) (IF (|has| |#1| (-435)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1200 |#2|) |#1| (-1200 |#2|))) (-15 -3515 ((-1200 |#2|) (-1200 |#2|) |#1|)) (-15 -3293 ((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3998 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3095 (|#1| |#1| |#1| (-731))) (-15 -2797 (|#2| |#2| |#1| |#1| (-731))) (-15 -1307 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2061 (|#1| |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|))) (-529) (-1176 |#1|)) (T -922)) -((-4076 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2061 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-1307 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-2797 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-3095 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *2 (-529)) (-5 *1 (-922 *2 *4)) (-4 *4 (-1176 *2)))) (-3998 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3293 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3449 *4) (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) (-5 *1 (-922 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) (-5 *1 (-922 *3 *4)))) (-2211 (*1 *2 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-1998 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3646 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-4 *2 (-435)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-2251 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-731))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1258 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2067 (*1 *2 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1488 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1841 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-4214 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3134 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1842 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-2474 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-2949 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-3672 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) (-4 *2 (-1176 *4)))) (-1445 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-3072 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) (-4 *2 (-1176 *4)))) (-1287 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3473 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-4086 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2))))) -(-10 -7 (-15 -4086 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -1287 ((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2| (-731))) (-15 -1500 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -3672 (|#2| |#2| |#2| (-731))) (-15 -2949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1842 (|#2| |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4214 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -3673 ((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -2067 (|#1| |#2|)) (-15 -3071 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -1258 ((-606 |#2|) |#2| |#2|)) (-15 -2251 ((-606 (-731)) |#2| |#2|)) (IF (|has| |#1| (-435)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1200 |#2|) |#1| (-1200 |#2|))) (-15 -3515 ((-1200 |#2|) (-1200 |#2|) |#1|)) (-15 -3293 ((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3998 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3095 (|#1| |#1| |#1| (-731))) (-15 -2797 (|#2| |#2| |#1| |#1| (-731))) (-15 -1307 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2061 (|#1| |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|))) -((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-923) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $))))) (T -923)) -((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-923)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-923))))) -(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) 27)) (-3832 (($) NIL T CONST)) (-1459 (((-606 (-606 (-537))) (-606 (-537))) 29)) (-2588 (((-537) $) 45)) (-3211 (($ (-606 (-537))) 17)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3996 (((-606 (-537)) $) 12)) (-1978 (($ $) 32)) (-2341 (((-816) $) 43) (((-606 (-537)) $) 10)) (-2928 (($) 7 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 19)) (-2318 (($ $ $) 21)) (* (($ (-874) $) NIL) (($ (-731) $) 25))) -(((-924) (-13 (-755) (-580 (-606 (-537))) (-10 -8 (-15 -3211 ($ (-606 (-537)))) (-15 -1459 ((-606 (-606 (-537))) (-606 (-537)))) (-15 -2588 ((-537) $)) (-15 -1978 ($ $)) (-15 -2341 ((-606 (-537)) $))))) (T -924)) -((-3211 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924)))) (-1459 (*1 *2 *3) (-12 (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-924)) (-5 *3 (-606 (-537))))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-924)))) (-1978 (*1 *1 *1) (-5 *1 (-924))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924))))) -(-13 (-755) (-580 (-606 (-537))) (-10 -8 (-15 -3211 ($ (-606 (-537)))) (-15 -1459 ((-606 (-606 (-537))) (-606 (-537)))) (-15 -2588 ((-537) $)) (-15 -1978 ($ $)) (-15 -2341 ((-606 (-537)) $)))) -((-2340 (($ $ |#2|) 30)) (-2329 (($ $) 22) (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-391 (-537)) $) 26) (($ $ (-391 (-537))) 28))) -(((-925 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2340 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-926 |#2| |#3| |#4|) (-998) (-752) (-807)) (T -925)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2340 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 72)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2362 (((-111) $) 71)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-606 |#3|) (-606 |#2|)) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-926 |#1| |#2| |#3|) (-134) (-998) (-752) (-807)) (T -926)) -((-3912 (*1 *2 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *3 (-752)) (-4 *4 (-807)) (-4 *2 (-998)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *4 (-807)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *2 *4)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *2 (-752)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-926 *4 *3 *2)) (-4 *4 (-998)) (-4 *3 (-752)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 *5)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-752)) (-4 *6 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *5 (-807)) (-5 *2 (-606 *5)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *4 (-807))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3733 ($ $ |t#3| |t#2|)) (-15 -3733 ($ $ (-606 |t#3|) (-606 |t#2|))) (-15 -3901 ($ $)) (-15 -3912 (|t#1| $)) (-15 -2872 (|t#2| $)) (-15 -3757 ((-606 |t#3|) $)) (-15 -2362 ((-111) $)) (-15 -1577 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-4070 (((-1040 (-210)) $) 8)) (-4059 (((-1040 (-210)) $) 9)) (-4050 (((-1040 (-210)) $) 10)) (-1477 (((-606 (-606 (-896 (-210)))) $) 11)) (-2341 (((-816) $) 6))) -(((-927) (-134)) (T -927)) -((-1477 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-606 (-606 (-896 (-210))))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210))))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210))))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) -(-13 (-579 (-816)) (-10 -8 (-15 -1477 ((-606 (-606 (-896 (-210)))) $)) (-15 -4050 ((-1040 (-210)) $)) (-15 -4059 ((-1040 (-210)) $)) (-15 -4070 ((-1040 (-210)) $)))) -(((-579 (-816)) . T)) -((-3757 (((-606 |#4|) $) 23)) (-1409 (((-111) $) 48)) (-2734 (((-111) $) 47)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#4|) 36)) (-2121 (((-111) $) 49)) (-2159 (((-111) $ $) 55)) (-2819 (((-111) $ $) 58)) (-4002 (((-111) $) 53)) (-3801 (((-606 |#5|) (-606 |#5|) $) 90)) (-3118 (((-606 |#5|) (-606 |#5|) $) 87)) (-1672 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2901 (((-606 |#4|) $) 27)) (-3726 (((-111) |#4| $) 30)) (-3875 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1713 (($ $ |#4|) 33)) (-2488 (($ $ |#4|) 32)) (-1449 (($ $ |#4|) 34)) (-2244 (((-111) $ $) 40))) -(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2734 ((-111) |#1|)) (-15 -3801 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -3118 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -1672 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3875 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2121 ((-111) |#1|)) (-15 -2819 ((-111) |#1| |#1|)) (-15 -2159 ((-111) |#1| |#1|)) (-15 -4002 ((-111) |#1|)) (-15 -1409 ((-111) |#1|)) (-15 -1566 ((-2 (|:| |under| |#1|) (|:| -3830 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -1449 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -3726 ((-111) |#4| |#1|)) (-15 -2901 ((-606 |#4|) |#1|)) (-15 -3757 ((-606 |#4|) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-929 |#2| |#3| |#4| |#5|) (-998) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -928)) -NIL -(-10 -8 (-15 -2734 ((-111) |#1|)) (-15 -3801 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -3118 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -1672 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3875 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2121 ((-111) |#1|)) (-15 -2819 ((-111) |#1| |#1|)) (-15 -2159 ((-111) |#1| |#1|)) (-15 -4002 ((-111) |#1|)) (-15 -1409 ((-111) |#1|)) (-15 -1566 ((-2 (|:| |under| |#1|) (|:| -3830 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -1449 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -3726 ((-111) |#4| |#1|)) (-15 -2901 ((-606 |#4|) |#1|)) (-15 -3757 ((-606 |#4|) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300)))) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300)))) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2528 (((-1064) $) 10)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-929 |#1| |#2| |#3| |#4|) (-134) (-998) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -929)) -((-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) (-1464 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-1012 *3 *4 *2)) (-4 *2 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-3726 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *3 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) (-2488 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1449 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1713 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1566 (*1 *2 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3830 *1) (|:| |upper| *1))) (-4 *1 (-929 *4 *5 *3 *6)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2159 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2819 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-3875 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1672 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3118 (*1 *2 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)))) (-3801 (*1 *2 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111))))) -(-13 (-1045) (-145 |t#4|) (-579 (-606 |t#4|)) (-10 -8 (-6 -4300) (-15 -1516 ((-3 $ "failed") (-606 |t#4|))) (-15 -3958 ($ (-606 |t#4|))) (-15 -1464 (|t#3| $)) (-15 -3757 ((-606 |t#3|) $)) (-15 -2901 ((-606 |t#3|) $)) (-15 -3726 ((-111) |t#3| $)) (-15 -2488 ($ $ |t#3|)) (-15 -1449 ($ $ |t#3|)) (-15 -1713 ($ $ |t#3|)) (-15 -1566 ((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |t#3|)) (-15 -1409 ((-111) $)) (IF (|has| |t#1| (-529)) (PROGN (-15 -4002 ((-111) $)) (-15 -2159 ((-111) $ $)) (-15 -2819 ((-111) $ $)) (-15 -2121 ((-111) $)) (-15 -3875 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1672 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3118 ((-606 |t#4|) (-606 |t#4|) $)) (-15 -3801 ((-606 |t#4|) (-606 |t#4|) $)) (-15 -2734 ((-111) $))) |%noBranch|))) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-1045) . T) ((-1154) . T)) -((-2304 (((-606 |#4|) |#4| |#4|) 118)) (-3538 (((-606 |#4|) (-606 |#4|) (-111)) 107 (|has| |#1| (-435))) (((-606 |#4|) (-606 |#4|)) 108 (|has| |#1| (-435)))) (-3638 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 35)) (-4063 (((-111) |#4|) 34)) (-3799 (((-606 |#4|) |#4|) 103 (|has| |#1| (-435)))) (-2984 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|)) 20)) (-2772 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|)) 22)) (-4073 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|)) 23)) (-3135 (((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|)) 73)) (-4077 (((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2854 (((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-4172 (((-606 |#4|) (-606 |#4|)) 110)) (-2080 (((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111)) 48) (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 50)) (-3451 ((|#4| |#4| (-606 |#4|)) 49)) (-2154 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 114 (|has| |#1| (-435)))) (-3689 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 117 (|has| |#1| (-435)))) (-1556 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 116 (|has| |#1| (-435)))) (-2750 (((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|))) 87) (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 89) (((-606 |#4|) (-606 |#4|) |#4|) 121) (((-606 |#4|) |#4| |#4|) 119) (((-606 |#4|) (-606 |#4|)) 88)) (-3421 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 100 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-2716 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 41)) (-2737 (((-111) (-606 |#4|)) 62)) (-4131 (((-111) (-606 |#4|) (-606 (-606 |#4|))) 53)) (-1412 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 29)) (-1952 (((-111) |#4|) 28)) (-1774 (((-606 |#4|) (-606 |#4|)) 98 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-1893 (((-606 |#4|) (-606 |#4|)) 99 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-2003 (((-606 |#4|) (-606 |#4|)) 66)) (-3436 (((-606 |#4|) (-606 |#4|)) 79)) (-3048 (((-111) (-606 |#4|) (-606 |#4|)) 51)) (-2351 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 39)) (-2698 (((-111) |#4|) 36))) -(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2750 ((-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) |#4| |#4|)) (-15 -4172 ((-606 |#4|) (-606 |#4|))) (-15 -2304 ((-606 |#4|) |#4| |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|)))) (-15 -3048 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -4131 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2737 ((-111) (-606 |#4|))) (-15 -2984 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|))) (-15 -2772 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -2716 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -4063 ((-111) |#4|)) (-15 -3638 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -1952 ((-111) |#4|)) (-15 -1412 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2698 ((-111) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3451 (|#4| |#4| (-606 |#4|))) (-15 -2003 ((-606 |#4|) (-606 |#4|))) (-15 -3135 ((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|))) (-15 -3436 ((-606 |#4|) (-606 |#4|))) (-15 -4077 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-435)) (PROGN (-15 -3799 ((-606 |#4|) |#4|)) (-15 -3538 ((-606 |#4|) (-606 |#4|))) (-15 -3538 ((-606 |#4|) (-606 |#4|) (-111))) (-15 -2154 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -1556 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -3689 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (PROGN (-15 -1893 ((-606 |#4|) (-606 |#4|))) (-15 -1774 ((-606 |#4|) (-606 |#4|))) (-15 -3421 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) |%noBranch|)) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -930)) -((-3421 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3689 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1556 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2154 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3538 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3799 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2854 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-930 *5 *6 *7 *8)))) (-4077 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-606 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3135 (*1 *2 *3) (|partial| -12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-459 *4 *5 *6 *7)) (|:| -2992 (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3451 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *2)))) (-2080 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-1952 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-3638 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-4063 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3048 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2750 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-606 *7) (-606 *7))) (-5 *2 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2750 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2750 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *3)))) (-2304 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) -(-10 -7 (-15 -2750 ((-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) |#4| |#4|)) (-15 -4172 ((-606 |#4|) (-606 |#4|))) (-15 -2304 ((-606 |#4|) |#4| |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|)))) (-15 -3048 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -4131 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2737 ((-111) (-606 |#4|))) (-15 -2984 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|))) (-15 -2772 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -2716 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -4063 ((-111) |#4|)) (-15 -3638 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -1952 ((-111) |#4|)) (-15 -1412 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2698 ((-111) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3451 (|#4| |#4| (-606 |#4|))) (-15 -2003 ((-606 |#4|) (-606 |#4|))) (-15 -3135 ((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|))) (-15 -3436 ((-606 |#4|) (-606 |#4|))) (-15 -4077 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-435)) (PROGN (-15 -3799 ((-606 |#4|) |#4|)) (-15 -3538 ((-606 |#4|) (-606 |#4|))) (-15 -3538 ((-606 |#4|) (-606 |#4|) (-111))) (-15 -2154 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -1556 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -3689 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (PROGN (-15 -1893 ((-606 |#4|) (-606 |#4|))) (-15 -1774 ((-606 |#4|) (-606 |#4|))) (-15 -3421 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) |%noBranch|)) -((-1575 (((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 19)) (-2526 (((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)) 36)) (-4008 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 16))) -(((-931 |#1|) (-10 -7 (-15 -1575 ((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -4008 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -2526 ((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)))) (-347)) (T -931)) -((-2526 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5))))) (-5 *1 (-931 *5)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)))) (-4008 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-649 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-5 *1 (-931 *5)))) (-1575 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-347)) (-5 *2 (-2 (|:| R (-649 *6)) (|:| A (-649 *6)) (|:| |Ainv| (-649 *6)))) (-5 *1 (-931 *6)) (-5 *3 (-649 *6))))) -(-10 -7 (-15 -1575 ((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -4008 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -2526 ((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)))) -((-2414 (((-402 |#4|) |#4|) 48))) -(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-402 |#4|) |#4|))) (-807) (-753) (-435) (-902 |#3| |#2| |#1|)) (T -932)) -((-2414 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-435)) (-5 *2 (-402 *3)) (-5 *1 (-932 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) -(-10 -7 (-15 -2414 ((-402 |#4|) |#4|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731)) 112 (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-2385 (($ (-606 |#1|)) 118)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) 105 (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2259 ((|#1| $) 102 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-2489 (((-111) $ (-731)) 10)) (-3845 ((|#1| $) 103 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-1540 (($ $ (-606 |#1|)) 115)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3416 ((|#1| $ $) 106 (|has| |#1| (-998)))) (-1839 (((-874) $) 117)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2218 (($ $ $) 104)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513)))) (($ (-606 |#1|)) 116)) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2329 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2318 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-537) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-687))) (($ $ |#1|) 107 (|has| |#1| (-687)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-933 |#1|) (-134) (-998)) (T -933)) -((-2385 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-998)) (-5 *2 (-874)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-998)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-933 *3)) (-4 *3 (-998))))) -(-13 (-1198 |t#1|) (-10 -8 (-15 -2385 ($ (-606 |t#1|))) (-15 -1839 ((-874) $)) (-15 -3996 ($ (-606 |t#1|))) (-15 -2218 ($ $ $)) (-15 -1540 ($ $ (-606 |t#1|))))) -(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-19 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T) ((-1198 |#1|) . T)) -((-1612 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 17))) -(((-934 |#1| |#2|) (-10 -7 (-15 -1612 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-998) (-998)) (T -934)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-896 *6)) (-5 *1 (-934 *5 *6))))) -(-10 -7 (-15 -1612 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) -((-1840 ((|#1| (-896 |#1|)) 13)) (-2328 ((|#1| (-896 |#1|)) 12)) (-3342 ((|#1| (-896 |#1|)) 11)) (-1460 ((|#1| (-896 |#1|)) 15)) (-1950 ((|#1| (-896 |#1|)) 21)) (-2666 ((|#1| (-896 |#1|)) 14)) (-3059 ((|#1| (-896 |#1|)) 16)) (-1826 ((|#1| (-896 |#1|)) 20)) (-3053 ((|#1| (-896 |#1|)) 19))) -(((-935 |#1|) (-10 -7 (-15 -3342 (|#1| (-896 |#1|))) (-15 -2328 (|#1| (-896 |#1|))) (-15 -1840 (|#1| (-896 |#1|))) (-15 -2666 (|#1| (-896 |#1|))) (-15 -1460 (|#1| (-896 |#1|))) (-15 -3059 (|#1| (-896 |#1|))) (-15 -3053 (|#1| (-896 |#1|))) (-15 -1826 (|#1| (-896 |#1|))) (-15 -1950 (|#1| (-896 |#1|)))) (-998)) (T -935)) -((-1950 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(-10 -7 (-15 -3342 (|#1| (-896 |#1|))) (-15 -2328 (|#1| (-896 |#1|))) (-15 -1840 (|#1| (-896 |#1|))) (-15 -2666 (|#1| (-896 |#1|))) (-15 -1460 (|#1| (-896 |#1|))) (-15 -3059 (|#1| (-896 |#1|))) (-15 -3053 (|#1| (-896 |#1|))) (-15 -1826 (|#1| (-896 |#1|))) (-15 -1950 (|#1| (-896 |#1|)))) -((-3303 (((-3 |#1| "failed") |#1|) 18)) (-2838 (((-3 |#1| "failed") |#1|) 6)) (-2268 (((-3 |#1| "failed") |#1|) 16)) (-2515 (((-3 |#1| "failed") |#1|) 4)) (-2223 (((-3 |#1| "failed") |#1|) 20)) (-2213 (((-3 |#1| "failed") |#1|) 8)) (-1252 (((-3 |#1| "failed") |#1| (-731)) 1)) (-2197 (((-3 |#1| "failed") |#1|) 3)) (-3909 (((-3 |#1| "failed") |#1|) 2)) (-2775 (((-3 |#1| "failed") |#1|) 21)) (-1693 (((-3 |#1| "failed") |#1|) 9)) (-1348 (((-3 |#1| "failed") |#1|) 19)) (-1257 (((-3 |#1| "failed") |#1|) 7)) (-2075 (((-3 |#1| "failed") |#1|) 17)) (-2709 (((-3 |#1| "failed") |#1|) 5)) (-2054 (((-3 |#1| "failed") |#1|) 24)) (-1801 (((-3 |#1| "failed") |#1|) 12)) (-4069 (((-3 |#1| "failed") |#1|) 22)) (-3217 (((-3 |#1| "failed") |#1|) 10)) (-2815 (((-3 |#1| "failed") |#1|) 26)) (-2754 (((-3 |#1| "failed") |#1|) 14)) (-2000 (((-3 |#1| "failed") |#1|) 27)) (-3387 (((-3 |#1| "failed") |#1|) 15)) (-3074 (((-3 |#1| "failed") |#1|) 25)) (-4195 (((-3 |#1| "failed") |#1|) 13)) (-3653 (((-3 |#1| "failed") |#1|) 23)) (-2378 (((-3 |#1| "failed") |#1|) 11))) -(((-936 |#1|) (-134) (-1139)) (T -936)) -((-2000 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2815 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3074 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2054 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3653 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-4069 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2775 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2223 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1348 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2075 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2268 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2754 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-4195 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1801 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2378 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3217 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1693 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2213 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1257 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2838 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2709 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2515 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2197 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3909 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1252 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(-13 (-10 -7 (-15 -1252 ((-3 |t#1| "failed") |t#1| (-731))) (-15 -3909 ((-3 |t#1| "failed") |t#1|)) (-15 -2197 ((-3 |t#1| "failed") |t#1|)) (-15 -2515 ((-3 |t#1| "failed") |t#1|)) (-15 -2709 ((-3 |t#1| "failed") |t#1|)) (-15 -2838 ((-3 |t#1| "failed") |t#1|)) (-15 -1257 ((-3 |t#1| "failed") |t#1|)) (-15 -2213 ((-3 |t#1| "failed") |t#1|)) (-15 -1693 ((-3 |t#1| "failed") |t#1|)) (-15 -3217 ((-3 |t#1| "failed") |t#1|)) (-15 -2378 ((-3 |t#1| "failed") |t#1|)) (-15 -1801 ((-3 |t#1| "failed") |t#1|)) (-15 -4195 ((-3 |t#1| "failed") |t#1|)) (-15 -2754 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)) (-15 -2268 ((-3 |t#1| "failed") |t#1|)) (-15 -2075 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -1348 ((-3 |t#1| "failed") |t#1|)) (-15 -2223 ((-3 |t#1| "failed") |t#1|)) (-15 -2775 ((-3 |t#1| "failed") |t#1|)) (-15 -4069 ((-3 |t#1| "failed") |t#1|)) (-15 -3653 ((-3 |t#1| "failed") |t#1|)) (-15 -2054 ((-3 |t#1| "failed") |t#1|)) (-15 -3074 ((-3 |t#1| "failed") |t#1|)) (-15 -2815 ((-3 |t#1| "failed") |t#1|)) (-15 -2000 ((-3 |t#1| "failed") |t#1|)))) -((-2210 ((|#4| |#4| (-606 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2412 ((|#4| |#4| (-606 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1612 ((|#4| (-1 |#4| (-905 |#1|)) |#4|) 30))) -(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2412 (|#4| |#4| |#3|)) (-15 -2412 (|#4| |#4| (-606 |#3|))) (-15 -2210 (|#4| |#4| |#3|)) (-15 -2210 (|#4| |#4| (-606 |#3|))) (-15 -1612 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) (-998) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-902 (-905 |#1|) |#2| |#3|)) (T -937)) -((-1612 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-998)) (-4 *2 (-902 (-905 *4) *5 *6)) (-4 *5 (-753)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *6 *2)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *2 (-902 (-905 *4) *5 *6)))) (-2210 (*1 *2 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) (-2412 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *2 (-902 (-905 *4) *5 *6)))) (-2412 (*1 *2 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3))))) -(-10 -7 (-15 -2412 (|#4| |#4| |#3|)) (-15 -2412 (|#4| |#4| (-606 |#3|))) (-15 -2210 (|#4| |#4| |#3|)) (-15 -2210 (|#4| |#4| (-606 |#3|))) (-15 -1612 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) -((-1788 ((|#2| |#3|) 35)) (-3337 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|) 73)) (-3778 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) 89))) -(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|)) (-15 -1788 (|#2| |#3|))) (-333) (-1176 |#1|) (-1176 |#2|) (-685 |#2| |#3|)) (T -938)) -((-1788 (*1 *2 *3) (-12 (-4 *3 (-1176 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-938 *4 *2 *3 *5)) (-4 *4 (-333)) (-4 *5 (-685 *2 *3)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-938 *4 *3 *5 *6)) (-4 *6 (-685 *3 *5)))) (-3778 (*1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-649 *4)))) (-5 *1 (-938 *3 *4 *5 *6)) (-4 *6 (-685 *4 *5))))) -(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|)) (-15 -1788 (|#2| |#3|))) -((-3824 (((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))) 69))) -(((-939 |#1| |#2|) (-10 -7 (-15 -3824 ((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))))) (-606 (-1117)) (-731)) (T -939)) -((-3824 (*1 *2 *2) (-12 (-5 *2 (-940 (-391 (-537)) (-818 *3) (-225 *4 (-731)) (-232 *3 (-391 (-537))))) (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-939 *3 *4))))) -(-10 -7 (-15 -3824 ((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))))) -((-2330 (((-111) $ $) NIL)) (-3610 (((-3 (-111) "failed") $) 69)) (-3176 (($ $) 36 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-1578 (($ $ (-3 (-111) "failed")) 70)) (-3460 (($ (-606 |#4|) |#4|) 25)) (-1654 (((-1100) $) NIL)) (-1808 (($ $) 67)) (-2528 (((-1064) $) NIL)) (-2193 (((-111) $) 68)) (-3425 (($) 30)) (-3310 ((|#4| $) 72)) (-2780 (((-606 |#4|) $) 71)) (-2341 (((-816) $) 66)) (-2244 (((-111) $ $) NIL))) -(((-940 |#1| |#2| |#3| |#4|) (-13 (-1045) (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3460 ($ (-606 |#4|) |#4|)) (-15 -3610 ((-3 (-111) "failed") $)) (-15 -1578 ($ $ (-3 (-111) "failed"))) (-15 -2193 ((-111) $)) (-15 -2780 ((-606 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -1808 ($ $)) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (-15 -3176 ($ $)) |%noBranch|) |%noBranch|))) (-435) (-807) (-753) (-902 |#1| |#3| |#2|)) (T -940)) -((-3425 (*1 *1) (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-902 *4 *6 *5)) (-4 *4 (-435)) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *1 (-940 *4 *5 *6 *3)))) (-3610 (*1 *2 *1) (|partial| -12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-2193 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-606 *6)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)))) (-1808 (*1 *1 *1) (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) (-3176 (*1 *1 *1) (-12 (-4 *2 (-141)) (-4 *2 (-291)) (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3))))) -(-13 (-1045) (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3460 ($ (-606 |#4|) |#4|)) (-15 -3610 ((-3 (-111) "failed") $)) (-15 -1578 ($ $ (-3 (-111) "failed"))) (-15 -2193 ((-111) $)) (-15 -2780 ((-606 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -1808 ($ $)) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (-15 -3176 ($ $)) |%noBranch|) |%noBranch|))) -((-3078 (((-111) |#5| |#5|) 38)) (-3798 (((-111) |#5| |#5|) 52)) (-2843 (((-111) |#5| (-606 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-2296 (((-111) (-606 |#4|) (-606 |#4|)) 58)) (-3803 (((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 63)) (-1982 (((-1205)) 33)) (-1261 (((-1205) (-1100) (-1100) (-1100)) 29)) (-3509 (((-606 |#5|) (-606 |#5|)) 81)) (-2457 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) 79)) (-3921 (((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111)) 101)) (-3433 (((-111) |#5| |#5|) 47)) (-2513 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2314 (((-111) (-606 |#4|) (-606 |#4|)) 57)) (-3730 (((-111) (-606 |#4|) (-606 |#4|)) 59)) (-1981 (((-111) (-606 |#4|) (-606 |#4|)) 60)) (-1761 (((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2207 (((-606 |#5|) (-606 |#5|)) 43))) -(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -941)) -((-1761 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) (-5 *1 (-941 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) (-4 *4 (-1018 *6 *7 *8 *9)))) (-3921 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) (-5 *1 (-941 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-941 *5 *6 *7 *8 *3)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2513 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3798 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-3433 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1982 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-941 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1261 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-1890 (((-1117) $) 15)) (-3619 (((-1100) $) 16)) (-3056 (($ (-1117) (-1100)) 14)) (-2341 (((-816) $) 13))) -(((-942) (-13 (-579 (-816)) (-10 -8 (-15 -3056 ($ (-1117) (-1100))) (-15 -1890 ((-1117) $)) (-15 -3619 ((-1100) $))))) (T -942)) -((-3056 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-942)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-942)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-942))))) -(-13 (-579 (-816)) (-10 -8 (-15 -3056 ($ (-1117) (-1100))) (-15 -1890 ((-1117) $)) (-15 -3619 ((-1100) $)))) -((-1612 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) (-529) (-529) (-945 |#1|) (-945 |#2|)) (T -943)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-4 *2 (-945 *6)) (-5 *1 (-943 *5 *6 *4 *2)) (-4 *4 (-945 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) -((-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-1117) "failed") $) 65) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) 95)) (-3958 ((|#2| $) NIL) (((-1117) $) 60) (((-391 (-537)) $) NIL) (((-537) $) 92)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 112) (((-649 |#2|) (-649 $)) 28)) (-1618 (($) 98)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 75) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 84)) (-2868 (($ $) 10)) (-2824 (((-3 $ "failed") $) 20)) (-1612 (($ (-1 |#2| |#2|) $) 22)) (-3956 (($) 16)) (-1790 (($ $) 54)) (-3456 (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2395 (($ $) 12)) (-3996 (((-845 (-537)) $) 70) (((-845 (-363)) $) 79) (((-513) $) 40) (((-363) $) 44) (((-210) $) 47)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 90) (($ |#2|) NIL) (($ (-1117)) 57)) (-3654 (((-731)) 31)) (-2263 (((-111) $ $) 50))) -(((-944 |#1| |#2|) (-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -1618 (|#1|)) (-15 -1790 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) (-945 |#2|) (-529)) (T -944)) -((-3654 (*1 *2) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-944 *3 *4)) (-4 *3 (-945 *4))))) -(-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -1618 (|#1|)) (-15 -1790 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 ((|#1| $) 136 (|has| |#1| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 127 (|has| |#1| (-862)))) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 130 (|has| |#1| (-862)))) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 117 (|has| |#1| (-780)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 175) (((-3 (-1117) "failed") $) 125 (|has| |#1| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 109 (|has| |#1| (-989 (-537)))) (((-3 (-537) "failed") $) 107 (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 174) (((-1117) $) 124 (|has| |#1| (-989 (-1117)))) (((-391 (-537)) $) 108 (|has| |#1| (-989 (-537)))) (((-537) $) 106 (|has| |#1| (-989 (-537))))) (-3563 (($ $ $) 53)) (-2053 (((-649 (-537)) (-649 $)) 149 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 148 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 147) (((-649 |#1|) (-649 $)) 146)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 134 (|has| |#1| (-522)))) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-3797 (((-111) $) 119 (|has| |#1| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 143 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 142 (|has| |#1| (-839 (-363))))) (-2836 (((-111) $) 30)) (-2868 (($ $) 138)) (-3301 ((|#1| $) 140)) (-2824 (((-3 $ "failed") $) 105 (|has| |#1| (-1093)))) (-2840 (((-111) $) 118 (|has| |#1| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 115 (|has| |#1| (-807)))) (-3889 (($ $ $) 114 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 166)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 104 (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 135 (|has| |#1| (-291)))) (-3830 ((|#1| $) 132 (|has| |#1| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 129 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 128 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 172 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 170 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 169 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 168 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 167 (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) 56)) (-1922 (($ $ |#1|) 173 (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3456 (($ $) 165 (|has| |#1| (-218))) (($ $ (-731)) 163 (|has| |#1| (-218))) (($ $ (-1117)) 161 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 160 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 159 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 158 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2395 (($ $) 137)) (-3315 ((|#1| $) 139)) (-3996 (((-845 (-537)) $) 145 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 144 (|has| |#1| (-580 (-845 (-363))))) (((-513) $) 122 (|has| |#1| (-580 (-513)))) (((-363) $) 121 (|has| |#1| (-973))) (((-210) $) 120 (|has| |#1| (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 131 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 178) (($ (-1117)) 126 (|has| |#1| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) 123 (-1533 (|has| |#1| (-139)) (-3319 (|has| $ (-139)) (|has| |#1| (-862)))))) (-3654 (((-731)) 28)) (-3903 ((|#1| $) 133 (|has| |#1| (-522)))) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 116 (|has| |#1| (-780)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 164 (|has| |#1| (-218))) (($ $ (-731)) 162 (|has| |#1| (-218))) (($ $ (-1117)) 157 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 156 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 155 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 154 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2293 (((-111) $ $) 112 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 111 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 113 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 110 (|has| |#1| (-807)))) (-2340 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-945 |#1|) (-134) (-529)) (T -945)) -((-2340 (*1 *1 *2 *2) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) (-1618 (*1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-522)) (-4 *2 (-529)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522))))) -(-13 (-347) (-37 |t#1|) (-989 |t#1|) (-322 |t#1|) (-216 |t#1|) (-361 |t#1|) (-837 |t#1|) (-384 |t#1|) (-10 -8 (-15 -2340 ($ |t#1| |t#1|)) (-15 -3301 (|t#1| $)) (-15 -3315 (|t#1| $)) (-15 -2868 ($ $)) (-15 -2395 ($ $)) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-989 (-537))) (PROGN (-6 (-989 (-537))) (-6 (-989 (-391 (-537))))) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-989 (-1117))) (-6 (-989 (-1117))) |%noBranch|) (IF (|has| |t#1| (-291)) (PROGN (-15 -1874 (|t#1| $)) (-15 -1790 ($ $))) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1618 ($)) (-15 -3903 (|t#1| $)) (-15 -3830 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) |has| |#1| (-973)) ((-580 (-363)) |has| |#1| (-973)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-228) . T) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) . T) ((-291) . T) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-347) . T) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-384 |#1|) . T) ((-435) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-751) |has| |#1| (-780)) ((-752) |has| |#1| (-780)) ((-754) |has| |#1| (-780)) ((-755) |has| |#1| (-780)) ((-780) |has| |#1| (-780)) ((-805) |has| |#1| (-780)) ((-807) -1533 (|has| |#1| (-807)) (|has| |#1| (-780))) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-862) |has| |#1| (-862)) ((-873) . T) ((-973) |has| |#1| (-973)) ((-989 (-391 (-537))) |has| |#1| (-989 (-537))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-1117)) |has| |#1| (-989 (-1117))) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-1093)) ((-1154) . T) ((-1158) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2599 (($ (-1084 |#1| |#2|)) 11)) (-3299 (((-1084 |#1| |#2|) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#2| $ (-225 |#1| |#2|)) 16)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL))) -(((-946 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2599 ($ (-1084 |#1| |#2|))) (-15 -3299 ((-1084 |#1| |#2|) $)) (-15 -1922 (|#2| $ (-225 |#1| |#2|))))) (-874) (-347)) (T -946)) -((-2599 (*1 *1 *2) (-12 (-5 *2 (-1084 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)) (-5 *1 (-946 *3 *4)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-1084 *3 *4)) (-5 *1 (-946 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-874)) (-4 *2 (-347)) (-5 *1 (-946 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2599 ($ (-1084 |#1| |#2|))) (-15 -3299 ((-1084 |#1| |#2|) $)) (-15 -1922 (|#2| $ (-225 |#1| |#2|))))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3641 (($ $) 46)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3845 (((-731) $) 45)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1424 ((|#1| $) 44)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2051 ((|#1| |#1| $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-4198 ((|#1| $) 47)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-4247 ((|#1| $) 43)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-947 |#1|) (-134) (-1154)) (T -947)) -((-2051 (*1 *2 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-947 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -2051 (|t#1| |t#1| $)) (-15 -4198 (|t#1| $)) (-15 -3641 ($ $)) (-15 -3845 ((-731) $)) (-15 -1424 (|t#1| $)) (-15 -4247 (|t#1| $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-1656 (((-111) $) 42)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 43)) (-2484 (((-3 (-391 (-537)) "failed") $) 78)) (-1797 (((-111) $) 72)) (-2616 (((-391 (-537)) $) 76)) (-2836 (((-111) $) 41)) (-2055 ((|#2| $) 22)) (-1612 (($ (-1 |#2| |#2|) $) 19)) (-3865 (($ $) 61)) (-3456 (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3996 (((-513) $) 67)) (-1978 (($ $) 17)) (-2341 (((-816) $) 56) (($ (-537)) 38) (($ |#2|) 36) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 10)) (-2209 ((|#2| $) 71)) (-2244 (((-111) $ $) 25)) (-2263 (((-111) $ $) 69)) (-2329 (($ $) 29) (($ $ $) 28)) (-2318 (($ $ $) 26)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) -(((-948 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 -3865 (|#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2836 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-949 |#2|) (-163)) (T -948)) -((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-948 *3 *4)) (-4 *3 (-949 *4))))) -(-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 -3865 (|#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2836 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 116 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 114 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 113)) (-3958 (((-537) $) 117 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 115 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 112)) (-2053 (((-649 (-537)) (-649 $)) 87 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 86 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 85) (((-649 |#1|) (-649 $)) 84)) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 77)) (-2484 (((-3 (-391 (-537)) "failed") $) 73 (|has| |#1| (-522)))) (-1797 (((-111) $) 75 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 74 (|has| |#1| (-522)))) (-3345 (($ |#1| |#1| |#1| |#1|) 78)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 79)) (-2444 (($ $ $) 66 (|has| |#1| (-807)))) (-3889 (($ $ $) 65 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 88)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 70 (|has| |#1| (-347)))) (-1821 ((|#1| $) 80)) (-2168 ((|#1| $) 81)) (-2963 ((|#1| $) 82)) (-2528 (((-1064) $) 10)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 94 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 92 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 91 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 90 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 89 (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) 95 (|has| |#1| (-270 |#1| |#1|)))) (-3456 (($ $) 111 (|has| |#1| (-218))) (($ $ (-731)) 109 (|has| |#1| (-218))) (($ $ (-1117)) 107 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 106 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 105 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 104 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3996 (((-513) $) 71 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 83)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 60 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) 72 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2209 ((|#1| $) 76 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 110 (|has| |#1| (-218))) (($ $ (-731)) 108 (|has| |#1| (-218))) (($ $ (-1117)) 103 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 102 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 101 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 100 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2293 (((-111) $ $) 63 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 62 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 64 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 61 (|has| |#1| (-807)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 69 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-391 (-537))) 68 (|has| |#1| (-347))) (($ (-391 (-537)) $) 67 (|has| |#1| (-347))))) -(((-949 |#1|) (-134) (-163)) (T -949)) -((-1978 (*1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-3345 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537)))))) -(-13 (-37 |t#1|) (-395 |t#1|) (-216 |t#1|) (-322 |t#1|) (-361 |t#1|) (-10 -8 (-15 -1978 ($ $)) (-15 -2963 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -1821 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -3345 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (IF (|has| |t#1| (-274)) (-6 (-274)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-347)) ((-37 |#1|) . T) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-347)) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-228) |has| |#1| (-347)) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-609 #0#) |has| |#1| (-347)) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-347)) ((-678 |#1|) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-347)) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-949 |#2|) (-163) (-949 |#4|) (-163)) (T -950)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-949 *6)) (-5 *1 (-950 *4 *5 *2 *6)) (-4 *4 (-949 *5))))) -(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 12)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-3345 (($ |#1| |#1| |#1| |#1|) 16)) (-2836 (((-111) $) NIL)) (-2055 ((|#1| $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-1821 ((|#1| $) 15)) (-2168 ((|#1| $) 14)) (-2963 ((|#1| $) 13)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2209 ((|#1| $) NIL (|has| |#1| (-1007)))) (-2928 (($) 8 T CONST)) (-2943 (($) 10 T CONST)) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))))) -(((-951 |#1|) (-949 |#1|) (-163)) (T -951)) -NIL -(-949 |#1|) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3641 (($ $) 20)) (-3505 (($ (-606 |#1|)) 29)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3845 (((-731) $) 22)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 24)) (-3499 (($ |#1| $) 15)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1424 ((|#1| $) 23)) (-1599 ((|#1| $) 19)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2051 ((|#1| |#1| $) 14)) (-2193 (((-111) $) 17)) (-3425 (($) NIL)) (-4198 ((|#1| $) 18)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-4247 ((|#1| $) 26)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-952 |#1|) (-13 (-947 |#1|) (-10 -8 (-15 -3505 ($ (-606 |#1|))))) (-1045)) (T -952)) -((-3505 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-952 *3))))) -(-13 (-947 |#1|) (-10 -8 (-15 -3505 ($ (-606 |#1|))))) -((-3633 (($ $) 12)) (-2590 (($ $ (-537)) 13))) -(((-953 |#1|) (-10 -8 (-15 -3633 (|#1| |#1|)) (-15 -2590 (|#1| |#1| (-537)))) (-954)) (T -953)) -NIL -(-10 -8 (-15 -3633 (|#1| |#1|)) (-15 -2590 (|#1| |#1| (-537)))) -((-3633 (($ $) 6)) (-2590 (($ $ (-537)) 7)) (** (($ $ (-391 (-537))) 8))) -(((-954) (-134)) (T -954)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-391 (-537))))) (-2590 (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-537)))) (-3633 (*1 *1 *1) (-4 *1 (-954)))) -(-13 (-10 -8 (-15 -3633 ($ $)) (-15 -2590 ($ $ (-537))) (-15 ** ($ $ (-391 (-537)))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| (-391 |#2|) (-347)))) (-3377 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) NIL) (((-649 (-391 |#2|))) NIL)) (-1428 (((-391 |#2|) $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) NIL (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) NIL)) (-3038 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) NIL)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) NIL) (($ (-1200 (-391 |#2|))) 70) (($ (-1200 |#2|) |#2|) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) NIL) (((-649 (-391 |#2|)) (-649 $)) NIL)) (-4203 (((-1200 $) (-1200 $)) NIL)) (-3195 (($ |#3|) 65) (((-3 $ "failed") (-391 |#3|)) NIL (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3544 (((-606 (-606 |#1|))) NIL (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) NIL)) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) NIL)) (-1999 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-3539 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-391 |#2|) (-347)))) (-1351 (($ $) NIL)) (-4145 (($) NIL (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) NIL (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) NIL (|has| (-391 |#2|) (-333))) (($ $) NIL (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) NIL (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) NIL (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) NIL)) (-4147 (((-731)) NIL)) (-4205 (((-1200 $) (-1200 $)) NIL)) (-2055 (((-391 |#2|) $) NIL)) (-3941 (((-606 (-905 |#1|)) (-1117)) NIL (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) NIL (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) NIL (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) NIL)) (-3184 (((-649 (-391 |#2|))) 52)) (-3993 (((-649 (-391 |#2|))) 51)) (-3865 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 71)) (-1734 (((-649 (-391 |#2|))) 50)) (-2125 (((-649 (-391 |#2|))) 49)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 77)) (-1782 (((-1200 $)) 46)) (-3778 (((-1200 $)) 45)) (-1600 (((-111) $) NIL)) (-3766 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3956 (($) NIL (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) 63)) (-2528 (((-1064) $) NIL)) (-2091 (((-731)) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) NIL (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) NIL)) (-2322 (((-3 |#2| "failed")) 62)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) NIL) (((-391 |#2|)) 42)) (-3030 (((-731) $) NIL (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) NIL (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 53)) (-3553 (($) NIL (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 |#2|)) $) 72) (((-649 (-391 |#2|)) (-1200 $)) NIL)) (-3996 (((-1200 (-391 |#2|)) $) NIL) (($ (-1200 (-391 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 |#2|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-391 |#2|) (-989 (-391 (-537)))) (|has| (-391 |#2|) (-347)))) (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2644 (($ $) NIL (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) NIL)) (-3654 (((-731)) NIL)) (-3735 (((-111)) 60)) (-3281 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2122 (((-1200 $)) 121)) (-3276 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2743 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 |#2|)) NIL) (($ (-391 |#2|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) NIL (|has| (-391 |#2|) (-347))))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-326 |#1| |#2| |#3|) (-1158) (-1176 |#1|) (-1176 (-391 |#2|)) (-391 |#2|) (-731)) (T -955)) -NIL -(-326 |#1| |#2| |#3|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2589 (((-606 (-537)) $) 54)) (-2710 (($ (-606 (-537))) 62)) (-1874 (((-537) $) 40 (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 49) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 47 (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) 49 (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2549 (((-606 (-537)) $) 60)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) 37)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) 42)) (-4025 (((-1098 (-537)) $) 59)) (-2889 (($ (-606 (-537)) (-606 (-537))) 63)) (-3830 (((-537) $) 53 (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) 11 (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) 39)) (-2912 (((-606 (-537)) $) 61)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) 77) (($ (-537)) 43) (($ $) NIL) (($ (-391 (-537))) 20) (($ (-537)) 43) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) 18)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) 9)) (-3903 (((-537) $) 51 (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) 10 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) 14)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) 33 (|has| (-537) (-807)))) (-2340 (($ $ $) 29) (($ (-537) (-537)) 31)) (-2329 (($ $) 15) (($ $ $) 23)) (-2318 (($ $ $) 21)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 25) (($ $ $) 27) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) 25) (($ $ (-537)) NIL))) -(((-956 |#1|) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2589 ((-606 (-537)) $)) (-15 -4025 ((-1098 (-537)) $)) (-15 -2549 ((-606 (-537)) $)) (-15 -2912 ((-606 (-537)) $)) (-15 -2710 ($ (-606 (-537)))) (-15 -2889 ($ (-606 (-537)) (-606 (-537)))))) (-537)) (T -956)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2710 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2889 (*1 *1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2589 ((-606 (-537)) $)) (-15 -4025 ((-1098 (-537)) $)) (-15 -2549 ((-606 (-537)) $)) (-15 -2912 ((-606 (-537)) $)) (-15 -2710 ($ (-606 (-537)))) (-15 -2889 ($ (-606 (-537)) (-606 (-537)))))) -((-3395 (((-51) (-391 (-537)) (-537)) 9))) -(((-957) (-10 -7 (-15 -3395 ((-51) (-391 (-537)) (-537))))) (T -957)) -((-3395 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-537))) (-5 *4 (-537)) (-5 *2 (-51)) (-5 *1 (-957))))) -(-10 -7 (-15 -3395 ((-51) (-391 (-537)) (-537)))) -((-3151 (((-537)) 13)) (-2571 (((-537)) 16)) (-3702 (((-1205) (-537)) 15)) (-3255 (((-537) (-537)) 17) (((-537)) 12))) -(((-958) (-10 -7 (-15 -3255 ((-537))) (-15 -3151 ((-537))) (-15 -3255 ((-537) (-537))) (-15 -3702 ((-1205) (-537))) (-15 -2571 ((-537))))) (T -958)) -((-2571 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-958)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3151 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3255 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) -(-10 -7 (-15 -3255 ((-537))) (-15 -3151 ((-537))) (-15 -3255 ((-537) (-537))) (-15 -3702 ((-1205) (-537))) (-15 -2571 ((-537)))) -((-3159 (((-402 |#1|) |#1|) 41)) (-3622 (((-402 |#1|) |#1|) 40))) -(((-959 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|))) (-1176 (-391 (-537)))) (T -959)) -((-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) (-4 *3 (-1176 (-391 (-537)))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) (-4 *3 (-1176 (-391 (-537))))))) -(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|))) -((-2484 (((-3 (-391 (-537)) "failed") |#1|) 15)) (-1797 (((-111) |#1|) 14)) (-2616 (((-391 (-537)) |#1|) 10))) -(((-960 |#1|) (-10 -7 (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|))) (-989 (-391 (-537)))) (T -960)) -((-2484 (*1 *2 *3) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-960 *3)) (-4 *3 (-989 (-391 (-537)))))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2))))) -(-10 -7 (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|))) -((-2476 ((|#2| $ "value" |#2|) 12)) (-1922 ((|#2| $ "value") 10)) (-4261 (((-111) $ $) 18))) -(((-961 |#1| |#2|) (-10 -8 (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -1922 (|#2| |#1| "value"))) (-962 |#2|) (-1154)) (T -961)) -NIL -(-10 -8 (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -1922 (|#2| |#1| "value"))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-962 |#1|) (-134) (-1154)) (T -962)) -((-2804 (*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) (-2570 (*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-2364 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-537)))) (-4261 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *1)) (|has| *1 (-6 -4301)) (-4 *1 (-962 *3)) (-4 *3 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-3650 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154))))) -(-13 (-471 |t#1|) (-10 -8 (-15 -2804 ((-606 $) $)) (-15 -2570 ((-606 $) $)) (-15 -3862 ((-111) $)) (-15 -3619 (|t#1| $)) (-15 -1922 (|t#1| $ "value")) (-15 -3335 ((-111) $)) (-15 -3583 ((-606 |t#1|) $)) (-15 -2364 ((-537) $ $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4261 ((-111) $ $)) (-15 -3868 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3999 ($ $ (-606 $))) (-15 -2476 (|t#1| $ "value" |t#1|)) (-15 -3650 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-3633 (($ $) 9) (($ $ (-874)) 43) (($ (-391 (-537))) 13) (($ (-537)) 15)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) 23) (((-3 $ "failed") (-1113 $) (-874)) 28)) (-2590 (($ $ (-537)) 49)) (-3654 (((-731)) 17)) (-2607 (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 (-391 (-537)))) 54) (((-606 $) (-1113 (-537))) 59) (((-606 $) (-905 $)) 63) (((-606 $) (-905 (-391 (-537)))) 67) (((-606 $) (-905 (-537))) 71)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) 47))) -(((-963 |#1|) (-10 -8 (-15 -3633 (|#1| (-537))) (-15 -3633 (|#1| (-391 (-537)))) (-15 -3633 (|#1| |#1| (-874))) (-15 -2607 ((-606 |#1|) (-905 (-537)))) (-15 -2607 ((-606 |#1|) (-905 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-905 |#1|))) (-15 -2607 ((-606 |#1|) (-1113 (-537)))) (-15 -2607 ((-606 |#1|) (-1113 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-1113 |#1|))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874) (-816))) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -2590 (|#1| |#1| (-537))) (-15 -3633 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) (-964)) (T -963)) -((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) -(-10 -8 (-15 -3633 (|#1| (-537))) (-15 -3633 (|#1| (-391 (-537)))) (-15 -3633 (|#1| |#1| (-874))) (-15 -2607 ((-606 |#1|) (-905 (-537)))) (-15 -2607 ((-606 |#1|) (-905 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-905 |#1|))) (-15 -2607 ((-606 |#1|) (-1113 (-537)))) (-15 -2607 ((-606 |#1|) (-1113 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-1113 |#1|))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874) (-816))) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -2590 (|#1| |#1| (-537))) (-15 -3633 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 87)) (-3377 (($ $) 88)) (-4017 (((-111) $) 90)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 107)) (-2414 (((-402 $) $) 108)) (-3633 (($ $) 71) (($ $ (-874)) 57) (($ (-391 (-537))) 56) (($ (-537)) 55)) (-4099 (((-111) $ $) 98)) (-2537 (((-537) $) 124)) (-3832 (($) 17 T CONST)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) 65) (((-3 $ "failed") (-1113 $) (-874)) 64)) (-1516 (((-3 (-537) "failed") $) 83 (|has| (-391 (-537)) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 81 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-3 (-391 (-537)) "failed") $) 79)) (-3958 (((-537) $) 84 (|has| (-391 (-537)) (-989 (-537)))) (((-391 (-537)) $) 82 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-391 (-537)) $) 78)) (-3218 (($ $ (-816)) 54)) (-4257 (($ $ (-816)) 53)) (-3563 (($ $ $) 102)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 101)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 96)) (-2639 (((-111) $) 109)) (-3797 (((-111) $) 122)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 70)) (-2840 (((-111) $) 123)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 105)) (-2444 (($ $ $) 121)) (-3889 (($ $ $) 120)) (-3695 (((-3 (-1113 $) "failed") $) 66)) (-1585 (((-3 (-816) "failed") $) 68)) (-1304 (((-3 (-1113 $) "failed") $) 67)) (-2183 (($ (-606 $)) 94) (($ $ $) 93)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 110)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 95)) (-2211 (($ (-606 $)) 92) (($ $ $) 91)) (-3622 (((-402 $) $) 106)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 103)) (-3515 (((-3 $ "failed") $ $) 86)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 97)) (-1930 (((-731) $) 99)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 100)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 114) (($ $) 85) (($ (-391 (-537))) 80) (($ (-537)) 77) (($ (-391 (-537))) 74)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 89)) (-4150 (((-391 (-537)) $ $) 52)) (-2607 (((-606 $) (-1113 $)) 63) (((-606 $) (-1113 (-391 (-537)))) 62) (((-606 $) (-1113 (-537))) 61) (((-606 $) (-905 $)) 60) (((-606 $) (-905 (-391 (-537)))) 59) (((-606 $) (-905 (-537))) 58)) (-2209 (($ $) 125)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 118)) (-2271 (((-111) $ $) 117)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 119)) (-2263 (((-111) $ $) 116)) (-2340 (($ $ $) 115)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 111) (($ $ (-391 (-537))) 69)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ (-391 (-537)) $) 113) (($ $ (-391 (-537))) 112) (($ (-537) $) 76) (($ $ (-537)) 75) (($ (-391 (-537)) $) 73) (($ $ (-391 (-537))) 72))) -(((-964) (-134)) (T -964)) -((-3633 (*1 *1 *1) (-4 *1 (-964))) (-1585 (*1 *2 *1) (|partial| -12 (-4 *1 (-964)) (-5 *2 (-816)))) (-1304 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964)))) (-3695 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964)))) (-4190 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-5 *4 (-816)) (-4 *1 (-964)))) (-4190 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-3633 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-874)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-964)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-964)))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816)))) (-4257 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816)))) (-4150 (*1 *2 *1 *1) (-12 (-4 *1 (-964)) (-5 *2 (-391 (-537)))))) -(-13 (-141) (-805) (-163) (-347) (-395 (-391 (-537))) (-37 (-537)) (-37 (-391 (-537))) (-954) (-10 -8 (-15 -1585 ((-3 (-816) "failed") $)) (-15 -1304 ((-3 (-1113 $) "failed") $)) (-15 -3695 ((-3 (-1113 $) "failed") $)) (-15 -4190 ((-3 $ "failed") (-1113 $) (-874) (-816))) (-15 -4190 ((-3 $ "failed") (-1113 $) (-874))) (-15 -2607 ((-606 $) (-1113 $))) (-15 -2607 ((-606 $) (-1113 (-391 (-537))))) (-15 -2607 ((-606 $) (-1113 (-537)))) (-15 -2607 ((-606 $) (-905 $))) (-15 -2607 ((-606 $) (-905 (-391 (-537))))) (-15 -2607 ((-606 $) (-905 (-537)))) (-15 -3633 ($ $ (-874))) (-15 -3633 ($ $)) (-15 -3633 ($ (-391 (-537)))) (-15 -3633 ($ (-537))) (-15 -3218 ($ $ (-816))) (-15 -4257 ($ $ (-816))) (-15 -4150 ((-391 (-537)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 #1=(-537)) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-395 (-391 (-537))) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 #1#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 #1#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-873) . T) ((-954) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) |has| (-391 (-537)) (-989 (-537))) ((-1004 #0#) . T) ((-1004 #1#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-1274 (((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-965 |#1| |#2|) (-10 -7 (-15 -1274 ((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-27) (-414 |#1|))) (T -965)) -((-1274 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-606 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1139) (-27) (-414 *8))) (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) (-5 *3 (-537)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111)))) (-5 *1 (-965 *8 *4))))) -(-10 -7 (-15 -1274 ((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3914 (((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-966 |#1| |#2|) (-10 -7 (-15 -3914 ((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-27) (-414 |#1|))) (T -966)) -((-3914 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-606 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1139) (-27) (-414 *8))) (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) (-5 *3 (-537)) (-5 *2 (-606 *4)) (-5 *1 (-966 *8 *4))))) -(-10 -7 (-15 -3914 ((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2694 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)) 30)) (-2799 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|)) 58)) (-3305 (((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|)) 63))) -(((-967 |#1| |#2|) (-10 -7 (-15 -2799 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|))) (-15 -2694 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -967)) -((-2694 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 *4))) (-5 *4 (-537)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-967 *6 *3)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |ans| (-391 *5)) (|:| |nosol| (-111)))) (-5 *1 (-967 *4 *5)) (-5 *3 (-391 *5)))) (-2799 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |c| (-391 *6)) (|:| -4065 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-391 *6))))) -(-10 -7 (-15 -2799 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|))) (-15 -2694 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)))) -((-2802 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|)) 22)) (-2726 (((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)) 33))) -(((-968 |#1| |#2|) (-10 -7 (-15 -2802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -2726 ((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -968)) -((-2726 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-391 *5))) (-5 *1 (-968 *4 *5)) (-5 *3 (-391 *5)))) (-2802 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |h| *6) (|:| |c1| (-391 *6)) (|:| |c2| (-391 *6)) (|:| -4065 *6))) (-5 *1 (-968 *5 *6)) (-5 *3 (-391 *6))))) -(-10 -7 (-15 -2802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -2726 ((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)))) -((-3728 (((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537))))) 37)) (-3097 (((-1 |#1|) (-1047 |#1|)) 45)) (-3873 (((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)) 34))) -(((-969 |#1|) (-10 -7 (-15 -3097 ((-1 |#1|) (-1047 |#1|))) (-15 -3728 ((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537)))))) (-15 -3873 ((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)))) (-1045)) (T -969)) -((-3873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1200 *6)) (-5 *4 (-1200 (-537))) (-5 *5 (-537)) (-4 *6 (-1045)) (-5 *2 (-1 *6)) (-5 *1 (-969 *6)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3619 *4) (|:| -3073 (-537))))) (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1047 *4)) (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4))))) -(-10 -7 (-15 -3097 ((-1 |#1|) (-1047 |#1|))) (-15 -3728 ((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537)))))) (-15 -3873 ((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)))) -((-4231 (((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-13 (-352) (-347))) (T -970)) -((-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-4 *4 (-1176 (-391 *7))) (-4 *8 (-326 *6 *7 *4)) (-4 *9 (-13 (-352) (-347))) (-5 *2 (-731)) (-5 *1 (-970 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3878 (((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 31) (((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 28)) (-2073 (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 33) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537))) 29) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 32) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|) 27)) (-2781 (((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) 19)) (-3430 (((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 16))) -(((-971 |#1|) (-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -3430 ((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2781 ((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))))) (-1176 (-537))) (T -971)) -((-2781 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *2 (-606 (-391 (-537)))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537))))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *2 (-391 (-537))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537))))) (-3878 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) (-3878 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *4 (-391 (-537))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-391 (-537))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537)))))) -(-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -3430 ((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2781 ((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))))) -((-3878 (((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 35) (((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 32)) (-2073 (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 30) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537))) 26) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 28) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|) 24))) -(((-972 |#1|) (-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-1176 (-391 (-537)))) (T -972)) -((-3878 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) (-3878 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *4 (-391 (-537))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *5)) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *4) (|:| -3278 *4)))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))) (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537))))))) -(-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) -((-3996 (((-210) $) 6) (((-363) $) 9))) -(((-973) (-134)) (T -973)) -NIL -(-13 (-580 (-210)) (-580 (-363))) -(((-580 (-210)) . T) ((-580 (-363)) . T)) -((-1895 (((-606 (-363)) (-905 (-537)) (-363)) 28) (((-606 (-363)) (-905 (-391 (-537))) (-363)) 27)) (-2465 (((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363)) 37))) -(((-974) (-10 -7 (-15 -1895 ((-606 (-363)) (-905 (-391 (-537))) (-363))) (-15 -1895 ((-606 (-363)) (-905 (-537)) (-363))) (-15 -2465 ((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363))))) (T -974)) -((-2465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-363)))) (-5 *1 (-974)) (-5 *5 (-363)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) (-5 *4 (-363)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) (-5 *4 (-363))))) -(-10 -7 (-15 -1895 ((-606 (-363)) (-905 (-391 (-537))) (-363))) (-15 -1895 ((-606 (-363)) (-905 (-537)) (-363))) (-15 -2465 ((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 70)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL) (($ $ (-874)) NIL) (($ (-391 (-537))) NIL) (($ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) 65)) (-3832 (($) NIL T CONST)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) NIL) (((-3 $ "failed") (-1113 $) (-874)) 50)) (-1516 (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-537) "failed") $) NIL (-1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))))) (-3958 (((-391 (-537)) $) 15 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-391 (-537)) $) 15) ((|#1| $) 108) (((-537) $) NIL (-1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))))) (-3218 (($ $ (-816)) 42)) (-4257 (($ $ (-816)) 43)) (-3563 (($ $ $) NIL)) (-3962 (((-391 (-537)) $ $) 19)) (-3490 (((-3 $ "failed") $) 83)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) 61)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2840 (((-111) $) 64)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-3695 (((-3 (-1113 $) "failed") $) 78)) (-1585 (((-3 (-816) "failed") $) 77)) (-1304 (((-3 (-1113 $) "failed") $) 75)) (-1812 (((-3 (-1008 $ (-1113 $)) "failed") $) 73)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 84)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) 82) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ $) 58) (($ (-391 (-537))) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 110)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ $) 25)) (-2607 (((-606 $) (-1113 $)) 56) (((-606 $) (-1113 (-391 (-537)))) NIL) (((-606 $) (-1113 (-537))) NIL) (((-606 $) (-905 $)) NIL) (((-606 $) (-905 (-391 (-537)))) NIL) (((-606 $) (-905 (-537))) NIL)) (-1638 (($ (-1008 $ (-1113 $)) (-816)) 41)) (-2209 (($ $) 20)) (-2928 (($) 29 T CONST)) (-2943 (($) 35 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 71)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 22)) (-2340 (($ $ $) 33)) (-2329 (($ $) 34) (($ $ $) 69)) (-2318 (($ $ $) 103)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 91) (($ $ $) 96) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ (-537) $) 91) (($ $ (-537)) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-975 |#1|) (-13 (-964) (-395 |#1|) (-37 |#1|) (-10 -8 (-15 -1638 ($ (-1008 $ (-1113 $)) (-816))) (-15 -1812 ((-3 (-1008 $ (-1113 $)) "failed") $)) (-15 -3962 ((-391 (-537)) $ $)))) (-13 (-805) (-347) (-973))) (T -975)) -((-1638 (*1 *1 *2 *3) (-12 (-5 *2 (-1008 (-975 *4) (-1113 (-975 *4)))) (-5 *3 (-816)) (-5 *1 (-975 *4)) (-4 *4 (-13 (-805) (-347) (-973))))) (-1812 (*1 *2 *1) (|partial| -12 (-5 *2 (-1008 (-975 *3) (-1113 (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973))))) (-3962 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973)))))) -(-13 (-964) (-395 |#1|) (-37 |#1|) (-10 -8 (-15 -1638 ($ (-1008 $ (-1113 $)) (-816))) (-15 -1812 ((-3 (-1008 $ (-1113 $)) "failed") $)) (-15 -3962 ((-391 (-537)) $ $)))) -((-2982 (((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-976 |#1| |#2|) (-10 -7 (-15 -2982 (|#2| |#2| |#1|)) (-15 -2982 ((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)))) (-347) (-617 |#1|)) (T -976)) -((-2982 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| -4113 *3) (|:| -4157 (-606 *5)))) (-5 *1 (-976 *5 *3)) (-5 *4 (-606 *5)) (-4 *3 (-617 *5)))) (-2982 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-976 *3 *2)) (-4 *2 (-617 *3))))) -(-10 -7 (-15 -2982 (|#2| |#2| |#1|)) (-15 -2982 ((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3004 ((|#1| $ |#1|) 14)) (-2476 ((|#1| $ |#1|) 12)) (-1567 (($ |#1|) 10)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1922 ((|#1| $) 11)) (-2958 ((|#1| $) 13)) (-2341 (((-816) $) 21 (|has| |#1| (-1045)))) (-2244 (((-111) $ $) 9))) -(((-977 |#1|) (-13 (-1154) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1922 (|#1| $)) (-15 -2476 (|#1| $ |#1|)) (-15 -2958 (|#1| $)) (-15 -3004 (|#1| $ |#1|)) (-15 -2244 ((-111) $ $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -977)) -((-1567 (*1 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2958 (*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-3004 (*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-977 *3)) (-4 *3 (-1154))))) -(-13 (-1154) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1922 (|#1| $)) (-15 -2476 (|#1| $ |#1|)) (-15 -2958 (|#1| $)) (-15 -3004 (|#1| $ |#1|)) (-15 -2244 ((-111) $ $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 105) (((-606 $) (-606 |#4|) (-111)) 106) (((-606 $) (-606 |#4|) (-111) (-111)) 104) (((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 99)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 54)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) 57)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3165 (((-111) |#4| $) NIL)) (-3398 (((-111) |#4| $) NIL)) (-2479 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1819 (((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111)) 119)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) NIL)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 97)) (-2375 (((-3 |#4| "failed") $) 37)) (-3826 (((-606 $) |#4| $) 80)) (-2806 (((-3 (-111) (-606 $)) |#4| $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3891 (((-606 $) |#4| $) 102) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 103) (((-606 $) |#4| (-606 $)) NIL)) (-2755 (((-606 $) (-606 |#4|) (-111) (-111) (-111)) 114)) (-3357 (($ |#4| $) 70) (($ (-606 |#4|) $) 71) (((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 48)) (-1540 (($ $ |#4|) NIL) (((-606 $) |#4| $) 82) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 77)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-3014 (((-606 $) |#4| $) 79) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3161 (((-111) |#4| $) NIL)) (-3042 (((-111) |#3| $) 53)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-978 |#1| |#2| |#3| |#4|) (-13 (-1018 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -978)) -((-3357 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *3))) (-5 *1 (-978 *5 *6 *7 *3)) (-4 *3 (-1012 *5 *6 *7)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-3448 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-1819 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-978 *5 *6 *7 *8))))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) -(-13 (-1018 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) -((-3226 (((-606 (-649 |#1|)) (-606 (-649 |#1|))) 58) (((-649 |#1|) (-649 |#1|)) 57) (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|))) 56) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 53)) (-2081 (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874)) 52) (((-649 |#1|) (-649 |#1|) (-874)) 51)) (-1245 (((-606 (-649 (-537))) (-606 (-606 (-537)))) 68) (((-606 (-649 (-537))) (-606 (-858 (-537))) (-537)) 67) (((-649 (-537)) (-606 (-537))) 64) (((-649 (-537)) (-858 (-537)) (-537)) 63)) (-3917 (((-649 (-905 |#1|)) (-731)) 81)) (-1265 (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874)) 37 (|has| |#1| (-6 (-4302 "*")))) (((-649 |#1|) (-649 |#1|) (-874)) 35 (|has| |#1| (-6 (-4302 "*")))))) -(((-979 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-649 |#1|) (-649 |#1|) (-874))) |%noBranch|) (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) |%noBranch|) (-15 -3917 ((-649 (-905 |#1|)) (-731))) (-15 -2081 ((-649 |#1|) (-649 |#1|) (-874))) (-15 -2081 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) (-15 -3226 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -3226 ((-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1245 ((-649 (-537)) (-858 (-537)) (-537))) (-15 -1245 ((-649 (-537)) (-606 (-537)))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-858 (-537))) (-537))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-606 (-537)))))) (-998)) (T -979)) -((-1245 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-537)))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-858 (-537)))) (-5 *4 (-537)) (-5 *2 (-606 (-649 *4))) (-5 *1 (-979 *5)) (-4 *5 (-998)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-537))) (-5 *4 (-537)) (-5 *2 (-649 *4)) (-5 *1 (-979 *5)) (-4 *5 (-998)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-649 (-905 *4))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1265 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-1265 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-649 |#1|) (-649 |#1|) (-874))) |%noBranch|) (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) |%noBranch|) (-15 -3917 ((-649 (-905 |#1|)) (-731))) (-15 -2081 ((-649 |#1|) (-649 |#1|) (-874))) (-15 -2081 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) (-15 -3226 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -3226 ((-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1245 ((-649 (-537)) (-858 (-537)) (-537))) (-15 -1245 ((-649 (-537)) (-606 (-537)))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-858 (-537))) (-537))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-606 (-537)))))) -((-3742 (((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)) 50 (|has| |#1| (-291)))) (-3763 (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))) 76 (|has| |#1| (-347))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|)) 79 (|has| |#1| (-347)))) (-3531 (((-1200 |#1|) (-606 (-1200 |#1|)) (-537)) 93 (-12 (|has| |#1| (-347)) (|has| |#1| (-352))))) (-2359 (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874)) 85 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111)) 83 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|))) 82 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537)) 81 (-12 (|has| |#1| (-347)) (|has| |#1| (-352))))) (-1651 (((-111) (-606 (-649 |#1|))) 71 (|has| |#1| (-347))) (((-111) (-606 (-649 |#1|)) (-537)) 73 (|has| |#1| (-347)))) (-2072 (((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|)) 48 (|has| |#1| (-291)))) (-2832 (((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|)) 34)) (-3437 (((-649 |#1|) (-1200 (-1200 |#1|))) 31)) (-1933 (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537)) 65 (|has| |#1| (-347))) (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|))) 64 (|has| |#1| (-347))) (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537)) 69 (|has| |#1| (-347))))) -(((-980 |#1|) (-10 -7 (-15 -3437 ((-649 |#1|) (-1200 (-1200 |#1|)))) (-15 -2832 ((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-291)) (PROGN (-15 -2072 ((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3742 ((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))))) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#1| (-347)) (PROGN (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874))) (-15 -3531 ((-1200 |#1|) (-606 (-1200 |#1|)) (-537)))) |%noBranch|) |%noBranch|)) (-998)) (T -980)) -((-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1200 *5))) (-5 *4 (-537)) (-5 *2 (-1200 *5)) (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-2359 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *4 (-352)) (-4 *4 (-998)) (-5 *2 (-606 (-606 (-649 *4)))) (-5 *1 (-980 *4)) (-5 *3 (-606 (-649 *4))))) (-2359 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-537)) (-4 *6 (-347)) (-4 *6 (-352)) (-4 *6 (-998)) (-5 *2 (-606 (-606 (-649 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-606 (-649 *6))))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1200 (-1200 *5))) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *5)))) (-1933 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-998)))) (-1933 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-5 *1 (-980 *4)) (-4 *4 (-347)) (-4 *4 (-998)))) (-1933 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-606 (-649 *6))) (-5 *4 (-111)) (-5 *5 (-537)) (-5 *2 (-649 *6)) (-5 *1 (-980 *6)) (-4 *6 (-347)) (-4 *6 (-998)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-1200 *5)) (-4 *5 (-291)) (-4 *5 (-998)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-4 *5 (-291)) (-4 *5 (-998)) (-5 *2 (-1200 (-1200 *5))) (-5 *1 (-980 *5)) (-5 *4 (-1200 *5)))) (-2832 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-980 *4)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-1200 (-1200 *4))) (-4 *4 (-998)) (-5 *2 (-649 *4)) (-5 *1 (-980 *4))))) -(-10 -7 (-15 -3437 ((-649 |#1|) (-1200 (-1200 |#1|)))) (-15 -2832 ((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-291)) (PROGN (-15 -2072 ((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3742 ((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))))) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#1| (-347)) (PROGN (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874))) (-15 -3531 ((-1200 |#1|) (-606 (-1200 |#1|)) (-537)))) |%noBranch|) |%noBranch|)) -((-3737 ((|#1| (-874) |#1|) 9))) -(((-981 |#1|) (-10 -7 (-15 -3737 (|#1| (-874) |#1|))) (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $))))) (T -981)) -((-3737 (*1 *2 *3 *2) (-12 (-5 *3 (-874)) (-5 *1 (-981 *2)) (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)))))))) -(-10 -7 (-15 -3737 (|#1| (-874) |#1|))) -((-4005 (((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537))))) 59)) (-2770 (((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537))))) 48)) (-2132 (((-606 (-300 (-537))) (-649 (-391 (-905 (-537))))) 41)) (-3508 (((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537))))) 68)) (-1837 (((-649 (-300 (-537))) (-649 (-300 (-537)))) 34)) (-2338 (((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537))))) 62)) (-2808 (((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537))))) 66))) -(((-982) (-10 -7 (-15 -4005 ((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537)))))) (-15 -2770 ((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537)))))) (-15 -2132 ((-606 (-300 (-537))) (-649 (-391 (-905 (-537)))))) (-15 -2808 ((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537)))))) (-15 -1837 ((-649 (-300 (-537))) (-649 (-300 (-537))))) (-15 -2338 ((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537)))))) (-15 -3508 ((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537)))))))) (T -982)) -((-3508 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982)))) (-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-300 (-537)))) (-5 *1 (-982)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)) (-5 *3 (-300 (-537))))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537)))))))) (-5 *1 (-982))))) -(-10 -7 (-15 -4005 ((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537)))))) (-15 -2770 ((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537)))))) (-15 -2132 ((-606 (-300 (-537))) (-649 (-391 (-905 (-537)))))) (-15 -2808 ((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537)))))) (-15 -1837 ((-649 (-300 (-537))) (-649 (-300 (-537))))) (-15 -2338 ((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537)))))) (-15 -3508 ((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537))))))) -((-2521 ((|#1| |#1| (-874)) 9))) -(((-983 |#1|) (-10 -7 (-15 -2521 (|#1| |#1| (-874)))) (-13 (-1045) (-10 -8 (-15 * ($ $ $))))) (T -983)) -((-2521 (*1 *2 *2 *3) (-12 (-5 *3 (-874)) (-5 *1 (-983 *2)) (-4 *2 (-13 (-1045) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2521 (|#1| |#1| (-874)))) -((-2341 ((|#1| (-296)) 11) (((-1205) |#1|) 9))) -(((-984 |#1|) (-10 -7 (-15 -2341 ((-1205) |#1|)) (-15 -2341 (|#1| (-296)))) (-1154)) (T -984)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-984 *2)) (-4 *2 (-1154)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-984 *3)) (-4 *3 (-1154))))) -(-10 -7 (-15 -2341 ((-1205) |#1|)) (-15 -2341 (|#1| (-296)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ |#4|) 25)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3183 ((|#4| $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 46) (($ (-537)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3654 (((-731)) 43)) (-2928 (($) 21 T CONST)) (-2943 (($) 23 T CONST)) (-2244 (((-111) $ $) 40)) (-2329 (($ $) 31) (($ $ $) NIL)) (-2318 (($ $ $) 29)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-985 |#1| |#2| |#3| |#4| |#5|) (-13 (-163) (-37 |#1|) (-10 -8 (-15 -3195 ($ |#4|)) (-15 -2341 ($ |#4|)) (-15 -3183 (|#4| $)))) (-347) (-753) (-807) (-902 |#1| |#2| |#3|) (-606 |#4|)) (T -985)) -((-3195 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) (-14 *6 (-606 *2)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) (-14 *6 (-606 *2)))) (-3183 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-14 *6 (-606 *2))))) -(-13 (-163) (-37 |#1|) (-10 -8 (-15 -3195 ($ |#4|)) (-15 -2341 ($ |#4|)) (-15 -3183 (|#4| $)))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1117) (-1117)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-1848 (((-111) (-111)) 39)) (-2119 (((-111) (-111)) 38)) (-2476 (((-51) $ (-1117) (-51)) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1117) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1117) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1117)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1117) $) NIL (|has| (-1117) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1117) $) NIL (|has| (-1117) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1117)) $) 34)) (-4011 (((-111) (-1117) $) NIL)) (-2783 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-1270 (((-606 (-1117)) $) NIL)) (-1641 (((-111) (-1117) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3188 (((-51) $) NIL (|has| (-1117) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1117)) 35) (((-51) $ (-1117) (-51)) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2341 (((-816) $) 37 (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-986) (-13 (-1130 (-1117) (-51)) (-10 -7 (-15 -1848 ((-111) (-111))) (-15 -2119 ((-111) (-111))) (-6 -4300)))) (T -986)) -((-1848 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986)))) (-2119 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) -(-13 (-1130 (-1117) (-51)) (-10 -7 (-15 -1848 ((-111) (-111))) (-15 -2119 ((-111) (-111))) (-6 -4300))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-987) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $))))) (T -987)) -((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-987))))) -(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)))) -((-3958 ((|#2| $) 10))) -(((-988 |#1| |#2|) (-10 -8 (-15 -3958 (|#2| |#1|))) (-989 |#2|) (-1154)) (T -988)) -NIL -(-10 -8 (-15 -3958 (|#2| |#1|))) -((-1516 (((-3 |#1| "failed") $) 7)) (-3958 ((|#1| $) 8)) (-2341 (($ |#1|) 6))) -(((-989 |#1|) (-134) (-1154)) (T -989)) -((-3958 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) (-1516 (*1 *2 *1) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154))))) -(-13 (-10 -8 (-15 -2341 ($ |t#1|)) (-15 -1516 ((-3 |t#1| "failed") $)) (-15 -3958 (|t#1| $)))) -((-2682 (((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))) 38))) -(((-990 |#1| |#2|) (-10 -7 (-15 -2682 ((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))))) (-529) (-13 (-529) (-989 |#1|))) (T -990)) -((-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-13 (-529) (-989 *5))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *6)))))) (-5 *1 (-990 *5 *6))))) -(-10 -7 (-15 -2682 ((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))))) -((-3266 (((-363)) 15)) (-3097 (((-1 (-363)) (-363) (-363)) 20)) (-4065 (((-1 (-363)) (-731)) 43)) (-3158 (((-363)) 34)) (-2559 (((-1 (-363)) (-363) (-363)) 35)) (-3564 (((-363)) 26)) (-3431 (((-1 (-363)) (-363)) 27)) (-4007 (((-363) (-731)) 38)) (-2137 (((-1 (-363)) (-731)) 39)) (-1393 (((-1 (-363)) (-731) (-731)) 42)) (-2611 (((-1 (-363)) (-731) (-731)) 40))) -(((-991) (-10 -7 (-15 -3266 ((-363))) (-15 -3158 ((-363))) (-15 -3564 ((-363))) (-15 -4007 ((-363) (-731))) (-15 -3097 ((-1 (-363)) (-363) (-363))) (-15 -2559 ((-1 (-363)) (-363) (-363))) (-15 -3431 ((-1 (-363)) (-363))) (-15 -2137 ((-1 (-363)) (-731))) (-15 -2611 ((-1 (-363)) (-731) (-731))) (-15 -1393 ((-1 (-363)) (-731) (-731))) (-15 -4065 ((-1 (-363)) (-731))))) (T -991)) -((-4065 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-1393 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-2611 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-3431 (*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-2559 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-3097 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-363)) (-5 *1 (-991)))) (-3564 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991)))) (-3158 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991)))) (-3266 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) -(-10 -7 (-15 -3266 ((-363))) (-15 -3158 ((-363))) (-15 -3564 ((-363))) (-15 -4007 ((-363) (-731))) (-15 -3097 ((-1 (-363)) (-363) (-363))) (-15 -2559 ((-1 (-363)) (-363) (-363))) (-15 -3431 ((-1 (-363)) (-363))) (-15 -2137 ((-1 (-363)) (-731))) (-15 -2611 ((-1 (-363)) (-731) (-731))) (-15 -1393 ((-1 (-363)) (-731) (-731))) (-15 -4065 ((-1 (-363)) (-731)))) -((-3622 (((-402 |#1|) |#1|) 33))) -(((-992 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|))) (-1176 (-391 (-905 (-537))))) (T -992)) -((-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1176 (-391 (-905 (-537)))))))) -(-10 -7 (-15 -3622 ((-402 |#1|) |#1|))) -((-2691 (((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))) 14))) -(((-993 |#1|) (-10 -7 (-15 -2691 ((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))))) (-291)) (T -993)) -((-2691 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-291)) (-5 *2 (-391 (-402 (-905 *4)))) (-5 *1 (-993 *4))))) -(-10 -7 (-15 -2691 ((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))))) -((-3757 (((-606 (-1117)) (-391 (-905 |#1|))) 17)) (-3588 (((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117)) 24)) (-3746 (((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117)) 26)) (-1310 (((-3 (-1117) "failed") (-391 (-905 |#1|))) 20)) (-4116 (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|))))) 32) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 33) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|)))) 28) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))) 29)) (-2341 (((-391 (-905 |#1|)) |#1|) 11))) -(((-994 |#1|) (-10 -7 (-15 -3757 ((-606 (-1117)) (-391 (-905 |#1|)))) (-15 -1310 ((-3 (-1117) "failed") (-391 (-905 |#1|)))) (-15 -3588 ((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -3746 ((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -2341 ((-391 (-905 |#1|)) |#1|))) (-529)) (T -994)) -((-2341 (*1 *2 *3) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-994 *3)) (-4 *3 (-529)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-5 *2 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-5 *2 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-4116 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-5 *4 (-606 (-391 (-905 *5)))) (-5 *2 (-391 (-905 *5))) (-4 *5 (-529)) (-5 *1 (-994 *5)))) (-4116 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-1113 (-391 (-905 *5))))) (-5 *4 (-1117)) (-5 *2 (-391 (-905 *5))) (-5 *1 (-994 *5)) (-4 *5 (-529)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-391 (-1113 (-391 (-905 *5))))) (-5 *1 (-994 *5)) (-5 *3 (-391 (-905 *5))))) (-1310 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-1117)) (-5 *1 (-994 *4)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-1117))) (-5 *1 (-994 *4))))) -(-10 -7 (-15 -3757 ((-606 (-1117)) (-391 (-905 |#1|)))) (-15 -1310 ((-3 (-1117) "failed") (-391 (-905 |#1|)))) (-15 -3588 ((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -3746 ((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -2341 ((-391 (-905 |#1|)) |#1|))) -((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 (-740 |#1| (-818 |#2|)))))) (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3448 (((-606 $) (-606 (-740 |#1| (-818 |#2|)))) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111)) NIL)) (-3757 (((-606 (-818 |#2|)) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-4186 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1395 (((-606 (-2 (|:| |val| (-740 |#1| (-818 |#2|))) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ (-818 |#2|)) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 (-740 |#1| (-818 |#2|)) "failed") $ (-818 |#2|)) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3801 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3958 (($ (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3200 (((-3 $ "failed") $) NIL)) (-2627 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-2355 (($ (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-740 |#1| (-818 |#2|))) (|:| |den| |#1|)) (-740 |#1| (-818 |#2|)) $) NIL (|has| |#1| (-529)))) (-1369 (((-111) (-740 |#1| (-818 |#2|)) $ (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3946 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-3195 (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $ (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $ (-740 |#1| (-818 |#2|))) NIL (|has| $ (-6 -4300))) (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-2702 (((-2 (|:| -2337 (-606 (-740 |#1| (-818 |#2|)))) (|:| -3309 (-606 (-740 |#1| (-818 |#2|))))) $) NIL)) (-3165 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3398 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-2479 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-3661 (((-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3201 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-1464 (((-818 |#2|) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-4081 (($ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL)) (-2901 (((-606 (-818 |#2|)) $) NIL)) (-3726 (((-111) (-818 |#2|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 (-740 |#1| (-818 |#2|)) (-606 $)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1842 (((-606 (-2 (|:| |val| (-740 |#1| (-818 |#2|))) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2375 (((-3 (-740 |#1| (-818 |#2|)) "failed") $) NIL)) (-3826 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL)) (-2806 (((-3 (-111) (-606 $)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3891 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL)) (-3357 (($ (-740 |#1| (-818 |#2|)) $) NIL) (($ (-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-2422 (((-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-3812 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-3787 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| (-740 |#1| (-818 |#2|))) (|:| |den| |#1|)) (-740 |#1| (-818 |#2|)) $) NIL (|has| |#1| (-529)))) (-2524 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-2021 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 (-740 |#1| (-818 |#2|)) "failed") $) NIL)) (-1266 (((-3 (-740 |#1| (-818 |#2|)) "failed") (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL)) (-3389 (((-3 $ "failed") $ (-740 |#1| (-818 |#2|))) NIL)) (-1540 (($ $ (-740 |#1| (-818 |#2|))) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL)) (-3206 (((-111) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|)))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-278 (-740 |#1| (-818 |#2|)))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-606 (-278 (-740 |#1| (-818 |#2|))))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-2872 (((-731) $) NIL)) (-2539 (((-731) (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (((-731) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-740 |#1| (-818 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-1713 (($ $ (-818 |#2|)) NIL)) (-2488 (($ $ (-818 |#2|)) NIL)) (-2830 (($ $) NIL)) (-1449 (($ $ (-818 |#2|)) NIL)) (-2341 (((-816) $) NIL) (((-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-3458 (((-731) $) NIL (|has| (-818 |#2|) (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 (-740 |#1| (-818 |#2|))))) "failed") (-606 (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 (-740 |#1| (-818 |#2|))))) "failed") (-606 (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3893 (((-111) $ (-1 (-111) (-740 |#1| (-818 |#2|)) (-606 (-740 |#1| (-818 |#2|))))) NIL)) (-3014 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 (-818 |#2|)) $) NIL)) (-3161 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3042 (((-111) (-818 |#2|) $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-995 |#1| |#2|) (-13 (-1018 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) (-10 -8 (-15 -3448 ((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111))))) (-435) (-606 (-1117))) (T -995)) -((-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-995 *5 *6))))) -(-13 (-1018 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) (-10 -8 (-15 -3448 ((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111))))) -((-3097 (((-1 (-537)) (-1040 (-537))) 33)) (-1584 (((-537) (-537) (-537) (-537) (-537)) 30)) (-1872 (((-1 (-537)) |RationalNumber|) NIL)) (-2995 (((-1 (-537)) |RationalNumber|) NIL)) (-2360 (((-1 (-537)) (-537) |RationalNumber|) NIL))) -(((-996) (-10 -7 (-15 -3097 ((-1 (-537)) (-1040 (-537)))) (-15 -2360 ((-1 (-537)) (-537) |RationalNumber|)) (-15 -1872 ((-1 (-537)) |RationalNumber|)) (-15 -2995 ((-1 (-537)) |RationalNumber|)) (-15 -1584 ((-537) (-537) (-537) (-537) (-537))))) (T -996)) -((-1584 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-996)))) (-2995 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)))) (-1872 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)) (-5 *3 (-537)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1040 (-537))) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) -(-10 -7 (-15 -3097 ((-1 (-537)) (-1040 (-537)))) (-15 -2360 ((-1 (-537)) (-537) |RationalNumber|)) (-15 -1872 ((-1 (-537)) |RationalNumber|)) (-15 -2995 ((-1 (-537)) |RationalNumber|)) (-15 -1584 ((-537) (-537) (-537) (-537) (-537)))) -((-2341 (((-816) $) NIL) (($ (-537)) 10))) -(((-997 |#1|) (-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-998)) (T -997)) -NIL -(-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-998) (-134)) (T -998)) -((-3654 (*1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-998))))) -(-13 (-1005) (-687) (-609 $) (-10 -8 (-15 -3654 ((-731))) (-15 -2341 ($ (-537))) (-6 -4297))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-3568 (((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)) 46))) -(((-999 |#1| |#2|) (-10 -7 (-15 -3568 ((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)))) (-1117) (-347)) (T -999)) -((-3568 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-731)) (-4 *6 (-347)) (-5 *2 (-391 (-905 *6))) (-5 *1 (-999 *5 *6)) (-14 *5 (-1117))))) -(-10 -7 (-15 -3568 ((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)))) -((-3234 (((-111) $) 29)) (-3348 (((-111) $) 16)) (-2931 (((-731) $) 13)) (-2945 (((-731) $) 14)) (-3400 (((-111) $) 26)) (-1830 (((-111) $) 31))) -(((-1000 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2945 ((-731) |#1|)) (-15 -2931 ((-731) |#1|)) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|))) (-1001 |#2| |#3| |#4| |#5| |#6|) (-731) (-731) (-998) (-223 |#3| |#4|) (-223 |#2| |#4|)) (T -1000)) -NIL -(-10 -8 (-15 -2945 ((-731) |#1|)) (-15 -2931 ((-731) |#1|)) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3234 (((-111) $) 51)) (-3418 (((-3 $ "failed") $ $) 19)) (-3348 (((-111) $) 53)) (-2506 (((-111) $ (-731)) 61)) (-3832 (($) 17 T CONST)) (-3630 (($ $) 34 (|has| |#3| (-291)))) (-2964 ((|#4| $ (-537)) 39)) (-3705 (((-731) $) 33 (|has| |#3| (-529)))) (-4030 ((|#3| $ (-537) (-537)) 41)) (-3661 (((-606 |#3|) $) 68 (|has| $ (-6 -4300)))) (-2342 (((-731) $) 32 (|has| |#3| (-529)))) (-2630 (((-606 |#5|) $) 31 (|has| |#3| (-529)))) (-2931 (((-731) $) 45)) (-2945 (((-731) $) 44)) (-1642 (((-111) $ (-731)) 60)) (-4111 (((-537) $) 49)) (-2454 (((-537) $) 47)) (-3703 (((-606 |#3|) $) 69 (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 48)) (-2485 (((-537) $) 46)) (-3299 (($ (-606 (-606 |#3|))) 54)) (-4081 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3156 (((-606 (-606 |#3|)) $) 43)) (-2489 (((-111) $ (-731)) 59)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-529)))) (-3206 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#3|) (-606 |#3|)) 75 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) 73 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 (-278 |#3|))) 72 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) 55)) (-2193 (((-111) $) 58)) (-3425 (($) 57)) (-1922 ((|#3| $ (-537) (-537)) 42) ((|#3| $ (-537) (-537) |#3|) 40)) (-3400 (((-111) $) 52)) (-2539 (((-731) |#3| $) 70 (-12 (|has| |#3| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4300)))) (-2494 (($ $) 56)) (-2198 ((|#5| $ (-537)) 38)) (-2341 (((-816) $) 11)) (-2030 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 50)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#3|) 35 (|has| |#3| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2258 (((-731) $) 62 (|has| $ (-6 -4300))))) -(((-1001 |#1| |#2| |#3| |#4| |#5|) (-134) (-731) (-731) (-998) (-223 |t#2| |t#3|) (-223 |t#1| |t#3|)) (T -1001)) -((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *5))) (-4 *5 (-998)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-606 (-606 *5))))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) (-4030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) (-1922 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *2 (-998)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *2 *7)) (-4 *6 (-998)) (-4 *7 (-223 *4 *6)) (-4 *2 (-223 *5 *6)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *7 *2)) (-4 *6 (-998)) (-4 *7 (-223 *5 *6)) (-4 *2 (-223 *4 *6)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-529)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-347)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-1001 *2 *3 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *2 *4)) (-4 *4 (-291)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-731)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-731)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-606 *7))))) -(-13 (-110 |t#3| |t#3|) (-471 |t#3|) (-10 -8 (-6 -4300) (IF (|has| |t#3| (-163)) (-6 (-678 |t#3|)) |%noBranch|) (-15 -3299 ($ (-606 (-606 |t#3|)))) (-15 -3348 ((-111) $)) (-15 -3400 ((-111) $)) (-15 -3234 ((-111) $)) (-15 -1830 ((-111) $)) (-15 -4111 ((-537) $)) (-15 -3126 ((-537) $)) (-15 -2454 ((-537) $)) (-15 -2485 ((-537) $)) (-15 -2931 ((-731) $)) (-15 -2945 ((-731) $)) (-15 -3156 ((-606 (-606 |t#3|)) $)) (-15 -1922 (|t#3| $ (-537) (-537))) (-15 -4030 (|t#3| $ (-537) (-537))) (-15 -1922 (|t#3| $ (-537) (-537) |t#3|)) (-15 -2964 (|t#4| $ (-537))) (-15 -2198 (|t#5| $ (-537))) (-15 -1612 ($ (-1 |t#3| |t#3|) $)) (-15 -1612 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-347)) (-15 -2340 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-291)) (-15 -3630 ($ $)) |%noBranch|) (IF (|has| |t#3| (-529)) (PROGN (-15 -3705 ((-731) $)) (-15 -2342 ((-731) $)) (-15 -2630 ((-606 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-100) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-579 (-816)) . T) ((-293 |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))) ((-471 |#3|) . T) ((-495 |#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))) ((-609 |#3|) . T) ((-678 |#3|) |has| |#3| (-163)) ((-1004 |#3|) . T) ((-1045) . T) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 43 (|has| |#3| (-291)))) (-2964 (((-225 |#2| |#3|) $ (-537)) 32)) (-3828 (($ (-649 |#3|)) 41)) (-3705 (((-731) $) 45 (|has| |#3| (-529)))) (-4030 ((|#3| $ (-537) (-537)) NIL)) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2342 (((-731) $) 47 (|has| |#3| (-529)))) (-2630 (((-606 (-225 |#1| |#3|)) $) 51 (|has| |#3| (-529)))) (-2931 (((-731) $) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#3|))) 27)) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3156 (((-606 (-606 |#3|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-529)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) (-537)) NIL) ((|#3| $ (-537) (-537) |#3|) NIL)) (-1839 (((-131)) 54 (|has| |#3| (-347)))) (-3400 (((-111) $) NIL)) (-2539 (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045)))) (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 63 (|has| |#3| (-580 (-513))))) (-2198 (((-225 |#1| |#3|) $ (-537)) 36)) (-2341 (((-816) $) 16) (((-649 |#3|) $) 38)) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2928 (($) 13 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1002 |#1| |#2| |#3|) (-13 (-1001 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-579 (-649 |#3|)) (-10 -8 (IF (|has| |#3| (-347)) (-6 (-1207 |#3|)) |%noBranch|) (IF (|has| |#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (-15 -3828 ($ (-649 |#3|))) (-15 -2341 ((-649 |#3|) $)))) (-731) (-731) (-998)) (T -1002)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-998)))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-998)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731))))) -(-13 (-1001 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-579 (-649 |#3|)) (-10 -8 (IF (|has| |#3| (-347)) (-6 (-1207 |#3|)) |%noBranch|) (IF (|has| |#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (-15 -3828 ($ (-649 |#3|))) (-15 -2341 ((-649 |#3|) $)))) -((-3195 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1612 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1003 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3195 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-731) (-731) (-998) (-223 |#2| |#3|) (-223 |#1| |#3|) (-1001 |#1| |#2| |#3| |#4| |#5|) (-998) (-223 |#2| |#7|) (-223 |#1| |#7|) (-1001 |#1| |#2| |#7| |#8| |#9|)) (T -1003)) -((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-998)) (-4 *2 (-998)) (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) (-4 *9 (-223 *5 *7)) (-4 *10 (-223 *6 *2)) (-4 *11 (-223 *5 *2)) (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *12 (-1001 *5 *6 *2 *10 *11)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-998)) (-4 *10 (-998)) (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) (-4 *9 (-223 *5 *7)) (-4 *2 (-1001 *5 *6 *10 *11 *12)) (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *11 (-223 *6 *10)) (-4 *12 (-223 *5 *10))))) -(-10 -7 (-15 -1612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3195 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ |#1|) 23))) -(((-1004 |#1|) (-134) (-1005)) (T -1004)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1005))))) +((-4160 (((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|) 16)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|) 18)) (-4275 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 13))) +(((-918 |#1| |#2|) (-10 -7 (-15 -4160 ((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4275 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1159) (-1159)) (T -918)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-918 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-917 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-917 *5)) (-5 *1 (-918 *6 *5))))) +(-10 -7 (-15 -4160 ((-917 |#2|) (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-917 |#1|) |#2|)) (-15 -4275 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) +((-3132 (($ $ (-1044 $)) 7) (($ $ (-1123)) 6))) +(((-919) (-134)) (T -919)) +((-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-919)))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-1123))))) +(-13 (-10 -8 (-15 -3132 ($ $ (-1123))) (-15 -3132 ($ $ (-1044 $))))) +((-3133 (((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)) 25) (((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123))) 26) (((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123)) 43))) +(((-920 |#1|) (-10 -7 (-15 -3133 ((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)))) (-13 (-348) (-141))) (T -920)) +((-3133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-5 *5 (-1123)) (-4 *6 (-13 (-348) (-141))) (-5 *2 (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *6))) (|:| |prim| (-1117 *6)))) (-5 *1 (-920 *6)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-348) (-141))) (-5 *2 (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *5))) (|:| |prim| (-1117 *5)))) (-5 *1 (-920 *5)))) (-3133 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1123)) (-4 *5 (-13 (-348) (-141))) (-5 *2 (-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 *5)))) (-5 *1 (-920 *5))))) +(-10 -7 (-15 -3133 ((-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 |#1|))) (-905 |#1|) (-1123) (-905 |#1|) (-1123))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)))) (-15 -3133 ((-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 |#1|))) (|:| |prim| (-1117 |#1|))) (-607 (-905 |#1|)) (-607 (-1123)) (-1123)))) +((-3136 (((-607 |#1|) |#1| |#1|) 42)) (-4045 (((-111) |#1|) 39)) (-3135 ((|#1| |#1|) 65)) (-3134 ((|#1| |#1|) 64))) +(((-921 |#1|) (-10 -7 (-15 -4045 ((-111) |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 ((-607 |#1|) |#1| |#1|))) (-525)) (T -921)) +((-3136 (*1 *2 *3 *3) (-12 (-5 *2 (-607 *3)) (-5 *1 (-921 *3)) (-4 *3 (-525)))) (-3135 (*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525)))) (-3134 (*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525)))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-921 *3)) (-4 *3 (-525))))) +(-10 -7 (-15 -4045 ((-111) |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 ((-607 |#1|) |#1| |#1|))) +((-3137 (((-1211) (-823)) 9))) +(((-922) (-10 -7 (-15 -3137 ((-1211) (-823))))) (T -922)) +((-3137 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-922))))) +(-10 -7 (-15 -3137 ((-1211) (-823)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (-2702 (($ $ $) 63 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (-1345 (((-3 $ "failed") $ $) 50 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (-3433 (((-735)) 34 (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3138 ((|#2| $) 21)) (-3139 ((|#1| $) 20)) (-3855 (($) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) CONST)) (-3781 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (-3294 (($) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-2471 (((-111) $) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (-3637 (($ $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3140 (($ |#1| |#2|) 19)) (-2102 (((-878) $) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 37 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-2461 (($ (-878)) NIL (-12 (|has| |#1| (-353)) (|has| |#2| (-353))))) (-3555 (((-1070) $) NIL)) (-3309 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-2655 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-4274 (((-823) $) 14)) (-2957 (($) 40 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) CONST)) (-2964 (($) 24 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))) CONST)) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-3353 (((-111) $ $) 18)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-2985 (((-111) $ $) 66 (-3850 (-12 (|has| |#1| (-757)) (|has| |#2| (-757))) (-12 (|has| |#1| (-811)) (|has| |#2| (-811)))))) (-4265 (($ $ $) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457))))) (-4156 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4158 (($ $ $) 43 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))))) (** (($ $ (-526)) NIL (-12 (|has| |#1| (-457)) (|has| |#2| (-457)))) (($ $ (-735)) 31 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))))) (($ $ (-878)) NIL (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691)))))) (* (($ (-526) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-735) $) 46 (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (($ (-878) $) NIL (-3850 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))) (($ $ $) 27 (-3850 (-12 (|has| |#1| (-457)) (|has| |#2| (-457))) (-12 (|has| |#1| (-691)) (|has| |#2| (-691))))))) +(((-923 |#1| |#2|) (-13 (-1052) (-10 -8 (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-691)) (IF (|has| |#2| (-691)) (-6 (-691)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-457)) (-6 (-457)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-811)) (IF (|has| |#2| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (-15 -3140 ($ |#1| |#2|)) (-15 -3139 (|#1| $)) (-15 -3138 (|#2| $)))) (-1052) (-1052)) (T -923)) +((-3140 (*1 *1 *2 *3) (-12 (-5 *1 (-923 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1052)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *3 *2)) (-4 *3 (-1052))))) +(-13 (-1052) (-10 -8 (IF (|has| |#1| (-353)) (IF (|has| |#2| (-353)) (-6 (-353)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-691)) (IF (|has| |#2| (-691)) (-6 (-691)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-457)) (-6 (-457)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-811)) (IF (|has| |#2| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (-15 -3140 ($ |#1| |#2|)) (-15 -3139 (|#1| $)) (-15 -3138 (|#2| $)))) +((-3721 (((-1054) $) 12)) (-3141 (($ (-1123) (-1054)) 13)) (-3864 (((-1123) $) 10)) (-4274 (((-823) $) 22))) +(((-924) (-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -3721 ((-1054) $)) (-15 -3141 ($ (-1123) (-1054)))))) (T -924)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-924)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-924)))) (-3141 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-924))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3864 ((-1123) $)) (-15 -3721 ((-1054) $)) (-15 -3141 ($ (-1123) (-1054))))) +((-3384 (((-1048 (-1123)) $) 19)) (-3152 (((-111) $) 26)) (-4150 (((-1123) $) 27)) (-3154 (((-111) $) 24)) (-3153 ((|#1| $) 25)) (-3146 (((-832 $ $) $) 34)) (-3147 (((-111) $) 33)) (-3156 (($ $ $) 12)) (-3150 (($ $) 29)) (-3151 (((-111) $) 28)) (-3636 (($ $) 10)) (-3144 (((-832 $ $) $) 36)) (-3145 (((-111) $) 35)) (-3157 (($ $ $) 13)) (-3142 (((-832 $ $) $) 38)) (-3143 (((-111) $) 37)) (-3158 (($ $ $) 14)) (-4274 (($ |#1|) 7) (($ (-1123)) 9) (((-823) $) 40 (|has| |#1| (-583 (-823))))) (-3148 (((-832 $ $) $) 32)) (-3149 (((-111) $) 30)) (-3155 (($ $ $) 11))) +(((-925 |#1|) (-13 (-926) (-10 -8 (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-1123))) (-15 -3384 ((-1048 (-1123)) $)) (-15 -3154 ((-111) $)) (-15 -3153 (|#1| $)) (-15 -3152 ((-111) $)) (-15 -4150 ((-1123) $)) (-15 -3151 ((-111) $)) (-15 -3150 ($ $)) (-15 -3149 ((-111) $)) (-15 -3148 ((-832 $ $) $)) (-15 -3147 ((-111) $)) (-15 -3146 ((-832 $ $) $)) (-15 -3145 ((-111) $)) (-15 -3144 ((-832 $ $) $)) (-15 -3143 ((-111) $)) (-15 -3142 ((-832 $ $) $)))) (-926)) (T -925)) +((-4274 (*1 *1 *2) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1048 (-1123))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3153 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(-13 (-926) (-10 -8 (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (-15 -4274 ($ |#1|)) (-15 -4274 ($ (-1123))) (-15 -3384 ((-1048 (-1123)) $)) (-15 -3154 ((-111) $)) (-15 -3153 (|#1| $)) (-15 -3152 ((-111) $)) (-15 -4150 ((-1123) $)) (-15 -3151 ((-111) $)) (-15 -3150 ($ $)) (-15 -3149 ((-111) $)) (-15 -3148 ((-832 $ $) $)) (-15 -3147 ((-111) $)) (-15 -3146 ((-832 $ $) $)) (-15 -3145 ((-111) $)) (-15 -3144 ((-832 $ $) $)) (-15 -3143 ((-111) $)) (-15 -3142 ((-832 $ $) $)))) +((-3156 (($ $ $) 8)) (-3636 (($ $) 6)) (-3157 (($ $ $) 9)) (-3158 (($ $ $) 10)) (-3155 (($ $ $) 7))) +(((-926) (-134)) (T -926)) +((-3158 (*1 *1 *1 *1) (-4 *1 (-926))) (-3157 (*1 *1 *1 *1) (-4 *1 (-926))) (-3156 (*1 *1 *1 *1) (-4 *1 (-926))) (-3155 (*1 *1 *1 *1) (-4 *1 (-926))) (-3636 (*1 *1 *1) (-4 *1 (-926)))) +(-13 (-10 -8 (-15 -3636 ($ $)) (-15 -3155 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3158 ($ $ $)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-3159 (($ $ $) 43)) (-3832 (($ $ $) 44)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3638 ((|#1| $) 45)) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-927 |#1|) (-134) (-811)) (T -927)) +((-3638 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3638 (|t#1| $)) (-15 -3832 ($ $ $)) (-15 -3159 ($ $ $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-3171 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 85)) (-4074 ((|#2| |#2| |#2|) 83)) (-3172 (((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 87)) (-3173 (((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|) 89)) (-3180 (((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|) 107 (|has| |#1| (-436)))) (-3187 (((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 46)) (-3161 (((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 64)) (-3162 (((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 66)) (-3170 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3165 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 71)) (-3175 (((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|) 97)) (-3168 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 74)) (-3177 (((-607 (-735)) |#2| |#2|) 82)) (-3185 ((|#1| |#2| |#2|) 42)) (-3179 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|) 105 (|has| |#1| (-436)))) (-3178 ((|#1| |#2| |#2|) 103 (|has| |#1| (-436)))) (-3186 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 44)) (-3160 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|) 63)) (-4075 ((|#1| |#2| |#2|) 61)) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|) 35)) (-3184 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3169 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3504 ((|#2| |#2| |#2|) 75)) (-3164 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 69)) (-3163 ((|#2| |#2| |#2| (-735)) 67)) (-3457 ((|#2| |#2| |#2|) 111 (|has| |#1| (-436)))) (-3780 (((-1205 |#2|) (-1205 |#2|) |#1|) 21)) (-3181 (((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|) 39)) (-3174 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|) 95)) (-4076 ((|#1| |#2|) 92)) (-3167 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735)) 73)) (-3166 ((|#2| |#2| |#2| (-735)) 72)) (-3176 (((-607 |#2|) |#2| |#2|) 80)) (-3183 ((|#2| |#2| |#1| |#1| (-735)) 50)) (-3182 ((|#1| |#1| |#1| (-735)) 49)) (* (((-1205 |#2|) |#1| (-1205 |#2|)) 16))) +(((-928 |#1| |#2|) (-10 -7 (-15 -4075 (|#1| |#2| |#2|)) (-15 -3160 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3161 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-735))) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3165 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3166 (|#2| |#2| |#2| (-735))) (-15 -3167 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3168 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3504 (|#2| |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3170 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4074 (|#2| |#2| |#2|)) (-15 -3171 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3172 ((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3173 ((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -4076 (|#1| |#2|)) (-15 -3174 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3175 ((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3176 ((-607 |#2|) |#2| |#2|)) (-15 -3177 ((-607 (-735)) |#2| |#2|)) (IF (|has| |#1| (-436)) (PROGN (-15 -3178 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3457 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1205 |#2|) |#1| (-1205 |#2|))) (-15 -3780 ((-1205 |#2|) (-1205 |#2|) |#1|)) (-15 -4071 ((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3181 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3182 (|#1| |#1| |#1| (-735))) (-15 -3183 (|#2| |#2| |#1| |#1| (-735))) (-15 -3184 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3185 (|#1| |#2| |#2|)) (-15 -3186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3187 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|))) (-533) (-1181 |#1|)) (T -928)) +((-3187 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3186 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3185 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3184 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3183 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3182 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *2 (-533)) (-5 *1 (-928 *2 *4)) (-4 *4 (-1181 *2)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4071 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -4270 *4) (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3780 (*1 *2 *2 *3) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) (-5 *1 (-928 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) (-5 *1 (-928 *3 *4)))) (-3457 (*1 *2 *2 *2) (-12 (-4 *3 (-436)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3180 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3179 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3178 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-4 *2 (-436)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-735))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3176 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4076 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4076 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4076 (*1 *2 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3172 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3171 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3457 *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4074 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3170 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3504 (*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) (-3168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3167 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3166 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4)))) (-3165 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3164 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5)))) (-3163 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-3160 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) +(-10 -7 (-15 -4075 (|#1| |#2| |#2|)) (-15 -3160 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3161 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2| (-735))) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3165 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3166 (|#2| |#2| |#2| (-735))) (-15 -3167 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3168 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-735))) (-15 -3504 (|#2| |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3170 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4074 (|#2| |#2| |#2|)) (-15 -3171 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3172 ((-2 (|:| |coef2| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -3173 ((-2 (|:| |coef1| |#2|) (|:| -3457 |#2|)) |#2| |#2|)) (-15 -4076 (|#1| |#2|)) (-15 -3174 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3175 ((-2 (|:| |coef2| |#2|) (|:| -4076 |#1|)) |#2|)) (-15 -3176 ((-607 |#2|) |#2| |#2|)) (-15 -3177 ((-607 (-735)) |#2| |#2|)) (IF (|has| |#1| (-436)) (PROGN (-15 -3178 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3180 ((-2 (|:| |coef2| |#2|) (|:| -3178 |#1|)) |#2| |#2|)) (-15 -3457 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1205 |#2|) |#1| (-1205 |#2|))) (-15 -3780 ((-1205 |#2|) (-1205 |#2|) |#1|)) (-15 -4071 ((-2 (|:| -4270 |#1|) (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3181 ((-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) |#2| |#2|)) (-15 -3182 (|#1| |#1| |#1| (-735))) (-15 -3183 (|#2| |#2| |#1| |#1| (-735))) (-15 -3184 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3185 (|#1| |#2| |#2|)) (-15 -3186 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|)) (-15 -3187 ((-2 (|:| |coef2| |#2|) (|:| -4075 |#1|)) |#2| |#2|))) +((-2865 (((-111) $ $) NIL)) (-3630 (((-1160) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-929) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $))))) (T -929)) +((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-929)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-929))))) +(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)) (-15 -3630 ((-1160) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) 27)) (-3855 (($) NIL T CONST)) (-3189 (((-607 (-607 (-526))) (-607 (-526))) 29)) (-3188 (((-526) $) 45)) (-3190 (($ (-607 (-526))) 17)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4287 (((-607 (-526)) $) 12)) (-3309 (($ $) 32)) (-4274 (((-823) $) 43) (((-607 (-526)) $) 10)) (-2957 (($) 7 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 19)) (-4158 (($ $ $) 21)) (* (($ (-878) $) NIL) (($ (-735) $) 25))) +(((-930) (-13 (-761) (-584 (-607 (-526))) (-10 -8 (-15 -3190 ($ (-607 (-526)))) (-15 -3189 ((-607 (-607 (-526))) (-607 (-526)))) (-15 -3188 ((-526) $)) (-15 -3309 ($ $)) (-15 -4274 ((-607 (-526)) $))))) (T -930)) +((-3190 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930)))) (-3189 (*1 *2 *3) (-12 (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-930)) (-5 *3 (-607 (-526))))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-930)))) (-3309 (*1 *1 *1) (-5 *1 (-930))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930))))) +(-13 (-761) (-584 (-607 (-526))) (-10 -8 (-15 -3190 ($ (-607 (-526)))) (-15 -3189 ((-607 (-607 (-526))) (-607 (-526)))) (-15 -3188 ((-526) $)) (-15 -3309 ($ $)) (-15 -4274 ((-607 (-526)) $)))) +((-4265 (($ $ |#2|) 30)) (-4156 (($ $) 22) (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-392 (-526)) $) 26) (($ $ (-392 (-526))) 28))) +(((-931 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4265 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) (-932 |#2| |#3| |#4|) (-1004) (-756) (-811)) (T -931)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-392 (-526)))) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 -4265 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 * (|#1| (-878) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 72)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3192 (((-111) $) 71)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-607 |#3|) (-607 |#2|)) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4264 ((|#2| $) 62)) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-932 |#1| |#2| |#3|) (-134) (-1004) (-756) (-811)) (T -932)) +((-3487 (*1 *2 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *3 (-756)) (-4 *4 (-811)) (-4 *2 (-1004)))) (-3194 (*1 *1 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *2 *4)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *2 (-756)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-932 *4 *3 *2)) (-4 *4 (-1004)) (-4 *3 (-756)) (-4 *2 (-811)))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 *5)) (-4 *1 (-932 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-756)) (-4 *6 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) (-5 *2 (-607 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3193 ($ $ |t#3| |t#2|)) (-15 -3193 ($ $ (-607 |t#3|) (-607 |t#2|))) (-15 -3194 ($ $)) (-15 -3487 (|t#1| $)) (-15 -4264 (|t#2| $)) (-15 -3384 ((-607 |t#3|) $)) (-15 -3192 ((-111) $)) (-15 -3191 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3195 (((-1041 (-211)) $) 8)) (-3196 (((-1041 (-211)) $) 9)) (-3197 (((-1041 (-211)) $) 10)) (-3198 (((-607 (-607 (-902 (-211)))) $) 11)) (-4274 (((-823) $) 6))) +(((-933) (-134)) (T -933)) +((-3198 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-607 (-607 (-902 (-211))))))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211))))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3198 ((-607 (-607 (-902 (-211)))) $)) (-15 -3197 ((-1041 (-211)) $)) (-15 -3196 ((-1041 (-211)) $)) (-15 -3195 ((-1041 (-211)) $)))) +(((-583 (-823)) . T)) +((-3384 (((-607 |#4|) $) 23)) (-3208 (((-111) $) 48)) (-3199 (((-111) $) 47)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#4|) 36)) (-3204 (((-111) $) 49)) (-3206 (((-111) $ $) 55)) (-3205 (((-111) $ $) 58)) (-3207 (((-111) $) 53)) (-3200 (((-607 |#5|) (-607 |#5|) $) 90)) (-3201 (((-607 |#5|) (-607 |#5|) $) 87)) (-3202 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3214 (((-607 |#4|) $) 27)) (-3213 (((-111) |#4| $) 30)) (-3203 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3210 (($ $ |#4|) 33)) (-3212 (($ $ |#4|) 32)) (-3211 (($ $ |#4|) 34)) (-3353 (((-111) $ $) 40))) +(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3199 ((-111) |#1|)) (-15 -3200 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3201 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3202 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3204 ((-111) |#1|)) (-15 -3205 ((-111) |#1| |#1|)) (-15 -3206 ((-111) |#1| |#1|)) (-15 -3207 ((-111) |#1|)) (-15 -3208 ((-111) |#1|)) (-15 -3209 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3213 ((-111) |#4| |#1|)) (-15 -3214 ((-607 |#4|) |#1|)) (-15 -3384 ((-607 |#4|) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-935 |#2| |#3| |#4| |#5|) (-1004) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -934)) +NIL +(-10 -8 (-15 -3199 ((-111) |#1|)) (-15 -3200 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3201 ((-607 |#5|) (-607 |#5|) |#1|)) (-15 -3202 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3204 ((-111) |#1|)) (-15 -3205 ((-111) |#1| |#1|)) (-15 -3206 ((-111) |#1| |#1|)) (-15 -3207 ((-111) |#1|)) (-15 -3208 ((-111) |#1|)) (-15 -3209 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3213 ((-111) |#4| |#1|)) (-15 -3214 ((-607 |#4|) |#1|)) (-15 -3384 ((-607 |#4|) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310)))) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310)))) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-3555 (((-1070) $) 10)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-935 |#1| |#2| |#3| |#4|) (-134) (-1004) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -935)) +((-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-1018 *3 *4 *2)) (-4 *2 (-811)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-3213 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *3 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) (-3212 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3211 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3210 (*1 *1 *1 *2) (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) (-4 *5 (-1018 *3 *4 *2)))) (-3209 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) (-4 *1 (-935 *4 *5 *3 *6)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3206 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3205 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3202 (*1 *2 *3 *1) (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3201 (*1 *2 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)))) (-3200 (*1 *2 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(-13 (-1052) (-145 |t#4|) (-583 (-607 |t#4|)) (-10 -8 (-6 -4310) (-15 -3470 ((-3 $ "failed") (-607 |t#4|))) (-15 -3469 ($ (-607 |t#4|))) (-15 -3493 (|t#3| $)) (-15 -3384 ((-607 |t#3|) $)) (-15 -3214 ((-607 |t#3|) $)) (-15 -3213 ((-111) |t#3| $)) (-15 -3212 ($ $ |t#3|)) (-15 -3211 ($ $ |t#3|)) (-15 -3210 ($ $ |t#3|)) (-15 -3209 ((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |t#3|)) (-15 -3208 ((-111) $)) (IF (|has| |t#1| (-533)) (PROGN (-15 -3207 ((-111) $)) (-15 -3206 ((-111) $ $)) (-15 -3205 ((-111) $ $)) (-15 -3204 ((-111) $)) (-15 -3203 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3202 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3201 ((-607 |t#4|) (-607 |t#4|) $)) (-15 -3200 ((-607 |t#4|) (-607 |t#4|) $)) (-15 -3199 ((-111) $))) |%noBranch|))) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-1052) . T) ((-1159) . T)) +((-3216 (((-607 |#4|) |#4| |#4|) 118)) (-3239 (((-607 |#4|) (-607 |#4|) (-111)) 107 (|has| |#1| (-436))) (((-607 |#4|) (-607 |#4|)) 108 (|has| |#1| (-436)))) (-3226 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 35)) (-3225 (((-111) |#4|) 34)) (-3238 (((-607 |#4|) |#4|) 103 (|has| |#1| (-436)))) (-3221 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|)) 20)) (-3222 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|)) 22)) (-3223 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|)) 23)) (-3234 (((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|)) 73)) (-3236 (((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3237 (((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3215 (((-607 |#4|) (-607 |#4|)) 110)) (-3231 (((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111)) 48) (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 50)) (-3232 ((|#4| |#4| (-607 |#4|)) 49)) (-3240 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 114 (|has| |#1| (-436)))) (-3242 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 117 (|has| |#1| (-436)))) (-3241 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 116 (|has| |#1| (-436)))) (-3217 (((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|))) 87) (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 89) (((-607 |#4|) (-607 |#4|) |#4|) 121) (((-607 |#4|) |#4| |#4|) 119) (((-607 |#4|) (-607 |#4|)) 88)) (-3245 (((-607 |#4|) (-607 |#4|) (-607 |#4|)) 100 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3224 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 41)) (-3220 (((-111) (-607 |#4|)) 62)) (-3219 (((-111) (-607 |#4|) (-607 (-607 |#4|))) 53)) (-3228 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 29)) (-3227 (((-111) |#4|) 28)) (-3244 (((-607 |#4|) (-607 |#4|)) 98 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3243 (((-607 |#4|) (-607 |#4|)) 99 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3233 (((-607 |#4|) (-607 |#4|)) 66)) (-3235 (((-607 |#4|) (-607 |#4|)) 79)) (-3218 (((-111) (-607 |#4|) (-607 |#4|)) 51)) (-3230 (((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|)) 39)) (-3229 (((-111) |#4|) 36))) +(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 ((-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) |#4| |#4|)) (-15 -3215 ((-607 |#4|) (-607 |#4|))) (-15 -3216 ((-607 |#4|) |#4| |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|)))) (-15 -3218 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3219 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3220 ((-111) (-607 |#4|))) (-15 -3221 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|))) (-15 -3222 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3223 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3224 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3225 ((-111) |#4|)) (-15 -3226 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3227 ((-111) |#4|)) (-15 -3228 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3229 ((-111) |#4|)) (-15 -3230 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111))) (-15 -3232 (|#4| |#4| (-607 |#4|))) (-15 -3233 ((-607 |#4|) (-607 |#4|))) (-15 -3234 ((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|))) (-15 -3235 ((-607 |#4|) (-607 |#4|))) (-15 -3236 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3237 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3238 ((-607 |#4|) |#4|)) (-15 -3239 ((-607 |#4|) (-607 |#4|))) (-15 -3239 ((-607 |#4|) (-607 |#4|) (-111))) (-15 -3240 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3241 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3242 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (PROGN (-15 -3243 ((-607 |#4|) (-607 |#4|))) (-15 -3244 ((-607 |#4|) (-607 |#4|))) (-15 -3245 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) |%noBranch|)) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -936)) +((-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3242 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3239 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3238 (*1 *2 *3) (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3237 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-936 *5 *6 *7 *8)))) (-3236 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-607 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *1 (-936 *6 *7 *8 *9)))) (-3235 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3234 (*1 *2 *3) (|partial| -12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-460 *4 *5 *6 *7)) (|:| -3643 (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *2)))) (-3231 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3231 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3227 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3224 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *5 *6 *7 *8)))) (-3218 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3217 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-607 *7) (-607 *7))) (-5 *2 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7)))) (-3217 (*1 *2 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *3)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3217 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(-10 -7 (-15 -3217 ((-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) |#4| |#4|)) (-15 -3215 ((-607 |#4|) (-607 |#4|))) (-15 -3216 ((-607 |#4|) |#4| |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) |#4|)) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3217 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-1 (-607 |#4|) (-607 |#4|)))) (-15 -3218 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3219 ((-111) (-607 |#4|) (-607 (-607 |#4|)))) (-15 -3220 ((-111) (-607 |#4|))) (-15 -3221 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-1 (-111) |#4|) (-607 |#4|))) (-15 -3222 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3223 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 (-1 (-111) |#4|)) (-607 |#4|))) (-15 -3224 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3225 ((-111) |#4|)) (-15 -3226 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3227 ((-111) |#4|)) (-15 -3228 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3229 ((-111) |#4|)) (-15 -3230 ((-2 (|:| |goodPols| (-607 |#4|)) (|:| |badPols| (-607 |#4|))) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3231 ((-607 |#4|) (-607 |#4|) (-607 |#4|) (-111))) (-15 -3232 (|#4| |#4| (-607 |#4|))) (-15 -3233 ((-607 |#4|) (-607 |#4|))) (-15 -3234 ((-3 (-2 (|:| |bas| (-460 |#1| |#2| |#3| |#4|)) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|))) (-15 -3235 ((-607 |#4|) (-607 |#4|))) (-15 -3236 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3237 ((-607 |#4|) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3238 ((-607 |#4|) |#4|)) (-15 -3239 ((-607 |#4|) (-607 |#4|))) (-15 -3239 ((-607 |#4|) (-607 |#4|) (-111))) (-15 -3240 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3241 ((-607 |#4|) (-607 |#4|) (-607 |#4|))) (-15 -3242 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (PROGN (-15 -3243 ((-607 |#4|) (-607 |#4|))) (-15 -3244 ((-607 |#4|) (-607 |#4|))) (-15 -3245 ((-607 |#4|) (-607 |#4|) (-607 |#4|)))) |%noBranch|) |%noBranch|)) +((-3246 (((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 19)) (-3248 (((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)) 36)) (-3247 (((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 16))) +(((-937 |#1|) (-10 -7 (-15 -3246 ((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3247 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3248 ((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)))) (-348)) (T -937)) +((-3248 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5))))) (-5 *1 (-937 *5)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)))) (-3247 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-653 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-937 *5)))) (-3246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| R (-653 *6)) (|:| A (-653 *6)) (|:| |Ainv| (-653 *6)))) (-5 *1 (-937 *6)) (-5 *3 (-653 *6))))) +(-10 -7 (-15 -3246 ((-2 (|:| R (-653 |#1|)) (|:| A (-653 |#1|)) (|:| |Ainv| (-653 |#1|))) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3247 ((-653 |#1|) (-653 |#1|) (-653 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -3248 ((-607 (-2 (|:| C (-653 |#1|)) (|:| |g| (-1205 |#1|)))) (-653 |#1|) (-1205 |#1|)))) +((-4286 (((-390 |#4|) |#4|) 48))) +(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-390 |#4|) |#4|))) (-811) (-757) (-436) (-909 |#3| |#2| |#1|)) (T -938)) +((-4286 (*1 *2 *3) (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-436)) (-5 *2 (-390 *3)) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) +(-10 -7 (-15 -4286 ((-390 |#4|) |#4|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735)) 112 (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-4028 (($ (-607 |#1|)) 118)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) 105 (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4151 ((|#1| $) 102 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-4038 (((-111) $ (-735)) 10)) (-4152 ((|#1| $) 103 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-4087 (($ $ (-607 |#1|)) 115)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-4155 ((|#1| $ $) 106 (|has| |#1| (-1004)))) (-4230 (((-878) $) 117)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-4153 (($ $ $) 104)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515)))) (($ (-607 |#1|)) 116)) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4156 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4158 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-526) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-691))) (($ $ |#1|) 107 (|has| |#1| (-691)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-939 |#1|) (-134) (-1004)) (T -939)) +((-4028 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-939 *3)) (-4 *3 (-1004)) (-5 *2 (-878)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) (-4153 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-1004)))) (-4087 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-939 *3)) (-4 *3 (-1004))))) +(-13 (-1204 |t#1|) (-10 -8 (-15 -4028 ($ (-607 |t#1|))) (-15 -4230 ((-878) $)) (-15 -4287 ($ (-607 |t#1|))) (-15 -4153 ($ $ $)) (-15 -4087 ($ $ (-607 |t#1|))))) +(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-19 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T) ((-1204 |#1|) . T)) +((-4275 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 17))) +(((-940 |#1| |#2|) (-10 -7 (-15 -4275 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1004) (-1004)) (T -940)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-902 *6)) (-5 *1 (-940 *5 *6))))) +(-10 -7 (-15 -4275 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) +((-3251 ((|#1| (-902 |#1|)) 13)) (-3250 ((|#1| (-902 |#1|)) 12)) (-3249 ((|#1| (-902 |#1|)) 11)) (-3253 ((|#1| (-902 |#1|)) 15)) (-3257 ((|#1| (-902 |#1|)) 21)) (-3252 ((|#1| (-902 |#1|)) 14)) (-3254 ((|#1| (-902 |#1|)) 16)) (-3256 ((|#1| (-902 |#1|)) 20)) (-3255 ((|#1| (-902 |#1|)) 19))) +(((-941 |#1|) (-10 -7 (-15 -3249 (|#1| (-902 |#1|))) (-15 -3250 (|#1| (-902 |#1|))) (-15 -3251 (|#1| (-902 |#1|))) (-15 -3252 (|#1| (-902 |#1|))) (-15 -3253 (|#1| (-902 |#1|))) (-15 -3254 (|#1| (-902 |#1|))) (-15 -3255 (|#1| (-902 |#1|))) (-15 -3256 (|#1| (-902 |#1|))) (-15 -3257 (|#1| (-902 |#1|)))) (-1004)) (T -941)) +((-3257 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(-10 -7 (-15 -3249 (|#1| (-902 |#1|))) (-15 -3250 (|#1| (-902 |#1|))) (-15 -3251 (|#1| (-902 |#1|))) (-15 -3252 (|#1| (-902 |#1|))) (-15 -3253 (|#1| (-902 |#1|))) (-15 -3254 (|#1| (-902 |#1|))) (-15 -3255 (|#1| (-902 |#1|))) (-15 -3256 (|#1| (-902 |#1|))) (-15 -3257 (|#1| (-902 |#1|)))) +((-3275 (((-3 |#1| "failed") |#1|) 18)) (-3263 (((-3 |#1| "failed") |#1|) 6)) (-3273 (((-3 |#1| "failed") |#1|) 16)) (-3261 (((-3 |#1| "failed") |#1|) 4)) (-3277 (((-3 |#1| "failed") |#1|) 20)) (-3265 (((-3 |#1| "failed") |#1|) 8)) (-3258 (((-3 |#1| "failed") |#1| (-735)) 1)) (-3260 (((-3 |#1| "failed") |#1|) 3)) (-3259 (((-3 |#1| "failed") |#1|) 2)) (-3278 (((-3 |#1| "failed") |#1|) 21)) (-3266 (((-3 |#1| "failed") |#1|) 9)) (-3276 (((-3 |#1| "failed") |#1|) 19)) (-3264 (((-3 |#1| "failed") |#1|) 7)) (-3274 (((-3 |#1| "failed") |#1|) 17)) (-3262 (((-3 |#1| "failed") |#1|) 5)) (-3281 (((-3 |#1| "failed") |#1|) 24)) (-3269 (((-3 |#1| "failed") |#1|) 12)) (-3279 (((-3 |#1| "failed") |#1|) 22)) (-3267 (((-3 |#1| "failed") |#1|) 10)) (-3283 (((-3 |#1| "failed") |#1|) 26)) (-3271 (((-3 |#1| "failed") |#1|) 14)) (-3284 (((-3 |#1| "failed") |#1|) 27)) (-3272 (((-3 |#1| "failed") |#1|) 15)) (-3282 (((-3 |#1| "failed") |#1|) 25)) (-3270 (((-3 |#1| "failed") |#1|) 13)) (-3280 (((-3 |#1| "failed") |#1|) 23)) (-3268 (((-3 |#1| "failed") |#1|) 11))) +(((-942 |#1|) (-134) (-1145)) (T -942)) +((-3284 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3282 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3280 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3279 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3278 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3277 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3276 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3275 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3274 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3273 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3272 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3271 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3270 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3269 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3268 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3267 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3266 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3265 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3264 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3263 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3262 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3261 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3260 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3259 (*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145)))) (-3258 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(-13 (-10 -7 (-15 -3258 ((-3 |t#1| "failed") |t#1| (-735))) (-15 -3259 ((-3 |t#1| "failed") |t#1|)) (-15 -3260 ((-3 |t#1| "failed") |t#1|)) (-15 -3261 ((-3 |t#1| "failed") |t#1|)) (-15 -3262 ((-3 |t#1| "failed") |t#1|)) (-15 -3263 ((-3 |t#1| "failed") |t#1|)) (-15 -3264 ((-3 |t#1| "failed") |t#1|)) (-15 -3265 ((-3 |t#1| "failed") |t#1|)) (-15 -3266 ((-3 |t#1| "failed") |t#1|)) (-15 -3267 ((-3 |t#1| "failed") |t#1|)) (-15 -3268 ((-3 |t#1| "failed") |t#1|)) (-15 -3269 ((-3 |t#1| "failed") |t#1|)) (-15 -3270 ((-3 |t#1| "failed") |t#1|)) (-15 -3271 ((-3 |t#1| "failed") |t#1|)) (-15 -3272 ((-3 |t#1| "failed") |t#1|)) (-15 -3273 ((-3 |t#1| "failed") |t#1|)) (-15 -3274 ((-3 |t#1| "failed") |t#1|)) (-15 -3275 ((-3 |t#1| "failed") |t#1|)) (-15 -3276 ((-3 |t#1| "failed") |t#1|)) (-15 -3277 ((-3 |t#1| "failed") |t#1|)) (-15 -3278 ((-3 |t#1| "failed") |t#1|)) (-15 -3279 ((-3 |t#1| "failed") |t#1|)) (-15 -3280 ((-3 |t#1| "failed") |t#1|)) (-15 -3281 ((-3 |t#1| "failed") |t#1|)) (-15 -3282 ((-3 |t#1| "failed") |t#1|)) (-15 -3283 ((-3 |t#1| "failed") |t#1|)) (-15 -3284 ((-3 |t#1| "failed") |t#1|)))) +((-3286 ((|#4| |#4| (-607 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3285 ((|#4| |#4| (-607 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4275 ((|#4| (-1 |#4| (-905 |#1|)) |#4|) 30))) +(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3285 (|#4| |#4| |#3|)) (-15 -3285 (|#4| |#4| (-607 |#3|))) (-15 -3286 (|#4| |#4| |#3|)) (-15 -3286 (|#4| |#4| (-607 |#3|))) (-15 -4275 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) (-1004) (-757) (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123))))) (-909 (-905 |#1|) |#2| |#3|)) (T -943)) +((-4275 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-1004)) (-4 *2 (-909 (-905 *4) *5 *6)) (-4 *5 (-757)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1="failed") (-1123)))))) (-5 *1 (-943 *4 *5 *6 *2)))) (-3286 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *2 (-909 (-905 *4) *5 *6)))) (-3286 (*1 *2 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) (-3285 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *6)) (-4 *6 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *2 (-909 (-905 *4) *5 *6)))) (-3285 (*1 *2 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3))))) +(-10 -7 (-15 -3285 (|#4| |#4| |#3|)) (-15 -3285 (|#4| |#4| (-607 |#3|))) (-15 -3286 (|#4| |#4| |#3|)) (-15 -3286 (|#4| |#4| (-607 |#3|))) (-15 -4275 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) +((-3287 ((|#2| |#3|) 35)) (-4238 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|) 73)) (-4237 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) 89))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|)) (-15 -3287 (|#2| |#3|))) (-335) (-1181 |#1|) (-1181 |#2|) (-689 |#2| |#3|)) (T -944)) +((-3287 (*1 *2 *3) (-12 (-4 *3 (-1181 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-944 *4 *2 *3 *5)) (-4 *4 (-335)) (-4 *5 (-689 *2 *3)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-944 *4 *3 *5 *6)) (-4 *6 (-689 *3 *5)))) (-4237 (*1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) (-5 *1 (-944 *3 *4 *5 *6)) (-4 *6 (-689 *4 *5))))) +(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|)) (-15 -3287 (|#2| |#3|))) +((-2865 (((-111) $ $) NIL)) (-3720 (((-3 (-111) #1="failed") $) 69)) (-3971 (($ $) 36 (-12 (|has| |#1| (-141)) (|has| |#1| (-292))))) (-3291 (($ $ (-3 (-111) #1#)) 70)) (-3292 (($ (-607 |#4|) |#4|) 25)) (-3554 (((-1106) $) NIL)) (-3288 (($ $) 67)) (-3555 (((-1070) $) NIL)) (-3722 (((-111) $) 68)) (-3887 (($) 30)) (-3289 ((|#4| $) 72)) (-3290 (((-607 |#4|) $) 71)) (-4274 (((-823) $) 66)) (-3353 (((-111) $ $) NIL))) +(((-945 |#1| |#2| |#3| |#4|) (-13 (-1052) (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3292 ($ (-607 |#4|) |#4|)) (-15 -3720 ((-3 (-111) #1="failed") $)) (-15 -3291 ($ $ (-3 (-111) #1#))) (-15 -3722 ((-111) $)) (-15 -3290 ((-607 |#4|) $)) (-15 -3289 (|#4| $)) (-15 -3288 ($ $)) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (-15 -3971 ($ $)) |%noBranch|) |%noBranch|))) (-436) (-811) (-757) (-909 |#1| |#3| |#2|)) (T -945)) +((-3887 (*1 *1) (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-909 *4 *6 *5)) (-4 *4 (-436)) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *1 (-945 *4 *5 *6 *3)))) (-3720 (*1 *2 *1) (|partial| -12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3722 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3290 (*1 *2 *1) (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-607 *6)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) (-3289 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)))) (-3288 (*1 *1 *1) (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) (-3971 (*1 *1 *1) (-12 (-4 *2 (-141)) (-4 *2 (-292)) (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3))))) +(-13 (-1052) (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3292 ($ (-607 |#4|) |#4|)) (-15 -3720 ((-3 (-111) #1="failed") $)) (-15 -3291 ($ $ (-3 (-111) #1#))) (-15 -3722 ((-111) $)) (-15 -3290 ((-607 |#4|) $)) (-15 -3289 (|#4| $)) (-15 -3288 ($ $)) (IF (|has| |#1| (-292)) (IF (|has| |#1| (-141)) (-15 -3971 ($ $)) |%noBranch|) |%noBranch|))) +((-3293 (((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))) 69))) +(((-946 |#1| |#2|) (-10 -7 (-15 -3293 ((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))))) (-607 (-1123)) (-735)) (T -946)) +((-3293 (*1 *2 *2) (-12 (-5 *2 (-945 (-392 (-526)) (-824 *3) (-225 *4 (-735)) (-233 *3 (-392 (-526))))) (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-946 *3 *4))))) +(-10 -7 (-15 -3293 ((-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526)))) (-945 (-392 (-526)) (-824 |#1|) (-225 |#2| (-735)) (-233 |#1| (-392 (-526))))))) +((-3582 (((-111) |#5| |#5|) 38)) (-3585 (((-111) |#5| |#5|) 52)) (-3590 (((-111) |#5| (-607 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-3586 (((-111) (-607 |#4|) (-607 |#4|)) 58)) (-3592 (((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 63)) (-3581 (((-1211)) 33)) (-3580 (((-1211) (-1106) (-1106) (-1106)) 29)) (-3591 (((-607 |#5|) (-607 |#5|)) 81)) (-3593 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) 79)) (-3594 (((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111)) 101)) (-3584 (((-111) |#5| |#5|) 47)) (-3589 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3587 (((-111) (-607 |#4|) (-607 |#4|)) 57)) (-3588 (((-111) (-607 |#4|) (-607 |#4|)) 59)) (-4021 (((-111) (-607 |#4|) (-607 |#4|)) 60)) (-3595 (((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-3583 (((-607 |#5|) (-607 |#5|)) 43))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -947)) +((-3595 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) (-5 *1 (-947 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) (-4 *4 (-1024 *6 *7 *8 *9)))) (-3594 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) (-5 *1 (-947 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3592 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-947 *5 *6 *7 *8 *3)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3588 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) (-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3581 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-947 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-947 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) +(-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-4150 (((-1123) $) 15)) (-3721 (((-1106) $) 16)) (-3539 (($ (-1123) (-1106)) 14)) (-4274 (((-823) $) 13))) +(((-948) (-13 (-583 (-823)) (-10 -8 (-15 -3539 ($ (-1123) (-1106))) (-15 -4150 ((-1123) $)) (-15 -3721 ((-1106) $))))) (T -948)) +((-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-948)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-948)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-948))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3539 ($ (-1123) (-1106))) (-15 -4150 ((-1123) $)) (-15 -3721 ((-1106) $)))) +((-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1123) #1#) $) 65) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) 95)) (-3469 ((|#2| $) NIL) (((-1123) $) 60) (((-392 (-526)) $) NIL) (((-526) $) 92)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 112) (((-653 |#2|) (-653 $)) 28)) (-3294 (($) 98)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 75) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 84)) (-3296 (($ $) 10)) (-3763 (((-3 $ "failed") $) 20)) (-4275 (($ (-1 |#2| |#2|) $) 22)) (-3764 (($) 16)) (-3425 (($ $) 54)) (-4129 (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3295 (($ $) 12)) (-4287 (((-849 (-526)) $) 70) (((-849 (-363)) $) 79) (((-515) $) 40) (((-363) $) 44) (((-211) $) 47)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 90) (($ |#2|) NIL) (($ (-1123)) 57)) (-3423 (((-735)) 31)) (-2985 (((-111) $ $) 50))) +(((-949 |#1| |#2|) (-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -3294 (|#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) (-950 |#2|) (-533)) (T -949)) +((-3423 (*1 *2) (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-949 *3 *4)) (-4 *3 (-950 *4))))) +(-10 -8 (-15 -2985 ((-111) |#1| |#1|)) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -4274 (|#1| (-1123))) (-15 -3294 (|#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -3096 ((-847 (-526) |#1|) |#1| (-849 (-526)) (-847 (-526) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -2331 ((-653 |#2|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 ((|#1| $) 136 (|has| |#1| (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 127 (|has| |#1| (-869)))) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 130 (|has| |#1| (-869)))) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 117 (|has| |#1| (-784)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 175) (((-3 (-1123) #2#) $) 125 (|has| |#1| (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 109 (|has| |#1| (-995 (-526)))) (((-3 (-526) #2#) $) 107 (|has| |#1| (-995 (-526))))) (-3469 ((|#1| $) 174) (((-1123) $) 124 (|has| |#1| (-995 (-1123)))) (((-392 (-526)) $) 108 (|has| |#1| (-995 (-526)))) (((-526) $) 106 (|has| |#1| (-995 (-526))))) (-2861 (($ $ $) 53)) (-2331 (((-653 (-526)) (-653 $)) 149 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 148 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 147) (((-653 |#1|) (-653 $)) 146)) (-3781 (((-3 $ "failed") $) 32)) (-3294 (($) 134 (|has| |#1| (-525)))) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3500 (((-111) $) 119 (|has| |#1| (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 143 (|has| |#1| (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 142 (|has| |#1| (-845 (-363))))) (-2471 (((-111) $) 30)) (-3296 (($ $) 138)) (-3298 ((|#1| $) 140)) (-3763 (((-3 $ "failed") $) 105 (|has| |#1| (-1099)))) (-3501 (((-111) $) 118 (|has| |#1| (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 50)) (-3637 (($ $ $) 115 (|has| |#1| (-811)))) (-3638 (($ $ $) 114 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 166)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3764 (($) 104 (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 135 (|has| |#1| (-292)))) (-3427 ((|#1| $) 132 (|has| |#1| (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 129 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 128 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 172 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 170 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 169 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 168 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 167 (|has| |#1| (-496 (-1123) |#1|)))) (-1680 (((-735) $) 56)) (-4118 (($ $ |#1|) 173 (|has| |#1| (-271 |#1| |#1|)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4129 (($ $) 165 (|has| |#1| (-219))) (($ $ (-735)) 163 (|has| |#1| (-219))) (($ $ (-1123)) 161 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 160 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 159 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 158 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3295 (($ $) 137)) (-3297 ((|#1| $) 139)) (-4287 (((-849 (-526)) $) 145 (|has| |#1| (-584 (-849 (-526))))) (((-849 (-363)) $) 144 (|has| |#1| (-584 (-849 (-363))))) (((-515) $) 122 (|has| |#1| (-584 (-515)))) (((-363) $) 121 (|has| |#1| (-977))) (((-211) $) 120 (|has| |#1| (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 131 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 178) (($ (-1123)) 126 (|has| |#1| (-995 (-1123))))) (-3002 (((-3 $ "failed") $) 123 (-3850 (|has| |#1| (-139)) (-3155 (|has| $ (-139)) (|has| |#1| (-869)))))) (-3423 (((-735)) 28)) (-3428 ((|#1| $) 133 (|has| |#1| (-525)))) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 116 (|has| |#1| (-784)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 164 (|has| |#1| (-219))) (($ $ (-735)) 162 (|has| |#1| (-219))) (($ $ (-1123)) 157 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 156 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 155 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 154 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2863 (((-111) $ $) 112 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 111 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 113 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 110 (|has| |#1| (-811)))) (-4265 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-950 |#1|) (-134) (-533)) (T -950)) +((-4265 (*1 *1 *2 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) (-3425 (*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) (-3294 (*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-525)) (-4 *2 (-533)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525))))) +(-13 (-348) (-37 |t#1|) (-995 |t#1|) (-323 |t#1|) (-217 |t#1|) (-362 |t#1|) (-843 |t#1|) (-385 |t#1|) (-10 -8 (-15 -4265 ($ |t#1| |t#1|)) (-15 -3298 (|t#1| $)) (-15 -3297 (|t#1| $)) (-15 -3296 ($ $)) (-15 -3295 ($ $)) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-995 (-526))) (PROGN (-6 (-995 (-526))) (-6 (-995 (-392 (-526))))) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-977)) (-6 (-977)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-995 (-1123))) (-6 (-995 (-1123))) |%noBranch|) (IF (|has| |t#1| (-292)) (PROGN (-15 -3426 (|t#1| $)) (-15 -3425 ($ $))) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3294 ($)) (-15 -3428 (|t#1| $)) (-15 -3427 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-869)) (-6 (-869)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) |has| |#1| (-977)) ((-584 (-363)) |has| |#1| (-977)) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-584 (-849 (-363))) |has| |#1| (-584 (-849 (-363)))) ((-584 (-849 (-526))) |has| |#1| (-584 (-849 (-526)))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-229) . T) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) . T) ((-292) . T) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-348) . T) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-385 |#1|) . T) ((-436) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-755) |has| |#1| (-784)) ((-756) |has| |#1| (-784)) ((-758) |has| |#1| (-784)) ((-761) |has| |#1| (-784)) ((-784) |has| |#1| (-784)) ((-809) |has| |#1| (-784)) ((-811) -3850 (|has| |#1| (-811)) (|has| |#1| (-784))) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) |has| |#1| (-845 (-363))) ((-845 (-526)) |has| |#1| (-845 (-526))) ((-843 |#1|) . T) ((-869) |has| |#1| (-869)) ((-880) . T) ((-977) |has| |#1| (-977)) ((-995 (-392 (-526))) |has| |#1| (-995 (-526))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 (-1123)) |has| |#1| (-995 (-1123))) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-1099)) ((-1159) . T) ((-1164) . T)) +((-4275 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-951 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) (-533) (-533) (-950 |#1|) (-950 |#2|)) (T -951)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-4 *2 (-950 *6)) (-5 *1 (-951 *5 *6 *4 *2)) (-4 *4 (-950 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3299 (($ (-1090 |#1| |#2|)) 11)) (-3421 (((-1090 |#1| |#2|) $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#2| $ (-225 |#1| |#2|)) 16)) (-4274 (((-823) $) NIL)) (-2957 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL))) +(((-952 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3299 ($ (-1090 |#1| |#2|))) (-15 -3421 ((-1090 |#1| |#2|) $)) (-15 -4118 (|#2| $ (-225 |#1| |#2|))))) (-878) (-348)) (T -952)) +((-3299 (*1 *1 *2) (-12 (-5 *2 (-1090 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)) (-5 *1 (-952 *3 *4)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1090 *3 *4)) (-5 *1 (-952 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-878)) (-4 *2 (-348)) (-5 *1 (-952 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3299 ($ (-1090 |#1| |#2|))) (-15 -3421 ((-1090 |#1| |#2|) $)) (-15 -4118 (|#2| $ (-225 |#1| |#2|))))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3302 (($ $) 46)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-4152 (((-735) $) 45)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-3301 ((|#1| $) 44)) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3304 ((|#1| |#1| $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3303 ((|#1| $) 47)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-3300 ((|#1| $) 43)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-953 |#1|) (-134) (-1159)) (T -953)) +((-3304 (*1 *2 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3304 (|t#1| |t#1| $)) (-15 -3303 (|t#1| $)) (-15 -3302 ($ $)) (-15 -4152 ((-735) $)) (-15 -3301 (|t#1| $)) (-15 -3300 (|t#1| $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3965 ((|#1| $) 12)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL (|has| |#1| (-525)))) (-3323 (((-111) $) NIL (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) NIL (|has| |#1| (-525)))) (-3305 (($ |#1| |#1| |#1| |#1|) 16)) (-2471 (((-111) $) NIL)) (-3429 ((|#1| $) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3306 ((|#1| $) 15)) (-3307 ((|#1| $) 14)) (-3308 ((|#1| $) 13)) (-3555 (((-1070) $) NIL)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) NIL (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) NIL (|has| |#1| (-271 |#1| |#1|)))) (-4129 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3309 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3702 ((|#1| $) NIL (|has| |#1| (-1013)))) (-2957 (($) 8 T CONST)) (-2964 (($) 10 T CONST)) (-2969 (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))))) +(((-954 |#1|) (-956 |#1|) (-163)) (T -954)) +NIL +(-956 |#1|) +((-3502 (((-111) $) 42)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#2| $) 43)) (-3324 (((-3 (-392 (-526)) "failed") $) 78)) (-3323 (((-111) $) 72)) (-3322 (((-392 (-526)) $) 76)) (-2471 (((-111) $) 41)) (-3429 ((|#2| $) 22)) (-4275 (($ (-1 |#2| |#2|) $) 19)) (-2703 (($ $) 61)) (-4129 (($ $) NIL) (($ $ (-735)) NIL) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4287 (((-515) $) 67)) (-3309 (($ $) 17)) (-4274 (((-823) $) 56) (($ (-526)) 38) (($ |#2|) 36) (($ (-392 (-526))) NIL)) (-3423 (((-735)) 10)) (-3702 ((|#2| $) 71)) (-3353 (((-111) $ $) 25)) (-2985 (((-111) $ $) 69)) (-4156 (($ $) 29) (($ $ $) 28)) (-4158 (($ $ $) 26)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL))) +(((-955 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 -2703 (|#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -2471 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-956 |#2|) (-163)) (T -955)) +((-3423 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-955 *3 *4)) (-4 *3 (-956 *4))))) +(-10 -8 (-15 -4274 (|#1| (-392 (-526)))) (-15 -2985 ((-111) |#1| |#1|)) (-15 * (|#1| (-392 (-526)) |#1|)) (-15 * (|#1| |#1| (-392 (-526)))) (-15 -2703 (|#1| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|)) (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3702 (|#2| |#1|)) (-15 -3429 (|#2| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -4275 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3470 ((-3 |#2| #1="failed") |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -2471 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 * (|#1| (-735) |#1|)) (-15 -3502 ((-111) |#1|)) (-15 * (|#1| (-878) |#1|)) (-15 -4158 (|#1| |#1| |#1|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3470 (((-3 (-526) #1="failed") $) 116 (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 114 (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) 113)) (-3469 (((-526) $) 117 (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) 115 (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) 112)) (-2331 (((-653 (-526)) (-653 $)) 87 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 86 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 85) (((-653 |#1|) (-653 $)) 84)) (-3781 (((-3 $ "failed") $) 32)) (-3965 ((|#1| $) 77)) (-3324 (((-3 (-392 (-526)) "failed") $) 73 (|has| |#1| (-525)))) (-3323 (((-111) $) 75 (|has| |#1| (-525)))) (-3322 (((-392 (-526)) $) 74 (|has| |#1| (-525)))) (-3305 (($ |#1| |#1| |#1| |#1|) 78)) (-2471 (((-111) $) 30)) (-3429 ((|#1| $) 79)) (-3637 (($ $ $) 66 (|has| |#1| (-811)))) (-3638 (($ $ $) 65 (|has| |#1| (-811)))) (-4275 (($ (-1 |#1| |#1|) $) 88)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 70 (|has| |#1| (-348)))) (-3306 ((|#1| $) 80)) (-3307 ((|#1| $) 81)) (-3308 ((|#1| $) 82)) (-3555 (((-1070) $) 10)) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 94 (|has| |#1| (-294 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-294 |#1|))) (($ $ (-278 |#1|)) 92 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-278 |#1|))) 91 (|has| |#1| (-294 |#1|))) (($ $ (-607 (-1123)) (-607 |#1|)) 90 (|has| |#1| (-496 (-1123) |#1|))) (($ $ (-1123) |#1|) 89 (|has| |#1| (-496 (-1123) |#1|)))) (-4118 (($ $ |#1|) 95 (|has| |#1| (-271 |#1| |#1|)))) (-4129 (($ $) 111 (|has| |#1| (-219))) (($ $ (-735)) 109 (|has| |#1| (-219))) (($ $ (-1123)) 107 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 106 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 105 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 104 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4287 (((-515) $) 71 (|has| |#1| (-584 (-515))))) (-3309 (($ $) 83)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 35) (($ (-392 (-526))) 60 (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (((-3 $ "failed") $) 72 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-3702 ((|#1| $) 76 (|has| |#1| (-1013)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $) 110 (|has| |#1| (-219))) (($ $ (-735)) 108 (|has| |#1| (-219))) (($ $ (-1123)) 103 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 102 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 101 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 100 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2863 (((-111) $ $) 63 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 62 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 64 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 61 (|has| |#1| (-811)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 69 (|has| |#1| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-392 (-526))) 68 (|has| |#1| (-348))) (($ (-392 (-526)) $) 67 (|has| |#1| (-348))))) +(((-956 |#1|) (-134) (-163)) (T -956)) +((-3309 (*1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3305 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526)))))) +(-13 (-37 |t#1|) (-397 |t#1|) (-217 |t#1|) (-323 |t#1|) (-362 |t#1|) (-10 -8 (-15 -3309 ($ $)) (-15 -3308 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 (|t#1| $)) (-15 -3429 (|t#1| $)) (-15 -3305 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3965 (|t#1| $)) (IF (|has| |t#1| (-275)) (-6 (-275)) |%noBranch|) (IF (|has| |t#1| (-811)) (-6 (-811)) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-15 -3702 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-525)) (PROGN (-15 -3323 ((-111) $)) (-15 -3322 ((-392 (-526)) $)) (-15 -3324 ((-3 (-392 (-526)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-348)) ((-37 |#1|) . T) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-348)) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-217 |#1|) . T) ((-219) |has| |#1| (-219)) ((-229) |has| |#1| (-348)) ((-271 |#1| $) |has| |#1| (-271 |#1| |#1|)) ((-275) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-294 |#1|) |has| |#1| (-294 |#1|)) ((-323 |#1|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-496 (-1123) |#1|) |has| |#1| (-496 (-1123) |#1|)) ((-496 |#1| |#1|) |has| |#1| (-294 |#1|)) ((-613 #1#) |has| |#1| (-348)) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-348)) ((-682 |#1|) . T) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-1010 #1#) |has| |#1| (-348)) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-348)) (|has| |#1| (-275))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-4275 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-957 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) (-956 |#2|) (-163) (-956 |#4|) (-163)) (T -957)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-956 *6)) (-5 *1 (-957 *4 *5 *2 *6)) (-4 *4 (-956 *5))))) +(-10 -7 (-15 -4275 (|#3| (-1 |#4| |#2|) |#1|))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3302 (($ $) 20)) (-3310 (($ (-607 |#1|)) 29)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-4152 (((-735) $) 22)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 24)) (-3929 (($ |#1| $) 15)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3301 ((|#1| $) 23)) (-1307 ((|#1| $) 19)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3304 ((|#1| |#1| $) 14)) (-3722 (((-111) $) 17)) (-3887 (($) NIL)) (-3303 ((|#1| $) 18)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-3300 ((|#1| $) 26)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-958 |#1|) (-13 (-953 |#1|) (-10 -8 (-15 -3310 ($ (-607 |#1|))))) (-1052)) (T -958)) +((-3310 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-958 *3))))) +(-13 (-953 |#1|) (-10 -8 (-15 -3310 ($ (-607 |#1|))))) +((-3337 (($ $) 12)) (-3311 (($ $ (-526)) 13))) +(((-959 |#1|) (-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-526)))) (-960)) (T -959)) +NIL +(-10 -8 (-15 -3337 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-526)))) +((-3337 (($ $) 6)) (-3311 (($ $ (-526)) 7)) (** (($ $ (-392 (-526))) 8))) +(((-960) (-134)) (T -960)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-392 (-526))))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-526)))) (-3337 (*1 *1 *1) (-4 *1 (-960)))) +(-13 (-10 -8 (-15 -3337 ($ $)) (-15 -3311 ($ $ (-526))) (-15 ** ($ $ (-392 (-526)))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1739 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| (-392 |#2|) (-348)))) (-2151 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-2149 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-1877 (((-653 (-392 |#2|)) (-1205 $)) NIL) (((-653 (-392 |#2|))) NIL)) (-3649 (((-392 |#2|) $) NIL)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| (-392 |#2|) (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-4286 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1681 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3433 (((-735)) NIL (|has| (-392 |#2|) (-353)))) (-1753 (((-111)) NIL)) (-1752 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-3 (-392 |#2|) #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| (-392 |#2|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-392 |#2|) (-995 (-392 (-526))))) (((-392 |#2|) $) NIL)) (-1887 (($ (-1205 (-392 |#2|)) (-1205 $)) NIL) (($ (-1205 (-392 |#2|))) 70) (($ (-1205 |#2|) |#2|) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-392 |#2|) (-335)))) (-2861 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1876 (((-653 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-392 |#2|) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-392 |#2|))) (|:| |vec| (-1205 (-392 |#2|)))) (-653 $) (-1205 $)) NIL) (((-653 (-392 |#2|)) (-653 $)) NIL)) (-1744 (((-1205 $) (-1205 $)) NIL)) (-4161 (($ |#3|) 65) (((-3 $ "failed") (-392 |#3|)) NIL (|has| (-392 |#2|) (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-1731 (((-607 (-607 |#1|))) NIL (|has| |#1| (-353)))) (-1756 (((-111) |#1| |#1|) NIL)) (-3406 (((-878)) NIL)) (-3294 (($) NIL (|has| (-392 |#2|) (-353)))) (-1751 (((-111)) NIL)) (-1750 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-2860 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| (-392 |#2|) (-348)))) (-3817 (($ $) NIL)) (-3133 (($) NIL (|has| (-392 |#2|) (-335)))) (-1772 (((-111) $) NIL (|has| (-392 |#2|) (-335)))) (-1862 (($ $ (-735)) NIL (|has| (-392 |#2|) (-335))) (($ $) NIL (|has| (-392 |#2|) (-335)))) (-4045 (((-111) $) NIL (|has| (-392 |#2|) (-348)))) (-4090 (((-878) $) NIL (|has| (-392 |#2|) (-335))) (((-796 (-878)) $) NIL (|has| (-392 |#2|) (-335)))) (-2471 (((-111) $) NIL)) (-3696 (((-735)) NIL)) (-1745 (((-1205 $) (-1205 $)) NIL)) (-3429 (((-392 |#2|) $) NIL)) (-1732 (((-607 (-905 |#1|)) (-1123)) NIL (|has| |#1| (-348)))) (-3763 (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-2106 ((|#3| $) NIL (|has| (-392 |#2|) (-348)))) (-2102 (((-878) $) NIL (|has| (-392 |#2|) (-353)))) (-3379 ((|#3| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-3554 (((-1106) $) NIL)) (-1740 (((-653 (-392 |#2|))) 52)) (-1742 (((-653 (-392 |#2|))) 51)) (-2703 (($ $) NIL (|has| (-392 |#2|) (-348)))) (-1737 (($ (-1205 |#2|) |#2|) 71)) (-1741 (((-653 (-392 |#2|))) 50)) (-1743 (((-653 (-392 |#2|))) 49)) (-1736 (((-2 (|:| |num| (-653 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1738 (((-2 (|:| |num| (-1205 |#2|)) (|:| |den| |#2|)) $) 77)) (-1749 (((-1205 $)) 46)) (-4237 (((-1205 $)) 45)) (-1748 (((-111) $) NIL)) (-1747 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3764 (($) NIL (|has| (-392 |#2|) (-335)) CONST)) (-2461 (($ (-878)) NIL (|has| (-392 |#2|) (-353)))) (-1734 (((-3 |#2| #3="failed")) 63)) (-3555 (((-1070) $) NIL)) (-1758 (((-735)) NIL)) (-2470 (($) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| (-392 |#2|) (-348)))) (-3457 (($ (-607 $)) NIL (|has| (-392 |#2|) (-348))) (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| (-392 |#2|) (-335)))) (-4051 (((-390 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-392 |#2|) (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| (-392 |#2|) (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| (-392 |#2|) (-348)))) (-1680 (((-735) $) NIL (|has| (-392 |#2|) (-348)))) (-4118 ((|#1| $ |#1| |#1|) NIL)) (-1735 (((-3 |#2| #3#)) 62)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| (-392 |#2|) (-348)))) (-4076 (((-392 |#2|) (-1205 $)) NIL) (((-392 |#2|)) 42)) (-1863 (((-735) $) NIL (|has| (-392 |#2|) (-335))) (((-3 (-735) "failed") $ $) NIL (|has| (-392 |#2|) (-335)))) (-4129 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-2469 (((-653 (-392 |#2|)) (-1205 $) (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348)))) (-3499 ((|#3|) 53)) (-1766 (($) NIL (|has| (-392 |#2|) (-335)))) (-3537 (((-1205 (-392 |#2|)) $ (-1205 $)) NIL) (((-653 (-392 |#2|)) (-1205 $) (-1205 $)) NIL) (((-1205 (-392 |#2|)) $) 72) (((-653 (-392 |#2|)) (-1205 $)) NIL)) (-4287 (((-1205 (-392 |#2|)) $) NIL) (($ (-1205 (-392 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| (-392 |#2|) (-335)))) (-1746 (((-1205 $) (-1205 $)) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 |#2|)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-995 (-392 (-526)))))) (($ $) NIL (|has| (-392 |#2|) (-348)))) (-3002 (($ $) NIL (|has| (-392 |#2|) (-335))) (((-3 $ "failed") $) NIL (|has| (-392 |#2|) (-139)))) (-2667 ((|#3| $) NIL)) (-3423 (((-735)) NIL)) (-1755 (((-111)) 60)) (-1754 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2104 (((-1205 $)) 121)) (-2150 (((-111) $ $) NIL (|has| (-392 |#2|) (-348)))) (-1733 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1757 (((-111)) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1 (-392 |#2|) (-392 |#2|)) (-735)) NIL (|has| (-392 |#2|) (-348))) (($ $ (-1 (-392 |#2|) (-392 |#2|))) NIL (|has| (-392 |#2|) (-348))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-1123)) NIL (-12 (|has| (-392 |#2|) (-348)) (|has| (-392 |#2|) (-859 (-1123))))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335)))) (($ $) NIL (-3850 (-12 (|has| (-392 |#2|) (-219)) (|has| (-392 |#2|) (-348))) (|has| (-392 |#2|) (-335))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ $) NIL (|has| (-392 |#2|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| (-392 |#2|) (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 |#2|)) NIL) (($ (-392 |#2|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-392 |#2|) (-348))) (($ $ (-392 (-526))) NIL (|has| (-392 |#2|) (-348))))) +(((-961 |#1| |#2| |#3| |#4| |#5|) (-327 |#1| |#2| |#3|) (-1164) (-1181 |#1|) (-1181 (-392 |#2|)) (-392 |#2|) (-735)) (T -961)) +NIL +(-327 |#1| |#2| |#3|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3317 (((-607 (-526)) $) 54)) (-3313 (($ (-607 (-526))) 62)) (-3426 (((-526) $) 40 (|has| (-526) (-292)))) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL (|has| (-526) (-784)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #2="failed") $) 49) (((-3 (-1123) #2#) $) NIL (|has| (-526) (-995 (-1123)))) (((-3 (-392 (-526)) #2#) $) 47 (|has| (-526) (-995 (-526)))) (((-3 (-526) #2#) $) 49 (|has| (-526) (-995 (-526))))) (-3469 (((-526) $) NIL) (((-1123) $) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) NIL (|has| (-526) (-995 (-526)))) (((-526) $) NIL (|has| (-526) (-995 (-526))))) (-2861 (($ $ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| (-526) (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3294 (($) NIL (|has| (-526) (-525)))) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3315 (((-607 (-526)) $) 60)) (-3500 (((-111) $) NIL (|has| (-526) (-784)))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (|has| (-526) (-845 (-526)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (|has| (-526) (-845 (-363))))) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL)) (-3298 (((-526) $) 37)) (-3763 (((-3 $ "failed") $) NIL (|has| (-526) (-1099)))) (-3501 (((-111) $) NIL (|has| (-526) (-784)))) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-526) (-811)))) (-4275 (($ (-1 (-526) (-526)) $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL)) (-3764 (($) NIL (|has| (-526) (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3425 (($ $) NIL (|has| (-526) (-292))) (((-392 (-526)) $) 42)) (-3316 (((-1101 (-526)) $) 59)) (-3312 (($ (-607 (-526)) (-607 (-526))) 63)) (-3427 (((-526) $) 53 (|has| (-526) (-525)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| (-526) (-869)))) (-4051 (((-390 $) $) NIL)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-4086 (($ $ (-607 (-526)) (-607 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-526) (-526)) NIL (|has| (-526) (-294 (-526)))) (($ $ (-278 (-526))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-278 (-526)))) NIL (|has| (-526) (-294 (-526)))) (($ $ (-607 (-1123)) (-607 (-526))) NIL (|has| (-526) (-496 (-1123) (-526)))) (($ $ (-1123) (-526)) NIL (|has| (-526) (-496 (-1123) (-526))))) (-1680 (((-735) $) NIL)) (-4118 (($ $ (-526)) NIL (|has| (-526) (-271 (-526) (-526))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $) 11 (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-3295 (($ $) NIL)) (-3297 (((-526) $) 39)) (-3314 (((-607 (-526)) $) 61)) (-4287 (((-849 (-526)) $) NIL (|has| (-526) (-584 (-849 (-526))))) (((-849 (-363)) $) NIL (|has| (-526) (-584 (-849 (-363))))) (((-515) $) NIL (|has| (-526) (-584 (-515)))) (((-363) $) NIL (|has| (-526) (-977))) (((-211) $) NIL (|has| (-526) (-977)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-526) (-869))))) (-4274 (((-823) $) 77) (($ (-526)) 43) (($ $) NIL) (($ (-392 (-526))) 20) (($ (-526)) 43) (($ (-1123)) NIL (|has| (-526) (-995 (-1123)))) (((-392 (-526)) $) 18)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-526) (-869))) (|has| (-526) (-139))))) (-3423 (((-735)) 9)) (-3428 (((-526) $) 51 (|has| (-526) (-525)))) (-2150 (((-111) $ $) NIL)) (-3702 (($ $) NIL (|has| (-526) (-784)))) (-2957 (($) 10 T CONST)) (-2964 (($) 12 T CONST)) (-2969 (($ $) NIL (|has| (-526) (-219))) (($ $ (-735)) NIL (|has| (-526) (-219))) (($ $ (-1123)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| (-526) (-859 (-1123)))) (($ $ (-1 (-526) (-526)) (-735)) NIL) (($ $ (-1 (-526) (-526))) NIL)) (-2863 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-526) (-811)))) (-3353 (((-111) $ $) 14)) (-2984 (((-111) $ $) NIL (|has| (-526) (-811)))) (-2985 (((-111) $ $) 33 (|has| (-526) (-811)))) (-4265 (($ $ $) 29) (($ (-526) (-526)) 31)) (-4156 (($ $) 15) (($ $ $) 23)) (-4158 (($ $ $) 21)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 25) (($ $ $) 27) (($ $ (-392 (-526))) NIL) (($ (-392 (-526)) $) NIL) (($ (-526) $) 25) (($ $ (-526)) NIL))) +(((-962 |#1|) (-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -3317 ((-607 (-526)) $)) (-15 -3316 ((-1101 (-526)) $)) (-15 -3315 ((-607 (-526)) $)) (-15 -3314 ((-607 (-526)) $)) (-15 -3313 ($ (-607 (-526)))) (-15 -3312 ($ (-607 (-526)) (-607 (-526)))))) (-526)) (T -962)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) (-3312 (*1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(-13 (-950 (-526)) (-10 -8 (-15 -4274 ((-392 (-526)) $)) (-15 -3425 ((-392 (-526)) $)) (-15 -3317 ((-607 (-526)) $)) (-15 -3316 ((-1101 (-526)) $)) (-15 -3315 ((-607 (-526)) $)) (-15 -3314 ((-607 (-526)) $)) (-15 -3313 ($ (-607 (-526)))) (-15 -3312 ($ (-607 (-526)) (-607 (-526)))))) +((-3318 (((-50) (-392 (-526)) (-526)) 9))) +(((-963) (-10 -7 (-15 -3318 ((-50) (-392 (-526)) (-526))))) (T -963)) +((-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-526))) (-5 *4 (-526)) (-5 *2 (-50)) (-5 *1 (-963))))) +(-10 -7 (-15 -3318 ((-50) (-392 (-526)) (-526)))) +((-3433 (((-526)) 13)) (-3321 (((-526)) 16)) (-3320 (((-1211) (-526)) 15)) (-3319 (((-526) (-526)) 17) (((-526)) 12))) +(((-964) (-10 -7 (-15 -3319 ((-526))) (-15 -3433 ((-526))) (-15 -3319 ((-526) (-526))) (-15 -3320 ((-1211) (-526))) (-15 -3321 ((-526))))) (T -964)) +((-3321 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-964)))) (-3319 (*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3433 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) (-3319 (*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) +(-10 -7 (-15 -3319 ((-526))) (-15 -3433 ((-526))) (-15 -3319 ((-526) (-526))) (-15 -3320 ((-1211) (-526))) (-15 -3321 ((-526)))) +((-4052 (((-390 |#1|) |#1|) 41)) (-4051 (((-390 |#1|) |#1|) 40))) +(((-965 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|))) (-1181 (-392 (-526)))) (T -965)) +((-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526))))))) +(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|))) +((-3324 (((-3 (-392 (-526)) "failed") |#1|) 15)) (-3323 (((-111) |#1|) 14)) (-3322 (((-392 (-526)) |#1|) 10))) +(((-966 |#1|) (-10 -7 (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|))) (-995 (-392 (-526)))) (T -966)) +((-3324 (*1 *2 *3) (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2)))) (-3323 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-966 *3)) (-4 *3 (-995 (-392 (-526)))))) (-3322 (*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) +(-10 -7 (-15 -3322 ((-392 (-526)) |#1|)) (-15 -3323 ((-111) |#1|)) (-15 -3324 ((-3 (-392 (-526)) "failed") |#1|))) +((-4106 ((|#2| $ "value" |#2|) 12)) (-4118 ((|#2| $ "value") 10)) (-3328 (((-111) $ $) 18))) +(((-967 |#1| |#2|) (-10 -8 (-15 -4106 (|#2| |#1| "value" |#2|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -4118 (|#2| |#1| "value"))) (-968 |#2|) (-1159)) (T -967)) +NIL +(-10 -8 (-15 -4106 (|#2| |#1| "value" |#2|)) (-15 -3328 ((-111) |#1| |#1|)) (-15 -4118 (|#2| |#1| "value"))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) 7 T CONST)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ "value") 47)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-968 |#1|) (-134) (-1159)) (T -968)) +((-3836 (*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3)))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-526)))) (-3328 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3327 (*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *1)) (|has| *1 (-6 -4311)) (-4 *1 (-968 *3)) (-4 *3 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159)))) (-3325 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159))))) +(-13 (-472 |t#1|) (-10 -8 (-15 -3836 ((-607 $) $)) (-15 -3331 ((-607 $) $)) (-15 -3841 ((-111) $)) (-15 -3721 (|t#1| $)) (-15 -4118 (|t#1| $ "value")) (-15 -3955 ((-111) $)) (-15 -3330 ((-607 |t#1|) $)) (-15 -3329 ((-526) $ $)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -3328 ((-111) $ $)) (-15 -3327 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4311)) (PROGN (-15 -3326 ($ $ (-607 $))) (-15 -4106 (|t#1| $ "value" |t#1|)) (-15 -3325 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-3337 (($ $) 9) (($ $ (-878)) 43) (($ (-392 (-526))) 13) (($ (-526)) 15)) (-3497 (((-3 $ "failed") (-1117 $) (-878) (-823)) 23) (((-3 $ "failed") (-1117 $) (-878)) 28)) (-3311 (($ $ (-526)) 49)) (-3423 (((-735)) 17)) (-3498 (((-607 $) (-1117 $)) NIL) (((-607 $) (-1117 (-392 (-526)))) 54) (((-607 $) (-1117 (-526))) 59) (((-607 $) (-905 $)) 63) (((-607 $) (-905 (-392 (-526)))) 67) (((-607 $) (-905 (-526))) 71)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) 47))) +(((-969 |#1|) (-10 -8 (-15 -3337 (|#1| (-526))) (-15 -3337 (|#1| (-392 (-526)))) (-15 -3337 (|#1| |#1| (-878))) (-15 -3498 ((-607 |#1|) (-905 (-526)))) (-15 -3498 ((-607 |#1|) (-905 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-905 |#1|))) (-15 -3498 ((-607 |#1|) (-1117 (-526)))) (-15 -3498 ((-607 |#1|) (-1117 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-1117 |#1|))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878) (-823))) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3311 (|#1| |#1| (-526))) (-15 -3337 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) (-970)) (T -969)) +((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-969 *3)) (-4 *3 (-970))))) +(-10 -8 (-15 -3337 (|#1| (-526))) (-15 -3337 (|#1| (-392 (-526)))) (-15 -3337 (|#1| |#1| (-878))) (-15 -3498 ((-607 |#1|) (-905 (-526)))) (-15 -3498 ((-607 |#1|) (-905 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-905 |#1|))) (-15 -3498 ((-607 |#1|) (-1117 (-526)))) (-15 -3498 ((-607 |#1|) (-1117 (-392 (-526))))) (-15 -3498 ((-607 |#1|) (-1117 |#1|))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878))) (-15 -3497 ((-3 |#1| "failed") (-1117 |#1|) (-878) (-823))) (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3311 (|#1| |#1| (-526))) (-15 -3337 (|#1| |#1|)) (-15 ** (|#1| |#1| (-526))) (-15 -3423 ((-735))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 87)) (-2151 (($ $) 88)) (-2149 (((-111) $) 90)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 107)) (-4286 (((-390 $) $) 108)) (-3337 (($ $) 71) (($ $ (-878)) 57) (($ (-392 (-526))) 56) (($ (-526)) 55)) (-1681 (((-111) $ $) 98)) (-3945 (((-526) $) 124)) (-3855 (($) 17 T CONST)) (-3497 (((-3 $ "failed") (-1117 $) (-878) (-823)) 65) (((-3 $ "failed") (-1117 $) (-878)) 64)) (-3470 (((-3 (-526) #1="failed") $) 83 (|has| (-392 (-526)) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 81 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-3 (-392 (-526)) #1#) $) 79)) (-3469 (((-526) $) 84 (|has| (-392 (-526)) (-995 (-526)))) (((-392 (-526)) $) 82 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-392 (-526)) $) 78)) (-3333 (($ $ (-823)) 54)) (-3332 (($ $ (-823)) 53)) (-2861 (($ $ $) 102)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 101)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 96)) (-4045 (((-111) $) 109)) (-3500 (((-111) $) 122)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 70)) (-3501 (((-111) $) 123)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 105)) (-3637 (($ $ $) 121)) (-3638 (($ $ $) 120)) (-3334 (((-3 (-1117 $) "failed") $) 66)) (-3336 (((-3 (-823) "failed") $) 68)) (-3335 (((-3 (-1117 $) "failed") $) 67)) (-1989 (($ (-607 $)) 94) (($ $ $) 93)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 110)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 95)) (-3457 (($ (-607 $)) 92) (($ $ $) 91)) (-4051 (((-390 $) $) 106)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 103)) (-3780 (((-3 $ "failed") $ $) 86)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 97)) (-1680 (((-735) $) 99)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 100)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 114) (($ $) 85) (($ (-392 (-526))) 80) (($ (-526)) 77) (($ (-392 (-526))) 74)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 89)) (-4088 (((-392 (-526)) $ $) 52)) (-3498 (((-607 $) (-1117 $)) 63) (((-607 $) (-1117 (-392 (-526)))) 62) (((-607 $) (-1117 (-526))) 61) (((-607 $) (-905 $)) 60) (((-607 $) (-905 (-392 (-526)))) 59) (((-607 $) (-905 (-526))) 58)) (-3702 (($ $) 125)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 118)) (-2864 (((-111) $ $) 117)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 119)) (-2985 (((-111) $ $) 116)) (-4265 (($ $ $) 115)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 111) (($ $ (-392 (-526))) 69)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ (-392 (-526)) $) 113) (($ $ (-392 (-526))) 112) (($ (-526) $) 76) (($ $ (-526)) 75) (($ (-392 (-526)) $) 73) (($ $ (-392 (-526))) 72))) +(((-970) (-134)) (T -970)) +((-3337 (*1 *1 *1) (-4 *1 (-970))) (-3336 (*1 *2 *1) (|partial| -12 (-4 *1 (-970)) (-5 *2 (-823)))) (-3335 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970)))) (-3334 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970)))) (-3497 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-5 *4 (-823)) (-4 *1 (-970)))) (-3497 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) (-3337 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-878)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-970)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-970)))) (-3333 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823)))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823)))) (-4088 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-392 (-526)))))) +(-13 (-141) (-809) (-163) (-348) (-397 (-392 (-526))) (-37 (-526)) (-37 (-392 (-526))) (-960) (-10 -8 (-15 -3336 ((-3 (-823) "failed") $)) (-15 -3335 ((-3 (-1117 $) "failed") $)) (-15 -3334 ((-3 (-1117 $) "failed") $)) (-15 -3497 ((-3 $ "failed") (-1117 $) (-878) (-823))) (-15 -3497 ((-3 $ "failed") (-1117 $) (-878))) (-15 -3498 ((-607 $) (-1117 $))) (-15 -3498 ((-607 $) (-1117 (-392 (-526))))) (-15 -3498 ((-607 $) (-1117 (-526)))) (-15 -3498 ((-607 $) (-905 $))) (-15 -3498 ((-607 $) (-905 (-392 (-526))))) (-15 -3498 ((-607 $) (-905 (-526)))) (-15 -3337 ($ $ (-878))) (-15 -3337 ($ $)) (-15 -3337 ($ (-392 (-526)))) (-15 -3337 ($ (-526))) (-15 -3333 ($ $ (-823))) (-15 -3332 ($ $ (-823))) (-15 -4088 ((-392 (-526)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 #2=(-526)) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 #2# #2#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-397 (-392 (-526))) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 #2#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 #2#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-880) . T) ((-960) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) |has| (-392 (-526)) (-995 (-526))) ((-1010 #1#) . T) ((-1010 #2#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-3338 (((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-971 |#1| |#2|) (-10 -7 (-15 -3338 ((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-27) (-406 |#1|))) (T -971)) +((-3338 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1123)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-607 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1145) (-27) (-406 *8))) (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111)))) (-5 *1 (-971 *8 *4))))) +(-10 -7 (-15 -3338 ((-2 (|:| |ans| |#2|) (|:| -3434 |#2|) (|:| |sol?| (-111))) (-526) |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3339 (((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-972 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526))) (-13 (-1145) (-27) (-406 |#1|))) (T -972)) +((-3339 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1123)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-607 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1145) (-27) (-406 *8))) (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) (-5 *2 (-607 *4)) (-5 *1 (-972 *8 *4))))) +(-10 -7 (-15 -3339 ((-3 (-607 |#2|) "failed") (-526) |#2| |#2| |#2| (-1123) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-607 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|)) (-1 (-3 (-2 (|:| -2222 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3342 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)) 30)) (-3340 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|)) 58)) (-3341 (((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|)) 63))) +(((-973 |#1| |#2|) (-10 -7 (-15 -3340 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3341 ((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|))) (-15 -3342 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -973)) +((-3342 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 *4))) (-5 *4 (-526)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-973 *6 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| |ans| (-392 *5)) (|:| |nosol| (-111)))) (-5 *1 (-973 *4 *5)) (-5 *3 (-392 *5)))) (-3340 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |c| (-392 *6)) (|:| -3396 *6))) (-5 *1 (-973 *5 *6)) (-5 *3 (-392 *6))))) +(-10 -7 (-15 -3340 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |c| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3341 ((-2 (|:| |ans| (-392 |#2|)) (|:| |nosol| (-111))) (-392 |#2|) (-392 |#2|))) (-15 -3342 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -3578 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-526)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-526) (-1 |#2| |#2|)))) +((-3343 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|)) 22)) (-3344 (((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)) 33))) +(((-974 |#1| |#2|) (-10 -7 (-15 -3343 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3344 ((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)))) (-13 (-348) (-141) (-995 (-526))) (-1181 |#1|)) (T -974)) +((-3344 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) (-5 *2 (-607 (-392 *5))) (-5 *1 (-974 *4 *5)) (-5 *3 (-392 *5)))) (-3343 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |h| *6) (|:| |c1| (-392 *6)) (|:| |c2| (-392 *6)) (|:| -3396 *6))) (-5 *1 (-974 *5 *6)) (-5 *3 (-392 *6))))) +(-10 -7 (-15 -3343 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-392 |#2|)) (|:| |h| |#2|) (|:| |c1| (-392 |#2|)) (|:| |c2| (-392 |#2|)) (|:| -3396 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|) (-1 |#2| |#2|))) (-15 -3344 ((-3 (-607 (-392 |#2|)) "failed") (-392 |#2|) (-392 |#2|) (-392 |#2|)))) +((-3345 (((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526))))) 37)) (-3398 (((-1 |#1|) (-1048 |#1|)) 45)) (-3346 (((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)) 34))) +(((-975 |#1|) (-10 -7 (-15 -3398 ((-1 |#1|) (-1048 |#1|))) (-15 -3345 ((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526)))))) (-15 -3346 ((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)))) (-1052)) (T -975)) +((-3346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1205 *6)) (-5 *4 (-1205 (-526))) (-5 *5 (-526)) (-4 *6 (-1052)) (-5 *2 (-1 *6)) (-5 *1 (-975 *6)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3721 *4) (|:| -1553 (-526))))) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1048 *4)) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4))))) +(-10 -7 (-15 -3398 ((-1 |#1|) (-1048 |#1|))) (-15 -3345 ((-1 |#1|) (-607 (-2 (|:| -3721 |#1|) (|:| -1553 (-526)))))) (-15 -3346 ((-1 |#1|) (-1205 |#1|) (-1205 (-526)) (-526)))) +((-4090 (((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-348) (-1181 |#1|) (-1181 (-392 |#2|)) (-327 |#1| |#2| |#3|) (-13 (-353) (-348))) (T -976)) +((-4090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-318 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-348)) (-4 *7 (-1181 *6)) (-4 *4 (-1181 (-392 *7))) (-4 *8 (-327 *6 *7 *4)) (-4 *9 (-13 (-353) (-348))) (-5 *2 (-735)) (-5 *1 (-976 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4090 ((-735) (-318 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-4287 (((-211) $) 6) (((-363) $) 9))) +(((-977) (-134)) (T -977)) +NIL +(-13 (-584 (-211)) (-584 (-363))) +(((-584 (-211)) . T) ((-584 (-363)) . T)) +((-3431 (((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 31) (((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 28)) (-3349 (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 33) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526))) 29) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 32) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|) 27)) (-3348 (((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) 19)) (-3347 (((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 16))) +(((-978 |#1|) (-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3347 ((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3348 ((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))))) (-1181 (-526))) (T -978)) +((-3348 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *2 (-607 (-392 (-526)))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526))))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *2 (-392 (-526))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526))))) (-3431 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) (-3431 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *4 (-392 (-526))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-392 (-526))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-3349 (*1 *2 *3) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526)))))) +(-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3347 ((-392 (-526)) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3348 ((-607 (-392 (-526))) (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))))) +((-3431 (((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 35) (((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 32)) (-3349 (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526))) 30) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526))) 26) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) 28) (((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|) 24))) +(((-979 |#1|) (-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-1181 (-392 (-526)))) (T -979)) +((-3431 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) (-3431 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) (-5 *4 (-392 (-526))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *5)) (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) (-3349 (*1 *2 *3 *4) (-12 (-5 *4 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *4) (|:| -3434 *4)))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))) (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) (-3349 (*1 *2 *3) (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526))))))) +(-10 -7 (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1|)) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-392 (-526)))) (-15 -3349 ((-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-392 (-526)))) (-15 -3431 ((-3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) "failed") |#1| (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))) (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) +((-3895 (((-607 (-363)) (-905 (-526)) (-363)) 28) (((-607 (-363)) (-905 (-392 (-526))) (-363)) 27)) (-4284 (((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363)) 37))) +(((-980) (-10 -7 (-15 -3895 ((-607 (-363)) (-905 (-392 (-526))) (-363))) (-15 -3895 ((-607 (-363)) (-905 (-526)) (-363))) (-15 -4284 ((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363))))) (T -980)) +((-4284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-607 (-1123))) (-5 *2 (-607 (-607 (-363)))) (-5 *1 (-980)) (-5 *5 (-363)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) (-5 *4 (-363)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) (-5 *4 (-363))))) +(-10 -7 (-15 -3895 ((-607 (-363)) (-905 (-392 (-526))) (-363))) (-15 -3895 ((-607 (-363)) (-905 (-526)) (-363))) (-15 -4284 ((-607 (-607 (-363))) (-607 (-905 (-526))) (-607 (-1123)) (-363)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 70)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-3337 (($ $) NIL) (($ $ (-878)) NIL) (($ (-392 (-526))) NIL) (($ (-526)) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) 65)) (-3855 (($) NIL T CONST)) (-3497 (((-3 $ #1="failed") (-1117 $) (-878) (-823)) NIL) (((-3 $ #1#) (-1117 $) (-878)) 50)) (-3470 (((-3 (-392 (-526)) #2="failed") $) NIL (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-3 (-392 (-526)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-526) #2#) $) NIL (-3850 (|has| (-392 (-526)) (-995 (-526))) (|has| |#1| (-995 (-526)))))) (-3469 (((-392 (-526)) $) 15 (|has| (-392 (-526)) (-995 (-392 (-526))))) (((-392 (-526)) $) 15) ((|#1| $) 108) (((-526) $) NIL (-3850 (|has| (-392 (-526)) (-995 (-526))) (|has| |#1| (-995 (-526)))))) (-3333 (($ $ (-823)) 42)) (-3332 (($ $ (-823)) 43)) (-2861 (($ $ $) NIL)) (-3496 (((-392 (-526)) $ $) 19)) (-3781 (((-3 $ "failed") $) 83)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-3500 (((-111) $) 61)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL)) (-3501 (((-111) $) 64)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3334 (((-3 (-1117 $) #1#) $) 78)) (-3336 (((-3 (-823) #1#) $) 77)) (-3335 (((-3 (-1117 $) #1#) $) 75)) (-3350 (((-3 (-1014 $ (-1117 $)) "failed") $) 73)) (-1989 (($ (-607 $)) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 84)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ (-607 $)) NIL) (($ $ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4274 (((-823) $) 82) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ $) 58) (($ (-392 (-526))) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#1|) 110)) (-3423 (((-735)) NIL)) (-2150 (((-111) $ $) NIL)) (-4088 (((-392 (-526)) $ $) 25)) (-3498 (((-607 $) (-1117 $)) 56) (((-607 $) (-1117 (-392 (-526)))) NIL) (((-607 $) (-1117 (-526))) NIL) (((-607 $) (-905 $)) NIL) (((-607 $) (-905 (-392 (-526)))) NIL) (((-607 $) (-905 (-526))) NIL)) (-3351 (($ (-1014 $ (-1117 $)) (-823)) 41)) (-3702 (($ $) 20)) (-2957 (($) 29 T CONST)) (-2964 (($) 35 T CONST)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 71)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 22)) (-4265 (($ $ $) 33)) (-4156 (($ $) 34) (($ $ $) 69)) (-4158 (($ $ $) 103)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL) (($ $ (-392 (-526))) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 91) (($ $ $) 96) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ (-526) $) 91) (($ $ (-526)) NIL) (($ (-392 (-526)) $) NIL) (($ $ (-392 (-526))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-981 |#1|) (-13 (-970) (-397 |#1|) (-37 |#1|) (-10 -8 (-15 -3351 ($ (-1014 $ (-1117 $)) (-823))) (-15 -3350 ((-3 (-1014 $ (-1117 $)) "failed") $)) (-15 -3496 ((-392 (-526)) $ $)))) (-13 (-809) (-348) (-977))) (T -981)) +((-3351 (*1 *1 *2 *3) (-12 (-5 *2 (-1014 (-981 *4) (-1117 (-981 *4)))) (-5 *3 (-823)) (-5 *1 (-981 *4)) (-4 *4 (-13 (-809) (-348) (-977))))) (-3350 (*1 *2 *1) (|partial| -12 (-5 *2 (-1014 (-981 *3) (-1117 (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-13 (-809) (-348) (-977))))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-981 *3)) (-4 *3 (-13 (-809) (-348) (-977)))))) +(-13 (-970) (-397 |#1|) (-37 |#1|) (-10 -8 (-15 -3351 ($ (-1014 $ (-1117 $)) (-823))) (-15 -3350 ((-3 (-1014 $ (-1117 $)) "failed") $)) (-15 -3496 ((-392 (-526)) $ $)))) +((-3352 (((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-982 |#1| |#2|) (-10 -7 (-15 -3352 (|#2| |#2| |#1|)) (-15 -3352 ((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)))) (-348) (-623 |#1|)) (T -982)) +((-3352 (*1 *2 *3 *4) (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| -3578 *3) (|:| -2805 (-607 *5)))) (-5 *1 (-982 *5 *3)) (-5 *4 (-607 *5)) (-4 *3 (-623 *5)))) (-3352 (*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-982 *3 *2)) (-4 *2 (-623 *3))))) +(-10 -7 (-15 -3352 (|#2| |#2| |#1|)) (-15 -3352 ((-2 (|:| -3578 |#2|) (|:| -2805 (-607 |#1|))) |#2| (-607 |#1|)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3354 ((|#1| $ |#1|) 14)) (-4106 ((|#1| $ |#1|) 12)) (-3356 (($ |#1|) 10)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4118 ((|#1| $) 11)) (-3355 ((|#1| $) 13)) (-4274 (((-823) $) 21 (|has| |#1| (-1052)))) (-3353 (((-111) $ $) 9))) +(((-983 |#1|) (-13 (-1159) (-10 -8 (-15 -3356 ($ |#1|)) (-15 -4118 (|#1| $)) (-15 -4106 (|#1| $ |#1|)) (-15 -3355 (|#1| $)) (-15 -3354 (|#1| $ |#1|)) (-15 -3353 ((-111) $ $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -983)) +((-3356 (*1 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3355 (*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3354 (*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) (-3353 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-983 *3)) (-4 *3 (-1159))))) +(-13 (-1159) (-10 -8 (-15 -3356 ($ |#1|)) (-15 -4118 (|#1| $)) (-15 -4106 (|#1| $ |#1|)) (-15 -3355 (|#1| $)) (-15 -3354 (|#1| $ |#1|)) (-15 -3353 ((-111) $ $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 105) (((-607 $) (-607 |#4|) (-111)) 106) (((-607 $) (-607 |#4|) (-111) (-111)) 104) (((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 99)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) 57)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-3511 (((-111) |#4| $) NIL)) (-3509 (((-111) |#4| $) NIL)) (-3512 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3757 (((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111)) 119)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) NIL)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 97)) (-4116 (((-3 |#4| #1#) $) 37)) (-3506 (((-607 $) |#4| $) 80)) (-3508 (((-3 (-111) (-607 $)) |#4| $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3550 (((-607 $) |#4| $) 102) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 103) (((-607 $) |#4| (-607 $)) NIL)) (-3758 (((-607 $) (-607 |#4|) (-111) (-111) (-111)) 114)) (-3759 (($ |#4| $) 70) (($ (-607 |#4|) $) 71) (((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 48)) (-4087 (($ $ |#4|) NIL) (((-607 $) |#4| $) 82) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 77)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-3503 (((-607 $) |#4| $) 79) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-3510 (((-111) |#4| $) NIL)) (-4250 (((-111) |#3| $) 53)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-984 |#1| |#2| |#3| |#4|) (-13 (-1024 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -984)) +((-3759 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *3))) (-5 *1 (-984 *5 *6 *7 *3)) (-4 *3 (-1018 *5 *6 *7)))) (-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-4004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-3758 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) (-5 *1 (-984 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-984 *5 *6 *7 *8))))) (-5 *1 (-984 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) +(-13 (-1024 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) +((-3357 (((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526))))) 59)) (-3358 (((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526))))) 48)) (-3359 (((-607 (-299 (-526))) (-653 (-392 (-905 (-526))))) 41)) (-3363 (((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526))))) 68)) (-3361 (((-653 (-299 (-526))) (-653 (-299 (-526)))) 34)) (-3362 (((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526))))) 62)) (-3360 (((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526))))) 66))) +(((-985) (-10 -7 (-15 -3357 ((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526)))))) (-15 -3358 ((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526)))))) (-15 -3359 ((-607 (-299 (-526))) (-653 (-392 (-905 (-526)))))) (-15 -3360 ((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526)))))) (-15 -3361 ((-653 (-299 (-526))) (-653 (-299 (-526))))) (-15 -3362 ((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526)))))) (-15 -3363 ((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526)))))))) (T -985)) +((-3363 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985)))) (-3360 (*1 *2 *3) (|partial| -12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-299 (-526)))) (-5 *1 (-985)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985)) (-5 *3 (-299 (-526))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526)))))))) (-5 *1 (-985))))) +(-10 -7 (-15 -3357 ((-607 (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) (|:| |radvect| (-607 (-653 (-299 (-526))))))) (-653 (-392 (-905 (-526)))))) (-15 -3358 ((-607 (-653 (-299 (-526)))) (-299 (-526)) (-653 (-392 (-905 (-526)))))) (-15 -3359 ((-607 (-299 (-526))) (-653 (-392 (-905 (-526)))))) (-15 -3360 ((-3 (-653 (-299 (-526))) "failed") (-653 (-392 (-905 (-526)))))) (-15 -3361 ((-653 (-299 (-526))) (-653 (-299 (-526))))) (-15 -3362 ((-607 (-653 (-299 (-526)))) (-607 (-653 (-299 (-526)))))) (-15 -3363 ((-607 (-653 (-299 (-526)))) (-653 (-392 (-905 (-526))))))) +((-3367 (((-607 (-653 |#1|)) (-607 (-653 |#1|))) 58) (((-653 |#1|) (-653 |#1|)) 57) (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|))) 56) (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 53)) (-3366 (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878)) 52) (((-653 |#1|) (-653 |#1|) (-878)) 51)) (-3368 (((-607 (-653 (-526))) (-607 (-607 (-526)))) 68) (((-607 (-653 (-526))) (-607 (-861 (-526))) (-526)) 67) (((-653 (-526)) (-607 (-526))) 64) (((-653 (-526)) (-861 (-526)) (-526)) 63)) (-3365 (((-653 (-905 |#1|)) (-735)) 81)) (-3364 (((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878)) 37 (|has| |#1| (-6 (-4312 "*")))) (((-653 |#1|) (-653 |#1|) (-878)) 35 (|has| |#1| (-6 (-4312 "*")))))) +(((-986 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-653 |#1|) (-653 |#1|) (-878))) |%noBranch|) (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) |%noBranch|) (-15 -3365 ((-653 (-905 |#1|)) (-735))) (-15 -3366 ((-653 |#1|) (-653 |#1|) (-878))) (-15 -3366 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) (-15 -3367 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3367 ((-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3368 ((-653 (-526)) (-861 (-526)) (-526))) (-15 -3368 ((-653 (-526)) (-607 (-526)))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-861 (-526))) (-526))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-607 (-526)))))) (-1004)) (T -986)) +((-3368 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-526)))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-861 (-526)))) (-5 *4 (-526)) (-5 *2 (-607 (-653 *4))) (-5 *1 (-986 *5)) (-4 *5 (-1004)))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-526))) (-5 *4 (-526)) (-5 *2 (-653 *4)) (-5 *1 (-986 *5)) (-4 *5 (-1004)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-653 (-905 *4))) (-5 *1 (-986 *4)) (-4 *4 (-1004)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) (-4 *4 (-1004)) (-5 *1 (-986 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-653 |#1|) (-653 |#1|) (-878))) |%noBranch|) (IF (|has| |#1| (-6 (-4312 "*"))) (-15 -3364 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) |%noBranch|) (-15 -3365 ((-653 (-905 |#1|)) (-735))) (-15 -3366 ((-653 |#1|) (-653 |#1|) (-878))) (-15 -3366 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-878))) (-15 -3367 ((-653 |#1|) (-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3367 ((-653 |#1|) (-653 |#1|))) (-15 -3367 ((-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3368 ((-653 (-526)) (-861 (-526)) (-526))) (-15 -3368 ((-653 (-526)) (-607 (-526)))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-861 (-526))) (-526))) (-15 -3368 ((-607 (-653 (-526))) (-607 (-607 (-526)))))) +((-3372 (((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)) 50 (|has| |#1| (-292)))) (-3737 (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))) 76 (|has| |#1| (-348))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|)) 79 (|has| |#1| (-348)))) (-3376 (((-1205 |#1|) (-607 (-1205 |#1|)) (-526)) 93 (-12 (|has| |#1| (-348)) (|has| |#1| (-353))))) (-3375 (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878)) 85 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111)) 83 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|))) 82 (-12 (|has| |#1| (-348)) (|has| |#1| (-353)))) (((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526)) 81 (-12 (|has| |#1| (-348)) (|has| |#1| (-353))))) (-3374 (((-111) (-607 (-653 |#1|))) 71 (|has| |#1| (-348))) (((-111) (-607 (-653 |#1|)) (-526)) 73 (|has| |#1| (-348)))) (-3371 (((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|)) 48 (|has| |#1| (-292)))) (-3370 (((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|)) 34)) (-3369 (((-653 |#1|) (-1205 (-1205 |#1|))) 31)) (-3373 (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526)) 65 (|has| |#1| (-348))) (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|))) 64 (|has| |#1| (-348))) (((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526)) 69 (|has| |#1| (-348))))) +(((-987 |#1|) (-10 -7 (-15 -3369 ((-653 |#1|) (-1205 (-1205 |#1|)))) (-15 -3370 ((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-292)) (PROGN (-15 -3371 ((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3372 ((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))))) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#1| (-348)) (PROGN (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878))) (-15 -3376 ((-1205 |#1|) (-607 (-1205 |#1|)) (-526)))) |%noBranch|) |%noBranch|)) (-1004)) (T -987)) +((-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1205 *5))) (-5 *4 (-526)) (-5 *2 (-1205 *5)) (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3375 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *4 (-353)) (-4 *4 (-1004)) (-5 *2 (-607 (-607 (-653 *4)))) (-5 *1 (-987 *4)) (-5 *3 (-607 (-653 *4))))) (-3375 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-526)) (-4 *6 (-348)) (-4 *6 (-353)) (-4 *6 (-1004)) (-5 *2 (-607 (-607 (-653 *6)))) (-5 *1 (-987 *6)) (-5 *3 (-607 (-653 *6))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1205 (-1205 *5))) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-987 *4)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-4 *5 (-348)) (-4 *5 (-1004)) (-5 *2 (-111)) (-5 *1 (-987 *5)))) (-3373 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-1004)))) (-3373 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-5 *1 (-987 *4)) (-4 *4 (-348)) (-4 *4 (-1004)))) (-3373 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-607 (-653 *6))) (-5 *4 (-111)) (-5 *5 (-526)) (-5 *2 (-653 *6)) (-5 *1 (-987 *6)) (-4 *6 (-348)) (-4 *6 (-1004)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-1205 *5)) (-4 *5 (-292)) (-4 *5 (-1004)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-653 *5))) (-4 *5 (-292)) (-4 *5 (-1004)) (-5 *2 (-1205 (-1205 *5))) (-5 *1 (-987 *5)) (-5 *4 (-1205 *5)))) (-3370 (*1 *2 *3 *2) (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-987 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1205 (-1205 *4))) (-4 *4 (-1004)) (-5 *2 (-653 *4)) (-5 *1 (-987 *4))))) +(-10 -7 (-15 -3369 ((-653 |#1|) (-1205 (-1205 |#1|)))) (-15 -3370 ((-653 |#1|) (-607 (-653 |#1|)) (-653 |#1|))) (IF (|has| |#1| (-292)) (PROGN (-15 -3371 ((-1205 (-1205 |#1|)) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3372 ((-653 |#1|) (-607 (-653 |#1|)) (-1205 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-111) (-526))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3373 ((-653 |#1|) (-607 (-653 |#1|)) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)) (-526))) (-15 -3374 ((-111) (-607 (-653 |#1|)))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 |#1|))) (-15 -3737 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-1205 (-1205 |#1|))))) |%noBranch|) (IF (|has| |#1| (-353)) (IF (|has| |#1| (-348)) (PROGN (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111) (-526) (-526))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-111))) (-15 -3375 ((-607 (-607 (-653 |#1|))) (-607 (-653 |#1|)) (-878))) (-15 -3376 ((-1205 |#1|) (-607 (-1205 |#1|)) (-526)))) |%noBranch|) |%noBranch|)) +((-3377 ((|#1| (-878) |#1|) 9))) +(((-988 |#1|) (-10 -7 (-15 -3377 (|#1| (-878) |#1|))) (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $))))) (T -988)) +((-3377 (*1 *2 *3 *2) (-12 (-5 *3 (-878)) (-5 *1 (-988 *2)) (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)))))))) +(-10 -7 (-15 -3377 (|#1| (-878) |#1|))) +((-3378 ((|#1| |#1| (-878)) 9))) +(((-989 |#1|) (-10 -7 (-15 -3378 (|#1| |#1| (-878)))) (-13 (-1052) (-10 -8 (-15 * ($ $ $))))) (T -989)) +((-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-878)) (-5 *1 (-989 *2)) (-4 *2 (-13 (-1052) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3378 (|#1| |#1| (-878)))) +((-4274 ((|#1| (-296)) 11) (((-1211) |#1|) 9))) +(((-990 |#1|) (-10 -7 (-15 -4274 ((-1211) |#1|)) (-15 -4274 (|#1| (-296)))) (-1159)) (T -990)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-990 *2)) (-4 *2 (-1159)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-990 *3)) (-4 *3 (-1159))))) +(-10 -7 (-15 -4274 ((-1211) |#1|)) (-15 -4274 (|#1| (-296)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-4161 (($ |#4|) 25)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3379 ((|#4| $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 46) (($ (-526)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3423 (((-735)) 43)) (-2957 (($) 21 T CONST)) (-2964 (($) 23 T CONST)) (-3353 (((-111) $ $) 40)) (-4156 (($ $) 31) (($ $ $) NIL)) (-4158 (($ $ $) 29)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-13 (-163) (-37 |#1|) (-10 -8 (-15 -4161 ($ |#4|)) (-15 -4274 ($ |#4|)) (-15 -3379 (|#4| $)))) (-348) (-757) (-811) (-909 |#1| |#2| |#3|) (-607 |#4|)) (T -991)) +((-4161 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-14 *6 (-607 *2))))) +(-13 (-163) (-37 |#1|) (-10 -8 (-15 -4161 ($ |#4|)) (-15 -4274 ($ |#4|)) (-15 -3379 (|#4| $)))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1123) (-1123)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3381 (((-111) (-111)) 39)) (-3380 (((-111) (-111)) 38)) (-4106 (((-50) $ (-1123) (-50)) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1123) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1123) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-50) $ (-1123) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1123)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1123)) $) 34)) (-2286 (((-111) (-1123) $) NIL)) (-1306 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2281 (((-607 (-1123)) $) NIL)) (-2282 (((-111) (-1123) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4119 (((-50) $) NIL (|has| (-1123) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1123)) 35) (((-50) $ (-1123) (-50)) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-4274 (((-823) $) 37 (-3850 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-992) (-13 (-1136 (-1123) (-50)) (-10 -7 (-15 -3381 ((-111) (-111))) (-15 -3380 ((-111) (-111))) (-6 -4310)))) (T -992)) +((-3381 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) +(-13 (-1136 (-1123) (-50)) (-10 -7 (-15 -3381 ((-111) (-111))) (-15 -3380 ((-111) (-111))) (-6 -4310))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3382 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-993) (-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $))))) (T -993)) +((-3382 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-993))))) +(-13 (-1035) (-10 -8 (-15 -3382 ((-1128) $)))) +((-3469 ((|#2| $) 10))) +(((-994 |#1| |#2|) (-10 -8 (-15 -3469 (|#2| |#1|))) (-995 |#2|) (-1159)) (T -994)) +NIL +(-10 -8 (-15 -3469 (|#2| |#1|))) +((-3470 (((-3 |#1| "failed") $) 7)) (-3469 ((|#1| $) 8)) (-4274 (($ |#1|) 6))) +(((-995 |#1|) (-134) (-1159)) (T -995)) +((-3469 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) (-3470 (*1 *2 *1) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159))))) +(-13 (-10 -8 (-15 -4274 ($ |t#1|)) (-15 -3470 ((-3 |t#1| "failed") $)) (-15 -3469 (|t#1| $)))) +((-3383 (((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))) 38))) +(((-996 |#1| |#2|) (-10 -7 (-15 -3383 ((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))))) (-533) (-13 (-533) (-995 |#1|))) (T -996)) +((-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-13 (-533) (-995 *5))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *6)))))) (-5 *1 (-996 *5 *6))))) +(-10 -7 (-15 -3383 ((-607 (-607 (-278 (-392 (-905 |#2|))))) (-607 (-905 |#2|)) (-607 (-1123))))) +((-3384 (((-607 (-1123)) (-392 (-905 |#1|))) 17)) (-3386 (((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123)) 24)) (-3387 (((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123)) 26)) (-3385 (((-3 (-1123) "failed") (-392 (-905 |#1|))) 20)) (-4086 (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|))))) 32) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|)))) 33) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|)))) 28) (((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|))) 29)) (-4274 (((-392 (-905 |#1|)) |#1|) 11))) +(((-997 |#1|) (-10 -7 (-15 -3384 ((-607 (-1123)) (-392 (-905 |#1|)))) (-15 -3385 ((-3 (-1123) "failed") (-392 (-905 |#1|)))) (-15 -3386 ((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3387 ((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -4274 ((-392 (-905 |#1|)) |#1|))) (-533)) (T -997)) +((-4274 (*1 *2 *3) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-997 *3)) (-4 *3 (-533)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-4086 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-5 *4 (-607 (-392 (-905 *5)))) (-5 *2 (-392 (-905 *5))) (-4 *5 (-533)) (-5 *1 (-997 *5)))) (-4086 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-533)) (-5 *1 (-997 *4)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-1117 (-392 (-905 *5))))) (-5 *4 (-1123)) (-5 *2 (-392 (-905 *5))) (-5 *1 (-997 *5)) (-4 *5 (-533)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-392 (-1117 (-392 (-905 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-392 (-905 *5))))) (-3385 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-1123)) (-5 *1 (-997 *4)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-1123))) (-5 *1 (-997 *4))))) +(-10 -7 (-15 -3384 ((-607 (-1123)) (-392 (-905 |#1|)))) (-15 -3385 ((-3 (-1123) "failed") (-392 (-905 |#1|)))) (-15 -3386 ((-392 (-1117 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3387 ((-392 (-905 |#1|)) (-392 (-1117 (-392 (-905 |#1|)))) (-1123))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-1123)) (-607 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-278 (-392 (-905 |#1|))))) (-15 -4086 ((-392 (-905 |#1|)) (-392 (-905 |#1|)) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -4274 ((-392 (-905 |#1|)) |#1|))) +((-3388 (((-363)) 15)) (-3398 (((-1 (-363)) (-363) (-363)) 20)) (-3396 (((-1 (-363)) (-735)) 43)) (-3389 (((-363)) 34)) (-3392 (((-1 (-363)) (-363) (-363)) 35)) (-3390 (((-363)) 26)) (-3393 (((-1 (-363)) (-363)) 27)) (-3391 (((-363) (-735)) 38)) (-3394 (((-1 (-363)) (-735)) 39)) (-3395 (((-1 (-363)) (-735) (-735)) 42)) (-3703 (((-1 (-363)) (-735) (-735)) 40))) +(((-998) (-10 -7 (-15 -3388 ((-363))) (-15 -3389 ((-363))) (-15 -3390 ((-363))) (-15 -3391 ((-363) (-735))) (-15 -3398 ((-1 (-363)) (-363) (-363))) (-15 -3392 ((-1 (-363)) (-363) (-363))) (-15 -3393 ((-1 (-363)) (-363))) (-15 -3394 ((-1 (-363)) (-735))) (-15 -3703 ((-1 (-363)) (-735) (-735))) (-15 -3395 ((-1 (-363)) (-735) (-735))) (-15 -3396 ((-1 (-363)) (-735))))) (T -998)) +((-3396 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) (-3393 (*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3398 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-363)) (-5 *1 (-998)))) (-3390 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998)))) (-3389 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998)))) (-3388 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) +(-10 -7 (-15 -3388 ((-363))) (-15 -3389 ((-363))) (-15 -3390 ((-363))) (-15 -3391 ((-363) (-735))) (-15 -3398 ((-1 (-363)) (-363) (-363))) (-15 -3392 ((-1 (-363)) (-363) (-363))) (-15 -3393 ((-1 (-363)) (-363))) (-15 -3394 ((-1 (-363)) (-735))) (-15 -3703 ((-1 (-363)) (-735) (-735))) (-15 -3395 ((-1 (-363)) (-735) (-735))) (-15 -3396 ((-1 (-363)) (-735)))) +((-4051 (((-390 |#1|) |#1|) 33))) +(((-999 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|))) (-1181 (-392 (-905 (-526))))) (T -999)) +((-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1181 (-392 (-905 (-526)))))))) +(-10 -7 (-15 -4051 ((-390 |#1|) |#1|))) +((-3397 (((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))) 14))) +(((-1000 |#1|) (-10 -7 (-15 -3397 ((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))))) (-292)) (T -1000)) +((-3397 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-292)) (-5 *2 (-392 (-390 (-905 *4)))) (-5 *1 (-1000 *4))))) +(-10 -7 (-15 -3397 ((-392 (-390 (-905 |#1|))) (-392 (-905 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 (-744 |#1| (-824 |#2|)))))) (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-4004 (((-607 $) (-607 (-744 |#1| (-824 |#2|)))) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111)) NIL)) (-3384 (((-607 (-824 |#2|)) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4010 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4093 (((-607 (-2 (|:| |val| (-744 |#1| (-824 |#2|))) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ (-824 |#2|)) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 (-744 |#1| (-824 |#2|)) #1="failed") $ (-824 |#2|)) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-3200 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-3469 (($ (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-4117 (((-3 $ #1#) $) NIL)) (-4007 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-3725 (($ (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-744 |#1| (-824 |#2|))) (|:| |den| |#1|)) (-744 |#1| (-824 |#2|)) $) NIL (|has| |#1| (-533)))) (-4016 (((-111) (-744 |#1| (-824 |#2|)) $ (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4005 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4161 (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $ (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $ (-744 |#1| (-824 |#2|))) NIL (|has| $ (-6 -4310))) (((-744 |#1| (-824 |#2|)) (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4018 (((-2 (|:| -4180 (-607 (-744 |#1| (-824 |#2|)))) (|:| -1794 (-607 (-744 |#1| (-824 |#2|))))) $) NIL)) (-3511 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3509 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3512 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-2044 (((-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4017 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-3493 (((-824 |#2|) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-2048 (($ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) $) NIL)) (-3214 (((-607 (-824 |#2|)) $) NIL)) (-3213 (((-111) (-824 |#2|) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 (-744 |#1| (-824 |#2|)) (-607 $)) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3504 (((-607 (-2 (|:| |val| (-744 |#1| (-824 |#2|))) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4116 (((-3 (-744 |#1| (-824 |#2|)) #1#) $) NIL)) (-3506 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL)) (-3508 (((-3 (-111) (-607 $)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-3550 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL)) (-3759 (($ (-744 |#1| (-824 |#2|)) $) NIL) (($ (-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4019 (((-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4013 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4008 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| (-744 |#1| (-824 |#2|))) (|:| |den| |#1|)) (-744 |#1| (-824 |#2|)) $) NIL (|has| |#1| (-533)))) (-4014 (((-111) (-744 |#1| (-824 |#2|)) $) NIL) (((-111) $) NIL)) (-4009 (((-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 (-744 |#1| (-824 |#2|)) #1#) $) NIL)) (-1376 (((-3 (-744 |#1| (-824 |#2|)) "failed") (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL)) (-4001 (((-3 $ #1#) $ (-744 |#1| (-824 |#2|))) NIL)) (-4087 (($ $ (-744 |#1| (-824 |#2|))) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL)) (-2046 (((-111) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-744 |#1| (-824 |#2|))) (-607 (-744 |#1| (-824 |#2|)))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-278 (-744 |#1| (-824 |#2|)))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (($ $ (-607 (-278 (-744 |#1| (-824 |#2|))))) NIL (-12 (|has| (-744 |#1| (-824 |#2|)) (-294 (-744 |#1| (-824 |#2|)))) (|has| (-744 |#1| (-824 |#2|)) (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4264 (((-735) $) NIL)) (-2045 (((-735) (-744 |#1| (-824 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-744 |#1| (-824 |#2|)) (-1052)))) (((-735) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-744 |#1| (-824 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-744 |#1| (-824 |#2|)))) NIL)) (-3210 (($ $ (-824 |#2|)) NIL)) (-3212 (($ $ (-824 |#2|)) NIL)) (-4006 (($ $) NIL)) (-3211 (($ $ (-824 |#2|)) NIL)) (-4274 (((-823) $) NIL) (((-607 (-744 |#1| (-824 |#2|))) $) NIL)) (-4000 (((-735) $) NIL (|has| (-824 |#2|) (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 (-744 |#1| (-824 |#2|))))) #1#) (-607 (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 (-744 |#1| (-824 |#2|))))) #1#) (-607 (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|))) (-1 (-111) (-744 |#1| (-824 |#2|)) (-744 |#1| (-824 |#2|)))) NIL)) (-4012 (((-111) $ (-1 (-111) (-744 |#1| (-824 |#2|)) (-607 (-744 |#1| (-824 |#2|))))) NIL)) (-3503 (((-607 $) (-744 |#1| (-824 |#2|)) $) NIL) (((-607 $) (-744 |#1| (-824 |#2|)) (-607 $)) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) $) NIL) (((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) (-744 |#1| (-824 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 (-824 |#2|)) $) NIL)) (-3510 (((-111) (-744 |#1| (-824 |#2|)) $) NIL)) (-4250 (((-111) (-824 |#2|) $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1001 |#1| |#2|) (-13 (-1024 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) (-10 -8 (-15 -4004 ((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111))))) (-436) (-607 (-1123))) (T -1001)) +((-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1001 *5 *6))))) +(-13 (-1024 |#1| (-512 (-824 |#2|)) (-824 |#2|) (-744 |#1| (-824 |#2|))) (-10 -8 (-15 -4004 ((-607 $) (-607 (-744 |#1| (-824 |#2|))) (-111) (-111))))) +((-3398 (((-1 (-526)) (-1041 (-526))) 33)) (-3402 (((-526) (-526) (-526) (-526) (-526)) 30)) (-3400 (((-1 (-526)) |RationalNumber|) NIL)) (-3401 (((-1 (-526)) |RationalNumber|) NIL)) (-3399 (((-1 (-526)) (-526) |RationalNumber|) NIL))) +(((-1002) (-10 -7 (-15 -3398 ((-1 (-526)) (-1041 (-526)))) (-15 -3399 ((-1 (-526)) (-526) |RationalNumber|)) (-15 -3400 ((-1 (-526)) |RationalNumber|)) (-15 -3401 ((-1 (-526)) |RationalNumber|)) (-15 -3402 ((-526) (-526) (-526) (-526) (-526))))) (T -1002)) +((-3402 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1002)))) (-3401 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)))) (-3400 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)) (-5 *3 (-526)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1041 (-526))) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) +(-10 -7 (-15 -3398 ((-1 (-526)) (-1041 (-526)))) (-15 -3399 ((-1 (-526)) (-526) |RationalNumber|)) (-15 -3400 ((-1 (-526)) |RationalNumber|)) (-15 -3401 ((-1 (-526)) |RationalNumber|)) (-15 -3402 ((-526) (-526) (-526) (-526) (-526)))) +((-4274 (((-823) $) NIL) (($ (-526)) 10))) +(((-1003 |#1|) (-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1004)) (T -1003)) +NIL +(-10 -8 (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-1004) (-134)) (T -1004)) +((-3423 (*1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-735)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1004))))) +(-13 (-1011) (-691) (-613 $) (-10 -8 (-15 -3423 ((-735))) (-15 -4274 ($ (-526))) (-6 -4307))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 $) . T) ((-691) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-3403 (((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)) 46))) +(((-1005 |#1| |#2|) (-10 -7 (-15 -3403 ((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)))) (-1123) (-348)) (T -1005)) +((-3403 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-735)) (-4 *6 (-348)) (-5 *2 (-392 (-905 *6))) (-5 *1 (-1005 *5 *6)) (-14 *5 (-1123))))) +(-10 -7 (-15 -3403 ((-392 (-905 |#2|)) (-607 |#2|) (-607 |#2|) (-735) (-735)))) +((-3418 (((-111) $) 29)) (-3420 (((-111) $) 16)) (-3412 (((-735) $) 13)) (-3411 (((-735) $) 14)) (-3419 (((-111) $) 26)) (-3417 (((-111) $) 31))) +(((-1006 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3411 ((-735) |#1|)) (-15 -3412 ((-735) |#1|)) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|))) (-1007 |#2| |#3| |#4| |#5| |#6|) (-735) (-735) (-1004) (-224 |#3| |#4|) (-224 |#2| |#4|)) (T -1006)) +NIL +(-10 -8 (-15 -3411 ((-735) |#1|)) (-15 -3412 ((-735) |#1|)) (-15 -3417 ((-111) |#1|)) (-15 -3418 ((-111) |#1|)) (-15 -3419 ((-111) |#1|)) (-15 -3420 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3418 (((-111) $) 51)) (-1345 (((-3 $ "failed") $ $) 19)) (-3420 (((-111) $) 53)) (-1244 (((-111) $ (-735)) 61)) (-3855 (($) 17 T CONST)) (-3407 (($ $) 34 (|has| |#3| (-292)))) (-3409 ((|#4| $ (-526)) 39)) (-3406 (((-735) $) 33 (|has| |#3| (-533)))) (-3410 ((|#3| $ (-526) (-526)) 41)) (-2044 (((-607 |#3|) $) 68 (|has| $ (-6 -4310)))) (-3405 (((-735) $) 32 (|has| |#3| (-533)))) (-3404 (((-607 |#5|) $) 31 (|has| |#3| (-533)))) (-3412 (((-735) $) 45)) (-3411 (((-735) $) 44)) (-4041 (((-111) $ (-735)) 60)) (-3416 (((-526) $) 49)) (-3414 (((-526) $) 47)) (-2480 (((-607 |#3|) $) 69 (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 48)) (-3413 (((-526) $) 46)) (-3421 (($ (-607 (-607 |#3|))) 54)) (-2048 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3915 (((-607 (-607 |#3|)) $) 43)) (-4038 (((-111) $ (-735)) 59)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-533)))) (-2046 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#3|) (-607 |#3|)) 75 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) 73 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 (-278 |#3|))) 72 (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) 55)) (-3722 (((-111) $) 58)) (-3887 (($) 57)) (-4118 ((|#3| $ (-526) (-526)) 42) ((|#3| $ (-526) (-526) |#3|) 40)) (-3419 (((-111) $) 52)) (-2045 (((-735) |#3| $) 70 (-12 (|has| |#3| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4310)))) (-3719 (($ $) 56)) (-3408 ((|#5| $ (-526)) 38)) (-4274 (((-823) $) 11)) (-2047 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 50)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#3|) 35 (|has| |#3| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4273 (((-735) $) 62 (|has| $ (-6 -4310))))) +(((-1007 |#1| |#2| |#3| |#4| |#5|) (-134) (-735) (-735) (-1004) (-224 |t#2| |t#3|) (-224 |t#1| |t#3|)) (T -1007)) +((-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *5))) (-4 *5 (-1004)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-111)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-526)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-735)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-735)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-5 *2 (-607 (-607 *5))))) (-4118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) (-4118 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *2 (-1004)) (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *2 *7)) (-4 *6 (-1004)) (-4 *7 (-224 *4 *6)) (-4 *2 (-224 *5 *6)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *7 *2)) (-4 *6 (-1004)) (-4 *7 (-224 *5 *6)) (-4 *2 (-224 *4 *6)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) (-3780 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-533)))) (-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-348)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *2 *4)) (-4 *4 (-292)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-607 *7))))) +(-13 (-110 |t#3| |t#3|) (-472 |t#3|) (-10 -8 (-6 -4310) (IF (|has| |t#3| (-163)) (-6 (-682 |t#3|)) |%noBranch|) (-15 -3421 ($ (-607 (-607 |t#3|)))) (-15 -3420 ((-111) $)) (-15 -3419 ((-111) $)) (-15 -3418 ((-111) $)) (-15 -3417 ((-111) $)) (-15 -3416 ((-526) $)) (-15 -3415 ((-526) $)) (-15 -3414 ((-526) $)) (-15 -3413 ((-526) $)) (-15 -3412 ((-735) $)) (-15 -3411 ((-735) $)) (-15 -3915 ((-607 (-607 |t#3|)) $)) (-15 -4118 (|t#3| $ (-526) (-526))) (-15 -3410 (|t#3| $ (-526) (-526))) (-15 -4118 (|t#3| $ (-526) (-526) |t#3|)) (-15 -3409 (|t#4| $ (-526))) (-15 -3408 (|t#5| $ (-526))) (-15 -4275 ($ (-1 |t#3| |t#3|) $)) (-15 -4275 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-533)) (-15 -3780 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-348)) (-15 -4265 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-292)) (-15 -3407 ($ $)) |%noBranch|) (IF (|has| |t#3| (-533)) (PROGN (-15 -3406 ((-735) $)) (-15 -3405 ((-735) $)) (-15 -3404 ((-607 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-100) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-583 (-823)) . T) ((-294 |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))) ((-472 |#3|) . T) ((-496 |#3| |#3|) -12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))) ((-613 |#3|) . T) ((-682 |#3|) |has| |#3| (-163)) ((-1010 |#3|) . T) ((-1052) . T) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 43 (|has| |#3| (-292)))) (-3409 (((-225 |#2| |#3|) $ (-526)) 32)) (-3422 (($ (-653 |#3|)) 41)) (-3406 (((-735) $) 45 (|has| |#3| (-533)))) (-3410 ((|#3| $ (-526) (-526)) NIL)) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3405 (((-735) $) 47 (|has| |#3| (-533)))) (-3404 (((-607 (-225 |#1| |#3|)) $) 51 (|has| |#3| (-533)))) (-3412 (((-735) $) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#3|))) 27)) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3915 (((-607 (-607 |#3|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-533)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) (-526)) NIL) ((|#3| $ (-526) (-526) |#3|) NIL)) (-4230 (((-131)) 54 (|has| |#3| (-348)))) (-3419 (((-111) $) NIL)) (-2045 (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052)))) (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 63 (|has| |#3| (-584 (-515))))) (-3408 (((-225 |#1| |#3|) $ (-526)) 36)) (-4274 (((-823) $) 16) (((-653 |#3|) $) 38)) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2957 (($) 13 T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1008 |#1| |#2| |#3|) (-13 (-1007 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-583 (-653 |#3|)) (-10 -8 (IF (|has| |#3| (-348)) (-6 (-1213 |#3|)) |%noBranch|) (IF (|has| |#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (-15 -3422 ($ (-653 |#3|))) (-15 -4274 ((-653 |#3|) $)))) (-735) (-735) (-1004)) (T -1008)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-653 *5)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) (-4 *5 (-1004)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-1004)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735))))) +(-13 (-1007 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-583 (-653 |#3|)) (-10 -8 (IF (|has| |#3| (-348)) (-6 (-1213 |#3|)) |%noBranch|) (IF (|has| |#3| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|) (-15 -3422 ($ (-653 |#3|))) (-15 -4274 ((-653 |#3|) $)))) +((-4161 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4275 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1009 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4275 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4161 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-735) (-735) (-1004) (-224 |#2| |#3|) (-224 |#1| |#3|) (-1007 |#1| |#2| |#3| |#4| |#5|) (-1004) (-224 |#2| |#7|) (-224 |#1| |#7|) (-1007 |#1| |#2| |#7| |#8| |#9|)) (T -1009)) +((-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1004)) (-4 *2 (-1004)) (-14 *5 (-735)) (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) (-4 *10 (-224 *6 *2)) (-4 *11 (-224 *5 *2)) (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *12 (-1007 *5 *6 *2 *10 *11)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1004)) (-4 *10 (-1004)) (-14 *5 (-735)) (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) (-4 *2 (-1007 *5 *6 *10 *11 *12)) (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *11 (-224 *6 *10)) (-4 *12 (-224 *5 *10))))) +(-10 -7 (-15 -4275 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4161 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ |#1|) 23))) +(((-1010 |#1|) (-134) (-1011)) (T -1010)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1011))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-1005) (-134)) (T -1005)) -NIL -(-13 (-21) (-1057)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1057) . T) ((-1045) . T)) -((-1586 (($ $) 16)) (-3981 (($ $) 22)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 49)) (-2055 (($ $) 24)) (-1790 (($ $) 11)) (-3830 (($ $) 38)) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-845 (-363)) $) 33)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 28) (($ (-537)) NIL) (($ (-391 (-537))) 28)) (-3654 (((-731)) 8)) (-3903 (($ $) 39))) -(((-1006 |#1|) (-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) (-1007)) (T -1006)) -((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) -(-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 (((-537) $) 86)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1586 (($ $) 84)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 94)) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 111)) (-3832 (($) 17 T CONST)) (-3981 (($ $) 83)) (-1516 (((-3 (-537) "failed") $) 99) (((-3 (-391 (-537)) "failed") $) 96)) (-3958 (((-537) $) 98) (((-391 (-537)) $) 95)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-3797 (((-111) $) 109)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 90)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 93)) (-2055 (($ $) 89)) (-2840 (((-111) $) 110)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 108)) (-3889 (($ $ $) 107)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 85)) (-3830 (($ $) 87)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3996 (((-363) $) 102) (((-210) $) 101) (((-845 (-363)) $) 91)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-537)) 100) (($ (-391 (-537))) 97)) (-3654 (((-731)) 28)) (-3903 (($ $) 88)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 112)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 105)) (-2271 (((-111) $ $) 104)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 106)) (-2263 (((-111) $ $) 103)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 92)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) -(((-1007) (-134)) (T -1007)) -((-2209 (*1 *1 *1) (-4 *1 (-1007))) (-2055 (*1 *1 *1) (-4 *1 (-1007))) (-3903 (*1 *1 *1) (-4 *1 (-1007))) (-3830 (*1 *1 *1) (-4 *1 (-1007))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-537)))) (-1790 (*1 *1 *1) (-4 *1 (-1007))) (-1586 (*1 *1 *1) (-4 *1 (-1007))) (-3981 (*1 *1 *1) (-4 *1 (-1007)))) -(-13 (-347) (-805) (-973) (-989 (-537)) (-989 (-391 (-537))) (-954) (-580 (-845 (-363))) (-839 (-363)) (-141) (-10 -8 (-15 -2055 ($ $)) (-15 -3903 ($ $)) (-15 -3830 ($ $)) (-15 -1874 ((-537) $)) (-15 -1790 ($ $)) (-15 -1586 ($ $)) (-15 -3981 ($ $)) (-15 -2209 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-845 (-363))) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-839 (-363)) . T) ((-873) . T) ((-954) . T) ((-973) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) |#2| $) 23)) (-3151 ((|#1| $) 10)) (-2537 (((-537) |#2| $) 88)) (-4190 (((-3 $ "failed") |#2| (-874)) 57)) (-3278 ((|#1| $) 28)) (-3962 ((|#1| |#2| $ |#1|) 37)) (-3878 (($ $) 25)) (-3490 (((-3 |#2| "failed") |#2| $) 87)) (-3797 (((-111) |#2| $) NIL)) (-2840 (((-111) |#2| $) NIL)) (-3131 (((-111) |#2| $) 24)) (-2424 ((|#1| $) 89)) (-3267 ((|#1| $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2529 ((|#2| $) 79)) (-2341 (((-816) $) 70)) (-4150 ((|#1| |#2| $ |#1|) 38)) (-2607 (((-606 $) |#2|) 59)) (-2244 (((-111) $ $) 74))) -(((-1008 |#1| |#2|) (-13 (-1015 |#1| |#2|) (-10 -8 (-15 -3267 (|#1| $)) (-15 -3278 (|#1| $)) (-15 -3151 (|#1| $)) (-15 -2424 (|#1| $)) (-15 -3878 ($ $)) (-15 -3131 ((-111) |#2| $)) (-15 -3962 (|#1| |#2| $ |#1|)))) (-13 (-805) (-347)) (-1176 |#1|)) (T -1008)) -((-3962 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3267 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3278 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3151 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-2424 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3878 (*1 *1 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3131 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-805) (-347))) (-5 *2 (-111)) (-5 *1 (-1008 *4 *3)) (-4 *3 (-1176 *4))))) -(-13 (-1015 |#1| |#2|) (-10 -8 (-15 -3267 (|#1| $)) (-15 -3278 (|#1| $)) (-15 -3151 (|#1| $)) (-15 -2424 (|#1| $)) (-15 -3878 ($ $)) (-15 -3131 ((-111) |#2| $)) (-15 -3962 (|#1| |#2| $ |#1|)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) NIL)) (-3832 (($) NIL T CONST)) (-2687 (($ (-1117)) 10) (($ (-537)) 7)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) NIL) (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) NIL)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1454 (($ $) NIL)) (-3845 (($ $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) NIL)) (-2528 (((-1064) $) NIL) (($ $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) NIL)) (-2494 (($ $) NIL)) (-3996 (((-537) $) 16) (((-513) $) NIL) (((-845 (-537)) $) NIL) (((-363) $) NIL) (((-210) $) NIL) (($ (-1117)) 9)) (-2341 (((-816) $) 20) (($ (-537)) 6) (($ $) NIL) (($ (-537)) 6)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) NIL)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $) 19) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) -(((-1009) (-13 (-522) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3996 ($ (-1117))) (-15 -2687 ($ (-1117))) (-15 -2687 ($ (-537)))))) (T -1009)) -((-3996 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1009))))) -(-13 (-522) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3996 ($ (-1117))) (-15 -2687 ($ (-1117))) (-15 -2687 ($ (-537))))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1117) (-1117)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-3471 (($) 9)) (-2476 (((-51) $ (-1117) (-51)) NIL)) (-3269 (($ $) 30)) (-3640 (($ $) 28)) (-3861 (($ $) 27)) (-1902 (($ $) 29)) (-2467 (($ $) 32)) (-4156 (($ $) 33)) (-3741 (($ $) 26)) (-1333 (($ $) 31)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) 25 (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1117) $) 40)) (-3832 (($) NIL T CONST)) (-4238 (($) 7)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) 50 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1117) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3595 (((-3 (-1100) "failed") $ (-1100) (-537)) 59)) (-4091 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1117)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1117) $) NIL (|has| (-1117) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) 35 (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1117) $) NIL (|has| (-1117) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1117)) $) NIL)) (-4011 (((-111) (-1117) $) NIL)) (-2783 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) 43)) (-1270 (((-606 (-1117)) $) NIL)) (-1641 (((-111) (-1117) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2025 (((-363) $ (-1117)) 49)) (-3899 (((-606 (-1100)) $ (-1100)) 60)) (-3188 (((-51) $) NIL (|has| (-1117) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1117)) NIL) (((-51) $ (-1117) (-51)) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1844 (($ $ (-1117)) 51)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) 37)) (-3434 (($ $ $) 38)) (-2341 (((-816) $) NIL (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-579 (-816)))))) (-1955 (($ $ (-1117) (-363)) 47)) (-2130 (($ $ (-1117) (-363)) 48)) (-2753 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1010) (-13 (-1130 (-1117) (-51)) (-10 -8 (-15 -3434 ($ $ $)) (-15 -4238 ($)) (-15 -3741 ($ $)) (-15 -3861 ($ $)) (-15 -3640 ($ $)) (-15 -1902 ($ $)) (-15 -1333 ($ $)) (-15 -3269 ($ $)) (-15 -2467 ($ $)) (-15 -4156 ($ $)) (-15 -1955 ($ $ (-1117) (-363))) (-15 -2130 ($ $ (-1117) (-363))) (-15 -2025 ((-363) $ (-1117))) (-15 -3899 ((-606 (-1100)) $ (-1100))) (-15 -1844 ($ $ (-1117))) (-15 -3471 ($)) (-15 -3595 ((-3 (-1100) "failed") $ (-1100) (-537))) (-6 -4300)))) (T -1010)) -((-3434 (*1 *1 *1 *1) (-5 *1 (-1010))) (-4238 (*1 *1) (-5 *1 (-1010))) (-3741 (*1 *1 *1) (-5 *1 (-1010))) (-3861 (*1 *1 *1) (-5 *1 (-1010))) (-3640 (*1 *1 *1) (-5 *1 (-1010))) (-1902 (*1 *1 *1) (-5 *1 (-1010))) (-1333 (*1 *1 *1) (-5 *1 (-1010))) (-3269 (*1 *1 *1) (-5 *1 (-1010))) (-2467 (*1 *1 *1) (-5 *1 (-1010))) (-4156 (*1 *1 *1) (-5 *1 (-1010))) (-1955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010)))) (-2130 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-363)) (-5 *1 (-1010)))) (-3899 (*1 *2 *1 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1010)) (-5 *3 (-1100)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1010)))) (-3471 (*1 *1) (-5 *1 (-1010))) (-3595 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-1010))))) -(-13 (-1130 (-1117) (-51)) (-10 -8 (-15 -3434 ($ $ $)) (-15 -4238 ($)) (-15 -3741 ($ $)) (-15 -3861 ($ $)) (-15 -3640 ($ $)) (-15 -1902 ($ $)) (-15 -1333 ($ $)) (-15 -3269 ($ $)) (-15 -2467 ($ $)) (-15 -4156 ($ $)) (-15 -1955 ($ $ (-1117) (-363))) (-15 -2130 ($ $ (-1117) (-363))) (-15 -2025 ((-363) $ (-1117))) (-15 -3899 ((-606 (-1100)) $ (-1100))) (-15 -1844 ($ $ (-1117))) (-15 -3471 ($)) (-15 -3595 ((-3 (-1100) "failed") $ (-1100) (-537))) (-6 -4300))) -((-4199 (($ $) 45)) (-4062 (((-111) $ $) 74)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-905 (-391 (-537)))) 227) (((-3 $ "failed") (-905 (-537))) 226) (((-3 $ "failed") (-905 |#2|)) 229)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL) ((|#4| $) NIL) (($ (-905 (-391 (-537)))) 215) (($ (-905 (-537))) 211) (($ (-905 |#2|)) 231)) (-3940 (($ $) NIL) (($ $ |#4|) 43)) (-1369 (((-111) $ $) 112) (((-111) $ (-606 $)) 113)) (-2835 (((-111) $) 56)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 107)) (-4013 (($ $) 138)) (-2721 (($ $) 134)) (-1309 (($ $) 133)) (-3882 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3472 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3201 (((-111) $ $) 121) (((-111) $ (-606 $)) 122)) (-1464 ((|#4| $) 33)) (-3491 (($ $ $) 110)) (-2903 (((-111) $) 55)) (-2910 (((-731) $) 35)) (-1635 (($ $) 152)) (-3895 (($ $) 149)) (-1250 (((-606 $) $) 68)) (-2959 (($ $) 57)) (-2500 (($ $) 145)) (-3081 (((-606 $) $) 65)) (-2270 (($ $) 59)) (-3912 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 111)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 108) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#4|) 109)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) 104) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#4|) 105)) (-1852 (($ $ $) 89) (($ $ $ |#4|) 95)) (-4047 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1806 (((-606 $) $) 51)) (-3812 (((-111) $ $) 118) (((-111) $ (-606 $)) 119)) (-3787 (($ $ $) 103)) (-3956 (($ $) 37)) (-1981 (((-111) $ $) 72)) (-2524 (((-111) $ $) 114) (((-111) $ (-606 $)) 116)) (-2021 (($ $ $) 101)) (-2876 (($ $) 40)) (-2211 ((|#2| |#2| $) 142) (($ (-606 $)) NIL) (($ $ $) NIL)) (-2287 (($ $ |#2|) NIL) (($ $ $) 131)) (-3848 (($ $ |#2|) 126) (($ $ $) 129)) (-1757 (($ $) 48)) (-2944 (($ $) 52)) (-3996 (((-845 (-363)) $) NIL) (((-845 (-537)) $) NIL) (((-513) $) NIL) (($ (-905 (-391 (-537)))) 217) (($ (-905 (-537))) 213) (($ (-905 |#2|)) 228) (((-1100) $) 250) (((-905 |#2|) $) 162)) (-2341 (((-816) $) 30) (($ (-537)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-905 |#2|) $) 163) (($ (-391 (-537))) NIL) (($ $) NIL)) (-2633 (((-3 (-111) "failed") $ $) 71))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2211 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 ((-905 |#2|) |#1|)) (-15 -3996 ((-905 |#2|) |#1|)) (-15 -3996 ((-1100) |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -2211 (|#2| |#2| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2287 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -2721 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -3996 (|#1| (-905 |#2|))) (-15 -3958 (|#1| (-905 |#2|))) (-15 -1516 ((-3 |#1| "failed") (-905 |#2|))) (-15 -3996 (|#1| (-905 (-537)))) (-15 -3958 (|#1| (-905 (-537)))) (-15 -1516 ((-3 |#1| "failed") (-905 (-537)))) (-15 -3996 (|#1| (-905 (-391 (-537))))) (-15 -3958 (|#1| (-905 (-391 (-537))))) (-15 -1516 ((-3 |#1| "failed") (-905 (-391 (-537))))) (-15 -3787 (|#1| |#1| |#1|)) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3669 (-731))) |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -3293 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1852 (|#1| |#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1| |#4|)) (-15 -3882 (|#1| |#1| |#1| |#4|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1|)) (-15 -3201 ((-111) |#1| (-606 |#1|))) (-15 -3201 ((-111) |#1| |#1|)) (-15 -3812 ((-111) |#1| (-606 |#1|))) (-15 -3812 ((-111) |#1| |#1|)) (-15 -2524 ((-111) |#1| (-606 |#1|))) (-15 -2524 ((-111) |#1| |#1|)) (-15 -1369 ((-111) |#1| (-606 |#1|))) (-15 -1369 ((-111) |#1| |#1|)) (-15 -4062 ((-111) |#1| |#1|)) (-15 -1981 ((-111) |#1| |#1|)) (-15 -2633 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1250 ((-606 |#1|) |#1|)) (-15 -3081 ((-606 |#1|) |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2835 ((-111) |#1|)) (-15 -2903 ((-111) |#1|)) (-15 -3940 (|#1| |#1| |#4|)) (-15 -3912 (|#1| |#1| |#4|)) (-15 -2944 (|#1| |#1|)) (-15 -1806 ((-606 |#1|) |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -2910 ((-731) |#1|)) (-15 -1464 (|#4| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -3912 (|#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-1012 |#2| |#3| |#4|) (-998) (-753) (-807)) (T -1011)) -NIL -(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2211 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 ((-905 |#2|) |#1|)) (-15 -3996 ((-905 |#2|) |#1|)) (-15 -3996 ((-1100) |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -2211 (|#2| |#2| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2287 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -2721 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -3996 (|#1| (-905 |#2|))) (-15 -3958 (|#1| (-905 |#2|))) (-15 -1516 ((-3 |#1| "failed") (-905 |#2|))) (-15 -3996 (|#1| (-905 (-537)))) (-15 -3958 (|#1| (-905 (-537)))) (-15 -1516 ((-3 |#1| "failed") (-905 (-537)))) (-15 -3996 (|#1| (-905 (-391 (-537))))) (-15 -3958 (|#1| (-905 (-391 (-537))))) (-15 -1516 ((-3 |#1| "failed") (-905 (-391 (-537))))) (-15 -3787 (|#1| |#1| |#1|)) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3669 (-731))) |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -3293 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1852 (|#1| |#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1| |#4|)) (-15 -3882 (|#1| |#1| |#1| |#4|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1|)) (-15 -3201 ((-111) |#1| (-606 |#1|))) (-15 -3201 ((-111) |#1| |#1|)) (-15 -3812 ((-111) |#1| (-606 |#1|))) (-15 -3812 ((-111) |#1| |#1|)) (-15 -2524 ((-111) |#1| (-606 |#1|))) (-15 -2524 ((-111) |#1| |#1|)) (-15 -1369 ((-111) |#1| (-606 |#1|))) (-15 -1369 ((-111) |#1| |#1|)) (-15 -4062 ((-111) |#1| |#1|)) (-15 -1981 ((-111) |#1| |#1|)) (-15 -2633 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1250 ((-606 |#1|) |#1|)) (-15 -3081 ((-606 |#1|) |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2835 ((-111) |#1|)) (-15 -2903 ((-111) |#1|)) (-15 -3940 (|#1| |#1| |#4|)) (-15 -3912 (|#1| |#1| |#4|)) (-15 -2944 (|#1| |#1|)) (-15 -1806 ((-606 |#1|) |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -2910 ((-731) |#1|)) (-15 -1464 (|#4| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -3912 (|#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-4199 (($ $) 269)) (-4062 (((-111) $ $) 255)) (-3418 (((-3 $ "failed") $ $) 19)) (-1841 (($ $ $) 214 (|has| |#1| (-529)))) (-4088 (((-606 $) $ $) 209 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-905 (-391 (-537)))) 229 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (((-3 $ "failed") (-905 (-537))) 226 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (((-3 $ "failed") (-905 |#1|)) 223 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537)))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-522))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-945 (-537)))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))))) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133) (($ (-905 (-391 (-537)))) 228 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (($ (-905 (-537))) 225 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (($ (-905 |#1|)) 222 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537)))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-522))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-945 (-537)))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))))) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163))) (($ $ $) 210 (|has| |#1| (-529)))) (-3940 (($ $) 152) (($ $ |#3|) 264)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-1369 (((-111) $ $) 254) (((-111) $ (-606 $)) 253)) (-3490 (((-3 $ "failed") $) 32)) (-2835 (((-111) $) 262)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 234)) (-4013 (($ $) 203 (|has| |#1| (-435)))) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-2721 (($ $) 219 (|has| |#1| (-529)))) (-1309 (($ $) 220 (|has| |#1| (-529)))) (-3882 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3472 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3240 (($ $ |#1| |#2| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3201 (((-111) $ $) 248) (((-111) $ (-606 $)) 247)) (-2276 (($ $ $ $ $) 205 (|has| |#1| (-529)))) (-1464 ((|#3| $) 273)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#2|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3491 (($ $ $) 233)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-2903 (((-111) $) 263)) (-1883 ((|#2| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-2910 (((-731) $) 272)) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#2| |#2|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-1310 (((-3 |#3| "failed") $) 121)) (-1635 (($ $) 200 (|has| |#1| (-435)))) (-3895 (($ $) 201 (|has| |#1| (-435)))) (-1250 (((-606 $) $) 258)) (-2959 (($ $) 261)) (-2500 (($ $) 202 (|has| |#1| (-435)))) (-3081 (((-606 $) $) 259)) (-2270 (($ $) 260)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146) (($ $ |#3|) 265)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 232)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 236) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 235)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) 238) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#3|) 237)) (-1852 (($ $ $) 242) (($ $ $ |#3|) 240)) (-4047 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1654 (((-1100) $) 9)) (-1842 (($ $ $) 208 (|has| |#1| (-529)))) (-1806 (((-606 $) $) 267)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-3812 (((-111) $ $) 250) (((-111) $ (-606 $)) 249)) (-3787 (($ $ $) 230)) (-3956 (($ $) 271)) (-1981 (((-111) $ $) 256)) (-2524 (((-111) $ $) 252) (((-111) $ (-606 $)) 251)) (-2021 (($ $ $) 231)) (-2876 (($ $) 270)) (-2528 (((-1064) $) 10)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-529)))) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 ((|#1| |#1| $) 204 (|has| |#1| (-435))) (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-2287 (($ $ |#1|) 217 (|has| |#1| (-529))) (($ $ $) 215 (|has| |#1| (-529)))) (-3848 (($ $ |#1|) 218 (|has| |#1| (-529))) (($ $ $) 216 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136)) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37)) (-2872 ((|#2| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127)) (-1757 (($ $) 268)) (-2944 (($ $) 266)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513))))) (($ (-905 (-391 (-537)))) 227 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (($ (-905 (-537))) 224 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (($ (-905 |#1|)) 221 (|has| |#3| (-580 (-1117)))) (((-1100) $) 199 (-12 (|has| |#1| (-989 (-537))) (|has| |#3| (-580 (-1117))))) (((-905 |#1|) $) 198 (|has| |#3| (-580 (-1117))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-905 |#1|) $) 197 (|has| |#3| (-580 (-1117)))) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#2|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2633 (((-3 (-111) "failed") $ $) 257)) (-2943 (($) 29 T CONST)) (-3031 (($ $ $ $ (-731)) 206 (|has| |#1| (-529)))) (-2593 (($ $ $ (-731)) 207 (|has| |#1| (-529)))) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1012 |#1| |#2| |#3|) (-134) (-998) (-753) (-807)) (T -1012)) -((-1464 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-731)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1757 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3912 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2959 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2270 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3081 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-1250 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-2633 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1369 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-2524 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3882 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3472 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3882 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-3472 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1852 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1852 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-4047 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1296 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-1296 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) (-4 *1 (-1012 *4 *5 *3)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2897 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *4 *5 *3)))) (-3293 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-3491 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2069 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3669 (-731)))) (-4 *1 (-1012 *3 *4 *5)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3787 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-1516 (*1 *1 *2) (|partial| -1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3958 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3996 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-1516 (*1 *1 *2) (|partial| -1533 (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3958 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *5 (-580 (-1117))) (-4 *4 (-753)) (-4 *5 (-807)))) (-1309 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-3848 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2287 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2287 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2141 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2767 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2707 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef2| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-4086 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-4088 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-1842 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529)))) (-3031 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529)))) (-2276 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2211 (*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-4013 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-3895 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-1635 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435))))) -(-13 (-902 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1464 (|t#3| $)) (-15 -2910 ((-731) $)) (-15 -3956 ($ $)) (-15 -2876 ($ $)) (-15 -4199 ($ $)) (-15 -1757 ($ $)) (-15 -1806 ((-606 $) $)) (-15 -2944 ($ $)) (-15 -3912 ($ $ |t#3|)) (-15 -3940 ($ $ |t#3|)) (-15 -2903 ((-111) $)) (-15 -2835 ((-111) $)) (-15 -2959 ($ $)) (-15 -2270 ($ $)) (-15 -3081 ((-606 $) $)) (-15 -1250 ((-606 $) $)) (-15 -2633 ((-3 (-111) "failed") $ $)) (-15 -1981 ((-111) $ $)) (-15 -4062 ((-111) $ $)) (-15 -1369 ((-111) $ $)) (-15 -1369 ((-111) $ (-606 $))) (-15 -2524 ((-111) $ $)) (-15 -2524 ((-111) $ (-606 $))) (-15 -3812 ((-111) $ $)) (-15 -3812 ((-111) $ (-606 $))) (-15 -3201 ((-111) $ $)) (-15 -3201 ((-111) $ (-606 $))) (-15 -3882 ($ $ $)) (-15 -3472 ($ $ $)) (-15 -3882 ($ $ $ |t#3|)) (-15 -3472 ($ $ $ |t#3|)) (-15 -1852 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -1852 ($ $ $ |t#3|)) (-15 -4047 ($ $ $ |t#3|)) (-15 -1296 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $)) (-15 -1296 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |t#3|)) (-15 -2897 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2897 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |t#3|)) (-15 -3293 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $)) (-15 -2021 ($ $ $)) (-15 -3787 ($ $ $)) (IF (|has| |t#3| (-580 (-1117))) (PROGN (-6 (-579 (-905 |t#1|))) (-6 (-580 (-905 |t#1|))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -1516 ((-3 $ "failed") (-905 (-391 (-537))))) (-15 -3958 ($ (-905 (-391 (-537))))) (-15 -3996 ($ (-905 (-391 (-537))))) (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-905 (-537)))) (-15 -3996 ($ (-905 (-537)))) (IF (|has| |t#1| (-945 (-537))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-537))) (IF (|has| |t#1| (-37 (-391 (-537)))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-905 (-537)))) (-15 -3996 ($ (-905 (-537)))) (IF (|has| |t#1| (-522)) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-537))) |%noBranch| (IF (|has| |t#1| (-37 (-391 (-537)))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|)))))) (-15 -3996 ($ (-905 |t#1|))) (IF (|has| |t#1| (-989 (-537))) (-6 (-580 (-1100))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -1309 ($ $)) (-15 -2721 ($ $)) (-15 -3848 ($ $ |t#1|)) (-15 -2287 ($ $ |t#1|)) (-15 -3848 ($ $ $)) (-15 -2287 ($ $ $)) (-15 -1841 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -4086 ($ $ $)) (-15 -4088 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2593 ($ $ $ (-731))) (-15 -3031 ($ $ $ $ (-731))) (-15 -2276 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -2211 (|t#1| |t#1| $)) (-15 -4013 ($ $)) (-15 -2500 ($ $)) (-15 -3895 ($ $)) (-15 -1635 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-579 (-905 |#1|)) |has| |#3| (-580 (-1117))) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-580 (-905 |#1|)) |has| |#3| (-580 (-1117))) ((-580 (-1100)) -12 (|has| |#1| (-989 (-537))) (|has| |#3| (-580 (-1117)))) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-902 |#1| |#2| |#3|) . T) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-1901 (((-606 (-1122)) $) 13)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-3936 (((-1122) $) 15)) (-2244 (((-111) $ $) NIL))) -(((-1013) (-13 (-1029) (-10 -8 (-15 -1901 ((-606 (-1122)) $)) (-15 -3936 ((-1122) $))))) (T -1013)) -((-1901 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1013)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1013))))) -(-13 (-1029) (-10 -8 (-15 -1901 ((-606 (-1122)) $)) (-15 -3936 ((-1122) $)))) -((-1656 (((-111) |#3| $) 13)) (-4190 (((-3 $ "failed") |#3| (-874)) 23)) (-3490 (((-3 |#3| "failed") |#3| $) 38)) (-3797 (((-111) |#3| $) 16)) (-2840 (((-111) |#3| $) 14))) -(((-1014 |#1| |#2| |#3|) (-10 -8 (-15 -4190 ((-3 |#1| "failed") |#3| (-874))) (-15 -3490 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3797 ((-111) |#3| |#1|)) (-15 -2840 ((-111) |#3| |#1|)) (-15 -1656 ((-111) |#3| |#1|))) (-1015 |#2| |#3|) (-13 (-805) (-347)) (-1176 |#2|)) (T -1014)) -NIL -(-10 -8 (-15 -4190 ((-3 |#1| "failed") |#3| (-874))) (-15 -3490 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3797 ((-111) |#3| |#1|)) (-15 -2840 ((-111) |#3| |#1|)) (-15 -1656 ((-111) |#3| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) |#2| $) 21)) (-2537 (((-537) |#2| $) 22)) (-4190 (((-3 $ "failed") |#2| (-874)) 15)) (-3962 ((|#1| |#2| $ |#1|) 13)) (-3490 (((-3 |#2| "failed") |#2| $) 18)) (-3797 (((-111) |#2| $) 19)) (-2840 (((-111) |#2| $) 20)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2529 ((|#2| $) 17)) (-2341 (((-816) $) 11)) (-4150 ((|#1| |#2| $ |#1|) 14)) (-2607 (((-606 $) |#2|) 16)) (-2244 (((-111) $ $) 6))) -(((-1015 |#1| |#2|) (-134) (-13 (-805) (-347)) (-1176 |t#1|)) (T -1015)) -((-2537 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-537)))) (-1656 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-2840 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-3797 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-3490 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) (-4 *2 (-1176 *3)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) (-4 *2 (-1176 *3)))) (-2607 (*1 *2 *3) (-12 (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-606 *1)) (-4 *1 (-1015 *4 *3)))) (-4190 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-874)) (-4 *4 (-13 (-805) (-347))) (-4 *1 (-1015 *4 *2)) (-4 *2 (-1176 *4)))) (-4150 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) (-4 *3 (-1176 *2)))) (-3962 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) (-4 *3 (-1176 *2))))) -(-13 (-1045) (-10 -8 (-15 -2537 ((-537) |t#2| $)) (-15 -1656 ((-111) |t#2| $)) (-15 -2840 ((-111) |t#2| $)) (-15 -3797 ((-111) |t#2| $)) (-15 -3490 ((-3 |t#2| "failed") |t#2| $)) (-15 -2529 (|t#2| $)) (-15 -2607 ((-606 $) |t#2|)) (-15 -4190 ((-3 $ "failed") |t#2| (-874))) (-15 -4150 (|t#1| |t#2| $ |t#1|)) (-15 -3962 (|t#1| |t#2| $ |t#1|)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-3000 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731)) 96)) (-1607 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 56)) (-2540 (((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)) 87)) (-3615 (((-731) (-606 |#4|) (-606 |#5|)) 27)) (-2764 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 58) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111)) 60)) (-4035 (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111)) 79)) (-3996 (((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 82)) (-4134 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111)) 55)) (-3550 (((-731) (-606 |#4|) (-606 |#5|)) 19))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1016)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) (-5 *1 (-1016 *4 *5 *6 *7 *8)))) (-3000 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-606 *11)) (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) (-5 *6 (-731)) (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) (-4 *11 (-1018 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-5 *1 (-1016 *7 *8 *9 *10 *11)))) (-4035 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-4035 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-2764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *7 *8 *9 *3 *4)) (-4 *4 (-1018 *7 *8 *9 *3)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) -((-3165 (((-111) |#5| $) 21)) (-3398 (((-111) |#5| $) 24)) (-2479 (((-111) |#5| $) 16) (((-111) $) 45)) (-3891 (((-606 $) |#5| $) NIL) (((-606 $) (-606 |#5|) $) 77) (((-606 $) (-606 |#5|) (-606 $)) 75) (((-606 $) |#5| (-606 $)) 78)) (-1540 (($ $ |#5|) NIL) (((-606 $) |#5| $) NIL) (((-606 $) |#5| (-606 $)) 60) (((-606 $) (-606 |#5|) $) 62) (((-606 $) (-606 |#5|) (-606 $)) 64)) (-3014 (((-606 $) |#5| $) NIL) (((-606 $) |#5| (-606 $)) 54) (((-606 $) (-606 |#5|) $) 56) (((-606 $) (-606 |#5|) (-606 $)) 58)) (-3161 (((-111) |#5| $) 27))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1540 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -1540 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -1540 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -1540 ((-606 |#1|) |#5| |#1|)) (-15 -3014 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3014 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3014 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3014 ((-606 |#1|) |#5| |#1|)) (-15 -3891 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3891 ((-606 |#1|) |#5| |#1|)) (-15 -3398 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#1|)) (-15 -3161 ((-111) |#5| |#1|)) (-15 -3165 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#5| |#1|)) (-15 -1540 (|#1| |#1| |#5|))) (-1018 |#2| |#3| |#4| |#5|) (-435) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -1017)) -NIL -(-10 -8 (-15 -1540 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -1540 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -1540 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -1540 ((-606 |#1|) |#5| |#1|)) (-15 -3014 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3014 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3014 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3014 ((-606 |#1|) |#5| |#1|)) (-15 -3891 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3891 ((-606 |#1|) |#5| |#1|)) (-15 -3398 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#1|)) (-15 -3161 ((-111) |#5| |#1|)) (-15 -3165 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#5| |#1|)) (-15 -1540 (|#1| |#1| |#5|))) -((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-1018 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1018)) -((-2479 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3165 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3161 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3398 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2806 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 (-111) (-606 *1))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3826 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3029 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 *3 (-606 *1))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1842 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1395 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-3014 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3014 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-3014 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-3014 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3357 (*1 *1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3357 (*1 *1 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)))) (-1540 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1540 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-1540 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-1540 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *5 *6 *7 *8))))) -(-13 (-1147 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2479 ((-111) |t#4| $)) (-15 -3165 ((-111) |t#4| $)) (-15 -3161 ((-111) |t#4| $)) (-15 -2479 ((-111) $)) (-15 -3398 ((-111) |t#4| $)) (-15 -2806 ((-3 (-111) (-606 $)) |t#4| $)) (-15 -2605 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |t#4| $)) (-15 -2605 ((-111) |t#4| $)) (-15 -3826 ((-606 $) |t#4| $)) (-15 -3029 ((-3 |t#4| (-606 $)) |t#4| |t#4| $)) (-15 -1842 ((-606 (-2 (|:| |val| |t#4|) (|:| -3852 $))) |t#4| |t#4| $)) (-15 -1395 ((-606 (-2 (|:| |val| |t#4|) (|:| -3852 $))) |t#4| $)) (-15 -3891 ((-606 $) |t#4| $)) (-15 -3891 ((-606 $) (-606 |t#4|) $)) (-15 -3891 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3891 ((-606 $) |t#4| (-606 $))) (-15 -3014 ((-606 $) |t#4| $)) (-15 -3014 ((-606 $) |t#4| (-606 $))) (-15 -3014 ((-606 $) (-606 |t#4|) $)) (-15 -3014 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3357 ($ |t#4| $)) (-15 -3357 ($ (-606 |t#4|) $)) (-15 -1540 ((-606 $) |t#4| $)) (-15 -1540 ((-606 $) |t#4| (-606 $))) (-15 -1540 ((-606 $) (-606 |t#4|) $)) (-15 -1540 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3448 ((-606 $) (-606 |t#4|) (-111))))) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) -((-1870 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 81)) (-2010 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 113)) (-3287 (((-606 |#5|) |#4| |#5|) 70)) (-3707 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-1291 (((-1205)) 37)) (-3761 (((-1205)) 26)) (-2400 (((-1205) (-1100) (-1100) (-1100)) 33)) (-1298 (((-1205) (-1100) (-1100) (-1100)) 22)) (-3223 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|) 96)) (-1979 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111)) 107) (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3843 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 102))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3223 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3843 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-111) |#4| |#5|)) (-15 -3707 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -3287 ((-606 |#5|) |#4| |#5|)) (-15 -1870 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1019)) -((-1870 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2010 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3843 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-1979 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3223 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-2400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3761 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3223 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3843 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-111) |#4| |#5|)) (-15 -3707 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -3287 ((-606 |#5|) |#4| |#5|)) (-15 -1870 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) -((-2330 (((-111) $ $) NIL)) (-3923 (((-1117) $) 8)) (-1654 (((-1100) $) 16)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 13))) -(((-1020 |#1|) (-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) (-1117)) (T -1020)) -((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1020 *3)) (-14 *3 *2)))) -(-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) -((-2330 (((-111) $ $) NIL)) (-2738 (($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|))) 33)) (-2144 (($ |#3| |#3|) 22) (($ |#3| |#3| (-606 (-1117))) 20)) (-2880 ((|#3| $) 13)) (-1516 (((-3 (-278 |#3|) "failed") $) 58)) (-3958 (((-278 |#3|) $) NIL)) (-2798 (((-606 (-1117)) $) 16)) (-2153 (((-845 |#1|) $) 11)) (-2869 ((|#3| $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-874)) 39)) (-2341 (((-816) $) 86) (($ (-278 |#3|)) 21)) (-2244 (((-111) $ $) 36))) -(((-1021 |#1| |#2| |#3|) (-13 (-1045) (-270 |#3| |#3|) (-989 (-278 |#3|)) (-10 -8 (-15 -2144 ($ |#3| |#3|)) (-15 -2144 ($ |#3| |#3| (-606 (-1117)))) (-15 -2738 ($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|)))) (-15 -2153 ((-845 |#1|) $)) (-15 -2869 (|#3| $)) (-15 -2880 (|#3| $)) (-15 -1922 (|#3| $ |#3| (-874))) (-15 -2798 ((-606 (-1117)) $)))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -1021)) -((-2144 (*1 *1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))))) (-2144 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2738 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1 (-111) (-606 *6))) (-4 *6 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *6)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 *2))) (-5 *2 (-845 *3)) (-5 *1 (-1021 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 *2))))) (-2869 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) (-2880 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) (-1922 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2798 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *2 (-606 (-1117))) (-5 *1 (-1021 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) -(-13 (-1045) (-270 |#3| |#3|) (-989 (-278 |#3|)) (-10 -8 (-15 -2144 ($ |#3| |#3|)) (-15 -2144 ($ |#3| |#3| (-606 (-1117)))) (-15 -2738 ($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|)))) (-15 -2153 ((-845 |#1|) $)) (-15 -2869 (|#3| $)) (-15 -2880 (|#3| $)) (-15 -1922 (|#3| $ |#3| (-874))) (-15 -2798 ((-606 (-1117)) $)))) -((-2330 (((-111) $ $) NIL)) (-2713 (($ (-606 (-1021 |#1| |#2| |#3|))) 13)) (-2155 (((-606 (-1021 |#1| |#2| |#3|)) $) 20)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-874)) 26)) (-2341 (((-816) $) 16)) (-2244 (((-111) $ $) 19))) -(((-1022 |#1| |#2| |#3|) (-13 (-1045) (-270 |#3| |#3|) (-10 -8 (-15 -2713 ($ (-606 (-1021 |#1| |#2| |#3|)))) (-15 -2155 ((-606 (-1021 |#1| |#2| |#3|)) $)) (-15 -1922 (|#3| $ |#3| (-874))))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -1022)) -((-2713 (*1 *1 *2) (-12 (-5 *2 (-606 (-1021 *3 *4 *5))) (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1022 *3 *4 *5)))) (-2155 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *2 (-606 (-1021 *3 *4 *5))) (-5 *1 (-1022 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))))) (-1922 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1022 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4))))))) -(-13 (-1045) (-270 |#3| |#3|) (-10 -8 (-15 -2713 ($ (-606 (-1021 |#1| |#2| |#3|)))) (-15 -2155 ((-606 (-1021 |#1| |#2| |#3|)) $)) (-15 -1922 (|#3| $ |#3| (-874))))) -((-4167 (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)) 75) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|))) 77) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111)) 76))) -(((-1023 |#1| |#2|) (-10 -7 (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)))) (-13 (-291) (-141)) (-606 (-1117))) (T -1023)) -((-4167 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1023 *4 *5)) (-5 *3 (-606 (-905 *4))) (-14 *5 (-606 (-1117))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117)))))) -(-10 -7 (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)))) -((-3622 (((-402 |#3|) |#3|) 18))) -(((-1024 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) (-1176 (-391 (-537))) (-13 (-347) (-141) (-685 (-391 (-537)) |#1|)) (-1176 |#2|)) (T -1024)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-13 (-347) (-141) (-685 (-391 (-537)) *4))) (-5 *2 (-402 *3)) (-5 *1 (-1024 *4 *5 *3)) (-4 *3 (-1176 *5))))) -(-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 126)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-347)))) (-3377 (($ $) NIL (|has| |#1| (-347)))) (-4017 (((-111) $) NIL (|has| |#1| (-347)))) (-3623 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) 115)) (-1428 ((|#1| $) 119)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3151 (((-731)) 40 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) 43)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-2664 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 106) (((-649 |#1|) (-649 $)) 101)) (-3195 (($ |#2|) 61) (((-3 $ "failed") (-391 |#2|)) NIL (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3705 (((-874)) 77)) (-1618 (($) 44 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-4145 (($) NIL (|has| |#1| (-333)))) (-2974 (((-111) $) NIL (|has| |#1| (-333)))) (-2642 (($ $ (-731)) NIL (|has| |#1| (-333))) (($ $) NIL (|has| |#1| (-333)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-4231 (((-874) $) NIL (|has| |#1| (-333))) (((-793 (-874)) $) NIL (|has| |#1| (-333)))) (-2836 (((-111) $) NIL)) (-2055 ((|#1| $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-3199 ((|#2| $) 84 (|has| |#1| (-347)))) (-2334 (((-874) $) 131 (|has| |#1| (-352)))) (-3183 ((|#2| $) 58)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3956 (($) NIL (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 125 (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-1524 (($) 121)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-333)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-2067 ((|#1| (-1200 $)) NIL) ((|#1|) 109)) (-3030 (((-731) $) NIL (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1 |#1| |#1|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2529 ((|#2|) 73)) (-3553 (($) NIL (|has| |#1| (-333)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 89) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) 71) (((-649 |#1|) (-1200 $)) 85)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-333)))) (-2341 (((-816) $) 57) (($ (-537)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-347))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (($ $) NIL (|has| |#1| (-333))) (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-2736 ((|#2| $) 82)) (-3654 (((-731)) 75)) (-2122 (((-1200 $)) 81)) (-3276 (((-111) $ $) NIL (|has| |#1| (-347)))) (-2928 (($) 30 T CONST)) (-2943 (($) 19 T CONST)) (-4230 (($ $) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1 |#1| |#1|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2244 (((-111) $ $) 63)) (-2340 (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) 67) (($ $ $) NIL)) (-2318 (($ $ $) 65)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))))) -(((-1025 |#1| |#2| |#3|) (-685 |#1| |#2|) (-163) (-1176 |#1|) |#2|) (T -1025)) -NIL -(-685 |#1| |#2|) -((-3622 (((-402 |#3|) |#3|) 19))) -(((-1026 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) (-1176 (-391 (-905 (-537)))) (-13 (-347) (-141) (-685 (-391 (-905 (-537))) |#1|)) (-1176 |#2|)) (T -1026)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 (-905 (-537))))) (-4 *5 (-13 (-347) (-141) (-685 (-391 (-905 (-537))) *4))) (-5 *2 (-402 *3)) (-5 *1 (-1026 *4 *5 *3)) (-4 *3 (-1176 *5))))) -(-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) -((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) 14)) (-3889 (($ $ $) 15)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2316 (($) 6)) (-3996 (((-1117) $) 18)) (-2341 (((-816) $) 12)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 13)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) -(((-1027) (-13 (-807) (-10 -8 (-15 -2316 ($)) (-15 -3996 ((-1117) $))))) (T -1027)) -((-2316 (*1 *1) (-5 *1 (-1027))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1027))))) -(-13 (-807) (-10 -8 (-15 -2316 ($)) (-15 -3996 ((-1117) $)))) -((-2341 (((-816) $) 37) (((-1122) $) NIL))) -(((-1028 |#1|) (-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) (-1029)) (T -1028)) -NIL -(-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (((-1122) $) 14)) (-2244 (((-111) $ $) 6))) -(((-1029) (-134)) (T -1029)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-1011) (-134)) (T -1011)) +NIL +(-13 (-21) (-1063)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-583 (-823)) . T) ((-1063) . T) ((-1052) . T)) +((-4089 (($ $) 16)) (-3424 (($ $) 22)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 49)) (-3429 (($ $) 24)) (-3425 (($ $) 11)) (-3427 (($ $) 38)) (-4287 (((-363) $) NIL) (((-211) $) NIL) (((-849 (-363)) $) 33)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL) (($ (-392 (-526))) 28) (($ (-526)) NIL) (($ (-392 (-526))) 28)) (-3423 (((-735)) 8)) (-3428 (($ $) 39))) +(((-1012 |#1|) (-10 -8 (-15 -3424 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) (-1013)) (T -1012)) +((-3423 (*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))) +(-10 -8 (-15 -3424 (|#1| |#1|)) (-15 -4089 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3096 ((-847 (-363) |#1|) |#1| (-849 (-363)) (-847 (-363) |#1|))) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 -4287 ((-211) |#1|)) (-15 -4287 ((-363) |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -3423 ((-735))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 (((-526) $) 86)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4089 (($ $) 84)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-3337 (($ $) 94)) (-1681 (((-111) $ $) 57)) (-3945 (((-526) $) 111)) (-3855 (($) 17 T CONST)) (-3424 (($ $) 83)) (-3470 (((-3 (-526) #1="failed") $) 99) (((-3 (-392 (-526)) #1#) $) 96)) (-3469 (((-526) $) 98) (((-392 (-526)) $) 95)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-4045 (((-111) $) 68)) (-3500 (((-111) $) 109)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 90)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 93)) (-3429 (($ $) 89)) (-3501 (((-111) $) 110)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) 50)) (-3637 (($ $ $) 108)) (-3638 (($ $ $) 107)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-3425 (($ $) 85)) (-3427 (($ $) 87)) (-4051 (((-390 $) $) 71)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-4287 (((-363) $) 102) (((-211) $) 101) (((-849 (-363)) $) 91)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ (-526)) 100) (($ (-392 (-526))) 97)) (-3423 (((-735)) 28)) (-3428 (($ $) 88)) (-2150 (((-111) $ $) 37)) (-3702 (($ $) 112)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2863 (((-111) $ $) 105)) (-2864 (((-111) $ $) 104)) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 106)) (-2985 (((-111) $ $) 103)) (-4265 (($ $ $) 62)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66) (($ $ (-392 (-526))) 92)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64))) +(((-1013) (-134)) (T -1013)) +((-3702 (*1 *1 *1) (-4 *1 (-1013))) (-3429 (*1 *1 *1) (-4 *1 (-1013))) (-3428 (*1 *1 *1) (-4 *1 (-1013))) (-3427 (*1 *1 *1) (-4 *1 (-1013))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-526)))) (-3425 (*1 *1 *1) (-4 *1 (-1013))) (-4089 (*1 *1 *1) (-4 *1 (-1013))) (-3424 (*1 *1 *1) (-4 *1 (-1013)))) +(-13 (-348) (-809) (-977) (-995 (-526)) (-995 (-392 (-526))) (-960) (-584 (-849 (-363))) (-845 (-363)) (-141) (-10 -8 (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ((-526) $)) (-15 -3425 ($ $)) (-15 -4089 ($ $)) (-15 -3424 ($ $)) (-15 -3702 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-583 (-823)) . T) ((-163) . T) ((-584 (-211)) . T) ((-584 (-363)) . T) ((-584 (-849 (-363))) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 $) . T) ((-691) . T) ((-755) . T) ((-756) . T) ((-758) . T) ((-761) . T) ((-809) . T) ((-811) . T) ((-845 (-363)) . T) ((-880) . T) ((-960) . T) ((-977) . T) ((-995 (-392 (-526))) . T) ((-995 (-526)) . T) ((-1010 #1#) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) |#2| $) 23)) (-3433 ((|#1| $) 10)) (-3945 (((-526) |#2| $) 88)) (-3497 (((-3 $ #1="failed") |#2| (-878)) 57)) (-3434 ((|#1| $) 28)) (-3496 ((|#1| |#2| $ |#1|) 37)) (-3431 (($ $) 25)) (-3781 (((-3 |#2| #1#) |#2| $) 87)) (-3500 (((-111) |#2| $) NIL)) (-3501 (((-111) |#2| $) NIL)) (-3430 (((-111) |#2| $) 24)) (-3432 ((|#1| $) 89)) (-3435 ((|#1| $) 27)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3499 ((|#2| $) 79)) (-4274 (((-823) $) 70)) (-4088 ((|#1| |#2| $ |#1|) 38)) (-3498 (((-607 $) |#2|) 59)) (-3353 (((-111) $ $) 74))) +(((-1014 |#1| |#2|) (-13 (-1021 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| $)) (-15 -3434 (|#1| $)) (-15 -3433 (|#1| $)) (-15 -3432 (|#1| $)) (-15 -3431 ($ $)) (-15 -3430 ((-111) |#2| $)) (-15 -3496 (|#1| |#2| $ |#1|)))) (-13 (-809) (-348)) (-1181 |#1|)) (T -1014)) +((-3496 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3435 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3434 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3433 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3432 (*1 *2 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3431 (*1 *1 *1) (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) (-3430 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-809) (-348))) (-5 *2 (-111)) (-5 *1 (-1014 *4 *3)) (-4 *3 (-1181 *4))))) +(-13 (-1021 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| $)) (-15 -3434 (|#1| $)) (-15 -3433 (|#1| $)) (-15 -3432 (|#1| $)) (-15 -3431 ($ $)) (-15 -3430 ((-111) |#2| $)) (-15 -3496 (|#1| |#2| $ |#1|)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) NIL)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) NIL)) (-3855 (($) NIL T CONST)) (-3436 (($ (-1123)) 10) (($ (-526)) 7)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) NIL)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-653 (-526)) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) NIL)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) NIL)) (-2973 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) NIL)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) NIL)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-2132 (($ $) NIL)) (-4152 (($ $) NIL)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) NIL)) (-3555 (((-1070) $) NIL) (($ $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) NIL) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) NIL)) (-3719 (($ $) NIL)) (-4287 (((-526) $) 16) (((-515) $) NIL) (((-849 (-526)) $) NIL) (((-363) $) NIL) (((-211) $) NIL) (($ (-1123)) 9)) (-4274 (((-823) $) 20) (($ (-526)) 6) (($ $) NIL) (($ (-526)) 6)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) NIL)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-3702 (($ $) NIL)) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) NIL)) (-4156 (($ $) 19) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL))) +(((-1015) (-13 (-525) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -4287 ($ (-1123))) (-15 -3436 ($ (-1123))) (-15 -3436 ($ (-526)))))) (T -1015)) +((-4287 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1015))))) +(-13 (-525) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -4287 ($ (-1123))) (-15 -3436 ($ (-1123))) (-15 -3436 ($ (-526))))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2276 (((-1211) $ (-1123) (-1123)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3438 (($) 9)) (-4106 (((-50) $ (-1123) (-50)) NIL)) (-3446 (($ $) 30)) (-3449 (($ $) 28)) (-3450 (($ $) 27)) (-3448 (($ $) 29)) (-3445 (($ $) 32)) (-3444 (($ $) 33)) (-3451 (($ $) 26)) (-3447 (($ $) 31)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) 25 (|has| $ (-6 -4310)))) (-2285 (((-3 (-50) #1="failed") (-1123) $) 40)) (-3855 (($) NIL T CONST)) (-3452 (($) 7)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) 50 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-3 (-50) #1#) (-1123) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310)))) (-3437 (((-3 (-1106) "failed") $ (-1106) (-526)) 59)) (-1613 (((-50) $ (-1123) (-50)) NIL (|has| $ (-6 -4311)))) (-3410 (((-50) $ (-1123)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) 35 (|has| $ (-6 -4310))) (((-607 (-50)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2279 (((-1123) $) NIL (|has| (-1123) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4311))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-2713 (((-607 (-1123)) $) NIL)) (-2286 (((-111) (-1123) $) NIL)) (-1306 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) 43)) (-2281 (((-607 (-1123)) $) NIL)) (-2282 (((-111) (-1123) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-3441 (((-363) $ (-1123)) 49)) (-3440 (((-607 (-1106)) $ (-1106)) 60)) (-4119 (((-50) $) NIL (|has| (-1123) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) "failed") (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL)) (-2277 (($ $ (-50)) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL (-12 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-294 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (($ $ (-607 (-50)) (-607 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-278 (-50))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052)))) (($ $ (-607 (-278 (-50)))) NIL (-12 (|has| (-50) (-294 (-50))) (|has| (-50) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052))))) (-2283 (((-607 (-50)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-50) $ (-1123)) NIL) (((-50) $ (-1123) (-50)) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-3439 (($ $ (-1123)) 51)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052)))) (((-735) (-50) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-50) (-1052)))) (((-735) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) 37)) (-4120 (($ $ $) 38)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-583 (-823))) (|has| (-50) (-583 (-823)))))) (-3443 (($ $ (-1123) (-363)) 47)) (-3442 (($ $ (-1123) (-363)) 48)) (-1308 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1123)) (|:| -2164 (-50)))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) (-50)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-50) (-1052)) (|has| (-2 (|:| -4179 (-1123)) (|:| -2164 (-50))) (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1016) (-13 (-1136 (-1123) (-50)) (-10 -8 (-15 -4120 ($ $ $)) (-15 -3452 ($)) (-15 -3451 ($ $)) (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ($ $)) (-15 -3446 ($ $)) (-15 -3445 ($ $)) (-15 -3444 ($ $)) (-15 -3443 ($ $ (-1123) (-363))) (-15 -3442 ($ $ (-1123) (-363))) (-15 -3441 ((-363) $ (-1123))) (-15 -3440 ((-607 (-1106)) $ (-1106))) (-15 -3439 ($ $ (-1123))) (-15 -3438 ($)) (-15 -3437 ((-3 (-1106) "failed") $ (-1106) (-526))) (-6 -4310)))) (T -1016)) +((-4120 (*1 *1 *1 *1) (-5 *1 (-1016))) (-3452 (*1 *1) (-5 *1 (-1016))) (-3451 (*1 *1 *1) (-5 *1 (-1016))) (-3450 (*1 *1 *1) (-5 *1 (-1016))) (-3449 (*1 *1 *1) (-5 *1 (-1016))) (-3448 (*1 *1 *1) (-5 *1 (-1016))) (-3447 (*1 *1 *1) (-5 *1 (-1016))) (-3446 (*1 *1 *1) (-5 *1 (-1016))) (-3445 (*1 *1 *1) (-5 *1 (-1016))) (-3444 (*1 *1 *1) (-5 *1 (-1016))) (-3443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016)))) (-3442 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-363)) (-5 *1 (-1016)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1016)) (-5 *3 (-1106)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1016)))) (-3438 (*1 *1) (-5 *1 (-1016))) (-3437 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-1016))))) +(-13 (-1136 (-1123) (-50)) (-10 -8 (-15 -4120 ($ $ $)) (-15 -3452 ($)) (-15 -3451 ($ $)) (-15 -3450 ($ $)) (-15 -3449 ($ $)) (-15 -3448 ($ $)) (-15 -3447 ($ $)) (-15 -3446 ($ $)) (-15 -3445 ($ $)) (-15 -3444 ($ $)) (-15 -3443 ($ $ (-1123) (-363))) (-15 -3442 ($ $ (-1123) (-363))) (-15 -3441 ((-363) $ (-1123))) (-15 -3440 ((-607 (-1106)) $ (-1106))) (-15 -3439 ($ $ (-1123))) (-15 -3438 ($)) (-15 -3437 ((-3 (-1106) "failed") $ (-1106) (-526))) (-6 -4310))) +((-4115 (($ $) 45)) (-3479 (((-111) $ $) 74)) (-3470 (((-3 |#2| #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-905 (-392 (-526)))) 227) (((-3 $ "failed") (-905 (-526))) 226) (((-3 $ "failed") (-905 |#2|)) 229)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL) ((|#4| $) NIL) (($ (-905 (-392 (-526)))) 215) (($ (-905 (-526))) 211) (($ (-905 |#2|)) 231)) (-4276 (($ $) NIL) (($ $ |#4|) 43)) (-4016 (((-111) $ $) 112) (((-111) $ (-607 $)) 113)) (-3485 (((-111) $) 56)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 107)) (-3456 (($ $) 138)) (-3467 (($ $) 134)) (-3468 (($ $) 133)) (-3478 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3477 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4017 (((-111) $ $) 121) (((-111) $ (-607 $)) 122)) (-3493 ((|#4| $) 33)) (-3472 (($ $ $) 110)) (-3486 (((-111) $) 55)) (-3492 (((-735) $) 35)) (-3453 (($ $) 152)) (-3454 (($ $) 149)) (-3481 (((-607 $) $) 68)) (-3484 (($ $) 57)) (-3455 (($ $) 145)) (-3482 (((-607 $) $) 65)) (-3483 (($ $) 59)) (-3487 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 111)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 108) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#4|) 109)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) 104) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#4|) 105)) (-3476 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3475 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3489 (((-607 $) $) 51)) (-4013 (((-111) $ $) 118) (((-111) $ (-607 $)) 119)) (-4008 (($ $ $) 103)) (-3764 (($ $) 37)) (-4021 (((-111) $ $) 72)) (-4014 (((-111) $ $) 114) (((-111) $ (-607 $)) 116)) (-4009 (($ $ $) 101)) (-3491 (($ $) 40)) (-3457 ((|#2| |#2| $) 142) (($ (-607 $)) NIL) (($ $ $) NIL)) (-3465 (($ $ |#2|) NIL) (($ $ $) 131)) (-3466 (($ $ |#2|) 126) (($ $ $) 129)) (-3490 (($ $) 48)) (-3488 (($ $) 52)) (-4287 (((-849 (-363)) $) NIL) (((-849 (-526)) $) NIL) (((-515) $) NIL) (($ (-905 (-392 (-526)))) 217) (($ (-905 (-526))) 213) (($ (-905 |#2|)) 228) (((-1106) $) 250) (((-905 |#2|) $) 162)) (-4274 (((-823) $) 30) (($ (-526)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-905 |#2|) $) 163) (($ (-392 (-526))) NIL) (($ $) NIL)) (-3480 (((-3 (-111) "failed") $ $) 71))) +(((-1017 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 ((-905 |#2|) |#1|)) (-15 -4287 ((-905 |#2|) |#1|)) (-15 -4287 ((-1106) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3465 (|#1| |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| |#2|)) (-15 -3466 (|#1| |#1| |#2|)) (-15 -3467 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -4287 (|#1| (-905 |#2|))) (-15 -3469 (|#1| (-905 |#2|))) (-15 -3470 ((-3 |#1| "failed") (-905 |#2|))) (-15 -4287 (|#1| (-905 (-526)))) (-15 -3469 (|#1| (-905 (-526)))) (-15 -3470 ((-3 |#1| "failed") (-905 (-526)))) (-15 -4287 (|#1| (-905 (-392 (-526))))) (-15 -3469 (|#1| (-905 (-392 (-526))))) (-15 -3470 ((-3 |#1| "failed") (-905 (-392 (-526))))) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -3471 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3795 (-735))) |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -4071 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#1| |#4|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3477 (|#1| |#1| |#1| |#4|)) (-15 -3478 (|#1| |#1| |#1| |#4|)) (-15 -3477 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -4017 ((-111) |#1| (-607 |#1|))) (-15 -4017 ((-111) |#1| |#1|)) (-15 -4013 ((-111) |#1| (-607 |#1|))) (-15 -4013 ((-111) |#1| |#1|)) (-15 -4014 ((-111) |#1| (-607 |#1|))) (-15 -4014 ((-111) |#1| |#1|)) (-15 -4016 ((-111) |#1| (-607 |#1|))) (-15 -4016 ((-111) |#1| |#1|)) (-15 -3479 ((-111) |#1| |#1|)) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3480 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3481 ((-607 |#1|) |#1|)) (-15 -3482 ((-607 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3485 ((-111) |#1|)) (-15 -3486 ((-111) |#1|)) (-15 -4276 (|#1| |#1| |#4|)) (-15 -3487 (|#1| |#1| |#4|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 ((-607 |#1|) |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3492 ((-735) |#1|)) (-15 -3493 (|#4| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #1="failed") |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -3487 (|#2| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1018 |#2| |#3| |#4|) (-1004) (-757) (-811)) (T -1017)) +NIL +(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| (-607 |#1|))) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 ((-905 |#2|) |#1|)) (-15 -4287 ((-905 |#2|) |#1|)) (-15 -4287 ((-1106) |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3457 (|#2| |#2| |#1|)) (-15 -3465 (|#1| |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| |#2|)) (-15 -3466 (|#1| |#1| |#2|)) (-15 -3467 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -4287 (|#1| (-905 |#2|))) (-15 -3469 (|#1| (-905 |#2|))) (-15 -3470 ((-3 |#1| "failed") (-905 |#2|))) (-15 -4287 (|#1| (-905 (-526)))) (-15 -3469 (|#1| (-905 (-526)))) (-15 -3470 ((-3 |#1| "failed") (-905 (-526)))) (-15 -4287 (|#1| (-905 (-392 (-526))))) (-15 -3469 (|#1| (-905 (-392 (-526))))) (-15 -3470 ((-3 |#1| "failed") (-905 (-392 (-526))))) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -3471 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3795 (-735))) |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -4071 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3473 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1| |#4|)) (-15 -3474 ((-2 (|:| -4270 |#1|) (|:| |gap| (-735)) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#1| |#4|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3477 (|#1| |#1| |#1| |#4|)) (-15 -3478 (|#1| |#1| |#1| |#4|)) (-15 -3477 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -4017 ((-111) |#1| (-607 |#1|))) (-15 -4017 ((-111) |#1| |#1|)) (-15 -4013 ((-111) |#1| (-607 |#1|))) (-15 -4013 ((-111) |#1| |#1|)) (-15 -4014 ((-111) |#1| (-607 |#1|))) (-15 -4014 ((-111) |#1| |#1|)) (-15 -4016 ((-111) |#1| (-607 |#1|))) (-15 -4016 ((-111) |#1| |#1|)) (-15 -3479 ((-111) |#1| |#1|)) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3480 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3481 ((-607 |#1|) |#1|)) (-15 -3482 ((-607 |#1|) |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3485 ((-111) |#1|)) (-15 -3486 ((-111) |#1|)) (-15 -4276 (|#1| |#1| |#4|)) (-15 -3487 (|#1| |#1| |#4|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 ((-607 |#1|) |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -3492 ((-735) |#1|)) (-15 -3493 (|#4| |#1|)) (-15 -4287 ((-515) |#1|)) (-15 -4287 ((-849 (-526)) |#1|)) (-15 -4287 ((-849 (-363)) |#1|)) (-15 -3469 (|#4| |#1|)) (-15 -3470 ((-3 |#4| #1="failed") |#1|)) (-15 -4274 (|#1| |#4|)) (-15 -3487 (|#2| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 |#3|) $) 108)) (-3386 (((-1117 $) $ |#3|) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 |#3|)) 109)) (-4115 (($ $) 269)) (-3479 (((-111) $ $) 255)) (-1345 (((-3 $ "failed") $ $) 19)) (-4074 (($ $ $) 214 (|has| |#1| (-533)))) (-3461 (((-607 $) $ $) 209 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-905 (-392 (-526)))) 229 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (((-3 $ "failed") (-905 (-526))) 226 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (((-3 $ "failed") (-905 |#1|)) 223 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526)))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-525))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-950 (-526)))) (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))))) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) ((|#3| $) 133) (($ (-905 (-392 (-526)))) 228 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (($ (-905 (-526))) 225 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (($ (-905 |#1|)) 222 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (-3636 (|has| |#1| (-37 (-526)))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-525))) (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (-3636 (|has| |#1| (-950 (-526)))) (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))))) (-4075 (($ $ $ |#3|) 106 (|has| |#1| (-163))) (($ $ $) 210 (|has| |#1| (-533)))) (-4276 (($ $) 152) (($ $ |#3|) 264)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-4016 (((-111) $ $) 254) (((-111) $ (-607 $)) 253)) (-3781 (((-3 $ "failed") $) 32)) (-3485 (((-111) $) 262)) (-4071 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 234)) (-3456 (($ $) 203 (|has| |#1| (-436)))) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ |#3|) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-3467 (($ $) 219 (|has| |#1| (-533)))) (-3468 (($ $) 220 (|has| |#1| (-533)))) (-3478 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3477 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1697 (($ $ |#1| |#2| $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| |#3| (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| |#3| (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-4017 (((-111) $ $) 248) (((-111) $ (-607 $)) 247)) (-3458 (($ $ $ $ $) 205 (|has| |#1| (-533)))) (-3493 ((|#3| $) 273)) (-3387 (($ (-1117 |#1|) |#3|) 115) (($ (-1117 $) |#3|) 114)) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| |#2|) 151) (($ $ |#3| (-735)) 117) (($ $ (-607 |#3|) (-607 (-735))) 116)) (-3472 (($ $ $) 233)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 118)) (-3486 (((-111) $) 263)) (-3120 ((|#2| $) 168) (((-735) $ |#3|) 120) (((-607 (-735)) $ (-607 |#3|)) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3492 (((-735) $) 272)) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 |#2| |#2|) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-3385 (((-3 |#3| #3="failed") $) 121)) (-3453 (($ $) 200 (|has| |#1| (-436)))) (-3454 (($ $) 201 (|has| |#1| (-436)))) (-3481 (((-607 $) $) 258)) (-3484 (($ $) 261)) (-3455 (($ $) 202 (|has| |#1| (-436)))) (-3482 (((-607 $) $) 259)) (-3483 (($ $) 260)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146) (($ $ |#3|) 265)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3471 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $) 232)) (-3473 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $) 236) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |#3|) 235)) (-3474 (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $) 238) (((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |#3|) 237)) (-3476 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3475 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3554 (((-1106) $) 9)) (-3504 (($ $ $) 208 (|has| |#1| (-533)))) (-3489 (((-607 $) $) 267)) (-3123 (((-3 (-607 $) #3#) $) 112)) (-3122 (((-3 (-607 $) #3#) $) 113)) (-3124 (((-3 (-2 (|:| |var| |#3|) (|:| -2462 (-735))) #3#) $) 111)) (-4013 (((-111) $ $) 250) (((-111) $ (-607 $)) 249)) (-4008 (($ $ $) 230)) (-3764 (($ $) 271)) (-4021 (((-111) $ $) 256)) (-4014 (((-111) $ $) 252) (((-111) $ (-607 $)) 251)) (-4009 (($ $ $) 231)) (-3491 (($ $) 270)) (-3555 (((-1070) $) 10)) (-3462 (((-2 (|:| -3457 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-533)))) (-3463 (((-2 (|:| -3457 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-533)))) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 ((|#1| |#1| $) 204 (|has| |#1| (-436))) (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-3464 (((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-533)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3465 (($ $ |#1|) 217 (|has| |#1| (-533))) (($ $ $) 215 (|has| |#1| (-533)))) (-3466 (($ $ |#1|) 218 (|has| |#1| (-533))) (($ $ $) 216 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-607 |#3|) (-607 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-607 |#3|) (-607 $)) 136)) (-4076 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-4129 (($ $ |#3|) 40) (($ $ (-607 |#3|)) 39) (($ $ |#3| (-735)) 38) (($ $ (-607 |#3|) (-607 (-735))) 37)) (-4264 ((|#2| $) 148) (((-735) $ |#3|) 128) (((-607 (-735)) $ (-607 |#3|)) 127)) (-3490 (($ $) 268)) (-3488 (($ $) 266)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| |#3| (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| |#3| (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| |#3| (-584 (-515))) (|has| |#1| (-584 (-515))))) (($ (-905 (-392 (-526)))) 227 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123))))) (($ (-905 (-526))) 224 (-3850 (-12 (-3636 (|has| |#1| (-37 (-392 (-526))))) (|has| |#1| (-37 (-526))) (|has| |#3| (-584 (-1123)))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#3| (-584 (-1123)))))) (($ (-905 |#1|)) 221 (|has| |#3| (-584 (-1123)))) (((-1106) $) 199 (-12 (|has| |#1| (-995 (-526))) (|has| |#3| (-584 (-1123))))) (((-905 |#1|) $) 198 (|has| |#3| (-584 (-1123))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ |#3|) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-905 |#1|) $) 197 (|has| |#3| (-584 (-1123)))) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ |#2|) 153) (($ $ |#3| (-735)) 126) (($ $ (-607 |#3|) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-3480 (((-3 (-111) "failed") $ $) 257)) (-2964 (($) 29 T CONST)) (-3459 (($ $ $ $ (-735)) 206 (|has| |#1| (-533)))) (-3460 (($ $ $ (-735)) 207 (|has| |#1| (-533)))) (-2969 (($ $ |#3|) 36) (($ $ (-607 |#3|)) 35) (($ $ |#3| (-735)) 34) (($ $ (-607 |#3|) (-607 (-735))) 33)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1018 |#1| |#2| |#3|) (-134) (-1004) (-757) (-811)) (T -1018)) +((-3493 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-735)))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3489 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3487 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-4276 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3484 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3482 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3480 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4021 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-3479 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4016 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4014 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4013 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) (-3478 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3477 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3478 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3477 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3476 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3475 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3476 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3475 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) (-3474 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3474 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) (-4 *1 (-1018 *4 *5 *3)))) (-3473 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3473 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *4 *5 *3)))) (-4071 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3472 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3471 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3795 (-735)))) (-4 *1 (-1018 *3 *4 *5)))) (-4009 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-4008 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) (-3470 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)))) (-3470 (*1 *1 *2) (|partial| -3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3469 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-4287 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3470 (*1 *1 *2) (|partial| -3850 (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) (-3469 (*1 *1 *2) (-3850 (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) (-12 (-5 *2 (-905 *3)) (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *5 (-584 (-1123))) (-4 *4 (-757)) (-4 *5 (-811)))) (-3468 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3467 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3466 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3466 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3465 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-4074 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3464 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3463 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-3462 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-2 (|:| -3457 *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5)))) (-4075 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3461 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3460 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *3 (-533)))) (-3459 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *3 (-533)))) (-3458 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-533)))) (-3457 (*1 *2 *2 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3454 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436)))) (-3453 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-436))))) +(-13 (-909 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3493 (|t#3| $)) (-15 -3492 ((-735) $)) (-15 -3764 ($ $)) (-15 -3491 ($ $)) (-15 -4115 ($ $)) (-15 -3490 ($ $)) (-15 -3489 ((-607 $) $)) (-15 -3488 ($ $)) (-15 -3487 ($ $ |t#3|)) (-15 -4276 ($ $ |t#3|)) (-15 -3486 ((-111) $)) (-15 -3485 ((-111) $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ((-607 $) $)) (-15 -3481 ((-607 $) $)) (-15 -3480 ((-3 (-111) "failed") $ $)) (-15 -4021 ((-111) $ $)) (-15 -3479 ((-111) $ $)) (-15 -4016 ((-111) $ $)) (-15 -4016 ((-111) $ (-607 $))) (-15 -4014 ((-111) $ $)) (-15 -4014 ((-111) $ (-607 $))) (-15 -4013 ((-111) $ $)) (-15 -4013 ((-111) $ (-607 $))) (-15 -4017 ((-111) $ $)) (-15 -4017 ((-111) $ (-607 $))) (-15 -3478 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -3478 ($ $ $ |t#3|)) (-15 -3477 ($ $ $ |t#3|)) (-15 -3476 ($ $ $)) (-15 -3475 ($ $ $)) (-15 -3476 ($ $ $ |t#3|)) (-15 -3475 ($ $ $ |t#3|)) (-15 -3474 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $)) (-15 -3474 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -3202 $)) $ $ |t#3|)) (-15 -3473 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3473 ((-2 (|:| -4270 $) (|:| |gap| (-735)) (|:| -2072 $) (|:| -3202 $)) $ $ |t#3|)) (-15 -4071 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -3472 ($ $ $)) (-15 -3471 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3795 (-735))) $ $)) (-15 -4009 ($ $ $)) (-15 -4008 ($ $ $)) (IF (|has| |t#3| (-584 (-1123))) (PROGN (-6 (-583 (-905 |t#1|))) (-6 (-584 (-905 |t#1|))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -3470 ((-3 $ "failed") (-905 (-392 (-526))))) (-15 -3469 ($ (-905 (-392 (-526))))) (-15 -4287 ($ (-905 (-392 (-526))))) (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-905 (-526)))) (-15 -4287 ($ (-905 (-526)))) (IF (|has| |t#1| (-950 (-526))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-526))) (IF (|has| |t#1| (-37 (-392 (-526)))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 (-526)))) (-15 -3469 ($ (-905 (-526)))) (-15 -4287 ($ (-905 (-526)))) (IF (|has| |t#1| (-525)) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-526))) |%noBranch| (IF (|has| |t#1| (-37 (-392 (-526)))) |%noBranch| (PROGN (-15 -3470 ((-3 $ "failed") (-905 |t#1|))) (-15 -3469 ($ (-905 |t#1|)))))) (-15 -4287 ($ (-905 |t#1|))) (IF (|has| |t#1| (-995 (-526))) (-6 (-584 (-1106))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -3466 ($ $ |t#1|)) (-15 -3465 ($ $ |t#1|)) (-15 -3466 ($ $ $)) (-15 -3465 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -3464 ((-2 (|:| -3457 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3463 ((-2 (|:| -3457 $) (|:| |coef1| $)) $ $)) (-15 -3462 ((-2 (|:| -3457 $) (|:| |coef2| $)) $ $)) (-15 -4075 ($ $ $)) (-15 -3461 ((-607 $) $ $)) (-15 -3504 ($ $ $)) (-15 -3460 ($ $ $ (-735))) (-15 -3459 ($ $ $ $ (-735))) (-15 -3458 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (PROGN (-15 -3457 (|t#1| |t#1| $)) (-15 -3456 ($ $)) (-15 -3455 ($ $)) (-15 -3454 ($ $)) (-15 -3453 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-583 (-905 |#1|)) |has| |#3| (-584 (-1123))) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| |#3| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#3| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#3| (-584 (-849 (-526))))) ((-584 (-905 |#1|)) |has| |#3| (-584 (-1123))) ((-584 (-1106)) -12 (|has| |#1| (-995 (-526))) (|has| |#3| (-584 (-1123)))) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-294 $) . T) ((-311 |#1| |#2|) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436))) ((-496 |#3| |#1|) . T) ((-496 |#3| $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 |#3|) . T) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| |#3| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| |#3| (-845 (-526)))) ((-909 |#1| |#2| |#3|) . T) ((-869) |has| |#1| (-869)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 |#1|) . T) ((-995 |#3|) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) |has| |#1| (-869))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3495 (((-607 (-1128)) $) 13)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3494 (((-1128) $) 15)) (-3353 (((-111) $ $) NIL))) +(((-1019) (-13 (-1035) (-10 -8 (-15 -3495 ((-607 (-1128)) $)) (-15 -3494 ((-1128) $))))) (T -1019)) +((-3495 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1019)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1019))))) +(-13 (-1035) (-10 -8 (-15 -3495 ((-607 (-1128)) $)) (-15 -3494 ((-1128) $)))) +((-3502 (((-111) |#3| $) 13)) (-3497 (((-3 $ "failed") |#3| (-878)) 23)) (-3781 (((-3 |#3| "failed") |#3| $) 38)) (-3500 (((-111) |#3| $) 16)) (-3501 (((-111) |#3| $) 14))) +(((-1020 |#1| |#2| |#3|) (-10 -8 (-15 -3497 ((-3 |#1| "failed") |#3| (-878))) (-15 -3781 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3500 ((-111) |#3| |#1|)) (-15 -3501 ((-111) |#3| |#1|)) (-15 -3502 ((-111) |#3| |#1|))) (-1021 |#2| |#3|) (-13 (-809) (-348)) (-1181 |#2|)) (T -1020)) +NIL +(-10 -8 (-15 -3497 ((-3 |#1| "failed") |#3| (-878))) (-15 -3781 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3500 ((-111) |#3| |#1|)) (-15 -3501 ((-111) |#3| |#1|)) (-15 -3502 ((-111) |#3| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) |#2| $) 21)) (-3945 (((-526) |#2| $) 22)) (-3497 (((-3 $ "failed") |#2| (-878)) 15)) (-3496 ((|#1| |#2| $ |#1|) 13)) (-3781 (((-3 |#2| "failed") |#2| $) 18)) (-3500 (((-111) |#2| $) 19)) (-3501 (((-111) |#2| $) 20)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3499 ((|#2| $) 17)) (-4274 (((-823) $) 11)) (-4088 ((|#1| |#2| $ |#1|) 14)) (-3498 (((-607 $) |#2|) 16)) (-3353 (((-111) $ $) 6))) +(((-1021 |#1| |#2|) (-134) (-13 (-809) (-348)) (-1181 |t#1|)) (T -1021)) +((-3945 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-526)))) (-3502 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3501 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3500 (*1 *2 *3 *1) (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-111)))) (-3781 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-607 *1)) (-4 *1 (-1021 *4 *3)))) (-3497 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-878)) (-4 *4 (-13 (-809) (-348))) (-4 *1 (-1021 *4 *2)) (-4 *2 (-1181 *4)))) (-4088 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2)))) (-3496 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2))))) +(-13 (-1052) (-10 -8 (-15 -3945 ((-526) |t#2| $)) (-15 -3502 ((-111) |t#2| $)) (-15 -3501 ((-111) |t#2| $)) (-15 -3500 ((-111) |t#2| $)) (-15 -3781 ((-3 |t#2| "failed") |t#2| $)) (-15 -3499 (|t#2| $)) (-15 -3498 ((-607 $) |t#2|)) (-15 -3497 ((-3 $ "failed") |t#2| (-878))) (-15 -4088 (|t#1| |t#2| $ |t#1|)) (-15 -3496 (|t#1| |t#2| $ |t#1|)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-3755 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735)) 96)) (-3752 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 56)) (-3756 (((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)) 87)) (-3750 (((-735) (-607 |#4|) (-607 |#5|)) 27)) (-3753 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 58) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111)) 60)) (-3754 (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111)) 79)) (-4287 (((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 82)) (-3751 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111)) 55)) (-3749 (((-735) (-607 |#4|) (-607 |#5|)) 19))) +(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1022)) +((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) (-5 *1 (-1022 *4 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-607 *11)) (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-5 *1 (-1022 *7 *8 *9 *10 *11)))) (-3754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3753 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) (-3752 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3752 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3751 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-111))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) +((-3511 (((-111) |#5| $) 21)) (-3509 (((-111) |#5| $) 24)) (-3512 (((-111) |#5| $) 16) (((-111) $) 45)) (-3550 (((-607 $) |#5| $) NIL) (((-607 $) (-607 |#5|) $) 77) (((-607 $) (-607 |#5|) (-607 $)) 75) (((-607 $) |#5| (-607 $)) 78)) (-4087 (($ $ |#5|) NIL) (((-607 $) |#5| $) NIL) (((-607 $) |#5| (-607 $)) 60) (((-607 $) (-607 |#5|) $) 62) (((-607 $) (-607 |#5|) (-607 $)) 64)) (-3503 (((-607 $) |#5| $) NIL) (((-607 $) |#5| (-607 $)) 54) (((-607 $) (-607 |#5|) $) 56) (((-607 $) (-607 |#5|) (-607 $)) 58)) (-3510 (((-111) |#5| $) 27))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4087 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -4087 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -4087 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -4087 ((-607 |#1|) |#5| |#1|)) (-15 -3503 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3503 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3503 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3503 ((-607 |#1|) |#5| |#1|)) (-15 -3550 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3550 ((-607 |#1|) |#5| |#1|)) (-15 -3509 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#1|)) (-15 -3510 ((-111) |#5| |#1|)) (-15 -3511 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#5| |#1|)) (-15 -4087 (|#1| |#1| |#5|))) (-1024 |#2| |#3| |#4| |#5|) (-436) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -1023)) +NIL +(-10 -8 (-15 -4087 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -4087 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -4087 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -4087 ((-607 |#1|) |#5| |#1|)) (-15 -3503 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3503 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3503 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3503 ((-607 |#1|) |#5| |#1|)) (-15 -3550 ((-607 |#1|) |#5| (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) (-607 |#1|))) (-15 -3550 ((-607 |#1|) (-607 |#5|) |#1|)) (-15 -3550 ((-607 |#1|) |#5| |#1|)) (-15 -3509 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#1|)) (-15 -3510 ((-111) |#5| |#1|)) (-15 -3511 ((-111) |#5| |#1|)) (-15 -3512 ((-111) |#5| |#1|)) (-15 -4087 (|#1| |#1| |#5|))) +((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-1024 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1024)) +((-3512 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3511 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3510 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-3509 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3508 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-3 (-111) (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3507 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3507 (*1 *2 *3 *1) (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-3506 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3505 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-3 *3 (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3504 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-4093 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3550 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-3503 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-3503 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-3503 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-3503 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-3759 (*1 *1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-607 *6)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)))) (-4087 (*1 *2 *3 *1) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) (-4087 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *5 *6 *7 *8))))) +(-13 (-1154 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3512 ((-111) |t#4| $)) (-15 -3511 ((-111) |t#4| $)) (-15 -3510 ((-111) |t#4| $)) (-15 -3512 ((-111) $)) (-15 -3509 ((-111) |t#4| $)) (-15 -3508 ((-3 (-111) (-607 $)) |t#4| $)) (-15 -3507 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |t#4| $)) (-15 -3507 ((-111) |t#4| $)) (-15 -3506 ((-607 $) |t#4| $)) (-15 -3505 ((-3 |t#4| (-607 $)) |t#4| |t#4| $)) (-15 -3504 ((-607 (-2 (|:| |val| |t#4|) (|:| -1636 $))) |t#4| |t#4| $)) (-15 -4093 ((-607 (-2 (|:| |val| |t#4|) (|:| -1636 $))) |t#4| $)) (-15 -3550 ((-607 $) |t#4| $)) (-15 -3550 ((-607 $) (-607 |t#4|) $)) (-15 -3550 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -3550 ((-607 $) |t#4| (-607 $))) (-15 -3503 ((-607 $) |t#4| $)) (-15 -3503 ((-607 $) |t#4| (-607 $))) (-15 -3503 ((-607 $) (-607 |t#4|) $)) (-15 -3503 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -3759 ($ |t#4| $)) (-15 -3759 ($ (-607 |t#4|) $)) (-15 -4087 ((-607 $) |t#4| $)) (-15 -4087 ((-607 $) |t#4| (-607 $))) (-15 -4087 ((-607 $) (-607 |t#4|) $)) (-15 -4087 ((-607 $) (-607 |t#4|) (-607 $))) (-15 -4004 ((-607 $) (-607 |t#4|) (-111))))) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) +((-3519 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 81)) (-3516 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 113)) (-3518 (((-607 |#5|) |#4| |#5|) 70)) (-3517 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3599 (((-1211)) 37)) (-3597 (((-1211)) 26)) (-3598 (((-1211) (-1106) (-1106) (-1106)) 33)) (-3596 (((-1211) (-1106) (-1106) (-1106)) 22)) (-3513 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|) 96)) (-3514 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111)) 107) (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3515 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 102))) +(((-1025 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3513 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3515 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3516 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-111) |#4| |#5|)) (-15 -3517 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3518 ((-607 |#5|) |#4| |#5|)) (-15 -3519 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1025)) +((-3519 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3518 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3516 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3515 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *4 (-811)) (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) (-5 *1 (-1025 *6 *7 *4 *8 *9)))) (-3514 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1025 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3513 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3599 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3598 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3597 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3596 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) +(-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3513 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3514 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3515 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3516 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3517 ((-111) |#4| |#5|)) (-15 -3517 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3518 ((-607 |#5|) |#4| |#5|)) (-15 -3519 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) +((-2865 (((-111) $ $) NIL)) (-3522 (($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|))) 33)) (-3523 (($ |#3| |#3|) 22) (($ |#3| |#3| (-607 (-1123))) 20)) (-3842 ((|#3| $) 13)) (-3470 (((-3 (-278 |#3|) "failed") $) 58)) (-3469 (((-278 |#3|) $) NIL)) (-3520 (((-607 (-1123)) $) 16)) (-3521 (((-849 |#1|) $) 11)) (-3843 ((|#3| $) 12)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-878)) 39)) (-4274 (((-823) $) 86) (($ (-278 |#3|)) 21)) (-3353 (((-111) $ $) 36))) +(((-1026 |#1| |#2| |#3|) (-13 (-1052) (-271 |#3| |#3|) (-995 (-278 |#3|)) (-10 -8 (-15 -3523 ($ |#3| |#3|)) (-15 -3523 ($ |#3| |#3| (-607 (-1123)))) (-15 -3522 ($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|)))) (-15 -3521 ((-849 |#1|) $)) (-15 -3843 (|#3| $)) (-15 -3842 (|#3| $)) (-15 -4118 (|#3| $ |#3| (-878))) (-15 -3520 ((-607 (-1123)) $)))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -1026)) +((-3523 (*1 *1 *2 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))))) (-3523 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1 (-111) (-607 *6))) (-4 *6 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *6)))) (-3521 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 *2))) (-5 *2 (-849 *3)) (-5 *1 (-1026 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 *2))))) (-3843 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) (-3842 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1026 *3 *4 *2)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) (-4118 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1026 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) (-3520 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *2 (-607 (-1123))) (-5 *1 (-1026 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) +(-13 (-1052) (-271 |#3| |#3|) (-995 (-278 |#3|)) (-10 -8 (-15 -3523 ($ |#3| |#3|)) (-15 -3523 ($ |#3| |#3| (-607 (-1123)))) (-15 -3522 ($ $ (-607 (-1123)) (-1 (-111) (-607 |#3|)))) (-15 -3521 ((-849 |#1|) $)) (-15 -3843 (|#3| $)) (-15 -3842 (|#3| $)) (-15 -4118 (|#3| $ |#3| (-878))) (-15 -3520 ((-607 (-1123)) $)))) +((-2865 (((-111) $ $) NIL)) (-3864 (((-1123) $) 8)) (-3554 (((-1106) $) 16)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 13))) +(((-1027 |#1|) (-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) (-1123)) (T -1027)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1027 *3)) (-14 *3 *2)))) +(-13 (-1052) (-10 -8 (-15 -3864 ((-1123) $)))) +((-2865 (((-111) $ $) NIL)) (-3525 (($ (-607 (-1026 |#1| |#2| |#3|))) 13)) (-3524 (((-607 (-1026 |#1| |#2| |#3|)) $) 20)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4118 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-878)) 26)) (-4274 (((-823) $) 16)) (-3353 (((-111) $ $) 19))) +(((-1028 |#1| |#2| |#3|) (-13 (-1052) (-271 |#3| |#3|) (-10 -8 (-15 -3525 ($ (-607 (-1026 |#1| |#2| |#3|)))) (-15 -3524 ((-607 (-1026 |#1| |#2| |#3|)) $)) (-15 -4118 (|#3| $ |#3| (-878))))) (-1052) (-13 (-1004) (-845 |#1|) (-811) (-584 (-849 |#1|))) (-13 (-406 |#2|) (-845 |#1|) (-584 (-849 |#1|)))) (T -1028)) +((-3525 (*1 *1 *2) (-12 (-5 *2 (-607 (-1026 *3 *4 *5))) (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) (-5 *1 (-1028 *3 *4 *5)))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) (-5 *2 (-607 (-1026 *3 *4 *5))) (-5 *1 (-1028 *3 *4 *5)) (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))))) (-4118 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-878)) (-4 *4 (-1052)) (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) (-5 *1 (-1028 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4))))))) +(-13 (-1052) (-271 |#3| |#3|) (-10 -8 (-15 -3525 ($ (-607 (-1026 |#1| |#2| |#3|)))) (-15 -3524 ((-607 (-1026 |#1| |#2| |#3|)) $)) (-15 -4118 (|#3| $ |#3| (-878))))) +((-3526 (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)) 75) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|))) 77) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111)) 76))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)))) (-13 (-292) (-141)) (-607 (-1123))) (T -1029)) +((-3526 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123)))))) +(-10 -7 (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -3526 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 126)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-348)))) (-2151 (($ $) NIL (|has| |#1| (-348)))) (-2149 (((-111) $) NIL (|has| |#1| (-348)))) (-1877 (((-653 |#1|) (-1205 $)) NIL) (((-653 |#1|)) 115)) (-3649 ((|#1| $) 119)) (-1767 (((-1132 (-878) (-735)) (-526)) NIL (|has| |#1| (-335)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3433 (((-735)) 40 (|has| |#1| (-353)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-1887 (($ (-1205 |#1|) (-1205 $)) NIL) (($ (-1205 |#1|)) 43)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-335)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-1876 (((-653 |#1|) $ (-1205 $)) NIL) (((-653 |#1|) $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 106) (((-653 |#1|) (-653 $)) 101)) (-4161 (($ |#2|) 61) (((-3 $ "failed") (-392 |#2|)) NIL (|has| |#1| (-348)))) (-3781 (((-3 $ "failed") $) NIL)) (-3406 (((-878)) 77)) (-3294 (($) 44 (|has| |#1| (-353)))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3133 (($) NIL (|has| |#1| (-335)))) (-1772 (((-111) $) NIL (|has| |#1| (-335)))) (-1862 (($ $ (-735)) NIL (|has| |#1| (-335))) (($ $) NIL (|has| |#1| (-335)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-4090 (((-878) $) NIL (|has| |#1| (-335))) (((-796 (-878)) $) NIL (|has| |#1| (-335)))) (-2471 (((-111) $) NIL)) (-3429 ((|#1| $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-335)))) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-2106 ((|#2| $) 84 (|has| |#1| (-348)))) (-2102 (((-878) $) 131 (|has| |#1| (-353)))) (-3379 ((|#2| $) 58)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-3764 (($) NIL (|has| |#1| (-335)) CONST)) (-2461 (($ (-878)) 125 (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-2470 (($) 121)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-1768 (((-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526))))) NIL (|has| |#1| (-335)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4076 ((|#1| (-1205 $)) NIL) ((|#1|) 109)) (-1863 (((-735) $) NIL (|has| |#1| (-335))) (((-3 (-735) "failed") $ $) NIL (|has| |#1| (-335)))) (-4129 (($ $) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1 |#1| |#1|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-2469 (((-653 |#1|) (-1205 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3499 ((|#2|) 73)) (-1766 (($) NIL (|has| |#1| (-335)))) (-3537 (((-1205 |#1|) $ (-1205 $)) 89) (((-653 |#1|) (-1205 $) (-1205 $)) NIL) (((-1205 |#1|) $) 71) (((-653 |#1|) (-1205 $)) 85)) (-4287 (((-1205 |#1|) $) NIL) (($ (-1205 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3003 (((-3 (-1205 $) "failed") (-653 $)) NIL (|has| |#1| (-335)))) (-4274 (((-823) $) 57) (($ (-526)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-348))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-348)) (|has| |#1| (-995 (-392 (-526))))))) (-3002 (($ $) NIL (|has| |#1| (-335))) (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-2667 ((|#2| $) 82)) (-3423 (((-735)) 75)) (-2104 (((-1205 $)) 81)) (-2150 (((-111) $ $) NIL (|has| |#1| (-348)))) (-2957 (($) 30 T CONST)) (-2964 (($) 19 T CONST)) (-2969 (($ $) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-219)) (|has| |#1| (-348))) (|has| |#1| (-335)))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-348)) (|has| |#1| (-859 (-1123))))) (($ $ (-1 |#1| |#1|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-348)))) (-3353 (((-111) $ $) 63)) (-4265 (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) 67) (($ $ $) NIL)) (-4158 (($ $ $) 65)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-392 (-526)) $) NIL (|has| |#1| (-348))) (($ $ (-392 (-526))) NIL (|has| |#1| (-348))))) +(((-1030 |#1| |#2| |#3|) (-689 |#1| |#2|) (-163) (-1181 |#1|) |#2|) (T -1030)) +NIL +(-689 |#1| |#2|) +((-4051 (((-390 |#3|) |#3|) 18))) +(((-1031 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) (-1181 (-392 (-526))) (-13 (-348) (-141) (-689 (-392 (-526)) |#1|)) (-1181 |#2|)) (T -1031)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-13 (-348) (-141) (-689 (-392 (-526)) *4))) (-5 *2 (-390 *3)) (-5 *1 (-1031 *4 *5 *3)) (-4 *3 (-1181 *5))))) +(-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) +((-4051 (((-390 |#3|) |#3|) 19))) +(((-1032 |#1| |#2| |#3|) (-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) (-1181 (-392 (-905 (-526)))) (-13 (-348) (-141) (-689 (-392 (-905 (-526))) |#1|)) (-1181 |#2|)) (T -1032)) +((-4051 (*1 *2 *3) (-12 (-4 *4 (-1181 (-392 (-905 (-526))))) (-4 *5 (-13 (-348) (-141) (-689 (-392 (-905 (-526))) *4))) (-5 *2 (-390 *3)) (-5 *1 (-1032 *4 *5 *3)) (-4 *3 (-1181 *5))))) +(-10 -7 (-15 -4051 ((-390 |#3|) |#3|))) +((-2865 (((-111) $ $) NIL)) (-3637 (($ $ $) 14)) (-3638 (($ $ $) 15)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3527 (($) 6)) (-4287 (((-1123) $) 18)) (-4274 (((-823) $) 12)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 13)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 8))) +(((-1033) (-13 (-811) (-10 -8 (-15 -3527 ($)) (-15 -4287 ((-1123) $))))) (T -1033)) +((-3527 (*1 *1) (-5 *1 (-1033))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1033))))) +(-13 (-811) (-10 -8 (-15 -3527 ($)) (-15 -4287 ((-1123) $)))) +((-4274 (((-823) $) 37) (((-1128) $) NIL))) +(((-1034 |#1|) (-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) (-1035)) (T -1034)) +NIL +(-10 -8 (-15 -4274 ((-1128) |#1|)) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (((-1128) $) 14)) (-3353 (((-111) $ $) 6))) +(((-1035) (-134)) (T -1035)) NIL (-13 (-91)) -(((-91) . T) ((-100) . T) ((-579 (-816)) . T) ((-579 (-1122)) . T) ((-1045) . T)) -((-2307 ((|#1| |#1| (-1 (-537) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-2166 (((-1205)) 15)) (-3849 (((-606 |#1|)) 9))) -(((-1030 |#1|) (-10 -7 (-15 -2166 ((-1205))) (-15 -3849 ((-606 |#1|))) (-15 -2307 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2307 (|#1| |#1| (-1 (-537) |#1| |#1|)))) (-130)) (T -1030)) -((-2307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-537) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) (-2307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) (-3849 (*1 *2) (-12 (-5 *2 (-606 *3)) (-5 *1 (-1030 *3)) (-4 *3 (-130)))) (-2166 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) -(-10 -7 (-15 -2166 ((-1205))) (-15 -3849 ((-606 |#1|))) (-15 -2307 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2307 (|#1| |#1| (-1 (-537) |#1| |#1|)))) -((-4102 (($ (-107) $) 16)) (-3124 (((-3 (-107) "failed") (-1117) $) 15)) (-3425 (($) 7)) (-2320 (($) 17)) (-1888 (($) 18)) (-4122 (((-606 (-165)) $) 10)) (-2341 (((-816) $) 21))) -(((-1031) (-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -4122 ((-606 (-165)) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)) (-15 -4102 ($ (-107) $)) (-15 -2320 ($)) (-15 -1888 ($))))) (T -1031)) -((-3425 (*1 *1) (-5 *1 (-1031))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-606 (-165))) (-5 *1 (-1031)))) (-3124 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-1031)))) (-4102 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1031)))) (-2320 (*1 *1) (-5 *1 (-1031))) (-1888 (*1 *1) (-5 *1 (-1031)))) -(-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -4122 ((-606 (-165)) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)) (-15 -4102 ($ (-107) $)) (-15 -2320 ($)) (-15 -1888 ($)))) -((-3822 (((-1200 (-649 |#1|)) (-606 (-649 |#1|))) 42) (((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|))) 63) (((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|)))) 79)) (-1484 (((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))) 36))) -(((-1032 |#1|) (-10 -7 (-15 -3822 ((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|))))) (-15 -3822 ((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|)))) (-15 -3822 ((-1200 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1484 ((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))))) (-347)) (T -1032)) -((-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-649 *5))) (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-1200 *5)) (-5 *1 (-1032 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-1032 *4)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) (-5 *2 (-1200 (-649 (-905 *5)))) (-5 *1 (-1032 *5)) (-5 *4 (-649 (-905 *5))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) (-5 *2 (-1200 (-649 (-391 (-905 *5))))) (-5 *1 (-1032 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) -(-10 -7 (-15 -3822 ((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|))))) (-15 -3822 ((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|)))) (-15 -3822 ((-1200 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1484 ((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ (-1117)) NIL)) (-3073 (((-731) $) NIL) (((-731) $ (-1117)) NIL)) (-3757 (((-606 (-1034 (-1117))) $) NIL)) (-3588 (((-1113 $) $ (-1034 (-1117))) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1034 (-1117)))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1034 (-1117)) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL) (((-3 (-1069 |#1| (-1117)) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1034 (-1117)) $) NIL) (((-1117) $) NIL) (((-1069 |#1| (-1117)) $) NIL)) (-4086 (($ $ $ (-1034 (-1117))) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1034 (-1117))) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-1034 (-1117))) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1034 (-1117)) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1034 (-1117)) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-1034 (-1117))) NIL) (($ (-1113 $) (-1034 (-1117))) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1034 (-1117))) NIL)) (-1883 (((-509 (-1034 (-1117))) $) NIL) (((-731) $ (-1034 (-1117))) NIL) (((-606 (-731)) $ (-606 (-1034 (-1117)))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-1034 (-1117))) (-509 (-1034 (-1117)))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) (-1117)) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 (-1034 (-1117)) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 (((-1034 (-1117)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1034 (-1117))) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1034 (-1117)) |#1|) NIL) (($ $ (-606 (-1034 (-1117))) (-606 |#1|)) NIL) (($ $ (-1034 (-1117)) $) NIL) (($ $ (-606 (-1034 (-1117))) (-606 $)) NIL) (($ $ (-1117) $) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 $)) NIL (|has| |#1| (-218))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ (-1034 (-1117))) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1034 (-1117))) NIL) (($ $ (-606 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 (-1117)) $) NIL)) (-2872 (((-509 (-1034 (-1117))) $) NIL) (((-731) $ (-1034 (-1117))) NIL) (((-606 (-731)) $ (-606 (-1034 (-1117)))) NIL) (((-731) $ (-1117)) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1034 (-1117))) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1034 (-1117))) NIL) (($ (-1117)) NIL) (($ (-1069 |#1| (-1117))) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1034 (-1117))) NIL) (($ $ (-606 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1033 |#1|) (-13 (-237 |#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) (-989 (-1069 |#1| (-1117)))) (-998)) (T -1033)) -NIL -(-13 (-237 |#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) (-989 (-1069 |#1| (-1117)))) -((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) NIL)) (-1890 ((|#1| $) 10)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4231 (((-731) $) 11)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2441 (($ |#1| (-731)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 15))) -(((-1034 |#1|) (-250 |#1|) (-807)) (T -1034)) -NIL -(-250 |#1|) -((-1612 (((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|)) 24 (|has| |#1| (-805))) (((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|)) 14))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -1612 ((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) |%noBranch|)) (-1154) (-1154)) (T -1035)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-805)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-1035 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1040 *6)) (-5 *1 (-1035 *5 *6))))) -(-10 -7 (-15 -1612 ((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-4015 (((-606 (-1122)) $) 9)) (-2244 (((-111) $ $) NIL))) -(((-1036) (-13 (-1029) (-10 -8 (-15 -4015 ((-606 (-1122)) $))))) (T -1036)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1036))))) -(-13 (-1029) (-10 -8 (-15 -4015 ((-606 (-1122)) $)))) -((-1612 (((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)) 19))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -1612 ((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)))) (-1154) (-1154)) (T -1037)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1038 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1038 *6)) (-5 *1 (-1037 *5 *6))))) -(-10 -7 (-15 -1612 ((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1890 (((-1117) $) 11)) (-3975 (((-1040 |#1|) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3056 (($ (-1117) (-1040 |#1|)) 10)) (-2341 (((-816) $) 20 (|has| |#1| (-1045)))) (-2244 (((-111) $ $) 15 (|has| |#1| (-1045))))) -(((-1038 |#1|) (-13 (-1154) (-10 -8 (-15 -3056 ($ (-1117) (-1040 |#1|))) (-15 -1890 ((-1117) $)) (-15 -3975 ((-1040 |#1|) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -1038)) -((-3056 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1040 *4)) (-4 *4 (-1154)) (-5 *1 (-1038 *4)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1040 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1154))))) -(-13 (-1154) (-10 -8 (-15 -3056 ($ (-1117) (-1040 |#1|))) (-15 -1890 ((-1117) $)) (-15 -3975 ((-1040 |#1|) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) -((-3975 (($ |#1| |#1|) 7)) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 12)) (-1622 (((-537) $) 8)) (-1687 ((|#1| $) 9)) (-1631 ((|#1| $) 11)) (-3996 (($ |#1|) 6)) (-3401 (($ |#1| |#1|) 14)) (-2042 (($ $ (-537)) 13))) -(((-1039 |#1|) (-134) (-1154)) (T -1039)) -((-3401 (*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1039 *3)) (-4 *3 (-1154)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1154)) (-5 *2 (-537)))) (-3975 (*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) -(-13 (-1154) (-10 -8 (-15 -3401 ($ |t#1| |t#1|)) (-15 -2042 ($ $ (-537))) (-15 -1609 (|t#1| $)) (-15 -1631 (|t#1| $)) (-15 -3039 (|t#1| $)) (-15 -1687 (|t#1| $)) (-15 -1622 ((-537) $)) (-15 -3975 ($ |t#1| |t#1|)) (-15 -3996 ($ |t#1|)))) -(((-1154) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3975 (($ |#1| |#1|) 15)) (-1612 (((-606 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-805)))) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 9)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1622 (((-537) $) 14)) (-1687 ((|#1| $) 12)) (-1631 ((|#1| $) 11)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1905 (((-606 |#1|) $) 36 (|has| |#1| (-805))) (((-606 |#1|) (-606 $)) 35 (|has| |#1| (-805)))) (-3996 (($ |#1|) 26)) (-2341 (((-816) $) 25 (|has| |#1| (-1045)))) (-3401 (($ |#1| |#1|) 8)) (-2042 (($ $ (-537)) 16)) (-2244 (((-111) $ $) 19 (|has| |#1| (-1045))))) -(((-1040 |#1|) (-13 (-1039 |#1|) (-10 -7 (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-606 |#1|))) |%noBranch|))) (-1154)) (T -1040)) -NIL -(-13 (-1039 |#1|) (-10 -7 (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-606 |#1|))) |%noBranch|))) -((-3975 (($ |#1| |#1|) 7)) (-1612 ((|#2| (-1 |#1| |#1|) $) 16)) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 12)) (-1622 (((-537) $) 8)) (-1687 ((|#1| $) 9)) (-1631 ((|#1| $) 11)) (-1905 ((|#2| (-606 $)) 18) ((|#2| $) 17)) (-3996 (($ |#1|) 6)) (-3401 (($ |#1| |#1|) 14)) (-2042 (($ $ (-537)) 13))) -(((-1041 |#1| |#2|) (-134) (-805) (-1091 |t#1|)) (T -1041)) -((-1905 (*1 *2 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) (-4 *2 (-1091 *4)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2)) (-4 *3 (-805)) (-4 *2 (-1091 *3)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) (-4 *2 (-1091 *4))))) -(-13 (-1039 |t#1|) (-10 -8 (-15 -1905 (|t#2| (-606 $))) (-15 -1905 (|t#2| $)) (-15 -1612 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1039 |#1|) . T) ((-1154) . T)) -((-4221 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2969 (($ $ $) 10)) (-2867 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1042 |#1| |#2|) (-10 -8 (-15 -4221 (|#1| |#2| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) (-1043 |#2|) (-1045)) (T -1042)) -NIL -(-10 -8 (-15 -4221 (|#1| |#2| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-4221 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2969 (($ $ $) 20)) (-3495 (((-111) $ $) 19)) (-2506 (((-111) $ (-731)) 35)) (-1272 (($) 25) (($ (-606 |#1|)) 24)) (-1936 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4300)))) (-3832 (($) 36 T CONST)) (-3221 (($ $) 59 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 43 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 28)) (-1642 (((-111) $ (-731)) 34)) (-3703 (((-606 |#1|) $) 44 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 38)) (-2489 (((-111) $ (-731)) 33)) (-1654 (((-1100) $) 9)) (-3891 (($ $ $) 23)) (-2528 (((-1064) $) 10)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3206 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 50 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 48 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-278 |#1|))) 47 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 29)) (-2193 (((-111) $) 32)) (-3425 (($) 31)) (-2867 (($ $ $) 22) (($ $ |#1|) 21)) (-2539 (((-731) |#1| $) 45 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4300)))) (-2494 (($ $) 30)) (-3996 (((-513) $) 60 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 51)) (-2341 (((-816) $) 11)) (-3575 (($) 27) (($ (-606 |#1|)) 26)) (-2030 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 37 (|has| $ (-6 -4300))))) -(((-1043 |#1|) (-134) (-1045)) (T -1043)) -((-3577 (*1 *2 *1 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3575 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) (-1272 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-1272 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2969 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-4221 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-4221 (*1 *1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(-13 (-1045) (-145 |t#1|) (-10 -8 (-6 -4290) (-15 -3577 ((-111) $ $)) (-15 -3575 ($)) (-15 -3575 ($ (-606 |t#1|))) (-15 -1272 ($)) (-15 -1272 ($ (-606 |t#1|))) (-15 -3891 ($ $ $)) (-15 -2867 ($ $ $)) (-15 -2867 ($ $ |t#1|)) (-15 -2969 ($ $ $)) (-15 -3495 ((-111) $ $)) (-15 -4221 ($ $ $)) (-15 -4221 ($ $ |t#1|)) (-15 -4221 ($ |t#1| $)))) -(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) . T) ((-1154) . T)) -((-1654 (((-1100) $) 10)) (-2528 (((-1064) $) 8))) -(((-1044 |#1|) (-10 -8 (-15 -1654 ((-1100) |#1|)) (-15 -2528 ((-1064) |#1|))) (-1045)) (T -1044)) -NIL -(-10 -8 (-15 -1654 ((-1100) |#1|)) (-15 -2528 ((-1064) |#1|))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-1045) (-134)) (T -1045)) -((-2528 (*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1064)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1100))))) -(-13 (-100) (-579 (-816)) (-10 -8 (-15 -2528 ((-1064) $)) (-15 -1654 ((-1100) $)))) -(((-100) . T) ((-579 (-816)) . T)) -((-2330 (((-111) $ $) NIL)) (-3151 (((-731)) 30)) (-3795 (($ (-606 (-874))) 52)) (-1603 (((-3 $ "failed") $ (-874) (-874)) 58)) (-1618 (($) 32)) (-3122 (((-111) (-874) $) 35)) (-2334 (((-874) $) 50)) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 31)) (-3141 (((-3 $ "failed") $ (-874)) 55)) (-2528 (((-1064) $) NIL)) (-1960 (((-1200 $)) 40)) (-2243 (((-606 (-874)) $) 24)) (-2108 (((-731) $ (-874) (-874)) 56)) (-2341 (((-816) $) 29)) (-2244 (((-111) $ $) 21))) -(((-1046 |#1| |#2|) (-13 (-352) (-10 -8 (-15 -3141 ((-3 $ "failed") $ (-874))) (-15 -1603 ((-3 $ "failed") $ (-874) (-874))) (-15 -2243 ((-606 (-874)) $)) (-15 -3795 ($ (-606 (-874)))) (-15 -1960 ((-1200 $))) (-15 -3122 ((-111) (-874) $)) (-15 -2108 ((-731) $ (-874) (-874))))) (-874) (-874)) (T -1046)) -((-3141 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1603 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-1960 (*1 *2) (-12 (-5 *2 (-1200 (-1046 *3 *4))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *3 (-874)) (-5 *2 (-111)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-731)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-352) (-10 -8 (-15 -3141 ((-3 $ "failed") $ (-874))) (-15 -1603 ((-3 $ "failed") $ (-874) (-874))) (-15 -2243 ((-606 (-874)) $)) (-15 -3795 ($ (-606 (-874)))) (-15 -1960 ((-1200 $))) (-15 -3122 ((-111) (-874) $)) (-15 -2108 ((-731) $ (-874) (-874))))) -((-2330 (((-111) $ $) NIL)) (-1750 (($) NIL (|has| |#1| (-352)))) (-4221 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-1272 (($ (-606 |#1|)) NIL) (($) 13)) (-3435 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 67 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4300)))) (-1618 (($) NIL (|has| |#1| (-352)))) (-3661 (((-606 |#1|) $) 19 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-2444 ((|#1| $) 57 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3889 ((|#1| $) 55 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 34)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 70)) (-2783 ((|#1| $) 25)) (-3499 (($ |#1| $) 65)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-1599 ((|#1| $) 27)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 21)) (-3425 (($) 11)) (-2867 (($ $ |#1|) NIL) (($ $ $) 71)) (-1341 (($) NIL) (($ (-606 |#1|)) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 16)) (-3996 (((-513) $) 52 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 61)) (-1583 (($ $) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL)) (-1627 (((-731) $) NIL)) (-3575 (($ (-606 |#1|)) NIL) (($) 12)) (-2753 (($ (-606 |#1|)) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 54)) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) -(((-1047 |#1|) (-409 |#1|) (-1045)) (T -1047)) -NIL -(-409 |#1|) -((-2330 (((-111) $ $) 7)) (-3128 (((-111) $) 32)) (-1694 ((|#2| $) 27)) (-3330 (((-111) $) 33)) (-3035 ((|#1| $) 28)) (-2114 (((-111) $) 35)) (-2942 (((-111) $) 37)) (-3477 (((-111) $) 34)) (-1654 (((-1100) $) 9)) (-1660 (((-111) $) 31)) (-1715 ((|#3| $) 26)) (-2528 (((-1064) $) 10)) (-2807 (((-111) $) 30)) (-2851 ((|#4| $) 25)) (-1845 ((|#5| $) 24)) (-4113 (((-111) $ $) 38)) (-1922 (($ $ (-537)) 14) (($ $ (-606 (-537))) 13)) (-3690 (((-606 $) $) 29)) (-3996 (($ (-606 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2341 (((-816) $) 11)) (-1313 (($ $) 16)) (-1297 (($ $) 17)) (-4233 (((-111) $) 36)) (-2244 (((-111) $ $) 6)) (-2258 (((-537) $) 15))) -(((-1048 |#1| |#2| |#3| |#4| |#5|) (-134) (-1045) (-1045) (-1045) (-1045) (-1045)) (T -1048)) -((-4113 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3690 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *2 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *2 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1297 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-1313 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-537)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -4113 ((-111) $ $)) (-15 -2942 ((-111) $)) (-15 -4233 ((-111) $)) (-15 -2114 ((-111) $)) (-15 -3477 ((-111) $)) (-15 -3330 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -2807 ((-111) $)) (-15 -3690 ((-606 $) $)) (-15 -3035 (|t#1| $)) (-15 -1694 (|t#2| $)) (-15 -1715 (|t#3| $)) (-15 -2851 (|t#4| $)) (-15 -1845 (|t#5| $)) (-15 -3996 ($ (-606 $))) (-15 -3996 ($ |t#1|)) (-15 -3996 ($ |t#2|)) (-15 -3996 ($ |t#3|)) (-15 -3996 ($ |t#4|)) (-15 -3996 ($ |t#5|)) (-15 -1297 ($ $)) (-15 -1313 ($ $)) (-15 -2258 ((-537) $)) (-15 -1922 ($ $ (-537))) (-15 -1922 ($ $ (-606 (-537)))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL)) (-3128 (((-111) $) NIL)) (-1694 (((-1117) $) NIL)) (-3330 (((-111) $) NIL)) (-3035 (((-1100) $) NIL)) (-2114 (((-111) $) NIL)) (-2942 (((-111) $) NIL)) (-3477 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-1660 (((-111) $) NIL)) (-1715 (((-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-2807 (((-111) $) NIL)) (-2851 (((-210) $) NIL)) (-1845 (((-816) $) NIL)) (-4113 (((-111) $ $) NIL)) (-1922 (($ $ (-537)) NIL) (($ $ (-606 (-537))) NIL)) (-3690 (((-606 $) $) NIL)) (-3996 (($ (-606 $)) NIL) (($ (-1100)) NIL) (($ (-1117)) NIL) (($ (-537)) NIL) (($ (-210)) NIL) (($ (-816)) NIL)) (-2341 (((-816) $) NIL)) (-1313 (($ $) NIL)) (-1297 (($ $) NIL)) (-4233 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-537) $) NIL))) -(((-1049) (-1048 (-1100) (-1117) (-537) (-210) (-816))) (T -1049)) -NIL -(-1048 (-1100) (-1117) (-537) (-210) (-816)) -((-2330 (((-111) $ $) NIL)) (-3128 (((-111) $) 38)) (-1694 ((|#2| $) 42)) (-3330 (((-111) $) 37)) (-3035 ((|#1| $) 41)) (-2114 (((-111) $) 35)) (-2942 (((-111) $) 14)) (-3477 (((-111) $) 36)) (-1654 (((-1100) $) NIL)) (-1660 (((-111) $) 39)) (-1715 ((|#3| $) 44)) (-2528 (((-1064) $) NIL)) (-2807 (((-111) $) 40)) (-2851 ((|#4| $) 43)) (-1845 ((|#5| $) 45)) (-4113 (((-111) $ $) 34)) (-1922 (($ $ (-537)) 56) (($ $ (-606 (-537))) 58)) (-3690 (((-606 $) $) 22)) (-3996 (($ (-606 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2341 (((-816) $) 23)) (-1313 (($ $) 21)) (-1297 (($ $) 52)) (-4233 (((-111) $) 18)) (-2244 (((-111) $ $) 33)) (-2258 (((-537) $) 54))) -(((-1050 |#1| |#2| |#3| |#4| |#5|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-1045) (-1045) (-1045) (-1045)) (T -1050)) -NIL -(-1048 |#1| |#2| |#3| |#4| |#5|) -((-3322 (((-1205) $) 23)) (-2106 (($ (-1117) (-418) |#2|) 11)) (-2341 (((-816) $) 16))) -(((-1051 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -2106 ($ (-1117) (-418) |#2|)))) (-807) (-414 |#1|)) (T -1051)) -((-2106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-418)) (-4 *5 (-807)) (-5 *1 (-1051 *5 *4)) (-4 *4 (-414 *5))))) -(-13 (-379) (-10 -8 (-15 -2106 ($ (-1117) (-418) |#2|)))) -((-3078 (((-111) |#5| |#5|) 38)) (-3798 (((-111) |#5| |#5|) 52)) (-2843 (((-111) |#5| (-606 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-2296 (((-111) (-606 |#4|) (-606 |#4|)) 58)) (-3803 (((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 63)) (-1982 (((-1205)) 33)) (-1261 (((-1205) (-1100) (-1100) (-1100)) 29)) (-3509 (((-606 |#5|) (-606 |#5|)) 82)) (-2457 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) 80)) (-3921 (((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111)) 102)) (-3433 (((-111) |#5| |#5|) 47)) (-2513 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2314 (((-111) (-606 |#4|) (-606 |#4|)) 57)) (-3730 (((-111) (-606 |#4|) (-606 |#4|)) 59)) (-1981 (((-111) (-606 |#4|) (-606 |#4|)) 60)) (-1761 (((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2207 (((-606 |#5|) (-606 |#5|)) 43))) -(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1052)) -((-1761 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) (-5 *1 (-1052 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) (-4 *4 (-1018 *6 *7 *8 *9)))) (-3921 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) (-5 *1 (-1052 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1052 *5 *6 *7 *8 *3)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2513 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3798 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-3433 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1982 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1261 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-2240 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 96)) (-3265 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|) 72)) (-1802 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 91)) (-1730 (((-606 |#5|) |#4| |#5|) 110)) (-4164 (((-606 |#5|) |#4| |#5|) 117)) (-1906 (((-606 |#5|) |#4| |#5|) 118)) (-1733 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 97)) (-2884 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 116)) (-2580 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-2509 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111)) 84) (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3651 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 79)) (-1291 (((-1205)) 37)) (-3761 (((-1205)) 26)) (-2400 (((-1205) (-1100) (-1100) (-1100)) 33)) (-1298 (((-1205) (-1100) (-1100) (-1100)) 22))) -(((-1053 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3265 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3651 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-111) |#4| |#5|)) (-15 -1733 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1730 ((-606 |#5|) |#4| |#5|)) (-15 -2884 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -4164 ((-606 |#5|) |#4| |#5|)) (-15 -2580 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1906 ((-606 |#5|) |#4| |#5|)) (-15 -2240 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1053)) -((-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1906 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1802 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3651 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) (-5 *1 (-1053 *6 *7 *4 *8 *9)))) (-2509 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-2400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3761 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3265 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3651 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-111) |#4| |#5|)) (-15 -1733 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1730 ((-606 |#5|) |#4| |#5|)) (-15 -2884 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -4164 ((-606 |#5|) |#4| |#5|)) (-15 -2580 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1906 ((-606 |#5|) |#4| |#5|)) (-15 -2240 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) -((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-1054 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1054)) -NIL -(-13 (-1018 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) -((-3484 (((-606 (-537)) (-537) (-537) (-537)) 22)) (-3465 (((-606 (-537)) (-537) (-537) (-537)) 12)) (-2759 (((-606 (-537)) (-537) (-537) (-537)) 18)) (-2651 (((-537) (-537) (-537)) 9)) (-1564 (((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537)) 46) (((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537)) 41)) (-2432 (((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111)) 28)) (-3721 (((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537))) 45)) (-2997 (((-649 (-537)) (-606 (-537)) (-606 (-537))) 33)) (-1985 (((-606 (-649 (-537))) (-606 (-537))) 35)) (-3001 (((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537))) 49)) (-2763 (((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537))) 57))) -(((-1055) (-10 -7 (-15 -2763 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3001 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -1985 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -2997 ((-649 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3721 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -2432 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111))) (-15 -1564 ((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537))) (-15 -1564 ((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537))) (-15 -2651 ((-537) (-537) (-537))) (-15 -2759 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3465 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3484 ((-606 (-537)) (-537) (-537) (-537))))) (T -1055)) -((-3484 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-3465 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-2759 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-2651 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1055)))) (-1564 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-606 (-537))) (-5 *4 (-537)) (-5 *1 (-1055)))) (-1564 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-537)) (-5 *1 (-1055)))) (-2432 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *3 (-111)) (-5 *1 (-1055)))) (-3721 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-649 (-537))) (-5 *3 (-606 (-537))) (-5 *1 (-1055)))) (-2997 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-1055)))) (-3001 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *3 (-649 (-537))) (-5 *1 (-1055)))) (-2763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) -(-10 -7 (-15 -2763 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3001 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -1985 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -2997 ((-649 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3721 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -2432 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111))) (-15 -1564 ((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537))) (-15 -1564 ((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537))) (-15 -2651 ((-537) (-537) (-537))) (-15 -2759 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3465 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3484 ((-606 (-537)) (-537) (-537) (-537)))) -((** (($ $ (-874)) 10))) -(((-1056 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-874)))) (-1057)) (T -1056)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-874)))) -((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13)) (* (($ $ $) 14))) -(((-1057) (-134)) (T -1057)) -((* (*1 *1 *1 *1) (-4 *1 (-1057))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-874))))) -(-13 (-1045) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-874))))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2330 (((-111) $ $) NIL (|has| |#3| (-1045)))) (-1656 (((-111) $) NIL (|has| |#3| (-129)))) (-3492 (($ (-874)) NIL (|has| |#3| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#3| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#3| (-352)))) (-2537 (((-537) $) NIL (|has| |#3| (-805)))) (-2476 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) ((|#3| $) NIL (|has| |#3| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) NIL (|has| |#3| (-998))) (((-649 |#3|) (-649 $)) NIL (|has| |#3| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#3| (-687)))) (-1618 (($) NIL (|has| |#3| (-352)))) (-4091 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#3| $ (-537)) 12)) (-3797 (((-111) $) NIL (|has| |#3| (-805)))) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#3| (-687)))) (-2840 (((-111) $) NIL (|has| |#3| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#3| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#3| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#3| (-352)))) (-2528 (((-1064) $) NIL (|has| |#3| (-1045)))) (-3188 ((|#3| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#3|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3010 (((-606 |#3|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) |#3|) NIL) ((|#3| $ (-537)) NIL)) (-3416 ((|#3| $ $) NIL (|has| |#3| (-998)))) (-3668 (($ (-1200 |#3|)) NIL)) (-1839 (((-131)) NIL (|has| |#3| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998)))) (-2539 (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300))) (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (|has| |#3| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) (($ |#3|) NIL (|has| |#3| (-1045))) (((-816) $) NIL (|has| |#3| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#3| (-998)))) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#3| (-805)))) (-2928 (($) NIL (|has| |#3| (-129)) CONST)) (-2943 (($) NIL (|has| |#3| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#3| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2263 (((-111) $ $) 17 (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $ $) NIL (|has| |#3| (-998))) (($ $) NIL (|has| |#3| (-998)))) (-2318 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-731)) NIL (|has| |#3| (-687))) (($ $ (-874)) NIL (|has| |#3| (-687)))) (* (($ (-537) $) NIL (|has| |#3| (-998))) (($ $ $) NIL (|has| |#3| (-687))) (($ $ |#3|) NIL (|has| |#3| (-687))) (($ |#3| $) NIL (|has| |#3| (-687))) (($ (-731) $) NIL (|has| |#3| (-129))) (($ (-874) $) NIL (|has| |#3| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1058 |#1| |#2| |#3|) (-223 |#1| |#3|) (-731) (-731) (-753)) (T -1058)) -NIL -(-223 |#1| |#3|) -((-3320 (((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 37)) (-3032 (((-537) (-1173 |#2| |#1|)) 69 (|has| |#1| (-435)))) (-2952 (((-537) (-1173 |#2| |#1|)) 54)) (-4032 (((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 45)) (-2023 (((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 68 (|has| |#1| (-435)))) (-2011 (((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 48)) (-2047 (((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 53))) -(((-1059 |#1| |#2|) (-10 -7 (-15 -3320 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -4032 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2011 ((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2047 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2952 ((-537) (-1173 |#2| |#1|))) (IF (|has| |#1| (-435)) (PROGN (-15 -2023 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -3032 ((-537) (-1173 |#2| |#1|)))) |%noBranch|)) (-780) (-1117)) (T -1059)) -((-3032 (*1 *2 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2023 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2011 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 *4)) (-5 *1 (-1059 *4 *5)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) -(-10 -7 (-15 -3320 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -4032 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2011 ((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2047 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2952 ((-537) (-1173 |#2| |#1|))) (IF (|has| |#1| (-435)) (PROGN (-15 -2023 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -3032 ((-537) (-1173 |#2| |#1|)))) |%noBranch|)) -((-2537 (((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)) 17) (((-3 (-537) "failed") |#2| (-1117) (-800 |#2|)) 15) (((-3 (-537) "failed") |#2|) 54))) -(((-1060 |#1| |#2|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") |#2|)) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) (-800 |#2|))) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|))) (T -1060)) -((-2537 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1100)) (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))))) (-2537 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)))) (-2537 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) -(-10 -7 (-15 -2537 ((-3 (-537) "failed") |#2|)) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) (-800 |#2|))) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)))) -((-2537 (((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)) 35) (((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|)))) 30) (((-3 (-537) "failed") (-391 (-905 |#1|))) 13))) -(((-1061 |#1|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|))))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)))) (-435)) (T -1061)) -((-2537 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1117)) (-5 *5 (-1100)) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) (-2537 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 (-391 (-905 *6)))) (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) (-2537 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *4))))) -(-10 -7 (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|))))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)))) -((-2330 (((-111) $ $) NIL)) (-1796 (((-1122) $) 10)) (-1744 (((-606 (-1122)) $) 11)) (-1747 (($ (-606 (-1122)) (-1122)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20)) (-2244 (((-111) $ $) 14))) -(((-1062) (-13 (-1045) (-10 -8 (-15 -1747 ($ (-606 (-1122)) (-1122))) (-15 -1796 ((-1122) $)) (-15 -1744 ((-606 (-1122)) $))))) (T -1062)) -((-1747 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1062)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1062)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1062))))) -(-13 (-1045) (-10 -8 (-15 -1747 ($ (-606 (-1122)) (-1122))) (-15 -1796 ((-1122) $)) (-15 -1744 ((-606 (-1122)) $)))) -((-3176 (((-300 (-537)) (-47)) 12))) -(((-1063) (-10 -7 (-15 -3176 ((-300 (-537)) (-47))))) (T -1063)) -((-3176 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-300 (-537))) (-5 *1 (-1063))))) -(-10 -7 (-15 -3176 ((-300 (-537)) (-47)))) -((-2330 (((-111) $ $) NIL)) (-3284 (($ $) 41)) (-1656 (((-111) $) 65)) (-1435 (($ $ $) 48)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) 74)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) 71)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) 59)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 79) (((-649 (-537)) (-649 $)) 28)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) 82) (($ $) 83)) (-3539 (($ $ $) 58)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) 80)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) 66)) (-2353 (((-111) $) 64)) (-3679 (($ $) 42)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) 75)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) 72)) (-2444 (($ $ $) 68) (($) 39)) (-3889 (($ $ $) 67) (($) 38)) (-1454 (($ $) NIL)) (-3845 (($ $) 70)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) 50)) (-2528 (((-1064) $) NIL) (($ $) 69)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) 62) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 61)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) 51)) (-2494 (($ $) NIL)) (-3996 (((-537) $) 32) (((-513) $) NIL) (((-845 (-537)) $) NIL) (((-363) $) NIL) (((-210) $) NIL)) (-2341 (((-816) $) 31) (($ (-537)) 81) (($ $) NIL) (($ (-537)) 81)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) 37)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) 73)) (-2209 (($ $) 63)) (-1512 (($ $ $) 44)) (-2928 (($) 35 T CONST)) (-2617 (($ $ $) 47)) (-2943 (($) 36 T CONST)) (-1379 (((-1100) $) 21) (((-1100) $ (-111)) 23) (((-1205) (-782) $) 24) (((-1205) (-782) $ (-111)) 25)) (-2626 (($ $) 45)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2608 (($ $ $) 46)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 40)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 49)) (-1501 (($ $ $) 43)) (-2329 (($ $) 52) (($ $ $) 54)) (-2318 (($ $ $) 53)) (** (($ $ (-874)) NIL) (($ $ (-731)) 57)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 34) (($ $ $) 55))) -(((-1064) (-13 (-522) (-622) (-788) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3889 ($)) (-15 -2444 ($)) (-15 -3679 ($ $)) (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -1435 ($ $ $)) (-15 -2626 ($ $)) (-15 -2608 ($ $ $)) (-15 -2617 ($ $ $))))) (T -1064)) -((-1512 (*1 *1 *1 *1) (-5 *1 (-1064))) (-1501 (*1 *1 *1 *1) (-5 *1 (-1064))) (-3284 (*1 *1 *1) (-5 *1 (-1064))) (-3889 (*1 *1) (-5 *1 (-1064))) (-2444 (*1 *1) (-5 *1 (-1064))) (-3679 (*1 *1 *1) (-5 *1 (-1064))) (-1435 (*1 *1 *1 *1) (-5 *1 (-1064))) (-2626 (*1 *1 *1) (-5 *1 (-1064))) (-2608 (*1 *1 *1 *1) (-5 *1 (-1064))) (-2617 (*1 *1 *1 *1) (-5 *1 (-1064)))) -(-13 (-522) (-622) (-788) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3889 ($)) (-15 -2444 ($)) (-15 -3679 ($ $)) (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -1435 ($ $ $)) (-15 -2626 ($ $)) (-15 -2608 ($ $ $)) (-15 -2617 ($ $ $)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2992 ((|#1| $) 44)) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-2993 ((|#1| |#1| $) 46)) (-3444 ((|#1| $) 45)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-3731 (((-731) $) 43)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1065 |#1|) (-134) (-1154)) (T -1065)) -((-2993 (*1 *2 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) -(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -2993 (|t#1| |t#1| $)) (-15 -3444 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -3731 ((-731) $)))) -(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-1428 ((|#3| $) 76)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#3| $) 37)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) 73) (((-649 |#3|) (-649 $)) 65)) (-3456 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-3018 ((|#3| $) 78)) (-4089 ((|#4| $) 32)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#3|) 16)) (** (($ $ (-874)) NIL) (($ $ (-731)) 15) (($ $ (-537)) 82))) -(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 -3018 (|#3| |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -4089 (|#4| |#1|)) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -2341 ((-816) |#1|))) (-1067 |#2| |#3| |#4| |#5|) (-731) (-998) (-223 |#2| |#3|) (-223 |#2| |#3|)) (T -1066)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 -3018 (|#3| |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -4089 (|#4| |#1|)) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1428 ((|#2| $) 70)) (-3234 (((-111) $) 110)) (-3418 (((-3 $ "failed") $ $) 19)) (-3348 (((-111) $) 108)) (-2506 (((-111) $ (-731)) 100)) (-3110 (($ |#2|) 73)) (-3832 (($) 17 T CONST)) (-3630 (($ $) 127 (|has| |#2| (-291)))) (-2964 ((|#3| $ (-537)) 122)) (-1516 (((-3 (-537) "failed") $) 84 (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 82 (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) 79)) (-3958 (((-537) $) 85 (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) 83 (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) 78)) (-2053 (((-649 (-537)) (-649 $)) 77 (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 76 (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 75) (((-649 |#2|) (-649 $)) 74)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-731) $) 128 (|has| |#2| (-529)))) (-4030 ((|#2| $ (-537) (-537)) 120)) (-3661 (((-606 |#2|) $) 93 (|has| $ (-6 -4300)))) (-2836 (((-111) $) 30)) (-2342 (((-731) $) 129 (|has| |#2| (-529)))) (-2630 (((-606 |#4|) $) 130 (|has| |#2| (-529)))) (-2931 (((-731) $) 116)) (-2945 (((-731) $) 117)) (-1642 (((-111) $ (-731)) 101)) (-3960 ((|#2| $) 65 (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) 112)) (-2454 (((-537) $) 114)) (-3703 (((-606 |#2|) $) 92 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 113)) (-2485 (((-537) $) 115)) (-3299 (($ (-606 (-606 |#2|))) 107)) (-4081 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3156 (((-606 (-606 |#2|)) $) 118)) (-2489 (((-111) $ (-731)) 102)) (-1654 (((-1100) $) 9)) (-1321 (((-3 $ "failed") $) 64 (|has| |#2| (-347)))) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 89 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 88 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 106)) (-2193 (((-111) $) 103)) (-3425 (($) 104)) (-1922 ((|#2| $ (-537) (-537) |#2|) 121) ((|#2| $ (-537) (-537)) 119)) (-3456 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-731)) 49) (($ $ (-606 (-1117)) (-606 (-731))) 42 (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) 41 (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) 40 (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) 39 (|has| |#2| (-853 (-1117)))) (($ $ (-731)) 37 (|has| |#2| (-218))) (($ $) 35 (|has| |#2| (-218)))) (-3018 ((|#2| $) 69)) (-3189 (($ (-606 |#2|)) 72)) (-3400 (((-111) $) 109)) (-4089 ((|#3| $) 71)) (-3075 ((|#2| $) 66 (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4300))) (((-731) |#2| $) 91 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 105)) (-2198 ((|#4| $ (-537)) 123)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 81 (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) 80)) (-3654 (((-731)) 28)) (-2030 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 111)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-731)) 47) (($ $ (-606 (-1117)) (-606 (-731))) 46 (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) 45 (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) 44 (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) 43 (|has| |#2| (-853 (-1117)))) (($ $ (-731)) 38 (|has| |#2| (-218))) (($ $) 36 (|has| |#2| (-218)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#2|) 126 (|has| |#2| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 63 (|has| |#2| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2258 (((-731) $) 99 (|has| $ (-6 -4300))))) -(((-1067 |#1| |#2| |#3| |#4|) (-134) (-731) (-998) (-223 |t#1| |t#2|) (-223 |t#1| |t#2|)) (T -1067)) -((-3110 (*1 *1 *2) (-12 (-4 *2 (-998)) (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *4)) (-4 *4 (-998)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *2 (-223 *3 *4)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (-4 *2 (-998)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (-4 *2 (-998)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *2 (-223 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *2 (-223 *3 *4)) (-4 *5 (-223 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-1321 (*1 *1 *1) (|partial| -12 (-4 *1 (-1067 *2 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-223 *2 *3)) (-4 *5 (-223 *2 *3)) (-4 *3 (-347)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)) (-4 *4 (-347))))) -(-13 (-216 |t#2|) (-110 |t#2| |t#2|) (-1001 |t#1| |t#1| |t#2| |t#3| |t#4|) (-395 |t#2|) (-361 |t#2|) (-10 -8 (IF (|has| |t#2| (-163)) (-6 (-678 |t#2|)) |%noBranch|) (-15 -3110 ($ |t#2|)) (-15 -3189 ($ (-606 |t#2|))) (-15 -4089 (|t#3| $)) (-15 -1428 (|t#2| $)) (-15 -3018 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4302 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3075 (|t#2| $)) (-15 -3960 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-347)) (PROGN (-15 -1321 ((-3 $ "failed") $)) (-15 ** ($ $ (-537)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4302 "*"))) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-216 |#2|) . T) ((-218) |has| |#2| (-218)) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-361 |#2|) . T) ((-395 |#2|) . T) ((-471 |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-609 |#2|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#2| (-602 (-537))) ((-602 |#2|) . T) ((-678 |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-6 (-4302 "*")))) ((-687) . T) ((-853 (-1117)) |has| |#2| (-853 (-1117))) ((-1001 |#1| |#1| |#2| |#3| |#4|) . T) ((-989 (-391 (-537))) |has| |#2| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#2| (-989 (-537))) ((-989 |#2|) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1154) . T)) -((-1574 ((|#4| |#4|) 70)) (-3116 ((|#4| |#4|) 65)) (-2029 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|) 78)) (-3904 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3834 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1068 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3834 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -3904 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2029 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|))) (-291) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -1068)) -((-2029 (*1 *2 *3 *4) (-12 (-4 *5 (-291)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-1068 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3834 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -3904 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2029 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 17)) (-3757 (((-606 |#2|) $) 159)) (-3588 (((-1113 $) $ |#2|) 54) (((-1113 |#1|) $) 43)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 108 (|has| |#1| (-529)))) (-3377 (($ $) 110 (|has| |#1| (-529)))) (-4017 (((-111) $) 112 (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#2|)) 192)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 156) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#2| "failed") $) NIL)) (-3958 ((|#1| $) 154) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#2| $) NIL)) (-4086 (($ $ $ |#2|) NIL (|has| |#1| (-163)))) (-3940 (($ $) 196)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 82)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 |#2|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) 19)) (-2668 (((-731) $) 26)) (-3746 (($ (-1113 |#1|) |#2|) 48) (($ (-1113 $) |#2|) 64)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) 32)) (-3733 (($ |#1| (-509 |#2|)) 71) (($ $ |#2| (-731)) 52) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-1883 (((-509 |#2|) $) 186) (((-731) $ |#2|) 187) (((-606 (-731)) $ (-606 |#2|)) 188)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#2|) (-509 |#2|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 120)) (-1310 (((-3 |#2| "failed") $) 161)) (-3901 (($ $) 195)) (-3912 ((|#1| $) 37)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 33)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 138 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 143 (|has| |#1| (-435))) (($ $ $) 130 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-606 |#2|) (-606 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-606 |#2|) (-606 $)) 176)) (-2067 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#2|) 194) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) 182) (((-731) $ |#2|) 178) (((-606 (-731)) $ (-606 |#2|)) 180)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#1| $) 126 (|has| |#1| (-435))) (($ $ |#2|) 129 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 149) (($ (-537)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 152)) (-3500 ((|#1| $ (-509 |#2|)) 73) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 79)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) 115 (|has| |#1| (-529)))) (-2928 (($) 12 T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 97)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 124 (|has| |#1| (-347)))) (-2329 (($ $) 85) (($ $ $) 95)) (-2318 (($ $ $) 49)) (** (($ $ (-874)) 102) (($ $ (-731)) 100)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 88) (($ $ $) 65) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1069 |#1| |#2|) (-902 |#1| (-509 |#2|) |#2|) (-998) (-807)) (T -1069)) -NIL -(-902 |#1| (-509 |#2|) |#2|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1403 (($ $) 143 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) 147 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1706 (((-905 |#1|) $ (-731)) NIL) (((-905 |#1|) $ (-731) (-731)) NIL)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ |#2|) NIL) (((-731) $ |#2| (-731)) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) NIL)) (-3733 (($ $ (-606 |#2|) (-606 (-509 |#2|))) NIL) (($ $ |#2| (-509 |#2|)) NIL) (($ |#1| (-509 |#2|)) NIL) (($ $ |#2| (-731)) 58) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) 113 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3714 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-391 (-537)))))) (-1540 (($ $ (-731)) 15)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) 111 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ |#2| $) 97) (($ $ (-606 |#2|) (-606 $)) 90) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL)) (-3456 (($ $ |#2|) 100) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) NIL)) (-3356 (((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|))) 79)) (-1441 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 145 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 17)) (-2341 (((-816) $) 182) (($ (-537)) NIL) (($ |#1|) 44 (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#2|) 65) (($ |#3|) 63)) (-3500 ((|#1| $ (-509 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL) ((|#3| $ (-731)) 42)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1475 (($ $) 155 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 151 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 159 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 157 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 153 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 10 T CONST)) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) 184 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) NIL) (($ $ (-731)) 70) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 103 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 60) (($ $ (-391 (-537))) 108 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 106 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1070 |#1| |#2| |#3|) (-13 (-701 |#1| |#2|) (-10 -8 (-15 -3500 (|#3| $ (-731))) (-15 -2341 ($ |#2|)) (-15 -2341 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3356 ((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |#2| |#1|)) (-15 -3714 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-998) (-807) (-902 |#1| (-509 |#2|) |#2|)) (T -1070)) -((-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *2 (-902 *4 (-509 *5) *5)) (-5 *1 (-1070 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-807)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-902 *3 (-509 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-902 *3 (-509 *4) *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1098 *7))) (-4 *6 (-807)) (-4 *7 (-902 *5 (-509 *6) *6)) (-4 *5 (-998)) (-5 *2 (-1 (-1098 *7) *7)) (-5 *1 (-1070 *5 *6 *7)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) (-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1070 *4 *3 *5))) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998)) (-4 *3 (-807)) (-5 *1 (-1070 *4 *3 *5)) (-4 *5 (-902 *4 (-509 *3) *3))))) -(-13 (-701 |#1| |#2|) (-10 -8 (-15 -3500 (|#3| $ (-731))) (-15 -2341 ($ |#2|)) (-15 -2341 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3356 ((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |#2| |#1|)) (-15 -3714 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-1071 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1071)) -NIL -(-13 (-1054 |t#1| |t#2| |t#3| |t#4|) (-744 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-744 |#1| |#2| |#3| |#4|) . T) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) -((-1895 (((-606 |#2|) |#1|) 12)) (-1755 (((-606 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-606 |#2|) |#1|) 52)) (-1951 (((-606 |#2|) |#2| |#2| |#2|) 39) (((-606 |#2|) |#1|) 50)) (-1431 ((|#2| |#1|) 46)) (-3680 (((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1682 (((-606 |#2|) |#2| |#2|) 38) (((-606 |#2|) |#1|) 49)) (-2493 (((-606 |#2|) |#2| |#2| |#2| |#2|) 40) (((-606 |#2|) |#1|) 51)) (-2829 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-1886 ((|#2| |#2| |#2| |#2|) 43)) (-3397 ((|#2| |#2| |#2|) 42)) (-3983 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -1895 ((-606 |#2|) |#1|)) (-15 -1431 (|#2| |#1|)) (-15 -3680 ((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1682 ((-606 |#2|) |#1|)) (-15 -1951 ((-606 |#2|) |#1|)) (-15 -2493 ((-606 |#2|) |#1|)) (-15 -1755 ((-606 |#2|) |#1|)) (-15 -1682 ((-606 |#2|) |#2| |#2|)) (-15 -1951 ((-606 |#2|) |#2| |#2| |#2|)) (-15 -2493 ((-606 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1755 ((-606 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3397 (|#2| |#2| |#2|)) (-15 -1886 (|#2| |#2| |#2| |#2|)) (-15 -3983 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2829 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1176 |#2|) (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (T -1072)) -((-2829 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-3983 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1886 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-3397 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1755 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-2493 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1951 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1682 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1755 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-2 (|:| |solns| (-606 *5)) (|:| |maps| (-606 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1072 *3 *5)) (-4 *3 (-1176 *5)))) (-1431 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -1895 ((-606 |#2|) |#1|)) (-15 -1431 (|#2| |#1|)) (-15 -3680 ((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1682 ((-606 |#2|) |#1|)) (-15 -1951 ((-606 |#2|) |#1|)) (-15 -2493 ((-606 |#2|) |#1|)) (-15 -1755 ((-606 |#2|) |#1|)) (-15 -1682 ((-606 |#2|) |#2| |#2|)) (-15 -1951 ((-606 |#2|) |#2| |#2| |#2|)) (-15 -2493 ((-606 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1755 ((-606 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3397 (|#2| |#2| |#2|)) (-15 -1886 (|#2| |#2| |#2| |#2|)) (-15 -3983 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2829 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1381 (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|))))) 95) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117))) 94) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|)))) 92) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 90) (((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|)))) 75) (((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117)) 76) (((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|))) 70) (((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117)) 59)) (-1661 (((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 88) (((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117)) 43)) (-1562 (((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)) 98) (((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117)) 97))) -(((-1073 |#1|) (-10 -7 (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1661 ((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -1661 ((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)))) (-13 (-291) (-807) (-141))) (T -1073)) -((-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-300 *5)))) (-5 *1 (-1073 *5)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-300 *5))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 *5))))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1073 *5))))) -(-10 -7 (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1661 ((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -1661 ((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)))) -((-2692 (((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)) 29)) (-3361 (((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|)))) 40))) -(((-1074 |#1|) (-10 -7 (-15 -3361 ((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))))) (-15 -2692 ((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)))) (-13 (-529) (-807))) (T -1074)) -((-2692 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-391 (-1113 (-300 *5)))) (-5 *3 (-1200 (-300 *5))) (-5 *4 (-537)) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-1074 *5)))) (-3361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-391 (-1113 (-300 *3)))) (-4 *3 (-13 (-529) (-807))) (-5 *1 (-1074 *3))))) -(-10 -7 (-15 -3361 ((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))))) (-15 -2692 ((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)))) -((-1895 (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))) 224) (((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117)) 20) (((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117)) 26) (((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|))) 25) (((-606 (-278 (-300 |#1|))) (-300 |#1|)) 21))) -(((-1075 |#1|) (-10 -7 (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117))) (-15 -1895 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (T -1075)) -((-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-606 (-278 (-300 *5)))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) (-5 *3 (-300 *5)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) (-5 *3 (-278 (-300 *5))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-278 (-300 *4))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-300 *4))))) -(-10 -7 (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117))) (-15 -1895 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))))) -((-2583 ((|#2| |#2|) 20 (|has| |#1| (-807))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-1558 ((|#2| |#2|) 19 (|has| |#1| (-807))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) -(((-1076 |#1| |#2|) (-10 -7 (-15 -1558 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2583 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-807)) (PROGN (-15 -1558 (|#2| |#2|)) (-15 -2583 (|#2| |#2|))) |%noBranch|)) (-1154) (-13 (-570 (-537) |#1|) (-10 -7 (-6 -4300) (-6 -4301)))) (T -1076)) -((-2583 (*1 *2 *2) (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301)))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301)))))) (-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301))))))) -(-10 -7 (-15 -1558 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2583 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-807)) (PROGN (-15 -1558 (|#2| |#2|)) (-15 -2583 (|#2| |#2|))) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-4108 (((-1106 3 |#1|) $) 107)) (-2654 (((-111) $) 72)) (-3376 (($ $ (-606 (-896 |#1|))) 20) (($ $ (-606 (-606 |#1|))) 75) (($ (-606 (-896 |#1|))) 74) (((-606 (-896 |#1|)) $) 73)) (-2194 (((-111) $) 41)) (-2385 (($ $ (-896 |#1|)) 46) (($ $ (-606 |#1|)) 51) (($ $ (-731)) 53) (($ (-896 |#1|)) 47) (((-896 |#1|) $) 45)) (-1594 (((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $) 105)) (-2641 (((-731) $) 26)) (-4147 (((-731) $) 25)) (-2090 (($ $ (-731) (-896 |#1|)) 39)) (-4097 (((-111) $) 82)) (-3106 (($ $ (-606 (-606 (-896 |#1|))) (-606 (-162)) (-162)) 89) (($ $ (-606 (-606 (-606 |#1|))) (-606 (-162)) (-162)) 91) (($ $ (-606 (-606 (-896 |#1|))) (-111) (-111)) 85) (($ $ (-606 (-606 (-606 |#1|))) (-111) (-111)) 93) (($ (-606 (-606 (-896 |#1|)))) 86) (($ (-606 (-606 (-896 |#1|))) (-111) (-111)) 87) (((-606 (-606 (-896 |#1|))) $) 84)) (-1470 (($ (-606 $)) 28) (($ $ $) 29)) (-1421 (((-606 (-162)) $) 102)) (-1834 (((-606 (-896 |#1|)) $) 96)) (-3334 (((-606 (-606 (-162))) $) 101)) (-1616 (((-606 (-606 (-606 (-896 |#1|)))) $) NIL)) (-1568 (((-606 (-606 (-606 (-731)))) $) 99)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2502 (((-731) $ (-606 (-896 |#1|))) 37)) (-3068 (((-111) $) 54)) (-1943 (($ $ (-606 (-896 |#1|))) 56) (($ $ (-606 (-606 |#1|))) 62) (($ (-606 (-896 |#1|))) 57) (((-606 (-896 |#1|)) $) 55)) (-2092 (($) 23) (($ (-1106 3 |#1|)) 24)) (-2494 (($ $) 35)) (-1457 (((-606 $) $) 34)) (-2727 (($ (-606 $)) 31)) (-4267 (((-606 $) $) 33)) (-2341 (((-816) $) 111)) (-3036 (((-111) $) 64)) (-1827 (($ $ (-606 (-896 |#1|))) 66) (($ $ (-606 (-606 |#1|))) 69) (($ (-606 (-896 |#1|))) 67) (((-606 (-896 |#1|)) $) 65)) (-3065 (($ $) 106)) (-2244 (((-111) $ $) NIL))) -(((-1077 |#1|) (-1078 |#1|) (-998)) (T -1077)) -NIL -(-1078 |#1|) -((-2330 (((-111) $ $) 7)) (-4108 (((-1106 3 |#1|) $) 13)) (-2654 (((-111) $) 29)) (-3376 (($ $ (-606 (-896 |#1|))) 33) (($ $ (-606 (-606 |#1|))) 32) (($ (-606 (-896 |#1|))) 31) (((-606 (-896 |#1|)) $) 30)) (-2194 (((-111) $) 44)) (-2385 (($ $ (-896 |#1|)) 49) (($ $ (-606 |#1|)) 48) (($ $ (-731)) 47) (($ (-896 |#1|)) 46) (((-896 |#1|) $) 45)) (-1594 (((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $) 15)) (-2641 (((-731) $) 58)) (-4147 (((-731) $) 59)) (-2090 (($ $ (-731) (-896 |#1|)) 50)) (-4097 (((-111) $) 21)) (-3106 (($ $ (-606 (-606 (-896 |#1|))) (-606 (-162)) (-162)) 28) (($ $ (-606 (-606 (-606 |#1|))) (-606 (-162)) (-162)) 27) (($ $ (-606 (-606 (-896 |#1|))) (-111) (-111)) 26) (($ $ (-606 (-606 (-606 |#1|))) (-111) (-111)) 25) (($ (-606 (-606 (-896 |#1|)))) 24) (($ (-606 (-606 (-896 |#1|))) (-111) (-111)) 23) (((-606 (-606 (-896 |#1|))) $) 22)) (-1470 (($ (-606 $)) 57) (($ $ $) 56)) (-1421 (((-606 (-162)) $) 16)) (-1834 (((-606 (-896 |#1|)) $) 20)) (-3334 (((-606 (-606 (-162))) $) 17)) (-1616 (((-606 (-606 (-606 (-896 |#1|)))) $) 18)) (-1568 (((-606 (-606 (-606 (-731)))) $) 19)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2502 (((-731) $ (-606 (-896 |#1|))) 51)) (-3068 (((-111) $) 39)) (-1943 (($ $ (-606 (-896 |#1|))) 43) (($ $ (-606 (-606 |#1|))) 42) (($ (-606 (-896 |#1|))) 41) (((-606 (-896 |#1|)) $) 40)) (-2092 (($) 61) (($ (-1106 3 |#1|)) 60)) (-2494 (($ $) 52)) (-1457 (((-606 $) $) 53)) (-2727 (($ (-606 $)) 55)) (-4267 (((-606 $) $) 54)) (-2341 (((-816) $) 11)) (-3036 (((-111) $) 34)) (-1827 (($ $ (-606 (-896 |#1|))) 38) (($ $ (-606 (-606 |#1|))) 37) (($ (-606 (-896 |#1|))) 36) (((-606 (-896 |#1|)) $) 35)) (-3065 (($ $) 14)) (-2244 (((-111) $ $) 6))) -(((-1078 |#1|) (-134) (-998)) (T -1078)) -((-2341 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-816)))) (-2092 (*1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1106 3 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-4267 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)))) (-1457 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)))) (-2494 (*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2502 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-896 *4))) (-4 *1 (-1078 *4)) (-4 *4 (-998)) (-5 *2 (-731)))) (-2090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-896 *4)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-896 *3)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-3106 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-606 (-896 *5)))) (-5 *3 (-606 (-162))) (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) (-3106 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-606 (-162))) (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) (-3106 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-3106 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-111)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 *3)))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-3106 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *4 (-998)) (-4 *1 (-1078 *4)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-896 *3)))))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-606 (-731))))))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-606 (-896 *3))))))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-162)))))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-162))))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731)))))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-1106 3 *3))))) -(-13 (-1045) (-10 -8 (-15 -2092 ($)) (-15 -2092 ($ (-1106 3 |t#1|))) (-15 -4147 ((-731) $)) (-15 -2641 ((-731) $)) (-15 -1470 ($ (-606 $))) (-15 -1470 ($ $ $)) (-15 -2727 ($ (-606 $))) (-15 -4267 ((-606 $) $)) (-15 -1457 ((-606 $) $)) (-15 -2494 ($ $)) (-15 -2502 ((-731) $ (-606 (-896 |t#1|)))) (-15 -2090 ($ $ (-731) (-896 |t#1|))) (-15 -2385 ($ $ (-896 |t#1|))) (-15 -2385 ($ $ (-606 |t#1|))) (-15 -2385 ($ $ (-731))) (-15 -2385 ($ (-896 |t#1|))) (-15 -2385 ((-896 |t#1|) $)) (-15 -2194 ((-111) $)) (-15 -1943 ($ $ (-606 (-896 |t#1|)))) (-15 -1943 ($ $ (-606 (-606 |t#1|)))) (-15 -1943 ($ (-606 (-896 |t#1|)))) (-15 -1943 ((-606 (-896 |t#1|)) $)) (-15 -3068 ((-111) $)) (-15 -1827 ($ $ (-606 (-896 |t#1|)))) (-15 -1827 ($ $ (-606 (-606 |t#1|)))) (-15 -1827 ($ (-606 (-896 |t#1|)))) (-15 -1827 ((-606 (-896 |t#1|)) $)) (-15 -3036 ((-111) $)) (-15 -3376 ($ $ (-606 (-896 |t#1|)))) (-15 -3376 ($ $ (-606 (-606 |t#1|)))) (-15 -3376 ($ (-606 (-896 |t#1|)))) (-15 -3376 ((-606 (-896 |t#1|)) $)) (-15 -2654 ((-111) $)) (-15 -3106 ($ $ (-606 (-606 (-896 |t#1|))) (-606 (-162)) (-162))) (-15 -3106 ($ $ (-606 (-606 (-606 |t#1|))) (-606 (-162)) (-162))) (-15 -3106 ($ $ (-606 (-606 (-896 |t#1|))) (-111) (-111))) (-15 -3106 ($ $ (-606 (-606 (-606 |t#1|))) (-111) (-111))) (-15 -3106 ($ (-606 (-606 (-896 |t#1|))))) (-15 -3106 ($ (-606 (-606 (-896 |t#1|))) (-111) (-111))) (-15 -3106 ((-606 (-606 (-896 |t#1|))) $)) (-15 -4097 ((-111) $)) (-15 -1834 ((-606 (-896 |t#1|)) $)) (-15 -1568 ((-606 (-606 (-606 (-731)))) $)) (-15 -1616 ((-606 (-606 (-606 (-896 |t#1|)))) $)) (-15 -3334 ((-606 (-606 (-162))) $)) (-15 -1421 ((-606 (-162)) $)) (-15 -1594 ((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $)) (-15 -3065 ($ $)) (-15 -4108 ((-1106 3 |t#1|) $)) (-15 -2341 ((-816) $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2979 (((-606 (-1122)) (-1100)) 9))) -(((-1079) (-10 -7 (-15 -2979 ((-606 (-1122)) (-1100))))) (T -1079)) -((-2979 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-1079))))) -(-10 -7 (-15 -2979 ((-606 (-1122)) (-1100)))) -((-4056 (((-1205) (-606 (-816))) 23) (((-1205) (-816)) 22)) (-4123 (((-1205) (-606 (-816))) 21) (((-1205) (-816)) 20)) (-3322 (((-1205) (-606 (-816))) 19) (((-1205) (-816)) 11) (((-1205) (-1100) (-816)) 17))) -(((-1080) (-10 -7 (-15 -3322 ((-1205) (-1100) (-816))) (-15 -3322 ((-1205) (-816))) (-15 -4123 ((-1205) (-816))) (-15 -4056 ((-1205) (-816))) (-15 -3322 ((-1205) (-606 (-816)))) (-15 -4123 ((-1205) (-606 (-816)))) (-15 -4056 ((-1205) (-606 (-816)))))) (T -1080)) -((-4056 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080))))) -(-10 -7 (-15 -3322 ((-1205) (-1100) (-816))) (-15 -3322 ((-1205) (-816))) (-15 -4123 ((-1205) (-816))) (-15 -4056 ((-1205) (-816))) (-15 -3322 ((-1205) (-606 (-816)))) (-15 -4123 ((-1205) (-606 (-816)))) (-15 -4056 ((-1205) (-606 (-816))))) -((-3548 (($ $ $) 10)) (-1593 (($ $) 9)) (-3288 (($ $ $) 13)) (-1961 (($ $ $) 15)) (-2354 (($ $ $) 12)) (-1716 (($ $ $) 14)) (-2147 (($ $) 17)) (-3502 (($ $) 16)) (-2209 (($ $) 6)) (-2247 (($ $ $) 11) (($ $) 7)) (-2611 (($ $ $) 8))) -(((-1081) (-134)) (T -1081)) -((-2147 (*1 *1 *1) (-4 *1 (-1081))) (-3502 (*1 *1 *1) (-4 *1 (-1081))) (-1961 (*1 *1 *1 *1) (-4 *1 (-1081))) (-1716 (*1 *1 *1 *1) (-4 *1 (-1081))) (-3288 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2354 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2247 (*1 *1 *1 *1) (-4 *1 (-1081))) (-3548 (*1 *1 *1 *1) (-4 *1 (-1081))) (-1593 (*1 *1 *1) (-4 *1 (-1081))) (-2611 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2247 (*1 *1 *1) (-4 *1 (-1081))) (-2209 (*1 *1 *1) (-4 *1 (-1081)))) -(-13 (-10 -8 (-15 -2209 ($ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1593 ($ $)) (-15 -3548 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3288 ($ $ $)) (-15 -1716 ($ $ $)) (-15 -1961 ($ $ $)) (-15 -3502 ($ $)) (-15 -2147 ($ $)))) -((-2330 (((-111) $ $) 41)) (-3619 ((|#1| $) 15)) (-1699 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-3610 (((-111) $) 17)) (-1306 (($ $ |#1|) 28)) (-3521 (($ $ (-111)) 30)) (-2235 (($ $) 31)) (-1498 (($ $ |#2|) 29)) (-1654 (((-1100) $) NIL)) (-1455 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-2528 (((-1064) $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 10)) (-2494 (($ $) 27)) (-2350 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) 21) (((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) 24) (((-606 $) |#1| (-606 |#2|)) 26)) (-3441 ((|#2| $) 16)) (-2341 (((-816) $) 50)) (-2244 (((-111) $ $) 39))) -(((-1082 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -3619 (|#1| $)) (-15 -3441 (|#2| $)) (-15 -3610 ((-111) $)) (-15 -2350 ($ |#1| |#2| (-111))) (-15 -2350 ($ |#1| |#2|)) (-15 -2350 ($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) (-15 -2350 ((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))))) (-15 -2350 ((-606 $) |#1| (-606 |#2|))) (-15 -2494 ($ $)) (-15 -1306 ($ $ |#1|)) (-15 -1498 ($ $ |#2|)) (-15 -3521 ($ $ (-111))) (-15 -2235 ($ $)) (-15 -1455 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -1699 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1045) (-33)) (-13 (-1045) (-33))) (T -1082)) -((-3425 (*1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-3619 (*1 *2 *1) (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-13 (-1045) (-33))))) (-3441 (*1 *2 *1) (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3852 *4))) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *4)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |val| *4) (|:| -3852 *5)))) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-606 (-1082 *4 *5))) (-5 *1 (-1082 *4 *5)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *5)) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-606 (-1082 *3 *5))) (-5 *1 (-1082 *3 *5)) (-4 *3 (-13 (-1045) (-33))))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1306 (*1 *1 *1 *2) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1498 (*1 *1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))) (-4 *2 (-13 (-1045) (-33))))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-2235 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1455 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1082 *5 *6)))) (-1699 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33)))))) -(-13 (-1045) (-10 -8 (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -3619 (|#1| $)) (-15 -3441 (|#2| $)) (-15 -3610 ((-111) $)) (-15 -2350 ($ |#1| |#2| (-111))) (-15 -2350 ($ |#1| |#2|)) (-15 -2350 ($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) (-15 -2350 ((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))))) (-15 -2350 ((-606 $) |#1| (-606 |#2|))) (-15 -2494 ($ $)) (-15 -1306 ($ $ |#1|)) (-15 -1498 ($ $ |#2|)) (-15 -3521 ($ $ (-111))) (-15 -2235 ($ $)) (-15 -1455 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -1699 ((-111) $ $ (-1 (-111) |#2| |#2|))))) -((-2330 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-3619 (((-1082 |#1| |#2|) $) 25)) (-1876 (($ $) 76)) (-3285 (((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-2677 (($ $ $ (-606 (-1082 |#1| |#2|))) 90) (($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-2506 (((-111) $ (-731)) NIL)) (-3650 (((-1082 |#1| |#2|) $ (-1082 |#1| |#2|)) 43 (|has| $ (-6 -4301)))) (-2476 (((-1082 |#1| |#2|) $ "value" (-1082 |#1| |#2|)) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1371 (((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $) 80)) (-3026 (($ (-1082 |#1| |#2|) $) 39)) (-2355 (($ (-1082 |#1| |#2|) $) 31)) (-3661 (((-606 (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 51)) (-3033 (((-111) (-1082 |#1| |#2|) $) 82)) (-3868 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 (-1082 |#1| |#2|)) $) 55 (|has| $ (-6 -4300)))) (-3122 (((-111) (-1082 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-1082 |#1| |#2|) (-1045))))) (-4081 (($ (-1 (-1082 |#1| |#2|) (-1082 |#1| |#2|)) $) 47 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-1082 |#1| |#2|) (-1082 |#1| |#2|)) $) 46)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 (-1082 |#1| |#2|)) $) 53)) (-3862 (((-111) $) 42)) (-1654 (((-1100) $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-2528 (((-1064) $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-1862 (((-3 $ "failed") $) 75)) (-3206 (((-111) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-1082 |#1| |#2|)))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-278 (-1082 |#1| |#2|))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-1082 |#1| |#2|) (-1082 |#1| |#2|)) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-606 (-1082 |#1| |#2|)) (-606 (-1082 |#1| |#2|))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045))))) (-2305 (((-111) $ $) 50)) (-2193 (((-111) $) 22)) (-3425 (($) 24)) (-1922 (((-1082 |#1| |#2|) $ "value") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) 44)) (-2539 (((-731) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300))) (((-731) (-1082 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-1082 |#1| |#2|) (-1045))))) (-2494 (($ $) 49)) (-2350 (($ (-1082 |#1| |#2|)) 9) (($ |#1| |#2| (-606 $)) 12) (($ |#1| |#2| (-606 (-1082 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-606 |#2|)) 17)) (-4280 (((-606 |#2|) $) 81)) (-2341 (((-816) $) 73 (|has| (-1082 |#1| |#2|) (-579 (-816))))) (-2804 (((-606 $) $) 28)) (-4261 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-2030 (((-111) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 64 (|has| (-1082 |#1| |#2|) (-1045)))) (-2258 (((-731) $) 58 (|has| $ (-6 -4300))))) -(((-1083 |#1| |#2|) (-13 (-962 (-1082 |#1| |#2|)) (-10 -8 (-6 -4301) (-6 -4300) (-15 -1862 ((-3 $ "failed") $)) (-15 -1876 ($ $)) (-15 -2350 ($ (-1082 |#1| |#2|))) (-15 -2350 ($ |#1| |#2| (-606 $))) (-15 -2350 ($ |#1| |#2| (-606 (-1082 |#1| |#2|)))) (-15 -2350 ($ |#1| |#2| |#1| (-606 |#2|))) (-15 -4280 ((-606 |#2|) $)) (-15 -1371 ((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $)) (-15 -3033 ((-111) (-1082 |#1| |#2|) $)) (-15 -3285 ((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2355 ($ (-1082 |#1| |#2|) $)) (-15 -3026 ($ (-1082 |#1| |#2|) $)) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)))) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1045) (-33)) (-13 (-1045) (-33))) (T -1083)) -((-1862 (*1 *1 *1) (|partial| -12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1876 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-606 (-1083 *2 *3))) (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-606 (-1082 *2 *3))) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)))) (-2350 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-606 *4)) (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-3033 (*1 *2 *3 *1) (-12 (-5 *3 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5)))) (-3285 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1082 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *5 *6)))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2677 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-606 (-1082 *3 *4))) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2677 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1082 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *1 (-1083 *4 *5))))) -(-13 (-962 (-1082 |#1| |#2|)) (-10 -8 (-6 -4301) (-6 -4300) (-15 -1862 ((-3 $ "failed") $)) (-15 -1876 ($ $)) (-15 -2350 ($ (-1082 |#1| |#2|))) (-15 -2350 ($ |#1| |#2| (-606 $))) (-15 -2350 ($ |#1| |#2| (-606 (-1082 |#1| |#2|)))) (-15 -2350 ($ |#1| |#2| |#1| (-606 |#2|))) (-15 -4280 ((-606 |#2|) $)) (-15 -1371 ((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $)) (-15 -3033 ((-111) (-1082 |#1| |#2|) $)) (-15 -3285 ((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2355 ($ (-1082 |#1| |#2|) $)) (-15 -3026 ($ (-1082 |#1| |#2|) $)) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)))) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3660 (($ $) NIL)) (-1428 ((|#2| $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3422 (($ (-649 |#2|)) 47)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3110 (($ |#2|) 9)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 60 (|has| |#2| (-291)))) (-2964 (((-225 |#1| |#2|) $ (-537)) 34)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 74)) (-3705 (((-731) $) 62 (|has| |#2| (-529)))) (-4030 ((|#2| $ (-537) (-537)) NIL)) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL)) (-2342 (((-731) $) 64 (|has| |#2| (-529)))) (-2630 (((-606 (-225 |#1| |#2|)) $) 68 (|has| |#2| (-529)))) (-2931 (((-731) $) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#2| $) 58 (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#2|))) 29)) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3156 (((-606 (-606 |#2|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1321 (((-3 $ "failed") $) 71 (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) (-537) |#2|) NIL) ((|#2| $ (-537) (-537)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-3018 ((|#2| $) NIL)) (-3189 (($ (-606 |#2|)) 42)) (-3400 (((-111) $) NIL)) (-4089 (((-225 |#1| |#2|) $) NIL)) (-3075 ((|#2| $) 56 (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 83 (|has| |#2| (-580 (-513))))) (-2198 (((-225 |#1| |#2|) $ (-537)) 36)) (-2341 (((-816) $) 39) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (((-649 |#2|) $) 44)) (-3654 (((-731)) 17)) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2928 (($) 11 T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) 54) (($ $ (-537)) 73 (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) 50) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) 52)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1084 |#1| |#2|) (-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-10 -8 (-15 -3660 ($ $)) (-15 -3422 ($ (-649 |#2|))) (-15 -2341 ((-649 |#2|) $)) (IF (|has| |#2| (-6 (-4302 "*"))) (-6 -4289) |%noBranch|) (IF (|has| |#2| (-6 (-4302 "*"))) (IF (|has| |#2| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) (-731) (-998)) (T -1084)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731)) (-4 *4 (-998)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-731)) (-4 *3 (-998)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731))))) -(-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-10 -8 (-15 -3660 ($ $)) (-15 -3422 ($ (-649 |#2|))) (-15 -2341 ((-649 |#2|) $)) (IF (|has| |#2| (-6 (-4302 "*"))) (-6 -4289) |%noBranch|) (IF (|has| |#2| (-6 (-4302 "*"))) (IF (|has| |#2| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) -((-2099 (($ $) 19)) (-2594 (($ $ (-138)) 10) (($ $ (-135)) 14)) (-1367 (((-111) $ $) 24)) (-2602 (($ $) 17)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (($ $ $) 29)) (-2341 (($ (-138)) 27) (((-816) $) NIL))) -(((-1085 |#1|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -2594 (|#1| |#1| (-135))) (-15 -2594 (|#1| |#1| (-138))) (-15 -2341 (|#1| (-138))) (-15 -1367 ((-111) |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1922 ((-138) |#1| (-537))) (-15 -1922 ((-138) |#1| (-537) (-138)))) (-1086)) (T -1085)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -2594 (|#1| |#1| (-135))) (-15 -2594 (|#1| |#1| (-138))) (-15 -2341 (|#1| (-138))) (-15 -1367 ((-111) |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1922 ((-138) |#1| (-537))) (-15 -1922 ((-138) |#1| (-537) (-138)))) -((-2330 (((-111) $ $) 19 (|has| (-138) (-1045)))) (-1561 (($ $) 120)) (-2099 (($ $) 121)) (-2594 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 118)) (-1315 (((-111) $ $ (-537)) 117)) (-3763 (((-606 $) $ (-138)) 110) (((-606 $) $ (-135)) 109)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| (-138) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 (((-138) $ (-537) (-138)) 52 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-2972 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-2619 (($ $ (-1167 (-537)) $) 114)) (-3221 (($ $) 78 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-138) $) 77 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) 53 (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) 51)) (-1367 (((-111) $ $) 119)) (-2299 (((-537) (-1 (-111) (-138)) $) 97) (((-537) (-138) $) 96 (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 95 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 113) (((-537) (-135) $ (-537)) 112)) (-3661 (((-606 (-138)) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 115)) (-1244 (((-731) $ $ (-138)) 116)) (-4081 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3037 (($ $) 122)) (-2602 (($ $) 123)) (-2489 (((-111) $ (-731)) 10)) (-2985 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-1654 (((-1100) $) 22 (|has| (-138) (-1045)))) (-4049 (($ (-138) $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| (-138) (-1045)))) (-3188 (((-138) $) 42 (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-3040 (($ $ (-138)) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) 26 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) 23 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 (((-138) $ (-537) (-138)) 50) (((-138) $ (-537)) 49) (($ $ (-1167 (-537))) 63) (($ $ $) 102)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4300))) (((-731) (-138) $) 28 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) 70)) (-3434 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (($ (-138)) 111) (((-816) $) 18 (|has| (-138) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| (-138) (-807)))) (-2271 (((-111) $ $) 83 (|has| (-138) (-807)))) (-2244 (((-111) $ $) 20 (|has| (-138) (-1045)))) (-2282 (((-111) $ $) 85 (|has| (-138) (-807)))) (-2263 (((-111) $ $) 82 (|has| (-138) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1086) (-134)) (T -1086)) -((-2602 (*1 *1 *1) (-4 *1 (-1086))) (-3037 (*1 *1 *1) (-4 *1 (-1086))) (-2099 (*1 *1 *1) (-4 *1 (-1086))) (-1561 (*1 *1 *1) (-4 *1 (-1086))) (-1367 (*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111)))) (-1342 (*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111)))) (-1315 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-537)) (-5 *2 (-111)))) (-1244 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-731)))) (-3760 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-111)))) (-2619 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-1167 (-537))))) (-2299 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)) (-5 *3 (-135)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1086)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-1922 (*1 *1 *1 *1) (-4 *1 (-1086)))) -(-13 (-19 (-138)) (-10 -8 (-15 -2602 ($ $)) (-15 -3037 ($ $)) (-15 -2099 ($ $)) (-15 -1561 ($ $)) (-15 -1367 ((-111) $ $)) (-15 -1342 ((-111) $ $)) (-15 -1315 ((-111) $ $ (-537))) (-15 -1244 ((-731) $ $ (-138))) (-15 -3760 ((-111) $ $ (-138))) (-15 -2619 ($ $ (-1167 (-537)) $)) (-15 -2299 ((-537) $ $ (-537))) (-15 -2299 ((-537) (-135) $ (-537))) (-15 -2341 ($ (-138))) (-15 -3763 ((-606 $) $ (-138))) (-15 -3763 ((-606 $) $ (-135))) (-15 -2594 ($ $ (-138))) (-15 -2594 ($ $ (-135))) (-15 -2985 ($ $ (-138))) (-15 -2985 ($ $ (-135))) (-15 -2972 ($ $ (-138))) (-15 -2972 ($ $ (-135))) (-15 -1922 ($ $ $)))) -(((-33) . T) ((-100) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807))) ((-579 (-816)) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807)) (|has| (-138) (-579 (-816)))) ((-145 #0=(-138)) . T) ((-580 (-513)) |has| (-138) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-612 #0#) . T) ((-19 #0#) . T) ((-807) |has| (-138) (-807)) ((-1045) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807))) ((-1154) . T)) -((-3000 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731)) 94)) (-1607 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 54)) (-2540 (((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)) 85)) (-3615 (((-731) (-606 |#4|) (-606 |#5|)) 27)) (-2764 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 56) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111)) 58)) (-4035 (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111)) 77)) (-3996 (((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 80)) (-4134 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 53)) (-3550 (((-731) (-606 |#4|) (-606 |#5|)) 19))) -(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1087)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) (-5 *1 (-1087 *4 *5 *6 *7 *8)))) (-3000 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-606 *11)) (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) (-5 *6 (-731)) (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-5 *1 (-1087 *7 *8 *9 *10 *11)))) (-4035 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-4035 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-2764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) -((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 110) (((-606 $) (-606 |#4|) (-111)) 111) (((-606 $) (-606 |#4|) (-111) (-111)) 109) (((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 84)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 62)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) 65)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3165 (((-111) |#4| $) NIL)) (-3398 (((-111) |#4| $) NIL)) (-2479 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1819 (((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111)) 124)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) NIL)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 103)) (-2375 (((-3 |#4| "failed") $) 37)) (-3826 (((-606 $) |#4| $) 88)) (-2806 (((-3 (-111) (-606 $)) |#4| $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3891 (((-606 $) |#4| $) 107) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 108) (((-606 $) |#4| (-606 $)) NIL)) (-2755 (((-606 $) (-606 |#4|) (-111) (-111) (-111)) 119)) (-3357 (($ |#4| $) 75) (($ (-606 |#4|) $) 76) (((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 48)) (-1540 (($ $ |#4|) NIL) (((-606 $) |#4| $) 90) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 86)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-3014 (((-606 $) |#4| $) 54) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3161 (((-111) |#4| $) NIL)) (-3042 (((-111) |#3| $) 61)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1088 |#1| |#2| |#3| |#4|) (-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -1088)) -((-3357 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *3))) (-5 *1 (-1088 *5 *6 *7 *3)) (-4 *3 (-1012 *5 *6 *7)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-3448 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-1819 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-1088 *5 *6 *7 *8))))) (-5 *1 (-1088 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) -(-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2992 ((|#1| $) 34)) (-4160 (($ (-606 |#1|)) 39)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-2993 ((|#1| |#1| $) 36)) (-3444 ((|#1| $) 32)) (-3661 (((-606 |#1|) $) 18 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 35)) (-3499 (($ |#1| $) 37)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 33)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 31)) (-3425 (($) 38)) (-3731 (((-731) $) 29)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 27)) (-2341 (((-816) $) 14 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 17 (|has| |#1| (-1045)))) (-2258 (((-731) $) 30 (|has| $ (-6 -4300))))) -(((-1089 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -4160 ($ (-606 |#1|))))) (-1154)) (T -1089)) -((-4160 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1089 *3))))) -(-13 (-1065 |#1|) (-10 -8 (-15 -4160 ($ (-606 |#1|))))) -((-2476 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1167 (-537)) |#2|) 44) ((|#2| $ (-537) |#2|) 41)) (-4254 (((-111) $) 12)) (-4081 (($ (-1 |#2| |#2|) $) 39)) (-3188 ((|#2| $) NIL) (($ $ (-731)) 17)) (-3040 (($ $ |#2|) 40)) (-1492 (((-111) $) 11)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1167 (-537))) 31) ((|#2| $ (-537)) 23) ((|#2| $ (-537) |#2|) NIL)) (-3115 (($ $ $) 47) (($ $ |#2|) NIL)) (-3434 (($ $ $) 33) (($ |#2| $) NIL) (($ (-606 $)) 36) (($ $ |#2|) NIL))) -(((-1090 |#1| |#2|) (-10 -8 (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| "last")) (-15 -1922 (|#1| |#1| "rest")) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -1922 (|#2| |#1| "value")) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|))) (-1091 |#2|) (-1154)) (T -1090)) -NIL -(-10 -8 (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| "last")) (-15 -1922 (|#1| |#1| "rest")) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -1922 (|#2| |#1| "value")) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4300)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4300))) (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1492 (((-111) $) 84)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1091 |#1|) (-134) (-1154)) (T -1091)) -((-1492 (*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) -(-13 (-1188 |t#1|) (-612 |t#1|) (-10 -8 (-15 -1492 ((-111) $)) (-15 -4254 ((-111) $)))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T) ((-1188 |#1|) . T)) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1092 |#1| |#2| |#3|) (-1130 |#1| |#2|) (-1045) (-1045) |#2|) (T -1092)) -NIL -(-1130 |#1| |#2|) -((-2330 (((-111) $ $) 7)) (-2824 (((-3 $ "failed") $) 13)) (-1654 (((-1100) $) 9)) (-3956 (($) 14 T CONST)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) -(((-1093) (-134)) (T -1093)) -((-3956 (*1 *1) (-4 *1 (-1093))) (-2824 (*1 *1 *1) (|partial| -4 *1 (-1093)))) -(-13 (-1045) (-10 -8 (-15 -3956 ($) -2787) (-15 -2824 ((-3 $ "failed") $)))) -(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) -((-2339 (((-1098 |#1|) (-1098 |#1|)) 17)) (-2965 (((-1098 |#1|) (-1098 |#1|)) 13)) (-3005 (((-1098 |#1|) (-1098 |#1|) (-537) (-537)) 20)) (-3481 (((-1098 |#1|) (-1098 |#1|)) 15))) -(((-1094 |#1|) (-10 -7 (-15 -2965 ((-1098 |#1|) (-1098 |#1|))) (-15 -3481 ((-1098 |#1|) (-1098 |#1|))) (-15 -2339 ((-1098 |#1|) (-1098 |#1|))) (-15 -3005 ((-1098 |#1|) (-1098 |#1|) (-537) (-537)))) (-13 (-529) (-141))) (T -1094)) -((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1094 *4)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3))))) -(-10 -7 (-15 -2965 ((-1098 |#1|) (-1098 |#1|))) (-15 -3481 ((-1098 |#1|) (-1098 |#1|))) (-15 -2339 ((-1098 |#1|) (-1098 |#1|))) (-15 -3005 ((-1098 |#1|) (-1098 |#1|) (-537) (-537)))) -((-3434 (((-1098 |#1|) (-1098 (-1098 |#1|))) 15))) -(((-1095 |#1|) (-10 -7 (-15 -3434 ((-1098 |#1|) (-1098 (-1098 |#1|))))) (-1154)) (T -1095)) -((-3434 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1095 *4)) (-4 *4 (-1154))))) -(-10 -7 (-15 -3434 ((-1098 |#1|) (-1098 (-1098 |#1|))))) -((-2547 (((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)) 25)) (-3195 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)) 26)) (-1612 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 16))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))) (-15 -2547 ((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|))) (-15 -3195 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)))) (-1154) (-1154)) (T -1096)) -((-3195 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-1096 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1098 *6)) (-4 *6 (-1154)) (-4 *3 (-1154)) (-5 *2 (-1098 *3)) (-5 *1 (-1096 *6 *3)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6))))) -(-10 -7 (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))) (-15 -2547 ((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|))) (-15 -3195 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)))) -((-1612 (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)) 21))) -(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)))) (-1154) (-1154) (-1154)) (T -1097)) -((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-1098 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-1097 *6 *7 *8))))) -(-10 -7 (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) 51)) (-1279 (((-1205) $ (-537) (-537)) 76 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 110 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-1773 (((-816) $) 41 (|has| |#1| (-1045)))) (-4051 (((-111)) 40 (|has| |#1| (-1045)))) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 98 (|has| $ (-6 -4301))) (($ $ (-537) $) 122)) (-2236 ((|#1| $ |#1|) 107 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 102 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4301))) (($ $ "rest" $) 106 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 89 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 55 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 58)) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-2784 (($ $) 14)) (-3200 (($ $) 29) (($ $ (-731)) 88)) (-4264 (((-111) (-606 |#1|) $) 116 (|has| |#1| (-1045)))) (-4165 (($ (-606 |#1|)) 112)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) 57)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3569 (((-1205) (-537) $) 121 (|has| |#1| (-1045)))) (-2227 (((-731) $) 118)) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-4201 (($ $) 90)) (-3253 (((-111) $) 13)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) 74)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1873 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2950 ((|#1| $) 10)) (-3188 ((|#1| $) 28) (($ $ (-731)) 49)) (-1311 (((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $) 25)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1915 (($ (-1 (-111) |#1|) $) 126)) (-1926 (($ (-1 (-111) |#1|) $) 127)) (-3040 (($ $ |#1|) 68 (|has| $ (-6 -4301)))) (-1540 (($ $ (-537)) 32)) (-1492 (((-111) $) 72)) (-1892 (((-111) $) 12)) (-2848 (((-111) $) 117)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 20)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 43)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) 54) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) 48)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2343 (($ (-1 $)) 47)) (-3335 (((-111) $) 69)) (-3136 (($ $) 70)) (-3743 (($ $) 99 (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 44)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 53)) (-1683 (($ |#1| $) 97)) (-3115 (($ $ $) 100 (|has| $ (-6 -4301))) (($ $ |#1|) 101 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 45) (($ (-606 $)) 83) (($ $ |#1|) 77)) (-1577 (($ $) 50)) (-2341 (($ (-606 |#1|)) 111) (((-816) $) 42 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 114 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1098 |#1|) (-13 (-635 |#1|) (-10 -8 (-6 -4301) (-15 -2341 ($ (-606 |#1|))) (-15 -4165 ($ (-606 |#1|))) (IF (|has| |#1| (-1045)) (-15 -4264 ((-111) (-606 |#1|) $)) |%noBranch|) (-15 -1311 ((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $)) (-15 -2343 ($ (-1 $))) (-15 -1683 ($ |#1| $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3569 ((-1205) (-537) $)) (-15 -1773 ((-816) $)) (-15 -4051 ((-111)))) |%noBranch|) (-15 -1536 ($ $ (-537) $)) (-15 -1873 ($ (-1 |#1|))) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)))) (-1154)) (T -1098)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-4165 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-4264 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)) (-5 *1 (-1098 *4)))) (-1311 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731)))) (-5 *1 (-1098 *4)) (-4 *4 (-1154)) (-5 *3 (-731)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-1 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) (-1683 (*1 *1 *2 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1154)))) (-3569 (*1 *2 *3 *1) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1098 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)))) (-4051 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)))) (-1536 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1915 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) -(-13 (-635 |#1|) (-10 -8 (-6 -4301) (-15 -2341 ($ (-606 |#1|))) (-15 -4165 ($ (-606 |#1|))) (IF (|has| |#1| (-1045)) (-15 -4264 ((-111) (-606 |#1|) $)) |%noBranch|) (-15 -1311 ((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $)) (-15 -2343 ($ (-1 $))) (-15 -1683 ($ |#1| $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3569 ((-1205) (-537) $)) (-15 -1773 ((-816) $)) (-15 -4051 ((-111)))) |%noBranch|) (-15 -1536 ($ $ (-537) $)) (-15 -1873 ($ (-1 |#1|))) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)))) -((-2330 (((-111) $ $) 19)) (-1561 (($ $) 120)) (-2099 (($ $) 121)) (-2594 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 118)) (-1315 (((-111) $ $ (-537)) 117)) (-3035 (($ (-537)) 127)) (-3763 (((-606 $) $ (-138)) 110) (((-606 $) $ (-135)) 109)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| (-138) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 (((-138) $ (-537) (-138)) 52 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-2972 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-2619 (($ $ (-1167 (-537)) $) 114)) (-3221 (($ $) 78 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-138) $) 77 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) 53 (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) 51)) (-1367 (((-111) $ $) 119)) (-2299 (((-537) (-1 (-111) (-138)) $) 97) (((-537) (-138) $) 96 (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 95 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 113) (((-537) (-135) $ (-537)) 112)) (-3661 (((-606 (-138)) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 115)) (-1244 (((-731) $ $ (-138)) 116)) (-4081 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3037 (($ $) 122)) (-2602 (($ $) 123)) (-2489 (((-111) $ (-731)) 10)) (-2985 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-1654 (((-1100) $) 22)) (-4049 (($ (-138) $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21)) (-3188 (((-138) $) 42 (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-3040 (($ $ (-138)) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) 26 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) 23 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 (((-138) $ (-537) (-138)) 50) (((-138) $ (-537)) 49) (($ $ (-1167 (-537))) 63) (($ $ $) 102)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4300))) (((-731) (-138) $) 28 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) 70)) (-3434 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (($ (-138)) 111) (((-816) $) 18)) (-2030 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 131) (((-1100) $ (-111)) 130) (((-1205) (-782) $) 129) (((-1205) (-782) $ (-111)) 128)) (-2293 (((-111) $ $) 84 (|has| (-138) (-807)))) (-2271 (((-111) $ $) 83 (|has| (-138) (-807)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) 85 (|has| (-138) (-807)))) (-2263 (((-111) $ $) 82 (|has| (-138) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-91) . T) ((-100) . T) ((-583 (-823)) . T) ((-583 (-1128)) . T) ((-1052) . T)) +((-3530 ((|#1| |#1| (-1 (-526) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-3528 (((-1211)) 15)) (-3529 (((-607 |#1|)) 9))) +(((-1036 |#1|) (-10 -7 (-15 -3528 ((-1211))) (-15 -3529 ((-607 |#1|))) (-15 -3530 (|#1| |#1| (-1 (-111) |#1|))) (-15 -3530 (|#1| |#1| (-1 (-526) |#1| |#1|)))) (-130)) (T -1036)) +((-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-526) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) (-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) (-3529 (*1 *2) (-12 (-5 *2 (-607 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-130)))) (-3528 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) +(-10 -7 (-15 -3528 ((-1211))) (-15 -3529 ((-607 |#1|))) (-15 -3530 (|#1| |#1| (-1 (-111) |#1|))) (-15 -3530 (|#1| |#1| (-1 (-526) |#1| |#1|)))) +((-3533 (($ (-107) $) 16)) (-3534 (((-3 (-107) "failed") (-1123) $) 15)) (-3887 (($) 7)) (-3532 (($) 17)) (-3531 (($) 18)) (-3535 (((-607 (-166)) $) 10)) (-4274 (((-823) $) 21))) +(((-1037) (-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3535 ((-607 (-166)) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)) (-15 -3533 ($ (-107) $)) (-15 -3532 ($)) (-15 -3531 ($))))) (T -1037)) +((-3887 (*1 *1) (-5 *1 (-1037))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-607 (-166))) (-5 *1 (-1037)))) (-3534 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-1037)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1037)))) (-3532 (*1 *1) (-5 *1 (-1037))) (-3531 (*1 *1) (-5 *1 (-1037)))) +(-13 (-583 (-823)) (-10 -8 (-15 -3887 ($)) (-15 -3535 ((-607 (-166)) $)) (-15 -3534 ((-3 (-107) "failed") (-1123) $)) (-15 -3533 ($ (-107) $)) (-15 -3532 ($)) (-15 -3531 ($)))) +((-3536 (((-1205 (-653 |#1|)) (-607 (-653 |#1|))) 42) (((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|))) 63) (((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|)))) 79)) (-3537 (((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))) 36))) +(((-1038 |#1|) (-10 -7 (-15 -3536 ((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|))))) (-15 -3536 ((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|)))) (-15 -3536 ((-1205 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3537 ((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))))) (-348)) (T -1038)) +((-3537 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-653 *5))) (-5 *3 (-653 *5)) (-4 *5 (-348)) (-5 *2 (-1205 *5)) (-5 *1 (-1038 *5)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-1038 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-905 *5)))) (-5 *1 (-1038 *5)) (-5 *4 (-653 (-905 *5))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-392 (-905 *5))))) (-5 *1 (-1038 *5)) (-5 *4 (-653 (-392 (-905 *5))))))) +(-10 -7 (-15 -3536 ((-1205 (-653 (-392 (-905 |#1|)))) (-607 (-1123)) (-653 (-392 (-905 |#1|))))) (-15 -3536 ((-1205 (-653 (-905 |#1|))) (-607 (-1123)) (-653 (-905 |#1|)))) (-15 -3536 ((-1205 (-653 |#1|)) (-607 (-653 |#1|)))) (-15 -3537 ((-1205 |#1|) (-653 |#1|) (-607 (-653 |#1|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1519 (((-607 (-735)) $) NIL) (((-607 (-735)) $ (-1123)) NIL)) (-1553 (((-735) $) NIL) (((-735) $ (-1123)) NIL)) (-3384 (((-607 (-1040 (-1123))) $) NIL)) (-3386 (((-1117 $) $ (-1040 (-1123))) NIL) (((-1117 |#1|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1040 (-1123)))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-1515 (($ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1040 (-1123)) #2#) $) NIL) (((-3 (-1123) #2#) $) NIL) (((-3 (-1075 |#1| (-1123)) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1040 (-1123)) $) NIL) (((-1123) $) NIL) (((-1075 |#1| (-1123)) $) NIL)) (-4075 (($ $ $ (-1040 (-1123))) NIL (|has| |#1| (-163)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ (-1040 (-1123))) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 (-1040 (-1123))) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1040 (-1123)) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1040 (-1123)) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3387 (($ (-1117 |#1|) (-1040 (-1123))) NIL) (($ (-1117 $) (-1040 (-1123))) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-512 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1040 (-1123))) NIL)) (-3120 (((-512 (-1040 (-1123))) $) NIL) (((-735) $ (-1040 (-1123))) NIL) (((-607 (-735)) $ (-607 (-1040 (-1123)))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 (-1040 (-1123))) (-512 (-1040 (-1123)))) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1554 (((-1 $ (-735)) (-1123)) NIL) (((-1 $ (-735)) $) NIL (|has| |#1| (-219)))) (-3385 (((-3 (-1040 (-1123)) #3="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1517 (((-1040 (-1123)) $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-1518 (((-111) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1040 (-1123))) (|:| -2462 (-735))) #3#) $) NIL)) (-1516 (($ $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1040 (-1123)) |#1|) NIL) (($ $ (-607 (-1040 (-1123))) (-607 |#1|)) NIL) (($ $ (-1040 (-1123)) $) NIL) (($ $ (-607 (-1040 (-1123))) (-607 $)) NIL) (($ $ (-1123) $) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 $)) NIL (|has| |#1| (-219))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-219))) (($ $ (-607 (-1123)) (-607 |#1|)) NIL (|has| |#1| (-219)))) (-4076 (($ $ (-1040 (-1123))) NIL (|has| |#1| (-163)))) (-4129 (($ $ (-1040 (-1123))) NIL) (($ $ (-607 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1520 (((-607 (-1123)) $) NIL)) (-4264 (((-512 (-1040 (-1123))) $) NIL) (((-735) $ (-1040 (-1123))) NIL) (((-607 (-735)) $ (-607 (-1040 (-1123)))) NIL) (((-735) $ (-1123)) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1040 (-1123)) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) NIL (|has| |#1| (-436))) (($ $ (-1040 (-1123))) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-1040 (-1123))) NIL) (($ (-1123)) NIL) (($ (-1075 |#1| (-1123))) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-512 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1040 (-1123))) NIL) (($ $ (-607 (-1040 (-1123)))) NIL) (($ $ (-1040 (-1123)) (-735)) NIL) (($ $ (-607 (-1040 (-1123))) (-607 (-735))) NIL) (($ $) NIL (|has| |#1| (-219))) (($ $ (-735)) NIL (|has| |#1| (-219))) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1039 |#1|) (-13 (-238 |#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) (-995 (-1075 |#1| (-1123)))) (-1004)) (T -1039)) +NIL +(-13 (-238 |#1| (-1123) (-1040 (-1123)) (-512 (-1040 (-1123)))) (-995 (-1075 |#1| (-1123)))) +((-2865 (((-111) $ $) NIL)) (-1553 (((-735) $) NIL)) (-4150 ((|#1| $) 10)) (-3470 (((-3 |#1| "failed") $) NIL)) (-3469 ((|#1| $) NIL)) (-4090 (((-735) $) 11)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-1554 (($ |#1| (-735)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4129 (($ $) NIL) (($ $ (-735)) NIL)) (-4274 (((-823) $) NIL) (($ |#1|) NIL)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 15))) +(((-1040 |#1|) (-251 |#1|) (-811)) (T -1040)) +NIL +(-251 |#1|) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4055 (($ |#1| |#1|) 15)) (-4275 (((-607 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-809)))) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 9)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3540 (((-526) $) 14)) (-3541 ((|#1| $) 12)) (-3543 ((|#1| $) 11)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4280 (((-607 |#1|) $) 36 (|has| |#1| (-809))) (((-607 |#1|) (-607 $)) 35 (|has| |#1| (-809)))) (-4287 (($ |#1|) 26)) (-4274 (((-823) $) 25 (|has| |#1| (-1052)))) (-4056 (($ |#1| |#1|) 8)) (-3545 (($ $ (-526)) 16)) (-3353 (((-111) $ $) 19 (|has| |#1| (-1052))))) +(((-1041 |#1|) (-13 (-1046 |#1|) (-10 -7 (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-607 |#1|))) |%noBranch|))) (-1159)) (T -1041)) +NIL +(-13 (-1046 |#1|) (-10 -7 (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-607 |#1|))) |%noBranch|))) +((-4275 (((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|)) 24 (|has| |#1| (-809))) (((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|)) 14))) +(((-1042 |#1| |#2|) (-10 -7 (-15 -4275 ((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) |%noBranch|)) (-1159) (-1159)) (T -1042)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-1042 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1041 *6)) (-5 *1 (-1042 *5 *6))))) +(-10 -7 (-15 -4275 ((-1041 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-607 |#2|) (-1 |#2| |#1|) (-1041 |#1|))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3538 (((-607 (-1128)) $) 9)) (-3353 (((-111) $ $) NIL))) +(((-1043) (-13 (-1035) (-10 -8 (-15 -3538 ((-607 (-1128)) $))))) (T -1043)) +((-3538 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1043))))) +(-13 (-1035) (-10 -8 (-15 -3538 ((-607 (-1128)) $)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4150 (((-1123) $) 11)) (-4055 (((-1041 |#1|) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3539 (($ (-1123) (-1041 |#1|)) 10)) (-4274 (((-823) $) 20 (|has| |#1| (-1052)))) (-3353 (((-111) $ $) 15 (|has| |#1| (-1052))))) +(((-1044 |#1|) (-13 (-1159) (-10 -8 (-15 -3539 ($ (-1123) (-1041 |#1|))) (-15 -4150 ((-1123) $)) (-15 -4055 ((-1041 |#1|) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -1044)) +((-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1041 *4)) (-4 *4 (-1159)) (-5 *1 (-1044 *4)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-1041 *3)) (-5 *1 (-1044 *3)) (-4 *3 (-1159))))) +(-13 (-1159) (-10 -8 (-15 -3539 ($ (-1123) (-1041 |#1|))) (-15 -4150 ((-1123) $)) (-15 -4055 ((-1041 |#1|) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) +((-4275 (((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)) 19))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -4275 ((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)))) (-1159) (-1159)) (T -1045)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1044 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1044 *6)) (-5 *1 (-1045 *5 *6))))) +(-10 -7 (-15 -4275 ((-1044 |#2|) (-1 |#2| |#1|) (-1044 |#1|)))) +((-4055 (($ |#1| |#1|) 7)) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 12)) (-3540 (((-526) $) 8)) (-3541 ((|#1| $) 9)) (-3543 ((|#1| $) 11)) (-4287 (($ |#1|) 6)) (-4056 (($ |#1| |#1|) 14)) (-3545 (($ $ (-526)) 13))) +(((-1046 |#1|) (-134) (-1159)) (T -1046)) +((-4056 (*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1046 *3)) (-4 *3 (-1159)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1159)) (-5 *2 (-526)))) (-4055 (*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) +(-13 (-1159) (-10 -8 (-15 -4056 ($ |t#1| |t#1|)) (-15 -3545 ($ $ (-526))) (-15 -3544 (|t#1| $)) (-15 -3543 (|t#1| $)) (-15 -3542 (|t#1| $)) (-15 -3541 (|t#1| $)) (-15 -3540 ((-526) $)) (-15 -4055 ($ |t#1| |t#1|)) (-15 -4287 ($ |t#1|)))) +(((-1159) . T)) +((-4055 (($ |#1| |#1|) 7)) (-4275 ((|#2| (-1 |#1| |#1|) $) 16)) (-3542 ((|#1| $) 10)) (-3544 ((|#1| $) 12)) (-3540 (((-526) $) 8)) (-3541 ((|#1| $) 9)) (-3543 ((|#1| $) 11)) (-4280 ((|#2| (-607 $)) 18) ((|#2| $) 17)) (-4287 (($ |#1|) 6)) (-4056 (($ |#1| |#1|) 14)) (-3545 (($ $ (-526)) 13))) +(((-1047 |#1| |#2|) (-134) (-809) (-1097 |t#1|)) (T -1047)) +((-4280 (*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) (-4 *2 (-1097 *4)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-809)) (-4 *2 (-1097 *3)))) (-4275 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) (-4 *2 (-1097 *4))))) +(-13 (-1046 |t#1|) (-10 -8 (-15 -4280 (|t#2| (-607 $))) (-15 -4280 (|t#2| $)) (-15 -4275 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1046 |#1|) . T) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-1897 (($) NIL (|has| |#1| (-353)))) (-3546 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3548 (($ $ $) 72)) (-3547 (((-111) $ $) 73)) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#1| (-353)))) (-3551 (($ (-607 |#1|)) NIL) (($) 13)) (-1607 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3724 (($ |#1| $) 67 (|has| $ (-6 -4310))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4310)))) (-3294 (($) NIL (|has| |#1| (-353)))) (-2044 (((-607 |#1|) $) 19 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3637 ((|#1| $) 57 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3638 ((|#1| $) 55 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 34)) (-2102 (((-878) $) NIL (|has| |#1| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3550 (($ $ $) 70)) (-1306 ((|#1| $) 25)) (-3929 (($ |#1| $) 65)) (-2461 (($ (-878)) NIL (|has| |#1| (-353)))) (-3555 (((-1070) $) NIL)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-1307 ((|#1| $) 27)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 21)) (-3887 (($) 11)) (-3549 (($ $ |#1|) NIL) (($ $ $) 71)) (-1499 (($) NIL) (($ (-607 |#1|)) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 16)) (-4287 (((-515) $) 52 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 61)) (-1898 (($ $) NIL (|has| |#1| (-353)))) (-4274 (((-823) $) NIL)) (-1899 (((-735) $) NIL)) (-3552 (($ (-607 |#1|)) NIL) (($) 12)) (-1308 (($ (-607 |#1|)) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 54)) (-4273 (((-735) $) 10 (|has| $ (-6 -4310))))) +(((-1048 |#1|) (-411 |#1|) (-1052)) (T -1048)) +NIL +(-411 |#1|) +((-3546 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3548 (($ $ $) 10)) (-3549 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1049 |#1| |#2|) (-10 -8 (-15 -3546 (|#1| |#2| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3549 (|#1| |#1| |#1|))) (-1050 |#2|) (-1052)) (T -1049)) +NIL +(-10 -8 (-15 -3546 (|#1| |#2| |#1|)) (-15 -3546 (|#1| |#1| |#2|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#2|)) (-15 -3549 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-3546 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3548 (($ $ $) 20)) (-3547 (((-111) $ $) 19)) (-1244 (((-111) $ (-735)) 35)) (-3551 (($) 25) (($ (-607 |#1|)) 24)) (-4032 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4310)))) (-3855 (($) 36 T CONST)) (-1375 (($ $) 59 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 58 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4310)))) (-2044 (((-607 |#1|) $) 43 (|has| $ (-6 -4310)))) (-3553 (((-111) $ $) 28)) (-4041 (((-111) $ (-735)) 34)) (-2480 (((-607 |#1|) $) 44 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 38)) (-4038 (((-111) $ (-735)) 33)) (-3554 (((-1106) $) 9)) (-3550 (($ $ $) 23)) (-3555 (((-1070) $) 10)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-2046 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#1|) (-607 |#1|)) 50 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 48 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-278 |#1|))) 47 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 29)) (-3722 (((-111) $) 32)) (-3887 (($) 31)) (-3549 (($ $ $) 22) (($ $ |#1|) 21)) (-2045 (((-735) |#1| $) 45 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4310)))) (-3719 (($ $) 30)) (-4287 (((-515) $) 60 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 51)) (-4274 (((-823) $) 11)) (-3552 (($) 27) (($ (-607 |#1|)) 26)) (-2047 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 37 (|has| $ (-6 -4310))))) +(((-1050 |#1|) (-134) (-1052)) (T -1050)) +((-3553 (*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3552 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) (-3551 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3549 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3549 (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3548 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3547 (*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) (-3546 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3546 (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) (-3546 (*1 *1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(-13 (-1052) (-145 |t#1|) (-10 -8 (-6 -4300) (-15 -3553 ((-111) $ $)) (-15 -3552 ($)) (-15 -3552 ($ (-607 |t#1|))) (-15 -3551 ($)) (-15 -3551 ($ (-607 |t#1|))) (-15 -3550 ($ $ $)) (-15 -3549 ($ $ $)) (-15 -3549 ($ $ |t#1|)) (-15 -3548 ($ $ $)) (-15 -3547 ((-111) $ $)) (-15 -3546 ($ $ $)) (-15 -3546 ($ $ |t#1|)) (-15 -3546 ($ |t#1| $)))) +(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) . T) ((-1159) . T)) +((-3554 (((-1106) $) 10)) (-3555 (((-1070) $) 8))) +(((-1051 |#1|) (-10 -8 (-15 -3554 ((-1106) |#1|)) (-15 -3555 ((-1070) |#1|))) (-1052)) (T -1051)) +NIL +(-10 -8 (-15 -3554 ((-1106) |#1|)) (-15 -3555 ((-1070) |#1|))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) +(((-1052) (-134)) (T -1052)) +((-3555 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1070)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1106))))) +(-13 (-100) (-583 (-823)) (-10 -8 (-15 -3555 ((-1070) $)) (-15 -3554 ((-1106) $)))) +(((-100) . T) ((-583 (-823)) . T)) +((-2865 (((-111) $ $) NIL)) (-3433 (((-735)) 30)) (-3559 (($ (-607 (-878))) 52)) (-3561 (((-3 $ #1="failed") $ (-878) (-878)) 58)) (-3294 (($) 32)) (-3557 (((-111) (-878) $) 35)) (-2102 (((-878) $) 50)) (-3554 (((-1106) $) NIL)) (-2461 (($ (-878)) 31)) (-3562 (((-3 $ #1#) $ (-878)) 55)) (-3555 (((-1070) $) NIL)) (-3558 (((-1205 $)) 40)) (-3560 (((-607 (-878)) $) 24)) (-3556 (((-735) $ (-878) (-878)) 56)) (-4274 (((-823) $) 29)) (-3353 (((-111) $ $) 21))) +(((-1053 |#1| |#2|) (-13 (-353) (-10 -8 (-15 -3562 ((-3 $ #1="failed") $ (-878))) (-15 -3561 ((-3 $ #1#) $ (-878) (-878))) (-15 -3560 ((-607 (-878)) $)) (-15 -3559 ($ (-607 (-878)))) (-15 -3558 ((-1205 $))) (-15 -3557 ((-111) (-878) $)) (-15 -3556 ((-735) $ (-878) (-878))))) (-878) (-878)) (T -1053)) +((-3562 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3561 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3558 (*1 *2) (-12 (-5 *2 (-1205 (-1053 *3 *4))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-878)) (-5 *2 (-111)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3556 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-735)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-353) (-10 -8 (-15 -3562 ((-3 $ #1="failed") $ (-878))) (-15 -3561 ((-3 $ #1#) $ (-878) (-878))) (-15 -3560 ((-607 (-878)) $)) (-15 -3559 ($ (-607 (-878)))) (-15 -3558 ((-1205 $))) (-15 -3557 ((-111) (-878) $)) (-15 -3556 ((-735) $ (-878) (-878))))) +((-2865 (((-111) $ $) NIL)) (-3572 (((-111) $) NIL)) (-3568 (((-1123) $) NIL)) (-3573 (((-111) $) NIL)) (-3857 (((-1106) $) NIL)) (-3575 (((-111) $) NIL)) (-3577 (((-111) $) NIL)) (-3574 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3571 (((-111) $) NIL)) (-3567 (((-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-3570 (((-111) $) NIL)) (-3566 (((-211) $) NIL)) (-3565 (((-823) $) NIL)) (-3578 (((-111) $ $) NIL)) (-4118 (($ $ (-526)) NIL) (($ $ (-607 (-526))) NIL)) (-3569 (((-607 $) $) NIL)) (-4287 (($ (-607 $)) NIL) (($ (-1106)) NIL) (($ (-1123)) NIL) (($ (-526)) NIL) (($ (-211)) NIL) (($ (-823)) NIL)) (-4274 (((-823) $) NIL)) (-3563 (($ $) NIL)) (-3564 (($ $) NIL)) (-3576 (((-111) $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-526) $) NIL))) +(((-1054) (-1055 (-1106) (-1123) (-526) (-211) (-823))) (T -1054)) +NIL +(-1055 (-1106) (-1123) (-526) (-211) (-823)) +((-2865 (((-111) $ $) 7)) (-3572 (((-111) $) 32)) (-3568 ((|#2| $) 27)) (-3573 (((-111) $) 33)) (-3857 ((|#1| $) 28)) (-3575 (((-111) $) 35)) (-3577 (((-111) $) 37)) (-3574 (((-111) $) 34)) (-3554 (((-1106) $) 9)) (-3571 (((-111) $) 31)) (-3567 ((|#3| $) 26)) (-3555 (((-1070) $) 10)) (-3570 (((-111) $) 30)) (-3566 ((|#4| $) 25)) (-3565 ((|#5| $) 24)) (-3578 (((-111) $ $) 38)) (-4118 (($ $ (-526)) 14) (($ $ (-607 (-526))) 13)) (-3569 (((-607 $) $) 29)) (-4287 (($ (-607 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4274 (((-823) $) 11)) (-3563 (($ $) 16)) (-3564 (($ $) 17)) (-3576 (((-111) $) 36)) (-3353 (((-111) $ $) 6)) (-4273 (((-526) $) 15))) +(((-1055 |#1| |#2| |#3| |#4| |#5|) (-134) (-1052) (-1052) (-1052) (-1052) (-1052)) (T -1055)) +((-3578 (*1 *2 *1 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *2 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *2 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-1052)))) (-4287 (*1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) (-3564 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-526)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -3578 ((-111) $ $)) (-15 -3577 ((-111) $)) (-15 -3576 ((-111) $)) (-15 -3575 ((-111) $)) (-15 -3574 ((-111) $)) (-15 -3573 ((-111) $)) (-15 -3572 ((-111) $)) (-15 -3571 ((-111) $)) (-15 -3570 ((-111) $)) (-15 -3569 ((-607 $) $)) (-15 -3857 (|t#1| $)) (-15 -3568 (|t#2| $)) (-15 -3567 (|t#3| $)) (-15 -3566 (|t#4| $)) (-15 -3565 (|t#5| $)) (-15 -4287 ($ (-607 $))) (-15 -4287 ($ |t#1|)) (-15 -4287 ($ |t#2|)) (-15 -4287 ($ |t#3|)) (-15 -4287 ($ |t#4|)) (-15 -4287 ($ |t#5|)) (-15 -3564 ($ $)) (-15 -3563 ($ $)) (-15 -4273 ((-526) $)) (-15 -4118 ($ $ (-526))) (-15 -4118 ($ $ (-607 (-526)))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3572 (((-111) $) 38)) (-3568 ((|#2| $) 42)) (-3573 (((-111) $) 37)) (-3857 ((|#1| $) 41)) (-3575 (((-111) $) 35)) (-3577 (((-111) $) 14)) (-3574 (((-111) $) 36)) (-3554 (((-1106) $) NIL)) (-3571 (((-111) $) 39)) (-3567 ((|#3| $) 44)) (-3555 (((-1070) $) NIL)) (-3570 (((-111) $) 40)) (-3566 ((|#4| $) 43)) (-3565 ((|#5| $) 45)) (-3578 (((-111) $ $) 34)) (-4118 (($ $ (-526)) 56) (($ $ (-607 (-526))) 58)) (-3569 (((-607 $) $) 22)) (-4287 (($ (-607 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4274 (((-823) $) 23)) (-3563 (($ $) 21)) (-3564 (($ $) 52)) (-3576 (((-111) $) 18)) (-3353 (((-111) $ $) 33)) (-4273 (((-526) $) 54))) +(((-1056 |#1| |#2| |#3| |#4| |#5|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1052) (-1052) (-1052) (-1052) (-1052)) (T -1056)) +NIL +(-1055 |#1| |#2| |#3| |#4| |#5|) +((-3699 (((-1211) $) 23)) (-3579 (($ (-1123) (-419) |#2|) 11)) (-4274 (((-823) $) 16))) +(((-1057 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3579 ($ (-1123) (-419) |#2|)))) (-811) (-406 |#1|)) (T -1057)) +((-3579 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1123)) (-5 *3 (-419)) (-4 *5 (-811)) (-5 *1 (-1057 *5 *4)) (-4 *4 (-406 *5))))) +(-13 (-381) (-10 -8 (-15 -3579 ($ (-1123) (-419) |#2|)))) +((-3582 (((-111) |#5| |#5|) 38)) (-3585 (((-111) |#5| |#5|) 52)) (-3590 (((-111) |#5| (-607 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-3586 (((-111) (-607 |#4|) (-607 |#4|)) 58)) (-3592 (((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 63)) (-3581 (((-1211)) 33)) (-3580 (((-1211) (-1106) (-1106) (-1106)) 29)) (-3591 (((-607 |#5|) (-607 |#5|)) 82)) (-3593 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) 80)) (-3594 (((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111)) 102)) (-3584 (((-111) |#5| |#5|) 47)) (-3589 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3587 (((-111) (-607 |#4|) (-607 |#4|)) 57)) (-3588 (((-111) (-607 |#4|) (-607 |#4|)) 59)) (-4021 (((-111) (-607 |#4|) (-607 |#4|)) 60)) (-3595 (((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-3583 (((-607 |#5|) (-607 |#5|)) 43))) +(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1058)) +((-3595 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) (-5 *1 (-1058 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) (-4 *4 (-1024 *6 *7 *8 *9)))) (-3594 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) (-5 *1 (-1058 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3592 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1058 *5 *6 *7 *8 *3)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3588 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3585 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *1 (-1058 *3 *4 *5 *6 *7)))) (-3582 (*1 *2 *3 *3) (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) (-3581 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1058 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) +(-10 -7 (-15 -3580 ((-1211) (-1106) (-1106) (-1106))) (-15 -3581 ((-1211))) (-15 -3582 ((-111) |#5| |#5|)) (-15 -3583 ((-607 |#5|) (-607 |#5|))) (-15 -3584 ((-111) |#5| |#5|)) (-15 -3585 ((-111) |#5| |#5|)) (-15 -3586 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3587 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3588 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -4021 ((-111) (-607 |#4|) (-607 |#4|))) (-15 -3589 ((-3 (-111) "failed") |#5| |#5|)) (-15 -3590 ((-111) |#5| |#5|)) (-15 -3590 ((-111) |#5| (-607 |#5|))) (-15 -3591 ((-607 |#5|) (-607 |#5|))) (-15 -3592 ((-111) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3593 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-15 -3594 ((-607 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|)))) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3595 ((-3 (-2 (|:| -3578 (-607 |#4|)) (|:| -1636 |#5|) (|:| |ineq| (-607 |#4|))) "failed") (-607 |#4|) |#5| (-607 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-3610 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|) 96)) (-3600 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|) 72)) (-3603 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 91)) (-3605 (((-607 |#5|) |#4| |#5|) 110)) (-3607 (((-607 |#5|) |#4| |#5|) 117)) (-3609 (((-607 |#5|) |#4| |#5|) 118)) (-3604 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 97)) (-3606 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 116)) (-3608 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3601 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111)) 84) (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3602 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|) 79)) (-3599 (((-1211)) 37)) (-3597 (((-1211)) 26)) (-3598 (((-1211) (-1106) (-1106) (-1106)) 33)) (-3596 (((-1211) (-1106) (-1106) (-1106)) 22))) +(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3600 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3602 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-111) |#4| |#5|)) (-15 -3604 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3605 ((-607 |#5|) |#4| |#5|)) (-15 -3606 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3607 ((-607 |#5|) |#4| |#5|)) (-15 -3608 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3609 ((-607 |#5|) |#4| |#5|)) (-15 -3610 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1024 |#1| |#2| |#3| |#4|)) (T -1059)) +((-3610 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3606 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3608 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3603 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *4 (-811)) (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) (-5 *1 (-1059 *6 *7 *4 *8 *9)))) (-3601 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) (-3599 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3598 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7)))) (-3597 (*1 *2) (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) (-3596 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1024 *4 *5 *6 *7))))) +(-10 -7 (-15 -3596 ((-1211) (-1106) (-1106) (-1106))) (-15 -3597 ((-1211))) (-15 -3598 ((-1211) (-1106) (-1106) (-1106))) (-15 -3599 ((-1211))) (-15 -3600 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3601 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) |#3| (-111))) (-15 -3602 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#4| |#5|)) (-15 -3608 ((-111) |#4| |#5|)) (-15 -3604 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3605 ((-607 |#5|) |#4| |#5|)) (-15 -3606 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3607 ((-607 |#5|) |#4| |#5|)) (-15 -3608 ((-607 (-2 (|:| |val| (-111)) (|:| -1636 |#5|))) |#4| |#5|)) (-15 -3609 ((-607 |#5|) |#4| |#5|)) (-15 -3610 ((-607 (-2 (|:| |val| |#4|) (|:| -1636 |#5|))) |#4| |#5|))) +((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-1060 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1060)) +NIL +(-13 (-1024 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) +((-3621 (((-607 (-526)) (-526) (-526) (-526)) 22)) (-3620 (((-607 (-526)) (-526) (-526) (-526)) 12)) (-3619 (((-607 (-526)) (-526) (-526) (-526)) 18)) (-3618 (((-526) (-526) (-526)) 9)) (-3617 (((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526)) 46) (((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526)) 41)) (-3616 (((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111)) 28)) (-3615 (((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526))) 45)) (-3614 (((-653 (-526)) (-607 (-526)) (-607 (-526))) 33)) (-3613 (((-607 (-653 (-526))) (-607 (-526))) 35)) (-3612 (((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526))) 49)) (-3611 (((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526))) 57))) +(((-1061) (-10 -7 (-15 -3611 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3612 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3613 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -3614 ((-653 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3615 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3616 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111))) (-15 -3617 ((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526))) (-15 -3617 ((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526))) (-15 -3618 ((-526) (-526) (-526))) (-15 -3619 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3620 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3621 ((-607 (-526)) (-526) (-526) (-526))))) (T -1061)) +((-3621 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3620 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526)))) (-3618 (*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1061)))) (-3617 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-607 (-526))) (-5 *4 (-526)) (-5 *1 (-1061)))) (-3617 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-526)) (-5 *1 (-1061)))) (-3616 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-111)) (-5 *1 (-1061)))) (-3615 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-653 (-526))) (-5 *3 (-607 (-526))) (-5 *1 (-1061)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-1061)))) (-3612 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-653 (-526))) (-5 *1 (-1061)))) (-3611 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) +(-10 -7 (-15 -3611 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3612 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3613 ((-607 (-653 (-526))) (-607 (-526)))) (-15 -3614 ((-653 (-526)) (-607 (-526)) (-607 (-526)))) (-15 -3615 ((-653 (-526)) (-607 (-526)) (-607 (-526)) (-653 (-526)))) (-15 -3616 ((-607 (-526)) (-607 (-526)) (-607 (-526)) (-111))) (-15 -3617 ((-1205 (-526)) (-1205 (-526)) (-1205 (-526)) (-526))) (-15 -3617 ((-1205 (-526)) (-607 (-526)) (-1205 (-526)) (-526))) (-15 -3618 ((-526) (-526) (-526))) (-15 -3619 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3620 ((-607 (-526)) (-526) (-526) (-526))) (-15 -3621 ((-607 (-526)) (-526) (-526) (-526)))) +((** (($ $ (-878)) 10))) +(((-1062 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-878)))) (-1063)) (T -1062)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-878)))) +((-2865 (((-111) $ $) 7)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6)) (** (($ $ (-878)) 13)) (* (($ $ $) 14))) +(((-1063) (-134)) (T -1063)) +((* (*1 *1 *1 *1) (-4 *1 (-1063))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1063)) (-5 *2 (-878))))) +(-13 (-1052) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-878))))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL (|has| |#3| (-1052)))) (-3502 (((-111) $) NIL (|has| |#3| (-129)))) (-4029 (($ (-878)) NIL (|has| |#3| (-1004)))) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-2702 (($ $ $) NIL (|has| |#3| (-757)))) (-1345 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-1244 (((-111) $ (-735)) NIL)) (-3433 (((-735)) NIL (|has| |#3| (-353)))) (-3945 (((-526) $) NIL (|has| |#3| (-809)))) (-4106 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-3 (-392 (-526)) #1#) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1052)))) (-3469 (((-526) $) NIL (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052)))) (((-392 (-526)) $) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) ((|#3| $) NIL (|has| |#3| (-1052)))) (-2331 (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#3| (-606 (-526))) (|has| |#3| (-1004)))) (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) NIL (|has| |#3| (-1004))) (((-653 |#3|) (-653 $)) NIL (|has| |#3| (-1004)))) (-3781 (((-3 $ "failed") $) NIL (|has| |#3| (-691)))) (-3294 (($) NIL (|has| |#3| (-353)))) (-1613 ((|#3| $ (-526) |#3|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#3| $ (-526)) 12)) (-3500 (((-111) $) NIL (|has| |#3| (-809)))) (-2044 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL (|has| |#3| (-691)))) (-3501 (((-111) $) NIL (|has| |#3| (-809)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2480 (((-607 |#3|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2048 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#3| |#3|) $) NIL)) (-2102 (((-878) $) NIL (|has| |#3| (-353)))) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#3| (-1052)))) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-2461 (($ (-878)) NIL (|has| |#3| (-353)))) (-3555 (((-1070) $) NIL (|has| |#3| (-1052)))) (-4119 ((|#3| $) NIL (|has| (-526) (-811)))) (-2277 (($ $ |#3|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#3|))) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052)))) (($ $ (-607 |#3|) (-607 |#3|)) NIL (-12 (|has| |#3| (-294 |#3|)) (|has| |#3| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-2283 (((-607 |#3|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#3| $ (-526) |#3|) NIL) ((|#3| $ (-526)) NIL)) (-4155 ((|#3| $ $) NIL (|has| |#3| (-1004)))) (-1501 (($ (-1205 |#3|)) NIL)) (-4230 (((-131)) NIL (|has| |#3| (-348)))) (-4129 (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004)))) (-2045 (((-735) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310))) (((-735) |#3| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#3| (-1052))))) (-3719 (($ $) NIL)) (-4274 (((-1205 |#3|) $) NIL) (($ (-526)) NIL (-3850 (-12 (|has| |#3| (-995 (-526))) (|has| |#3| (-1052))) (|has| |#3| (-1004)))) (($ (-392 (-526))) NIL (-12 (|has| |#3| (-995 (-392 (-526)))) (|has| |#3| (-1052)))) (($ |#3|) NIL (|has| |#3| (-1052))) (((-823) $) NIL (|has| |#3| (-583 (-823))))) (-3423 (((-735)) NIL (|has| |#3| (-1004)))) (-2047 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4310)))) (-3702 (($ $) NIL (|has| |#3| (-809)))) (-2957 (($) NIL (|has| |#3| (-129)) CONST)) (-2964 (($) NIL (|has| |#3| (-691)) CONST)) (-2969 (($ $) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-735)) NIL (-12 (|has| |#3| (-219)) (|has| |#3| (-1004)))) (($ $ (-1123)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#3| (-859 (-1123))) (|has| |#3| (-1004)))) (($ $ (-1 |#3| |#3|) (-735)) NIL (|has| |#3| (-1004))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1004)))) (-2863 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2864 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-3353 (((-111) $ $) NIL (|has| |#3| (-1052)))) (-2984 (((-111) $ $) NIL (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-2985 (((-111) $ $) 17 (-3850 (|has| |#3| (-757)) (|has| |#3| (-809))))) (-4265 (($ $ |#3|) NIL (|has| |#3| (-348)))) (-4156 (($ $ $) NIL (|has| |#3| (-1004))) (($ $) NIL (|has| |#3| (-1004)))) (-4158 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-735)) NIL (|has| |#3| (-691))) (($ $ (-878)) NIL (|has| |#3| (-691)))) (* (($ (-526) $) NIL (|has| |#3| (-1004))) (($ $ $) NIL (|has| |#3| (-691))) (($ $ |#3|) NIL (|has| |#3| (-691))) (($ |#3| $) NIL (|has| |#3| (-691))) (($ (-735) $) NIL (|has| |#3| (-129))) (($ (-878) $) NIL (|has| |#3| (-25)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1064 |#1| |#2| |#3|) (-224 |#1| |#3|) (-735) (-735) (-757)) (T -1064)) +NIL +(-224 |#1| |#3|) +((-3622 (((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 37)) (-3628 (((-526) (-1174 |#2| |#1|)) 69 (|has| |#1| (-436)))) (-3626 (((-526) (-1174 |#2| |#1|)) 54)) (-3623 (((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 45)) (-3627 (((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 68 (|has| |#1| (-436)))) (-3624 (((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 48)) (-3625 (((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|)) 53))) +(((-1065 |#1| |#2|) (-10 -7 (-15 -3622 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3623 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3624 ((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3625 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3626 ((-526) (-1174 |#2| |#1|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3627 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3628 ((-526) (-1174 |#2| |#1|)))) |%noBranch|)) (-784) (-1123)) (T -1065)) +((-3628 (*1 *2 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) (-5 *1 (-1065 *4 *5)))) (-3624 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 *4)) (-5 *1 (-1065 *4 *5)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4)))) (-3622 (*1 *2 *3 *3) (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) +(-10 -7 (-15 -3622 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3623 ((-607 (-1174 |#2| |#1|)) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3624 ((-607 |#1|) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3625 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3626 ((-526) (-1174 |#2| |#1|))) (IF (|has| |#1| (-436)) (PROGN (-15 -3627 ((-526) (-1174 |#2| |#1|) (-1174 |#2| |#1|))) (-15 -3628 ((-526) (-1174 |#2| |#1|)))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3630 (((-1128) $) 10)) (-3629 (((-607 (-1128)) $) 11)) (-3631 (($ (-607 (-1128)) (-1128)) 9)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 20)) (-3353 (((-111) $ $) 14))) +(((-1066) (-13 (-1052) (-10 -8 (-15 -3631 ($ (-607 (-1128)) (-1128))) (-15 -3630 ((-1128) $)) (-15 -3629 ((-607 (-1128)) $))))) (T -1066)) +((-3631 (*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1128))) (-5 *3 (-1128)) (-5 *1 (-1066)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1066)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1066))))) +(-13 (-1052) (-10 -8 (-15 -3631 ($ (-607 (-1128)) (-1128))) (-15 -3630 ((-1128) $)) (-15 -3629 ((-607 (-1128)) $)))) +((-3945 (((-3 (-526) #1="failed") |#2| (-1123) |#2| (-1106)) 17) (((-3 (-526) #1#) |#2| (-1123) (-803 |#2|)) 15) (((-3 (-526) #1#) |#2|) 54))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -3945 ((-3 (-526) #1="failed") |#2|)) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) (-803 |#2|))) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) |#2| (-1106)))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|))) (T -1067)) +((-3945 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-1106)) (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *6 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))))) (-3945 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *6 *3)))) (-3945 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) +(-10 -7 (-15 -3945 ((-3 (-526) #1="failed") |#2|)) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) (-803 |#2|))) (-15 -3945 ((-3 (-526) #1#) |#2| (-1123) |#2| (-1106)))) +((-3945 (((-3 (-526) #1="failed") (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)) 35) (((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|)))) 30) (((-3 (-526) #1#) (-392 (-905 |#1|))) 13))) +(((-1068 |#1|) (-10 -7 (-15 -3945 ((-3 (-526) #1="failed") (-392 (-905 |#1|)))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|))))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)))) (-436)) (T -1068)) +((-3945 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1123)) (-5 *5 (-1106)) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) (-3945 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 (-392 (-905 *6)))) (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) (-3945 (*1 *2 *3) (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *4))))) +(-10 -7 (-15 -3945 ((-3 (-526) #1="failed") (-392 (-905 |#1|)))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-803 (-392 (-905 |#1|))))) (-15 -3945 ((-3 (-526) #1#) (-392 (-905 |#1|)) (-1123) (-392 (-905 |#1|)) (-1106)))) +((-3971 (((-299 (-526)) (-47)) 12))) +(((-1069) (-10 -7 (-15 -3971 ((-299 (-526)) (-47))))) (T -1069)) +((-3971 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-299 (-526))) (-5 *1 (-1069))))) +(-10 -7 (-15 -3971 ((-299 (-526)) (-47)))) +((-2865 (((-111) $ $) NIL)) (-3639 (($ $) 41)) (-3502 (((-111) $) 65)) (-3635 (($ $ $) 48)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-2135 (($ $ $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-2130 (($ $ $ $) 74)) (-4093 (($ $) NIL)) (-4286 (((-390 $) $) NIL)) (-1681 (((-111) $ $) NIL)) (-3945 (((-526) $) NIL)) (-2659 (($ $ $) 71)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) "failed") $) NIL)) (-3469 (((-526) $) NIL)) (-2861 (($ $ $) 59)) (-2331 (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 79) (((-653 (-526)) (-653 $)) 28)) (-3781 (((-3 $ "failed") $) NIL)) (-3324 (((-3 (-392 (-526)) "failed") $) NIL)) (-3323 (((-111) $) NIL)) (-3322 (((-392 (-526)) $) NIL)) (-3294 (($) 82) (($ $) 83)) (-2860 (($ $ $) 58)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL)) (-4045 (((-111) $) NIL)) (-2128 (($ $ $ $) NIL)) (-2136 (($ $ $) 80)) (-3500 (((-111) $) NIL)) (-1394 (($ $ $) NIL)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL)) (-2471 (((-111) $) 66)) (-2973 (((-111) $) 64)) (-3636 (($ $) 42)) (-3763 (((-3 $ "failed") $) NIL)) (-3501 (((-111) $) 75)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL)) (-2129 (($ $ $ $) 72)) (-3637 (($ $ $) 68) (($) 39)) (-3638 (($ $ $) 67) (($) 38)) (-2132 (($ $) NIL)) (-4152 (($ $) 70)) (-1989 (($ $ $) NIL) (($ (-607 $)) NIL)) (-3554 (((-1106) $) NIL)) (-2127 (($ $ $) NIL)) (-3764 (($) NIL T CONST)) (-2134 (($ $) 50)) (-3555 (((-1070) $) NIL) (($ $) 69)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL)) (-3457 (($ $ $) 62) (($ (-607 $)) NIL)) (-1392 (($ $) NIL)) (-4051 (((-390 $) $) NIL)) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL)) (-3780 (((-3 $ "failed") $ $) NIL)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL)) (-2974 (((-111) $) NIL)) (-1680 (((-735) $) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 61)) (-4129 (($ $ (-735)) NIL) (($ $) NIL)) (-2133 (($ $) 51)) (-3719 (($ $) NIL)) (-4287 (((-526) $) 32) (((-515) $) NIL) (((-849 (-526)) $) NIL) (((-363) $) NIL) (((-211) $) NIL)) (-4274 (((-823) $) 31) (($ (-526)) 81) (($ $) NIL) (($ (-526)) 81)) (-3423 (((-735)) NIL)) (-2137 (((-111) $ $) NIL)) (-3399 (($ $ $) NIL)) (-2994 (($) 37)) (-2150 (((-111) $ $) NIL)) (-2131 (($ $ $ $) 73)) (-3702 (($ $) 63)) (-3641 (($ $ $) 44)) (-2957 (($) 35 T CONST)) (-3632 (($ $ $) 47)) (-2964 (($) 36 T CONST)) (-2803 (((-1106) $) 21) (((-1106) $ (-111)) 23) (((-1211) (-787) $) 24) (((-1211) (-787) $ (-111)) 25)) (-3634 (($ $) 45)) (-2969 (($ $ (-735)) NIL) (($ $) NIL)) (-3633 (($ $ $) 46)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 40)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 49)) (-3640 (($ $ $) 43)) (-4156 (($ $) 52) (($ $ $) 54)) (-4158 (($ $ $) 53)) (** (($ $ (-878)) NIL) (($ $ (-735)) 57)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 34) (($ $ $) 55))) +(((-1070) (-13 (-525) (-627) (-785) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -3638 ($)) (-15 -3637 ($)) (-15 -3636 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)) (-15 -3635 ($ $ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $ $)) (-15 -3632 ($ $ $))))) (T -1070)) +((-3641 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3640 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3639 (*1 *1 *1) (-5 *1 (-1070))) (-3638 (*1 *1) (-5 *1 (-1070))) (-3637 (*1 *1) (-5 *1 (-1070))) (-3636 (*1 *1 *1) (-5 *1 (-1070))) (-3635 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3634 (*1 *1 *1) (-5 *1 (-1070))) (-3633 (*1 *1 *1 *1) (-5 *1 (-1070))) (-3632 (*1 *1 *1 *1) (-5 *1 (-1070)))) +(-13 (-525) (-627) (-785) (-10 -8 (-6 -4297) (-6 -4302) (-6 -4298) (-15 -3638 ($)) (-15 -3637 ($)) (-15 -3636 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $ $)) (-15 -3641 ($ $ $)) (-15 -3635 ($ $ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $ $)) (-15 -3632 ($ $ $)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3643 ((|#1| $) 44)) (-1244 (((-111) $ (-735)) 8)) (-3855 (($) 7 T CONST)) (-3645 ((|#1| |#1| $) 46)) (-3644 ((|#1| $) 45)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-1306 ((|#1| $) 39)) (-3929 (($ |#1| $) 40)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-1307 ((|#1| $) 41)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-3642 (((-735) $) 43)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) 42)) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1071 |#1|) (-134) (-1159)) (T -1071)) +((-3645 (*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4310) (-15 -3645 (|t#1| |t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3643 (|t#1| $)) (-15 -3642 ((-735) $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-3649 ((|#3| $) 76)) (-3470 (((-3 (-526) #1="failed") $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3469 (((-526) $) NIL) (((-392 (-526)) $) NIL) ((|#3| $) 37)) (-2331 (((-653 (-526)) (-653 $)) NIL) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL) (((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 $) (-1205 $)) 73) (((-653 |#3|) (-653 $)) 65)) (-4129 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123)) NIL) (($ $ (-735)) NIL) (($ $) NIL)) (-3648 ((|#3| $) 78)) (-3650 ((|#4| $) 32)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ |#3|) 16)) (** (($ $ (-878)) NIL) (($ $ (-735)) 15) (($ $ (-526)) 82))) +(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 -3648 (|#3| |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3650 (|#4| |#1|)) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -4274 ((-823) |#1|))) (-1073 |#2| |#3| |#4| |#5|) (-735) (-1004) (-224 |#2| |#3|) (-224 |#2| |#3|)) (T -1072)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-526))) (-15 -3648 (|#3| |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3650 (|#4| |#1|)) (-15 -2331 ((-653 |#3|) (-653 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 |#3|)) (|:| |vec| (-1205 |#3|))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 |#1|) (-1205 |#1|))) (-15 -2331 ((-653 (-526)) (-653 |#1|))) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#3|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-526) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|) (-735))) (-15 -4129 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3649 ((|#2| $) 70)) (-3418 (((-111) $) 110)) (-1345 (((-3 $ "failed") $ $) 19)) (-3420 (((-111) $) 108)) (-1244 (((-111) $ (-735)) 100)) (-3652 (($ |#2|) 73)) (-3855 (($) 17 T CONST)) (-3407 (($ $) 127 (|has| |#2| (-292)))) (-3409 ((|#3| $ (-526)) 122)) (-3470 (((-3 (-526) #1="failed") $) 84 (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) 82 (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #1#) $) 79)) (-3469 (((-526) $) 85 (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) 83 (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) 78)) (-2331 (((-653 (-526)) (-653 $)) 77 (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 76 (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 75) (((-653 |#2|) (-653 $)) 74)) (-3781 (((-3 $ "failed") $) 32)) (-3406 (((-735) $) 128 (|has| |#2| (-533)))) (-3410 ((|#2| $ (-526) (-526)) 120)) (-2044 (((-607 |#2|) $) 93 (|has| $ (-6 -4310)))) (-2471 (((-111) $) 30)) (-3405 (((-735) $) 129 (|has| |#2| (-533)))) (-3404 (((-607 |#4|) $) 130 (|has| |#2| (-533)))) (-3412 (((-735) $) 116)) (-3411 (((-735) $) 117)) (-4041 (((-111) $ (-735)) 101)) (-3646 ((|#2| $) 65 (|has| |#2| (-6 (-4312 #2="*"))))) (-3416 (((-526) $) 112)) (-3414 (((-526) $) 114)) (-2480 (((-607 |#2|) $) 92 (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3415 (((-526) $) 113)) (-3413 (((-526) $) 115)) (-3421 (($ (-607 (-607 |#2|))) 107)) (-2048 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3915 (((-607 (-607 |#2|)) $) 118)) (-4038 (((-111) $ (-735)) 102)) (-3554 (((-1106) $) 9)) (-3911 (((-3 $ "failed") $) 64 (|has| |#2| (-348)))) (-3555 (((-1070) $) 10)) (-3780 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) 89 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 88 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 106)) (-3722 (((-111) $) 103)) (-3887 (($) 104)) (-4118 ((|#2| $ (-526) (-526) |#2|) 121) ((|#2| $ (-526) (-526)) 119)) (-4129 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-735)) 49) (($ $ (-607 (-1123)) (-607 (-735))) 42 (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) 41 (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) 40 (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) 39 (|has| |#2| (-859 (-1123)))) (($ $ (-735)) 37 (|has| |#2| (-219))) (($ $) 35 (|has| |#2| (-219)))) (-3648 ((|#2| $) 69)) (-3651 (($ (-607 |#2|)) 72)) (-3419 (((-111) $) 109)) (-3650 ((|#3| $) 71)) (-3647 ((|#2| $) 66 (|has| |#2| (-6 (-4312 #2#))))) (-2045 (((-735) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4310))) (((-735) |#2| $) 91 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 105)) (-3408 ((|#4| $ (-526)) 123)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 81 (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) 80)) (-3423 (((-735)) 28)) (-2047 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4310)))) (-3417 (((-111) $) 111)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-735)) 47) (($ $ (-607 (-1123)) (-607 (-735))) 46 (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) 45 (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) 44 (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) 43 (|has| |#2| (-859 (-1123)))) (($ $ (-735)) 38 (|has| |#2| (-219))) (($ $) 36 (|has| |#2| (-219)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#2|) 126 (|has| |#2| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 63 (|has| |#2| (-348)))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4273 (((-735) $) 99 (|has| $ (-6 -4310))))) +(((-1073 |#1| |#2| |#3| |#4|) (-134) (-735) (-1004) (-224 |t#1| |t#2|) (-224 |t#1| |t#2|)) (T -1073)) +((-3652 (*1 *1 *2) (-12 (-4 *2 (-1004)) (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-607 *4)) (-4 *4 (-1004)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *2 (-224 *3 *4)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (-4 *2 (-1004)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (-4 *2 (-1004)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *2 (-224 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *2 (-224 *3 *4)) (-4 *5 (-224 *3 *4)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (|has| *2 (-6 (-4312 #1="*"))) (-4 *2 (-1004)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) (|has| *2 (-6 (-4312 #1#))) (-4 *2 (-1004)))) (-3911 (*1 *1 *1) (|partial| -12 (-4 *1 (-1073 *2 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-224 *2 *3)) (-4 *5 (-224 *2 *3)) (-4 *3 (-348)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)) (-4 *4 (-348))))) +(-13 (-217 |t#2|) (-110 |t#2| |t#2|) (-1007 |t#1| |t#1| |t#2| |t#3| |t#4|) (-397 |t#2|) (-362 |t#2|) (-10 -8 (IF (|has| |t#2| (-163)) (-6 (-682 |t#2|)) |%noBranch|) (-15 -3652 ($ |t#2|)) (-15 -3651 ($ (-607 |t#2|))) (-15 -3650 (|t#3| $)) (-15 -3649 (|t#2| $)) (-15 -3648 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4312 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3647 (|t#2| $)) (-15 -3646 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-348)) (PROGN (-15 -3911 ((-3 $ "failed") $)) (-15 ** ($ $ (-526)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4312 #1="*"))) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-217 |#2|) . T) ((-219) |has| |#2| (-219)) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-362 |#2|) . T) ((-397 |#2|) . T) ((-472 |#2|) . T) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-613 |#2|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#2| (-606 (-526))) ((-606 |#2|) . T) ((-682 |#2|) -3850 (|has| |#2| (-163)) (|has| |#2| (-6 (-4312 #1#)))) ((-691) . T) ((-859 (-1123)) |has| |#2| (-859 (-1123))) ((-1007 |#1| |#1| |#2| |#3| |#4|) . T) ((-995 (-392 (-526))) |has| |#2| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#2| (-995 (-526))) ((-995 |#2|) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1159) . T)) +((-3655 ((|#4| |#4|) 70)) (-3653 ((|#4| |#4|) 65)) (-3657 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|) 78)) (-3656 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3654 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1074 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 (|#4| |#4|)) (-15 -3654 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3655 (|#4| |#4|)) (-15 -3656 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3657 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|))) (-292) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -1074)) +((-3657 (*1 *2 *3 *4) (-12 (-4 *5 (-292)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) (-5 *1 (-1074 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(-10 -7 (-15 -3653 (|#4| |#4|)) (-15 -3654 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3655 (|#4| |#4|)) (-15 -3656 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3657 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-607 |#3|))) |#4| |#3|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 17)) (-3384 (((-607 |#2|) $) 159)) (-3386 (((-1117 $) $ |#2|) 54) (((-1117 |#1|) $) 43)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 108 (|has| |#1| (-533)))) (-2151 (($ $) 110 (|has| |#1| (-533)))) (-2149 (((-111) $) 112 (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 |#2|)) 192)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) 156) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 |#2| #2#) $) NIL)) (-3469 ((|#1| $) 154) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) ((|#2| $) NIL)) (-4075 (($ $ $ |#2|) NIL (|has| |#1| (-163)))) (-4276 (($ $) 196)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 82)) (-3817 (($ $) NIL (|has| |#1| (-436))) (($ $ |#2|) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-512 |#2|) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-2471 (((-111) $) 19)) (-2479 (((-735) $) 26)) (-3387 (($ (-1117 |#1|) |#2|) 48) (($ (-1117 $) |#2|) 64)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) 32)) (-3193 (($ |#1| (-512 |#2|)) 71) (($ $ |#2| (-735)) 52) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ |#2|) NIL)) (-3120 (((-512 |#2|) $) 186) (((-735) $ |#2|) 187) (((-607 (-735)) $ (-607 |#2|)) 188)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-512 |#2|) (-512 |#2|)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 120)) (-3385 (((-3 |#2| #3="failed") $) 161)) (-3194 (($ $) 195)) (-3487 ((|#1| $) 37)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-3123 (((-3 (-607 $) #3#) $) NIL)) (-3122 (((-3 (-607 $) #3#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| |#2|) (|:| -2462 (-735))) #3#) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 33)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 138 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 143 (|has| |#1| (-436))) (($ $ $) 130 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#1| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-869)))) (-3780 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-533)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-607 |#2|) (-607 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-607 |#2|) (-607 $)) 176)) (-4076 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-4129 (($ $ |#2|) 194) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) 182) (((-735) $ |#2|) 178) (((-607 (-735)) $ (-607 |#2|)) 180)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| |#1| (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| |#1| (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#1| $) 126 (|has| |#1| (-436))) (($ $ |#2|) 129 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4274 (((-823) $) 149) (($ (-526)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) 152)) (-3999 ((|#1| $ (-512 |#2|)) 73) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 79)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) 115 (|has| |#1| (-533)))) (-2957 (($) 12 T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 97)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 124 (|has| |#1| (-348)))) (-4156 (($ $) 85) (($ $ $) 95)) (-4158 (($ $ $) 49)) (** (($ $ (-878)) 102) (($ $ (-735)) 100)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 88) (($ $ $) 65) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1075 |#1| |#2|) (-909 |#1| (-512 |#2|) |#2|) (-1004) (-811)) (T -1075)) +NIL +(-909 |#1| (-512 |#2|) |#2|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3806 (($ $) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) 147 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4133 (((-905 |#1|) $ (-735)) NIL) (((-905 |#1|) $ (-735) (-735)) NIL)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ |#2|) NIL) (((-735) $ |#2| (-735)) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) NIL)) (-3193 (($ $ (-607 |#2|) (-607 (-512 |#2|))) NIL) (($ $ |#2| (-512 |#2|)) NIL) (($ |#1| (-512 |#2|)) NIL) (($ $ |#2| (-735)) 58) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) 113 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $ |#2|) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3998 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-392 (-526)))))) (-4087 (($ $ (-735)) 15)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) 111 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ |#2| $) 97) (($ $ (-607 |#2|) (-607 $)) 90) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL)) (-4129 (($ $ |#2|) 100) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-4264 (((-512 |#2|) $) NIL)) (-3658 (((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|))) 79)) (-3809 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 145 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 17)) (-4274 (((-823) $) 182) (($ (-526)) NIL) (($ |#1|) 44 (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#2|) 65) (($ |#3|) 63)) (-3999 ((|#1| $ (-512 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL) ((|#3| $ (-735)) 42)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3812 (($ $) 155 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 151 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 159 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 157 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 153 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 10 T CONST)) (-2969 (($ $ |#2|) NIL) (($ $ (-607 |#2|)) NIL) (($ $ |#2| (-735)) NIL) (($ $ (-607 |#2|) (-607 (-735))) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) 184 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 61)) (** (($ $ (-878)) NIL) (($ $ (-735)) 70) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 103 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 60) (($ $ (-392 (-526))) 108 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 106 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1076 |#1| |#2| |#3|) (-13 (-705 |#1| |#2|) (-10 -8 (-15 -3999 (|#3| $ (-735))) (-15 -4274 ($ |#2|)) (-15 -4274 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3658 ((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |#2| |#1|)) (-15 -3998 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1004) (-811) (-909 |#1| (-512 |#2|) |#2|)) (T -1076)) +((-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *2 (-909 *4 (-512 *5) *5)) (-5 *1 (-1076 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-811)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) (-4 *2 (-909 *3 (-512 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) (-4 *2 (-909 *3 (-512 *4) *4)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1101 *7))) (-4 *6 (-811)) (-4 *7 (-909 *5 (-512 *6) *6)) (-4 *5 (-1004)) (-5 *2 (-1 (-1101 *7) *7)) (-5 *1 (-1076 *5 *6 *7)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) (-3998 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1076 *4 *3 *5))) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *1 (-1076 *4 *3 *5)) (-4 *5 (-909 *4 (-512 *3) *3))))) +(-13 (-705 |#1| |#2|) (-10 -8 (-15 -3999 (|#3| $ (-735))) (-15 -4274 ($ |#2|)) (-15 -4274 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3658 ((-1 (-1101 |#3|) |#3|) (-607 |#2|) (-607 (-1101 |#3|)))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ |#2| |#1|)) (-15 -3998 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86) (((-607 $) (-607 |#4|) (-111)) 111)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 126)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ #1#) $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-3511 (((-111) |#4| $) 136)) (-3509 (((-111) |#4| $) 133)) (-3512 (((-111) |#4| $) 137) (((-111) $) 134)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) 128)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 127)) (-4116 (((-3 |#4| #1#) $) 83)) (-3506 (((-607 $) |#4| $) 129)) (-3508 (((-3 (-111) (-607 $)) |#4| $) 132)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3550 (((-607 $) |#4| $) 125) (((-607 $) (-607 |#4|) $) 124) (((-607 $) (-607 |#4|) (-607 $)) 123) (((-607 $) |#4| (-607 $)) 122)) (-3759 (($ |#4| $) 117) (($ (-607 |#4|) $) 116)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| #1#) $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ #1#) $ |#4|) 78)) (-4087 (($ $ |#4|) 77) (((-607 $) |#4| $) 115) (((-607 $) |#4| (-607 $)) 114) (((-607 $) (-607 |#4|) $) 113) (((-607 $) (-607 |#4|) (-607 $)) 112)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-3503 (((-607 $) |#4| $) 121) (((-607 $) |#4| (-607 $)) 120) (((-607 $) (-607 |#4|) $) 119) (((-607 $) (-607 |#4|) (-607 $)) 118)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-3510 (((-111) |#4| $) 135)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-1077 |#1| |#2| |#3| |#4|) (-134) (-436) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1077)) +NIL +(-13 (-1060 |t#1| |t#2| |t#3| |t#4|) (-748 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-748 |#1| |#2| |#3| |#4|) . T) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1024 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1060 |#1| |#2| |#3| |#4|) . T) ((-1154 |#1| |#2| |#3| |#4|) . T) ((-1159) . T)) +((-3895 (((-607 |#2|) |#1|) 12)) (-3664 (((-607 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-607 |#2|) |#1|) 52)) (-3662 (((-607 |#2|) |#2| |#2| |#2|) 39) (((-607 |#2|) |#1|) 50)) (-3659 ((|#2| |#1|) 46)) (-3660 (((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3661 (((-607 |#2|) |#2| |#2|) 38) (((-607 |#2|) |#1|) 49)) (-3663 (((-607 |#2|) |#2| |#2| |#2| |#2|) 40) (((-607 |#2|) |#1|) 51)) (-3668 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3666 ((|#2| |#2| |#2| |#2|) 43)) (-3665 ((|#2| |#2| |#2|) 42)) (-3667 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1078 |#1| |#2|) (-10 -7 (-15 -3895 ((-607 |#2|) |#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3660 ((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3661 ((-607 |#2|) |#1|)) (-15 -3662 ((-607 |#2|) |#1|)) (-15 -3663 ((-607 |#2|) |#1|)) (-15 -3664 ((-607 |#2|) |#1|)) (-15 -3661 ((-607 |#2|) |#2| |#2|)) (-15 -3662 ((-607 |#2|) |#2| |#2| |#2|)) (-15 -3663 ((-607 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3664 ((-607 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1181 |#2|) (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (T -1078)) +((-3668 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3667 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3666 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3665 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3664 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3663 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3662 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3661 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-2 (|:| |solns| (-607 *5)) (|:| |maps| (-607 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1078 *3 *5)) (-4 *3 (-1181 *5)))) (-3659 (*1 *2 *3) (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -3895 ((-607 |#2|) |#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3660 ((-2 (|:| |solns| (-607 |#2|)) (|:| |maps| (-607 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3661 ((-607 |#2|) |#1|)) (-15 -3662 ((-607 |#2|) |#1|)) (-15 -3663 ((-607 |#2|) |#1|)) (-15 -3664 ((-607 |#2|) |#1|)) (-15 -3661 ((-607 |#2|) |#2| |#2|)) (-15 -3662 ((-607 |#2|) |#2| |#2| |#2|)) (-15 -3663 ((-607 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3664 ((-607 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3665 (|#2| |#2| |#2|)) (-15 -3666 (|#2| |#2| |#2| |#2|)) (-15 -3667 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3668 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3669 (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|))))) 95) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123))) 94) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|)))) 92) (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 90) (((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|)))) 75) (((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123)) 76) (((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|))) 70) (((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123)) 59)) (-3670 (((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 88) (((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123)) 43)) (-3671 (((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)) 98) (((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123)) 97))) +(((-1079 |#1|) (-10 -7 (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3670 ((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3670 ((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)))) (-13 (-292) (-811) (-141))) (T -1079)) +((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-299 *5)))) (-5 *1 (-1079 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-299 *5))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-278 (-392 (-905 *5))))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1079 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1079 *5))))) +(-10 -7 (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-392 (-905 |#1|)))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3669 ((-607 (-278 (-299 |#1|))) (-278 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-392 (-905 |#1|))))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3669 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3670 ((-607 (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3670 ((-607 (-607 (-299 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3671 ((-1113 (-607 (-299 |#1|)) (-607 (-278 (-299 |#1|)))) (-392 (-905 |#1|)) (-1123)))) +((-3673 (((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)) 29)) (-3672 (((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|)))) 40))) +(((-1080 |#1|) (-10 -7 (-15 -3672 ((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))))) (-15 -3673 ((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)))) (-13 (-533) (-811))) (T -1080)) +((-3673 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-392 (-1117 (-299 *5)))) (-5 *3 (-1205 (-299 *5))) (-5 *4 (-526)) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-1080 *5)))) (-3672 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-392 (-1117 (-299 *3)))) (-4 *3 (-13 (-533) (-811))) (-5 *1 (-1080 *3))))) +(-10 -7 (-15 -3672 ((-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))) (-392 (-1117 (-299 |#1|))))) (-15 -3673 ((-392 (-1117 (-299 |#1|))) (-1205 (-299 |#1|)) (-392 (-1117 (-299 |#1|))) (-526)))) +((-3895 (((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))) 224) (((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123)) 20) (((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123)) 26) (((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|))) 25) (((-607 (-278 (-299 |#1|))) (-299 |#1|)) 21))) +(((-1081 |#1|) (-10 -7 (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123))) (-15 -3895 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))))) (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (T -1081)) +((-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1081 *5)) (-5 *3 (-607 (-278 (-299 *5)))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-299 *5)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-278 (-299 *5))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-278 (-299 *4))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-299 *4))))) +(-10 -7 (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-278 (-299 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-299 |#1|))) (-299 |#1|) (-1123))) (-15 -3895 ((-607 (-607 (-278 (-299 |#1|)))) (-607 (-278 (-299 |#1|))) (-607 (-1123))))) +((-3675 ((|#2| |#2|) 20 (|has| |#1| (-811))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-3674 ((|#2| |#2|) 19 (|has| |#1| (-811))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -3674 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3675 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-811)) (PROGN (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|))) |%noBranch|)) (-1159) (-13 (-574 (-526) |#1|) (-10 -7 (-6 -4310) (-6 -4311)))) (T -1082)) +((-3675 (*1 *2 *2) (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) (-3674 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311))))))) +(-10 -7 (-15 -3674 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3675 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-811)) (PROGN (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-4207 (((-1112 3 |#1|) $) 107)) (-3685 (((-111) $) 72)) (-3686 (($ $ (-607 (-902 |#1|))) 20) (($ $ (-607 (-607 |#1|))) 75) (($ (-607 (-902 |#1|))) 74) (((-607 (-902 |#1|)) $) 73)) (-3691 (((-111) $) 41)) (-4028 (($ $ (-902 |#1|)) 46) (($ $ (-607 |#1|)) 51) (($ $ (-735)) 53) (($ (-902 |#1|)) 47) (((-902 |#1|) $) 45)) (-3677 (((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $) 105)) (-3695 (((-735) $) 26)) (-3696 (((-735) $) 25)) (-4206 (($ $ (-735) (-902 |#1|)) 39)) (-3683 (((-111) $) 82)) (-3684 (($ $ (-607 (-607 (-902 |#1|))) (-607 (-162)) (-162)) 89) (($ $ (-607 (-607 (-607 |#1|))) (-607 (-162)) (-162)) 91) (($ $ (-607 (-607 (-902 |#1|))) (-111) (-111)) 85) (($ $ (-607 (-607 (-607 |#1|))) (-111) (-111)) 93) (($ (-607 (-607 (-902 |#1|)))) 86) (($ (-607 (-607 (-902 |#1|))) (-111) (-111)) 87) (((-607 (-607 (-902 |#1|))) $) 84)) (-3832 (($ (-607 $)) 28) (($ $ $) 29)) (-3678 (((-607 (-162)) $) 102)) (-3682 (((-607 (-902 |#1|)) $) 96)) (-3679 (((-607 (-607 (-162))) $) 101)) (-3680 (((-607 (-607 (-607 (-902 |#1|)))) $) NIL)) (-3681 (((-607 (-607 (-607 (-735)))) $) 99)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3692 (((-735) $ (-607 (-902 |#1|))) 37)) (-3689 (((-111) $) 54)) (-3690 (($ $ (-607 (-902 |#1|))) 56) (($ $ (-607 (-607 |#1|))) 62) (($ (-607 (-902 |#1|))) 57) (((-607 (-902 |#1|)) $) 55)) (-3697 (($) 23) (($ (-1112 3 |#1|)) 24)) (-3719 (($ $) 35)) (-3693 (((-607 $) $) 34)) (-4073 (($ (-607 $)) 31)) (-3694 (((-607 $) $) 33)) (-4274 (((-823) $) 111)) (-3687 (((-111) $) 64)) (-3688 (($ $ (-607 (-902 |#1|))) 66) (($ $ (-607 (-607 |#1|))) 69) (($ (-607 (-902 |#1|))) 67) (((-607 (-902 |#1|)) $) 65)) (-3676 (($ $) 106)) (-3353 (((-111) $ $) NIL))) +(((-1083 |#1|) (-1084 |#1|) (-1004)) (T -1083)) +NIL +(-1084 |#1|) +((-2865 (((-111) $ $) 7)) (-4207 (((-1112 3 |#1|) $) 13)) (-3685 (((-111) $) 29)) (-3686 (($ $ (-607 (-902 |#1|))) 33) (($ $ (-607 (-607 |#1|))) 32) (($ (-607 (-902 |#1|))) 31) (((-607 (-902 |#1|)) $) 30)) (-3691 (((-111) $) 44)) (-4028 (($ $ (-902 |#1|)) 49) (($ $ (-607 |#1|)) 48) (($ $ (-735)) 47) (($ (-902 |#1|)) 46) (((-902 |#1|) $) 45)) (-3677 (((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $) 15)) (-3695 (((-735) $) 58)) (-3696 (((-735) $) 59)) (-4206 (($ $ (-735) (-902 |#1|)) 50)) (-3683 (((-111) $) 21)) (-3684 (($ $ (-607 (-607 (-902 |#1|))) (-607 (-162)) (-162)) 28) (($ $ (-607 (-607 (-607 |#1|))) (-607 (-162)) (-162)) 27) (($ $ (-607 (-607 (-902 |#1|))) (-111) (-111)) 26) (($ $ (-607 (-607 (-607 |#1|))) (-111) (-111)) 25) (($ (-607 (-607 (-902 |#1|)))) 24) (($ (-607 (-607 (-902 |#1|))) (-111) (-111)) 23) (((-607 (-607 (-902 |#1|))) $) 22)) (-3832 (($ (-607 $)) 57) (($ $ $) 56)) (-3678 (((-607 (-162)) $) 16)) (-3682 (((-607 (-902 |#1|)) $) 20)) (-3679 (((-607 (-607 (-162))) $) 17)) (-3680 (((-607 (-607 (-607 (-902 |#1|)))) $) 18)) (-3681 (((-607 (-607 (-607 (-735)))) $) 19)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3692 (((-735) $ (-607 (-902 |#1|))) 51)) (-3689 (((-111) $) 39)) (-3690 (($ $ (-607 (-902 |#1|))) 43) (($ $ (-607 (-607 |#1|))) 42) (($ (-607 (-902 |#1|))) 41) (((-607 (-902 |#1|)) $) 40)) (-3697 (($) 61) (($ (-1112 3 |#1|)) 60)) (-3719 (($ $) 52)) (-3693 (((-607 $) $) 53)) (-4073 (($ (-607 $)) 55)) (-3694 (((-607 $) $) 54)) (-4274 (((-823) $) 11)) (-3687 (((-111) $) 34)) (-3688 (($ $ (-607 (-902 |#1|))) 38) (($ $ (-607 (-607 |#1|))) 37) (($ (-607 (-902 |#1|))) 36) (((-607 (-902 |#1|)) $) 35)) (-3676 (($ $) 14)) (-3353 (((-111) $ $) 6))) +(((-1084 |#1|) (-134) (-1004)) (T -1084)) +((-4274 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-823)))) (-3697 (*1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-1112 3 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3694 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)))) (-3693 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)))) (-3719 (*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-607 (-902 *4))) (-4 *1 (-1084 *4)) (-4 *4 (-1004)) (-5 *2 (-735)))) (-4206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-902 *4)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-902 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-607 (-902 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-3684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 *3)))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) (-3684 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *4 (-1004)) (-4 *1 (-1084 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-902 *3)))))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-735))))))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-902 *3))))))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-162)))))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-162))))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735)))))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-1112 3 *3))))) +(-13 (-1052) (-10 -8 (-15 -3697 ($)) (-15 -3697 ($ (-1112 3 |t#1|))) (-15 -3696 ((-735) $)) (-15 -3695 ((-735) $)) (-15 -3832 ($ (-607 $))) (-15 -3832 ($ $ $)) (-15 -4073 ($ (-607 $))) (-15 -3694 ((-607 $) $)) (-15 -3693 ((-607 $) $)) (-15 -3719 ($ $)) (-15 -3692 ((-735) $ (-607 (-902 |t#1|)))) (-15 -4206 ($ $ (-735) (-902 |t#1|))) (-15 -4028 ($ $ (-902 |t#1|))) (-15 -4028 ($ $ (-607 |t#1|))) (-15 -4028 ($ $ (-735))) (-15 -4028 ($ (-902 |t#1|))) (-15 -4028 ((-902 |t#1|) $)) (-15 -3691 ((-111) $)) (-15 -3690 ($ $ (-607 (-902 |t#1|)))) (-15 -3690 ($ $ (-607 (-607 |t#1|)))) (-15 -3690 ($ (-607 (-902 |t#1|)))) (-15 -3690 ((-607 (-902 |t#1|)) $)) (-15 -3689 ((-111) $)) (-15 -3688 ($ $ (-607 (-902 |t#1|)))) (-15 -3688 ($ $ (-607 (-607 |t#1|)))) (-15 -3688 ($ (-607 (-902 |t#1|)))) (-15 -3688 ((-607 (-902 |t#1|)) $)) (-15 -3687 ((-111) $)) (-15 -3686 ($ $ (-607 (-902 |t#1|)))) (-15 -3686 ($ $ (-607 (-607 |t#1|)))) (-15 -3686 ($ (-607 (-902 |t#1|)))) (-15 -3686 ((-607 (-902 |t#1|)) $)) (-15 -3685 ((-111) $)) (-15 -3684 ($ $ (-607 (-607 (-902 |t#1|))) (-607 (-162)) (-162))) (-15 -3684 ($ $ (-607 (-607 (-607 |t#1|))) (-607 (-162)) (-162))) (-15 -3684 ($ $ (-607 (-607 (-902 |t#1|))) (-111) (-111))) (-15 -3684 ($ $ (-607 (-607 (-607 |t#1|))) (-111) (-111))) (-15 -3684 ($ (-607 (-607 (-902 |t#1|))))) (-15 -3684 ($ (-607 (-607 (-902 |t#1|))) (-111) (-111))) (-15 -3684 ((-607 (-607 (-902 |t#1|))) $)) (-15 -3683 ((-111) $)) (-15 -3682 ((-607 (-902 |t#1|)) $)) (-15 -3681 ((-607 (-607 (-607 (-735)))) $)) (-15 -3680 ((-607 (-607 (-607 (-902 |t#1|)))) $)) (-15 -3679 ((-607 (-607 (-162))) $)) (-15 -3678 ((-607 (-162)) $)) (-15 -3677 ((-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) (|:| |constructs| (-735))) $)) (-15 -3676 ($ $)) (-15 -4207 ((-1112 3 |t#1|) $)) (-15 -4274 ((-823) $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-3698 (((-607 (-1128)) (-1106)) 9))) +(((-1085) (-10 -7 (-15 -3698 ((-607 (-1128)) (-1106))))) (T -1085)) +((-3698 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-1085))))) +(-10 -7 (-15 -3698 ((-607 (-1128)) (-1106)))) +((-3701 (((-1211) (-607 (-823))) 23) (((-1211) (-823)) 22)) (-3700 (((-1211) (-607 (-823))) 21) (((-1211) (-823)) 20)) (-3699 (((-1211) (-607 (-823))) 19) (((-1211) (-823)) 11) (((-1211) (-1106) (-823)) 17))) +(((-1086) (-10 -7 (-15 -3699 ((-1211) (-1106) (-823))) (-15 -3699 ((-1211) (-823))) (-15 -3700 ((-1211) (-823))) (-15 -3701 ((-1211) (-823))) (-15 -3699 ((-1211) (-607 (-823)))) (-15 -3700 ((-1211) (-607 (-823)))) (-15 -3701 ((-1211) (-607 (-823)))))) (T -1086)) +((-3701 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086))))) +(-10 -7 (-15 -3699 ((-1211) (-1106) (-823))) (-15 -3699 ((-1211) (-823))) (-15 -3700 ((-1211) (-823))) (-15 -3701 ((-1211) (-823))) (-15 -3699 ((-1211) (-607 (-823)))) (-15 -3700 ((-1211) (-607 (-823)))) (-15 -3701 ((-1211) (-607 (-823))))) +((-3705 (($ $ $) 10)) (-3704 (($ $) 9)) (-3708 (($ $ $) 13)) (-3710 (($ $ $) 15)) (-3707 (($ $ $) 12)) (-3709 (($ $ $) 14)) (-3712 (($ $) 17)) (-3711 (($ $) 16)) (-3702 (($ $) 6)) (-3706 (($ $ $) 11) (($ $) 7)) (-3703 (($ $ $) 8))) +(((-1087) (-134)) (T -1087)) +((-3712 (*1 *1 *1) (-4 *1 (-1087))) (-3711 (*1 *1 *1) (-4 *1 (-1087))) (-3710 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3709 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3708 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3707 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3706 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3705 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3704 (*1 *1 *1) (-4 *1 (-1087))) (-3703 (*1 *1 *1 *1) (-4 *1 (-1087))) (-3706 (*1 *1 *1) (-4 *1 (-1087))) (-3702 (*1 *1 *1) (-4 *1 (-1087)))) +(-13 (-10 -8 (-15 -3702 ($ $)) (-15 -3706 ($ $)) (-15 -3703 ($ $ $)) (-15 -3704 ($ $)) (-15 -3705 ($ $ $)) (-15 -3706 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3709 ($ $ $)) (-15 -3710 ($ $ $)) (-15 -3711 ($ $)) (-15 -3712 ($ $)))) +((-2865 (((-111) $ $) 41)) (-3721 ((|#1| $) 15)) (-3713 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-3720 (((-111) $) 17)) (-3718 (($ $ |#1|) 28)) (-3716 (($ $ (-111)) 30)) (-3715 (($ $) 31)) (-3717 (($ $ |#2|) 29)) (-3554 (((-1106) $) NIL)) (-3714 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-3555 (((-1070) $) NIL)) (-3722 (((-111) $) 14)) (-3887 (($) 10)) (-3719 (($ $) 27)) (-3844 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) 21) (((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) 24) (((-607 $) |#1| (-607 |#2|)) 26)) (-4239 ((|#2| $) 16)) (-4274 (((-823) $) 50)) (-3353 (((-111) $ $) 39))) +(((-1088 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -3721 (|#1| $)) (-15 -4239 (|#2| $)) (-15 -3720 ((-111) $)) (-15 -3844 ($ |#1| |#2| (-111))) (-15 -3844 ($ |#1| |#2|)) (-15 -3844 ($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) (-15 -3844 ((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))))) (-15 -3844 ((-607 $) |#1| (-607 |#2|))) (-15 -3719 ($ $)) (-15 -3718 ($ $ |#1|)) (-15 -3717 ($ $ |#2|)) (-15 -3716 ($ $ (-111))) (-15 -3715 ($ $)) (-15 -3714 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3713 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1052) (-33)) (-13 (-1052) (-33))) (T -1088)) +((-3887 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3721 (*1 *2 *1) (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *2 *3)) (-4 *3 (-13 (-1052) (-33))))) (-4239 (*1 *2 *1) (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1636 *4))) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *4)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-607 (-2 (|:| |val| *4) (|:| -1636 *5)))) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-607 (-1088 *4 *5))) (-5 *1 (-1088 *4 *5)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-607 (-1088 *3 *5))) (-5 *1 (-1088 *3 *5)) (-4 *3 (-13 (-1052) (-33))))) (-3719 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3718 (*1 *1 *1 *2) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3717 (*1 *1 *1 *2) (-12 (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))) (-4 *2 (-13 (-1052) (-33))))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3715 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3714 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1088 *5 *6)))) (-3713 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33)))))) +(-13 (-1052) (-10 -8 (-15 -3887 ($)) (-15 -3722 ((-111) $)) (-15 -3721 (|#1| $)) (-15 -4239 (|#2| $)) (-15 -3720 ((-111) $)) (-15 -3844 ($ |#1| |#2| (-111))) (-15 -3844 ($ |#1| |#2|)) (-15 -3844 ($ (-2 (|:| |val| |#1|) (|:| -1636 |#2|)))) (-15 -3844 ((-607 $) (-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))))) (-15 -3844 ((-607 $) |#1| (-607 |#2|))) (-15 -3719 ($ $)) (-15 -3718 ($ $ |#1|)) (-15 -3717 ($ $ |#2|)) (-15 -3716 ($ $ (-111))) (-15 -3715 ($ $)) (-15 -3714 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3713 ((-111) $ $ (-1 (-111) |#2| |#2|))))) +((-2865 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3721 (((-1088 |#1| |#2|) $) 25)) (-3730 (($ $) 76)) (-3726 (((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3723 (($ $ $ (-607 (-1088 |#1| |#2|))) 90) (($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-1244 (((-111) $ (-735)) NIL)) (-3325 (((-1088 |#1| |#2|) $ (-1088 |#1| |#2|)) 43 (|has| $ (-6 -4311)))) (-4106 (((-1088 |#1| |#2|) $ #1="value" (-1088 |#1| |#2|)) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-3728 (((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $) 80)) (-3724 (($ (-1088 |#1| |#2|) $) 39)) (-3725 (($ (-1088 |#1| |#2|) $) 31)) (-2044 (((-607 (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 51)) (-3727 (((-111) (-1088 |#1| |#2|) $) 82)) (-3327 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 (-1088 |#1| |#2|)) $) 55 (|has| $ (-6 -4310)))) (-3557 (((-111) (-1088 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-1088 |#1| |#2|) (-1052))))) (-2048 (($ (-1 (-1088 |#1| |#2|) (-1088 |#1| |#2|)) $) 47 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-1088 |#1| |#2|) (-1088 |#1| |#2|)) $) 46)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 (-1088 |#1| |#2|)) $) 53)) (-3841 (((-111) $) 42)) (-3554 (((-1106) $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3555 (((-1070) $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-3731 (((-3 $ "failed") $) 75)) (-2046 (((-111) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-1088 |#1| |#2|)))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-278 (-1088 |#1| |#2|))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-1088 |#1| |#2|) (-1088 |#1| |#2|)) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052)))) (($ $ (-607 (-1088 |#1| |#2|)) (-607 (-1088 |#1| |#2|))) NIL (-12 (|has| (-1088 |#1| |#2|) (-294 (-1088 |#1| |#2|))) (|has| (-1088 |#1| |#2|) (-1052))))) (-1245 (((-111) $ $) 50)) (-3722 (((-111) $) 22)) (-3887 (($) 24)) (-4118 (((-1088 |#1| |#2|) $ #1#) NIL)) (-3329 (((-526) $ $) NIL)) (-3955 (((-111) $) 44)) (-2045 (((-735) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310))) (((-735) (-1088 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-1088 |#1| |#2|) (-1052))))) (-3719 (($ $) 49)) (-3844 (($ (-1088 |#1| |#2|)) 9) (($ |#1| |#2| (-607 $)) 12) (($ |#1| |#2| (-607 (-1088 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-607 |#2|)) 17)) (-3729 (((-607 |#2|) $) 81)) (-4274 (((-823) $) 73 (|has| (-1088 |#1| |#2|) (-583 (-823))))) (-3836 (((-607 $) $) 28)) (-3328 (((-111) $ $) NIL (|has| (-1088 |#1| |#2|) (-1052)))) (-2047 (((-111) (-1 (-111) (-1088 |#1| |#2|)) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 64 (|has| (-1088 |#1| |#2|) (-1052)))) (-4273 (((-735) $) 58 (|has| $ (-6 -4310))))) +(((-1089 |#1| |#2|) (-13 (-968 (-1088 |#1| |#2|)) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3731 ((-3 $ "failed") $)) (-15 -3730 ($ $)) (-15 -3844 ($ (-1088 |#1| |#2|))) (-15 -3844 ($ |#1| |#2| (-607 $))) (-15 -3844 ($ |#1| |#2| (-607 (-1088 |#1| |#2|)))) (-15 -3844 ($ |#1| |#2| |#1| (-607 |#2|))) (-15 -3729 ((-607 |#2|) $)) (-15 -3728 ((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $)) (-15 -3727 ((-111) (-1088 |#1| |#2|) $)) (-15 -3726 ((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -3725 ($ (-1088 |#1| |#2|) $)) (-15 -3724 ($ (-1088 |#1| |#2|) $)) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)))) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1052) (-33)) (-13 (-1052) (-33))) (T -1089)) +((-3731 (*1 *1 *1) (|partial| -12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-607 (-1089 *2 *3))) (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) (-3844 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-607 (-1088 *2 *3))) (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)))) (-3844 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-607 *4)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))))) (-3727 (*1 *2 *3 *1) (-12 (-5 *3 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *4 *5)))) (-3726 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1088 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *5 *6)))) (-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3723 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-607 (-1088 *3 *4))) (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) (-3723 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1088 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) (-5 *1 (-1089 *4 *5))))) +(-13 (-968 (-1088 |#1| |#2|)) (-10 -8 (-6 -4311) (-6 -4310) (-15 -3731 ((-3 $ "failed") $)) (-15 -3730 ($ $)) (-15 -3844 ($ (-1088 |#1| |#2|))) (-15 -3844 ($ |#1| |#2| (-607 $))) (-15 -3844 ($ |#1| |#2| (-607 (-1088 |#1| |#2|)))) (-15 -3844 ($ |#1| |#2| |#1| (-607 |#2|))) (-15 -3729 ((-607 |#2|) $)) (-15 -3728 ((-607 (-2 (|:| |val| |#1|) (|:| -1636 |#2|))) $)) (-15 -3727 ((-111) (-1088 |#1| |#2|) $)) (-15 -3726 ((-111) (-1088 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -3725 ($ (-1088 |#1| |#2|) $)) (-15 -3724 ($ (-1088 |#1| |#2|) $)) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)))) (-15 -3723 ($ $ $ (-607 (-1088 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3733 (($ $) NIL)) (-3649 ((|#2| $) NIL)) (-3418 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3732 (($ (-653 |#2|)) 47)) (-3420 (((-111) $) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-3652 (($ |#2|) 9)) (-3855 (($) NIL T CONST)) (-3407 (($ $) 60 (|has| |#2| (-292)))) (-3409 (((-225 |#1| |#2|) $ (-526)) 34)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 |#2| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) ((|#2| $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) 74)) (-3406 (((-735) $) 62 (|has| |#2| (-533)))) (-3410 ((|#2| $ (-526) (-526)) NIL)) (-2044 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-2471 (((-111) $) NIL)) (-3405 (((-735) $) 64 (|has| |#2| (-533)))) (-3404 (((-607 (-225 |#1| |#2|)) $) 68 (|has| |#2| (-533)))) (-3412 (((-735) $) NIL)) (-3411 (((-735) $) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-3646 ((|#2| $) 58 (|has| |#2| (-6 (-4312 #2="*"))))) (-3416 (((-526) $) NIL)) (-3414 (((-526) $) NIL)) (-2480 (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3415 (((-526) $) NIL)) (-3413 (((-526) $) NIL)) (-3421 (($ (-607 (-607 |#2|))) 29)) (-2048 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3915 (((-607 (-607 |#2|)) $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3911 (((-3 $ "failed") $) 71 (|has| |#2| (-348)))) (-3555 (((-1070) $) NIL)) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533)))) (-2046 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ (-526) (-526) |#2|) NIL) ((|#2| $ (-526) (-526)) NIL)) (-4129 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3648 ((|#2| $) NIL)) (-3651 (($ (-607 |#2|)) 42)) (-3419 (((-111) $) NIL)) (-3650 (((-225 |#1| |#2|) $) NIL)) (-3647 ((|#2| $) 56 (|has| |#2| (-6 (-4312 #2#))))) (-2045 (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 83 (|has| |#2| (-584 (-515))))) (-3408 (((-225 |#1| |#2|) $ (-526)) 36)) (-4274 (((-823) $) 39) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#2| (-995 (-392 (-526))))) (($ |#2|) NIL) (((-653 |#2|) $) 44)) (-3423 (((-735)) 17)) (-2047 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3417 (((-111) $) NIL)) (-2957 (($) 11 T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-735)) NIL (|has| |#2| (-219))) (($ $) NIL (|has| |#2| (-219)))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) 54) (($ $ (-526)) 73 (|has| |#2| (-348)))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) 50) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) 52)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1090 |#1| |#2|) (-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-10 -8 (-15 -3733 ($ $)) (-15 -3732 ($ (-653 |#2|))) (-15 -4274 ((-653 |#2|) $)) (IF (|has| |#2| (-6 (-4312 "*"))) (-6 -4299) |%noBranch|) (IF (|has| |#2| (-6 (-4312 "*"))) (IF (|has| |#2| (-6 -4307)) (-6 -4307) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) (-735) (-1004)) (T -1090)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-653 *4)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735)) (-4 *4 (-1004)))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-1090 *2 *3)) (-14 *2 (-735)) (-4 *3 (-1004)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735))))) +(-13 (-1073 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-583 (-653 |#2|)) (-10 -8 (-15 -3733 ($ $)) (-15 -3732 ($ (-653 |#2|))) (-15 -4274 ((-653 |#2|) $)) (IF (|has| |#2| (-6 (-4312 "*"))) (-6 -4299) |%noBranch|) (IF (|has| |#2| (-6 (-4312 "*"))) (IF (|has| |#2| (-6 -4307)) (-6 -4307) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-584 (-515))) (-6 (-584 (-515))) |%noBranch|))) +((-3746 (($ $) 19)) (-3736 (($ $ (-138)) 10) (($ $ (-135)) 14)) (-3744 (((-111) $ $) 24)) (-3748 (($ $) 17)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (($ $ $) 29)) (-4274 (($ (-138)) 27) (((-823) $) NIL))) +(((-1091 |#1|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| (-135))) (-15 -3736 (|#1| |#1| (-138))) (-15 -4274 (|#1| (-138))) (-15 -3744 ((-111) |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4118 ((-138) |#1| (-526))) (-15 -4118 ((-138) |#1| (-526) (-138)))) (-1092)) (T -1091)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -4118 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| (-135))) (-15 -3736 (|#1| |#1| (-138))) (-15 -4274 (|#1| (-138))) (-15 -3744 ((-111) |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4118 ((-138) |#1| (-526))) (-15 -4118 ((-138) |#1| (-526) (-138)))) +((-2865 (((-111) $ $) 19 (|has| (-138) (-1052)))) (-3745 (($ $) 120)) (-3746 (($ $) 121)) (-3736 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 118)) (-3742 (((-111) $ $ (-526)) 117)) (-3737 (((-607 $) $ (-138)) 110) (((-607 $) $ (-135)) 109)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| (-138) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 (((-138) $ (-526) (-138)) 52 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-3734 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-3739 (($ $ (-1172 (-526)) $) 114)) (-1375 (($ $) 78 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-138) $) 77 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) 53 (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) 51)) (-3744 (((-111) $ $) 119)) (-3738 (((-526) (-1 (-111) (-138)) $) 97) (((-526) (-138) $) 96 (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 95 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 113) (((-526) (-135) $ (-526)) 112)) (-2044 (((-607 (-138)) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 115)) (-3741 (((-735) $ $ (-138)) 116)) (-2048 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3747 (($ $) 122)) (-3748 (($ $) 123)) (-4038 (((-111) $ (-735)) 10)) (-3735 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-3554 (((-1106) $) 22 (|has| (-138) (-1052)))) (-2351 (($ (-138) $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| (-138) (-1052)))) (-4119 (((-138) $) 42 (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-2277 (($ $ (-138)) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) 26 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) 23 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 (((-138) $ (-526) (-138)) 50) (((-138) $ (-526)) 49) (($ $ (-1172 (-526))) 63) (($ $ $) 102)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4310))) (((-735) (-138) $) 28 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) 70)) (-4120 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (($ (-138)) 111) (((-823) $) 18 (|has| (-138) (-583 (-823))))) (-2047 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| (-138) (-811)))) (-2864 (((-111) $ $) 83 (|has| (-138) (-811)))) (-3353 (((-111) $ $) 20 (|has| (-138) (-1052)))) (-2984 (((-111) $ $) 85 (|has| (-138) (-811)))) (-2985 (((-111) $ $) 82 (|has| (-138) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1092) (-134)) (T -1092)) +((-3748 (*1 *1 *1) (-4 *1 (-1092))) (-3747 (*1 *1 *1) (-4 *1 (-1092))) (-3746 (*1 *1 *1) (-4 *1 (-1092))) (-3745 (*1 *1 *1) (-4 *1 (-1092))) (-3744 (*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111)))) (-3743 (*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111)))) (-3742 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-526)) (-5 *2 (-111)))) (-3741 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-735)))) (-3740 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-111)))) (-3739 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1172 (-526))))) (-3738 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)))) (-3738 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)) (-5 *3 (-135)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1092)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) (-3736 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3736 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-3735 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3735 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138)))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) (-4118 (*1 *1 *1 *1) (-4 *1 (-1092)))) +(-13 (-19 (-138)) (-10 -8 (-15 -3748 ($ $)) (-15 -3747 ($ $)) (-15 -3746 ($ $)) (-15 -3745 ($ $)) (-15 -3744 ((-111) $ $)) (-15 -3743 ((-111) $ $)) (-15 -3742 ((-111) $ $ (-526))) (-15 -3741 ((-735) $ $ (-138))) (-15 -3740 ((-111) $ $ (-138))) (-15 -3739 ($ $ (-1172 (-526)) $)) (-15 -3738 ((-526) $ $ (-526))) (-15 -3738 ((-526) (-135) $ (-526))) (-15 -4274 ($ (-138))) (-15 -3737 ((-607 $) $ (-138))) (-15 -3737 ((-607 $) $ (-135))) (-15 -3736 ($ $ (-138))) (-15 -3736 ($ $ (-135))) (-15 -3735 ($ $ (-138))) (-15 -3735 ($ $ (-135))) (-15 -3734 ($ $ (-138))) (-15 -3734 ($ $ (-135))) (-15 -4118 ($ $ $)))) +(((-33) . T) ((-100) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811))) ((-583 (-823)) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811)) (|has| (-138) (-583 (-823)))) ((-145 #1=(-138)) . T) ((-584 (-515)) |has| (-138) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-616 #1#) . T) ((-19 #1#) . T) ((-811) |has| (-138) (-811)) ((-1052) -3850 (|has| (-138) (-1052)) (|has| (-138) (-811))) ((-1159) . T)) +((-3755 (((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735)) 94)) (-3752 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 54)) (-3756 (((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)) 85)) (-3750 (((-735) (-607 |#4|) (-607 |#5|)) 27)) (-3753 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735)) 56) (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111)) 58)) (-3754 (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111)) 77)) (-4287 (((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) 80)) (-3751 (((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|) 53)) (-3749 (((-735) (-607 |#4|) (-607 |#5|)) 19))) +(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|) (-1060 |#1| |#2| |#3| |#4|)) (T -1093)) +((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1060 *4 *5 *6 *7)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) (-5 *1 (-1093 *4 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-607 *11)) (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) (-4 *11 (-1060 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-5 *1 (-1093 *7 *8 *9 *10 *11)))) (-3754 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3754 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) (-3753 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *7 *8 *9 *3 *4)) (-4 *4 (-1060 *7 *8 *9 *3)))) (-3752 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3752 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) (-3751 (*1 *2 *3 *4) (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-607 *4)) (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3749 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3750 ((-735) (-607 |#4|) (-607 |#5|))) (-15 -3751 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3752 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735) (-111))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5| (-735))) (-15 -3753 ((-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) |#4| |#5|)) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111))) (-15 -3754 ((-607 |#5|) (-607 |#4|) (-607 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3755 ((-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-607 |#4|) (-607 |#5|) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-2 (|:| |done| (-607 |#5|)) (|:| |todo| (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))))) (-735))) (-15 -4287 ((-1106) (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|)))) (-15 -3756 ((-1211) (-607 (-2 (|:| |val| (-607 |#4|)) (|:| -1636 |#5|))) (-735)))) +((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 110) (((-607 $) (-607 |#4|) (-111)) 111) (((-607 $) (-607 |#4|) (-111) (-111)) 109) (((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-4093 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| $) 84)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) 26 (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3200 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 39)) (-4007 ((|#4| |#4| $) 65)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-3511 (((-111) |#4| $) NIL)) (-3509 (((-111) |#4| $) NIL)) (-3512 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3757 (((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111)) 124)) (-2044 (((-607 |#4|) $) 16 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 33)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 17 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-2048 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 21)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-3505 (((-3 |#4| (-607 $)) |#4| |#4| $) NIL)) (-3504 (((-607 (-2 (|:| |val| |#4|) (|:| -1636 $))) |#4| |#4| $) 103)) (-4116 (((-3 |#4| #1#) $) 37)) (-3506 (((-607 $) |#4| $) 88)) (-3508 (((-3 (-111) (-607 $)) |#4| $) NIL)) (-3507 (((-607 (-2 (|:| |val| (-111)) (|:| -1636 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3550 (((-607 $) |#4| $) 107) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 108) (((-607 $) |#4| (-607 $)) NIL)) (-3758 (((-607 $) (-607 |#4|) (-111) (-111) (-111)) 119)) (-3759 (($ |#4| $) 75) (($ (-607 |#4|) $) 76) (((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-4019 (((-607 |#4|) $) NIL)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) NIL)) (-4021 (((-111) $ $) NIL)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 35)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) 48)) (-4087 (($ $ |#4|) NIL) (((-607 $) |#4| $) 90) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) 86)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 13)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) 12)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 20)) (-3210 (($ $ |#3|) 42)) (-3212 (($ $ |#3|) 44)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) 31) (((-607 |#4|) $) 40)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-3503 (((-607 $) |#4| $) 54) (((-607 $) |#4| (-607 $)) NIL) (((-607 $) (-607 |#4|) $) NIL) (((-607 $) (-607 |#4|) (-607 $)) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-3510 (((-111) |#4| $) NIL)) (-4250 (((-111) |#3| $) 61)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1094 |#1| |#2| |#3| |#4|) (-13 (-1060 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) (-436) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -1094)) +((-3759 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *3))) (-5 *1 (-1094 *5 *6 *7 *3)) (-4 *3 (-1018 *5 *6 *7)))) (-4004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-4004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-3758 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) (-5 *1 (-1094 *5 *6 *7 *8)))) (-3757 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-1094 *5 *6 *7 *8))))) (-5 *1 (-1094 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) +(-13 (-1060 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3759 ((-607 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111))) (-15 -4004 ((-607 $) (-607 |#4|) (-111) (-111) (-111) (-111))) (-15 -3758 ((-607 $) (-607 |#4|) (-111) (-111) (-111))) (-15 -3757 ((-2 (|:| |val| (-607 |#4|)) (|:| |towers| (-607 $))) (-607 |#4|) (-111) (-111))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3643 ((|#1| $) 34)) (-3760 (($ (-607 |#1|)) 39)) (-1244 (((-111) $ (-735)) NIL)) (-3855 (($) NIL T CONST)) (-3645 ((|#1| |#1| $) 36)) (-3644 ((|#1| $) 32)) (-2044 (((-607 |#1|) $) 18 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-1306 ((|#1| $) 35)) (-3929 (($ |#1| $) 37)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-1307 ((|#1| $) 33)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 31)) (-3887 (($) 38)) (-3642 (((-735) $) 29)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 27)) (-4274 (((-823) $) 14 (|has| |#1| (-583 (-823))))) (-1308 (($ (-607 |#1|)) NIL)) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 17 (|has| |#1| (-1052)))) (-4273 (((-735) $) 30 (|has| $ (-6 -4310))))) +(((-1095 |#1|) (-13 (-1071 |#1|) (-10 -8 (-15 -3760 ($ (-607 |#1|))))) (-1159)) (T -1095)) +((-3760 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1095 *3))))) +(-13 (-1071 |#1|) (-10 -8 (-15 -3760 ($ (-607 |#1|))))) +((-4106 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1172 (-526)) |#2|) 44) ((|#2| $ (-526) |#2|) 41)) (-3761 (((-111) $) 12)) (-2048 (($ (-1 |#2| |#2|) $) 39)) (-4119 ((|#2| $) NIL) (($ $ (-735)) 17)) (-2277 (($ $ |#2|) 40)) (-3762 (((-111) $) 11)) (-4118 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1172 (-526))) 31) ((|#2| $ (-526)) 23) ((|#2| $ (-526) |#2|) NIL)) (-4109 (($ $ $) 47) (($ $ |#2|) NIL)) (-4120 (($ $ $) 33) (($ |#2| $) NIL) (($ (-607 $)) 36) (($ $ |#2|) NIL))) +(((-1096 |#1| |#2|) (-10 -8 (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -4106 (|#2| |#1| #1="last" |#2|)) (-15 -4106 (|#1| |#1| #2="rest" |#1|)) (-15 -4106 (|#2| |#1| #3="first" |#2|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -4118 (|#1| |#1| #2#)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| #3#)) (-15 -4119 (|#2| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4106 (|#2| |#1| #4="value" |#2|)) (-15 -4118 (|#2| |#1| #4#)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|))) (-1097 |#2|) (-1159)) (T -1096)) +NIL +(-10 -8 (-15 -3761 ((-111) |#1|)) (-15 -3762 ((-111) |#1|)) (-15 -4106 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526) |#2|)) (-15 -4118 (|#2| |#1| (-526))) (-15 -2277 (|#1| |#1| |#2|)) (-15 -4120 (|#1| |#1| |#2|)) (-15 -4120 (|#1| (-607 |#1|))) (-15 -4118 (|#1| |#1| (-1172 (-526)))) (-15 -4106 (|#2| |#1| (-1172 (-526)) |#2|)) (-15 -4106 (|#2| |#1| #1="last" |#2|)) (-15 -4106 (|#1| |#1| #2="rest" |#1|)) (-15 -4106 (|#2| |#1| #3="first" |#2|)) (-15 -4109 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -4118 (|#1| |#1| #2#)) (-15 -4119 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| #3#)) (-15 -4119 (|#2| |#1|)) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -4106 (|#2| |#1| #4="value" |#2|)) (-15 -4118 (|#2| |#1| #4#)) (-15 -2048 (|#1| (-1 |#2| |#2|) |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-2276 (((-1211) $ (-526) (-526)) 97 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 117 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 86 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4310)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-1375 (($ $) 99 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4310))) (($ |#1| $) 100 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1613 ((|#1| $ (-526) |#1|) 85 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 87)) (-3761 (((-111) $) 83)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) 108)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 95 (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 94 (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-2351 (($ $ $ (-526)) 116) (($ |#1| $ (-526)) 115)) (-2281 (((-607 (-526)) $) 92)) (-2282 (((-111) (-526) $) 91)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2277 (($ $ |#1|) 96 (|has| $ (-6 -4311)))) (-3762 (((-111) $) 84)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 90)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1172 (-526))) 112) ((|#1| $ (-526)) 89) ((|#1| $ (-526) |#1|) 88)) (-3329 (((-526) $ $) 44)) (-2352 (($ $ (-1172 (-526))) 114) (($ $ (-526)) 113)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4287 (((-515) $) 98 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 107)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77) (($ (-607 $)) 110) (($ $ |#1|) 109)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1097 |#1|) (-134) (-1159)) (T -1097)) +((-3762 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(-13 (-1194 |t#1|) (-616 |t#1|) (-10 -8 (-15 -3762 ((-111) $)) (-15 -3761 ((-111) $)))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T) ((-1194 |#1|) . T)) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1098 |#1| |#2| |#3|) (-1136 |#1| |#2|) (-1052) (-1052) |#2|) (T -1098)) +NIL +(-1136 |#1| |#2|) +((-2865 (((-111) $ $) 7)) (-3763 (((-3 $ "failed") $) 13)) (-3554 (((-1106) $) 9)) (-3764 (($) 14 T CONST)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11)) (-3353 (((-111) $ $) 6))) (((-1099) (-134)) (T -1099)) -((-3035 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1099))))) -(-13 (-1086) (-1045) (-788) (-10 -8 (-15 -3035 ($ (-537))))) -(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 #0=(-138)) . T) ((-580 (-513)) |has| (-138) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-612 #0#) . T) ((-19 #0#) . T) ((-788) . T) ((-807) |has| (-138) (-807)) ((-1045) . T) ((-1086) . T) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1561 (($ $) NIL)) (-2099 (($ $) NIL)) (-2594 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) NIL)) (-1315 (((-111) $ $ (-537)) NIL)) (-3035 (($ (-537)) 7)) (-3763 (((-606 $) $ (-138)) NIL) (((-606 $) $ (-135)) NIL)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-138) (-807))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2972 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-2619 (($ $ (-1167 (-537)) $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2355 (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) NIL)) (-1367 (((-111) $ $) NIL)) (-2299 (((-537) (-1 (-111) (-138)) $) NIL) (((-537) (-138) $) NIL (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) NIL (|has| (-138) (-1045))) (((-537) $ $ (-537)) NIL) (((-537) (-135) $ (-537)) NIL)) (-3661 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) NIL)) (-1244 (((-731) $ $ (-138)) NIL)) (-4081 (($ (-1 (-138) (-138)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3037 (($ $) NIL)) (-2602 (($ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-2985 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ (-138) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-138) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-3040 (($ $ (-138)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (($ $ $) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) NIL)) (-3434 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (($ (-138)) NIL) (((-816) $) NIL)) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 18) (((-1100) $ (-111)) 20) (((-1205) (-782) $) 21) (((-1205) (-782) $ (-111)) 22)) (-2293 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1100) (-1099)) (T -1100)) -NIL -(-1099) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-1100) |#1|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#1| "failed") (-1100) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#1| "failed") (-1100) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-1100) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-1100)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-1688 (((-606 (-1100)) $) NIL)) (-4011 (((-111) (-1100) $) NIL)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-3188 ((|#1| $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-1100)) NIL) ((|#1| $ (-1100) |#1|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-579 (-816))) (|has| |#1| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1101 |#1|) (-13 (-1130 (-1100) |#1|) (-10 -7 (-6 -4300))) (-1045)) (T -1101)) -NIL -(-13 (-1130 (-1100) |#1|) (-10 -7 (-6 -4300))) -((-4127 (((-1098 |#1|) (-1098 |#1|)) 77)) (-3490 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 37)) (-3296 (((-1098 |#1|) (-391 (-537)) (-1098 |#1|)) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3669 (((-1098 |#1|) |#1| (-1098 |#1|)) 127 (|has| |#1| (-347)))) (-4016 (((-1098 |#1|) (-1098 |#1|)) 90)) (-2016 (((-1098 (-537)) (-537)) 57)) (-3706 (((-1098 |#1|) (-1098 (-1098 |#1|))) 109 (|has| |#1| (-37 (-391 (-537)))))) (-2438 (((-1098 |#1|) (-537) (-537) (-1098 |#1|)) 95)) (-2367 (((-1098 |#1|) |#1| (-537)) 45)) (-1320 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 60)) (-3076 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 124 (|has| |#1| (-347)))) (-4184 (((-1098 |#1|) |#1| (-1 (-1098 |#1|))) 108 (|has| |#1| (-37 (-391 (-537)))))) (-1283 (((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|))) 125 (|has| |#1| (-347)))) (-4009 (((-1098 |#1|) (-1098 |#1|)) 89)) (-4222 (((-1098 |#1|) (-1098 |#1|)) 76)) (-1929 (((-1098 |#1|) (-537) (-537) (-1098 |#1|)) 96)) (-3092 (((-1098 |#1|) |#1| (-1098 |#1|)) 105 (|has| |#1| (-37 (-391 (-537)))))) (-2499 (((-1098 (-537)) (-537)) 56)) (-3129 (((-1098 |#1|) |#1|) 59)) (-3724 (((-1098 |#1|) (-1098 |#1|) (-537) (-537)) 92)) (-4175 (((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|)) 66)) (-3515 (((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|)) 35)) (-3111 (((-1098 |#1|) (-1098 |#1|)) 91)) (-4116 (((-1098 |#1|) (-1098 |#1|) |#1|) 71)) (-1918 (((-1098 |#1|) (-1098 |#1|)) 62)) (-3353 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 72)) (-2341 (((-1098 |#1|) |#1|) 67)) (-3902 (((-1098 |#1|) (-1098 (-1098 |#1|))) 82)) (-2340 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 36)) (-2329 (((-1098 |#1|) (-1098 |#1|)) 21) (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 23)) (-2318 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 17)) (* (((-1098 |#1|) (-1098 |#1|) |#1|) 29) (((-1098 |#1|) |#1| (-1098 |#1|)) 26) (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 27))) -(((-1102 |#1|) (-10 -7 (-15 -2318 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3515 ((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|))) (-15 -2340 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -3490 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2367 ((-1098 |#1|) |#1| (-537))) (-15 -2499 ((-1098 (-537)) (-537))) (-15 -2016 ((-1098 (-537)) (-537))) (-15 -3129 ((-1098 |#1|) |#1|)) (-15 -1320 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1918 ((-1098 |#1|) (-1098 |#1|))) (-15 -4175 ((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|))) (-15 -2341 ((-1098 |#1|) |#1|)) (-15 -4116 ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3353 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4222 ((-1098 |#1|) (-1098 |#1|))) (-15 -4127 ((-1098 |#1|) (-1098 |#1|))) (-15 -3902 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -4009 ((-1098 |#1|) (-1098 |#1|))) (-15 -4016 ((-1098 |#1|) (-1098 |#1|))) (-15 -3111 ((-1098 |#1|) (-1098 |#1|))) (-15 -3724 ((-1098 |#1|) (-1098 |#1|) (-537) (-537))) (-15 -2438 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (-15 -1929 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 -4184 ((-1098 |#1|) |#1| (-1 (-1098 |#1|)))) (-15 -3706 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -3296 ((-1098 |#1|) (-391 (-537)) (-1098 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3076 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1283 ((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|)))) (-15 -3669 ((-1098 |#1|) |#1| (-1098 |#1|)))) |%noBranch|)) (-998)) (T -1102)) -((-3669 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-537))) (-5 *5 (-1 (-1098 *4))) (-4 *4 (-347)) (-4 *4 (-998)) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3296 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *4)) (-4 *4 (-37 *3)) (-4 *4 (-998)) (-5 *3 (-391 (-537))) (-5 *1 (-1102 *4)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1098 *3))) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)))) (-3092 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1929 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-2438 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-3724 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-998)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4222 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3353 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-1 *4 (-537))) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1320 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-2016 (*1 *2 *3) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) (-5 *3 (-537)))) (-2499 (*1 *2 *3) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) (-5 *3 (-537)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-3490 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3515 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2329 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2318 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) -(-10 -7 (-15 -2318 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3515 ((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|))) (-15 -2340 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -3490 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2367 ((-1098 |#1|) |#1| (-537))) (-15 -2499 ((-1098 (-537)) (-537))) (-15 -2016 ((-1098 (-537)) (-537))) (-15 -3129 ((-1098 |#1|) |#1|)) (-15 -1320 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1918 ((-1098 |#1|) (-1098 |#1|))) (-15 -4175 ((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|))) (-15 -2341 ((-1098 |#1|) |#1|)) (-15 -4116 ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3353 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4222 ((-1098 |#1|) (-1098 |#1|))) (-15 -4127 ((-1098 |#1|) (-1098 |#1|))) (-15 -3902 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -4009 ((-1098 |#1|) (-1098 |#1|))) (-15 -4016 ((-1098 |#1|) (-1098 |#1|))) (-15 -3111 ((-1098 |#1|) (-1098 |#1|))) (-15 -3724 ((-1098 |#1|) (-1098 |#1|) (-537) (-537))) (-15 -2438 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (-15 -1929 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 -4184 ((-1098 |#1|) |#1| (-1 (-1098 |#1|)))) (-15 -3706 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -3296 ((-1098 |#1|) (-391 (-537)) (-1098 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3076 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1283 ((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|)))) (-15 -3669 ((-1098 |#1|) |#1| (-1098 |#1|)))) |%noBranch|)) -((-1403 (((-1098 |#1|) (-1098 |#1|)) 57)) (-1247 (((-1098 |#1|) (-1098 |#1|)) 39)) (-1378 (((-1098 |#1|) (-1098 |#1|)) 53)) (-4270 (((-1098 |#1|) (-1098 |#1|)) 35)) (-1429 (((-1098 |#1|) (-1098 |#1|)) 60)) (-1273 (((-1098 |#1|) (-1098 |#1|)) 42)) (-2180 (((-1098 |#1|) (-1098 |#1|)) 31)) (-4185 (((-1098 |#1|) (-1098 |#1|)) 27)) (-1441 (((-1098 |#1|) (-1098 |#1|)) 61)) (-1286 (((-1098 |#1|) (-1098 |#1|)) 43)) (-1415 (((-1098 |#1|) (-1098 |#1|)) 58)) (-1259 (((-1098 |#1|) (-1098 |#1|)) 40)) (-1389 (((-1098 |#1|) (-1098 |#1|)) 55)) (-1234 (((-1098 |#1|) (-1098 |#1|)) 37)) (-1475 (((-1098 |#1|) (-1098 |#1|)) 65)) (-1328 (((-1098 |#1|) (-1098 |#1|)) 47)) (-1453 (((-1098 |#1|) (-1098 |#1|)) 63)) (-1300 (((-1098 |#1|) (-1098 |#1|)) 45)) (-1495 (((-1098 |#1|) (-1098 |#1|)) 68)) (-1352 (((-1098 |#1|) (-1098 |#1|)) 50)) (-4141 (((-1098 |#1|) (-1098 |#1|)) 69)) (-1365 (((-1098 |#1|) (-1098 |#1|)) 51)) (-1485 (((-1098 |#1|) (-1098 |#1|)) 67)) (-1340 (((-1098 |#1|) (-1098 |#1|)) 49)) (-1465 (((-1098 |#1|) (-1098 |#1|)) 66)) (-1314 (((-1098 |#1|) (-1098 |#1|)) 48)) (** (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 33))) -(((-1103 |#1|) (-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) (-37 (-391 (-537)))) (T -1103)) -((-4141 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1259 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1234 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3))))) -(-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) -((-1403 (((-1098 |#1|) (-1098 |#1|)) 100)) (-1247 (((-1098 |#1|) (-1098 |#1|)) 64)) (-2746 (((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|)) 96)) (-1378 (((-1098 |#1|) (-1098 |#1|)) 97)) (-2436 (((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|)) 53)) (-4270 (((-1098 |#1|) (-1098 |#1|)) 54)) (-1429 (((-1098 |#1|) (-1098 |#1|)) 102)) (-1273 (((-1098 |#1|) (-1098 |#1|)) 71)) (-2180 (((-1098 |#1|) (-1098 |#1|)) 39)) (-4185 (((-1098 |#1|) (-1098 |#1|)) 36)) (-1441 (((-1098 |#1|) (-1098 |#1|)) 103)) (-1286 (((-1098 |#1|) (-1098 |#1|)) 72)) (-1415 (((-1098 |#1|) (-1098 |#1|)) 101)) (-1259 (((-1098 |#1|) (-1098 |#1|)) 67)) (-1389 (((-1098 |#1|) (-1098 |#1|)) 98)) (-1234 (((-1098 |#1|) (-1098 |#1|)) 55)) (-1475 (((-1098 |#1|) (-1098 |#1|)) 111)) (-1328 (((-1098 |#1|) (-1098 |#1|)) 86)) (-1453 (((-1098 |#1|) (-1098 |#1|)) 105)) (-1300 (((-1098 |#1|) (-1098 |#1|)) 82)) (-1495 (((-1098 |#1|) (-1098 |#1|)) 115)) (-1352 (((-1098 |#1|) (-1098 |#1|)) 90)) (-4141 (((-1098 |#1|) (-1098 |#1|)) 117)) (-1365 (((-1098 |#1|) (-1098 |#1|)) 92)) (-1485 (((-1098 |#1|) (-1098 |#1|)) 113)) (-1340 (((-1098 |#1|) (-1098 |#1|)) 88)) (-1465 (((-1098 |#1|) (-1098 |#1|)) 107)) (-1314 (((-1098 |#1|) (-1098 |#1|)) 84)) (** (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 40))) -(((-1104 |#1|) (-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2436 ((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -2746 ((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) (-37 (-391 (-537)))) (T -1104)) -((-4141 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-2 (|:| -1378 (-1098 *4)) (|:| -1389 (-1098 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1259 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1234 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-2 (|:| -4270 (-1098 *4)) (|:| -1234 (-1098 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3))))) -(-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2436 ((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -2746 ((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) -((-3341 (((-911 |#2|) |#2| |#2|) 35)) (-1351 ((|#2| |#2| |#1|) 19 (|has| |#1| (-291))))) -(((-1105 |#1| |#2|) (-10 -7 (-15 -3341 ((-911 |#2|) |#2| |#2|)) (IF (|has| |#1| (-291)) (-15 -1351 (|#2| |#2| |#1|)) |%noBranch|)) (-529) (-1176 |#1|)) (T -1105)) -((-1351 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-1176 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-911 *3)) (-5 *1 (-1105 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -3341 ((-911 |#2|) |#2| |#2|)) (IF (|has| |#1| (-291)) (-15 -1351 (|#2| |#2| |#1|)) |%noBranch|)) -((-2330 (((-111) $ $) NIL)) (-4115 (($ $ (-606 (-731))) 67)) (-4108 (($) 26)) (-3855 (($ $) 42)) (-3655 (((-606 $) $) 51)) (-1681 (((-111) $) 16)) (-3286 (((-606 (-896 |#2|)) $) 74)) (-1939 (($ $) 68)) (-2978 (((-731) $) 37)) (-3157 (($) 25)) (-3587 (($ $ (-606 (-731)) (-896 |#2|)) 60) (($ $ (-606 (-731)) (-731)) 61) (($ $ (-731) (-896 |#2|)) 63)) (-1470 (($ $ $) 48) (($ (-606 $)) 50)) (-3027 (((-731) $) 75)) (-3862 (((-111) $) 15)) (-1654 (((-1100) $) NIL)) (-2181 (((-111) $) 18)) (-2528 (((-1064) $) NIL)) (-2087 (((-162) $) 73)) (-1294 (((-896 |#2|) $) 69)) (-3571 (((-731) $) 70)) (-1707 (((-111) $) 72)) (-2116 (($ $ (-606 (-731)) (-162)) 66)) (-2981 (($ $) 43)) (-2341 (((-816) $) 86)) (-2507 (($ $ (-606 (-731)) (-111)) 65)) (-2804 (((-606 $) $) 11)) (-3062 (($ $ (-731)) 36)) (-2696 (($ $) 32)) (-3768 (($ $ $ (-896 |#2|) (-731)) 56)) (-2059 (($ $ (-896 |#2|)) 55)) (-3474 (($ $ (-606 (-731)) (-896 |#2|)) 54) (($ $ (-606 (-731)) (-731)) 58) (((-731) $ (-896 |#2|)) 59)) (-2244 (((-111) $ $) 80))) -(((-1106 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1681 ((-111) $)) (-15 -2181 ((-111) $)) (-15 -3157 ($)) (-15 -4108 ($)) (-15 -2696 ($ $)) (-15 -3062 ($ $ (-731))) (-15 -2804 ((-606 $) $)) (-15 -2978 ((-731) $)) (-15 -3855 ($ $)) (-15 -2981 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ (-606 $))) (-15 -3655 ((-606 $) $)) (-15 -3474 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -2059 ($ $ (-896 |#2|))) (-15 -3768 ($ $ $ (-896 |#2|) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -3474 ($ $ (-606 (-731)) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-731))) (-15 -3474 ((-731) $ (-896 |#2|))) (-15 -3587 ($ $ (-731) (-896 |#2|))) (-15 -2507 ($ $ (-606 (-731)) (-111))) (-15 -2116 ($ $ (-606 (-731)) (-162))) (-15 -4115 ($ $ (-606 (-731)))) (-15 -1294 ((-896 |#2|) $)) (-15 -3571 ((-731) $)) (-15 -1707 ((-111) $)) (-15 -2087 ((-162) $)) (-15 -3027 ((-731) $)) (-15 -1939 ($ $)) (-15 -3286 ((-606 (-896 |#2|)) $)))) (-874) (-998)) (T -1106)) -((-3862 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3157 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-4108 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-2696 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-2981 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-1470 (*1 *1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3474 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-896 *4)) (-4 *4 (-998)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)))) (-3768 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-896 *5)) (-5 *3 (-731)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3474 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *2 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-111)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-2116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-162)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-896 *4)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-162)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1939 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-606 (-896 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998))))) -(-13 (-1045) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1681 ((-111) $)) (-15 -2181 ((-111) $)) (-15 -3157 ($)) (-15 -4108 ($)) (-15 -2696 ($ $)) (-15 -3062 ($ $ (-731))) (-15 -2804 ((-606 $) $)) (-15 -2978 ((-731) $)) (-15 -3855 ($ $)) (-15 -2981 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ (-606 $))) (-15 -3655 ((-606 $) $)) (-15 -3474 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -2059 ($ $ (-896 |#2|))) (-15 -3768 ($ $ $ (-896 |#2|) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -3474 ($ $ (-606 (-731)) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-731))) (-15 -3474 ((-731) $ (-896 |#2|))) (-15 -3587 ($ $ (-731) (-896 |#2|))) (-15 -2507 ($ $ (-606 (-731)) (-111))) (-15 -2116 ($ $ (-606 (-731)) (-162))) (-15 -4115 ($ $ (-606 (-731)))) (-15 -1294 ((-896 |#2|) $)) (-15 -3571 ((-731) $)) (-15 -1707 ((-111) $)) (-15 -2087 ((-162) $)) (-15 -3027 ((-731) $)) (-15 -1939 ($ $)) (-15 -3286 ((-606 (-896 |#2|)) $)))) -((-2330 (((-111) $ $) NIL)) (-2880 ((|#2| $) 11)) (-2869 ((|#1| $) 10)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2350 (($ |#1| |#2|) 9)) (-2341 (((-816) $) 16)) (-2244 (((-111) $ $) NIL))) -(((-1107 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -2350 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -2880 (|#2| $)))) (-1045) (-1045)) (T -1107)) -((-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *2 *3)) (-4 *3 (-1045)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -2350 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -2880 (|#2| $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1586 (($ $ (-537)) NIL) (($ $ (-537) (-537)) 66)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) NIL)) (-2712 (((-1115 |#1| |#2| |#3|) $) 36)) (-2516 (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 29)) (-3815 (((-1115 |#1| |#2| |#3|) $) 30)) (-1403 (($ $) 107 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 83 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 103 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 79 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) 111 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 87 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1117) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-537) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-3958 (((-1115 |#1| |#2| |#3|) $) 131) (((-1117) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-537) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-4000 (($ $) 34) (($ (-537) $) 35)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-1115 |#1| |#2| |#3|)) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1200 (-1115 |#1| |#2| |#3|)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 48)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 65 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 67 (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 25)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-839 (-537))) (|has| |#1| (-347)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-839 (-363))) (|has| |#1| (-347))))) (-4231 (((-537) $) NIL) (((-537) $ (-537)) 24)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 (((-1115 |#1| |#2| |#3|) $) 38 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 18) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) 72 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) (-1115 |#1| |#2| |#3|)) 33)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 70 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 71 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3830 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 145)) (-3515 (((-3 $ "failed") $ $) 49 (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 73 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-278 (-1115 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-278 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1115 |#1| |#2| |#3|)) (-606 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) NIL) (($ $ $) 54 (|has| (-537) (-1057))) (($ $ (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-270 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1196 |#2|)) 51) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 50 (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 (((-1115 |#1| |#2| |#3|) $) 41 (|has| |#1| (-347)))) (-2872 (((-537) $) 37)) (-1441 (($ $) 113 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 89 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 109 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 85 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 105 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 81 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-513) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-513))) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-210) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 149) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1115 |#1| |#2| |#3|)) 27) (($ (-1196 |#2|)) 23) (($ (-1117)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529)))) (($ (-391 (-537))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))) (|has| |#1| (-37 (-391 (-537))))))) (-3500 ((|#1| $ (-537)) 68)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-3903 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 95 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1453 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 91 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 99 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 101 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 97 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 93 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2928 (($) 20 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2263 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 44 (|has| |#1| (-347))) (($ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) 45 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 21)) (** (($ $ (-874)) NIL) (($ $ (-731)) 53) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) 74 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 128 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1115 |#1| |#2| |#3|)) 43 (|has| |#1| (-347))) (($ (-1115 |#1| |#2| |#3|) $) 42 (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1108 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1108)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1162 |#1| (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-4236 ((|#2| |#2| (-1038 |#2|)) 26) ((|#2| |#2| (-1117)) 28))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -4236 (|#2| |#2| (-1117))) (-15 -4236 (|#2| |#2| (-1038 |#2|)))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-414 |#1|) (-152) (-27) (-1139))) (T -1109)) -((-4236 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1109 *4 *2)))) (-4236 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139)))))) -(-10 -7 (-15 -4236 (|#2| |#2| (-1117))) (-15 -4236 (|#2| |#2| (-1038 |#2|)))) -((-4236 (((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))) 31) (((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|))) 44) (((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117)) 33) (((-391 (-905 |#1|)) (-905 |#1|) (-1117)) 36))) -(((-1110 |#1|) (-10 -7 (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1117))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|)))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))))) (-13 (-529) (-807) (-989 (-537)))) (T -1110)) -((-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 *3 (-300 *5))) (-5 *1 (-1110 *5)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-905 *5))) (-5 *3 (-905 *5)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 *3)) (-5 *1 (-1110 *5)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 (-391 (-905 *5)) (-300 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-391 (-905 *5))))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 (-905 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-905 *5))))) -(-10 -7 (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1117))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|)))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))))) -((-1612 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 13))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -1612 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-998) (-998)) (T -1111)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-1111 *5 *6))))) -(-10 -7 (-15 -1612 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) -((-2414 (((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))) 51)) (-3622 (((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))) 52))) -(((-1112 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|)))) (-15 -2414 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))))) (-753) (-807) (-435) (-902 |#3| |#1| |#2|)) (T -1112)) -((-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7)))))) -(-10 -7 (-15 -3622 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|)))) (-15 -2414 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))))) -((-2330 (((-111) $ $) 137)) (-1656 (((-111) $) 28)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) 58) (((-1113 |#1|) $) 47)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) 132 (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) 126 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 71 (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 91 (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1505 (($ $ (-731)) 40)) (-3719 (($ $ (-731)) 41)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) 128 (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 56)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) 104)) (-2971 (($ $ $) NIL (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) 133 (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) 45)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-3819 (((-816) $ (-816)) 117)) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) 49) (($ (-1113 $) (-1027)) 65)) (-3172 (($ $ (-731)) 32)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 63) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 121)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) 52)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 39)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 31)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 79 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) 135 (|has| |#1| (-435)))) (-3148 (($ $ (-731) |#1| $) 99)) (-1319 (((-402 (-1113 $)) (-1113 $)) 77 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 76 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 84 (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) 35)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 138 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) 124 (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) 54) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 130 (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) 118) (($ (-537)) NIL) (($ |#1|) 53) (($ (-1027)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) 26 (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 15 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 96)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 139 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 66)) (** (($ $ (-874)) 14) (($ $ (-731)) 12)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 25) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1113 |#1|) (-13 (-1176 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))) (-15 -3148 ($ $ (-731) |#1| $)))) (-998)) (T -1113)) -((-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1113 *3)) (-4 *3 (-998)))) (-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1113 *3)) (-4 *3 (-998))))) -(-13 (-1176 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))) (-15 -3148 ($ $ (-731) |#1| $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1108 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 36)) (-3958 (((-1108 |#1| |#2| |#3|) $) NIL) (((-1115 |#1| |#2| |#3|) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2017 (((-391 (-537)) $) 55)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) (-1108 |#1| |#2| |#3|)) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 20) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 (((-1108 |#1| |#2| |#3|) $) 41)) (-1447 (((-3 (-1108 |#1| |#2| |#3|) "failed") $) NIL)) (-3827 (((-1108 |#1| |#2| |#3|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 39 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 40 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 38)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 58) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1108 |#1| |#2| |#3|)) 30) (($ (-1115 |#1| |#2| |#3|)) 31) (($ (-1196 |#2|)) 26) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 22 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 24)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1114 |#1| |#2| |#3|) (-13 (-1183 |#1| (-1108 |#1| |#2| |#3|)) (-989 (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1114)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1183 |#1| (-1108 |#1| |#2| |#3|)) (-989 (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 125)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 116)) (-3235 (((-1173 |#2| |#1|) $ (-731)) 63)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 79) (($ $ (-731) (-731)) 76)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 102)) (-1403 (($ $) 169 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 145 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 165 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 115) (($ (-1098 |#1|)) 110)) (-1429 (($ $) 173 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 23)) (-1388 (($ $) 26)) (-1706 (((-905 |#1|) $ (-731)) 75) (((-905 |#1|) $ (-731) (-731)) 77)) (-2362 (((-111) $) 120)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) 122) (((-731) $ (-731)) 124)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 13) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $) 129 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 130 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-1540 (($ $ (-731)) 15)) (-3515 (((-3 $ "failed") $ $) 24 (|has| |#1| (-529)))) (-4185 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 119) (($ $ $) 128 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $ (-1196 |#2|)) 29)) (-2872 (((-731) $) NIL)) (-1441 (($ $) 175 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 151 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 171 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 147 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 167 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 143 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 201) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 126 (|has| |#1| (-163))) (($ (-1173 |#2| |#1|)) 51) (($ (-1196 |#2|)) 32)) (-3459 (((-1098 |#1|) $) 98)) (-3500 ((|#1| $ (-731)) 118)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 54)) (-1475 (($ $) 181 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 157 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 177 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 153 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 185 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 187 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 163 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 183 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 159 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 179 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 155 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 17 T CONST)) (-2943 (($) 19 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 194)) (-2318 (($ $ $) 31)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#1|) 198 (|has| |#1| (-347))) (($ $ $) 134 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 137 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1115 |#1| |#2| |#3|) (-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1115)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-2341 (((-816) $) 27) (($ (-1117)) 29)) (-1533 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 40)) (-1521 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 33) (($ $) 34)) (-2986 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 35)) (-2973 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 37)) (-2960 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 36)) (-2947 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 38)) (-3809 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 39))) -(((-1116) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -2986 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2960 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2973 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2947 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ $))))) (T -1116)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2973 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2947 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1533 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3809 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1521 (*1 *1 *1) (-5 *1 (-1116)))) -(-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -2986 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2960 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2973 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2947 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ $)))) -((-2330 (((-111) $ $) NIL)) (-4129 (($ $ (-606 (-816))) 59)) (-3510 (($ $ (-606 (-816))) 57)) (-3035 (((-1100) $) 84)) (-3858 (((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $) 87)) (-1767 (((-111) $) 22)) (-2225 (($ $ (-606 (-606 (-816)))) 56) (($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) 82)) (-3832 (($) 124 T CONST)) (-3104 (((-1205)) 106)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 66) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 73)) (-3157 (($) 95) (($ $) 101)) (-3923 (($ $) 83)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1285 (((-606 $) $) 107)) (-1654 (((-1100) $) 90)) (-2528 (((-1064) $) NIL)) (-1922 (($ $ (-606 (-816))) 58)) (-3996 (((-513) $) 46) (((-1117) $) 47) (((-845 (-537)) $) 77) (((-845 (-363)) $) 75)) (-2341 (((-816) $) 53) (($ (-1100)) 48)) (-1766 (($ $ (-606 (-816))) 60)) (-1379 (((-1100) $) 33) (((-1100) $ (-111)) 34) (((-1205) (-782) $) 35) (((-1205) (-782) $ (-111)) 36)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 49)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 50))) -(((-1117) (-13 (-807) (-580 (-513)) (-788) (-580 (-1117)) (-580 (-845 (-537))) (-580 (-845 (-363))) (-839 (-537)) (-839 (-363)) (-10 -8 (-15 -3157 ($)) (-15 -3157 ($ $)) (-15 -3104 ((-1205))) (-15 -2341 ($ (-1100))) (-15 -3923 ($ $)) (-15 -1767 ((-111) $)) (-15 -3858 ((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $)) (-15 -2225 ($ $ (-606 (-606 (-816))))) (-15 -2225 ($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))))) (-15 -3510 ($ $ (-606 (-816)))) (-15 -4129 ($ $ (-606 (-816)))) (-15 -1766 ($ $ (-606 (-816)))) (-15 -1922 ($ $ (-606 (-816)))) (-15 -3035 ((-1100) $)) (-15 -1285 ((-606 $) $)) (-15 -3832 ($) -2787)))) (T -1117)) -((-3157 (*1 *1) (-5 *1 (-1117))) (-3157 (*1 *1 *1) (-5 *1 (-1117))) (-3104 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1117)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) (-3923 (*1 *1 *1) (-5 *1 (-1117))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1117)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) (-5 *1 (-1117)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-1117)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) (-5 *1 (-1117)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-1766 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1117)))) (-3832 (*1 *1) (-5 *1 (-1117)))) -(-13 (-807) (-580 (-513)) (-788) (-580 (-1117)) (-580 (-845 (-537))) (-580 (-845 (-363))) (-839 (-537)) (-839 (-363)) (-10 -8 (-15 -3157 ($)) (-15 -3157 ($ $)) (-15 -3104 ((-1205))) (-15 -2341 ($ (-1100))) (-15 -3923 ($ $)) (-15 -1767 ((-111) $)) (-15 -3858 ((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $)) (-15 -2225 ($ $ (-606 (-606 (-816))))) (-15 -2225 ($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))))) (-15 -3510 ($ $ (-606 (-816)))) (-15 -4129 ($ $ (-606 (-816)))) (-15 -1766 ($ $ (-606 (-816)))) (-15 -1922 ($ $ (-606 (-816)))) (-15 -3035 ((-1100) $)) (-15 -1285 ((-606 $) $)) (-15 -3832 ($) -2787))) -((-1232 (((-1200 |#1|) |#1| (-874)) 16) (((-1200 |#1|) (-606 |#1|)) 20))) -(((-1118 |#1|) (-10 -7 (-15 -1232 ((-1200 |#1|) (-606 |#1|))) (-15 -1232 ((-1200 |#1|) |#1| (-874)))) (-998)) (T -1118)) -((-1232 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-1200 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-998)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)) (-5 *1 (-1118 *4))))) -(-10 -7 (-15 -1232 ((-1200 |#1|) (-606 |#1|))) (-15 -1232 ((-1200 |#1|) |#1| (-874)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3240 (($ $ |#1| (-924) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-924)) NIL)) (-1883 (((-924) $) NIL)) (-2199 (($ (-1 (-924) (-924)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-3148 (($ $ (-924) |#1| $) NIL (-12 (|has| (-924) (-129)) (|has| |#1| (-529))))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-2872 (((-924) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-924)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 9 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) 16)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 19)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1119 |#1|) (-13 (-310 |#1| (-924)) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| (-924) (-129)) (-15 -3148 ($ $ (-924) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998)) (T -1119)) -((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-924)) (-4 *2 (-129)) (-5 *1 (-1119 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) -(-13 (-310 |#1| (-924)) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| (-924) (-129)) (-15 -3148 ($ $ (-924) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) -((-2306 (((-1121) (-1117) $) 25)) (-2554 (($) 29)) (-1316 (((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $) 22)) (-1587 (((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $) 41) (((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) 42) (((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) 43)) (-1422 (((-1205) (-1117)) 58)) (-1843 (((-1205) (-1117) $) 55) (((-1205) (-1117)) 56) (((-1205)) 57)) (-1384 (((-1205) (-1117)) 37)) (-2917 (((-1117)) 36)) (-3425 (($) 34)) (-3817 (((-421) (-1117) (-421) (-1117) $) 45) (((-421) (-606 (-1117)) (-421) (-1117) $) 49) (((-421) (-1117) (-421)) 46) (((-421) (-1117) (-421) (-1117)) 50)) (-4057 (((-1117)) 35)) (-2341 (((-816) $) 28)) (-4006 (((-1205)) 30) (((-1205) (-1117)) 33)) (-1353 (((-606 (-1117)) (-1117) $) 24)) (-3411 (((-1205) (-1117) (-606 (-1117)) $) 38) (((-1205) (-1117) (-606 (-1117))) 39) (((-1205) (-606 (-1117))) 40))) -(((-1120) (-13 (-579 (-816)) (-10 -8 (-15 -2554 ($)) (-15 -4006 ((-1205))) (-15 -4006 ((-1205) (-1117))) (-15 -3817 ((-421) (-1117) (-421) (-1117) $)) (-15 -3817 ((-421) (-606 (-1117)) (-421) (-1117) $)) (-15 -3817 ((-421) (-1117) (-421))) (-15 -3817 ((-421) (-1117) (-421) (-1117))) (-15 -1384 ((-1205) (-1117))) (-15 -4057 ((-1117))) (-15 -2917 ((-1117))) (-15 -3411 ((-1205) (-1117) (-606 (-1117)) $)) (-15 -3411 ((-1205) (-1117) (-606 (-1117)))) (-15 -3411 ((-1205) (-606 (-1117)))) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1587 ((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1843 ((-1205) (-1117) $)) (-15 -1843 ((-1205) (-1117))) (-15 -1843 ((-1205))) (-15 -1422 ((-1205) (-1117))) (-15 -3425 ($)) (-15 -1316 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $)) (-15 -1353 ((-606 (-1117)) (-1117) $)) (-15 -2306 ((-1121) (-1117) $))))) (T -1120)) -((-2554 (*1 *1) (-5 *1 (-1120))) (-4006 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-4057 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-2917 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3425 (*1 *1) (-5 *1 (-1120))) (-1316 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-1120)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117)))) (-2306 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) -(-13 (-579 (-816)) (-10 -8 (-15 -2554 ($)) (-15 -4006 ((-1205))) (-15 -4006 ((-1205) (-1117))) (-15 -3817 ((-421) (-1117) (-421) (-1117) $)) (-15 -3817 ((-421) (-606 (-1117)) (-421) (-1117) $)) (-15 -3817 ((-421) (-1117) (-421))) (-15 -3817 ((-421) (-1117) (-421) (-1117))) (-15 -1384 ((-1205) (-1117))) (-15 -4057 ((-1117))) (-15 -2917 ((-1117))) (-15 -3411 ((-1205) (-1117) (-606 (-1117)) $)) (-15 -3411 ((-1205) (-1117) (-606 (-1117)))) (-15 -3411 ((-1205) (-606 (-1117)))) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1587 ((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1843 ((-1205) (-1117) $)) (-15 -1843 ((-1205) (-1117))) (-15 -1843 ((-1205))) (-15 -1422 ((-1205) (-1117))) (-15 -3425 ($)) (-15 -1316 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $)) (-15 -1353 ((-606 (-1117)) (-1117) $)) (-15 -2306 ((-1121) (-1117) $)))) -((-2082 (((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $) 59)) (-3900 (((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $) 43)) (-1514 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) 17)) (-1422 (((-1205) $) 67)) (-3693 (((-606 (-1117)) $) 22)) (-2953 (((-1049) $) 55)) (-1772 (((-421) (-1117) $) 27)) (-3562 (((-606 (-1117)) $) 30)) (-3425 (($) 19)) (-3817 (((-421) (-606 (-1117)) (-421) $) 25) (((-421) (-1117) (-421) $) 24)) (-2341 (((-816) $) 9) (((-1127 (-1117) (-421)) $) 13))) -(((-1121) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ((-1127 (-1117) (-421)) $)) (-15 -3425 ($)) (-15 -3817 ((-421) (-606 (-1117)) (-421) $)) (-15 -3817 ((-421) (-1117) (-421) $)) (-15 -1772 ((-421) (-1117) $)) (-15 -3693 ((-606 (-1117)) $)) (-15 -3900 ((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $)) (-15 -3562 ((-606 (-1117)) $)) (-15 -2082 ((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $)) (-15 -2953 ((-1049) $)) (-15 -1422 ((-1205) $)) (-15 -1514 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))))))) (T -1121)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-1127 (-1117) (-421))) (-5 *1 (-1121)))) (-3425 (*1 *1) (-5 *1 (-1121))) (-3817 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *1 (-1121)))) (-3817 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1121)))) (-1772 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-421)) (-5 *1 (-1121)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121)))) (-3900 (*1 *2 *3 *1) (-12 (-5 *3 (-418)) (-5 *2 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) (-5 *1 (-1121)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))))) (-5 *1 (-1121)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1121)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1121)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) (-5 *1 (-1121))))) -(-13 (-579 (-816)) (-10 -8 (-15 -2341 ((-1127 (-1117) (-421)) $)) (-15 -3425 ($)) (-15 -3817 ((-421) (-606 (-1117)) (-421) $)) (-15 -3817 ((-421) (-1117) (-421) $)) (-15 -1772 ((-421) (-1117) $)) (-15 -3693 ((-606 (-1117)) $)) (-15 -3900 ((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $)) (-15 -3562 ((-606 (-1117)) $)) (-15 -2082 ((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $)) (-15 -2953 ((-1049) $)) (-15 -1422 ((-1205) $)) (-15 -1514 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421)))))))) -((-2330 (((-111) $ $) NIL)) (-1994 (((-111) $) 42)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4242 (((-3 (-537) (-210) (-1117) (-1100) $) $) 50)) (-2735 (((-606 $) $) 55)) (-3996 (((-1049) $) 24) (($ (-1049)) 25)) (-3925 (((-111) $) 52)) (-2341 (((-816) $) NIL) (($ (-537)) 26) (((-537) $) 28) (($ (-210)) 29) (((-210) $) 31) (($ (-1117)) 32) (((-1117) $) 34) (($ (-1100)) 35) (((-1100) $) 37)) (-2915 (((-111) $ (|[\|\|]| (-537))) 11) (((-111) $ (|[\|\|]| (-210))) 15) (((-111) $ (|[\|\|]| (-1117))) 23) (((-111) $ (|[\|\|]| (-1100))) 19)) (-2357 (($ (-1117) (-606 $)) 39) (($ $ (-606 $)) 40)) (-2522 (((-537) $) 27) (((-210) $) 30) (((-1117) $) 33) (((-1100) $) 36)) (-2244 (((-111) $ $) 7))) -(((-1122) (-13 (-1195) (-1045) (-10 -8 (-15 -3996 ((-1049) $)) (-15 -3996 ($ (-1049))) (-15 -2341 ($ (-537))) (-15 -2341 ((-537) $)) (-15 -2522 ((-537) $)) (-15 -2341 ($ (-210))) (-15 -2341 ((-210) $)) (-15 -2522 ((-210) $)) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2522 ((-1117) $)) (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2522 ((-1100) $)) (-15 -2357 ($ (-1117) (-606 $))) (-15 -2357 ($ $ (-606 $))) (-15 -1994 ((-111) $)) (-15 -4242 ((-3 (-537) (-210) (-1117) (-1100) $) $)) (-15 -2735 ((-606 $) $)) (-15 -3925 ((-111) $)) (-15 -2915 ((-111) $ (|[\|\|]| (-537)))) (-15 -2915 ((-111) $ (|[\|\|]| (-210)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1117)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1100))))))) (T -1122)) -((-3996 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2357 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-1122))) (-5 *1 (-1122)))) (-2357 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-3 (-537) (-210) (-1117) (-1100) (-1122))) (-5 *1 (-1122)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-210))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-111)) (-5 *1 (-1122))))) -(-13 (-1195) (-1045) (-10 -8 (-15 -3996 ((-1049) $)) (-15 -3996 ($ (-1049))) (-15 -2341 ($ (-537))) (-15 -2341 ((-537) $)) (-15 -2522 ((-537) $)) (-15 -2341 ($ (-210))) (-15 -2341 ((-210) $)) (-15 -2522 ((-210) $)) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2522 ((-1117) $)) (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2522 ((-1100) $)) (-15 -2357 ($ (-1117) (-606 $))) (-15 -2357 ($ $ (-606 $))) (-15 -1994 ((-111) $)) (-15 -4242 ((-3 (-537) (-210) (-1117) (-1100) $) $)) (-15 -2735 ((-606 $) $)) (-15 -3925 ((-111) $)) (-15 -2915 ((-111) $ (|[\|\|]| (-537)))) (-15 -2915 ((-111) $ (|[\|\|]| (-210)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1117)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1100)))))) -((-3178 (((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 57)) (-1895 (((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|)))) 69) (((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|))) 65) (((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117)) 70) (((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117)) 64) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|))))) 93) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|)))) 92) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117))) 94) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 91))) -(((-1123 |#1|) (-10 -7 (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))))) (-15 -3178 ((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))))) (-529)) (T -1123)) -((-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-905 *5)))) (-5 *1 (-1123 *5)))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) (-5 *1 (-1123 *4)) (-5 *3 (-278 (-391 (-905 *4)))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) (-5 *1 (-1123 *4)) (-5 *3 (-391 (-905 *4))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-278 (-391 (-905 *5)))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-391 (-905 *5))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)) (-5 *3 (-606 (-278 (-391 (-905 *4))))))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5)) (-5 *3 (-606 (-278 (-391 (-905 *5))))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5))))) -(-10 -7 (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))))) (-15 -3178 ((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))))) -((-1633 (((-1100)) 7)) (-1879 (((-1100)) 9)) (-2809 (((-1205) (-1100)) 11)) (-3317 (((-1100)) 8))) -(((-1124) (-10 -7 (-15 -1633 ((-1100))) (-15 -3317 ((-1100))) (-15 -1879 ((-1100))) (-15 -2809 ((-1205) (-1100))))) (T -1124)) -((-2809 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1124)))) (-1879 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124)))) (-3317 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124)))) (-1633 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) -(-10 -7 (-15 -1633 ((-1100))) (-15 -3317 ((-1100))) (-15 -1879 ((-1100))) (-15 -2809 ((-1205) (-1100)))) -((-1639 (((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|)))) 38)) (-1327 (((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|))) 24)) (-3213 (((-1126 (-606 |#1|)) (-606 |#1|)) 34)) (-1695 (((-606 (-606 |#1|)) (-606 |#1|)) 30)) (-2671 (((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))) 37)) (-3423 (((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|)))) 36)) (-2604 (((-606 (-606 |#1|)) (-606 (-606 |#1|))) 28)) (-1321 (((-606 |#1|) (-606 |#1|)) 31)) (-1355 (((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|)))) 18)) (-1318 (((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|)))) 16)) (-1619 (((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|))) 14)) (-4119 (((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|)))) 39)) (-3665 (((-606 (-606 |#1|)) (-1126 (-606 |#1|))) 41))) -(((-1125 |#1|) (-10 -7 (-15 -1619 ((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|)))) (-15 -1318 ((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1355 ((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1639 ((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -4119 ((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -3665 ((-606 (-606 |#1|)) (-1126 (-606 |#1|)))) (-15 -1327 ((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)))) (-15 -3213 ((-1126 (-606 |#1|)) (-606 |#1|))) (-15 -2604 ((-606 (-606 |#1|)) (-606 (-606 |#1|)))) (-15 -1695 ((-606 (-606 |#1|)) (-606 |#1|))) (-15 -1321 ((-606 |#1|) (-606 |#1|))) (-15 -3423 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))))) (-15 -2671 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))))) (-807)) (T -1125)) -((-2671 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-2 (|:| |f1| (-606 *4)) (|:| |f2| (-606 (-606 (-606 *4)))) (|:| |f3| (-606 (-606 *4))) (|:| |f4| (-606 (-606 (-606 *4)))))) (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 (-606 *4)))))) (-3423 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-807)) (-5 *3 (-606 *6)) (-5 *5 (-606 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-606 *5)) (|:| |f3| *5) (|:| |f4| (-606 *5)))) (-5 *1 (-1125 *6)) (-5 *4 (-606 *5)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-1125 *3)))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) (-5 *3 (-606 *4)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-807)) (-5 *1 (-1125 *3)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-1126 (-606 *4))) (-5 *1 (-1125 *4)) (-5 *3 (-606 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 (-606 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 *4))))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-1126 (-606 *4))) (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) (-4 *4 (-807)))) (-1639 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) (-4 *4 (-807)) (-5 *1 (-1125 *4)))) (-1355 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *1 (-1125 *4)))) (-1318 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-606 *5)) (-4 *5 (-807)) (-5 *1 (-1125 *5)))) (-1619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-807)) (-5 *4 (-606 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-606 *4)))) (-5 *1 (-1125 *6)) (-5 *5 (-606 *4))))) -(-10 -7 (-15 -1619 ((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|)))) (-15 -1318 ((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1355 ((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1639 ((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -4119 ((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -3665 ((-606 (-606 |#1|)) (-1126 (-606 |#1|)))) (-15 -1327 ((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)))) (-15 -3213 ((-1126 (-606 |#1|)) (-606 |#1|))) (-15 -2604 ((-606 (-606 |#1|)) (-606 (-606 |#1|)))) (-15 -1695 ((-606 (-606 |#1|)) (-606 |#1|))) (-15 -1321 ((-606 |#1|) (-606 |#1|))) (-15 -3423 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))))) (-15 -2671 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))))) -((-2345 (($ (-606 (-606 |#1|))) 10)) (-3156 (((-606 (-606 |#1|)) $) 11)) (-2341 (((-816) $) 26))) -(((-1126 |#1|) (-10 -8 (-15 -2345 ($ (-606 (-606 |#1|)))) (-15 -3156 ((-606 (-606 |#1|)) $)) (-15 -2341 ((-816) $))) (-1045)) (T -1126)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-1126 *3))))) -(-10 -8 (-15 -2345 ($ (-606 (-606 |#1|)))) (-15 -3156 ((-606 (-606 |#1|)) $)) (-15 -2341 ((-816) $))) -((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1127 |#1| |#2|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045)) (T -1127)) -NIL -(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) -((-1711 ((|#1| (-606 |#1|)) 32)) (-1760 ((|#1| |#1| (-537)) 18)) (-1964 (((-1113 |#1|) |#1| (-874)) 15))) -(((-1128 |#1|) (-10 -7 (-15 -1711 (|#1| (-606 |#1|))) (-15 -1964 ((-1113 |#1|) |#1| (-874))) (-15 -1760 (|#1| |#1| (-537)))) (-347)) (T -1128)) -((-1760 (*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-1128 *2)) (-4 *2 (-347)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-1113 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-347)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) -(-10 -7 (-15 -1711 (|#1| (-606 |#1|))) (-15 -1964 ((-1113 |#1|) |#1| (-874))) (-15 -1760 (|#1| |#1| (-537)))) -((-3144 (($) 10) (($ (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)))) 14)) (-3026 (($ (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 39) (((-606 |#3|) $) 41)) (-4081 (($ (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1612 (($ (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2783 (((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 54)) (-3499 (($ (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 16)) (-1270 (((-606 |#2|) $) 19)) (-1641 (((-111) |#2| $) 59)) (-1266 (((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 58)) (-1599 (((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 63)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-3010 (((-606 |#3|) $) 43)) (-1922 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) NIL) (((-731) |#3| $) NIL) (((-731) (-1 (-111) |#3|) $) 68)) (-2341 (((-816) $) 27)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-2244 (((-111) $ $) 49))) -(((-1129 |#1| |#2| |#3|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3144 (|#1| (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))))) (-15 -3144 (|#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#3|) |#1|)) (-15 -3661 ((-606 |#3|) |#1|)) (-15 -2539 ((-731) |#3| |#1|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1641 ((-111) |#2| |#1|)) (-15 -1270 ((-606 |#2|) |#1|)) (-15 -3026 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3026 (|#1| (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3026 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1266 ((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2783 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3499 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1599 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -2539 ((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3661 ((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2539 ((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3206 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2030 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -4081 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -1612 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|))) (-1130 |#2| |#3|) (-1045) (-1045)) (T -1129)) -NIL -(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3144 (|#1| (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))))) (-15 -3144 (|#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#3|) |#1|)) (-15 -3661 ((-606 |#3|) |#1|)) (-15 -2539 ((-731) |#3| |#1|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1641 ((-111) |#2| |#1|)) (-15 -1270 ((-606 |#2|) |#1|)) (-15 -3026 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3026 (|#1| (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3026 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1266 ((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2783 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3499 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1599 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -2539 ((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3661 ((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2539 ((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3206 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2030 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -4081 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -1612 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|))) -((-2330 (((-111) $ $) 19 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3144 (($) 72) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 71)) (-1279 (((-1205) $ |#1| |#1|) 99 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#2| $ |#1| |#2|) 73)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 88)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300))) (((-606 |#2|) $) 79 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 96 (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300))) (((-606 |#2|) $) 80 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 95 (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40)) (-1270 (((-606 |#1|) $) 93)) (-1641 (((-111) |#1| $) 92)) (-2528 (((-1064) $) 21 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3188 ((|#2| $) 97 (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51)) (-3040 (($ $ |#2|) 98 (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) 83 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 91)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) |#2| $) 81 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4300)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50)) (-2341 (((-816) $) 18 (-1533 (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1130 |#1| |#2|) (-134) (-1045) (-1045)) (T -1130)) -((-2476 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3144 (*1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 *3) (|:| -2140 *4)))) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *1 (-1130 *3 *4)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045))))) -(-13 (-576 |t#1| |t#2|) (-570 |t#1| |t#2|) (-10 -8 (-15 -2476 (|t#2| $ |t#1| |t#2|)) (-15 -3144 ($)) (-15 -3144 ($ (-606 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))))) (-15 -1612 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #0#) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-270 |#1| |#2|) . T) ((-272 |#1| |#2|) . T) ((-293 #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-471 #0#) . T) ((-471 |#2|) . T) ((-570 |#1| |#2|) . T) ((-495 #0# #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-576 |#1| |#2|) . T) ((-1045) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-1154) . T)) -((-1800 (((-111)) 24)) (-1579 (((-1205) (-1100)) 26)) (-1527 (((-111)) 36)) (-2361 (((-1205)) 34)) (-3552 (((-1205) (-1100) (-1100)) 25)) (-2487 (((-111)) 37)) (-3499 (((-1205) |#1| |#2|) 44)) (-4098 (((-1205)) 20)) (-1859 (((-3 |#2| "failed") |#1|) 42)) (-1620 (((-1205)) 35))) -(((-1131 |#1| |#2|) (-10 -7 (-15 -4098 ((-1205))) (-15 -3552 ((-1205) (-1100) (-1100))) (-15 -1579 ((-1205) (-1100))) (-15 -2361 ((-1205))) (-15 -1620 ((-1205))) (-15 -1800 ((-111))) (-15 -1527 ((-111))) (-15 -2487 ((-111))) (-15 -1859 ((-3 |#2| "failed") |#1|)) (-15 -3499 ((-1205) |#1| |#2|))) (-1045) (-1045)) (T -1131)) -((-3499 (*1 *2 *3 *4) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1859 (*1 *2 *3) (|partial| -12 (-4 *2 (-1045)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1045)))) (-2487 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1527 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1800 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1620 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-2361 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)))) (-3552 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)))) (-4098 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045))))) -(-10 -7 (-15 -4098 ((-1205))) (-15 -3552 ((-1205) (-1100) (-1100))) (-15 -1579 ((-1205) (-1100))) (-15 -2361 ((-1205))) (-15 -1620 ((-1205))) (-15 -1800 ((-111))) (-15 -1527 ((-111))) (-15 -2487 ((-111))) (-15 -1859 ((-3 |#2| "failed") |#1|)) (-15 -3499 ((-1205) |#1| |#2|))) -((-3844 (((-1100) (-1100)) 18)) (-3943 (((-51) (-1100)) 21))) -(((-1132) (-10 -7 (-15 -3943 ((-51) (-1100))) (-15 -3844 ((-1100) (-1100))))) (T -1132)) -((-3844 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1132)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-1132))))) -(-10 -7 (-15 -3943 ((-51) (-1100))) (-15 -3844 ((-1100) (-1100)))) -((-2341 (((-1134) |#1|) 11))) -(((-1133 |#1|) (-10 -7 (-15 -2341 ((-1134) |#1|))) (-1045)) (T -1133)) -((-2341 (*1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *1 (-1133 *3)) (-4 *3 (-1045))))) -(-10 -7 (-15 -2341 ((-1134) |#1|))) -((-2330 (((-111) $ $) NIL)) (-2253 (((-606 (-1100)) $) 34)) (-1814 (((-606 (-1100)) $ (-606 (-1100))) 37)) (-3066 (((-606 (-1100)) $ (-606 (-1100))) 36)) (-1486 (((-606 (-1100)) $ (-606 (-1100))) 38)) (-1677 (((-606 (-1100)) $) 33)) (-3157 (($) 22)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4107 (((-606 (-1100)) $) 35)) (-2356 (((-1205) $ (-537)) 29) (((-1205) $) 30)) (-3996 (($ (-816) (-537)) 26) (($ (-816) (-537) (-816)) NIL)) (-2341 (((-816) $) 40) (($ (-816)) 24)) (-2244 (((-111) $ $) NIL))) -(((-1134) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -3996 ($ (-816) (-537) (-816))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2253 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1814 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100))))))) (T -1134)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1134)))) (-3996 (*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) (-3996 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1134)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1134)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-3157 (*1 *1) (-5 *1 (-1134))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-1814 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-3066 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -3996 ($ (-816) (-537) (-816))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2253 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1814 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100)))))) -((-2330 (((-111) $ $) NIL)) (-2331 (((-1100) $ (-1100)) 17) (((-1100) $) 16)) (-3160 (((-1100) $ (-1100)) 15)) (-1898 (($ $ (-1100)) NIL)) (-2079 (((-3 (-1100) "failed") $) 11)) (-2870 (((-1100) $) 8)) (-2012 (((-3 (-1100) "failed") $) 12)) (-2151 (((-1100) $) 9)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) NIL)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2491 (((-111) $) 18)) (-2341 (((-816) $) NIL)) (-1338 (($ $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-1135) (-13 (-348 (-372) (-1100)) (-10 -8 (-15 -2331 ((-1100) $ (-1100))) (-15 -2331 ((-1100) $)) (-15 -2870 ((-1100) $)) (-15 -2079 ((-3 (-1100) "failed") $)) (-15 -2012 ((-3 (-1100) "failed") $)) (-15 -2491 ((-111) $))))) (T -1135)) -((-2331 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2079 (*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1135))))) -(-13 (-348 (-372) (-1100)) (-10 -8 (-15 -2331 ((-1100) $ (-1100))) (-15 -2331 ((-1100) $)) (-15 -2870 ((-1100) $)) (-15 -2079 ((-3 (-1100) "failed") $)) (-15 -2012 ((-3 (-1100) "failed") $)) (-15 -2491 ((-111) $)))) -((-2537 (((-3 (-537) "failed") |#1|) 19)) (-2255 (((-3 (-537) "failed") |#1|) 14)) (-1846 (((-537) (-1100)) 28))) -(((-1136 |#1|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") |#1|)) (-15 -2255 ((-3 (-537) "failed") |#1|)) (-15 -1846 ((-537) (-1100)))) (-998)) (T -1136)) -((-1846 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-1136 *4)) (-4 *4 (-998)))) (-2255 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998)))) (-2537 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) -(-10 -7 (-15 -2537 ((-3 (-537) "failed") |#1|)) (-15 -2255 ((-3 (-537) "failed") |#1|)) (-15 -1846 ((-537) (-1100)))) -((-3015 (((-1077 (-210))) 9))) -(((-1137) (-10 -7 (-15 -3015 ((-1077 (-210)))))) (T -1137)) -((-3015 (*1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1137))))) -(-10 -7 (-15 -3015 ((-1077 (-210))))) -((-3338 (($) 11)) (-1475 (($ $) 35)) (-1453 (($ $) 33)) (-1300 (($ $) 25)) (-1495 (($ $) 17)) (-4141 (($ $) 15)) (-1485 (($ $) 19)) (-1340 (($ $) 30)) (-1465 (($ $) 34)) (-1314 (($ $) 29))) -(((-1138 |#1|) (-10 -8 (-15 -3338 (|#1|)) (-15 -1475 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1314 (|#1| |#1|))) (-1139)) (T -1138)) -NIL -(-10 -8 (-15 -3338 (|#1|)) (-15 -1475 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1314 (|#1| |#1|))) -((-1403 (($ $) 26)) (-1247 (($ $) 11)) (-1378 (($ $) 27)) (-4270 (($ $) 10)) (-1429 (($ $) 28)) (-1273 (($ $) 9)) (-3338 (($) 16)) (-2180 (($ $) 19)) (-4185 (($ $) 18)) (-1441 (($ $) 29)) (-1286 (($ $) 8)) (-1415 (($ $) 30)) (-1259 (($ $) 7)) (-1389 (($ $) 31)) (-1234 (($ $) 6)) (-1475 (($ $) 20)) (-1328 (($ $) 32)) (-1453 (($ $) 21)) (-1300 (($ $) 33)) (-1495 (($ $) 22)) (-1352 (($ $) 34)) (-4141 (($ $) 23)) (-1365 (($ $) 35)) (-1485 (($ $) 24)) (-1340 (($ $) 36)) (-1465 (($ $) 25)) (-1314 (($ $) 37)) (** (($ $ $) 17))) -(((-1139) (-134)) (T -1139)) -((-3338 (*1 *1) (-4 *1 (-1139)))) -(-13 (-1142) (-93) (-474) (-34) (-268) (-10 -8 (-15 -3338 ($)))) -(((-34) . T) ((-93) . T) ((-268) . T) ((-474) . T) ((-1142) . T)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 17)) (-3016 (($ |#1| (-606 $)) 23) (($ (-606 |#1|)) 27) (($ |#1|) 25)) (-2506 (((-111) $ (-731)) 48)) (-3650 ((|#1| $ |#1|) 14 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 13 (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3661 (((-606 |#1|) $) 52 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 43)) (-3868 (((-111) $ $) 33 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 41)) (-3703 (((-606 |#1|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2489 (((-111) $ (-731)) 40)) (-3583 (((-606 |#1|) $) 37)) (-3862 (((-111) $) 36)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 74)) (-2193 (((-111) $) 9)) (-3425 (($) 10)) (-1922 ((|#1| $ "value") NIL)) (-2364 (((-537) $ $) 32)) (-1588 (((-606 $) $) 59)) (-3642 (((-111) $ $) 77)) (-1662 (((-606 $) $) 72)) (-1438 (($ $) 73)) (-3335 (((-111) $) 56)) (-2539 (((-731) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4300))) (((-731) |#1| $) 16 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 58)) (-2341 (((-816) $) 61 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 12)) (-4261 (((-111) $ $) 29 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 28 (|has| |#1| (-1045)))) (-2258 (((-731) $) 39 (|has| $ (-6 -4300))))) -(((-1140 |#1|) (-13 (-962 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -3016 ($ |#1| (-606 $))) (-15 -3016 ($ (-606 |#1|))) (-15 -3016 ($ |#1|)) (-15 -3335 ((-111) $)) (-15 -1438 ($ $)) (-15 -1662 ((-606 $) $)) (-15 -3642 ((-111) $ $)) (-15 -1588 ((-606 $) $)))) (-1045)) (T -1140)) -((-3335 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-1140 *2))) (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-1140 *3)))) (-3016 (*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-3642 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) -(-13 (-962 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -3016 ($ |#1| (-606 $))) (-15 -3016 ($ (-606 |#1|))) (-15 -3016 ($ |#1|)) (-15 -3335 ((-111) $)) (-15 -1438 ($ $)) (-15 -1662 ((-606 $) $)) (-15 -3642 ((-111) $ $)) (-15 -1588 ((-606 $) $)))) -((-1247 (($ $) 15)) (-1273 (($ $) 12)) (-1286 (($ $) 10)) (-1259 (($ $) 17))) -(((-1141 |#1|) (-10 -8 (-15 -1259 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1247 (|#1| |#1|))) (-1142)) (T -1141)) -NIL -(-10 -8 (-15 -1259 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1247 (|#1| |#1|))) -((-1247 (($ $) 11)) (-4270 (($ $) 10)) (-1273 (($ $) 9)) (-1286 (($ $) 8)) (-1259 (($ $) 7)) (-1234 (($ $) 6))) -(((-1142) (-134)) (T -1142)) -((-1247 (*1 *1 *1) (-4 *1 (-1142))) (-4270 (*1 *1 *1) (-4 *1 (-1142))) (-1273 (*1 *1 *1) (-4 *1 (-1142))) (-1286 (*1 *1 *1) (-4 *1 (-1142))) (-1259 (*1 *1 *1) (-4 *1 (-1142))) (-1234 (*1 *1 *1) (-4 *1 (-1142)))) -(-13 (-10 -8 (-15 -1234 ($ $)) (-15 -1259 ($ $)) (-15 -1286 ($ $)) (-15 -1273 ($ $)) (-15 -4270 ($ $)) (-15 -1247 ($ $)))) -((-1860 ((|#2| |#2|) 88)) (-3928 (((-111) |#2|) 26)) (-3645 ((|#2| |#2|) 30)) (-3656 ((|#2| |#2|) 32)) (-2523 ((|#2| |#2| (-1117)) 83) ((|#2| |#2|) 84)) (-3082 (((-160 |#2|) |#2|) 28)) (-2435 ((|#2| |#2| (-1117)) 85) ((|#2| |#2|) 86))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -1860 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -3082 ((-160 |#2|) |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -1143)) -((-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-160 *3)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-111)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-2435 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-2523 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) -(-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -1860 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -3082 ((-160 |#2|) |#2|))) -((-4202 ((|#4| |#4| |#1|) 27)) (-2216 ((|#4| |#4| |#1|) 28))) -(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 (|#4| |#4| |#1|)) (-15 -2216 (|#4| |#4| |#1|))) (-529) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -1144)) -((-2216 (*1 *2 *2 *3) (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4202 (*1 *2 *2 *3) (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(-10 -7 (-15 -4202 (|#4| |#4| |#1|)) (-15 -2216 (|#4| |#4| |#1|))) -((-2088 ((|#2| |#2|) 133)) (-2327 ((|#2| |#2|) 130)) (-1912 ((|#2| |#2|) 121)) (-3393 ((|#2| |#2|) 118)) (-3512 ((|#2| |#2|) 126)) (-4275 ((|#2| |#2|) 114)) (-3840 ((|#2| |#2|) 43)) (-1878 ((|#2| |#2|) 94)) (-3176 ((|#2| |#2|) 74)) (-2778 ((|#2| |#2|) 128)) (-4140 ((|#2| |#2|) 116)) (-1572 ((|#2| |#2|) 138)) (-2878 ((|#2| |#2|) 136)) (-3780 ((|#2| |#2|) 137)) (-2662 ((|#2| |#2|) 135)) (-1670 ((|#2| |#2|) 148)) (-3295 ((|#2| |#2|) 30 (-12 (|has| |#2| (-580 (-845 |#1|))) (|has| |#2| (-839 |#1|)) (|has| |#1| (-580 (-845 |#1|))) (|has| |#1| (-839 |#1|))))) (-3140 ((|#2| |#2|) 75)) (-3990 ((|#2| |#2|) 139)) (-1905 ((|#2| |#2|) 140)) (-2856 ((|#2| |#2|) 127)) (-4109 ((|#2| |#2|) 115)) (-1809 ((|#2| |#2|) 134)) (-1535 ((|#2| |#2|) 132)) (-2699 ((|#2| |#2|) 122)) (-3086 ((|#2| |#2|) 120)) (-4268 ((|#2| |#2|) 124)) (-2455 ((|#2| |#2|) 112))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -1905 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -2778 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (IF (|has| |#1| (-839 |#1|)) (IF (|has| |#1| (-580 (-845 |#1|))) (IF (|has| |#2| (-580 (-845 |#1|))) (IF (|has| |#2| (-839 |#1|)) (-15 -3295 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-807) (-435)) (-13 (-414 |#1|) (-1139))) (T -1145)) -((-3295 (*1 *2 *2) (-12 (-4 *3 (-580 (-845 *3))) (-4 *3 (-839 *3)) (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-580 (-845 *3))) (-4 *2 (-839 *3)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2778 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3140 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139)))))) -(-10 -7 (-15 -1905 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -2778 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (IF (|has| |#1| (-839 |#1|)) (IF (|has| |#1| (-580 (-845 |#1|))) (IF (|has| |#2| (-580 (-845 |#1|))) (IF (|has| |#2| (-839 |#1|)) (-15 -3295 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1503 (((-111) |#5| $) 60) (((-111) $) 102)) (-4186 ((|#5| |#5| $) 75)) (-1936 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2550 (((-606 |#5|) (-606 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-1516 (((-3 $ "failed") (-606 |#5|)) 126)) (-3200 (((-3 $ "failed") $) 112)) (-2627 ((|#5| |#5| $) 94)) (-1369 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-3946 ((|#5| |#5| $) 98)) (-3195 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-2702 (((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) $) 55)) (-3201 (((-111) |#5| $) 58) (((-111) $) 103)) (-1464 ((|#4| $) 108)) (-2375 (((-3 |#5| "failed") $) 110)) (-2422 (((-606 |#5|) $) 49)) (-3812 (((-111) |#5| $) 67) (((-111) $) 107)) (-3787 ((|#5| |#5| $) 81)) (-1981 (((-111) $ $) 27)) (-2524 (((-111) |#5| $) 63) (((-111) $) 105)) (-2021 ((|#5| |#5| $) 78)) (-3188 (((-3 |#5| "failed") $) 109)) (-1540 (($ $ |#5|) 127)) (-2872 (((-731) $) 52)) (-2350 (($ (-606 |#5|)) 124)) (-1713 (($ $ |#4|) 122)) (-2488 (($ $ |#4|) 121)) (-2830 (($ $) 120)) (-2341 (((-816) $) NIL) (((-606 |#5|) $) 113)) (-3458 (((-731) $) 130)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-3893 (((-111) $ (-1 (-111) |#5| (-606 |#5|))) 100)) (-3194 (((-606 |#4|) $) 115)) (-3042 (((-111) |#4| $) 118)) (-2244 (((-111) $ $) 19))) -(((-1146 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3458 ((-731) |#1|)) (-15 -1540 (|#1| |#1| |#5|)) (-15 -1936 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3042 ((-111) |#4| |#1|)) (-15 -3194 ((-606 |#4|) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-3 |#5| "failed") |#1|)) (-15 -3188 ((-3 |#5| "failed") |#1|)) (-15 -3946 (|#5| |#5| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2627 (|#5| |#5| |#1|)) (-15 -3787 (|#5| |#5| |#1|)) (-15 -2021 (|#5| |#5| |#1|)) (-15 -4186 (|#5| |#5| |#1|)) (-15 -2550 ((-606 |#5|) (-606 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3195 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3812 ((-111) |#1|)) (-15 -2524 ((-111) |#1|)) (-15 -1503 ((-111) |#1|)) (-15 -3893 ((-111) |#1| (-1 (-111) |#5| (-606 |#5|)))) (-15 -3812 ((-111) |#5| |#1|)) (-15 -2524 ((-111) |#5| |#1|)) (-15 -1503 ((-111) |#5| |#1|)) (-15 -1369 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3201 ((-111) |#1|)) (-15 -3201 ((-111) |#5| |#1|)) (-15 -2702 ((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) |#1|)) (-15 -2872 ((-731) |#1|)) (-15 -2422 ((-606 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1981 ((-111) |#1| |#1|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -1464 (|#4| |#1|)) (-15 -1516 ((-3 |#1| "failed") (-606 |#5|))) (-15 -2341 ((-606 |#5|) |#1|)) (-15 -2350 (|#1| (-606 |#5|))) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1936 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-1147 |#2| |#3| |#4| |#5|) (-529) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -1146)) -NIL -(-10 -8 (-15 -3458 ((-731) |#1|)) (-15 -1540 (|#1| |#1| |#5|)) (-15 -1936 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3042 ((-111) |#4| |#1|)) (-15 -3194 ((-606 |#4|) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-3 |#5| "failed") |#1|)) (-15 -3188 ((-3 |#5| "failed") |#1|)) (-15 -3946 (|#5| |#5| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2627 (|#5| |#5| |#1|)) (-15 -3787 (|#5| |#5| |#1|)) (-15 -2021 (|#5| |#5| |#1|)) (-15 -4186 (|#5| |#5| |#1|)) (-15 -2550 ((-606 |#5|) (-606 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3195 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3812 ((-111) |#1|)) (-15 -2524 ((-111) |#1|)) (-15 -1503 ((-111) |#1|)) (-15 -3893 ((-111) |#1| (-1 (-111) |#5| (-606 |#5|)))) (-15 -3812 ((-111) |#5| |#1|)) (-15 -2524 ((-111) |#5| |#1|)) (-15 -1503 ((-111) |#5| |#1|)) (-15 -1369 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3201 ((-111) |#1|)) (-15 -3201 ((-111) |#5| |#1|)) (-15 -2702 ((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) |#1|)) (-15 -2872 ((-731) |#1|)) (-15 -2422 ((-606 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1981 ((-111) |#1| |#1|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -1464 (|#4| |#1|)) (-15 -1516 ((-3 |#1| "failed") (-606 |#5|))) (-15 -2341 ((-606 |#5|) |#1|)) (-15 -2350 (|#1| (-606 |#5|))) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1936 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) -((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-2375 (((-3 |#4| "failed") $) 83)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) -(((-1147 |#1| |#2| |#3| |#4|) (-134) (-529) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1147)) -((-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *8)))) (-5 *3 (-606 *8)) (-4 *1 (-1147 *5 *6 *7 *8)))) (-2895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *9)))) (-5 *3 (-606 *9)) (-4 *1 (-1147 *6 *7 *8 *9)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *6)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-731)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-606 *6)) (|:| -3309 (-606 *6)))))) (-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-1369 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1147 *5 *6 *7 *3)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)))) (-1503 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2524 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3812 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-606 *7))) (-4 *1 (-1147 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3195 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1147 *5 *6 *7 *2)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *2 (-1012 *5 *6 *7)))) (-2550 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1147 *5 *6 *7 *8)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)))) (-4186 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2021 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3787 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2627 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2830 (*1 *1 *1) (-12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) (-3946 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1147 *4 *5 *6 *7)))) (-2544 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| -2337 *1) (|:| -3309 (-606 *7))))) (-5 *3 (-606 *7)) (-4 *1 (-1147 *4 *5 *6 *7)))) (-3188 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2375 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3200 (*1 *1 *1) (|partial| -12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-3042 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *3 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) (-1936 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1147 *4 *5 *3 *2)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *2 (-1012 *4 *5 *3)))) (-3389 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *5 (-352)) (-5 *2 (-731))))) -(-13 (-929 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -1981 ((-111) $ $)) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |t#4|))) "failed") (-606 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |t#4|))) "failed") (-606 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2422 ((-606 |t#4|) $)) (-15 -2872 ((-731) $)) (-15 -2702 ((-2 (|:| -2337 (-606 |t#4|)) (|:| -3309 (-606 |t#4|))) $)) (-15 -3201 ((-111) |t#4| $)) (-15 -3201 ((-111) $)) (-15 -1369 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -1503 ((-111) |t#4| $)) (-15 -2524 ((-111) |t#4| $)) (-15 -3812 ((-111) |t#4| $)) (-15 -3893 ((-111) $ (-1 (-111) |t#4| (-606 |t#4|)))) (-15 -1503 ((-111) $)) (-15 -2524 ((-111) $)) (-15 -3812 ((-111) $)) (-15 -3195 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2550 ((-606 |t#4|) (-606 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4186 (|t#4| |t#4| $)) (-15 -2021 (|t#4| |t#4| $)) (-15 -3787 (|t#4| |t#4| $)) (-15 -2627 (|t#4| |t#4| $)) (-15 -2830 ($ $)) (-15 -3946 (|t#4| |t#4| $)) (-15 -3448 ((-606 $) (-606 |t#4|))) (-15 -2544 ((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |t#4|)))) (-606 |t#4|))) (-15 -3188 ((-3 |t#4| "failed") $)) (-15 -2375 ((-3 |t#4| "failed") $)) (-15 -3200 ((-3 $ "failed") $)) (-15 -3194 ((-606 |t#3|) $)) (-15 -3042 ((-111) |t#3| $)) (-15 -1936 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3389 ((-3 $ "failed") $ |t#4|)) (-15 -1540 ($ $ |t#4|)) (IF (|has| |t#3| (-352)) (-15 -3458 ((-731) $)) |%noBranch|))) -(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1154) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1706 (((-905 |#1|) $ (-731)) 17) (((-905 |#1|) $ (-731) (-731)) NIL)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $ (-1117) (-731)) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) NIL)) (-3733 (($ $ (-606 (-1117)) (-606 (-509 (-1117)))) NIL) (($ $ (-1117) (-509 (-1117))) NIL) (($ |#1| (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $ (-1117)) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3714 (($ (-1 $) (-1117) |#1|) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1540 (($ $ (-731)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ (-1117) $) NIL) (($ $ (-606 (-1117)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL)) (-3456 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2872 (((-509 (-1117)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-1117)) NIL) (($ (-905 |#1|)) NIL)) (-3500 ((|#1| $ (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (((-905 |#1|) $ (-731)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1148 |#1|) (-13 (-701 |#1| (-1117)) (-10 -8 (-15 -3500 ((-905 |#1|) $ (-731))) (-15 -2341 ($ (-1117))) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ (-1117) |#1|)) (-15 -3714 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) (-998)) (T -1148)) -((-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-905 *4)) (-5 *1 (-1148 *4)) (-4 *4 (-998)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-1148 *3)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)))) (-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1148 *4))) (-5 *3 (-1117)) (-5 *1 (-1148 *4)) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) -(-13 (-701 |#1| (-1117)) (-10 -8 (-15 -3500 ((-905 |#1|) $ (-731))) (-15 -2341 ($ (-1117))) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ (-1117) |#1|)) (-15 -3714 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) -((-3911 (($ |#1| (-606 (-606 (-896 (-210)))) (-111)) 19)) (-1549 (((-111) $ (-111)) 18)) (-3738 (((-111) $) 17)) (-1400 (((-606 (-606 (-896 (-210)))) $) 13)) (-3986 ((|#1| $) 8)) (-4179 (((-111) $) 15))) -(((-1149 |#1|) (-10 -8 (-15 -3986 (|#1| $)) (-15 -1400 ((-606 (-606 (-896 (-210)))) $)) (-15 -4179 ((-111) $)) (-15 -3738 ((-111) $)) (-15 -1549 ((-111) $ (-111))) (-15 -3911 ($ |#1| (-606 (-606 (-896 (-210)))) (-111)))) (-927)) (T -1149)) -((-3911 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-111)) (-5 *1 (-1149 *2)) (-4 *2 (-927)))) (-1549 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-3986 (*1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-927))))) -(-10 -8 (-15 -3986 (|#1| $)) (-15 -1400 ((-606 (-606 (-896 (-210)))) $)) (-15 -4179 ((-111) $)) (-15 -3738 ((-111) $)) (-15 -1549 ((-111) $ (-111))) (-15 -3911 ($ |#1| (-606 (-606 (-896 (-210)))) (-111)))) -((-3492 (((-896 (-210)) (-896 (-210))) 25)) (-2385 (((-896 (-210)) (-210) (-210) (-210) (-210)) 10)) (-1494 (((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210)))) 37)) (-3416 (((-210) (-896 (-210)) (-896 (-210))) 21)) (-2218 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 22)) (-3340 (((-606 (-606 (-210))) (-537)) 31)) (-2329 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 20)) (-2318 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 19)) (* (((-896 (-210)) (-210) (-896 (-210))) 18))) -(((-1150) (-10 -7 (-15 -2385 ((-896 (-210)) (-210) (-210) (-210) (-210))) (-15 * ((-896 (-210)) (-210) (-896 (-210)))) (-15 -2318 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -2329 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3416 ((-210) (-896 (-210)) (-896 (-210)))) (-15 -2218 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3492 ((-896 (-210)) (-896 (-210)))) (-15 -3340 ((-606 (-606 (-210))) (-537))) (-15 -1494 ((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210))))))) (T -1150)) -((-1494 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-606 (-606 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 (-896 *4))) (-5 *1 (-1150)) (-5 *3 (-896 *4)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-1150)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-2218 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-210)) (-5 *1 (-1150)))) (-2329 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-2318 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-896 (-210))) (-5 *3 (-210)) (-5 *1 (-1150)))) (-2385 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)) (-5 *3 (-210))))) -(-10 -7 (-15 -2385 ((-896 (-210)) (-210) (-210) (-210) (-210))) (-15 * ((-896 (-210)) (-210) (-896 (-210)))) (-15 -2318 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -2329 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3416 ((-210) (-896 (-210)) (-896 (-210)))) (-15 -2218 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3492 ((-896 (-210)) (-896 (-210)))) (-15 -3340 ((-606 (-606 (-210))) (-537))) (-15 -1494 ((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210)))))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1936 ((|#1| $ (-731)) 13)) (-3845 (((-731) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-2341 (((-911 |#1|) $) 10) (($ (-911 |#1|)) 9) (((-816) $) 23 (|has| |#1| (-579 (-816))))) (-2244 (((-111) $ $) 16 (|has| |#1| (-1045))))) -(((-1151 |#1|) (-13 (-579 (-911 |#1|)) (-10 -8 (-15 -2341 ($ (-911 |#1|))) (-15 -1936 (|#1| $ (-731))) (-15 -3845 ((-731) $)) (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -1151)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-1154)) (-5 *1 (-1151 *3)))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-1151 *2)) (-4 *2 (-1154)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1151 *3)) (-4 *3 (-1154))))) -(-13 (-579 (-911 |#1|)) (-10 -8 (-15 -2341 ($ (-911 |#1|))) (-15 -1936 (|#1| $ (-731))) (-15 -3845 ((-731) $)) (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) -((-1727 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)) 80)) (-2460 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|))) 74)) (-1560 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|))) 59))) -(((-1152 |#1|) (-10 -7 (-15 -2460 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1560 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1727 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)))) (-333)) (T -1152)) -((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *5 (-333)) (-5 *2 (-402 (-1113 (-1113 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-1113 (-1113 *5))))) (-1560 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4))))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) -(-10 -7 (-15 -2460 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1560 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1727 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (($ (-1122)) 8)) (-2244 (((-111) $ $) NIL))) -(((-1153) (-13 (-1029) (-10 -8 (-15 -2341 ($ (-1122)))))) (T -1153)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1153))))) -(-13 (-1029) (-10 -8 (-15 -2341 ($ (-1122))))) -NIL -(((-1154) (-134)) (T -1154)) -NIL -(-13 (-10 -7 (-6 -4120))) -((-3008 (((-111)) 15)) (-4223 (((-1205) (-606 |#1|) (-606 |#1|)) 19) (((-1205) (-606 |#1|)) 20)) (-1642 (((-111) |#1| |#1|) 32 (|has| |#1| (-807)))) (-2489 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-3273 ((|#1| (-606 |#1|)) 33 (|has| |#1| (-807))) ((|#1| (-606 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-1685 (((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|)))) 17))) -(((-1155 |#1|) (-10 -7 (-15 -4223 ((-1205) (-606 |#1|))) (-15 -4223 ((-1205) (-606 |#1|) (-606 |#1|))) (-15 -1685 ((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|))))) (-15 -2489 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2489 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -3273 (|#1| (-606 |#1|) (-1 (-111) |#1| |#1|))) (-15 -3008 ((-111))) (IF (|has| |#1| (-807)) (PROGN (-15 -3273 (|#1| (-606 |#1|))) (-15 -1642 ((-111) |#1| |#1|))) |%noBranch|)) (-1045)) (T -1155)) -((-1642 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-807)) (-4 *3 (-1045)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-807)) (-5 *1 (-1155 *2)))) (-3008 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1155 *2)) (-4 *2 (-1045)))) (-2489 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1045)) (-5 *2 (-111)) (-5 *1 (-1155 *3)))) (-2489 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-1685 (*1 *2) (-12 (-5 *2 (-2 (|:| -3039 (-606 *3)) (|:| -1687 (-606 *3)))) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-4223 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) (-5 *1 (-1155 *4)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) (-5 *1 (-1155 *4))))) -(-10 -7 (-15 -4223 ((-1205) (-606 |#1|))) (-15 -4223 ((-1205) (-606 |#1|) (-606 |#1|))) (-15 -1685 ((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|))))) (-15 -2489 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2489 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -3273 (|#1| (-606 |#1|) (-1 (-111) |#1| |#1|))) (-15 -3008 ((-111))) (IF (|has| |#1| (-807)) (PROGN (-15 -3273 (|#1| (-606 |#1|))) (-15 -1642 ((-111) |#1| |#1|))) |%noBranch|)) -((-2970 (((-1205) (-606 (-1117)) (-606 (-1117))) 13) (((-1205) (-606 (-1117))) 11)) (-1407 (((-1205)) 14)) (-3233 (((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) 18))) -(((-1156) (-10 -7 (-15 -2970 ((-1205) (-606 (-1117)))) (-15 -2970 ((-1205) (-606 (-1117)) (-606 (-1117)))) (-15 -3233 ((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117)))))) (-15 -1407 ((-1205))))) (T -1156)) -((-1407 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1156)))) (-3233 (*1 *2) (-12 (-5 *2 (-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) (-5 *1 (-1156)))) (-2970 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156))))) -(-10 -7 (-15 -2970 ((-1205) (-606 (-1117)))) (-15 -2970 ((-1205) (-606 (-1117)) (-606 (-1117)))) (-15 -3233 ((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117)))))) (-15 -1407 ((-1205)))) -((-1395 (($ $) 17)) (-2639 (((-111) $) 24))) -(((-1157 |#1|) (-10 -8 (-15 -1395 (|#1| |#1|)) (-15 -2639 ((-111) |#1|))) (-1158)) (T -1157)) -NIL -(-10 -8 (-15 -1395 (|#1| |#1|)) (-15 -2639 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2639 (((-111) $) 51)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 48)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) -(((-1158) (-134)) (T -1158)) -((-2639 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-111)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) (-1395 (*1 *1 *1) (-4 *1 (-1158))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158))))) -(-13 (-435) (-10 -8 (-15 -2639 ((-111) $)) (-15 -2414 ((-402 $) $)) (-15 -1395 ($ $)) (-15 -3622 ((-402 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1612 (((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)) 23))) -(((-1159 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 ((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)))) (-998) (-998) (-1117) (-1117) |#1| |#2|) (T -1159)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-998)) (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) -(-10 -7 (-15 -1612 ((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 96) (($ $ (-537) (-537)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 171)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 169 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 168 (|has| |#1| (-529)))) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-537) $) 98) (((-537) $ (-537)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 170)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-537)) 59) (($ $ (-1027) (-537)) 74) (($ $ (-606 (-1027)) (-606 (-537))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-537)))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 102) (($ $ $) 79 (|has| (-537) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2872 (((-537) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1160 |#1|) (-134) (-998)) (T -1160)) -((-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-4 *3 (-998)) (-4 *1 (-1160 *3)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1160 *3)) (-4 *3 (-998)))) (-1897 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) (-5 *2 (-391 (-905 *4))))) (-1897 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) (-5 *2 (-391 (-905 *4))))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) -(-13 (-1178 |t#1| (-537)) (-10 -8 (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |t#1|))))) (-15 -3968 ($ (-1 |t#1| (-537)) $)) (IF (|has| |t#1| (-529)) (PROGN (-15 -1897 ((-391 (-905 |t#1|)) $ (-537))) (-15 -1897 ((-391 (-905 |t#1|)) $ (-537) (-537)))) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-537)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-537) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-537) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T)) -((-1656 (((-111) $) 12)) (-1516 (((-3 |#3| "failed") $) 17) (((-3 (-1117) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL)) (-3958 ((|#3| $) 14) (((-1117) $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL))) -(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) (-1162 |#2| |#3|) (-998) (-1191 |#2|)) (T -1161)) -NIL -(-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 ((|#2| $) 228 (-3319 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 96) (($ $ (-537) (-537)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 103)) (-2712 ((|#2| $) 264)) (-2516 (((-3 |#2| "failed") $) 260)) (-3815 ((|#2| $) 261)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 237 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 234 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) 246 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 171)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 267) (((-3 (-537) "failed") $) 256 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) 254 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-1117) "failed") $) 239 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-3958 ((|#2| $) 266) (((-537) $) 257 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-391 (-537)) $) 255 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-1117) $) 240 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-4000 (($ $) 263) (($ (-537) $) 262)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-2053 (((-649 |#2|) (-649 $)) 218 (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 217 (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 216 (-3319 (|has| |#2| (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) 215 (-3319 (|has| |#2| (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 32)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 169 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 168 (|has| |#1| (-529)))) (-1618 (($) 230 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-3797 (((-111) $) 244 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 222 (-3319 (|has| |#2| (-839 (-363))) (|has| |#1| (-347)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 221 (-3319 (|has| |#2| (-839 (-537))) (|has| |#1| (-347))))) (-4231 (((-537) $) 98) (((-537) $ (-537)) 97)) (-2836 (((-111) $) 30)) (-2868 (($ $) 226 (|has| |#1| (-347)))) (-3301 ((|#2| $) 224 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) 258 (-3319 (|has| |#2| (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) 245 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 170)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-537)) 59) (($ $ (-1027) (-537)) 74) (($ $ (-606 (-1027)) (-606 (-537))) 73)) (-2444 (($ $ $) 248 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-3889 (($ $ $) 249 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-1612 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-347)))) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-3827 (($ (-537) |#2|) 265)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-3956 (($) 259 (-3319 (|has| |#2| (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-1790 (($ $) 229 (-3319 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3830 ((|#2| $) 232 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) 235 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) 236 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) |#2|) 209 (-3319 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 |#2|)) 208 (-3319 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-278 |#2|))) 207 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-278 |#2|)) 206 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ |#2| |#2|) 205 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-606 |#2|) (-606 |#2|)) 204 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 102) (($ $ $) 79 (|has| (-537) (-1057))) (($ $ |#2|) 203 (-3319 (|has| |#2| (-270 |#2| |#2|)) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) 213 (|has| |#1| (-347))) (($ $ (-731)) 82 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 80 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) 87 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117) (-731)) 86 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-606 (-1117))) 85 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117)) 84 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))))) (-2395 (($ $) 227 (|has| |#1| (-347)))) (-3315 ((|#2| $) 225 (|has| |#1| (-347)))) (-2872 (((-537) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-210) $) 243 (-3319 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-363) $) 242 (-3319 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-513) $) 241 (-3319 (|has| |#2| (-580 (-513))) (|has| |#1| (-347)))) (((-845 (-363)) $) 220 (-3319 (|has| |#2| (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) 219 (-3319 (|has| |#2| (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 233 (-3319 (-3319 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#1| (-347))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 268) (($ (-1117)) 238 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347)))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 57)) (-2644 (((-3 $ "failed") $) 46 (-1533 (-3319 (-1533 (|has| |#2| (-139)) (-3319 (|has| $ (-139)) (|has| |#2| (-862)))) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-3903 ((|#2| $) 231 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) 247 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) 211 (|has| |#1| (-347))) (($ $ (-731)) 83 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 81 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) 91 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117) (-731)) 90 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-606 (-1117))) 89 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117)) 88 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))))) (-2293 (((-111) $ $) 251 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2271 (((-111) $ $) 252 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 250 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2263 (((-111) $ $) 253 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347))) (($ |#2| |#2|) 223 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-347))) (($ |#2| $) 201 (|has| |#1| (-347))) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1162 |#1| |#2|) (-134) (-998) (-1191 |t#1|)) (T -1162)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)) (-5 *2 (-537)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-1162 *3 *2)) (-4 *2 (-1191 *3)))) (-3827 (*1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *4 (-998)) (-4 *1 (-1162 *4 *3)) (-4 *3 (-1191 *4)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3)))) (-4000 (*1 *1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1191 *2)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3)))) (-2516 (*1 *2 *1) (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) -(-13 (-1160 |t#1|) (-989 |t#2|) (-10 -8 (-15 -3827 ($ (-537) |t#2|)) (-15 -2872 ((-537) $)) (-15 -2712 (|t#2| $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)) (-15 -2341 ($ |t#2|)) (-15 -3815 (|t#2| $)) (-15 -2516 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-347)) (-6 (-945 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-537)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 |#2|) |has| |#1| (-347)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-347)) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-139))) (|has| |#1| (-139))) ((-141) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-141))) (|has| |#1| (-141))) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-580 (-210)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-580 (-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-580 (-513)) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-537))))) ((-216 |#2|) |has| |#1| (-347)) ((-218) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-218))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 |#2| $) -12 (|has| |#1| (-347)) (|has| |#2| (-270 |#2| |#2|))) ((-270 $ $) |has| (-537) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-293 |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) ((-347) |has| |#1| (-347)) ((-322 |#2|) |has| |#1| (-347)) ((-361 |#2|) |has| |#1| (-347)) ((-384 |#2|) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-495 (-1117) |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-495 (-1117) |#2|))) ((-495 |#2| |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 |#2|) |has| |#1| (-347)) ((-609 $) . T) ((-602 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-602 (-537)))) ((-602 |#2|) |has| |#1| (-347)) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 |#2|) |has| |#1| (-347)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-751) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-752) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-754) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-755) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-780) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-805) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-807) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-807))) (-12 (|has| |#1| (-347)) (|has| |#2| (-780)))) ((-853 (-1117)) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-853 (-1117)))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) ((-839 (-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-537)))) ((-837 |#2|) |has| |#1| (-347)) ((-862) -12 (|has| |#1| (-347)) (|has| |#2| (-862))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-945 |#2|) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-973) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-989 (-391 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) ((-989 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) ((-989 (-1117)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-1117)))) ((-989 |#2|) . T) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 |#2|) |has| |#1| (-347)) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) -12 (|has| |#1| (-347)) (|has| |#2| (-1093))) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1154) |has| |#1| (-347)) ((-1158) |has| |#1| (-347)) ((-1160 |#1|) . T) ((-1178 |#1| #0#) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 70)) (-1874 ((|#2| $) NIL (-12 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 88)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 97) (($ $ (-537) (-537)) 99)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 47)) (-2712 ((|#2| $) 11)) (-2516 (((-3 |#2| "failed") $) 30)) (-3815 ((|#2| $) 31)) (-1403 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 57)) (-1429 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 172 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 144) (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-1117) "failed") $) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-3958 ((|#2| $) 143) (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-1117) $) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-4000 (($ $) 61) (($ (-537) $) 24)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 |#2|) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 77)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 112 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 114 (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 64)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#2| (-839 (-363))) (|has| |#1| (-347)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#2| (-839 (-537))) (|has| |#1| (-347))))) (-4231 (((-537) $) 93) (((-537) $ (-537)) 95)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 ((|#2| $) 151 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) 136)) (-3968 (($ (-1 |#1| (-537)) $) 132)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 19) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-3889 (($ $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-1612 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) |#2|) 10)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 145 (|has| |#1| (-347)))) (-3092 (($ $) 214 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 219 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-3956 (($) NIL (-12 (|has| |#2| (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3830 ((|#2| $) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 126)) (-3515 (((-3 $ "failed") $ $) 116 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) |#2|) NIL (-12 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 |#2|)) NIL (-12 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 91) (($ $ $) 79 (|has| (-537) (-1057))) (($ $ |#2|) NIL (-12 (|has| |#2| (-270 |#2| |#2|)) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 137 (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) 140 (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 ((|#2| $) 152 (|has| |#1| (-347)))) (-2872 (((-537) $) 12)) (-1441 (($ $) 198 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 174 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 170 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 166 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-210) $) NIL (-12 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-513) $) NIL (-12 (|has| |#2| (-580 (-513))) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| |#2| (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| |#2| (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1577 (($ $) 124)) (-2341 (((-816) $) 245) (($ (-537)) 23) (($ |#1|) 21 (|has| |#1| (-163))) (($ |#2|) 20) (($ (-1117)) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347)))) (($ (-391 (-537))) 155 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 74)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862)) (|has| |#1| (-347))) (-12 (|has| |#2| (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) 142)) (-2184 ((|#1| $) 90)) (-3903 ((|#2| $) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 204 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 180 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 200 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 176 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 208 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 184 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 210 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 206 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 182 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 202 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 178 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2928 (($) 13 T CONST)) (-2943 (($) 17 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2271 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2244 (((-111) $ $) 63)) (-2282 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2263 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 149 (|has| |#1| (-347))) (($ |#2| |#2|) 150 (|has| |#1| (-347)))) (-2329 (($ $) 213) (($ $ $) 68)) (-2318 (($ $ $) 66)) (** (($ $ (-874)) NIL) (($ $ (-731)) 73) (($ $ (-537)) 146 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 158 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-347))) (($ |#2| $) 147 (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1163 |#1| |#2|) (-1162 |#1| |#2|) (-998) (-1191 |#1|)) (T -1163)) -NIL -(-1162 |#1| |#2|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 10)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1586 (($ $ (-537)) NIL) (($ $ (-537) (-537)) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) NIL)) (-2712 (((-1192 |#1| |#2| |#3|) $) NIL)) (-2516 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL)) (-3815 (((-1192 |#1| |#2| |#3|) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-537) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-3958 (((-1192 |#1| |#2| |#3|) $) NIL) (((-1117) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-537) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-1192 |#1| |#2| |#3|)) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-1192 |#1| |#2| |#3|))) (|:| |vec| (-1200 (-1192 |#1| |#2| |#3|)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) NIL)) (-1897 (((-391 (-905 |#1|)) $ (-537)) NIL (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) NIL (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-839 (-537))) (|has| |#1| (-347)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-839 (-363))) (|has| |#1| (-347))))) (-4231 (((-537) $) NIL) (((-537) $ (-537)) NIL)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 (((-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 17) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) (-1192 |#1| |#2| |#3|)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 25 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 26 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3830 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-278 (-1192 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-278 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1192 |#1| |#2| |#3|)) (-606 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) NIL) (($ $ $) NIL (|has| (-537) (-1057))) (($ $ (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-270 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1196 |#2|)) 24) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 23 (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 (((-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347)))) (-2872 (((-537) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-513) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-513))) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-210) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1192 |#1| |#2| |#3|)) NIL) (($ (-1196 |#2|)) 22) (($ (-1117)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529)))) (($ (-391 (-537))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))) (|has| |#1| (-37 (-391 (-537))))))) (-3500 ((|#1| $ (-537)) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 11)) (-3903 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2928 (($) 19 T CONST)) (-2943 (($) 15 T CONST)) (-4230 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2263 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347))) (($ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 20)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1192 |#1| |#2| |#3|)) NIL (|has| |#1| (-347))) (($ (-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1164 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1164)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1162 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-3054 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)) 12)) (-3159 (((-402 |#1|) |#1|) 22)) (-3622 (((-402 |#1|) |#1|) 21))) -(((-1165 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)))) (-1176 (-537))) (T -1165)) -((-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) -(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)))) -((-1612 (((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|)) 23 (|has| |#1| (-805))) (((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|)) 17))) -(((-1166 |#1| |#2|) (-10 -7 (-15 -1612 ((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) |%noBranch|)) (-1154) (-1154)) (T -1166)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-805)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1166 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1167 *6)) (-5 *1 (-1166 *5 *6))))) -(-10 -7 (-15 -1612 ((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) |%noBranch|)) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3975 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1612 (((-1098 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-805)))) (-3039 ((|#1| $) 14)) (-1609 ((|#1| $) 10)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1622 (((-537) $) 18)) (-1687 ((|#1| $) 17)) (-1631 ((|#1| $) 11)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1743 (((-111) $) 16)) (-1905 (((-1098 |#1|) $) 38 (|has| |#1| (-805))) (((-1098 |#1|) (-606 $)) 37 (|has| |#1| (-805)))) (-3996 (($ |#1|) 25)) (-2341 (($ (-1040 |#1|)) 24) (((-816) $) 34 (|has| |#1| (-1045)))) (-3401 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2042 (($ $ (-537)) 13)) (-2244 (((-111) $ $) 27 (|has| |#1| (-1045))))) -(((-1167 |#1|) (-13 (-1039 |#1|) (-10 -8 (-15 -3401 ($ |#1|)) (-15 -3975 ($ |#1|)) (-15 -2341 ($ (-1040 |#1|))) (-15 -1743 ((-111) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-1098 |#1|))) |%noBranch|))) (-1154)) (T -1167)) -((-3401 (*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154)))) (-3975 (*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1040 *3)) (-4 *3 (-1154)) (-5 *1 (-1167 *3)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1167 *3)) (-4 *3 (-1154))))) -(-13 (-1039 |#1|) (-10 -8 (-15 -3401 ($ |#1|)) (-15 -3975 ($ |#1|)) (-15 -2341 ($ (-1040 |#1|))) (-15 -1743 ((-111) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-1098 |#1|))) |%noBranch|))) -((-1612 (((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)) 15))) -(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 ((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)))) (-1117) (-998) (-1117) (-998)) (T -1168)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1173 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-998)) (-4 *8 (-998)) (-5 *2 (-1173 *7 *8)) (-5 *1 (-1168 *5 *6 *7 *8)) (-14 *7 (-1117))))) -(-10 -7 (-15 -1612 ((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)))) -((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1246 ((|#1| |#3|) 13)) (-4067 ((|#3| |#3|) 19))) -(((-1169 |#1| |#2| |#3|) (-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-529) (-945 |#1|) (-1176 |#2|)) (T -1169)) -((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1169 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-1169 *3 *4 *2)) (-4 *2 (-1176 *4)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-1169 *2 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4128 (((-3 |#2| "failed") |#2| (-731) |#1|) 29)) (-3648 (((-3 |#2| "failed") |#2| (-731)) 30)) (-2189 (((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|) 43)) (-3403 (((-606 |#2|) |#2|) 45)) (-1423 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1170 |#1| |#2|) (-10 -7 (-15 -3648 ((-3 |#2| "failed") |#2| (-731))) (-15 -4128 ((-3 |#2| "failed") |#2| (-731) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2189 ((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|)) (-15 -3403 ((-606 |#2|) |#2|))) (-13 (-529) (-141)) (-1176 |#1|)) (T -1170)) -((-3403 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-606 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4)))) (-2189 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4)))) (-1423 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1176 *3)))) (-4128 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4)))) (-3648 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) -(-10 -7 (-15 -3648 ((-3 |#2| "failed") |#2| (-731))) (-15 -4128 ((-3 |#2| "failed") |#2| (-731) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2189 ((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|)) (-15 -3403 ((-606 |#2|) |#2|))) -((-4095 (((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|) 32))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -4095 ((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|))) (-529) (-1176 |#1|)) (T -1171)) -((-4095 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-1171 *4 *3)) (-4 *3 (-1176 *4))))) -(-10 -7 (-15 -4095 ((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|))) -((-1452 ((|#2| |#2| |#2|) 19)) (-3142 ((|#2| |#2| |#2|) 30)) (-1537 ((|#2| |#2| |#2| (-731) (-731)) 36))) -(((-1172 |#1| |#2|) (-10 -7 (-15 -1452 (|#2| |#2| |#2|)) (-15 -3142 (|#2| |#2| |#2|)) (-15 -1537 (|#2| |#2| |#2| (-731) (-731)))) (-998) (-1176 |#1|)) (T -1172)) -((-1537 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-1172 *4 *2)) (-4 *2 (-1176 *4)))) (-3142 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3)))) (-1452 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) -(-10 -7 (-15 -1452 (|#2| |#2| |#2|)) (-15 -3142 (|#2| |#2| |#2|)) (-15 -1537 (|#2| |#2| |#2| (-731) (-731)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3847 (((-1200 |#2|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#2|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) NIL (|has| |#2| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#2| (-347)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#2| (-163))) ((|#2| $ $) NIL (|has| |#2| (-163)))) (-3563 (($ $ $) NIL (|has| |#2| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#2| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) NIL (|has| |#2| (-529)))) (-3293 (((-2 (|:| -3449 |#2|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#2| (-347)))) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-1027)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#2| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#2| (-1093)))) (-3746 (($ (-1113 |#2|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) 17) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-1113 |#2|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#2| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#2| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-3148 (($ $ (-731) |#2| $) NIL)) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#2|) NIL) (($ $ (-606 (-1027)) (-606 |#2|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#2| (-347)))) (-1922 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#2| (-529))) ((|#2| (-391 $) |#2|) NIL (|has| |#2| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#2| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#2| (-163))) ((|#2| $) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-1027)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#2| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#2| (-529)))) (-2341 (((-816) $) 13) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-1027)) NIL) (($ (-1196 |#1|)) 19) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1173 |#1| |#2|) (-13 (-1176 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))) (-15 -3148 ($ $ (-731) |#2| $)))) (-1117) (-998)) (T -1173)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-1173 *3 *4)) (-4 *4 (-998)))) (-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1173 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-998))))) -(-13 (-1176 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))) (-15 -3148 ($ $ (-731) |#2| $)))) -((-1612 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) (-998) (-1176 |#1|) (-998) (-1176 |#3|)) (T -1174)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *2 (-1176 *6)) (-5 *1 (-1174 *5 *4 *6 *2)) (-4 *4 (-1176 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) -((-3847 (((-1200 |#2|) $ (-731)) 114)) (-3757 (((-606 (-1027)) $) 15)) (-3739 (($ (-1113 |#2|)) 67)) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) 18)) (-1649 (((-402 (-1113 $)) (-1113 $)) 185)) (-1395 (($ $) 175)) (-2414 (((-402 $) $) 173)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 82)) (-1505 (($ $ (-731)) 71)) (-3719 (($ $ (-731)) 73)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1516 (((-3 |#2| "failed") $) 117) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#2| $) 115) (((-391 (-537)) $) NIL) (((-537) $) NIL) (((-1027) $) NIL)) (-2971 (($ $ $) 151)) (-3293 (((-2 (|:| -3449 |#2|) (|:| -3413 $) (|:| -1672 $)) $ $) 153)) (-4231 (((-731) $ $) 170)) (-2824 (((-3 $ "failed") $) 123)) (-3733 (($ |#2| (-731)) NIL) (($ $ (-1027) (-731)) 47) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) 42) (((-606 (-731)) $ (-606 (-1027))) 43)) (-3589 (((-1113 |#2|) $) 59)) (-1310 (((-3 (-1027) "failed") $) 40)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 70)) (-3092 (($ $) 197)) (-3956 (($) 119)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 182)) (-1319 (((-402 (-1113 $)) (-1113 $)) 88)) (-3370 (((-402 (-1113 $)) (-1113 $)) 86)) (-3622 (((-402 $) $) 107)) (-4116 (($ $ (-606 (-278 $))) 39) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#2|) 31) (($ $ (-606 (-1027)) (-606 |#2|)) 28) (($ $ (-1027) $) 25) (($ $ (-606 (-1027)) (-606 $)) 23)) (-1930 (((-731) $) 188)) (-1922 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) 147) ((|#2| (-391 $) |#2|) 187) (((-391 $) $ (-391 $)) 169)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 191)) (-3456 (($ $ (-1027)) 140) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) 138) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) 16) (((-606 (-731)) $ (-606 (-1027))) 20)) (-1835 ((|#2| $) NIL) (($ $ (-1027)) 125)) (-2727 (((-3 $ "failed") $ $) 161) (((-3 (-391 $) "failed") (-391 $) $) 157)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-1027)) 51) (($ (-391 (-537))) NIL) (($ $) NIL))) -(((-1175 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-391 |#1|) |#1| (-391 |#1|))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1922 (|#2| (-391 |#1|) |#2|)) (-15 -3655 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3293 ((-2 (|:| -3449 |#2|) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2727 ((-3 (-391 |#1|) "failed") (-391 |#1|) |#1|)) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4231 ((-731) |#1| |#1|)) (-15 -1922 ((-391 |#1|) (-391 |#1|) (-391 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-731))) (-15 -1505 (|#1| |#1| (-731))) (-15 -2405 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| (-731))) (-15 -3739 (|#1| (-1113 |#2|))) (-15 -3589 ((-1113 |#2|) |#1|)) (-15 -3847 ((-1200 |#2|) |#1| (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| |#2|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -1649 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -1835 (|#1| |#1| (-1027))) (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -1394 ((-731) |#1| (-606 (-1027)))) (-15 -1394 ((-731) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3733 (|#1| |#1| (-1027) (-731))) (-15 -1883 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -1883 ((-731) |#1| (-1027))) (-15 -1310 ((-3 (-1027) "failed") |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -2872 ((-731) |#1| (-1027))) (-15 -3958 ((-1027) |#1|)) (-15 -1516 ((-3 (-1027) "failed") |#1|)) (-15 -2341 (|#1| (-1027))) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-1027) |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1027) |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 ((-731) |#1|)) (-15 -3733 (|#1| |#2| (-731))) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1883 ((-731) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1027) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1027)))) (-15 -3456 (|#1| |#1| (-1027))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-1176 |#2|) (-998)) (T -1175)) -NIL -(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-391 |#1|) |#1| (-391 |#1|))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1922 (|#2| (-391 |#1|) |#2|)) (-15 -3655 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3293 ((-2 (|:| -3449 |#2|) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2727 ((-3 (-391 |#1|) "failed") (-391 |#1|) |#1|)) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4231 ((-731) |#1| |#1|)) (-15 -1922 ((-391 |#1|) (-391 |#1|) (-391 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-731))) (-15 -1505 (|#1| |#1| (-731))) (-15 -2405 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| (-731))) (-15 -3739 (|#1| (-1113 |#2|))) (-15 -3589 ((-1113 |#2|) |#1|)) (-15 -3847 ((-1200 |#2|) |#1| (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| |#2|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -1649 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -1835 (|#1| |#1| (-1027))) (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -1394 ((-731) |#1| (-606 (-1027)))) (-15 -1394 ((-731) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3733 (|#1| |#1| (-1027) (-731))) (-15 -1883 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -1883 ((-731) |#1| (-1027))) (-15 -1310 ((-3 (-1027) "failed") |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -2872 ((-731) |#1| (-1027))) (-15 -3958 ((-1027) |#1|)) (-15 -1516 ((-3 (-1027) "failed") |#1|)) (-15 -2341 (|#1| (-1027))) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-1027) |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1027) |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 ((-731) |#1|)) (-15 -3733 (|#1| |#2| (-731))) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1883 ((-731) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1027) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1027)))) (-15 -3456 (|#1| |#1| (-1027))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3847 (((-1200 |#1|) $ (-731)) 236)) (-3757 (((-606 (-1027)) $) 108)) (-3739 (($ (-1113 |#1|)) 234)) (-3588 (((-1113 $) $ (-1027)) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 (-1027))) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1841 (($ $ $) 221 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-4099 (((-111) $ $) 206 (|has| |#1| (-347)))) (-1505 (($ $ (-731)) 229)) (-3719 (($ $ (-731)) 228)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-435)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) 134)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) (((-1027) $) 133)) (-4086 (($ $ $ (-1027)) 106 (|has| |#1| (-163))) ((|#1| $ $) 224 (|has| |#1| (-163)))) (-3563 (($ $ $) 210 (|has| |#1| (-347)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 209 (|has| |#1| (-347)))) (-2657 (($ $ $) 227)) (-2971 (($ $ $) 218 (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) 217 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 204 (|has| |#1| (-347)))) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ (-1027)) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) 222 (|has| |#1| (-529)))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-2824 (((-3 $ "failed") $) 202 (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) 115) (($ (-1113 $) (-1027)) 114)) (-3172 (($ $ (-731)) 233)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 213 (|has| |#1| (-347)))) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| (-731)) 151) (($ $ (-1027) (-731)) 117) (($ $ (-606 (-1027)) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) 118) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 231)) (-1883 (((-731) $) 168) (((-731) $ (-1027)) 120) (((-606 (-731)) $ (-606 (-1027))) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-3589 (((-1113 |#1|) $) 235)) (-1310 (((-3 (-1027) "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 230)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) 111)) (-3092 (($ $) 214 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) 201 (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 211 (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 205 (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ (-1027) |#1|) 139) (($ $ (-606 (-1027)) (-606 |#1|)) 138) (($ $ (-1027) $) 137) (($ $ (-606 (-1027)) (-606 $)) 136)) (-1930 (((-731) $) 207 (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-391 $) (-391 $) (-391 $)) 223 (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) 215 (|has| |#1| (-347))) (((-391 $) $ (-391 $)) 203 (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) 232)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 208 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) 105 (|has| |#1| (-163))) ((|#1| $) 225 (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) 40) (($ $ (-606 (-1027))) 39) (($ $ (-1027) (-731)) 38) (($ $ (-606 (-1027)) (-606 (-731))) 37) (($ $ (-731)) 251) (($ $) 249) (($ $ (-1117)) 248 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 247 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 246 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 245 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2872 (((-731) $) 148) (((-731) $ (-1027)) 128) (((-606 (-731)) $ (-606 (-1027))) 127)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ (-1027)) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) 220 (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) 219 (|has| |#1| (-529)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ (-1027)) 135) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ (-731)) 153) (($ $ (-1027) (-731)) 126) (($ $ (-606 (-1027)) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1027)) 36) (($ $ (-606 (-1027))) 35) (($ $ (-1027) (-731)) 34) (($ $ (-606 (-1027)) (-606 (-731))) 33) (($ $ (-731)) 252) (($ $) 250) (($ $ (-1117)) 244 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 243 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 242 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 241 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1176 |#1|) (-134) (-998)) (T -1176)) -((-3847 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1176 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-5 *2 (-1113 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-998)) (-4 *1 (-1176 *3)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-1383 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-3932 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *3)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *4)))) (-1505 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-2657 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)))) (-3456 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163)))) (-4086 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163)))) (-1922 (*1 *2 *2 *2) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)))) (-4231 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)) (-5 *2 (-731)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-2727 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-2727 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-3293 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3449 *3) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *3)))) (-3655 (*1 *2 *1 *1) (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1176 *3)))) (-1922 (*1 *2 *3 *2) (-12 (-5 *3 (-391 *1)) (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537))))))) -(-13 (-902 |t#1| (-731) (-1027)) (-270 |t#1| |t#1|) (-270 $ $) (-218) (-216 |t#1|) (-10 -8 (-15 -3847 ((-1200 |t#1|) $ (-731))) (-15 -3589 ((-1113 |t#1|) $)) (-15 -3739 ($ (-1113 |t#1|))) (-15 -3172 ($ $ (-731))) (-15 -1383 ((-3 $ "failed") $ (-731))) (-15 -3932 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2405 ((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731))) (-15 -1505 ($ $ (-731))) (-15 -3719 ($ $ (-731))) (-15 -2657 ($ $ $)) (-15 -3456 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -2067 (|t#1| $)) (-15 -4086 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-270 (-391 $) (-391 $))) (-15 -1922 ((-391 $) (-391 $) (-391 $))) (-15 -4231 ((-731) $ $)) (-15 -1841 ($ $ $)) (-15 -2727 ((-3 $ "failed") $ $)) (-15 -2727 ((-3 (-391 $) "failed") (-391 $) $)) (-15 -2971 ($ $ $)) (-15 -3293 ((-2 (|:| -3449 |t#1|) (|:| -3413 $) (|:| -1672 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (-15 -3655 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-6 (-291)) (-6 -4296) (-15 -1922 (|t#1| (-391 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (-15 -3092 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-731)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537))))) ((-216 |#1|) . T) ((-218) . T) ((-270 (-391 $) (-391 $)) |has| |#1| (-529)) ((-270 |#1| |#1|) . T) ((-270 $ $) . T) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-293 $) . T) ((-310 |#1| #0#) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-495 #2=(-1027) |#1|) . T) ((-495 #2# $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 #2#) . T) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) -12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363)))) ((-839 (-537)) -12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))) ((-902 |#1| #0# #2#) . T) ((-862) |has| |#1| (-862)) ((-873) |has| |#1| (-347)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 #2#) . T) ((-989 |#1|) . T) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-1093)) ((-1158) |has| |#1| (-862))) -((-3757 (((-606 (-1027)) $) 28)) (-3940 (($ $) 25)) (-3733 (($ |#2| |#3|) NIL) (($ $ (-1027) |#3|) 22) (($ $ (-606 (-1027)) (-606 |#3|)) 21)) (-3901 (($ $) 14)) (-3912 ((|#2| $) 12)) (-2872 ((|#3| $) 10))) -(((-1177 |#1| |#2| |#3|) (-10 -8 (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 |#3|))) (-15 -3733 (|#1| |#1| (-1027) |#3|)) (-15 -3940 (|#1| |#1|)) (-15 -3733 (|#1| |#2| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3912 (|#2| |#1|))) (-1178 |#2| |#3|) (-998) (-752)) (T -1177)) -NIL -(-10 -8 (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 |#3|))) (-15 -3733 (|#1| |#1| (-1027) |#3|)) (-15 -3940 (|#1| |#1|)) (-15 -3733 (|#1| |#2| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3912 (|#2| |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-1525 (((-1098 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2362 (((-111) $) 71)) (-4231 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2836 (((-111) $) 30)) (-3172 (($ $ (-874)) 99)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59) (($ $ (-1027) |#2|) 74) (($ $ (-606 (-1027)) (-606 |#2|)) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1540 (($ $ |#2|) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1922 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2872 ((|#2| $) 62)) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-4150 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1178 |#1| |#2|) (-134) (-998) (-752)) (T -1178)) -((-1525 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-1098 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1922 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-1117)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1586 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4150 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2341 (*2 (-1117)))) (-4 *2 (-998)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4116 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1098 *3))))) -(-13 (-926 |t#1| |t#2| (-1027)) (-10 -8 (-15 -1525 ((-1098 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1922 (|t#1| $ |t#2|)) (-15 -1890 ((-1117) $)) (-15 -2184 (|t#1| $)) (-15 -3172 ($ $ (-874))) (-15 -4231 (|t#2| $)) (-15 -4231 (|t#2| $ |t#2|)) (-15 -1586 ($ $ |t#2|)) (-15 -1586 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2341 (|t#1| (-1117)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4150 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1540 ($ $ |t#2|)) (IF (|has| |t#2| (-1057)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-218)) (IF (|has| |t#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4116 ((-1098 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-270 $ $) |has| |#2| (-1057)) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| |#2| (-1027)) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-1395 ((|#2| |#2|) 12)) (-2414 (((-402 |#2|) |#2|) 14)) (-1433 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))) 30))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -2414 ((-402 |#2|) |#2|)) (-15 -1395 (|#2| |#2|)) (-15 -1433 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))))) (-529) (-13 (-1176 |#1|) (-529) (-10 -8 (-15 -2211 ($ $ $))))) (T -1179)) -((-1433 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-537)))) (-4 *4 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))) (-4 *3 (-529)) (-5 *1 (-1179 *3 *4)))) (-1395 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-13 (-1176 *4) (-529) (-10 -8 (-15 -2211 ($ $ $)))))))) -(-10 -7 (-15 -2414 ((-402 |#2|) |#2|)) (-15 -1395 (|#2| |#2|)) (-15 -1433 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))))) -((-1612 (((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)) 24))) -(((-1180 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 ((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)))) (-998) (-998) (-1117) (-1117) |#1| |#2|) (T -1180)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5 *7 *9)) (-4 *5 (-998)) (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1185 *6 *8 *10)) (-5 *1 (-1180 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) -(-10 -7 (-15 -1612 ((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 96) (($ $ (-391 (-537)) (-391 (-537))) 95)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 169)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 98) (((-391 (-537)) $ (-391 (-537))) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99) (($ $ (-391 (-537))) 168)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-391 (-537))) 59) (($ $ (-1027) (-391 (-537))) 74) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 102) (($ $ $) 79 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1181 |#1|) (-134) (-998)) (T -1181)) -((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))) (-4 *4 (-998)) (-4 *1 (-1181 *4)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-1181 *3)) (-4 *3 (-998)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) -(-13 (-1178 |t#1| (-391 (-537))) (-10 -8 (-15 -2411 ($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |t#1|))))) (-15 -3172 ($ $ (-391 (-537)))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-391 (-537))) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-391 (-537)) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T)) -((-1656 (((-111) $) 12)) (-1516 (((-3 |#3| "failed") $) 17)) (-3958 ((|#3| $) 14))) -(((-1182 |#1| |#2| |#3|) (-10 -8 (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) (-1183 |#2| |#3|) (-998) (-1160 |#2|)) (T -1182)) -NIL -(-10 -8 (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 96) (($ $ (-391 (-537)) (-391 (-537))) 95)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 169)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 180)) (-3958 ((|#2| $) 179)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2017 (((-391 (-537)) $) 177)) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) |#2|) 178)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 98) (((-391 (-537)) $ (-391 (-537))) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99) (($ $ (-391 (-537))) 168)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-391 (-537))) 59) (($ $ (-1027) (-391 (-537))) 74) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-2176 ((|#2| $) 176)) (-1447 (((-3 |#2| "failed") $) 174)) (-3827 ((|#2| $) 175)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 102) (($ $ $) 79 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 181) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1183 |#1| |#2|) (-134) (-998) (-1160 |t#1|)) (T -1183)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) (-5 *2 (-391 (-537))))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-1183 *3 *2)) (-4 *2 (-1160 *3)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-4 *4 (-998)) (-4 *1 (-1183 *4 *3)) (-4 *3 (-1160 *4)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) (-5 *2 (-391 (-537))))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3)))) (-1447 (*1 *2 *1) (|partial| -12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) -(-13 (-1181 |t#1|) (-989 |t#2|) (-10 -8 (-15 -3839 ($ (-391 (-537)) |t#2|)) (-15 -2017 ((-391 (-537)) $)) (-15 -2176 (|t#2| $)) (-15 -2872 ((-391 (-537)) $)) (-15 -2341 ($ |t#2|)) (-15 -3827 (|t#2| $)) (-15 -1447 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-391 (-537))) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-391 (-537)) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-989 |#2|) . T) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T) ((-1181 |#1|) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 96)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 106) (($ $ (-391 (-537)) (-391 (-537))) 108)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 51)) (-1403 (($ $) 180 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 156 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 176 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 152 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 61)) (-1429 (($ $) 184 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL)) (-3958 ((|#2| $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 79)) (-2017 (((-391 (-537)) $) 13)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) |#2|) 11)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) 68)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 103) (((-391 (-537)) $ (-391 (-537))) 104)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 120) (($ $ (-391 (-537))) 118)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 31) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 115)) (-2180 (($ $) 150 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 ((|#2| $) 12)) (-1447 (((-3 |#2| "failed") $) 41)) (-3827 ((|#2| $) 42)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 93 (|has| |#1| (-347)))) (-3092 (($ $) 135 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 140 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 112)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 148 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 100) (($ $ $) 86 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 127 (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 16)) (-1441 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 182 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 158 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 178 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 154 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 110)) (-2341 (((-816) $) NIL) (($ (-537)) 35) (($ |#1|) 27 (|has| |#1| (-163))) (($ |#2|) 32) (($ (-391 (-537))) 128 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 99)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 117)) (-2184 ((|#1| $) 98)) (-1475 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 172 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 198 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 174 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 170 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 166 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 21 T CONST)) (-2943 (($) 17 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 66)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 92 (|has| |#1| (-347)))) (-2329 (($ $) 131) (($ $ $) 72)) (-2318 (($ $ $) 70)) (** (($ $ (-874)) NIL) (($ $ (-731)) 76) (($ $ (-537)) 145 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 146 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1184 |#1| |#2|) (-1183 |#1| |#2|) (-998) (-1160 |#1|)) (T -1184)) -NIL -(-1183 |#1| |#2|) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 22)) (-3958 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1192 |#1| |#2| |#3|) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2017 (((-391 (-537)) $) 57)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) (-1164 |#1| |#2| |#3|)) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 30) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 (((-1164 |#1| |#2| |#3|) $) 60)) (-1447 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-3827 (((-1164 |#1| |#2| |#3|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 39 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 40 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 38)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 89) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1164 |#1| |#2| |#3|)) 16) (($ (-1192 |#1| |#2| |#3|)) 17) (($ (-1196 |#2|)) 36) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 32 T CONST)) (-2943 (($) 26 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1185 |#1| |#2| |#3|) (-13 (-1183 |#1| (-1164 |#1| |#2| |#3|)) (-989 (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1185)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1183 |#1| (-1164 |#1| |#2| |#3|)) (-989 (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 34)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))) (((-3 (-1185 |#2| |#3| |#4|) "failed") $) 20)) (-3958 (((-537) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))) (((-1185 |#2| |#3| |#4|) $) NIL)) (-3940 (($ $) 35)) (-3490 (((-3 $ "failed") $) 25)) (-1351 (($ $) NIL (|has| (-1185 |#2| |#3| |#4|) (-435)))) (-3240 (($ $ (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 11)) (-1538 (((-111) $) NIL)) (-3733 (($ (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) 23)) (-1883 (((-303 |#2| |#3| |#4|) $) NIL)) (-2199 (($ (-1 (-303 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) $) NIL)) (-1612 (($ (-1 (-1185 |#2| |#3| |#4|) (-1185 |#2| |#3| |#4|)) $) NIL)) (-2027 (((-3 (-800 |#2|) "failed") $) 75)) (-3901 (($ $) NIL)) (-3912 (((-1185 |#2| |#3| |#4|) $) 18)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 (((-1185 |#2| |#3| |#4|) $) NIL)) (-3515 (((-3 $ "failed") $ (-1185 |#2| |#3| |#4|)) NIL (|has| (-1185 |#2| |#3| |#4|) (-529))) (((-3 $ "failed") $ $) NIL)) (-2152 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $) 58)) (-2872 (((-303 |#2| |#3| |#4|) $) 14)) (-1835 (((-1185 |#2| |#3| |#4|) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-1185 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537)))) (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))))) (-3459 (((-606 (-1185 |#2| |#3| |#4|)) $) NIL)) (-3500 (((-1185 |#2| |#3| |#4|) $ (-303 |#2| |#3| |#4|)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-139)))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| (-1185 |#2| |#3| |#4|) (-163)))) (-3276 (((-111) $ $) NIL)) (-2928 (($) 63 T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ (-1185 |#2| |#3| |#4|)) NIL (|has| (-1185 |#2| |#3| |#4|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-1185 |#2| |#3| |#4|)) NIL) (($ (-1185 |#2| |#3| |#4|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537))))))) -(((-1186 |#1| |#2| |#3| |#4|) (-13 (-310 (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) (-529) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2152 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $)))) (-13 (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -1186)) -((-2027 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-800 *4)) (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4))) (-2152 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 *4 *5 *6)) (|:| |%expon| (-303 *4 *5 *6)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))))) (|:| |%type| (-1100)))) (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) -(-13 (-310 (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) (-529) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2152 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $)))) -((-3619 ((|#2| $) 29)) (-1658 ((|#2| $) 18)) (-4199 (($ $) 36)) (-3704 (($ $ (-537)) 64)) (-2506 (((-111) $ (-731)) 33)) (-3650 ((|#2| $ |#2|) 61)) (-2236 ((|#2| $ |#2|) 59)) (-2476 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3999 (($ $ (-606 $)) 60)) (-1647 ((|#2| $) 17)) (-3200 (($ $) NIL) (($ $ (-731)) 42)) (-2570 (((-606 $) $) 26)) (-3868 (((-111) $ $) 50)) (-1642 (((-111) $ (-731)) 32)) (-2489 (((-111) $ (-731)) 31)) (-3862 (((-111) $) 28)) (-2375 ((|#2| $) 24) (($ $ (-731)) 46)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3335 (((-111) $) 22)) (-3136 (($ $) 39)) (-3743 (($ $) 65)) (-3597 (((-731) $) 41)) (-1935 (($ $) 40)) (-3434 (($ $ $) 58) (($ |#2| $) NIL)) (-2804 (((-606 $) $) 27)) (-2244 (((-111) $ $) 48)) (-2258 (((-731) $) 35))) -(((-1187 |#1| |#2|) (-10 -8 (-15 -3704 (|#1| |#1| (-537))) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2236 (|#2| |#1| |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1658 (|#2| |#1|)) (-15 -1647 (|#2| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -1922 (|#2| |#1| "first")) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3650 (|#2| |#1| |#2|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3999 (|#1| |#1| (-606 |#1|))) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) (-1188 |#2|) (-1154)) (T -1187)) -NIL -(-10 -8 (-15 -3704 (|#1| |#1| (-537))) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2236 (|#2| |#1| |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1658 (|#2| |#1|)) (-15 -1647 (|#2| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -1922 (|#2| |#1| "first")) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3650 (|#2| |#1| |#2|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3999 (|#1| |#1| (-606 |#1|))) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1188 |#1|) (-134) (-1154)) (T -1188)) -((-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-3200 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-3200 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1935 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3743 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1988 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1536 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-2236 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) (-4 *3 (-1154))))) -(-13 (-962 |t#1|) (-10 -8 (-15 -3434 ($ $ $)) (-15 -3434 ($ |t#1| $)) (-15 -3188 (|t#1| $)) (-15 -1922 (|t#1| $ "first")) (-15 -3188 ($ $ (-731))) (-15 -3200 ($ $)) (-15 -1922 ($ $ "rest")) (-15 -3200 ($ $ (-731))) (-15 -2375 (|t#1| $)) (-15 -1922 (|t#1| $ "last")) (-15 -2375 ($ $ (-731))) (-15 -4199 ($ $)) (-15 -1647 (|t#1| $)) (-15 -1658 (|t#1| $)) (-15 -1935 ($ $)) (-15 -3597 ((-731) $)) (-15 -3136 ($ $)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3115 ($ $ $)) (-15 -3115 ($ $ |t#1|)) (-15 -3743 ($ $)) (-15 -1988 (|t#1| $ |t#1|)) (-15 -2476 (|t#1| $ "first" |t#1|)) (-15 -1536 ($ $ $)) (-15 -2476 ($ $ "rest" $)) (-15 -2236 (|t#1| $ |t#1|)) (-15 -2476 (|t#1| $ "last" |t#1|)) (-15 -3704 ($ $ (-537)))) |%noBranch|))) -(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) -((-1612 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) (-998) (-998) (-1191 |#1|) (-1191 |#2|)) (T -1189)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6 *4 *2)) (-4 *4 (-1191 *5))))) -(-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) -((-1656 (((-111) $) 15)) (-1403 (($ $) 92)) (-1247 (($ $) 68)) (-1378 (($ $) 88)) (-4270 (($ $) 64)) (-1429 (($ $) 96)) (-1273 (($ $) 72)) (-2180 (($ $) 62)) (-4185 (($ $) 60)) (-1441 (($ $) 98)) (-1286 (($ $) 74)) (-1415 (($ $) 94)) (-1259 (($ $) 70)) (-1389 (($ $) 90)) (-1234 (($ $) 66)) (-2341 (((-816) $) 48) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1475 (($ $) 104)) (-1328 (($ $) 80)) (-1453 (($ $) 100)) (-1300 (($ $) 76)) (-1495 (($ $) 108)) (-1352 (($ $) 84)) (-4141 (($ $) 110)) (-1365 (($ $) 86)) (-1485 (($ $) 106)) (-1340 (($ $) 82)) (-1465 (($ $) 102)) (-1314 (($ $) 78)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-391 (-537))) 58))) -(((-1190 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1259 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -1656 ((-111) |#1|)) (-15 -2341 ((-816) |#1|))) (-1191 |#2|) (-998)) (T -1190)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1259 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -1656 ((-111) |#1|)) (-15 -2341 ((-816) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 96) (($ $ (-731) (-731)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 153) (($ (-1098 |#1|)) 151)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1388 (($ $) 150)) (-1706 (((-905 |#1|) $ (-731)) 148) (((-905 |#1|) $ (-731) (-731)) 147)) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) 98) (((-731) $ (-731)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 149)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-731)) 59) (($ $ (-1027) (-731)) 74) (($ $ (-606 (-1027)) (-606 (-731))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-3092 (($ $) 145 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 144 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-1540 (($ $ (-731)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 102) (($ $ $) 79 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2872 (((-731) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3459 (((-1098 |#1|) $) 152)) (-3500 ((|#1| $ (-731)) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ |#1|) 146 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) -(((-1191 |#1|) (-134) (-998)) (T -1191)) -((-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-731)) (|:| |c| *3)))) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-5 *2 (-1098 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) (-1388 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1191 *3)) (-4 *3 (-998)))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) (-5 *2 (-905 *4)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) (-5 *2 (-905 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) -(-13 (-1178 |t#1| (-731)) (-10 -8 (-15 -2411 ($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |t#1|))))) (-15 -3459 ((-1098 |t#1|) $)) (-15 -2411 ($ (-1098 |t#1|))) (-15 -1388 ($ $)) (-15 -3968 ($ (-1 |t#1| (-537)) $)) (-15 -1706 ((-905 |t#1|) $ (-731))) (-15 -1706 ((-905 |t#1|) $ (-731) (-731))) (IF (|has| |t#1| (-347)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-731)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-731) |#1|))) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-731) (-1057)) ((-274) |has| |#1| (-529)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) |has| |#1| (-529)) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1178 |#1| #0#) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 87)) (-3235 (((-1173 |#2| |#1|) $ (-731)) 73)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) 137 (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 122) (($ $ (-731) (-731)) 124)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 42)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 53) (($ (-1098 |#1|)) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-4127 (($ $) 128)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1388 (($ $) 135)) (-1706 (((-905 |#1|) $ (-731)) 63) (((-905 |#1|) $ (-731) (-731)) 65)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) NIL) (((-731) $ (-731)) NIL)) (-2836 (((-111) $) NIL)) (-4016 (($ $) 112)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2438 (($ (-537) (-537) $) 130)) (-3172 (($ $ (-874)) 134)) (-3968 (($ (-1 |#1| (-537)) $) 106)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 15) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 94)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-4009 (($ $) 110)) (-4222 (($ $) 108)) (-1929 (($ (-537) (-537) $) 132)) (-3092 (($ $) 145 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 151 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 146 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3724 (($ $ (-537) (-537)) 116)) (-1540 (($ $ (-731)) 118)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3111 (($ $) 114)) (-4116 (((-1098 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 91) (($ $ $) 126 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 103 (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $ (-1196 |#2|)) 99)) (-2872 (((-731) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 120)) (-2341 (((-816) $) NIL) (($ (-537)) 24) (($ (-391 (-537))) 143 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 23 (|has| |#1| (-163))) (($ (-1173 |#2| |#1|)) 80) (($ (-1196 |#2|)) 20)) (-3459 (((-1098 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) 90)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 88)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 17 T CONST)) (-2943 (($) 13 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 102)) (-2318 (($ $ $) 18)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#1|) 140 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) -(((-1192 |#1| |#2| |#3|) (-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (-15 -4222 ($ $)) (-15 -4009 ($ $)) (-15 -4016 ($ $)) (-15 -3111 ($ $)) (-15 -3724 ($ $ (-537) (-537))) (-15 -4127 ($ $)) (-15 -2438 ($ (-537) (-537) $)) (-15 -1929 ($ (-537) (-537) $)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1192)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-4222 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-4009 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-4016 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-3724 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-2438 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-1929 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (-15 -4222 ($ $)) (-15 -4009 ($ $)) (-15 -4016 ($ $)) (-15 -3111 ($ $)) (-15 -3724 ($ $ (-537) (-537))) (-15 -4127 ($ $)) (-15 -2438 ($ (-537) (-537) $)) (-15 -1929 ($ (-537) (-537) $)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) -((-3617 (((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|))) 24)) (-3806 (((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3674 (((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|)) 13)) (-2748 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3613 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4174 ((|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|)) 54)) (-2445 (((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))) 61)) (-2461 ((|#2| |#2| |#2|) 43))) -(((-1193 |#1| |#2|) (-10 -7 (-15 -3674 ((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|))) (-15 -3806 ((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3617 ((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|)))) (-15 -2461 (|#2| |#2| |#2|)) (-15 -3613 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2748 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4174 (|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|))) (-15 -2445 ((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))))) (-37 (-391 (-537))) (-1191 |#1|)) (T -1193)) -((-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 (-1 *6 (-606 *6)))) (-4 *5 (-37 (-391 (-537)))) (-4 *6 (-1191 *5)) (-5 *2 (-606 *6)) (-5 *1 (-1193 *5 *6)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-606 *2))) (-5 *4 (-606 *5)) (-4 *5 (-37 (-391 (-537)))) (-4 *2 (-1191 *5)) (-5 *1 (-1193 *5 *2)))) (-2748 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) (-4 *4 (-37 (-391 (-537)))))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) (-4 *4 (-37 (-391 (-537)))))) (-2461 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1193 *3 *2)) (-4 *2 (-1191 *3)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-606 *5))) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-606 (-1098 *4)))) (-5 *1 (-1193 *4 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5))))) -(-10 -7 (-15 -3674 ((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|))) (-15 -3806 ((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3617 ((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|)))) (-15 -2461 (|#2| |#2| |#2|)) (-15 -3613 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2748 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4174 (|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|))) (-15 -2445 ((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))))) -((-3202 ((|#2| |#4| (-731)) 30)) (-1468 ((|#4| |#2|) 25)) (-4064 ((|#4| (-391 |#2|)) 52 (|has| |#1| (-529)))) (-1965 (((-1 |#4| (-606 |#4|)) |#3|) 46))) -(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1468 (|#4| |#2|)) (-15 -3202 (|#2| |#4| (-731))) (-15 -1965 ((-1 |#4| (-606 |#4|)) |#3|)) (IF (|has| |#1| (-529)) (-15 -4064 (|#4| (-391 |#2|))) |%noBranch|)) (-998) (-1176 |#1|) (-617 |#2|) (-1191 |#1|)) (T -1194)) -((-4064 (*1 *2 *3) (-12 (-5 *3 (-391 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-529)) (-4 *4 (-998)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *5 *6 *2)) (-4 *6 (-617 *5)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-1176 *4)) (-5 *2 (-1 *6 (-606 *6))) (-5 *1 (-1194 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-1191 *4)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-1194 *5 *2 *6 *3)) (-4 *6 (-617 *2)) (-4 *3 (-1191 *5)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *3 (-1176 *4)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *3 *5 *2)) (-4 *5 (-617 *3))))) -(-10 -7 (-15 -1468 (|#4| |#2|)) (-15 -3202 (|#2| |#4| (-731))) (-15 -1965 ((-1 |#4| (-606 |#4|)) |#3|)) (IF (|has| |#1| (-529)) (-15 -4064 (|#4| (-391 |#2|))) |%noBranch|)) -NIL -(((-1195) (-134)) (T -1195)) -NIL -(-13 (-10 -7 (-6 -4120))) -((-2330 (((-111) $ $) NIL)) (-1890 (((-1117)) 12)) (-1654 (((-1100) $) 17)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1117) $) 8)) (-2244 (((-111) $ $) 14))) -(((-1196 |#1|) (-13 (-1045) (-579 (-1117)) (-10 -8 (-15 -2341 ((-1117) $)) (-15 -1890 ((-1117))))) (-1117)) (T -1196)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2))) (-1890 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2)))) -(-13 (-1045) (-579 (-1117)) (-10 -8 (-15 -2341 ((-1117) $)) (-15 -1890 ((-1117))))) -((-2591 (($ (-731)) 18)) (-2555 (((-649 |#2|) $ $) 40)) (-2259 ((|#2| $) 48)) (-3845 ((|#2| $) 47)) (-3416 ((|#2| $ $) 35)) (-2218 (($ $ $) 44)) (-2329 (($ $) 22) (($ $ $) 28)) (-2318 (($ $ $) 15)) (* (($ (-537) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1197 |#1| |#2|) (-10 -8 (-15 -2259 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -2218 (|#1| |#1| |#1|)) (-15 -2555 ((-649 |#2|) |#1| |#1|)) (-15 -3416 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2591 (|#1| (-731))) (-15 -2318 (|#1| |#1| |#1|))) (-1198 |#2|) (-1154)) (T -1197)) -NIL -(-10 -8 (-15 -2259 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -2218 (|#1| |#1| |#1|)) (-15 -2555 ((-649 |#2|) |#1| |#1|)) (-15 -3416 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2591 (|#1| (-731))) (-15 -2318 (|#1| |#1| |#1|))) -((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731)) 112 (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) 105 (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2259 ((|#1| $) 102 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-2489 (((-111) $ (-731)) 10)) (-3845 ((|#1| $) 103 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3416 ((|#1| $ $) 106 (|has| |#1| (-998)))) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2218 (($ $ $) 104 (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2329 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2318 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-537) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-687))) (($ $ |#1|) 107 (|has| |#1| (-687)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) -(((-1198 |#1|) (-134) (-1154)) (T -1198)) -((-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-25)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1198 *3)) (-4 *3 (-23)) (-4 *3 (-1154)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (-3416 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-998)) (-5 *2 (-649 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) (-4 *2 (-998)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) (-4 *2 (-998))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2318 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2591 ($ (-731))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2329 ($ $)) (-15 -2329 ($ $ $)) (-15 * ($ (-537) $))) |%noBranch|) (IF (|has| |t#1| (-687)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-15 -3416 (|t#1| $ $)) (-15 -2555 ((-649 |t#1|) $ $)) (-15 -2218 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-998)) (PROGN (-15 -3845 (|t#1| $)) (-15 -2259 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-19 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) -((-2547 (((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|) 13)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|) 15)) (-1612 (((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)) 28) (((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|)) 18))) -(((-1199 |#1| |#2|) (-10 -7 (-15 -2547 ((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -1612 ((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|))) (-15 -1612 ((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)))) (-1154) (-1154)) (T -1199)) -((-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-1199 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1200 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-1200 *5)) (-5 *1 (-1199 *6 *5))))) -(-10 -7 (-15 -2547 ((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -1612 ((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|))) (-15 -1612 ((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)))) -((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-3445 (($ (-606 |#1|)) 9)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 15 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) NIL (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 19 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 8)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1200 |#1|) (-13 (-1198 |#1|) (-10 -8 (-15 -3445 ($ (-606 |#1|))))) (-1154)) (T -1200)) -((-3445 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1200 *3))))) -(-13 (-1198 |#1|) (-10 -8 (-15 -3445 ($ (-606 |#1|))))) -((-2330 (((-111) $ $) NIL)) (-2741 (((-1100) $ (-1100)) 90) (((-1100) $ (-1100) (-1100)) 88) (((-1100) $ (-1100) (-606 (-1100))) 87)) (-1256 (($) 59)) (-2239 (((-1205) $ (-451) (-874)) 45)) (-1547 (((-1205) $ (-874) (-1100)) 73) (((-1205) $ (-874) (-827)) 74)) (-1825 (((-1205) $ (-874) (-363) (-363)) 48)) (-1334 (((-1205) $ (-1100)) 69)) (-1402 (((-1205) $ (-874) (-1100)) 78)) (-3190 (((-1205) $ (-874) (-363) (-363)) 49)) (-3918 (((-1205) $ (-874) (-874)) 46)) (-2724 (((-1205) $) 70)) (-3514 (((-1205) $ (-874) (-1100)) 77)) (-1502 (((-1205) $ (-451) (-874)) 31)) (-3732 (((-1205) $ (-874) (-1100)) 76)) (-4266 (((-606 (-247)) $) 23) (($ $ (-606 (-247))) 24)) (-2143 (((-1205) $ (-731) (-731)) 43)) (-3593 (($ $) 60) (($ (-451) (-606 (-247))) 61)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 38)) (-2528 (((-1064) $) NIL)) (-1462 (((-1200 (-3 (-451) "undefined")) $) 37)) (-3046 (((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $) 36)) (-3399 (((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537)) 68)) (-2690 (((-606 (-896 (-210))) $) NIL)) (-3002 (((-451) $ (-874)) 33)) (-3311 (((-1205) $ (-731) (-731) (-874) (-874)) 40)) (-1425 (((-1205) $ (-1100)) 79)) (-2886 (((-1205) $ (-874) (-1100)) 75)) (-2341 (((-816) $) 85)) (-2337 (((-1205) $) 80)) (-1239 (((-1205) $ (-874) (-1100)) 71) (((-1205) $ (-874) (-827)) 72)) (-2244 (((-111) $ $) NIL))) -(((-1201) (-13 (-1045) (-10 -8 (-15 -2690 ((-606 (-896 (-210))) $)) (-15 -1256 ($)) (-15 -3593 ($ $)) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -3593 ($ (-451) (-606 (-247)))) (-15 -3399 ((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537))) (-15 -3046 ((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $)) (-15 -1462 ((-1200 (-3 (-451) "undefined")) $)) (-15 -1334 ((-1205) $ (-1100))) (-15 -1502 ((-1205) $ (-451) (-874))) (-15 -3002 ((-451) $ (-874))) (-15 -1239 ((-1205) $ (-874) (-1100))) (-15 -1239 ((-1205) $ (-874) (-827))) (-15 -1547 ((-1205) $ (-874) (-1100))) (-15 -1547 ((-1205) $ (-874) (-827))) (-15 -3732 ((-1205) $ (-874) (-1100))) (-15 -3514 ((-1205) $ (-874) (-1100))) (-15 -2886 ((-1205) $ (-874) (-1100))) (-15 -1425 ((-1205) $ (-1100))) (-15 -2337 ((-1205) $)) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3190 ((-1205) $ (-874) (-363) (-363))) (-15 -1825 ((-1205) $ (-874) (-363) (-363))) (-15 -1402 ((-1205) $ (-874) (-1100))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -2239 ((-1205) $ (-451) (-874))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2724 ((-1205) $)) (-15 -2926 ((-537) $)) (-15 -2341 ((-816) $))))) (T -1201)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1201)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-606 (-896 (-210)))) (-5 *1 (-1201)))) (-1256 (*1 *1) (-5 *1 (-1201))) (-3593 (*1 *1 *1) (-5 *1 (-1201))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) (-3593 (*1 *1 *2 *3) (-12 (-5 *2 (-451)) (-5 *3 (-606 (-247))) (-5 *1 (-1201)))) (-3399 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-874)) (-5 *4 (-210)) (-5 *5 (-537)) (-5 *6 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537))))) (-5 *1 (-1201)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1200 (-3 (-451) "undefined"))) (-5 *1 (-1201)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-5 *2 (-451)) (-5 *1 (-1201)))) (-1239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3732 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3514 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3190 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1825 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3918 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1201))))) -(-13 (-1045) (-10 -8 (-15 -2690 ((-606 (-896 (-210))) $)) (-15 -1256 ($)) (-15 -3593 ($ $)) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -3593 ($ (-451) (-606 (-247)))) (-15 -3399 ((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537))) (-15 -3046 ((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $)) (-15 -1462 ((-1200 (-3 (-451) "undefined")) $)) (-15 -1334 ((-1205) $ (-1100))) (-15 -1502 ((-1205) $ (-451) (-874))) (-15 -3002 ((-451) $ (-874))) (-15 -1239 ((-1205) $ (-874) (-1100))) (-15 -1239 ((-1205) $ (-874) (-827))) (-15 -1547 ((-1205) $ (-874) (-1100))) (-15 -1547 ((-1205) $ (-874) (-827))) (-15 -3732 ((-1205) $ (-874) (-1100))) (-15 -3514 ((-1205) $ (-874) (-1100))) (-15 -2886 ((-1205) $ (-874) (-1100))) (-15 -1425 ((-1205) $ (-1100))) (-15 -2337 ((-1205) $)) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3190 ((-1205) $ (-874) (-363) (-363))) (-15 -1825 ((-1205) $ (-874) (-363) (-363))) (-15 -1402 ((-1205) $ (-874) (-1100))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -2239 ((-1205) $ (-451) (-874))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2724 ((-1205) $)) (-15 -2926 ((-537) $)) (-15 -2341 ((-816) $)))) -((-2330 (((-111) $ $) NIL)) (-4052 (((-1205) $ (-363)) 140) (((-1205) $ (-363) (-363) (-363)) 141)) (-2741 (((-1100) $ (-1100)) 148) (((-1100) $ (-1100) (-1100)) 146) (((-1100) $ (-1100) (-606 (-1100))) 145)) (-3457 (($) 50)) (-3937 (((-1205) $ (-363) (-363) (-363) (-363) (-363)) 116) (((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $) 114) (((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 115) (((-1205) $ (-537) (-537) (-363) (-363) (-363)) 117) (((-1205) $ (-363) (-363)) 118) (((-1205) $ (-363) (-363) (-363)) 125)) (-3163 (((-363)) 97) (((-363) (-363)) 98)) (-4209 (((-363)) 92) (((-363) (-363)) 94)) (-2390 (((-363)) 95) (((-363) (-363)) 96)) (-3009 (((-363)) 101) (((-363) (-363)) 102)) (-1908 (((-363)) 99) (((-363) (-363)) 100)) (-1825 (((-1205) $ (-363) (-363)) 142)) (-1334 (((-1205) $ (-1100)) 126)) (-4108 (((-1077 (-210)) $) 51) (($ $ (-1077 (-210))) 52)) (-2747 (((-1205) $ (-1100)) 154)) (-3536 (((-1205) $ (-1100)) 155)) (-2085 (((-1205) $ (-363) (-363)) 124) (((-1205) $ (-537) (-537)) 139)) (-3918 (((-1205) $ (-874) (-874)) 132)) (-2724 (((-1205) $) 112)) (-2309 (((-1205) $ (-1100)) 153)) (-1971 (((-1205) $ (-1100)) 109)) (-4266 (((-606 (-247)) $) 53) (($ $ (-606 (-247))) 54)) (-2143 (((-1205) $ (-731) (-731)) 131)) (-2090 (((-1205) $ (-731) (-896 (-210))) 160)) (-3372 (($ $) 56) (($ (-1077 (-210)) (-1100)) 57) (($ (-1077 (-210)) (-606 (-247))) 58)) (-1411 (((-1205) $ (-363) (-363) (-363)) 106)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 103)) (-2825 (((-1205) $ (-363)) 143)) (-3479 (((-1205) $ (-363)) 158)) (-2528 (((-1064) $) NIL)) (-3625 (((-1205) $ (-363)) 157)) (-3529 (((-1205) $ (-1100)) 111)) (-3311 (((-1205) $ (-731) (-731) (-874) (-874)) 130)) (-3262 (((-1205) $ (-1100)) 108)) (-1425 (((-1205) $ (-1100)) 110)) (-4092 (((-1205) $ (-149) (-149)) 129)) (-2341 (((-816) $) 137)) (-2337 (((-1205) $) 113)) (-3274 (((-1205) $ (-1100)) 156)) (-1239 (((-1205) $ (-1100)) 107)) (-2244 (((-111) $ $) NIL))) -(((-1202) (-13 (-1045) (-10 -8 (-15 -4209 ((-363))) (-15 -4209 ((-363) (-363))) (-15 -2390 ((-363))) (-15 -2390 ((-363) (-363))) (-15 -3163 ((-363))) (-15 -3163 ((-363) (-363))) (-15 -1908 ((-363))) (-15 -1908 ((-363) (-363))) (-15 -3009 ((-363))) (-15 -3009 ((-363) (-363))) (-15 -3457 ($)) (-15 -3372 ($ $)) (-15 -3372 ($ (-1077 (-210)) (-1100))) (-15 -3372 ($ (-1077 (-210)) (-606 (-247)))) (-15 -4108 ((-1077 (-210)) $)) (-15 -4108 ($ $ (-1077 (-210)))) (-15 -2090 ((-1205) $ (-731) (-896 (-210)))) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -1334 ((-1205) $ (-1100))) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3937 ((-1205) $ (-363) (-363) (-363) (-363) (-363))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $)) (-15 -3937 ((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -3937 ((-1205) $ (-537) (-537) (-363) (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363) (-363))) (-15 -1425 ((-1205) $ (-1100))) (-15 -1239 ((-1205) $ (-1100))) (-15 -3262 ((-1205) $ (-1100))) (-15 -1971 ((-1205) $ (-1100))) (-15 -3529 ((-1205) $ (-1100))) (-15 -2085 ((-1205) $ (-363) (-363))) (-15 -2085 ((-1205) $ (-537) (-537))) (-15 -4052 ((-1205) $ (-363))) (-15 -4052 ((-1205) $ (-363) (-363) (-363))) (-15 -1825 ((-1205) $ (-363) (-363))) (-15 -2309 ((-1205) $ (-1100))) (-15 -3625 ((-1205) $ (-363))) (-15 -3479 ((-1205) $ (-363))) (-15 -2747 ((-1205) $ (-1100))) (-15 -3536 ((-1205) $ (-1100))) (-15 -3274 ((-1205) $ (-1100))) (-15 -1411 ((-1205) $ (-363) (-363) (-363))) (-15 -2825 ((-1205) $ (-363))) (-15 -2724 ((-1205) $)) (-15 -4092 ((-1205) $ (-149) (-149))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2337 ((-1205) $)) (-15 -2926 ((-537) $))))) (T -1202)) -((-4209 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-4209 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-2390 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3163 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-1908 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3009 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3457 (*1 *1) (-5 *1 (-1202))) (-3372 (*1 *1 *1) (-5 *1 (-1202))) (-3372 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1100)) (-5 *1 (-1202)))) (-3372 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-606 (-247))) (-5 *1 (-1202)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) (-4108 (*1 *1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) (-2090 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3918 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-537)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3262 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4052 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1825 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3479 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3274 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1411 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1202))))) -(-13 (-1045) (-10 -8 (-15 -4209 ((-363))) (-15 -4209 ((-363) (-363))) (-15 -2390 ((-363))) (-15 -2390 ((-363) (-363))) (-15 -3163 ((-363))) (-15 -3163 ((-363) (-363))) (-15 -1908 ((-363))) (-15 -1908 ((-363) (-363))) (-15 -3009 ((-363))) (-15 -3009 ((-363) (-363))) (-15 -3457 ($)) (-15 -3372 ($ $)) (-15 -3372 ($ (-1077 (-210)) (-1100))) (-15 -3372 ($ (-1077 (-210)) (-606 (-247)))) (-15 -4108 ((-1077 (-210)) $)) (-15 -4108 ($ $ (-1077 (-210)))) (-15 -2090 ((-1205) $ (-731) (-896 (-210)))) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -1334 ((-1205) $ (-1100))) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3937 ((-1205) $ (-363) (-363) (-363) (-363) (-363))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $)) (-15 -3937 ((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -3937 ((-1205) $ (-537) (-537) (-363) (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363) (-363))) (-15 -1425 ((-1205) $ (-1100))) (-15 -1239 ((-1205) $ (-1100))) (-15 -3262 ((-1205) $ (-1100))) (-15 -1971 ((-1205) $ (-1100))) (-15 -3529 ((-1205) $ (-1100))) (-15 -2085 ((-1205) $ (-363) (-363))) (-15 -2085 ((-1205) $ (-537) (-537))) (-15 -4052 ((-1205) $ (-363))) (-15 -4052 ((-1205) $ (-363) (-363) (-363))) (-15 -1825 ((-1205) $ (-363) (-363))) (-15 -2309 ((-1205) $ (-1100))) (-15 -3625 ((-1205) $ (-363))) (-15 -3479 ((-1205) $ (-363))) (-15 -2747 ((-1205) $ (-1100))) (-15 -3536 ((-1205) $ (-1100))) (-15 -3274 ((-1205) $ (-1100))) (-15 -1411 ((-1205) $ (-363) (-363) (-363))) (-15 -2825 ((-1205) $ (-363))) (-15 -2724 ((-1205) $)) (-15 -4092 ((-1205) $ (-149) (-149))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2337 ((-1205) $)) (-15 -2926 ((-537) $)))) -((-1281 (((-606 (-1100)) (-606 (-1100))) 94) (((-606 (-1100))) 90)) (-2131 (((-606 (-1100))) 88)) (-1278 (((-606 (-874)) (-606 (-874))) 63) (((-606 (-874))) 60)) (-2762 (((-606 (-731)) (-606 (-731))) 57) (((-606 (-731))) 53)) (-2139 (((-1205)) 65)) (-2546 (((-874) (-874)) 81) (((-874)) 80)) (-3487 (((-874) (-874)) 79) (((-874)) 78)) (-3880 (((-827) (-827)) 75) (((-827)) 74)) (-4197 (((-210)) 85) (((-210) (-363)) 87)) (-3347 (((-874)) 82) (((-874) (-874)) 83)) (-4224 (((-874) (-874)) 77) (((-874)) 76)) (-3611 (((-827) (-827)) 69) (((-827)) 67)) (-2373 (((-827) (-827)) 71) (((-827)) 70)) (-3069 (((-827) (-827)) 73) (((-827)) 72))) -(((-1203) (-10 -7 (-15 -3611 ((-827))) (-15 -3611 ((-827) (-827))) (-15 -2373 ((-827))) (-15 -2373 ((-827) (-827))) (-15 -3069 ((-827))) (-15 -3069 ((-827) (-827))) (-15 -3880 ((-827))) (-15 -3880 ((-827) (-827))) (-15 -4224 ((-874))) (-15 -4224 ((-874) (-874))) (-15 -2762 ((-606 (-731)))) (-15 -2762 ((-606 (-731)) (-606 (-731)))) (-15 -1278 ((-606 (-874)))) (-15 -1278 ((-606 (-874)) (-606 (-874)))) (-15 -2139 ((-1205))) (-15 -1281 ((-606 (-1100)))) (-15 -1281 ((-606 (-1100)) (-606 (-1100)))) (-15 -2131 ((-606 (-1100)))) (-15 -3487 ((-874))) (-15 -2546 ((-874))) (-15 -3487 ((-874) (-874))) (-15 -2546 ((-874) (-874))) (-15 -3347 ((-874) (-874))) (-15 -3347 ((-874))) (-15 -4197 ((-210) (-363))) (-15 -4197 ((-210))))) (T -1203)) -((-4197 (*1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1203)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-1203)))) (-3347 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2546 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3487 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2131 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-1281 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-1281 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-2139 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1203)))) (-1278 (*1 *2 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) (-1278 (*1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) (-2762 (*1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-4224 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3880 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3069 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-2373 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3611 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) -(-10 -7 (-15 -3611 ((-827))) (-15 -3611 ((-827) (-827))) (-15 -2373 ((-827))) (-15 -2373 ((-827) (-827))) (-15 -3069 ((-827))) (-15 -3069 ((-827) (-827))) (-15 -3880 ((-827))) (-15 -3880 ((-827) (-827))) (-15 -4224 ((-874))) (-15 -4224 ((-874) (-874))) (-15 -2762 ((-606 (-731)))) (-15 -2762 ((-606 (-731)) (-606 (-731)))) (-15 -1278 ((-606 (-874)))) (-15 -1278 ((-606 (-874)) (-606 (-874)))) (-15 -2139 ((-1205))) (-15 -1281 ((-606 (-1100)))) (-15 -1281 ((-606 (-1100)) (-606 (-1100)))) (-15 -2131 ((-606 (-1100)))) (-15 -3487 ((-874))) (-15 -2546 ((-874))) (-15 -3487 ((-874) (-874))) (-15 -2546 ((-874) (-874))) (-15 -3347 ((-874) (-874))) (-15 -3347 ((-874))) (-15 -4197 ((-210) (-363))) (-15 -4197 ((-210)))) -((-1253 (((-451) (-606 (-606 (-896 (-210)))) (-606 (-247))) 21) (((-451) (-606 (-606 (-896 (-210))))) 20) (((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247))) 19)) (-4027 (((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247))) 27) (((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247))) 26)) (-2341 (((-1201) (-451)) 38))) -(((-1204) (-10 -7 (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -2341 ((-1201) (-451))))) (T -1204)) -((-2341 (*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-4027 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-451)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204))))) -(-10 -7 (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -2341 ((-1201) (-451)))) -((-1374 (($) 7)) (-2341 (((-816) $) 10))) -(((-1205) (-10 -8 (-15 -1374 ($)) (-15 -2341 ((-816) $)))) (T -1205)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1205)))) (-1374 (*1 *1) (-5 *1 (-1205)))) -(-10 -8 (-15 -1374 ($)) (-15 -2341 ((-816) $))) -((-2340 (($ $ |#2|) 10))) -(((-1206 |#1| |#2|) (-10 -8 (-15 -2340 (|#1| |#1| |#2|))) (-1207 |#2|) (-347)) (T -1206)) -NIL -(-10 -8 (-15 -2340 (|#1| |#1| |#2|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1839 (((-131)) 28)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 29)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1207 |#1|) (-134) (-347)) (T -1207)) -((-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-347)))) (-1839 (*1 *2) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-347)) (-5 *2 (-131))))) -(-13 (-678 |t#1|) (-10 -8 (-15 -2340 ($ $ |t#1|)) (-15 -1839 ((-131))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) -((-2776 (((-606 (-1148 |#1|)) (-1117) (-1148 |#1|)) 74)) (-1941 (((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|))) 53)) (-2874 (((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))) 64)) (-4227 (((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731)) 55)) (-2035 (((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117)) 29)) (-2592 (((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731)) 54))) -(((-1208 |#1|) (-10 -7 (-15 -4227 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -2592 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -1941 ((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|)))) (-15 -2035 ((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117))) (-15 -2776 ((-606 (-1148 |#1|)) (-1117) (-1148 |#1|))) (-15 -2874 ((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))))) (-347)) (T -1208)) -((-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-731)) (-4 *6 (-347)) (-5 *4 (-1148 *6)) (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1208 *6)) (-5 *5 (-1098 *4)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-606 (-1148 *5))) (-5 *1 (-1208 *5)) (-5 *4 (-1148 *5)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1113 (-905 *4)) (-905 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-347)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-1098 (-1098 (-905 *5)))) (-5 *1 (-1208 *5)) (-5 *4 (-1098 (-905 *5))))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) (-5 *1 (-1208 *4)) (-4 *4 (-347)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) (-5 *1 (-1208 *4)) (-4 *4 (-347))))) -(-10 -7 (-15 -4227 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -2592 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -1941 ((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|)))) (-15 -2035 ((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117))) (-15 -2776 ((-606 (-1148 |#1|)) (-1117) (-1148 |#1|))) (-15 -2874 ((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))))) -((-3337 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|) 75)) (-3778 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) 74))) -(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|))) (-333) (-1176 |#1|) (-1176 |#2|) (-393 |#2| |#3|)) (T -1209)) -((-3337 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-1209 *4 *3 *5 *6)) (-4 *6 (-393 *3 *5)))) (-3778 (*1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-649 *4)))) (-5 *1 (-1209 *3 *4 *5 *6)) (-4 *6 (-393 *4 *5))))) -(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|))) -((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3441 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) -(((-1210) (-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $))))) (T -1210)) -((-3441 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1210))))) -(-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 43)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 64) (($ (-537)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-163)))) (-3654 (((-731)) NIL)) (-4216 (((-1205) (-731)) 16)) (-2928 (($) 27 T CONST)) (-2943 (($) 67 T CONST)) (-2244 (((-111) $ $) 69)) (-2340 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) 71) (($ $ $) NIL)) (-2318 (($ $ $) 47)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) -(((-1211 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 (|#4| $)) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2341 ($ |#4|)) (-15 -4216 ((-1205) (-731))))) (-998) (-807) (-753) (-902 |#1| |#3| |#2|) (-606 |#2|) (-606 (-731)) (-731)) (T -1211)) -((-2341 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-2340 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-753)) (-14 *6 (-606 *3)) (-5 *1 (-1211 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-902 *2 *4 *3)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-902 *3 *5 *4)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-14 *8 (-606 *5)) (-5 *2 (-1205)) (-5 *1 (-1211 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-902 *4 *6 *5)) (-14 *9 (-606 *3)) (-14 *10 *3)))) -(-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 (|#4| $)) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2341 ($ |#4|)) (-15 -4216 ((-1205) (-731))))) -((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 88)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-3801 (((-606 |#4|) (-606 |#4|) $) 25 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 70)) (-2627 ((|#4| |#4| $) 75)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3661 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 76)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2008 (((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-606 |#4|)) 35)) (-4081 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) NIL)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2375 (((-3 |#4| "failed") $) NIL)) (-2422 (((-606 |#4|) $) 50)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) 74)) (-1981 (((-111) $ $) 85)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 69)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) NIL)) (-1540 (($ $ |#4|) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 67)) (-3425 (($) 42)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) NIL)) (-1713 (($ $ |#3|) NIL)) (-2488 (($ $ |#3|) NIL)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) NIL) (((-606 |#4|) $) 57)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-3573 (((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-606 |#4|)) 41)) (-3153 (((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-606 $) (-606 |#4|)) 66)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3042 (((-111) |#3| $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) -(((-1212 |#1| |#2| |#3| |#4|) (-13 (-1147 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2008 ((-3 $ "failed") (-606 |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|))) (-15 -3153 ((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3153 ((-606 $) (-606 |#4|))))) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -1212)) -((-2008 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8)))) (-2008 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1212 *3 *4 *5 *6)))) (-3573 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1212 *3 *4 *5 *6)))) (-3153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-606 (-1212 *6 *7 *8 *9))) (-5 *1 (-1212 *6 *7 *8 *9)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-1212 *4 *5 *6 *7))) (-5 *1 (-1212 *4 *5 *6 *7))))) -(-13 (-1147 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2008 ((-3 $ "failed") (-606 |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|))) (-15 -3153 ((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3153 ((-606 $) (-606 |#4|))))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 36)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1213 |#1|) (-134) (-998)) (T -1213)) -((-2341 (*1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-998))))) -(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) -((-2330 (((-111) $ $) 60)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 45)) (-1233 (($ $ (-731)) 39)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ (-731)) 18 (|has| |#2| (-163))) (($ $ $) 19 (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ $) 63) (($ $ (-779 |#1|)) 49) (($ $ |#1|) 53)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL)) (-3940 (($ $) 32)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) NIL)) (-1414 (($ $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) 31)) (-2177 (($ $) 33)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 12)) (-4215 (((-779 |#1|) $) NIL)) (-2388 (((-779 |#1|) $) 34)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (($ $ $) 62) (($ $ (-779 |#1|)) 51) (($ $ |#1|) 55)) (-2370 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-779 |#1|) $) 28)) (-3912 ((|#2| $) 30)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2872 (((-731) $) 36)) (-2162 (((-111) $) 40)) (-2787 ((|#2| $) NIL)) (-2341 (((-816) $) NIL) (($ (-779 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-537)) NIL)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-779 |#1|)) NIL)) (-3449 ((|#2| $ $) 65) ((|#2| $ (-779 |#1|)) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 13 T CONST)) (-2943 (($) 15 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2244 (((-111) $ $) 38)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 22)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-779 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1214 |#1| |#2|) (-13 (-366 |#2| (-779 |#1|)) (-1220 |#1| |#2|)) (-807) (-998)) (T -1214)) -NIL -(-13 (-366 |#2| (-779 |#1|)) (-1220 |#1| |#2|)) -((-2180 ((|#3| |#3| (-731)) 23)) (-4185 ((|#3| |#3| (-731)) 27)) (-3236 ((|#3| |#3| |#3| (-731)) 28))) -(((-1215 |#1| |#2| |#3|) (-10 -7 (-15 -4185 (|#3| |#3| (-731))) (-15 -2180 (|#3| |#3| (-731))) (-15 -3236 (|#3| |#3| |#3| (-731)))) (-13 (-998) (-678 (-391 (-537)))) (-807) (-1220 |#2| |#1|)) (T -1215)) -((-3236 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) (-4185 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4))))) -(-10 -7 (-15 -4185 (|#3| |#3| (-731))) (-15 -2180 (|#3| |#3| (-731))) (-15 -3236 (|#3| |#3| |#3| (-731)))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 38)) (-3418 (((-3 $ "failed") $ $) 19)) (-1275 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-731)) 40 (|has| |#2| (-163)))) (-3832 (($) 17 T CONST)) (-3139 (($ $ |#1|) 52) (($ $ (-779 |#1|)) 51) (($ $ $) 50)) (-1516 (((-3 (-779 |#1|) "failed") $) 62)) (-3958 (((-779 |#1|) $) 61)) (-3490 (((-3 $ "failed") $) 32)) (-1323 (((-111) $) 43)) (-1414 (($ $) 42)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 48)) (-2367 (($ (-779 |#1|) |#2|) 49)) (-2177 (($ $) 47)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 58)) (-4215 (((-779 |#1|) $) 59)) (-1612 (($ (-1 |#2| |#2|) $) 39)) (-2896 (($ $ |#1|) 55) (($ $ (-779 |#1|)) 54) (($ $ $) 53)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2162 (((-111) $) 45)) (-2787 ((|#2| $) 44)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#2|) 66) (($ (-779 |#1|)) 63) (($ |#1|) 46)) (-3449 ((|#2| $ (-779 |#1|)) 57) ((|#2| $ $) 56)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1216 |#1| |#2|) (-134) (-807) (-998)) (T -1216)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-779 *3)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-2 (|:| |k| (-779 *3)) (|:| |c| *4))))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-779 *4)) (-4 *1 (-1216 *4 *2)) (-4 *4 (-807)) (-4 *2 (-998)))) (-3449 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-2896 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-3139 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2367 (*1 *1 *2 *3) (-12 (-5 *2 (-779 *4)) (-4 *4 (-807)) (-4 *1 (-1216 *4 *3)) (-4 *3 (-998)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-1414 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-1275 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)) (-4 *3 (-163)))) (-1275 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-4 *4 (-163)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-606 *3))))) -(-13 (-998) (-1213 |t#2|) (-989 (-779 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4215 ((-779 |t#1|) $)) (-15 -2667 ((-2 (|:| |k| (-779 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3449 (|t#2| $ (-779 |t#1|))) (-15 -3449 (|t#2| $ $)) (-15 -2896 ($ $ |t#1|)) (-15 -2896 ($ $ (-779 |t#1|))) (-15 -2896 ($ $ $)) (-15 -3139 ($ $ |t#1|)) (-15 -3139 ($ $ (-779 |t#1|))) (-15 -3139 ($ $ $)) (-15 -2367 ($ (-779 |t#1|) |t#2|)) (-15 -1538 ((-111) $)) (-15 -2177 ($ $)) (-15 -2341 ($ |t#1|)) (-15 -2162 ((-111) $)) (-15 -2787 (|t#2| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (IF (|has| |t#2| (-163)) (PROGN (-15 -1275 ($ $ $)) (-15 -1275 ($ $ (-731)))) |%noBranch|) (-15 -1612 ($ (-1 |t#2| |t#2|) $)) (-15 -2163 ((-606 |t#1|) $)) (IF (|has| |t#2| (-6 -4293)) (-6 -4293) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-609 $) . T) ((-678 |#2|) |has| |#2| (-163)) ((-687) . T) ((-989 (-779 |#1|)) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1213 |#2|) . T)) -((-1276 (((-111) $) 15)) (-3042 (((-111) $) 14)) (-1791 (($ $) 19) (($ $ (-731)) 20))) -(((-1217 |#1| |#2|) (-10 -8 (-15 -1791 (|#1| |#1| (-731))) (-15 -1791 (|#1| |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|))) (-1218 |#2|) (-347)) (T -1217)) -NIL -(-10 -8 (-15 -1791 (|#1| |#1| (-731))) (-15 -1791 (|#1| |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1276 (((-111) $) 91)) (-2860 (((-731)) 87)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 98)) (-3958 ((|#1| $) 97)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2642 (($ $ (-731)) 84 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) 83 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 81 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2933 (((-111) $) 90)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-2685 (((-793 (-874))) 88)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 82 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) 96)) (-2872 (((-793 (-874)) $) 89)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 99)) (-2644 (((-3 $ "failed") $) 80 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-3042 (((-111) $) 92)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-1791 (($ $) 86 (|has| |#1| (-352))) (($ $ (-731)) 85 (|has| |#1| (-352)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62) (($ $ |#1|) 95)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1218 |#1|) (-134) (-347)) (T -1218)) -((-3042 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) (-2685 (*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) (-2860 (*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-731)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-347)) (-4 *2 (-352)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-4 *3 (-352))))) -(-13 (-347) (-989 |t#1|) (-1207 |t#1|) (-10 -8 (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-386)) |%noBranch|) (-15 -3042 ((-111) $)) (-15 -1276 ((-111) $)) (-15 -2933 ((-111) $)) (-15 -2872 ((-793 (-874)) $)) (-15 -2685 ((-793 (-874)))) (-15 -2860 ((-731))) (IF (|has| |t#1| (-352)) (PROGN (-6 (-386)) (-15 -1791 ($ $)) (-15 -1791 ($ $ (-731)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-386) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T) ((-1207 |#1|) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 86)) (-1233 (($ $ (-731)) 89)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) NIL (|has| |#2| (-163))) (($ $ (-731)) NIL (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ |#1|) NIL) (($ $ (-779 |#1|)) NIL) (($ $ $) NIL)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL) (((-3 (-846 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL) (((-846 |#1|) $) NIL)) (-3940 (($ $) 88)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) 77)) (-1414 (($ $) 81)) (-3371 (($ $ $ (-731)) 90)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) NIL) (($ (-846 |#1|) |#2|) 26)) (-2177 (($ $) 103)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4215 (((-779 |#1|) $) NIL)) (-2388 (((-779 |#1|) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (($ $ |#1|) NIL) (($ $ (-779 |#1|)) NIL) (($ $ $) NIL)) (-2180 (($ $ (-731)) 97 (|has| |#2| (-678 (-391 (-537)))))) (-2370 (((-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-846 |#1|) $) 70)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4185 (($ $ (-731)) 94 (|has| |#2| (-678 (-391 (-537)))))) (-2872 (((-731) $) 87)) (-2162 (((-111) $) 71)) (-2787 ((|#2| $) 75)) (-2341 (((-816) $) 57) (($ (-537)) NIL) (($ |#2|) 51) (($ (-779 |#1|)) NIL) (($ |#1|) 59) (($ (-846 |#1|)) NIL) (($ (-625 |#1| |#2|)) 43) (((-1214 |#1| |#2|) $) 64) (((-1223 |#1| |#2|) $) 69)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-846 |#1|)) NIL)) (-3449 ((|#2| $ (-779 |#1|)) NIL) ((|#2| $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 21 T CONST)) (-2943 (($) 25 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3836 (((-3 (-625 |#1| |#2|) "failed") $) 102)) (-2244 (((-111) $ $) 65)) (-2329 (($ $) 96) (($ $ $) 95)) (-2318 (($ $ $) 20)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-846 |#1|)) NIL))) -(((-1219 |#1| |#2|) (-13 (-1220 |#1| |#2|) (-366 |#2| (-846 |#1|)) (-10 -8 (-15 -2341 ($ (-625 |#1| |#2|))) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1223 |#1| |#2|) $)) (-15 -3836 ((-3 (-625 |#1| |#2|) "failed") $)) (-15 -3371 ($ $ $ (-731))) (IF (|has| |#2| (-678 (-391 (-537)))) (PROGN (-15 -4185 ($ $ (-731))) (-15 -2180 ($ $ (-731)))) |%noBranch|))) (-807) (-163)) (T -1219)) -((-2341 (*1 *1 *2) (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *1 (-1219 *3 *4)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3836 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3371 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) -(-13 (-1220 |#1| |#2|) (-366 |#2| (-846 |#1|)) (-10 -8 (-15 -2341 ($ (-625 |#1| |#2|))) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1223 |#1| |#2|) $)) (-15 -3836 ((-3 (-625 |#1| |#2|) "failed") $)) (-15 -3371 ($ $ $ (-731))) (IF (|has| |#2| (-678 (-391 (-537)))) (PROGN (-15 -4185 ($ $ (-731))) (-15 -2180 ($ $ (-731)))) |%noBranch|))) -((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 38)) (-1233 (($ $ (-731)) 71)) (-3418 (((-3 $ "failed") $ $) 19)) (-1275 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-731)) 40 (|has| |#2| (-163)))) (-3832 (($) 17 T CONST)) (-3139 (($ $ |#1|) 52) (($ $ (-779 |#1|)) 51) (($ $ $) 50)) (-1516 (((-3 (-779 |#1|) "failed") $) 62)) (-3958 (((-779 |#1|) $) 61)) (-3490 (((-3 $ "failed") $) 32)) (-1323 (((-111) $) 43)) (-1414 (($ $) 42)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 48)) (-2367 (($ (-779 |#1|) |#2|) 49)) (-2177 (($ $) 47)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 58)) (-4215 (((-779 |#1|) $) 59)) (-2388 (((-779 |#1|) $) 73)) (-1612 (($ (-1 |#2| |#2|) $) 39)) (-2896 (($ $ |#1|) 55) (($ $ (-779 |#1|)) 54) (($ $ $) 53)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 (((-731) $) 72)) (-2162 (((-111) $) 45)) (-2787 ((|#2| $) 44)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#2|) 66) (($ (-779 |#1|)) 63) (($ |#1|) 46)) (-3449 ((|#2| $ (-779 |#1|)) 57) ((|#2| $ $) 56)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1220 |#1| |#2|) (-134) (-807) (-998)) (T -1220)) -((-2388 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-779 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-731)))) (-1233 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) -(-13 (-1216 |t#1| |t#2|) (-10 -8 (-15 -2388 ((-779 |t#1|) $)) (-15 -2872 ((-731) $)) (-15 -1233 ($ $ (-731))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-609 $) . T) ((-678 |#2|) |has| |#2| (-163)) ((-687) . T) ((-989 (-779 |#1|)) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1213 |#2|) . T) ((-1216 |#1| |#2|) . T)) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 (-1117)) $) NIL)) (-1531 (($ (-1214 (-1117) |#1|)) NIL)) (-1233 (($ $ (-731)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) NIL (|has| |#1| (-163))) (($ $ (-731)) NIL (|has| |#1| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ (-1117)) NIL) (($ $ (-779 (-1117))) NIL) (($ $ $) NIL)) (-1516 (((-3 (-779 (-1117)) "failed") $) NIL)) (-3958 (((-779 (-1117)) $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) NIL)) (-1414 (($ $) NIL)) (-2836 (((-111) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 (-1117)) |#1|) NIL)) (-2177 (($ $) NIL)) (-2667 (((-2 (|:| |k| (-779 (-1117))) (|:| |c| |#1|)) $) NIL)) (-4215 (((-779 (-1117)) $) NIL)) (-2388 (((-779 (-1117)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2896 (($ $ (-1117)) NIL) (($ $ (-779 (-1117))) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1905 (((-1214 (-1117) |#1|) $) NIL)) (-2872 (((-731) $) NIL)) (-2162 (((-111) $) NIL)) (-2787 ((|#1| $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-779 (-1117))) NIL) (($ (-1117)) NIL)) (-3449 ((|#1| $ (-779 (-1117))) NIL) ((|#1| $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) NIL T CONST)) (-2585 (((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $) NIL)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1117) $) NIL))) -(((-1221 |#1|) (-13 (-1220 (-1117) |#1|) (-10 -8 (-15 -1905 ((-1214 (-1117) |#1|) $)) (-15 -1531 ($ (-1214 (-1117) |#1|))) (-15 -2585 ((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) (-998)) (T -1221)) -((-1905 (*1 *2 *1) (-12 (-5 *2 (-1214 (-1117) *3)) (-5 *1 (-1221 *3)) (-4 *3 (-998)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-1214 (-1117) *3)) (-4 *3 (-998)) (-5 *1 (-1221 *3)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-1117)) (|:| |c| (-1221 *3))))) (-5 *1 (-1221 *3)) (-4 *3 (-998))))) -(-13 (-1220 (-1117) |#1|) (-10 -8 (-15 -1905 ((-1214 (-1117) |#1|) $)) (-15 -1531 ($ (-1214 (-1117) |#1|))) (-15 -2585 ((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL)) (-3958 ((|#2| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 36)) (-1323 (((-111) $) 30)) (-1414 (($ $) 32)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ |#2| |#1|) NIL)) (-4215 ((|#2| $) 19)) (-2388 ((|#2| $) 16)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3901 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2162 (((-111) $) 27)) (-2787 ((|#1| $) 28)) (-2341 (((-816) $) 55) (($ (-537)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ |#2|) NIL)) (-3449 ((|#1| $ |#2|) 24)) (-3654 (((-731)) 14)) (-2928 (($) 25 T CONST)) (-2943 (($) 11 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2244 (((-111) $ $) 26)) (-2340 (($ $ |#1|) 57 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 44)) (** (($ $ (-874)) NIL) (($ $ (-731)) 46)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2258 (((-731) $) 15))) -(((-1222 |#1| |#2|) (-13 (-998) (-1213 |#1|) (-366 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2258 ((-731) $)) (-15 -2341 ($ |#2|)) (-15 -2388 (|#2| $)) (-15 -4215 (|#2| $)) (-15 -3940 ($ $)) (-15 -3449 (|#1| $ |#2|)) (-15 -2162 ((-111) $)) (-15 -2787 (|#1| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-347)) (-15 -2340 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4293)) (-6 -4293) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998) (-803)) (T -1222)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-1222 *3 *4)) (-4 *4 (-803)))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)) (-4 *2 (-803)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)))) (-4215 (*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-2787 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-1414 (*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-2340 (*1 *1 *1 *2) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-803))))) -(-13 (-998) (-1213 |#1|) (-366 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2258 ((-731) $)) (-15 -2341 ($ |#2|)) (-15 -2388 (|#2| $)) (-15 -4215 (|#2| $)) (-15 -3940 ($ $)) (-15 -3449 (|#1| $ |#2|)) (-15 -2162 ((-111) $)) (-15 -2787 (|#1| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-347)) (-15 -2340 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4293)) (-6 -4293) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) -((-2330 (((-111) $ $) 26)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 120)) (-1531 (($ (-1214 |#1| |#2|)) 44)) (-1233 (($ $ (-731)) 32)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) 48 (|has| |#2| (-163))) (($ $ (-731)) 46 (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ |#1|) 102) (($ $ (-779 |#1|)) 103) (($ $ $) 25)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL)) (-3490 (((-3 $ "failed") $) 110)) (-1323 (((-111) $) 105)) (-1414 (($ $) 106)) (-2836 (((-111) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) 19)) (-2177 (($ $) NIL)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4215 (((-779 |#1|) $) 111)) (-2388 (((-779 |#1|) $) 114)) (-1612 (($ (-1 |#2| |#2|) $) 119)) (-2896 (($ $ |#1|) 100) (($ $ (-779 |#1|)) 101) (($ $ $) 56)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1905 (((-1214 |#1| |#2|) $) 84)) (-2872 (((-731) $) 117)) (-2162 (((-111) $) 70)) (-2787 ((|#2| $) 28)) (-2341 (((-816) $) 63) (($ (-537)) 77) (($ |#2|) 74) (($ (-779 |#1|)) 17) (($ |#1|) 73)) (-3449 ((|#2| $ (-779 |#1|)) 104) ((|#2| $ $) 27)) (-3654 (((-731)) 108)) (-2928 (($) 14 T CONST)) (-2585 (((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 13)) (-2329 (($ $) 88) (($ $ $) 91)) (-2318 (($ $ $) 55)) (** (($ $ (-874)) NIL) (($ $ (-731)) 49)) (* (($ (-874) $) NIL) (($ (-731) $) 47) (($ (-537) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1223 |#1| |#2|) (-13 (-1220 |#1| |#2|) (-10 -8 (-15 -1905 ((-1214 |#1| |#2|) $)) (-15 -1531 ($ (-1214 |#1| |#2|))) (-15 -2585 ((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-807) (-998)) (T -1223)) -((-1905 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *1 (-1223 *3 *4)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| *3) (|:| |c| (-1223 *3 *4))))) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) -(-13 (-1220 |#1| |#2|) (-10 -8 (-15 -1905 ((-1214 |#1| |#2|) $)) (-15 -1531 ($ (-1214 |#1| |#2|))) (-15 -2585 ((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4142 (((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)) 15) (((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|))) 11))) -(((-1224 |#1|) (-10 -7 (-15 -4142 ((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|)))) (-15 -4142 ((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)))) (-1154)) (T -1224)) -((-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-606 (-1098 *5)) (-606 (-1098 *5)))) (-5 *4 (-537)) (-5 *2 (-606 (-1098 *5))) (-5 *1 (-1224 *5)) (-4 *5 (-1154)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-1 (-1098 *4) (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1224 *4)) (-4 *4 (-1154))))) -(-10 -7 (-15 -4142 ((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|)))) (-15 -4142 ((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)))) -((-2120 (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|))) 148) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111)) 147) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)) 146) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111)) 145) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|)) 130)) (-1490 (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|))) 72) (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111)) 71) (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111)) 70)) (-2414 (((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|)) 61)) (-2465 (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|))) 115) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111)) 114) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111)) 113) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111)) 112) (((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|)) 107)) (-1523 (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|))) 120) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111)) 119) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111)) 118) (((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|)) 117)) (-3996 (((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) 98) (((-1113 (-975 (-391 |#1|))) (-1113 |#1|)) 89) (((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|))) 96) (((-905 (-975 (-391 |#1|))) (-905 |#1|)) 94) (((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|))) 33))) -(((-1225 |#1| |#2| |#3|) (-10 -7 (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -2414 ((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|))) (-15 -3996 ((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|)))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-905 |#1|))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|)))) (-15 -3996 ((-1113 (-975 (-391 |#1|))) (-1113 |#1|))) (-15 -3996 ((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))))) (-13 (-805) (-291) (-141) (-973)) (-606 (-1117)) (-606 (-1117))) (T -1225)) -((-3996 (*1 *2 *3) (-12 (-5 *3 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6)))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-740 *4 (-818 *6)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-1113 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-740 *4 (-818 *6))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-740 *4 (-818 *5))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-740 *4 (-818 *6))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1523 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1225 *4 *5 *6)) (-5 *3 (-606 (-905 *4))) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *4 *5))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117)))))) -(-10 -7 (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -2414 ((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|))) (-15 -3996 ((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|)))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-905 |#1|))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|)))) (-15 -3996 ((-1113 (-975 (-391 |#1|))) (-1113 |#1|))) (-15 -3996 ((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))))) -((-2606 (((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|) 21)) (-2894 (((-111) (-1200 |#1|)) 12)) (-3682 (((-3 (-1200 (-537)) "failed") (-1200 |#1|)) 16))) -(((-1226 |#1|) (-10 -7 (-15 -2894 ((-111) (-1200 |#1|))) (-15 -3682 ((-3 (-1200 (-537)) "failed") (-1200 |#1|))) (-15 -2606 ((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|))) (-602 (-537))) (T -1226)) -((-2606 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-1200 (-391 (-537)))) (-5 *1 (-1226 *4)))) (-3682 (*1 *2 *3) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-1200 (-537))) (-5 *1 (-1226 *4)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-111)) (-5 *1 (-1226 *4))))) -(-10 -7 (-15 -2894 ((-111) (-1200 |#1|))) (-15 -3682 ((-3 (-1200 (-537)) "failed") (-1200 |#1|))) (-15 -2606 ((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|))) -((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 11)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) 8)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 43)) (-1618 (($) 36)) (-2836 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) 29)) (-2334 (((-874) $) 15)) (-1654 (((-1100) $) NIL)) (-3956 (($) 25 T CONST)) (-2009 (($ (-874)) 37)) (-2528 (((-1064) $) NIL)) (-3996 (((-537) $) 13)) (-2341 (((-816) $) 22) (($ (-537)) 19)) (-3654 (((-731)) 9)) (-2928 (($) 23 T CONST)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 27)) (-2329 (($ $) 38) (($ $ $) 35)) (-2318 (($ $ $) 26)) (** (($ $ (-874)) NIL) (($ $ (-731)) 40)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 32) (($ $ $) 31))) -(((-1227 |#1|) (-13 (-163) (-352) (-580 (-537)) (-1093)) (-874)) (T -1227)) -NIL -(-13 (-163) (-352) (-580 (-537)) (-1093)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3148249 3148254 3148259 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3148234 3148239 3148244 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3148219 3148224 3148229 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3148204 3148209 3148214 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1227 3147380 3148079 3148156 "ZMOD" 3148161 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1226 3146490 3146654 3146863 "ZLINDEP" 3147212 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1225 3135894 3137639 3139591 "ZDSOLVE" 3144639 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1224 3135140 3135281 3135470 "YSTREAM" 3135740 NIL YSTREAM (NIL T) -7 NIL NIL) (-1223 3132955 3134445 3134648 "XRPOLY" 3134983 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1222 3129463 3130746 3131328 "XPR" 3132419 NIL XPR (NIL T T) -8 NIL NIL) (-1221 3127223 3128798 3129001 "XPOLY" 3129294 NIL XPOLY (NIL T) -8 NIL NIL) (-1220 3125078 3126412 3126466 "XPOLYC" 3126751 NIL XPOLYC (NIL T T) -9 NIL 3126864) (-1219 3121496 3123595 3123983 "XPBWPOLY" 3124736 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1218 3117484 3119732 3119774 "XF" 3120395 NIL XF (NIL T) -9 NIL 3120794) (-1217 3117105 3117193 3117362 "XF-" 3117367 NIL XF- (NIL T T) -8 NIL NIL) (-1216 3112526 3113781 3113835 "XFALG" 3115983 NIL XFALG (NIL T T) -9 NIL 3116770) (-1215 3111663 3111767 3111971 "XEXPPKG" 3112418 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1214 3109808 3111514 3111609 "XDPOLY" 3111614 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1213 3108728 3109294 3109336 "XALG" 3109398 NIL XALG (NIL T) -9 NIL 3109517) (-1212 3102197 3106705 3107199 "WUTSET" 3108320 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1211 3100055 3100816 3101167 "WP" 3101979 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1210 3099701 3099877 3099947 "WHILEAST" 3100007 T WHILEAST (NIL) -8 NIL NIL) (-1209 3098587 3098785 3099080 "WFFINTBS" 3099498 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1208 3096491 3096918 3097380 "WEIER" 3098159 NIL WEIER (NIL T) -7 NIL NIL) (-1207 3095638 3096062 3096104 "VSPACE" 3096240 NIL VSPACE (NIL T) -9 NIL 3096314) (-1206 3095476 3095503 3095594 "VSPACE-" 3095599 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1205 3095222 3095265 3095336 "VOID" 3095427 T VOID (NIL) -8 NIL NIL) (-1204 3093358 3093717 3094123 "VIEW" 3094838 T VIEW (NIL) -7 NIL NIL) (-1203 3089783 3090421 3091158 "VIEWDEF" 3092643 T VIEWDEF (NIL) -7 NIL NIL) (-1202 3079121 3081331 3083504 "VIEW3D" 3087632 T VIEW3D (NIL) -8 NIL NIL) (-1201 3071403 3073032 3074611 "VIEW2D" 3077564 T VIEW2D (NIL) -8 NIL NIL) (-1200 3066812 3071173 3071265 "VECTOR" 3071346 NIL VECTOR (NIL T) -8 NIL NIL) (-1199 3065389 3065648 3065966 "VECTOR2" 3066542 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1198 3058928 3063180 3063223 "VECTCAT" 3064211 NIL VECTCAT (NIL T) -9 NIL 3064795) (-1197 3057942 3058196 3058586 "VECTCAT-" 3058591 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1196 3057423 3057593 3057713 "VARIABLE" 3057857 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1195 3057356 3057361 3057391 "UTYPE" 3057396 T UTYPE (NIL) -9 NIL NIL) (-1194 3056191 3056345 3056606 "UTSODETL" 3057182 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1193 3053631 3054091 3054615 "UTSODE" 3055732 NIL UTSODE (NIL T T) -7 NIL NIL) (-1192 3045521 3051271 3051759 "UTS" 3053200 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1191 3036907 3042226 3042268 "UTSCAT" 3043369 NIL UTSCAT (NIL T) -9 NIL 3044126) (-1190 3034262 3034978 3035966 "UTSCAT-" 3035971 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1189 3033893 3033936 3034067 "UTS2" 3034213 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1188 3028168 3030733 3030776 "URAGG" 3032846 NIL URAGG (NIL T) -9 NIL 3033568) (-1187 3025107 3025970 3027093 "URAGG-" 3027098 NIL URAGG- (NIL T T) -8 NIL NIL) (-1186 3020839 3023724 3024195 "UPXSSING" 3024771 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1185 3012815 3019960 3020240 "UPXS" 3020616 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1184 3005929 3012720 3012791 "UPXSCONS" 3012796 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1183 2996298 3003043 3003104 "UPXSCCA" 3003753 NIL UPXSCCA (NIL T T) -9 NIL 3003994) (-1182 2995937 2996022 2996195 "UPXSCCA-" 2996200 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1181 2986228 2992746 2992788 "UPXSCAT" 2993431 NIL UPXSCAT (NIL T) -9 NIL 2994039) (-1180 2985662 2985741 2985918 "UPXS2" 2986143 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1179 2984316 2984569 2984920 "UPSQFREE" 2985405 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1178 2978248 2981257 2981311 "UPSCAT" 2982460 NIL UPSCAT (NIL T T) -9 NIL 2983234) (-1177 2977453 2977660 2977986 "UPSCAT-" 2977991 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1176 2963580 2971571 2971613 "UPOLYC" 2973691 NIL UPOLYC (NIL T) -9 NIL 2974912) (-1175 2954910 2957335 2960481 "UPOLYC-" 2960486 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1174 2954541 2954584 2954715 "UPOLYC2" 2954861 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1173 2946006 2954110 2954247 "UP" 2954451 NIL UP (NIL NIL T) -8 NIL NIL) (-1172 2945349 2945456 2945619 "UPMP" 2945895 NIL UPMP (NIL T T) -7 NIL NIL) (-1171 2944902 2944983 2945122 "UPDIVP" 2945262 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1170 2943470 2943719 2944035 "UPDECOMP" 2944651 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1169 2942705 2942817 2943002 "UPCDEN" 2943354 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1168 2942228 2942297 2942444 "UP2" 2942630 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1167 2940745 2941432 2941709 "UNISEG" 2941986 NIL UNISEG (NIL T) -8 NIL NIL) (-1166 2939960 2940087 2940292 "UNISEG2" 2940588 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1165 2939020 2939200 2939426 "UNIFACT" 2939776 NIL UNIFACT (NIL T) -7 NIL NIL) (-1164 2923001 2938201 2938451 "ULS" 2938827 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1163 2911051 2922906 2922977 "ULSCONS" 2922982 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1162 2893880 2905808 2905869 "ULSCCAT" 2906581 NIL ULSCCAT (NIL T T) -9 NIL 2906877) (-1161 2892931 2893176 2893563 "ULSCCAT-" 2893568 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1160 2883001 2889433 2889475 "ULSCAT" 2890331 NIL ULSCAT (NIL T) -9 NIL 2891061) (-1159 2882435 2882514 2882691 "ULS2" 2882916 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1158 2880874 2881797 2881827 "UFD" 2882039 T UFD (NIL) -9 NIL 2882153) (-1157 2880668 2880714 2880809 "UFD-" 2880814 NIL UFD- (NIL T) -8 NIL NIL) (-1156 2879750 2879933 2880149 "UDVO" 2880474 T UDVO (NIL) -7 NIL NIL) (-1155 2877566 2877975 2878446 "UDPO" 2879314 NIL UDPO (NIL T) -7 NIL NIL) (-1154 2877499 2877504 2877534 "TYPE" 2877539 T TYPE (NIL) -9 NIL NIL) (-1153 2877153 2877321 2877391 "TYPEAST" 2877451 T TYPEAST (NIL) -8 NIL NIL) (-1152 2876124 2876326 2876566 "TWOFACT" 2876947 NIL TWOFACT (NIL T) -7 NIL NIL) (-1151 2875062 2875399 2875662 "TUPLE" 2875896 NIL TUPLE (NIL T) -8 NIL NIL) (-1150 2872753 2873272 2873811 "TUBETOOL" 2874545 T TUBETOOL (NIL) -7 NIL NIL) (-1149 2871602 2871807 2872048 "TUBE" 2872546 NIL TUBE (NIL T) -8 NIL NIL) (-1148 2866372 2870580 2870862 "TS" 2871354 NIL TS (NIL T) -8 NIL NIL) (-1147 2855039 2859131 2859228 "TSETCAT" 2864497 NIL TSETCAT (NIL T T T T) -9 NIL 2866028) (-1146 2849773 2851371 2853262 "TSETCAT-" 2853267 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1145 2844036 2844882 2845824 "TRMANIP" 2848909 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1144 2843477 2843540 2843703 "TRIMAT" 2843968 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1143 2841283 2841520 2841883 "TRIGMNIP" 2843226 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1142 2840803 2840916 2840946 "TRIGCAT" 2841159 T TRIGCAT (NIL) -9 NIL NIL) (-1141 2840472 2840551 2840692 "TRIGCAT-" 2840697 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1140 2837371 2839332 2839612 "TREE" 2840227 NIL TREE (NIL T) -8 NIL NIL) (-1139 2836645 2837173 2837203 "TRANFUN" 2837238 T TRANFUN (NIL) -9 NIL 2837304) (-1138 2835924 2836115 2836395 "TRANFUN-" 2836400 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1137 2835728 2835760 2835821 "TOPSP" 2835885 T TOPSP (NIL) -7 NIL NIL) (-1136 2835080 2835195 2835348 "TOOLSIGN" 2835609 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1135 2833741 2834257 2834496 "TEXTFILE" 2834863 T TEXTFILE (NIL) -8 NIL NIL) (-1134 2831606 2832120 2832558 "TEX" 2833325 T TEX (NIL) -8 NIL NIL) (-1133 2831387 2831418 2831490 "TEX1" 2831569 NIL TEX1 (NIL T) -7 NIL NIL) (-1132 2831035 2831098 2831188 "TEMUTL" 2831319 T TEMUTL (NIL) -7 NIL NIL) (-1131 2829189 2829469 2829794 "TBCMPPK" 2830758 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1130 2821077 2827349 2827405 "TBAGG" 2827805 NIL TBAGG (NIL T T) -9 NIL 2828016) (-1129 2816147 2817635 2819389 "TBAGG-" 2819394 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1128 2815531 2815638 2815783 "TANEXP" 2816036 NIL TANEXP (NIL T) -7 NIL NIL) (-1127 2809032 2815388 2815481 "TABLE" 2815486 NIL TABLE (NIL T T) -8 NIL NIL) (-1126 2808444 2808543 2808681 "TABLEAU" 2808929 NIL TABLEAU (NIL T) -8 NIL NIL) (-1125 2803052 2804272 2805520 "TABLBUMP" 2807230 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1124 2802480 2802580 2802708 "SYSTEM" 2802946 T SYSTEM (NIL) -7 NIL NIL) (-1123 2798943 2799638 2800421 "SYSSOLP" 2801731 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1122 2795234 2795942 2796676 "SYNTAX" 2798231 T SYNTAX (NIL) -8 NIL NIL) (-1121 2792392 2792994 2793626 "SYMTAB" 2794624 T SYMTAB (NIL) -8 NIL NIL) (-1120 2787641 2788543 2789526 "SYMS" 2791431 T SYMS (NIL) -8 NIL NIL) (-1119 2784920 2787101 2787330 "SYMPOLY" 2787446 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1118 2784440 2784515 2784637 "SYMFUNC" 2784832 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1117 2780417 2781677 2782499 "SYMBOL" 2783640 T SYMBOL (NIL) -8 NIL NIL) (-1116 2773956 2775645 2777365 "SWITCH" 2778719 T SWITCH (NIL) -8 NIL NIL) (-1115 2767232 2772783 2773085 "SUTS" 2773711 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1114 2759207 2766353 2766633 "SUPXS" 2767009 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1113 2750744 2758828 2758953 "SUP" 2759116 NIL SUP (NIL T) -8 NIL NIL) (-1112 2749903 2750030 2750247 "SUPFRACF" 2750612 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1111 2749528 2749587 2749698 "SUP2" 2749838 NIL SUP2 (NIL T T) -7 NIL NIL) (-1110 2747946 2748220 2748582 "SUMRF" 2749227 NIL SUMRF (NIL T) -7 NIL NIL) (-1109 2747263 2747329 2747527 "SUMFS" 2747867 NIL SUMFS (NIL T T) -7 NIL NIL) (-1108 2731284 2746444 2746694 "SULS" 2747070 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1107 2730606 2730809 2730949 "SUCH" 2731192 NIL SUCH (NIL T T) -8 NIL NIL) (-1106 2724533 2725545 2726503 "SUBSPACE" 2729694 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1105 2723963 2724053 2724217 "SUBRESP" 2724421 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1104 2717332 2718628 2719939 "STTF" 2722699 NIL STTF (NIL T) -7 NIL NIL) (-1103 2711505 2712625 2713772 "STTFNC" 2716232 NIL STTFNC (NIL T) -7 NIL NIL) (-1102 2702856 2704723 2706516 "STTAYLOR" 2709746 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1101 2696100 2702720 2702803 "STRTBL" 2702808 NIL STRTBL (NIL T) -8 NIL NIL) (-1100 2691491 2696055 2696086 "STRING" 2696091 T STRING (NIL) -8 NIL NIL) (-1099 2686379 2690864 2690894 "STRICAT" 2690953 T STRICAT (NIL) -9 NIL 2691015) (-1098 2679093 2683902 2684522 "STREAM" 2685794 NIL STREAM (NIL T) -8 NIL NIL) (-1097 2678603 2678680 2678824 "STREAM3" 2679010 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1096 2677585 2677768 2678003 "STREAM2" 2678416 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1095 2677273 2677325 2677418 "STREAM1" 2677527 NIL STREAM1 (NIL T) -7 NIL NIL) (-1094 2676289 2676470 2676701 "STINPROD" 2677089 NIL STINPROD (NIL T) -7 NIL NIL) (-1093 2675867 2676051 2676081 "STEP" 2676161 T STEP (NIL) -9 NIL 2676239) (-1092 2669410 2675766 2675843 "STBL" 2675848 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1091 2664585 2668632 2668675 "STAGG" 2668828 NIL STAGG (NIL T) -9 NIL 2668917) (-1090 2662287 2662889 2663761 "STAGG-" 2663766 NIL STAGG- (NIL T T) -8 NIL NIL) (-1089 2660482 2662057 2662149 "STACK" 2662230 NIL STACK (NIL T) -8 NIL NIL) (-1088 2653207 2658623 2659079 "SREGSET" 2660112 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1087 2645633 2647001 2648514 "SRDCMPK" 2651813 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1086 2638600 2643073 2643103 "SRAGG" 2644406 T SRAGG (NIL) -9 NIL 2645014) (-1085 2637617 2637872 2638251 "SRAGG-" 2638256 NIL SRAGG- (NIL T) -8 NIL NIL) (-1084 2632112 2636536 2636963 "SQMATRIX" 2637236 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1083 2625864 2628832 2629558 "SPLTREE" 2631458 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1082 2621854 2622520 2623166 "SPLNODE" 2625290 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1081 2620901 2621134 2621164 "SPFCAT" 2621608 T SPFCAT (NIL) -9 NIL NIL) (-1080 2619638 2619848 2620112 "SPECOUT" 2620659 T SPECOUT (NIL) -7 NIL NIL) (-1079 2619399 2619439 2619508 "SPADPRSR" 2619591 T SPADPRSR (NIL) -7 NIL NIL) (-1078 2611421 2613168 2613210 "SPACEC" 2617533 NIL SPACEC (NIL T) -9 NIL 2619349) (-1077 2609593 2611354 2611402 "SPACE3" 2611407 NIL SPACE3 (NIL T) -8 NIL NIL) (-1076 2608345 2608516 2608807 "SORTPAK" 2609398 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1075 2606401 2606704 2607122 "SOLVETRA" 2608009 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1074 2605412 2605634 2605908 "SOLVESER" 2606174 NIL SOLVESER (NIL T) -7 NIL NIL) (-1073 2600632 2601513 2602515 "SOLVERAD" 2604464 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1072 2596447 2597056 2597785 "SOLVEFOR" 2599999 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1071 2590744 2595796 2595893 "SNTSCAT" 2595898 NIL SNTSCAT (NIL T T T T) -9 NIL 2595968) (-1070 2584894 2589075 2589465 "SMTS" 2590434 NIL SMTS (NIL T T T) -8 NIL NIL) (-1069 2579350 2584783 2584859 "SMP" 2584864 NIL SMP (NIL T T) -8 NIL NIL) (-1068 2577509 2577810 2578208 "SMITH" 2579047 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1067 2570515 2574665 2574767 "SMATCAT" 2576107 NIL SMATCAT (NIL NIL T T T) -9 NIL 2576657) (-1066 2567456 2568279 2569456 "SMATCAT-" 2569461 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1065 2565169 2566692 2566735 "SKAGG" 2566996 NIL SKAGG (NIL T) -9 NIL 2567131) (-1064 2561273 2564273 2564551 "SINT" 2564913 T SINT (NIL) -8 NIL NIL) (-1063 2561045 2561083 2561149 "SIMPAN" 2561229 T SIMPAN (NIL) -7 NIL NIL) (-1062 2560352 2560580 2560720 "SIG" 2560927 T SIG (NIL) -8 NIL NIL) (-1061 2559190 2559411 2559686 "SIGNRF" 2560111 NIL SIGNRF (NIL T) -7 NIL NIL) (-1060 2557999 2558150 2558440 "SIGNEF" 2559019 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1059 2555689 2556143 2556649 "SHP" 2557540 NIL SHP (NIL T NIL) -7 NIL NIL) (-1058 2549628 2555590 2555666 "SHDP" 2555671 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1057 2549227 2549393 2549423 "SGROUP" 2549516 T SGROUP (NIL) -9 NIL 2549578) (-1056 2549085 2549111 2549184 "SGROUP-" 2549189 NIL SGROUP- (NIL T) -8 NIL NIL) (-1055 2545921 2546618 2547341 "SGCF" 2548384 T SGCF (NIL) -7 NIL NIL) (-1054 2540316 2545368 2545465 "SFRTCAT" 2545470 NIL SFRTCAT (NIL T T T T) -9 NIL 2545509) (-1053 2533740 2534755 2535891 "SFRGCD" 2539299 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1052 2526868 2527939 2529125 "SFQCMPK" 2532673 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1051 2526490 2526579 2526689 "SFORT" 2526809 NIL SFORT (NIL T T) -8 NIL NIL) (-1050 2525635 2526330 2526451 "SEXOF" 2526456 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1049 2524769 2525516 2525584 "SEX" 2525589 T SEX (NIL) -8 NIL NIL) (-1048 2519545 2520234 2520329 "SEXCAT" 2524100 NIL SEXCAT (NIL T T T T T) -9 NIL 2524719) (-1047 2516725 2519479 2519527 "SET" 2519532 NIL SET (NIL T) -8 NIL NIL) (-1046 2514976 2515438 2515743 "SETMN" 2516466 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1045 2514582 2514708 2514738 "SETCAT" 2514855 T SETCAT (NIL) -9 NIL 2514940) (-1044 2514362 2514414 2514513 "SETCAT-" 2514518 NIL SETCAT- (NIL T) -8 NIL NIL) (-1043 2510749 2512823 2512866 "SETAGG" 2513736 NIL SETAGG (NIL T) -9 NIL 2514076) (-1042 2510207 2510323 2510560 "SETAGG-" 2510565 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1041 2509411 2509704 2509765 "SEGXCAT" 2510051 NIL SEGXCAT (NIL T T) -9 NIL 2510171) (-1040 2508467 2509077 2509259 "SEG" 2509264 NIL SEG (NIL T) -8 NIL NIL) (-1039 2507374 2507587 2507630 "SEGCAT" 2508212 NIL SEGCAT (NIL T) -9 NIL 2508450) (-1038 2506423 2506753 2506953 "SEGBIND" 2507209 NIL SEGBIND (NIL T) -8 NIL NIL) (-1037 2506044 2506103 2506216 "SEGBIND2" 2506358 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1036 2505662 2505845 2505922 "SEGAST" 2505989 T SEGAST (NIL) -8 NIL NIL) (-1035 2504881 2505007 2505211 "SEG2" 2505506 NIL SEG2 (NIL T T) -7 NIL NIL) (-1034 2504318 2504816 2504863 "SDVAR" 2504868 NIL SDVAR (NIL T) -8 NIL NIL) (-1033 2496616 2504091 2504219 "SDPOL" 2504224 NIL SDPOL (NIL T) -8 NIL NIL) (-1032 2495209 2495475 2495794 "SCPKG" 2496331 NIL SCPKG (NIL T) -7 NIL NIL) (-1031 2494345 2494525 2494725 "SCOPE" 2495031 T SCOPE (NIL) -8 NIL NIL) (-1030 2493566 2493699 2493878 "SCACHE" 2494200 NIL SCACHE (NIL T) -7 NIL NIL) (-1029 2493292 2493435 2493465 "SASTCAT" 2493470 T SASTCAT (NIL) -9 NIL 2493483) (-1028 2493081 2493126 2493224 "SASTCAT-" 2493229 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1027 2492520 2492841 2492926 "SAOS" 2493018 T SAOS (NIL) -8 NIL NIL) (-1026 2492085 2492120 2492293 "SAERFFC" 2492479 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1025 2486064 2491982 2492062 "SAE" 2492067 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1024 2485657 2485692 2485851 "SAEFACT" 2486023 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1023 2483978 2484292 2484693 "RURPK" 2485323 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1022 2482618 2482897 2483208 "RULESET" 2483812 NIL RULESET (NIL T T T) -8 NIL NIL) (-1021 2479816 2480319 2480782 "RULE" 2482300 NIL RULE (NIL T T T) -8 NIL NIL) (-1020 2479455 2479610 2479693 "RULECOLD" 2479768 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1019 2474304 2475098 2476018 "RSETGCD" 2478654 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1018 2463561 2468613 2468710 "RSETCAT" 2472829 NIL RSETCAT (NIL T T T T) -9 NIL 2473926) (-1017 2461488 2462027 2462851 "RSETCAT-" 2462856 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1016 2453875 2455250 2456770 "RSDCMPK" 2460087 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1015 2451880 2452321 2452395 "RRCC" 2453481 NIL RRCC (NIL T T) -9 NIL 2453825) (-1014 2451231 2451405 2451684 "RRCC-" 2451689 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1013 2450718 2450927 2451028 "RPTAST" 2451152 T RPTAST (NIL) -8 NIL NIL) (-1012 2425043 2434622 2434688 "RPOLCAT" 2445271 NIL RPOLCAT (NIL T T T) -9 NIL 2448429) (-1011 2416544 2418882 2422003 "RPOLCAT-" 2422008 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1010 2407591 2414755 2415237 "ROUTINE" 2416084 T ROUTINE (NIL) -8 NIL NIL) (-1009 2404337 2407142 2407291 "ROMAN" 2407464 T ROMAN (NIL) -8 NIL NIL) (-1008 2402612 2403197 2403457 "ROIRC" 2404142 NIL ROIRC (NIL T T) -8 NIL NIL) (-1007 2399068 2401307 2401337 "RNS" 2401641 T RNS (NIL) -9 NIL 2401911) (-1006 2397577 2397960 2398494 "RNS-" 2398569 NIL RNS- (NIL T) -8 NIL NIL) (-1005 2397026 2397408 2397438 "RNG" 2397443 T RNG (NIL) -9 NIL 2397464) (-1004 2396418 2396780 2396823 "RMODULE" 2396885 NIL RMODULE (NIL T) -9 NIL 2396927) (-1003 2395260 2395354 2395688 "RMCAT2" 2396319 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1002 2391968 2394437 2394761 "RMATRIX" 2394994 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1001 2384936 2387170 2387284 "RMATCAT" 2390618 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2391600) (-1000 2384312 2384459 2384765 "RMATCAT-" 2384770 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-999 2383882 2383957 2384083 "RINTERP" 2384231 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-998 2382974 2383494 2383522 "RING" 2383632 T RING (NIL) -9 NIL 2383727) (-997 2382769 2382813 2382907 "RING-" 2382912 NIL RING- (NIL T) -8 NIL NIL) (-996 2381617 2381854 2382110 "RIDIST" 2382533 T RIDIST (NIL) -7 NIL NIL) (-995 2372937 2381089 2381293 "RGCHAIN" 2381465 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-994 2369942 2370556 2371224 "RF" 2372301 NIL RF (NIL T) -7 NIL NIL) (-993 2369591 2369654 2369755 "RFFACTOR" 2369873 NIL RFFACTOR (NIL T) -7 NIL NIL) (-992 2369319 2369354 2369449 "RFFACT" 2369550 NIL RFFACT (NIL T) -7 NIL NIL) (-991 2367449 2367813 2368193 "RFDIST" 2368959 T RFDIST (NIL) -7 NIL NIL) (-990 2366907 2366999 2367159 "RETSOL" 2367351 NIL RETSOL (NIL T T) -7 NIL NIL) (-989 2366500 2366580 2366621 "RETRACT" 2366811 NIL RETRACT (NIL T) -9 NIL NIL) (-988 2366352 2366377 2366461 "RETRACT-" 2366466 NIL RETRACT- (NIL T T) -8 NIL NIL) (-987 2366001 2366177 2366245 "RETAST" 2366304 T RETAST (NIL) -8 NIL NIL) (-986 2358859 2365658 2365783 "RESULT" 2365896 T RESULT (NIL) -8 NIL NIL) (-985 2357490 2358133 2358330 "RESRING" 2358762 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-984 2357130 2357179 2357275 "RESLATC" 2357427 NIL RESLATC (NIL T) -7 NIL NIL) (-983 2356839 2356873 2356978 "REPSQ" 2357089 NIL REPSQ (NIL T) -7 NIL NIL) (-982 2354270 2354850 2355450 "REP" 2356259 T REP (NIL) -7 NIL NIL) (-981 2353971 2354005 2354114 "REPDB" 2354229 NIL REPDB (NIL T) -7 NIL NIL) (-980 2347916 2349295 2350515 "REP2" 2352783 NIL REP2 (NIL T) -7 NIL NIL) (-979 2344322 2345003 2345808 "REP1" 2347143 NIL REP1 (NIL T) -7 NIL NIL) (-978 2337060 2342475 2342929 "REGSET" 2343952 NIL REGSET (NIL T T T T) -8 NIL NIL) (-977 2335881 2336216 2336464 "REF" 2336845 NIL REF (NIL T) -8 NIL NIL) (-976 2335262 2335365 2335530 "REDORDER" 2335765 NIL REDORDER (NIL T T) -7 NIL NIL) (-975 2331288 2334490 2334713 "RECLOS" 2335091 NIL RECLOS (NIL T) -8 NIL NIL) (-974 2330345 2330526 2330739 "REALSOLV" 2331095 T REALSOLV (NIL) -7 NIL NIL) (-973 2330193 2330234 2330262 "REAL" 2330267 T REAL (NIL) -9 NIL 2330302) (-972 2326684 2327486 2328368 "REAL0Q" 2329358 NIL REAL0Q (NIL T) -7 NIL NIL) (-971 2322295 2323283 2324342 "REAL0" 2325665 NIL REAL0 (NIL T) -7 NIL NIL) (-970 2321703 2321775 2321980 "RDIV" 2322217 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-969 2320776 2320950 2321161 "RDIST" 2321525 NIL RDIST (NIL T) -7 NIL NIL) (-968 2319380 2319667 2320036 "RDETRS" 2320484 NIL RDETRS (NIL T T) -7 NIL NIL) (-967 2317201 2317655 2318190 "RDETR" 2318922 NIL RDETR (NIL T T) -7 NIL NIL) (-966 2315817 2316095 2316496 "RDEEFS" 2316917 NIL RDEEFS (NIL T T) -7 NIL NIL) (-965 2314317 2314623 2315052 "RDEEF" 2315505 NIL RDEEF (NIL T T) -7 NIL NIL) (-964 2308662 2311529 2311557 "RCFIELD" 2312834 T RCFIELD (NIL) -9 NIL 2313564) (-963 2306731 2307235 2307928 "RCFIELD-" 2308001 NIL RCFIELD- (NIL T) -8 NIL NIL) (-962 2303062 2304847 2304888 "RCAGG" 2305959 NIL RCAGG (NIL T) -9 NIL 2306424) (-961 2302693 2302787 2302947 "RCAGG-" 2302952 NIL RCAGG- (NIL T T) -8 NIL NIL) (-960 2302037 2302149 2302311 "RATRET" 2302577 NIL RATRET (NIL T) -7 NIL NIL) (-959 2301594 2301661 2301780 "RATFACT" 2301965 NIL RATFACT (NIL T) -7 NIL NIL) (-958 2300909 2301029 2301179 "RANDSRC" 2301464 T RANDSRC (NIL) -7 NIL NIL) (-957 2300646 2300690 2300761 "RADUTIL" 2300858 T RADUTIL (NIL) -7 NIL NIL) (-956 2293718 2299389 2299706 "RADIX" 2300361 NIL RADIX (NIL NIL) -8 NIL NIL) (-955 2285379 2293562 2293690 "RADFF" 2293695 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-954 2285031 2285106 2285134 "RADCAT" 2285291 T RADCAT (NIL) -9 NIL NIL) (-953 2284816 2284864 2284961 "RADCAT-" 2284966 NIL RADCAT- (NIL T) -8 NIL NIL) (-952 2282967 2284591 2284680 "QUEUE" 2284760 NIL QUEUE (NIL T) -8 NIL NIL) (-951 2279548 2282904 2282949 "QUAT" 2282954 NIL QUAT (NIL T) -8 NIL NIL) (-950 2279186 2279229 2279356 "QUATCT2" 2279499 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-949 2273057 2276353 2276393 "QUATCAT" 2277173 NIL QUATCAT (NIL T) -9 NIL 2277939) (-948 2269201 2270238 2271625 "QUATCAT-" 2271719 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-947 2266721 2268285 2268326 "QUAGG" 2268701 NIL QUAGG (NIL T) -9 NIL 2268876) (-946 2265646 2266119 2266291 "QFORM" 2266593 NIL QFORM (NIL NIL T) -8 NIL NIL) (-945 2257000 2262196 2262236 "QFCAT" 2262894 NIL QFCAT (NIL T) -9 NIL 2263887) (-944 2252572 2253773 2255364 "QFCAT-" 2255458 NIL QFCAT- (NIL T T) -8 NIL NIL) (-943 2252210 2252253 2252380 "QFCAT2" 2252523 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-942 2251670 2251780 2251910 "QEQUAT" 2252100 T QEQUAT (NIL) -8 NIL NIL) (-941 2244818 2245889 2247073 "QCMPACK" 2250603 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-940 2242394 2242815 2243243 "QALGSET" 2244473 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-939 2241639 2241813 2242045 "QALGSET2" 2242214 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-938 2240330 2240553 2240870 "PWFFINTB" 2241412 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-937 2238518 2238686 2239039 "PUSHVAR" 2240144 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-936 2234436 2235490 2235531 "PTRANFN" 2237415 NIL PTRANFN (NIL T) -9 NIL NIL) (-935 2232848 2233139 2233460 "PTPACK" 2234147 NIL PTPACK (NIL T) -7 NIL NIL) (-934 2232484 2232541 2232648 "PTFUNC2" 2232785 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-933 2226960 2231301 2231341 "PTCAT" 2231709 NIL PTCAT (NIL T) -9 NIL 2231871) (-932 2226618 2226653 2226777 "PSQFR" 2226919 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-931 2225213 2225511 2225845 "PSEUDLIN" 2226316 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-930 2211982 2214347 2216671 "PSETPK" 2222973 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-929 2205047 2207761 2207856 "PSETCAT" 2210857 NIL PSETCAT (NIL T T T T) -9 NIL 2211671) (-928 2202884 2203518 2204338 "PSETCAT-" 2204343 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-927 2202233 2202398 2202426 "PSCURVE" 2202694 T PSCURVE (NIL) -9 NIL 2202861) (-926 2198724 2200206 2200270 "PSCAT" 2201106 NIL PSCAT (NIL T T T) -9 NIL 2201346) (-925 2197788 2198004 2198403 "PSCAT-" 2198408 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-924 2196440 2197073 2197287 "PRTITION" 2197594 T PRTITION (NIL) -8 NIL NIL) (-923 2195960 2196161 2196253 "PRTDAST" 2196368 T PRTDAST (NIL) -8 NIL NIL) (-922 2185058 2187264 2189452 "PRS" 2193822 NIL PRS (NIL T T) -7 NIL NIL) (-921 2182916 2184408 2184448 "PRQAGG" 2184631 NIL PRQAGG (NIL T) -9 NIL 2184733) (-920 2182487 2182589 2182617 "PROPLOG" 2182802 T PROPLOG (NIL) -9 NIL NIL) (-919 2179610 2180175 2180702 "PROPFRML" 2181992 NIL PROPFRML (NIL T) -8 NIL NIL) (-918 2179070 2179180 2179310 "PROPERTY" 2179500 T PROPERTY (NIL) -8 NIL NIL) (-917 2173155 2177236 2178056 "PRODUCT" 2178296 NIL PRODUCT (NIL T T) -8 NIL NIL) (-916 2170475 2172615 2172848 "PR" 2172966 NIL PR (NIL T T) -8 NIL NIL) (-915 2170271 2170303 2170362 "PRINT" 2170436 T PRINT (NIL) -7 NIL NIL) (-914 2169611 2169728 2169880 "PRIMES" 2170151 NIL PRIMES (NIL T) -7 NIL NIL) (-913 2167676 2168077 2168543 "PRIMELT" 2169190 NIL PRIMELT (NIL T) -7 NIL NIL) (-912 2167405 2167454 2167482 "PRIMCAT" 2167606 T PRIMCAT (NIL) -9 NIL NIL) (-911 2163566 2167343 2167388 "PRIMARR" 2167393 NIL PRIMARR (NIL T) -8 NIL NIL) (-910 2162573 2162751 2162979 "PRIMARR2" 2163384 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-909 2162216 2162272 2162383 "PREASSOC" 2162511 NIL PREASSOC (NIL T T) -7 NIL NIL) (-908 2161691 2161824 2161852 "PPCURVE" 2162057 T PPCURVE (NIL) -9 NIL 2162193) (-907 2161313 2161486 2161569 "PORTNUM" 2161628 T PORTNUM (NIL) -8 NIL NIL) (-906 2158672 2159071 2159663 "POLYROOT" 2160894 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-905 2152624 2158278 2158437 "POLY" 2158545 NIL POLY (NIL T) -8 NIL NIL) (-904 2152009 2152067 2152300 "POLYLIFT" 2152560 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-903 2148294 2148743 2149371 "POLYCATQ" 2151554 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-902 2135376 2140727 2140791 "POLYCAT" 2144276 NIL POLYCAT (NIL T T T) -9 NIL 2146203) (-901 2128827 2130688 2133071 "POLYCAT-" 2133076 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-900 2128416 2128484 2128603 "POLY2UP" 2128753 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-899 2128052 2128109 2128216 "POLY2" 2128353 NIL POLY2 (NIL T T) -7 NIL NIL) (-898 2126737 2126976 2127252 "POLUTIL" 2127826 NIL POLUTIL (NIL T T) -7 NIL NIL) (-897 2125099 2125376 2125706 "POLTOPOL" 2126459 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-896 2120622 2125036 2125081 "POINT" 2125086 NIL POINT (NIL T) -8 NIL NIL) (-895 2118809 2119166 2119541 "PNTHEORY" 2120267 T PNTHEORY (NIL) -7 NIL NIL) (-894 2117237 2117534 2117943 "PMTOOLS" 2118507 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-893 2116830 2116908 2117025 "PMSYM" 2117153 NIL PMSYM (NIL T) -7 NIL NIL) (-892 2116340 2116409 2116583 "PMQFCAT" 2116755 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-891 2115695 2115805 2115961 "PMPRED" 2116217 NIL PMPRED (NIL T) -7 NIL NIL) (-890 2115091 2115177 2115338 "PMPREDFS" 2115596 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-889 2113737 2113945 2114329 "PMPLCAT" 2114853 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-888 2113269 2113348 2113500 "PMLSAGG" 2113652 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-887 2112746 2112822 2113002 "PMKERNEL" 2113187 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-886 2112363 2112438 2112551 "PMINS" 2112665 NIL PMINS (NIL T) -7 NIL NIL) (-885 2111793 2111862 2112077 "PMFS" 2112288 NIL PMFS (NIL T T T) -7 NIL NIL) (-884 2111024 2111142 2111346 "PMDOWN" 2111670 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-883 2110187 2110346 2110528 "PMASS" 2110862 T PMASS (NIL) -7 NIL NIL) (-882 2109461 2109572 2109735 "PMASSFS" 2110073 NIL PMASSFS (NIL T T) -7 NIL NIL) (-881 2109116 2109184 2109278 "PLOTTOOL" 2109387 T PLOTTOOL (NIL) -7 NIL NIL) (-880 2103738 2104927 2106075 "PLOT" 2107988 T PLOT (NIL) -8 NIL NIL) (-879 2099552 2100586 2101507 "PLOT3D" 2102837 T PLOT3D (NIL) -8 NIL NIL) (-878 2098464 2098641 2098876 "PLOT1" 2099356 NIL PLOT1 (NIL T) -7 NIL NIL) (-877 2073858 2078530 2083381 "PLEQN" 2093730 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-876 2073176 2073298 2073478 "PINTERP" 2073723 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-875 2072869 2072916 2073019 "PINTERPA" 2073123 NIL PINTERPA (NIL T T) -7 NIL NIL) (-874 2072154 2072675 2072762 "PI" 2072802 T PI (NIL) -8 NIL NIL) (-873 2070587 2071528 2071556 "PID" 2071738 T PID (NIL) -9 NIL 2071872) (-872 2070312 2070349 2070437 "PICOERCE" 2070544 NIL PICOERCE (NIL T) -7 NIL NIL) (-871 2069632 2069771 2069947 "PGROEB" 2070168 NIL PGROEB (NIL T) -7 NIL NIL) (-870 2065219 2066033 2066938 "PGE" 2068747 T PGE (NIL) -7 NIL NIL) (-869 2063343 2063589 2063955 "PGCD" 2064936 NIL PGCD (NIL T T T T) -7 NIL NIL) (-868 2062681 2062784 2062945 "PFRPAC" 2063227 NIL PFRPAC (NIL T) -7 NIL NIL) (-867 2059361 2061229 2061582 "PFR" 2062360 NIL PFR (NIL T) -8 NIL NIL) (-866 2057750 2057994 2058319 "PFOTOOLS" 2059108 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-865 2056283 2056522 2056873 "PFOQ" 2057507 NIL PFOQ (NIL T T T) -7 NIL NIL) (-864 2054760 2054972 2055334 "PFO" 2056067 NIL PFO (NIL T T T T T) -7 NIL NIL) (-863 2051348 2054649 2054718 "PF" 2054723 NIL PF (NIL NIL) -8 NIL NIL) (-862 2048818 2050055 2050083 "PFECAT" 2050668 T PFECAT (NIL) -9 NIL 2051052) (-861 2048263 2048417 2048631 "PFECAT-" 2048636 NIL PFECAT- (NIL T) -8 NIL NIL) (-860 2046867 2047118 2047419 "PFBRU" 2048012 NIL PFBRU (NIL T T) -7 NIL NIL) (-859 2044734 2045085 2045517 "PFBR" 2046518 NIL PFBR (NIL T T T T) -7 NIL NIL) (-858 2040650 2042110 2042786 "PERM" 2044091 NIL PERM (NIL T) -8 NIL NIL) (-857 2035916 2036857 2037727 "PERMGRP" 2039813 NIL PERMGRP (NIL T) -8 NIL NIL) (-856 2034048 2034979 2035020 "PERMCAT" 2035466 NIL PERMCAT (NIL T) -9 NIL 2035771) (-855 2033703 2033744 2033867 "PERMAN" 2034001 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-854 2031143 2033272 2033403 "PENDTREE" 2033605 NIL PENDTREE (NIL T) -8 NIL NIL) (-853 2029258 2029992 2030033 "PDRING" 2030690 NIL PDRING (NIL T) -9 NIL 2030975) (-852 2028361 2028579 2028941 "PDRING-" 2028946 NIL PDRING- (NIL T T) -8 NIL NIL) (-851 2025502 2026253 2026944 "PDEPROB" 2027690 T PDEPROB (NIL) -8 NIL NIL) (-850 2023065 2023563 2024114 "PDEPACK" 2024971 T PDEPACK (NIL) -7 NIL NIL) (-849 2021977 2022167 2022418 "PDECOMP" 2022864 NIL PDECOMP (NIL T T) -7 NIL NIL) (-848 2019585 2020401 2020429 "PDECAT" 2021215 T PDECAT (NIL) -9 NIL 2021927) (-847 2019338 2019371 2019460 "PCOMP" 2019546 NIL PCOMP (NIL T T) -7 NIL NIL) (-846 2017545 2018141 2018437 "PBWLB" 2019068 NIL PBWLB (NIL T) -8 NIL NIL) (-845 2010053 2011622 2012958 "PATTERN" 2016230 NIL PATTERN (NIL T) -8 NIL NIL) (-844 2009685 2009742 2009851 "PATTERN2" 2009990 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-843 2007442 2007830 2008287 "PATTERN1" 2009274 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-842 2004837 2005391 2005872 "PATRES" 2007007 NIL PATRES (NIL T T) -8 NIL NIL) (-841 2004401 2004468 2004600 "PATRES2" 2004764 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-840 2002298 2002698 2003103 "PATMATCH" 2004070 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-839 2001834 2002017 2002058 "PATMAB" 2002165 NIL PATMAB (NIL T) -9 NIL 2002248) (-838 2000379 2000688 2000946 "PATLRES" 2001639 NIL PATLRES (NIL T T T) -8 NIL NIL) (-837 1999925 2000048 2000089 "PATAB" 2000094 NIL PATAB (NIL T) -9 NIL 2000266) (-836 1997406 1997938 1998511 "PARTPERM" 1999372 T PARTPERM (NIL) -7 NIL NIL) (-835 1997027 1997090 1997192 "PARSURF" 1997337 NIL PARSURF (NIL T) -8 NIL NIL) (-834 1996659 1996716 1996825 "PARSU2" 1996964 NIL PARSU2 (NIL T T) -7 NIL NIL) (-833 1996423 1996463 1996530 "PARSER" 1996612 T PARSER (NIL) -7 NIL NIL) (-832 1996044 1996107 1996209 "PARSCURV" 1996354 NIL PARSCURV (NIL T) -8 NIL NIL) (-831 1995676 1995733 1995842 "PARSC2" 1995981 NIL PARSC2 (NIL T T) -7 NIL NIL) (-830 1995315 1995373 1995470 "PARPCURV" 1995612 NIL PARPCURV (NIL T) -8 NIL NIL) (-829 1994947 1995004 1995113 "PARPC2" 1995252 NIL PARPC2 (NIL T T) -7 NIL NIL) (-828 1994467 1994553 1994672 "PAN2EXPR" 1994848 T PAN2EXPR (NIL) -7 NIL NIL) (-827 1993273 1993588 1993816 "PALETTE" 1994259 T PALETTE (NIL) -8 NIL NIL) (-826 1991741 1992278 1992638 "PAIR" 1992959 NIL PAIR (NIL T T) -8 NIL NIL) (-825 1985656 1991000 1991194 "PADICRC" 1991596 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-824 1978929 1985002 1985186 "PADICRAT" 1985504 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-823 1977279 1978866 1978911 "PADIC" 1978916 NIL PADIC (NIL NIL) -8 NIL NIL) (-822 1974525 1976055 1976095 "PADICCT" 1976676 NIL PADICCT (NIL NIL) -9 NIL 1976958) (-821 1973482 1973682 1973950 "PADEPAC" 1974312 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-820 1972694 1972827 1973033 "PADE" 1973344 NIL PADE (NIL T T T) -7 NIL NIL) (-819 1970751 1971537 1971852 "OWP" 1972462 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-818 1969860 1970356 1970528 "OVAR" 1970619 NIL OVAR (NIL NIL) -8 NIL NIL) (-817 1969124 1969245 1969406 "OUT" 1969719 T OUT (NIL) -7 NIL NIL) (-816 1958178 1960349 1962519 "OUTFORM" 1966974 T OUTFORM (NIL) -8 NIL NIL) (-815 1957586 1957907 1957996 "OSI" 1958109 T OSI (NIL) -8 NIL NIL) (-814 1957142 1957454 1957482 "OSGROUP" 1957487 T OSGROUP (NIL) -9 NIL 1957509) (-813 1955887 1956114 1956399 "ORTHPOL" 1956889 NIL ORTHPOL (NIL T) -7 NIL NIL) (-812 1953304 1955548 1955686 "OREUP" 1955830 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-811 1950749 1952997 1953123 "ORESUP" 1953246 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-810 1948284 1948784 1949344 "OREPCTO" 1950238 NIL OREPCTO (NIL T T) -7 NIL NIL) (-809 1942235 1944397 1944437 "OREPCAT" 1946758 NIL OREPCAT (NIL T) -9 NIL 1947861) (-808 1939383 1940165 1941222 "OREPCAT-" 1941227 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-807 1938560 1938832 1938860 "ORDSET" 1939169 T ORDSET (NIL) -9 NIL 1939333) (-806 1938079 1938201 1938394 "ORDSET-" 1938399 NIL ORDSET- (NIL T) -8 NIL NIL) (-805 1936735 1937492 1937520 "ORDRING" 1937722 T ORDRING (NIL) -9 NIL 1937846) (-804 1936380 1936474 1936618 "ORDRING-" 1936623 NIL ORDRING- (NIL T) -8 NIL NIL) (-803 1935786 1936223 1936251 "ORDMON" 1936256 T ORDMON (NIL) -9 NIL 1936277) (-802 1934948 1935095 1935290 "ORDFUNS" 1935635 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-801 1934459 1934818 1934846 "ORDFIN" 1934851 T ORDFIN (NIL) -9 NIL 1934872) (-800 1931057 1933045 1933454 "ORDCOMP" 1934083 NIL ORDCOMP (NIL T) -8 NIL NIL) (-799 1930323 1930450 1930636 "ORDCOMP2" 1930917 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-798 1926830 1927713 1928550 "OPTPROB" 1929506 T OPTPROB (NIL) -8 NIL NIL) (-797 1923664 1924295 1924991 "OPTPACK" 1926154 T OPTPACK (NIL) -7 NIL NIL) (-796 1921383 1922121 1922149 "OPTCAT" 1922966 T OPTCAT (NIL) -9 NIL 1923614) (-795 1921151 1921190 1921256 "OPQUERY" 1921337 T OPQUERY (NIL) -7 NIL NIL) (-794 1918333 1919478 1919978 "OP" 1920683 NIL OP (NIL T) -8 NIL NIL) (-793 1915184 1917130 1917499 "ONECOMP" 1917997 NIL ONECOMP (NIL T) -8 NIL NIL) (-792 1914489 1914604 1914778 "ONECOMP2" 1915056 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-791 1913908 1914014 1914144 "OMSERVER" 1914379 T OMSERVER (NIL) -7 NIL NIL) (-790 1910796 1913348 1913388 "OMSAGG" 1913449 NIL OMSAGG (NIL T) -9 NIL 1913513) (-789 1909419 1909682 1909964 "OMPKG" 1910534 T OMPKG (NIL) -7 NIL NIL) (-788 1908849 1908952 1908980 "OM" 1909279 T OM (NIL) -9 NIL NIL) (-787 1907434 1908401 1908569 "OMLO" 1908730 NIL OMLO (NIL T T) -8 NIL NIL) (-786 1906364 1906511 1906737 "OMEXPR" 1907260 NIL OMEXPR (NIL T) -7 NIL NIL) (-785 1905682 1905910 1906046 "OMERR" 1906248 T OMERR (NIL) -8 NIL NIL) (-784 1904860 1905103 1905263 "OMERRK" 1905542 T OMERRK (NIL) -8 NIL NIL) (-783 1904338 1904537 1904645 "OMENC" 1904772 T OMENC (NIL) -8 NIL NIL) (-782 1898233 1899418 1900589 "OMDEV" 1903187 T OMDEV (NIL) -8 NIL NIL) (-781 1897302 1897473 1897667 "OMCONN" 1898059 T OMCONN (NIL) -8 NIL NIL) (-780 1895959 1896901 1896929 "OINTDOM" 1896934 T OINTDOM (NIL) -9 NIL 1896955) (-779 1891767 1892951 1893666 "OFMONOID" 1895276 NIL OFMONOID (NIL T) -8 NIL NIL) (-778 1891205 1891704 1891749 "ODVAR" 1891754 NIL ODVAR (NIL T) -8 NIL NIL) (-777 1888415 1890702 1890887 "ODR" 1891080 NIL ODR (NIL T T NIL) -8 NIL NIL) (-776 1880767 1888194 1888318 "ODPOL" 1888323 NIL ODPOL (NIL T) -8 NIL NIL) (-775 1874676 1880639 1880744 "ODP" 1880749 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-774 1873442 1873657 1873932 "ODETOOLS" 1874450 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-773 1870411 1871067 1871783 "ODESYS" 1872775 NIL ODESYS (NIL T T) -7 NIL NIL) (-772 1865315 1866223 1867246 "ODERTRIC" 1869486 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-771 1864741 1864823 1865017 "ODERED" 1865227 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-770 1861643 1862191 1862866 "ODERAT" 1864164 NIL ODERAT (NIL T T) -7 NIL NIL) (-769 1858611 1859075 1859671 "ODEPRRIC" 1861172 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-768 1856480 1857049 1857558 "ODEPROB" 1858122 T ODEPROB (NIL) -8 NIL NIL) (-767 1853012 1853495 1854141 "ODEPRIM" 1855959 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-766 1852265 1852367 1852625 "ODEPAL" 1852904 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-765 1848459 1849242 1850098 "ODEPACK" 1851429 T ODEPACK (NIL) -7 NIL NIL) (-764 1847496 1847603 1847831 "ODEINT" 1848348 NIL ODEINT (NIL T T) -7 NIL NIL) (-763 1841597 1843022 1844469 "ODEIFTBL" 1846069 T ODEIFTBL (NIL) -8 NIL NIL) (-762 1836941 1837727 1838685 "ODEEF" 1840756 NIL ODEEF (NIL T T) -7 NIL NIL) (-761 1836278 1836367 1836596 "ODECONST" 1836846 NIL ODECONST (NIL T T T) -7 NIL NIL) (-760 1834432 1835066 1835094 "ODECAT" 1835698 T ODECAT (NIL) -9 NIL 1836228) (-759 1831349 1834144 1834263 "OCT" 1834345 NIL OCT (NIL T) -8 NIL NIL) (-758 1830987 1831030 1831157 "OCTCT2" 1831300 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-757 1825859 1828254 1828294 "OC" 1829391 NIL OC (NIL T) -9 NIL 1830249) (-756 1823086 1823834 1824824 "OC-" 1824918 NIL OC- (NIL T T) -8 NIL NIL) (-755 1822464 1822906 1822934 "OCAMON" 1822939 T OCAMON (NIL) -9 NIL 1822960) (-754 1822021 1822336 1822364 "OASGP" 1822369 T OASGP (NIL) -9 NIL 1822389) (-753 1821308 1821771 1821799 "OAMONS" 1821839 T OAMONS (NIL) -9 NIL 1821882) (-752 1820748 1821155 1821183 "OAMON" 1821188 T OAMON (NIL) -9 NIL 1821208) (-751 1820052 1820544 1820572 "OAGROUP" 1820577 T OAGROUP (NIL) -9 NIL 1820597) (-750 1819742 1819792 1819880 "NUMTUBE" 1819996 NIL NUMTUBE (NIL T) -7 NIL NIL) (-749 1813315 1814833 1816369 "NUMQUAD" 1818226 T NUMQUAD (NIL) -7 NIL NIL) (-748 1809071 1810059 1811084 "NUMODE" 1812310 T NUMODE (NIL) -7 NIL NIL) (-747 1806468 1807316 1807344 "NUMINT" 1808263 T NUMINT (NIL) -9 NIL 1809021) (-746 1805416 1805613 1805831 "NUMFMT" 1806270 T NUMFMT (NIL) -7 NIL NIL) (-745 1791795 1794732 1797262 "NUMERIC" 1802925 NIL NUMERIC (NIL T) -7 NIL NIL) (-744 1786192 1791244 1791339 "NTSCAT" 1791344 NIL NTSCAT (NIL T T T T) -9 NIL 1791383) (-743 1785386 1785551 1785744 "NTPOLFN" 1786031 NIL NTPOLFN (NIL T) -7 NIL NIL) (-742 1773248 1782228 1783038 "NSUP" 1784608 NIL NSUP (NIL T) -8 NIL NIL) (-741 1772884 1772941 1773048 "NSUP2" 1773185 NIL NSUP2 (NIL T T) -7 NIL NIL) (-740 1762890 1772661 1772792 "NSMP" 1772797 NIL NSMP (NIL T T) -8 NIL NIL) (-739 1761322 1761623 1761980 "NREP" 1762578 NIL NREP (NIL T) -7 NIL NIL) (-738 1759913 1760165 1760523 "NPCOEF" 1761065 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-737 1758979 1759094 1759310 "NORMRETR" 1759794 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-736 1757020 1757310 1757719 "NORMPK" 1758687 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-735 1756705 1756733 1756857 "NORMMA" 1756986 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-734 1756532 1756662 1756691 "NONE" 1756696 T NONE (NIL) -8 NIL NIL) (-733 1756321 1756350 1756419 "NONE1" 1756496 NIL NONE1 (NIL T) -7 NIL NIL) (-732 1755806 1755868 1756053 "NODE1" 1756253 NIL NODE1 (NIL T T) -7 NIL NIL) (-731 1754146 1754969 1755224 "NNI" 1755571 T NNI (NIL) -8 NIL NIL) (-730 1752566 1752879 1753243 "NLINSOL" 1753814 NIL NLINSOL (NIL T) -7 NIL NIL) (-729 1748733 1749701 1750623 "NIPROB" 1751664 T NIPROB (NIL) -8 NIL NIL) (-728 1747490 1747724 1748026 "NFINTBAS" 1748495 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-727 1746198 1746429 1746710 "NCODIV" 1747258 NIL NCODIV (NIL T T) -7 NIL NIL) (-726 1745960 1745997 1746072 "NCNTFRAC" 1746155 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-725 1744140 1744504 1744924 "NCEP" 1745585 NIL NCEP (NIL T) -7 NIL NIL) (-724 1743051 1743790 1743818 "NASRING" 1743928 T NASRING (NIL) -9 NIL 1744002) (-723 1742846 1742890 1742984 "NASRING-" 1742989 NIL NASRING- (NIL T) -8 NIL NIL) (-722 1741999 1742498 1742526 "NARNG" 1742643 T NARNG (NIL) -9 NIL 1742734) (-721 1741691 1741758 1741892 "NARNG-" 1741897 NIL NARNG- (NIL T) -8 NIL NIL) (-720 1740570 1740777 1741012 "NAGSP" 1741476 T NAGSP (NIL) -7 NIL NIL) (-719 1731994 1733640 1735275 "NAGS" 1738955 T NAGS (NIL) -7 NIL NIL) (-718 1730558 1730862 1731189 "NAGF07" 1731687 T NAGF07 (NIL) -7 NIL NIL) (-717 1725140 1726420 1727716 "NAGF04" 1729282 T NAGF04 (NIL) -7 NIL NIL) (-716 1718172 1719770 1721387 "NAGF02" 1723543 T NAGF02 (NIL) -7 NIL NIL) (-715 1713436 1714526 1715633 "NAGF01" 1717085 T NAGF01 (NIL) -7 NIL NIL) (-714 1707096 1708654 1710231 "NAGE04" 1711879 T NAGE04 (NIL) -7 NIL NIL) (-713 1698337 1700440 1702552 "NAGE02" 1705004 T NAGE02 (NIL) -7 NIL NIL) (-712 1694330 1695267 1696221 "NAGE01" 1697403 T NAGE01 (NIL) -7 NIL NIL) (-711 1692137 1692668 1693223 "NAGD03" 1693795 T NAGD03 (NIL) -7 NIL NIL) (-710 1683923 1685842 1687787 "NAGD02" 1690212 T NAGD02 (NIL) -7 NIL NIL) (-709 1677782 1679195 1680623 "NAGD01" 1682515 T NAGD01 (NIL) -7 NIL NIL) (-708 1674039 1674849 1675674 "NAGC06" 1676977 T NAGC06 (NIL) -7 NIL NIL) (-707 1672516 1672845 1673198 "NAGC05" 1673706 T NAGC05 (NIL) -7 NIL NIL) (-706 1671900 1672017 1672159 "NAGC02" 1672394 T NAGC02 (NIL) -7 NIL NIL) (-705 1670960 1671517 1671557 "NAALG" 1671636 NIL NAALG (NIL T) -9 NIL 1671697) (-704 1670795 1670824 1670914 "NAALG-" 1670919 NIL NAALG- (NIL T T) -8 NIL NIL) (-703 1664745 1665853 1667040 "MULTSQFR" 1669691 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-702 1664064 1664139 1664323 "MULTFACT" 1664657 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-701 1657299 1661164 1661216 "MTSCAT" 1662276 NIL MTSCAT (NIL T T) -9 NIL 1662790) (-700 1657011 1657065 1657157 "MTHING" 1657239 NIL MTHING (NIL T) -7 NIL NIL) (-699 1656803 1656836 1656896 "MSYSCMD" 1656971 T MSYSCMD (NIL) -7 NIL NIL) (-698 1652915 1655558 1655878 "MSET" 1656516 NIL MSET (NIL T) -8 NIL NIL) (-697 1650010 1652476 1652517 "MSETAGG" 1652522 NIL MSETAGG (NIL T) -9 NIL 1652556) (-696 1645912 1647408 1648149 "MRING" 1649313 NIL MRING (NIL T T) -8 NIL NIL) (-695 1645482 1645549 1645678 "MRF2" 1645839 NIL MRF2 (NIL T T T) -7 NIL NIL) (-694 1645100 1645135 1645279 "MRATFAC" 1645441 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-693 1642712 1643007 1643438 "MPRFF" 1644805 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-692 1636778 1642567 1642663 "MPOLY" 1642668 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-691 1636268 1636303 1636511 "MPCPF" 1636737 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-690 1635784 1635827 1636010 "MPC3" 1636219 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-689 1634985 1635066 1635285 "MPC2" 1635699 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-688 1633286 1633623 1634013 "MONOTOOL" 1634645 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-687 1632537 1632828 1632856 "MONOID" 1633075 T MONOID (NIL) -9 NIL 1633222) (-686 1632083 1632202 1632383 "MONOID-" 1632388 NIL MONOID- (NIL T) -8 NIL NIL) (-685 1623144 1629045 1629104 "MONOGEN" 1629778 NIL MONOGEN (NIL T T) -9 NIL 1630234) (-684 1620362 1621097 1622097 "MONOGEN-" 1622216 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-683 1619221 1619641 1619669 "MONADWU" 1620061 T MONADWU (NIL) -9 NIL 1620299) (-682 1618593 1618752 1619000 "MONADWU-" 1619005 NIL MONADWU- (NIL T) -8 NIL NIL) (-681 1617978 1618196 1618224 "MONAD" 1618431 T MONAD (NIL) -9 NIL 1618543) (-680 1617663 1617741 1617873 "MONAD-" 1617878 NIL MONAD- (NIL T) -8 NIL NIL) (-679 1615979 1616576 1616855 "MOEBIUS" 1617416 NIL MOEBIUS (NIL T) -8 NIL NIL) (-678 1615371 1615749 1615789 "MODULE" 1615794 NIL MODULE (NIL T) -9 NIL 1615820) (-677 1614939 1615035 1615225 "MODULE-" 1615230 NIL MODULE- (NIL T T) -8 NIL NIL) (-676 1612656 1613305 1613631 "MODRING" 1614764 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-675 1609658 1610777 1611294 "MODOP" 1612188 NIL MODOP (NIL T T) -8 NIL NIL) (-674 1607845 1608297 1608638 "MODMONOM" 1609457 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-673 1597570 1606049 1606471 "MODMON" 1607473 NIL MODMON (NIL T T) -8 NIL NIL) (-672 1594761 1596414 1596690 "MODFIELD" 1597445 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-671 1593765 1594042 1594232 "MMLFORM" 1594591 T MMLFORM (NIL) -8 NIL NIL) (-670 1593291 1593334 1593513 "MMAP" 1593716 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-669 1591569 1592302 1592342 "MLO" 1592759 NIL MLO (NIL T) -9 NIL 1593000) (-668 1588936 1589451 1590053 "MLIFT" 1591050 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-667 1588327 1588411 1588565 "MKUCFUNC" 1588847 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-666 1587926 1587996 1588119 "MKRECORD" 1588250 NIL MKRECORD (NIL T T) -7 NIL NIL) (-665 1586974 1587135 1587363 "MKFUNC" 1587737 NIL MKFUNC (NIL T) -7 NIL NIL) (-664 1586362 1586466 1586622 "MKFLCFN" 1586857 NIL MKFLCFN (NIL T) -7 NIL NIL) (-663 1585788 1586155 1586244 "MKCHSET" 1586306 NIL MKCHSET (NIL T) -8 NIL NIL) (-662 1585065 1585167 1585352 "MKBCFUNC" 1585681 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-661 1581795 1584619 1584755 "MINT" 1584949 T MINT (NIL) -8 NIL NIL) (-660 1580607 1580850 1581127 "MHROWRED" 1581550 NIL MHROWRED (NIL T) -7 NIL NIL) (-659 1575943 1579052 1579476 "MFLOAT" 1580203 T MFLOAT (NIL) -8 NIL NIL) (-658 1575300 1575376 1575547 "MFINFACT" 1575855 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-657 1571615 1572463 1573347 "MESH" 1574436 T MESH (NIL) -7 NIL NIL) (-656 1570005 1570317 1570670 "MDDFACT" 1571302 NIL MDDFACT (NIL T) -7 NIL NIL) (-655 1566847 1569164 1569205 "MDAGG" 1569460 NIL MDAGG (NIL T) -9 NIL 1569603) (-654 1556630 1566140 1566347 "MCMPLX" 1566660 T MCMPLX (NIL) -8 NIL NIL) (-653 1555771 1555917 1556117 "MCDEN" 1556479 NIL MCDEN (NIL T T) -7 NIL NIL) (-652 1553661 1553931 1554311 "MCALCFN" 1555501 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-651 1552572 1552745 1552986 "MAYBE" 1553459 NIL MAYBE (NIL T) -8 NIL NIL) (-650 1550194 1550717 1551278 "MATSTOR" 1552043 NIL MATSTOR (NIL T) -7 NIL NIL) (-649 1546203 1549569 1549816 "MATRIX" 1549979 NIL MATRIX (NIL T) -8 NIL NIL) (-648 1541972 1542676 1543412 "MATLIN" 1545560 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-647 1532169 1535307 1535383 "MATCAT" 1540221 NIL MATCAT (NIL T T T) -9 NIL 1541638) (-646 1528534 1529547 1530902 "MATCAT-" 1530907 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-645 1527136 1527289 1527620 "MATCAT2" 1528369 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-644 1525248 1525572 1525956 "MAPPKG3" 1526811 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-643 1524229 1524402 1524624 "MAPPKG2" 1525072 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-642 1522728 1523012 1523339 "MAPPKG1" 1523935 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-641 1521851 1522134 1522311 "MAPPAST" 1522571 T MAPPAST (NIL) -8 NIL NIL) (-640 1521462 1521520 1521643 "MAPHACK3" 1521787 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-639 1521054 1521115 1521229 "MAPHACK2" 1521394 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-638 1520492 1520595 1520737 "MAPHACK1" 1520945 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-637 1518600 1519194 1519497 "MAGMA" 1520221 NIL MAGMA (NIL T) -8 NIL NIL) (-636 1515075 1516844 1517304 "M3D" 1518173 NIL M3D (NIL T) -8 NIL NIL) (-635 1509230 1513445 1513486 "LZSTAGG" 1514268 NIL LZSTAGG (NIL T) -9 NIL 1514563) (-634 1505203 1506361 1507818 "LZSTAGG-" 1507823 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-633 1502319 1503096 1503582 "LWORD" 1504749 NIL LWORD (NIL T) -8 NIL NIL) (-632 1501939 1502123 1502198 "LSTAST" 1502264 T LSTAST (NIL) -8 NIL NIL) (-631 1495145 1501710 1501844 "LSQM" 1501849 NIL LSQM (NIL NIL T) -8 NIL NIL) (-630 1494369 1494508 1494736 "LSPP" 1495000 NIL LSPP (NIL T T T T) -7 NIL NIL) (-629 1492181 1492482 1492938 "LSMP" 1494058 NIL LSMP (NIL T T T T) -7 NIL NIL) (-628 1488960 1489634 1490364 "LSMP1" 1491483 NIL LSMP1 (NIL T) -7 NIL NIL) (-627 1482886 1488128 1488169 "LSAGG" 1488231 NIL LSAGG (NIL T) -9 NIL 1488309) (-626 1479581 1480505 1481718 "LSAGG-" 1481723 NIL LSAGG- (NIL T T) -8 NIL NIL) (-625 1477207 1478725 1478974 "LPOLY" 1479376 NIL LPOLY (NIL T T) -8 NIL NIL) (-624 1476789 1476874 1476997 "LPEFRAC" 1477116 NIL LPEFRAC (NIL T) -7 NIL NIL) (-623 1475136 1475883 1476136 "LO" 1476621 NIL LO (NIL T T T) -8 NIL NIL) (-622 1474788 1474900 1474928 "LOGIC" 1475039 T LOGIC (NIL) -9 NIL 1475120) (-621 1474650 1474673 1474744 "LOGIC-" 1474749 NIL LOGIC- (NIL T) -8 NIL NIL) (-620 1473843 1473983 1474176 "LODOOPS" 1474506 NIL LODOOPS (NIL T T) -7 NIL NIL) (-619 1471307 1473760 1473825 "LODO" 1473830 NIL LODO (NIL T NIL) -8 NIL NIL) (-618 1469853 1470088 1470439 "LODOF" 1471054 NIL LODOF (NIL T T) -7 NIL NIL) (-617 1466314 1468706 1468746 "LODOCAT" 1469178 NIL LODOCAT (NIL T) -9 NIL 1469389) (-616 1466048 1466106 1466232 "LODOCAT-" 1466237 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-615 1463408 1465889 1466007 "LODO2" 1466012 NIL LODO2 (NIL T T) -8 NIL NIL) (-614 1460883 1463345 1463390 "LODO1" 1463395 NIL LODO1 (NIL T) -8 NIL NIL) (-613 1459746 1459911 1460222 "LODEEF" 1460706 NIL LODEEF (NIL T T T) -7 NIL NIL) (-612 1455032 1457876 1457917 "LNAGG" 1458864 NIL LNAGG (NIL T) -9 NIL 1459308) (-611 1454179 1454393 1454735 "LNAGG-" 1454740 NIL LNAGG- (NIL T T) -8 NIL NIL) (-610 1450344 1451106 1451744 "LMOPS" 1453595 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-609 1449739 1450101 1450142 "LMODULE" 1450203 NIL LMODULE (NIL T) -9 NIL 1450245) (-608 1446985 1449384 1449507 "LMDICT" 1449649 NIL LMDICT (NIL T) -8 NIL NIL) (-607 1446729 1446893 1446953 "LITERAL" 1446958 NIL LITERAL (NIL T) -8 NIL NIL) (-606 1439956 1445675 1445973 "LIST" 1446464 NIL LIST (NIL T) -8 NIL NIL) (-605 1439481 1439555 1439694 "LIST3" 1439876 NIL LIST3 (NIL T T T) -7 NIL NIL) (-604 1438488 1438666 1438894 "LIST2" 1439299 NIL LIST2 (NIL T T) -7 NIL NIL) (-603 1436622 1436934 1437333 "LIST2MAP" 1438135 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-602 1435377 1436013 1436053 "LINEXP" 1436306 NIL LINEXP (NIL T) -9 NIL 1436454) (-601 1434024 1434284 1434581 "LINDEP" 1435129 NIL LINDEP (NIL T T) -7 NIL NIL) (-600 1430791 1431510 1432287 "LIMITRF" 1433279 NIL LIMITRF (NIL T) -7 NIL NIL) (-599 1429071 1429366 1429781 "LIMITPS" 1430486 NIL LIMITPS (NIL T T) -7 NIL NIL) (-598 1423526 1428582 1428810 "LIE" 1428892 NIL LIE (NIL T T) -8 NIL NIL) (-597 1422575 1423018 1423058 "LIECAT" 1423198 NIL LIECAT (NIL T) -9 NIL 1423349) (-596 1422416 1422443 1422531 "LIECAT-" 1422536 NIL LIECAT- (NIL T T) -8 NIL NIL) (-595 1415028 1421865 1422030 "LIB" 1422271 T LIB (NIL) -8 NIL NIL) (-594 1410665 1411546 1412481 "LGROBP" 1414145 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-593 1408531 1408805 1409167 "LF" 1410386 NIL LF (NIL T T) -7 NIL NIL) (-592 1407371 1408063 1408091 "LFCAT" 1408298 T LFCAT (NIL) -9 NIL 1408437) (-591 1404283 1404909 1405595 "LEXTRIPK" 1406737 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-590 1401054 1401853 1402356 "LEXP" 1403863 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-589 1400574 1400775 1400867 "LETAST" 1400982 T LETAST (NIL) -8 NIL NIL) (-588 1398972 1399285 1399686 "LEADCDET" 1400256 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-587 1398162 1398236 1398465 "LAZM3PK" 1398893 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-586 1393125 1396241 1396778 "LAUPOL" 1397675 NIL LAUPOL (NIL T T) -8 NIL NIL) (-585 1392692 1392736 1392903 "LAPLACE" 1393075 NIL LAPLACE (NIL T T) -7 NIL NIL) (-584 1390666 1391793 1392044 "LA" 1392525 NIL LA (NIL T T T) -8 NIL NIL) (-583 1389771 1390321 1390361 "LALG" 1390422 NIL LALG (NIL T) -9 NIL 1390480) (-582 1389486 1389545 1389680 "LALG-" 1389685 NIL LALG- (NIL T T) -8 NIL NIL) (-581 1388396 1388583 1388880 "KOVACIC" 1389286 NIL KOVACIC (NIL T T) -7 NIL NIL) (-580 1388231 1388255 1388296 "KONVERT" 1388358 NIL KONVERT (NIL T) -9 NIL NIL) (-579 1388066 1388090 1388131 "KOERCE" 1388193 NIL KOERCE (NIL T) -9 NIL NIL) (-578 1385800 1386560 1386953 "KERNEL" 1387705 NIL KERNEL (NIL T) -8 NIL NIL) (-577 1385302 1385383 1385513 "KERNEL2" 1385714 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-576 1379153 1383841 1383895 "KDAGG" 1384272 NIL KDAGG (NIL T T) -9 NIL 1384478) (-575 1378682 1378806 1379011 "KDAGG-" 1379016 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-574 1371857 1378343 1378498 "KAFILE" 1378560 NIL KAFILE (NIL T) -8 NIL NIL) (-573 1366312 1371368 1371596 "JORDAN" 1371678 NIL JORDAN (NIL T T) -8 NIL NIL) (-572 1365736 1365961 1366082 "JOINAST" 1366211 T JOINAST (NIL) -8 NIL NIL) (-571 1365465 1365524 1365611 "JAVACODE" 1365669 T JAVACODE (NIL) -8 NIL NIL) (-570 1361764 1363670 1363724 "IXAGG" 1364653 NIL IXAGG (NIL T T) -9 NIL 1365112) (-569 1360683 1360989 1361408 "IXAGG-" 1361413 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-568 1356268 1360605 1360664 "IVECTOR" 1360669 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-567 1355034 1355271 1355537 "ITUPLE" 1356035 NIL ITUPLE (NIL T) -8 NIL NIL) (-566 1353470 1353647 1353953 "ITRIGMNP" 1354856 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-565 1352215 1352419 1352702 "ITFUN3" 1353246 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-564 1351847 1351904 1352013 "ITFUN2" 1352152 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-563 1349695 1350720 1351017 "ITAYLOR" 1351582 NIL ITAYLOR (NIL T) -8 NIL NIL) (-562 1338729 1343881 1345040 "ISUPS" 1348568 NIL ISUPS (NIL T) -8 NIL NIL) (-561 1337833 1337973 1338209 "ISUMP" 1338576 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-560 1333097 1337634 1337713 "ISTRING" 1337786 NIL ISTRING (NIL NIL) -8 NIL NIL) (-559 1332307 1332388 1332604 "IRURPK" 1333011 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-558 1331243 1331444 1331684 "IRSN" 1332087 T IRSN (NIL) -7 NIL NIL) (-557 1329278 1329633 1330068 "IRRF2F" 1330881 NIL IRRF2F (NIL T) -7 NIL NIL) (-556 1329025 1329063 1329139 "IRREDFFX" 1329234 NIL IRREDFFX (NIL T) -7 NIL NIL) (-555 1327640 1327899 1328198 "IROOT" 1328758 NIL IROOT (NIL T) -7 NIL NIL) (-554 1324278 1325329 1326019 "IR" 1326982 NIL IR (NIL T) -8 NIL NIL) (-553 1321891 1322386 1322952 "IR2" 1323756 NIL IR2 (NIL T T) -7 NIL NIL) (-552 1320967 1321080 1321300 "IR2F" 1321774 NIL IR2F (NIL T T) -7 NIL NIL) (-551 1320758 1320792 1320852 "IPRNTPK" 1320927 T IPRNTPK (NIL) -7 NIL NIL) (-550 1317377 1320647 1320716 "IPF" 1320721 NIL IPF (NIL NIL) -8 NIL NIL) (-549 1315740 1317302 1317359 "IPADIC" 1317364 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-548 1315239 1315297 1315486 "INVLAPLA" 1315676 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-547 1304888 1307241 1309627 "INTTR" 1312903 NIL INTTR (NIL T T) -7 NIL NIL) (-546 1301236 1301977 1302840 "INTTOOLS" 1304074 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-545 1300822 1300913 1301030 "INTSLPE" 1301139 T INTSLPE (NIL) -7 NIL NIL) (-544 1298817 1300745 1300804 "INTRVL" 1300809 NIL INTRVL (NIL T) -8 NIL NIL) (-543 1296424 1296936 1297510 "INTRF" 1298302 NIL INTRF (NIL T) -7 NIL NIL) (-542 1295839 1295936 1296077 "INTRET" 1296322 NIL INTRET (NIL T) -7 NIL NIL) (-541 1293841 1294230 1294699 "INTRAT" 1295447 NIL INTRAT (NIL T T) -7 NIL NIL) (-540 1291074 1291657 1292282 "INTPM" 1293326 NIL INTPM (NIL T T) -7 NIL NIL) (-539 1287783 1288382 1289126 "INTPAF" 1290460 NIL INTPAF (NIL T T T) -7 NIL NIL) (-538 1283014 1283963 1285001 "INTPACK" 1286765 T INTPACK (NIL) -7 NIL NIL) (-537 1279914 1282743 1282870 "INT" 1282907 T INT (NIL) -8 NIL NIL) (-536 1279166 1279318 1279526 "INTHERTR" 1279756 NIL INTHERTR (NIL T T) -7 NIL NIL) (-535 1278605 1278685 1278873 "INTHERAL" 1279080 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-534 1276451 1276894 1277351 "INTHEORY" 1278168 T INTHEORY (NIL) -7 NIL NIL) (-533 1267773 1269394 1271172 "INTG0" 1274803 NIL INTG0 (NIL T T T) -7 NIL NIL) (-532 1248346 1253136 1257946 "INTFTBL" 1262983 T INTFTBL (NIL) -8 NIL NIL) (-531 1247595 1247733 1247906 "INTFACT" 1248205 NIL INTFACT (NIL T) -7 NIL NIL) (-530 1244986 1245432 1245995 "INTEF" 1247149 NIL INTEF (NIL T T) -7 NIL NIL) (-529 1243489 1244194 1244222 "INTDOM" 1244523 T INTDOM (NIL) -9 NIL 1244730) (-528 1242858 1243032 1243274 "INTDOM-" 1243279 NIL INTDOM- (NIL T) -8 NIL NIL) (-527 1239394 1241280 1241334 "INTCAT" 1242133 NIL INTCAT (NIL T) -9 NIL 1242452) (-526 1238867 1238969 1239097 "INTBIT" 1239286 T INTBIT (NIL) -7 NIL NIL) (-525 1237542 1237696 1238009 "INTALG" 1238712 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-524 1236999 1237089 1237259 "INTAF" 1237446 NIL INTAF (NIL T T) -7 NIL NIL) (-523 1230453 1236809 1236949 "INTABL" 1236954 NIL INTABL (NIL T T T) -8 NIL NIL) (-522 1225447 1228130 1228158 "INS" 1229126 T INS (NIL) -9 NIL 1229807) (-521 1222687 1223458 1224432 "INS-" 1224505 NIL INS- (NIL T) -8 NIL NIL) (-520 1221466 1221693 1221990 "INPSIGN" 1222440 NIL INPSIGN (NIL T T) -7 NIL NIL) (-519 1220584 1220701 1220898 "INPRODPF" 1221346 NIL INPRODPF (NIL T T) -7 NIL NIL) (-518 1219478 1219595 1219832 "INPRODFF" 1220464 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-517 1218478 1218630 1218890 "INNMFACT" 1219314 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-516 1217675 1217772 1217960 "INMODGCD" 1218377 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-515 1216184 1216428 1216752 "INFSP" 1217420 NIL INFSP (NIL T T T) -7 NIL NIL) (-514 1215368 1215485 1215668 "INFPROD0" 1216064 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-513 1212379 1213537 1214028 "INFORM" 1214885 T INFORM (NIL) -8 NIL NIL) (-512 1211989 1212049 1212147 "INFORM1" 1212314 NIL INFORM1 (NIL T) -7 NIL NIL) (-511 1211512 1211601 1211715 "INFINITY" 1211895 T INFINITY (NIL) -7 NIL NIL) (-510 1210129 1210378 1210699 "INEP" 1211260 NIL INEP (NIL T T T) -7 NIL NIL) (-509 1209405 1210026 1210091 "INDE" 1210096 NIL INDE (NIL T) -8 NIL NIL) (-508 1208969 1209037 1209154 "INCRMAPS" 1209332 NIL INCRMAPS (NIL T) -7 NIL NIL) (-507 1204280 1205205 1206149 "INBFF" 1208057 NIL INBFF (NIL T) -7 NIL NIL) (-506 1203799 1204001 1204093 "INAST" 1204208 T INAST (NIL) -8 NIL NIL) (-505 1203270 1203478 1203584 "IMPTAST" 1203713 T IMPTAST (NIL) -8 NIL NIL) (-504 1199765 1203115 1203218 "IMATRIX" 1203223 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-503 1198477 1198600 1198915 "IMATQF" 1199621 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-502 1196697 1196924 1197261 "IMATLIN" 1198233 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-501 1191323 1196621 1196679 "ILIST" 1196684 NIL ILIST (NIL T NIL) -8 NIL NIL) (-500 1189276 1191183 1191296 "IIARRAY2" 1191301 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-499 1184709 1189187 1189251 "IFF" 1189256 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-498 1184100 1184326 1184442 "IFAST" 1184613 T IFAST (NIL) -8 NIL NIL) (-497 1179143 1183392 1183580 "IFARRAY" 1183957 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-496 1178350 1179047 1179120 "IFAMON" 1179125 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-495 1177934 1177999 1178053 "IEVALAB" 1178260 NIL IEVALAB (NIL T T) -9 NIL NIL) (-494 1177609 1177677 1177837 "IEVALAB-" 1177842 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-493 1177267 1177523 1177586 "IDPO" 1177591 NIL IDPO (NIL T T) -8 NIL NIL) (-492 1176544 1177156 1177231 "IDPOAMS" 1177236 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-491 1175878 1176433 1176508 "IDPOAM" 1176513 NIL IDPOAM (NIL T T) -8 NIL NIL) (-490 1174963 1175213 1175266 "IDPC" 1175679 NIL IDPC (NIL T T) -9 NIL 1175828) (-489 1174459 1174855 1174928 "IDPAM" 1174933 NIL IDPAM (NIL T T) -8 NIL NIL) (-488 1173862 1174351 1174424 "IDPAG" 1174429 NIL IDPAG (NIL T T) -8 NIL NIL) (-487 1173610 1173777 1173827 "IDENT" 1173832 T IDENT (NIL) -8 NIL NIL) (-486 1169865 1170713 1171608 "IDECOMP" 1172767 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-485 1162738 1163788 1164835 "IDEAL" 1168901 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-484 1161902 1162014 1162213 "ICDEN" 1162622 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-483 1161001 1161382 1161529 "ICARD" 1161775 T ICARD (NIL) -8 NIL NIL) (-482 1159073 1159386 1159789 "IBPTOOLS" 1160678 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-481 1154707 1158693 1158806 "IBITS" 1158992 NIL IBITS (NIL NIL) -8 NIL NIL) (-480 1151430 1152006 1152701 "IBATOOL" 1154124 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-479 1149210 1149671 1150204 "IBACHIN" 1150965 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-478 1147087 1149056 1149159 "IARRAY2" 1149164 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-477 1143240 1147013 1147070 "IARRAY1" 1147075 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-476 1137243 1141658 1142136 "IAN" 1142782 T IAN (NIL) -8 NIL NIL) (-475 1136754 1136811 1136984 "IALGFACT" 1137180 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-474 1136282 1136395 1136423 "HYPCAT" 1136630 T HYPCAT (NIL) -9 NIL NIL) (-473 1135820 1135937 1136123 "HYPCAT-" 1136128 NIL HYPCAT- (NIL T) -8 NIL NIL) (-472 1135442 1135615 1135698 "HOSTNAME" 1135757 T HOSTNAME (NIL) -8 NIL NIL) (-471 1132121 1133452 1133493 "HOAGG" 1134474 NIL HOAGG (NIL T) -9 NIL 1135153) (-470 1130715 1131114 1131640 "HOAGG-" 1131645 NIL HOAGG- (NIL T T) -8 NIL NIL) (-469 1124610 1130156 1130322 "HEXADEC" 1130569 T HEXADEC (NIL) -8 NIL NIL) (-468 1123358 1123580 1123843 "HEUGCD" 1124387 NIL HEUGCD (NIL T) -7 NIL NIL) (-467 1122461 1123195 1123325 "HELLFDIV" 1123330 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-466 1120689 1122238 1122326 "HEAP" 1122405 NIL HEAP (NIL T) -8 NIL NIL) (-465 1119997 1120241 1120375 "HEADAST" 1120575 T HEADAST (NIL) -8 NIL NIL) (-464 1113950 1119912 1119974 "HDP" 1119979 NIL HDP (NIL NIL T) -8 NIL NIL) (-463 1107708 1113587 1113738 "HDMP" 1113851 NIL HDMP (NIL NIL T) -8 NIL NIL) (-462 1107033 1107172 1107336 "HB" 1107564 T HB (NIL) -7 NIL NIL) (-461 1100530 1106879 1106983 "HASHTBL" 1106988 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-460 1098348 1100158 1100337 "HACKPI" 1100371 T HACKPI (NIL) -8 NIL NIL) (-459 1094043 1098201 1098314 "GTSET" 1098319 NIL GTSET (NIL T T T T) -8 NIL NIL) (-458 1087569 1093921 1094019 "GSTBL" 1094024 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-457 1079887 1086605 1086869 "GSERIES" 1087360 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-456 1079054 1079445 1079473 "GROUP" 1079676 T GROUP (NIL) -9 NIL 1079810) (-455 1078420 1078579 1078830 "GROUP-" 1078835 NIL GROUP- (NIL T) -8 NIL NIL) (-454 1076789 1077108 1077495 "GROEBSOL" 1078097 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-453 1075729 1075991 1076042 "GRMOD" 1076571 NIL GRMOD (NIL T T) -9 NIL 1076739) (-452 1075497 1075533 1075661 "GRMOD-" 1075666 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-451 1070822 1071851 1072851 "GRIMAGE" 1074517 T GRIMAGE (NIL) -8 NIL NIL) (-450 1069289 1069549 1069873 "GRDEF" 1070518 T GRDEF (NIL) -7 NIL NIL) (-449 1068733 1068849 1068990 "GRAY" 1069168 T GRAY (NIL) -7 NIL NIL) (-448 1067966 1068346 1068397 "GRALG" 1068550 NIL GRALG (NIL T T) -9 NIL 1068642) (-447 1067627 1067700 1067863 "GRALG-" 1067868 NIL GRALG- (NIL T T T) -8 NIL NIL) (-446 1064433 1067214 1067391 "GPOLSET" 1067534 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-445 1063789 1063846 1064103 "GOSPER" 1064370 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-444 1059548 1060227 1060753 "GMODPOL" 1063488 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-443 1058553 1058737 1058975 "GHENSEL" 1059360 NIL GHENSEL (NIL T T) -7 NIL NIL) (-442 1052619 1053462 1054488 "GENUPS" 1057637 NIL GENUPS (NIL T T) -7 NIL NIL) (-441 1052316 1052367 1052456 "GENUFACT" 1052562 NIL GENUFACT (NIL T) -7 NIL NIL) (-440 1051728 1051805 1051970 "GENPGCD" 1052234 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-439 1051202 1051237 1051450 "GENMFACT" 1051687 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-438 1049770 1050025 1050332 "GENEEZ" 1050945 NIL GENEEZ (NIL T T) -7 NIL NIL) (-437 1043690 1049383 1049544 "GDMP" 1049693 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-436 1033067 1037461 1038567 "GCNAALG" 1042673 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-435 1031530 1032358 1032386 "GCDDOM" 1032641 T GCDDOM (NIL) -9 NIL 1032798) (-434 1031000 1031127 1031342 "GCDDOM-" 1031347 NIL GCDDOM- (NIL T) -8 NIL NIL) (-433 1029672 1029857 1030161 "GB" 1030779 NIL GB (NIL T T T T) -7 NIL NIL) (-432 1018292 1020618 1023010 "GBINTERN" 1027363 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-431 1016129 1016421 1016842 "GBF" 1017967 NIL GBF (NIL T T T T) -7 NIL NIL) (-430 1014910 1015075 1015342 "GBEUCLID" 1015945 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-429 1014259 1014384 1014533 "GAUSSFAC" 1014781 T GAUSSFAC (NIL) -7 NIL NIL) (-428 1012636 1012938 1013251 "GALUTIL" 1013978 NIL GALUTIL (NIL T) -7 NIL NIL) (-427 1010953 1011227 1011550 "GALPOLYU" 1012363 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-426 1008342 1008632 1009037 "GALFACTU" 1010650 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-425 1000148 1001647 1003255 "GALFACT" 1006774 NIL GALFACT (NIL T) -7 NIL NIL) (-424 997536 998194 998222 "FVFUN" 999378 T FVFUN (NIL) -9 NIL 1000098) (-423 996802 996984 997012 "FVC" 997303 T FVC (NIL) -9 NIL 997486) (-422 996444 996599 996680 "FUNCTION" 996754 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-421 994114 994665 995154 "FT" 995975 T FT (NIL) -8 NIL NIL) (-420 992932 993415 993618 "FTEM" 993931 T FTEM (NIL) -8 NIL NIL) (-419 991197 991485 991887 "FSUPFACT" 992624 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-418 989594 989883 990215 "FST" 990885 T FST (NIL) -8 NIL NIL) (-417 988769 988875 989069 "FSRED" 989476 NIL FSRED (NIL T T) -7 NIL NIL) (-416 987448 987703 988057 "FSPRMELT" 988484 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-415 984533 984971 985470 "FSPECF" 987011 NIL FSPECF (NIL T T) -7 NIL NIL) (-414 967057 975459 975499 "FS" 979337 NIL FS (NIL T) -9 NIL 981619) (-413 955707 958697 962753 "FS-" 963050 NIL FS- (NIL T T) -8 NIL NIL) (-412 955223 955277 955453 "FSINT" 955648 NIL FSINT (NIL T T) -7 NIL NIL) (-411 953550 954216 954519 "FSERIES" 955002 NIL FSERIES (NIL T T) -8 NIL NIL) (-410 952568 952684 952914 "FSCINT" 953430 NIL FSCINT (NIL T T) -7 NIL NIL) (-409 948802 951512 951553 "FSAGG" 951923 NIL FSAGG (NIL T) -9 NIL 952182) (-408 946564 947165 947961 "FSAGG-" 948056 NIL FSAGG- (NIL T T) -8 NIL NIL) (-407 945606 945749 945976 "FSAGG2" 946417 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-406 943265 943544 944097 "FS2UPS" 945324 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-405 942851 942894 943047 "FS2" 943216 NIL FS2 (NIL T T T T) -7 NIL NIL) (-404 941711 941882 942190 "FS2EXPXP" 942676 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-403 941137 941252 941404 "FRUTIL" 941591 NIL FRUTIL (NIL T) -7 NIL NIL) (-402 932603 936636 937992 "FR" 939813 NIL FR (NIL T) -8 NIL NIL) (-401 927678 930321 930361 "FRNAALG" 931757 NIL FRNAALG (NIL T) -9 NIL 932364) (-400 923356 924427 925702 "FRNAALG-" 926452 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-399 922994 923037 923164 "FRNAAF2" 923307 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-398 921405 921851 922145 "FRMOD" 922807 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-397 919192 919796 920112 "FRIDEAL" 921196 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-396 918391 918478 918765 "FRIDEAL2" 919099 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-395 917649 918057 918098 "FRETRCT" 918103 NIL FRETRCT (NIL T) -9 NIL 918274) (-394 916761 916992 917343 "FRETRCT-" 917348 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-393 914012 915188 915247 "FRAMALG" 916129 NIL FRAMALG (NIL T T) -9 NIL 916421) (-392 912146 912601 913231 "FRAMALG-" 913454 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-391 906113 911621 911897 "FRAC" 911902 NIL FRAC (NIL T) -8 NIL NIL) (-390 905749 905806 905913 "FRAC2" 906050 NIL FRAC2 (NIL T T) -7 NIL NIL) (-389 905385 905442 905549 "FR2" 905686 NIL FR2 (NIL T T) -7 NIL NIL) (-388 900118 902966 902994 "FPS" 904113 T FPS (NIL) -9 NIL 904670) (-387 899567 899676 899840 "FPS-" 899986 NIL FPS- (NIL T) -8 NIL NIL) (-386 897074 898709 898737 "FPC" 898962 T FPC (NIL) -9 NIL 899104) (-385 896867 896907 897004 "FPC-" 897009 NIL FPC- (NIL T) -8 NIL NIL) (-384 895745 896355 896396 "FPATMAB" 896401 NIL FPATMAB (NIL T) -9 NIL 896553) (-383 893445 893921 894347 "FPARFRAC" 895382 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-382 888838 889337 890019 "FORTRAN" 892877 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-381 886554 887054 887593 "FORT" 888319 T FORT (NIL) -7 NIL NIL) (-380 884230 884792 884820 "FORTFN" 885880 T FORTFN (NIL) -9 NIL 886504) (-379 883994 884044 884072 "FORTCAT" 884131 T FORTCAT (NIL) -9 NIL 884193) (-378 882054 882537 882936 "FORMULA" 883615 T FORMULA (NIL) -8 NIL NIL) (-377 881842 881872 881941 "FORMULA1" 882018 NIL FORMULA1 (NIL T) -7 NIL NIL) (-376 881365 881417 881590 "FORDER" 881784 NIL FORDER (NIL T T T T) -7 NIL NIL) (-375 880461 880625 880818 "FOP" 881192 T FOP (NIL) -7 NIL NIL) (-374 879069 879741 879915 "FNLA" 880343 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-373 877737 878126 878154 "FNCAT" 878726 T FNCAT (NIL) -9 NIL 879019) (-372 877303 877696 877724 "FNAME" 877729 T FNAME (NIL) -8 NIL NIL) (-371 876004 876933 876961 "FMTC" 876966 T FMTC (NIL) -9 NIL 877001) (-370 872368 873529 874157 "FMONOID" 875409 NIL FMONOID (NIL T) -8 NIL NIL) (-369 871588 872111 872259 "FM" 872264 NIL FM (NIL T T) -8 NIL NIL) (-368 869012 869658 869686 "FMFUN" 870830 T FMFUN (NIL) -9 NIL 871538) (-367 868281 868462 868490 "FMC" 868780 T FMC (NIL) -9 NIL 868962) (-366 865509 866343 866396 "FMCAT" 867578 NIL FMCAT (NIL T T) -9 NIL 868072) (-365 864404 865277 865376 "FM1" 865454 NIL FM1 (NIL T T) -8 NIL NIL) (-364 862178 862594 863088 "FLOATRP" 863955 NIL FLOATRP (NIL T) -7 NIL NIL) (-363 855729 859834 860464 "FLOAT" 861568 T FLOAT (NIL) -8 NIL NIL) (-362 853167 853667 854245 "FLOATCP" 855196 NIL FLOATCP (NIL T) -7 NIL NIL) (-361 851998 852802 852842 "FLINEXP" 852847 NIL FLINEXP (NIL T) -9 NIL 852940) (-360 851153 851388 851715 "FLINEXP-" 851720 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-359 850229 850373 850597 "FLASORT" 851005 NIL FLASORT (NIL T T) -7 NIL NIL) (-358 847446 848288 848340 "FLALG" 849567 NIL FLALG (NIL T T) -9 NIL 850034) (-357 841230 844932 844973 "FLAGG" 846235 NIL FLAGG (NIL T) -9 NIL 846887) (-356 839956 840295 840785 "FLAGG-" 840790 NIL FLAGG- (NIL T T) -8 NIL NIL) (-355 838998 839141 839368 "FLAGG2" 839809 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-354 836012 836986 837045 "FINRALG" 838173 NIL FINRALG (NIL T T) -9 NIL 838681) (-353 835172 835401 835740 "FINRALG-" 835745 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-352 834578 834791 834819 "FINITE" 835015 T FINITE (NIL) -9 NIL 835122) (-351 827036 829197 829237 "FINAALG" 832904 NIL FINAALG (NIL T) -9 NIL 834357) (-350 822377 823418 824562 "FINAALG-" 825941 NIL FINAALG- (NIL T T) -8 NIL NIL) (-349 821772 822132 822235 "FILE" 822307 NIL FILE (NIL T) -8 NIL NIL) (-348 820456 820768 820822 "FILECAT" 821506 NIL FILECAT (NIL T T) -9 NIL 821722) (-347 818377 819871 819899 "FIELD" 819939 T FIELD (NIL) -9 NIL 820019) (-346 816997 817382 817893 "FIELD-" 817898 NIL FIELD- (NIL T) -8 NIL NIL) (-345 814877 815634 815980 "FGROUP" 816684 NIL FGROUP (NIL T) -8 NIL NIL) (-344 813967 814131 814351 "FGLMICPK" 814709 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-343 809834 813892 813949 "FFX" 813954 NIL FFX (NIL T NIL) -8 NIL NIL) (-342 809435 809496 809631 "FFSLPE" 809767 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-341 805428 806207 807003 "FFPOLY" 808671 NIL FFPOLY (NIL T) -7 NIL NIL) (-340 804932 804968 805177 "FFPOLY2" 805386 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-339 800818 804851 804914 "FFP" 804919 NIL FFP (NIL T NIL) -8 NIL NIL) (-338 796251 800729 800793 "FF" 800798 NIL FF (NIL NIL NIL) -8 NIL NIL) (-337 791412 795594 795784 "FFNBX" 796105 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-336 786386 790547 790805 "FFNBP" 791266 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-335 781054 785670 785881 "FFNB" 786219 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-334 779886 780084 780399 "FFINTBAS" 780851 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-333 776171 778346 778374 "FFIELDC" 778994 T FFIELDC (NIL) -9 NIL 779370) (-332 774834 775204 775701 "FFIELDC-" 775706 NIL FFIELDC- (NIL T) -8 NIL NIL) (-331 774404 774449 774573 "FFHOM" 774776 NIL FFHOM (NIL T T T) -7 NIL NIL) (-330 772102 772586 773103 "FFF" 773919 NIL FFF (NIL T) -7 NIL NIL) (-329 767755 771844 771945 "FFCGX" 772045 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-328 763422 767487 767594 "FFCGP" 767698 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-327 758640 763149 763257 "FFCG" 763358 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-326 740709 749740 749826 "FFCAT" 754991 NIL FFCAT (NIL T T T) -9 NIL 756442) (-325 735907 736954 738268 "FFCAT-" 739498 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-324 735318 735361 735596 "FFCAT2" 735858 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-323 724564 728308 729525 "FEXPR" 734173 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-322 723564 723999 724040 "FEVALAB" 724124 NIL FEVALAB (NIL T) -9 NIL 724385) (-321 722723 722933 723271 "FEVALAB-" 723276 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-320 721316 722106 722309 "FDIV" 722622 NIL FDIV (NIL T T T T) -8 NIL NIL) (-319 718382 719097 719212 "FDIVCAT" 720780 NIL FDIVCAT (NIL T T T T) -9 NIL 721217) (-318 718144 718171 718341 "FDIVCAT-" 718346 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-317 717364 717451 717728 "FDIV2" 718051 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-316 716050 716309 716598 "FCPAK1" 717095 T FCPAK1 (NIL) -7 NIL NIL) (-315 715178 715550 715691 "FCOMP" 715941 NIL FCOMP (NIL T) -8 NIL NIL) (-314 698813 702227 705788 "FC" 711637 T FC (NIL) -8 NIL NIL) (-313 691469 695450 695490 "FAXF" 697292 NIL FAXF (NIL T) -9 NIL 697983) (-312 688748 689403 690228 "FAXF-" 690693 NIL FAXF- (NIL T T) -8 NIL NIL) (-311 683848 688124 688300 "FARRAY" 688605 NIL FARRAY (NIL T) -8 NIL NIL) (-310 679278 681305 681357 "FAMR" 682369 NIL FAMR (NIL T T) -9 NIL 682829) (-309 678169 678471 678905 "FAMR-" 678910 NIL FAMR- (NIL T T T) -8 NIL NIL) (-308 677365 678091 678144 "FAMONOID" 678149 NIL FAMONOID (NIL T) -8 NIL NIL) (-307 675197 675881 675934 "FAMONC" 676875 NIL FAMONC (NIL T T) -9 NIL 677260) (-306 673889 674951 675088 "FAGROUP" 675093 NIL FAGROUP (NIL T) -8 NIL NIL) (-305 671692 672011 672413 "FACUTIL" 673570 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-304 670791 670976 671198 "FACTFUNC" 671502 NIL FACTFUNC (NIL T) -7 NIL NIL) (-303 663196 670042 670254 "EXPUPXS" 670647 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-302 660679 661219 661805 "EXPRTUBE" 662630 T EXPRTUBE (NIL) -7 NIL NIL) (-301 656873 657465 658202 "EXPRODE" 660018 NIL EXPRODE (NIL T T) -7 NIL NIL) (-300 642309 655532 655958 "EXPR" 656479 NIL EXPR (NIL T) -8 NIL NIL) (-299 636737 637324 638136 "EXPR2UPS" 641607 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-298 636373 636430 636537 "EXPR2" 636674 NIL EXPR2 (NIL T T) -7 NIL NIL) (-297 627792 635510 635805 "EXPEXPAN" 636211 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-296 627619 627749 627778 "EXIT" 627783 T EXIT (NIL) -8 NIL NIL) (-295 627268 627444 627512 "EXITAST" 627571 T EXITAST (NIL) -8 NIL NIL) (-294 626895 626957 627070 "EVALCYC" 627200 NIL EVALCYC (NIL T) -7 NIL NIL) (-293 626436 626554 626595 "EVALAB" 626765 NIL EVALAB (NIL T) -9 NIL 626869) (-292 625917 626039 626260 "EVALAB-" 626265 NIL EVALAB- (NIL T T) -8 NIL NIL) (-291 623421 624689 624717 "EUCDOM" 625272 T EUCDOM (NIL) -9 NIL 625622) (-290 621826 622268 622858 "EUCDOM-" 622863 NIL EUCDOM- (NIL T) -8 NIL NIL) (-289 609404 612152 614892 "ESTOOLS" 619106 T ESTOOLS (NIL) -7 NIL NIL) (-288 609040 609097 609204 "ESTOOLS2" 609341 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-287 608791 608833 608913 "ESTOOLS1" 608992 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-286 602728 604452 604480 "ES" 607244 T ES (NIL) -9 NIL 608650) (-285 597675 598962 600779 "ES-" 600943 NIL ES- (NIL T) -8 NIL NIL) (-284 594050 594810 595590 "ESCONT" 596915 T ESCONT (NIL) -7 NIL NIL) (-283 593795 593827 593909 "ESCONT1" 594012 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-282 593470 593520 593620 "ES2" 593739 NIL ES2 (NIL T T) -7 NIL NIL) (-281 593100 593158 593267 "ES1" 593406 NIL ES1 (NIL T T) -7 NIL NIL) (-280 592316 592445 592621 "ERROR" 592944 T ERROR (NIL) -7 NIL NIL) (-279 585819 592175 592266 "EQTBL" 592271 NIL EQTBL (NIL T T) -8 NIL NIL) (-278 578382 581137 582584 "EQ" 584405 NIL -3809 (NIL T) -8 NIL NIL) (-277 578014 578071 578180 "EQ2" 578319 NIL EQ2 (NIL T T) -7 NIL NIL) (-276 573306 574352 575445 "EP" 576953 NIL EP (NIL T) -7 NIL NIL) (-275 571888 572189 572506 "ENV" 573009 T ENV (NIL) -8 NIL NIL) (-274 571089 571609 571637 "ENTIRER" 571642 T ENTIRER (NIL) -9 NIL 571687) (-273 567591 569044 569414 "EMR" 570888 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-272 566735 566920 566974 "ELTAGG" 567354 NIL ELTAGG (NIL T T) -9 NIL 567565) (-271 566454 566516 566657 "ELTAGG-" 566662 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-270 566243 566272 566326 "ELTAB" 566410 NIL ELTAB (NIL T T) -9 NIL NIL) (-269 565369 565515 565714 "ELFUTS" 566094 NIL ELFUTS (NIL T T) -7 NIL NIL) (-268 565111 565167 565195 "ELEMFUN" 565300 T ELEMFUN (NIL) -9 NIL NIL) (-267 564981 565002 565070 "ELEMFUN-" 565075 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-266 559872 563081 563122 "ELAGG" 564062 NIL ELAGG (NIL T) -9 NIL 564525) (-265 558157 558591 559254 "ELAGG-" 559259 NIL ELAGG- (NIL T T) -8 NIL NIL) (-264 556814 557094 557389 "ELABEXPR" 557882 T ELABEXPR (NIL) -8 NIL NIL) (-263 549680 551481 552308 "EFUPXS" 556090 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-262 543130 544931 545741 "EFULS" 548956 NIL EFULS (NIL T T T) -8 NIL NIL) (-261 540561 540919 541397 "EFSTRUC" 542762 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-260 529633 531198 532758 "EF" 539076 NIL EF (NIL T T) -7 NIL NIL) (-259 528734 529118 529267 "EAB" 529504 T EAB (NIL) -8 NIL NIL) (-258 527945 528693 528721 "E04UCFA" 528726 T E04UCFA (NIL) -8 NIL NIL) (-257 527156 527904 527932 "E04NAFA" 527937 T E04NAFA (NIL) -8 NIL NIL) (-256 526367 527115 527143 "E04MBFA" 527148 T E04MBFA (NIL) -8 NIL NIL) (-255 525578 526326 526354 "E04JAFA" 526359 T E04JAFA (NIL) -8 NIL NIL) (-254 524791 525537 525565 "E04GCFA" 525570 T E04GCFA (NIL) -8 NIL NIL) (-253 524004 524750 524778 "E04FDFA" 524783 T E04FDFA (NIL) -8 NIL NIL) (-252 523215 523963 523991 "E04DGFA" 523996 T E04DGFA (NIL) -8 NIL NIL) (-251 517400 518745 520107 "E04AGNT" 521873 T E04AGNT (NIL) -7 NIL NIL) (-250 516126 516606 516646 "DVARCAT" 517121 NIL DVARCAT (NIL T) -9 NIL 517319) (-249 515330 515542 515856 "DVARCAT-" 515861 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-248 508238 515132 515259 "DSMP" 515264 NIL DSMP (NIL T T T) -8 NIL NIL) (-247 503048 504183 505251 "DROPT" 507190 T DROPT (NIL) -8 NIL NIL) (-246 502713 502772 502870 "DROPT1" 502983 NIL DROPT1 (NIL T) -7 NIL NIL) (-245 497828 498954 500091 "DROPT0" 501596 T DROPT0 (NIL) -7 NIL NIL) (-244 496173 496498 496884 "DRAWPT" 497462 T DRAWPT (NIL) -7 NIL NIL) (-243 490760 491683 492762 "DRAW" 495147 NIL DRAW (NIL T) -7 NIL NIL) (-242 490393 490446 490564 "DRAWHACK" 490701 NIL DRAWHACK (NIL T) -7 NIL NIL) (-241 489124 489393 489684 "DRAWCX" 490122 T DRAWCX (NIL) -7 NIL NIL) (-240 488642 488710 488860 "DRAWCURV" 489050 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-239 479113 481072 483187 "DRAWCFUN" 486547 T DRAWCFUN (NIL) -7 NIL NIL) (-238 475926 477808 477849 "DQAGG" 478478 NIL DQAGG (NIL T) -9 NIL 478751) (-237 464474 471166 471248 "DPOLCAT" 473086 NIL DPOLCAT (NIL T T T T) -9 NIL 473630) (-236 459314 460660 462617 "DPOLCAT-" 462622 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-235 452518 459176 459273 "DPMO" 459278 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-234 445625 452299 452465 "DPMM" 452470 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-233 445045 445248 445362 "DOMAIN" 445531 T DOMAIN (NIL) -8 NIL NIL) (-232 438803 444682 444833 "DMP" 444946 NIL DMP (NIL NIL T) -8 NIL NIL) (-231 438403 438459 438603 "DLP" 438741 NIL DLP (NIL T) -7 NIL NIL) (-230 432047 437504 437731 "DLIST" 438208 NIL DLIST (NIL T) -8 NIL NIL) (-229 428893 430902 430943 "DLAGG" 431493 NIL DLAGG (NIL T) -9 NIL 431722) (-228 427744 428374 428402 "DIVRING" 428494 T DIVRING (NIL) -9 NIL 428577) (-227 426981 427171 427471 "DIVRING-" 427476 NIL DIVRING- (NIL T) -8 NIL NIL) (-226 425083 425440 425846 "DISPLAY" 426595 T DISPLAY (NIL) -7 NIL NIL) (-225 419058 424997 425060 "DIRPROD" 425065 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-224 417906 418109 418374 "DIRPROD2" 418851 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-223 407507 413426 413479 "DIRPCAT" 413887 NIL DIRPCAT (NIL NIL T) -9 NIL 414726) (-222 404833 405475 406356 "DIRPCAT-" 406693 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-221 404120 404280 404466 "DIOSP" 404667 T DIOSP (NIL) -7 NIL NIL) (-220 400822 403032 403073 "DIOPS" 403507 NIL DIOPS (NIL T) -9 NIL 403736) (-219 400371 400485 400676 "DIOPS-" 400681 NIL DIOPS- (NIL T T) -8 NIL NIL) (-218 399285 399879 399907 "DIFRING" 400094 T DIFRING (NIL) -9 NIL 400203) (-217 398931 399008 399160 "DIFRING-" 399165 NIL DIFRING- (NIL T) -8 NIL NIL) (-216 396763 398001 398041 "DIFEXT" 398400 NIL DIFEXT (NIL T) -9 NIL 398693) (-215 395049 395477 396142 "DIFEXT-" 396147 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-214 392371 394581 394622 "DIAGG" 394627 NIL DIAGG (NIL T) -9 NIL 394647) (-213 391755 391912 392164 "DIAGG-" 392169 NIL DIAGG- (NIL T T) -8 NIL NIL) (-212 387220 390714 390991 "DHMATRIX" 391524 NIL DHMATRIX (NIL T) -8 NIL NIL) (-211 382832 383741 384751 "DFSFUN" 386230 T DFSFUN (NIL) -7 NIL NIL) (-210 377683 381546 381911 "DFLOAT" 382487 T DFLOAT (NIL) -8 NIL NIL) (-209 375916 376197 376592 "DFINTTLS" 377391 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-208 372995 373951 374349 "DERHAM" 375583 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-207 370844 372770 372859 "DEQUEUE" 372939 NIL DEQUEUE (NIL T) -8 NIL NIL) (-206 370062 370195 370390 "DEGRED" 370706 NIL DEGRED (NIL T T) -7 NIL NIL) (-205 366462 367207 368059 "DEFINTRF" 369290 NIL DEFINTRF (NIL T) -7 NIL NIL) (-204 363993 364462 365060 "DEFINTEF" 365981 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-203 357888 363434 363600 "DECIMAL" 363847 T DECIMAL (NIL) -8 NIL NIL) (-202 355400 355858 356364 "DDFACT" 357432 NIL DDFACT (NIL T T) -7 NIL NIL) (-201 354996 355039 355190 "DBLRESP" 355351 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-200 352706 353040 353409 "DBASE" 354754 NIL DBASE (NIL T) -8 NIL NIL) (-199 351975 352186 352332 "DATABUF" 352605 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-198 351109 351934 351962 "D03FAFA" 351967 T D03FAFA (NIL) -8 NIL NIL) (-197 350244 351068 351096 "D03EEFA" 351101 T D03EEFA (NIL) -8 NIL NIL) (-196 348194 348660 349149 "D03AGNT" 349775 T D03AGNT (NIL) -7 NIL NIL) (-195 347511 348153 348181 "D02EJFA" 348186 T D02EJFA (NIL) -8 NIL NIL) (-194 346828 347470 347498 "D02CJFA" 347503 T D02CJFA (NIL) -8 NIL NIL) (-193 346145 346787 346815 "D02BHFA" 346820 T D02BHFA (NIL) -8 NIL NIL) (-192 345462 346104 346132 "D02BBFA" 346137 T D02BBFA (NIL) -8 NIL NIL) (-191 338660 340248 341854 "D02AGNT" 343876 T D02AGNT (NIL) -7 NIL NIL) (-190 336429 336951 337497 "D01WGTS" 338134 T D01WGTS (NIL) -7 NIL NIL) (-189 335530 336388 336416 "D01TRNS" 336421 T D01TRNS (NIL) -8 NIL NIL) (-188 334631 335489 335517 "D01GBFA" 335522 T D01GBFA (NIL) -8 NIL NIL) (-187 333732 334590 334618 "D01FCFA" 334623 T D01FCFA (NIL) -8 NIL NIL) (-186 332833 333691 333719 "D01ASFA" 333724 T D01ASFA (NIL) -8 NIL NIL) (-185 331934 332792 332820 "D01AQFA" 332825 T D01AQFA (NIL) -8 NIL NIL) (-184 331035 331893 331921 "D01APFA" 331926 T D01APFA (NIL) -8 NIL NIL) (-183 330136 330994 331022 "D01ANFA" 331027 T D01ANFA (NIL) -8 NIL NIL) (-182 329237 330095 330123 "D01AMFA" 330128 T D01AMFA (NIL) -8 NIL NIL) (-181 328338 329196 329224 "D01ALFA" 329229 T D01ALFA (NIL) -8 NIL NIL) (-180 327439 328297 328325 "D01AKFA" 328330 T D01AKFA (NIL) -8 NIL NIL) (-179 326540 327398 327426 "D01AJFA" 327431 T D01AJFA (NIL) -8 NIL NIL) (-178 319844 321393 322952 "D01AGNT" 325001 T D01AGNT (NIL) -7 NIL NIL) (-177 319181 319309 319461 "CYCLOTOM" 319712 T CYCLOTOM (NIL) -7 NIL NIL) (-176 315916 316629 317356 "CYCLES" 318474 T CYCLES (NIL) -7 NIL NIL) (-175 315228 315362 315533 "CVMP" 315777 NIL CVMP (NIL T) -7 NIL NIL) (-174 313009 313267 313642 "CTRIGMNP" 314956 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-173 312520 312709 312808 "CTORCALL" 312930 T CTORCALL (NIL) -8 NIL NIL) (-172 311894 311993 312146 "CSTTOOLS" 312417 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-171 307693 308350 309108 "CRFP" 311206 NIL CRFP (NIL T T) -7 NIL NIL) (-170 307213 307414 307506 "CRCAST" 307621 T CRCAST (NIL) -8 NIL NIL) (-169 306260 306445 306673 "CRAPACK" 307017 NIL CRAPACK (NIL T) -7 NIL NIL) (-168 305644 305745 305949 "CPMATCH" 306136 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-167 305369 305397 305503 "CPIMA" 305610 NIL CPIMA (NIL T T T) -7 NIL NIL) (-166 301733 302405 303123 "COORDSYS" 304704 NIL COORDSYS (NIL T) -7 NIL NIL) (-165 301117 301246 301396 "CONTOUR" 301603 T CONTOUR (NIL) -8 NIL NIL) (-164 297043 299120 299612 "CONTFRAC" 300657 NIL CONTFRAC (NIL T) -8 NIL NIL) (-163 296238 296758 296786 "COMRING" 296791 T COMRING (NIL) -9 NIL 296842) (-162 295319 295596 295780 "COMPPROP" 296074 T COMPPROP (NIL) -8 NIL NIL) (-161 294980 295015 295143 "COMPLPAT" 295278 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-160 285044 294789 294898 "COMPLEX" 294903 NIL COMPLEX (NIL T) -8 NIL NIL) (-159 284680 284737 284844 "COMPLEX2" 284981 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-158 284398 284433 284531 "COMPFACT" 284639 NIL COMPFACT (NIL T T) -7 NIL NIL) (-157 268807 279018 279058 "COMPCAT" 280062 NIL COMPCAT (NIL T) -9 NIL 281457) (-156 258322 261246 264873 "COMPCAT-" 265229 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-155 258053 258081 258183 "COMMUPC" 258288 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-154 257848 257881 257940 "COMMONOP" 258014 T COMMONOP (NIL) -7 NIL NIL) (-153 257431 257599 257686 "COMM" 257781 T COMM (NIL) -8 NIL NIL) (-152 256680 256874 256902 "COMBOPC" 257240 T COMBOPC (NIL) -9 NIL 257415) (-151 255576 255786 256028 "COMBINAT" 256470 NIL COMBINAT (NIL T) -7 NIL NIL) (-150 251774 252347 252987 "COMBF" 254998 NIL COMBF (NIL T T) -7 NIL NIL) (-149 250560 250890 251125 "COLOR" 251559 T COLOR (NIL) -8 NIL NIL) (-148 250200 250247 250372 "CMPLXRT" 250507 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-147 245702 246730 247810 "CLIP" 249140 T CLIP (NIL) -7 NIL NIL) (-146 244086 244810 245048 "CLIF" 245530 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-145 240308 242232 242273 "CLAGG" 243202 NIL CLAGG (NIL T) -9 NIL 243738) (-144 238730 239187 239770 "CLAGG-" 239775 NIL CLAGG- (NIL T T) -8 NIL NIL) (-143 238274 238359 238499 "CINTSLPE" 238639 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-142 235775 236246 236794 "CHVAR" 237802 NIL CHVAR (NIL T T T) -7 NIL NIL) (-141 235040 235560 235588 "CHARZ" 235593 T CHARZ (NIL) -9 NIL 235607) (-140 234794 234834 234912 "CHARPOL" 234994 NIL CHARPOL (NIL T) -7 NIL NIL) (-139 233943 234496 234524 "CHARNZ" 234571 T CHARNZ (NIL) -9 NIL 234626) (-138 231968 232633 232968 "CHAR" 233628 T CHAR (NIL) -8 NIL NIL) (-137 231694 231755 231783 "CFCAT" 231894 T CFCAT (NIL) -9 NIL NIL) (-136 230939 231050 231232 "CDEN" 231578 NIL CDEN (NIL T T T) -7 NIL NIL) (-135 226931 230092 230372 "CCLASS" 230679 T CCLASS (NIL) -8 NIL NIL) (-134 226850 226876 226911 "CATEGORY" 226916 T -10 (NIL) -8 NIL NIL) (-133 221902 222879 223632 "CARTEN" 226153 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-132 221010 221158 221379 "CARTEN2" 221749 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-131 219354 220162 220418 "CARD" 220774 T CARD (NIL) -8 NIL NIL) (-130 218726 219054 219082 "CACHSET" 219214 T CACHSET (NIL) -9 NIL 219291) (-129 218222 218518 218546 "CABMON" 218596 T CABMON (NIL) -9 NIL 218652) (-128 217390 217769 217912 "BYTE" 218099 T BYTE (NIL) -8 NIL NIL) (-127 213338 217337 217371 "BYTEARY" 217376 T BYTEARY (NIL) -8 NIL NIL) (-126 210895 213030 213137 "BTREE" 213264 NIL BTREE (NIL T) -8 NIL NIL) (-125 208393 210543 210665 "BTOURN" 210805 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205811 207864 207905 "BTCAT" 207973 NIL BTCAT (NIL T) -9 NIL 208050) (-123 205478 205558 205707 "BTCAT-" 205712 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200770 204621 204649 "BTAGG" 204871 T BTAGG (NIL) -9 NIL 205032) (-121 200260 200385 200591 "BTAGG-" 200596 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197304 199538 199753 "BSTREE" 200077 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196442 196568 196752 "BRILL" 197160 NIL BRILL (NIL T) -7 NIL NIL) (-118 193143 195170 195211 "BRAGG" 195860 NIL BRAGG (NIL T) -9 NIL 196117) (-117 191672 192078 192633 "BRAGG-" 192638 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184945 191018 191202 "BPADICRT" 191520 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183295 184882 184927 "BPADIC" 184932 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182995 183025 183138 "BOUNDZRO" 183259 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178510 179601 180468 "BOP" 182148 T BOP (NIL) -8 NIL NIL) (-112 176131 176575 177095 "BOP1" 178023 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174855 175541 175741 "BOOLEAN" 175951 T BOOLEAN (NIL) -8 NIL NIL) (-110 174219 174597 174649 "BMODULE" 174654 NIL BMODULE (NIL T T) -9 NIL 174719) (-109 170049 174017 174090 "BITS" 174166 T BITS (NIL) -8 NIL NIL) (-108 169146 169581 169733 "BINFILE" 169917 T BINFILE (NIL) -8 NIL NIL) (-107 168558 168680 168822 "BINDING" 169024 T BINDING (NIL) -8 NIL NIL) (-106 162457 168002 168167 "BINARY" 168413 T BINARY (NIL) -8 NIL NIL) (-105 160284 161712 161753 "BGAGG" 162013 NIL BGAGG (NIL T) -9 NIL 162150) (-104 160115 160147 160238 "BGAGG-" 160243 NIL BGAGG- (NIL T T) -8 NIL NIL) (-103 159213 159499 159704 "BFUNCT" 159930 T BFUNCT (NIL) -8 NIL NIL) (-102 157908 158086 158373 "BEZOUT" 159037 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-101 154425 156760 157090 "BBTREE" 157611 NIL BBTREE (NIL T) -8 NIL NIL) (-100 154159 154212 154240 "BASTYPE" 154359 T BASTYPE (NIL) -9 NIL NIL) (-99 154013 154042 154113 "BASTYPE-" 154118 NIL BASTYPE- (NIL T) -8 NIL NIL) (-98 153451 153527 153677 "BALFACT" 153924 NIL BALFACT (NIL T T) -7 NIL NIL) (-97 152338 152870 153055 "AUTOMOR" 153296 NIL AUTOMOR (NIL T) -8 NIL NIL) (-96 152064 152069 152095 "ATTREG" 152100 T ATTREG (NIL) -9 NIL NIL) (-95 150343 150761 151113 "ATTRBUT" 151730 T ATTRBUT (NIL) -8 NIL NIL) (-94 149995 150171 150237 "ATTRAST" 150295 T ATTRAST (NIL) -8 NIL NIL) (-93 149531 149644 149670 "ATRIG" 149871 T ATRIG (NIL) -9 NIL NIL) (-92 149340 149381 149468 "ATRIG-" 149473 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149065 149208 149234 "ASTCAT" 149239 T ASTCAT (NIL) -9 NIL 149269) (-90 148862 148905 148997 "ASTCAT-" 149002 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147059 148638 148726 "ASTACK" 148805 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145564 145861 146226 "ASSOCEQ" 146741 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144596 145223 145347 "ASP9" 145471 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144360 144544 144583 "ASP8" 144588 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143229 143965 144107 "ASP80" 144249 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142128 142864 142996 "ASP7" 143128 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141082 141805 141923 "ASP78" 142041 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140051 140762 140879 "ASP77" 140996 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138963 139689 139820 "ASP74" 139951 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137863 138598 138730 "ASP73" 138862 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136818 137540 137658 "ASP6" 137776 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135766 136495 136613 "ASP55" 136731 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134716 135440 135559 "ASP50" 135678 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133804 134417 134527 "ASP4" 134637 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132892 133505 133615 "ASP49" 133725 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131677 132431 132599 "ASP42" 132781 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130454 131210 131380 "ASP41" 131564 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129404 130131 130249 "ASP35" 130367 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129169 129352 129391 "ASP34" 129396 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128906 128973 129049 "ASP33" 129124 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127801 128541 128673 "ASP31" 128805 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127566 127749 127788 "ASP30" 127793 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127301 127370 127446 "ASP29" 127521 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127066 127249 127288 "ASP28" 127293 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126831 127014 127053 "ASP27" 127058 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125915 126529 126640 "ASP24" 126751 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124831 125556 125686 "ASP20" 125816 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123919 124532 124642 "ASP1" 124752 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122863 123593 123712 "ASP19" 123831 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122600 122667 122743 "ASP12" 122818 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121452 122199 122343 "ASP10" 122487 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119351 121296 121387 "ARRAY2" 121392 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115167 118999 119113 "ARRAY1" 119268 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114199 114372 114593 "ARRAY12" 114990 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108558 110429 110504 "ARR2CAT" 113134 NIL ARR2CAT (NIL T T T) -9 NIL 113892) (-54 105992 106736 107690 "ARR2CAT-" 107695 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104744 104896 105201 "APPRULE" 105828 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104397 104445 104563 "APPLYORE" 104690 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103371 103662 103857 "ANY" 104220 T ANY (NIL) -8 NIL NIL) (-50 102649 102772 102929 "ANY1" 103245 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100227 101099 101424 "ANTISYM" 102374 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99742 99931 100028 "ANON" 100148 T ANON (NIL) -8 NIL NIL) (-47 93884 98287 98738 "AN" 99309 T AN (NIL) -8 NIL NIL) (-46 90277 91631 91681 "AMR" 92420 NIL AMR (NIL T T) -9 NIL 93019) (-45 89390 89611 89973 "AMR-" 89978 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73940 89307 89368 "ALIST" 89373 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70777 73534 73703 "ALGSC" 73858 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67333 67887 68494 "ALGPKG" 70217 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66610 66711 66895 "ALGMFACT" 67219 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62359 63040 63694 "ALGMANIP" 66134 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53770 61985 62135 "ALGFF" 62292 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52966 53097 53276 "ALGFACT" 53628 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51998 52564 52602 "ALGEBRA" 52662 NIL ALGEBRA (NIL T) -9 NIL 52720) (-36 51716 51775 51907 "ALGEBRA-" 51912 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33976 49719 49771 "ALAGG" 49907 NIL ALAGG (NIL T T) -9 NIL 50068) (-34 33512 33625 33651 "AHYP" 33852 T AHYP (NIL) -9 NIL NIL) (-33 32443 32691 32717 "AGG" 33216 T AGG (NIL) -9 NIL 33495) (-32 31877 32039 32253 "AGG-" 32258 NIL AGG- (NIL T) -8 NIL NIL) (-31 29564 29982 30399 "AF" 31520 NIL AF (NIL T T) -7 NIL NIL) (-30 28833 29091 29247 "ACPLOT" 29426 T ACPLOT (NIL) -8 NIL NIL) (-29 18357 26241 26292 "ACFS" 27003 NIL ACFS (NIL T) -9 NIL 27242) (-28 16371 16861 17636 "ACFS-" 17641 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3764 (*1 *1) (-4 *1 (-1099))) (-3763 (*1 *1 *1) (|partial| -4 *1 (-1099)))) +(-13 (-1052) (-10 -8 (-15 -3764 ($) -4268) (-15 -3763 ((-3 $ "failed") $)))) +(((-100) . T) ((-583 (-823)) . T) ((-1052) . T)) +((-3767 (((-1101 |#1|) (-1101 |#1|)) 17)) (-3765 (((-1101 |#1|) (-1101 |#1|)) 13)) (-3768 (((-1101 |#1|) (-1101 |#1|) (-526) (-526)) 20)) (-3766 (((-1101 |#1|) (-1101 |#1|)) 15))) +(((-1100 |#1|) (-10 -7 (-15 -3765 ((-1101 |#1|) (-1101 |#1|))) (-15 -3766 ((-1101 |#1|) (-1101 |#1|))) (-15 -3767 ((-1101 |#1|) (-1101 |#1|))) (-15 -3768 ((-1101 |#1|) (-1101 |#1|) (-526) (-526)))) (-13 (-533) (-141))) (T -1100)) +((-3768 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1100 *4)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) +(-10 -7 (-15 -3765 ((-1101 |#1|) (-1101 |#1|))) (-15 -3766 ((-1101 |#1|) (-1101 |#1|))) (-15 -3767 ((-1101 |#1|) (-1101 |#1|))) (-15 -3768 ((-1101 |#1|) (-1101 |#1|) (-526) (-526)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) NIL)) (-4113 ((|#1| $) NIL)) (-4115 (($ $) 51)) (-2276 (((-1211) $ (-526) (-526)) 76 (|has| $ (-6 -4311)))) (-4103 (($ $ (-526)) 110 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-3773 (((-823) $) 41 (|has| |#1| (-1052)))) (-3772 (((-111)) 40 (|has| |#1| (-1052)))) (-3325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4311)))) (-4105 (($ $ $) 98 (|has| $ (-6 -4311))) (($ $ (-526) $) 122)) (-4104 ((|#1| $ |#1|) 107 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 102 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4311))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4311))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 89 (|has| $ (-6 -4311))) ((|#1| $ (-526) |#1|) 55 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 58)) (-4114 ((|#1| $) NIL)) (-3855 (($) NIL T CONST)) (-2367 (($ $) 14)) (-4117 (($ $) 29) (($ $ (-735)) 88)) (-3778 (((-111) (-607 |#1|) $) 116 (|has| |#1| (-1052)))) (-3779 (($ (-607 |#1|)) 112)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) 57)) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3761 (((-111) $) NIL)) (-2044 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3774 (((-1211) (-526) $) 121 (|has| |#1| (-1052)))) (-2366 (((-735) $) 118)) (-3331 (((-607 $) $) NIL)) (-3327 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4038 (((-111) $ (-735)) NIL)) (-3330 (((-607 |#1|) $) NIL)) (-3841 (((-111) $) NIL)) (-2369 (($ $) 90)) (-2370 (((-111) $) 13)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-4116 ((|#1| $) NIL) (($ $ (-735)) NIL)) (-2351 (($ $ $ (-526)) NIL) (($ |#1| $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) 74)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-3771 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2368 ((|#1| $) 10)) (-4119 ((|#1| $) 28) (($ $ (-735)) 49)) (-3777 (((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $) 25)) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3770 (($ (-1 (-111) |#1|) $) 126)) (-3769 (($ (-1 (-111) |#1|) $) 127)) (-2277 (($ $ |#1|) 68 (|has| $ (-6 -4311)))) (-4087 (($ $ (-526)) 32)) (-3762 (((-111) $) 72)) (-2371 (((-111) $) 12)) (-2372 (((-111) $) 117)) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 20)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) 15)) (-3887 (($) 43)) (-4118 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1172 (-526))) NIL) ((|#1| $ (-526)) 54) ((|#1| $ (-526) |#1|) NIL)) (-3329 (((-526) $ $) 48)) (-2352 (($ $ (-1172 (-526))) NIL) (($ $ (-526)) NIL)) (-3776 (($ (-1 $)) 47)) (-3955 (((-111) $) 69)) (-4110 (($ $) 70)) (-4108 (($ $) 99 (|has| $ (-6 -4311)))) (-4111 (((-735) $) NIL)) (-4112 (($ $) NIL)) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 44)) (-4287 (((-515) $) NIL (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 53)) (-3775 (($ |#1| $) 97)) (-4109 (($ $ $) 100 (|has| $ (-6 -4311))) (($ $ |#1|) 101 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 45) (($ (-607 $)) 83) (($ $ |#1|) 77)) (-3191 (($ $) 50)) (-4274 (($ (-607 |#1|)) 111) (((-823) $) 42 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) NIL)) (-3328 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 114 (|has| |#1| (-1052)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1101 |#1|) (-13 (-639 |#1|) (-10 -8 (-6 -4311) (-15 -4274 ($ (-607 |#1|))) (-15 -3779 ($ (-607 |#1|))) (IF (|has| |#1| (-1052)) (-15 -3778 ((-111) (-607 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $)) (-15 -3776 ($ (-1 $))) (-15 -3775 ($ |#1| $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -3774 ((-1211) (-526) $)) (-15 -3773 ((-823) $)) (-15 -3772 ((-111)))) |%noBranch|) (-15 -4105 ($ $ (-526) $)) (-15 -3771 ($ (-1 |#1|))) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)))) (-1159)) (T -1101)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3778 (*1 *2 *3 *1) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)) (-5 *1 (-1101 *4)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735)))) (-5 *1 (-1101 *4)) (-4 *4 (-1159)) (-5 *3 (-735)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-1 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) (-3775 (*1 *1 *2 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1159)))) (-3774 (*1 *2 *3 *1) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1101 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)))) (-3772 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159)))) (-4105 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) (-3769 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) +(-13 (-639 |#1|) (-10 -8 (-6 -4311) (-15 -4274 ($ (-607 |#1|))) (-15 -3779 ($ (-607 |#1|))) (IF (|has| |#1| (-1052)) (-15 -3778 ((-111) (-607 |#1|) $)) |%noBranch|) (-15 -3777 ((-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735))) (-735) $)) (-15 -3776 ($ (-1 $))) (-15 -3775 ($ |#1| $)) (IF (|has| |#1| (-1052)) (PROGN (-15 -3774 ((-1211) (-526) $)) (-15 -3773 ((-823) $)) (-15 -3772 ((-111)))) |%noBranch|) (-15 -4105 ($ $ (-526) $)) (-15 -3771 ($ (-1 |#1|))) (-15 -3771 ($ (-1 |#1| |#1|) |#1|)) (-15 -3770 ($ (-1 (-111) |#1|) $)) (-15 -3769 ($ (-1 (-111) |#1|) $)))) +((-4120 (((-1101 |#1|) (-1101 (-1101 |#1|))) 15))) +(((-1102 |#1|) (-10 -7 (-15 -4120 ((-1101 |#1|) (-1101 (-1101 |#1|))))) (-1159)) (T -1102)) +((-4120 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-1159))))) +(-10 -7 (-15 -4120 ((-1101 |#1|) (-1101 (-1101 |#1|))))) +((-4160 (((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)) 25)) (-4161 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)) 26)) (-4275 (((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)) 16))) +(((-1103 |#1| |#2|) (-10 -7 (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|))) (-15 -4160 ((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|))) (-15 -4161 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)))) (-1159) (-1159)) (T -1103)) +((-4161 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-1103 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1101 *6)) (-4 *6 (-1159)) (-4 *3 (-1159)) (-5 *2 (-1101 *3)) (-5 *1 (-1103 *6 *3)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1103 *5 *6))))) +(-10 -7 (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|))) (-15 -4160 ((-1101 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|))) (-15 -4161 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1101 |#1|)))) +((-4275 (((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)) 21))) +(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)))) (-1159) (-1159) (-1159)) (T -1104)) +((-4275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-1101 *7)) (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) (-5 *1 (-1104 *6 *7 *8))))) +(-10 -7 (-15 -4275 ((-1101 |#3|) (-1 |#3| |#1| |#2|) (-1101 |#1|) (-1101 |#2|)))) +((-2865 (((-111) $ $) 19)) (-3745 (($ $) 120)) (-3746 (($ $) 121)) (-3736 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) 118)) (-3742 (((-111) $ $ (-526)) 117)) (-3857 (($ (-526)) 127)) (-3737 (((-607 $) $ (-138)) 110) (((-607 $) $ (-135)) 109)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| (-138) (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 (((-138) $ (-526) (-138)) 52 (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-3734 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-3739 (($ $ (-1172 (-526)) $) 114)) (-1375 (($ $) 78 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ (-138) $) 77 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) 53 (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) 51)) (-3744 (((-111) $ $) 119)) (-3738 (((-526) (-1 (-111) (-138)) $) 97) (((-526) (-138) $) 96 (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) 95 (|has| (-138) (-1052))) (((-526) $ $ (-526)) 113) (((-526) (-135) $ (-526)) 112)) (-2044 (((-607 (-138)) $) 30 (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) 115)) (-3741 (((-735) $ $ (-138)) 116)) (-2048 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3747 (($ $) 122)) (-3748 (($ $) 123)) (-4038 (((-111) $ (-735)) 10)) (-3735 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-3554 (((-1106) $) 22)) (-2351 (($ (-138) $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21)) (-4119 (((-138) $) 42 (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-2277 (($ $ (-138)) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) 26 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) 23 (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 (((-138) $ (-526) (-138)) 50) (((-138) $ (-526)) 49) (($ $ (-1172 (-526))) 63) (($ $ $) 102)) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-2045 (((-735) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4310))) (((-735) (-138) $) 28 (-12 (|has| (-138) (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) 70)) (-4120 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (($ (-138)) 111) (((-823) $) 18)) (-2047 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 131) (((-1106) $ (-111)) 130) (((-1211) (-787) $) 129) (((-1211) (-787) $ (-111)) 128)) (-2863 (((-111) $ $) 84 (|has| (-138) (-811)))) (-2864 (((-111) $ $) 83 (|has| (-138) (-811)))) (-3353 (((-111) $ $) 20)) (-2984 (((-111) $ $) 85 (|has| (-138) (-811)))) (-2985 (((-111) $ $) 82 (|has| (-138) (-811)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1105) (-134)) (T -1105)) +((-3857 (*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1105))))) +(-13 (-1092) (-1052) (-785) (-10 -8 (-15 -3857 ($ (-526))))) +(((-33) . T) ((-100) . T) ((-583 (-823)) . T) ((-145 #1=(-138)) . T) ((-584 (-515)) |has| (-138) (-584 (-515))) ((-271 #2=(-526) #1#) . T) ((-273 #2# #1#) . T) ((-294 #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-357 #1#) . T) ((-472 #1#) . T) ((-574 #2# #1#) . T) ((-496 #1# #1#) -12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))) ((-616 #1#) . T) ((-19 #1#) . T) ((-785) . T) ((-811) |has| (-138) (-811)) ((-1052) . T) ((-1092) . T) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3745 (($ $) NIL)) (-3746 (($ $) NIL)) (-3736 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-3743 (((-111) $ $) NIL)) (-3742 (((-111) $ $ (-526)) NIL)) (-3857 (($ (-526)) 7)) (-3737 (((-607 $) $ (-138)) NIL) (((-607 $) $ (-135)) NIL)) (-1824 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-811)))) (-1822 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| (-138) (-811))))) (-3209 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311))) (((-138) $ (-1172 (-526)) (-138)) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-3734 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-3739 (($ $ (-1172 (-526)) $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-3725 (($ (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4310))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4310)))) (-1613 (((-138) $ (-526) (-138)) NIL (|has| $ (-6 -4311)))) (-3410 (((-138) $ (-526)) NIL)) (-3744 (((-111) $ $) NIL)) (-3738 (((-526) (-1 (-111) (-138)) $) NIL) (((-526) (-138) $) NIL (|has| (-138) (-1052))) (((-526) (-138) $ (-526)) NIL (|has| (-138) (-1052))) (((-526) $ $ (-526)) NIL) (((-526) (-135) $ (-526)) NIL)) (-2044 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3936 (($ (-735) (-138)) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| (-138) (-811)))) (-3832 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-811)))) (-2480 (((-607 (-138)) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| (-138) (-811)))) (-3740 (((-111) $ $ (-138)) NIL)) (-3741 (((-735) $ $ (-138)) NIL)) (-2048 (($ (-1 (-138) (-138)) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3747 (($ $) NIL)) (-3748 (($ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3735 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-3554 (((-1106) $) NIL)) (-2351 (($ (-138) $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-138) $) NIL (|has| (-526) (-811)))) (-1376 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-2277 (($ $ (-138)) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-138)))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052)))) (($ $ (-607 (-138)) (-607 (-138))) NIL (-12 (|has| (-138) (-294 (-138))) (|has| (-138) (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-2283 (((-607 (-138)) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 (((-138) $ (-526) (-138)) NIL) (((-138) $ (-526)) NIL) (($ $ (-1172 (-526))) NIL) (($ $ $) NIL)) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-2045 (((-735) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310))) (((-735) (-138) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-138) (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-138) (-584 (-515))))) (-3844 (($ (-607 (-138))) NIL)) (-4120 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (($ (-138)) NIL) (((-823) $) NIL)) (-2047 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4310)))) (-2803 (((-1106) $) 18) (((-1106) $ (-111)) 20) (((-1211) (-787) $) 21) (((-1211) (-787) $ (-111)) 22)) (-2863 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2864 (((-111) $ $) NIL (|has| (-138) (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| (-138) (-811)))) (-2985 (((-111) $ $) NIL (|has| (-138) (-811)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1106) (-1105)) (T -1106)) +NIL +(-1105) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2276 (((-1211) $ (-1106) (-1106)) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-1106) |#1|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#1| #1="failed") (-1106) $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#1| #1#) (-1106) $) NIL)) (-3725 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-1106) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-1106)) NIL)) (-2044 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2480 (((-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-1106) $) NIL (|has| (-1106) (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-2713 (((-607 (-1106)) $) NIL)) (-2286 (((-111) (-1106) $) NIL)) (-1306 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2281 (((-607 (-1106)) $) NIL)) (-2282 (((-111) (-1106) $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-4119 ((|#1| $) NIL (|has| (-1106) (-811)))) (-1376 (((-3 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) "failed") (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL (-12 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-294 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-1106)) NIL) ((|#1| $ (-1106) |#1|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-583 (-823))) (|has| |#1| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 (-1106)) (|:| -2164 |#1|)) (-1052)) (|has| |#1| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1107 |#1|) (-13 (-1136 (-1106) |#1|) (-10 -7 (-6 -4310))) (-1052)) (T -1107)) +NIL +(-13 (-1136 (-1106) |#1|) (-10 -7 (-6 -4310))) +((-4123 (((-1101 |#1|) (-1101 |#1|)) 77)) (-3781 (((-3 (-1101 |#1|) "failed") (-1101 |#1|)) 37)) (-3792 (((-1101 |#1|) (-392 (-526)) (-1101 |#1|)) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3795 (((-1101 |#1|) |#1| (-1101 |#1|)) 127 (|has| |#1| (-348)))) (-4126 (((-1101 |#1|) (-1101 |#1|)) 90)) (-3783 (((-1101 (-526)) (-526)) 57)) (-3791 (((-1101 |#1|) (-1101 (-1101 |#1|))) 109 (|has| |#1| (-37 (-392 (-526)))))) (-4122 (((-1101 |#1|) (-526) (-526) (-1101 |#1|)) 95)) (-4255 (((-1101 |#1|) |#1| (-526)) 45)) (-3785 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 60)) (-3793 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 124 (|has| |#1| (-348)))) (-3790 (((-1101 |#1|) |#1| (-1 (-1101 |#1|))) 108 (|has| |#1| (-37 (-392 (-526)))))) (-3794 (((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|))) 125 (|has| |#1| (-348)))) (-4127 (((-1101 |#1|) (-1101 |#1|)) 89)) (-4128 (((-1101 |#1|) (-1101 |#1|)) 76)) (-4121 (((-1101 |#1|) (-526) (-526) (-1101 |#1|)) 96)) (-4131 (((-1101 |#1|) |#1| (-1101 |#1|)) 105 (|has| |#1| (-37 (-392 (-526)))))) (-3782 (((-1101 (-526)) (-526)) 56)) (-3784 (((-1101 |#1|) |#1|) 59)) (-4124 (((-1101 |#1|) (-1101 |#1|) (-526) (-526)) 92)) (-3787 (((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|)) 66)) (-3780 (((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|)) 35)) (-4125 (((-1101 |#1|) (-1101 |#1|)) 91)) (-4086 (((-1101 |#1|) (-1101 |#1|) |#1|) 71)) (-3786 (((-1101 |#1|) (-1101 |#1|)) 62)) (-3788 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 72)) (-4274 (((-1101 |#1|) |#1|) 67)) (-3789 (((-1101 |#1|) (-1101 (-1101 |#1|))) 82)) (-4265 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 36)) (-4156 (((-1101 |#1|) (-1101 |#1|)) 21) (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 23)) (-4158 (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 17)) (* (((-1101 |#1|) (-1101 |#1|) |#1|) 29) (((-1101 |#1|) |#1| (-1101 |#1|)) 26) (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 27))) +(((-1108 |#1|) (-10 -7 (-15 -4158 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3780 ((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|))) (-15 -4265 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3781 ((-3 (-1101 |#1|) "failed") (-1101 |#1|))) (-15 -4255 ((-1101 |#1|) |#1| (-526))) (-15 -3782 ((-1101 (-526)) (-526))) (-15 -3783 ((-1101 (-526)) (-526))) (-15 -3784 ((-1101 |#1|) |#1|)) (-15 -3785 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3786 ((-1101 |#1|) (-1101 |#1|))) (-15 -3787 ((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|))) (-15 -4274 ((-1101 |#1|) |#1|)) (-15 -4086 ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3788 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4128 ((-1101 |#1|) (-1101 |#1|))) (-15 -4123 ((-1101 |#1|) (-1101 |#1|))) (-15 -3789 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -4127 ((-1101 |#1|) (-1101 |#1|))) (-15 -4126 ((-1101 |#1|) (-1101 |#1|))) (-15 -4125 ((-1101 |#1|) (-1101 |#1|))) (-15 -4124 ((-1101 |#1|) (-1101 |#1|) (-526) (-526))) (-15 -4122 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (-15 -4121 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 -3790 ((-1101 |#1|) |#1| (-1 (-1101 |#1|)))) (-15 -3791 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -3792 ((-1101 |#1|) (-392 (-526)) (-1101 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3793 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3794 ((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|)))) (-15 -3795 ((-1101 |#1|) |#1| (-1101 |#1|)))) |%noBranch|)) (-1004)) (T -1108)) +((-3795 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-526))) (-5 *5 (-1 (-1101 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *4)) (-4 *4 (-37 *3)) (-4 *4 (-1004)) (-5 *3 (-392 (-526))) (-5 *1 (-1108 *4)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1101 *3))) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)))) (-4131 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4121 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4122 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4124 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) (-4 *4 (-1004)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3787 (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *4)) (-5 *3 (-1 *4 (-526))) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3785 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3784 (*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) (-5 *3 (-526)))) (-3782 (*1 *2 *3) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) (-5 *3 (-526)))) (-4255 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) (-3781 (*1 *2 *2) (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4265 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-3780 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) (-4158 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(-10 -7 (-15 -4158 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4156 ((-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 * ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 * ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3780 ((-3 (-1101 |#1|) "failed") (-1101 |#1|) (-1101 |#1|))) (-15 -4265 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3781 ((-3 (-1101 |#1|) "failed") (-1101 |#1|))) (-15 -4255 ((-1101 |#1|) |#1| (-526))) (-15 -3782 ((-1101 (-526)) (-526))) (-15 -3783 ((-1101 (-526)) (-526))) (-15 -3784 ((-1101 |#1|) |#1|)) (-15 -3785 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3786 ((-1101 |#1|) (-1101 |#1|))) (-15 -3787 ((-1101 |#1|) (-1 |#1| (-526)) (-1101 |#1|))) (-15 -4274 ((-1101 |#1|) |#1|)) (-15 -4086 ((-1101 |#1|) (-1101 |#1|) |#1|)) (-15 -3788 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -4128 ((-1101 |#1|) (-1101 |#1|))) (-15 -4123 ((-1101 |#1|) (-1101 |#1|))) (-15 -3789 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -4127 ((-1101 |#1|) (-1101 |#1|))) (-15 -4126 ((-1101 |#1|) (-1101 |#1|))) (-15 -4125 ((-1101 |#1|) (-1101 |#1|))) (-15 -4124 ((-1101 |#1|) (-1101 |#1|) (-526) (-526))) (-15 -4122 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (-15 -4121 ((-1101 |#1|) (-526) (-526) (-1101 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ((-1101 |#1|) |#1| (-1101 |#1|))) (-15 -3790 ((-1101 |#1|) |#1| (-1 (-1101 |#1|)))) (-15 -3791 ((-1101 |#1|) (-1101 (-1101 |#1|)))) (-15 -3792 ((-1101 |#1|) (-392 (-526)) (-1101 |#1|)))) |%noBranch|) (IF (|has| |#1| (-348)) (PROGN (-15 -3793 ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3794 ((-1101 |#1|) (-1 |#1| (-526)) |#1| (-1 (-1101 |#1|)))) (-15 -3795 ((-1101 |#1|) |#1| (-1101 |#1|)))) |%noBranch|)) +((-3806 (((-1101 |#1|) (-1101 |#1|)) 100)) (-3961 (((-1101 |#1|) (-1101 |#1|)) 64)) (-3797 (((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|)) 96)) (-3804 (((-1101 |#1|) (-1101 |#1|)) 97)) (-3796 (((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|)) 53)) (-3960 (((-1101 |#1|) (-1101 |#1|)) 54)) (-3808 (((-1101 |#1|) (-1101 |#1|)) 102)) (-3959 (((-1101 |#1|) (-1101 |#1|)) 71)) (-4259 (((-1101 |#1|) (-1101 |#1|)) 39)) (-4260 (((-1101 |#1|) (-1101 |#1|)) 36)) (-3809 (((-1101 |#1|) (-1101 |#1|)) 103)) (-3958 (((-1101 |#1|) (-1101 |#1|)) 72)) (-3807 (((-1101 |#1|) (-1101 |#1|)) 101)) (-3957 (((-1101 |#1|) (-1101 |#1|)) 67)) (-3805 (((-1101 |#1|) (-1101 |#1|)) 98)) (-3956 (((-1101 |#1|) (-1101 |#1|)) 55)) (-3812 (((-1101 |#1|) (-1101 |#1|)) 111)) (-3800 (((-1101 |#1|) (-1101 |#1|)) 86)) (-3810 (((-1101 |#1|) (-1101 |#1|)) 105)) (-3798 (((-1101 |#1|) (-1101 |#1|)) 82)) (-3814 (((-1101 |#1|) (-1101 |#1|)) 115)) (-3802 (((-1101 |#1|) (-1101 |#1|)) 90)) (-3815 (((-1101 |#1|) (-1101 |#1|)) 117)) (-3803 (((-1101 |#1|) (-1101 |#1|)) 92)) (-3813 (((-1101 |#1|) (-1101 |#1|)) 113)) (-3801 (((-1101 |#1|) (-1101 |#1|)) 88)) (-3811 (((-1101 |#1|) (-1101 |#1|)) 107)) (-3799 (((-1101 |#1|) (-1101 |#1|)) 84)) (** (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 40))) +(((-1109 |#1|) (-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3796 ((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3797 ((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) (-37 (-392 (-526)))) (T -1109)) +((-3815 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-2 (|:| -3804 (-1101 *4)) (|:| -3805 (-1101 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-2 (|:| -3960 (-1101 *4)) (|:| -3956 (-1101 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3))))) +(-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3796 ((-2 (|:| -3960 (-1101 |#1|)) (|:| -3956 (-1101 |#1|))) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3797 ((-2 (|:| -3804 (-1101 |#1|)) (|:| -3805 (-1101 |#1|))) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) +((-3806 (((-1101 |#1|) (-1101 |#1|)) 57)) (-3961 (((-1101 |#1|) (-1101 |#1|)) 39)) (-3804 (((-1101 |#1|) (-1101 |#1|)) 53)) (-3960 (((-1101 |#1|) (-1101 |#1|)) 35)) (-3808 (((-1101 |#1|) (-1101 |#1|)) 60)) (-3959 (((-1101 |#1|) (-1101 |#1|)) 42)) (-4259 (((-1101 |#1|) (-1101 |#1|)) 31)) (-4260 (((-1101 |#1|) (-1101 |#1|)) 27)) (-3809 (((-1101 |#1|) (-1101 |#1|)) 61)) (-3958 (((-1101 |#1|) (-1101 |#1|)) 43)) (-3807 (((-1101 |#1|) (-1101 |#1|)) 58)) (-3957 (((-1101 |#1|) (-1101 |#1|)) 40)) (-3805 (((-1101 |#1|) (-1101 |#1|)) 55)) (-3956 (((-1101 |#1|) (-1101 |#1|)) 37)) (-3812 (((-1101 |#1|) (-1101 |#1|)) 65)) (-3800 (((-1101 |#1|) (-1101 |#1|)) 47)) (-3810 (((-1101 |#1|) (-1101 |#1|)) 63)) (-3798 (((-1101 |#1|) (-1101 |#1|)) 45)) (-3814 (((-1101 |#1|) (-1101 |#1|)) 68)) (-3802 (((-1101 |#1|) (-1101 |#1|)) 50)) (-3815 (((-1101 |#1|) (-1101 |#1|)) 69)) (-3803 (((-1101 |#1|) (-1101 |#1|)) 51)) (-3813 (((-1101 |#1|) (-1101 |#1|)) 67)) (-3801 (((-1101 |#1|) (-1101 |#1|)) 49)) (-3811 (((-1101 |#1|) (-1101 |#1|)) 66)) (-3799 (((-1101 |#1|) (-1101 |#1|)) 48)) (** (((-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) 33))) +(((-1110 |#1|) (-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) (-37 (-392 (-526)))) (T -1110)) +((-3815 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(-10 -7 (-15 -4260 ((-1101 |#1|) (-1101 |#1|))) (-15 -4259 ((-1101 |#1|) (-1101 |#1|))) (-15 ** ((-1101 |#1|) (-1101 |#1|) (-1101 |#1|))) (-15 -3960 ((-1101 |#1|) (-1101 |#1|))) (-15 -3956 ((-1101 |#1|) (-1101 |#1|))) (-15 -3961 ((-1101 |#1|) (-1101 |#1|))) (-15 -3957 ((-1101 |#1|) (-1101 |#1|))) (-15 -3959 ((-1101 |#1|) (-1101 |#1|))) (-15 -3958 ((-1101 |#1|) (-1101 |#1|))) (-15 -3798 ((-1101 |#1|) (-1101 |#1|))) (-15 -3799 ((-1101 |#1|) (-1101 |#1|))) (-15 -3800 ((-1101 |#1|) (-1101 |#1|))) (-15 -3801 ((-1101 |#1|) (-1101 |#1|))) (-15 -3802 ((-1101 |#1|) (-1101 |#1|))) (-15 -3803 ((-1101 |#1|) (-1101 |#1|))) (-15 -3804 ((-1101 |#1|) (-1101 |#1|))) (-15 -3805 ((-1101 |#1|) (-1101 |#1|))) (-15 -3806 ((-1101 |#1|) (-1101 |#1|))) (-15 -3807 ((-1101 |#1|) (-1101 |#1|))) (-15 -3808 ((-1101 |#1|) (-1101 |#1|))) (-15 -3809 ((-1101 |#1|) (-1101 |#1|))) (-15 -3810 ((-1101 |#1|) (-1101 |#1|))) (-15 -3811 ((-1101 |#1|) (-1101 |#1|))) (-15 -3812 ((-1101 |#1|) (-1101 |#1|))) (-15 -3813 ((-1101 |#1|) (-1101 |#1|))) (-15 -3814 ((-1101 |#1|) (-1101 |#1|))) (-15 -3815 ((-1101 |#1|) (-1101 |#1|)))) +((-3816 (((-917 |#2|) |#2| |#2|) 35)) (-3817 ((|#2| |#2| |#1|) 19 (|has| |#1| (-292))))) +(((-1111 |#1| |#2|) (-10 -7 (-15 -3816 ((-917 |#2|) |#2| |#2|)) (IF (|has| |#1| (-292)) (-15 -3817 (|#2| |#2| |#1|)) |%noBranch|)) (-533) (-1181 |#1|)) (T -1111)) +((-3817 (*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-1181 *3)))) (-3816 (*1 *2 *3 *3) (-12 (-4 *4 (-533)) (-5 *2 (-917 *3)) (-5 *1 (-1111 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -3816 ((-917 |#2|) |#2| |#2|)) (IF (|has| |#1| (-292)) (-15 -3817 (|#2| |#2| |#1|)) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3825 (($ $ (-607 (-735))) 67)) (-4207 (($) 26)) (-3834 (($ $) 42)) (-4070 (((-607 $) $) 51)) (-3840 (((-111) $) 16)) (-3818 (((-607 (-902 |#2|)) $) 74)) (-3819 (($ $) 68)) (-3835 (((-735) $) 37)) (-3936 (($) 25)) (-3828 (($ $ (-607 (-735)) (-902 |#2|)) 60) (($ $ (-607 (-735)) (-735)) 61) (($ $ (-735) (-902 |#2|)) 63)) (-3832 (($ $ $) 48) (($ (-607 $)) 50)) (-3820 (((-735) $) 75)) (-3841 (((-111) $) 15)) (-3554 (((-1106) $) NIL)) (-3839 (((-111) $) 18)) (-3555 (((-1070) $) NIL)) (-3821 (((-162) $) 73)) (-3824 (((-902 |#2|) $) 69)) (-3823 (((-735) $) 70)) (-3822 (((-111) $) 72)) (-3826 (($ $ (-607 (-735)) (-162)) 66)) (-3833 (($ $) 43)) (-4274 (((-823) $) 86)) (-3827 (($ $ (-607 (-735)) (-111)) 65)) (-3836 (((-607 $) $) 11)) (-3837 (($ $ (-735)) 36)) (-3838 (($ $) 32)) (-3829 (($ $ $ (-902 |#2|) (-735)) 56)) (-3830 (($ $ (-902 |#2|)) 55)) (-3831 (($ $ (-607 (-735)) (-902 |#2|)) 54) (($ $ (-607 (-735)) (-735)) 58) (((-735) $ (-902 |#2|)) 59)) (-3353 (((-111) $ $) 80))) +(((-1112 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3841 ((-111) $)) (-15 -3840 ((-111) $)) (-15 -3839 ((-111) $)) (-15 -3936 ($)) (-15 -4207 ($)) (-15 -3838 ($ $)) (-15 -3837 ($ $ (-735))) (-15 -3836 ((-607 $) $)) (-15 -3835 ((-735) $)) (-15 -3834 ($ $)) (-15 -3833 ($ $)) (-15 -3832 ($ $ $)) (-15 -3832 ($ (-607 $))) (-15 -4070 ((-607 $) $)) (-15 -3831 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3830 ($ $ (-902 |#2|))) (-15 -3829 ($ $ $ (-902 |#2|) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3831 ($ $ (-607 (-735)) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-735))) (-15 -3831 ((-735) $ (-902 |#2|))) (-15 -3828 ($ $ (-735) (-902 |#2|))) (-15 -3827 ($ $ (-607 (-735)) (-111))) (-15 -3826 ($ $ (-607 (-735)) (-162))) (-15 -3825 ($ $ (-607 (-735)))) (-15 -3824 ((-902 |#2|) $)) (-15 -3823 ((-735) $)) (-15 -3822 ((-111) $)) (-15 -3821 ((-162) $)) (-15 -3820 ((-735) $)) (-15 -3819 ($ $)) (-15 -3818 ((-607 (-902 |#2|)) $)))) (-878) (-1004)) (T -1112)) +((-3841 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3936 (*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-4207 (*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3832 (*1 *1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1004)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)))) (-3829 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-902 *5)) (-5 *3 (-735)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *2 (-735)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-111)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3826 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-735))) (-5 *3 (-162)) (-5 *1 (-1112 *4 *5)) (-14 *4 (-878)) (-4 *5 (-1004)))) (-3825 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-902 *4)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-162)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004)))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-607 (-902 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(-13 (-1052) (-10 -8 (-15 -3841 ((-111) $)) (-15 -3840 ((-111) $)) (-15 -3839 ((-111) $)) (-15 -3936 ($)) (-15 -4207 ($)) (-15 -3838 ($ $)) (-15 -3837 ($ $ (-735))) (-15 -3836 ((-607 $) $)) (-15 -3835 ((-735) $)) (-15 -3834 ($ $)) (-15 -3833 ($ $)) (-15 -3832 ($ $ $)) (-15 -3832 ($ (-607 $))) (-15 -4070 ((-607 $) $)) (-15 -3831 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3830 ($ $ (-902 |#2|))) (-15 -3829 ($ $ $ (-902 |#2|) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-902 |#2|))) (-15 -3831 ($ $ (-607 (-735)) (-735))) (-15 -3828 ($ $ (-607 (-735)) (-735))) (-15 -3831 ((-735) $ (-902 |#2|))) (-15 -3828 ($ $ (-735) (-902 |#2|))) (-15 -3827 ($ $ (-607 (-735)) (-111))) (-15 -3826 ($ $ (-607 (-735)) (-162))) (-15 -3825 ($ $ (-607 (-735)))) (-15 -3824 ((-902 |#2|) $)) (-15 -3823 ((-735) $)) (-15 -3822 ((-111) $)) (-15 -3821 ((-162) $)) (-15 -3820 ((-735) $)) (-15 -3819 ($ $)) (-15 -3818 ((-607 (-902 |#2|)) $)))) +((-2865 (((-111) $ $) NIL)) (-3842 ((|#2| $) 11)) (-3843 ((|#1| $) 10)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3844 (($ |#1| |#2|) 9)) (-4274 (((-823) $) 16)) (-3353 (((-111) $ $) NIL))) +(((-1113 |#1| |#2|) (-13 (-1052) (-10 -8 (-15 -3844 ($ |#1| |#2|)) (-15 -3843 (|#1| $)) (-15 -3842 (|#2| $)))) (-1052) (-1052)) (T -1113)) +((-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3843 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *2 *3)) (-4 *3 (-1052)))) (-3842 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -3844 ($ |#1| |#2|)) (-15 -3843 (|#1| $)) (-15 -3842 (|#2| $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-4089 (($ $ (-526)) NIL) (($ $ (-526) (-526)) 66)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) NIL)) (-4050 (((-1121 |#1| |#2| |#3|) $) 36)) (-4047 (((-3 (-1121 |#1| |#2| |#3|) "failed") $) 29)) (-4048 (((-1121 |#1| |#2| |#3|) $) 30)) (-3806 (($ $) 107 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 83 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 103 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 79 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) 111 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 87 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1121 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1123) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-526) #2#) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-3469 (((-1121 |#1| |#2| |#3|) $) 131) (((-1123) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-392 (-526)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-526) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-4049 (($ $) 34) (($ (-526) $) 35)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-1121 |#1| |#2| |#3|)) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-1121 |#1| |#2| |#3|))) (|:| |vec| (-1205 (-1121 |#1| |#2| |#3|)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) 48)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 65 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 67 (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) 25)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-845 (-526))) (|has| |#1| (-348)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-845 (-363))) (|has| |#1| (-348))))) (-4090 (((-526) $) NIL) (((-526) $ (-526)) 24)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 (((-1121 |#1| |#2| |#3|) $) 38 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 18) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) 72 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) (-1121 |#1| |#2| |#3|)) 33)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 70 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 71 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3427 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 145)) (-3780 (((-3 $ "failed") $ $) 49 (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 73 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-496 (-1123) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-278 (-1121 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-278 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1121 |#1| |#2| |#3|)) (-607 (-1121 |#1| |#2| |#3|))) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-294 (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) NIL) (($ $ $) 54 (|has| (-526) (-1063))) (($ $ (-1121 |#1| |#2| |#3|)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-271 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1202 |#2|)) 51) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 50 (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 (((-1121 |#1| |#2| |#3|) $) 41 (|has| |#1| (-348)))) (-4264 (((-526) $) 37)) (-3809 (($ $) 113 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 89 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 109 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 85 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 105 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 81 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-515) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-515))) (|has| |#1| (-348)))) (((-363) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-211) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-849 (-363)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 149) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1121 |#1| |#2| |#3|)) 27) (($ (-1202 |#2|)) 23) (($ (-1123)) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533)))) (($ (-392 (-526))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))) (|has| |#1| (-37 (-392 (-526))))))) (-3999 ((|#1| $ (-526)) 68)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-139)) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3428 (((-1121 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3812 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 95 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3810 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 91 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 99 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 101 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 97 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 93 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-2957 (($) 20 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2985 (((-111) $ $) NIL (-3850 (-12 (|has| (-1121 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1121 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 44 (|has| |#1| (-348))) (($ (-1121 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3|)) 45 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 21)) (** (($ $ (-878)) NIL) (($ $ (-735)) 53) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) 74 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 128 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1121 |#1| |#2| |#3|)) 43 (|has| |#1| (-348))) (($ (-1121 |#1| |#2| |#3|) $) 42 (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1114 |#1| |#2| |#3|) (-13 (-1169 |#1| (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1114)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1169 |#1| (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-3845 ((|#2| |#2| (-1044 |#2|)) 26) ((|#2| |#2| (-1123)) 28))) +(((-1115 |#1| |#2|) (-10 -7 (-15 -3845 (|#2| |#2| (-1123))) (-15 -3845 (|#2| |#2| (-1044 |#2|)))) (-13 (-533) (-811) (-995 (-526)) (-606 (-526))) (-13 (-406 |#1|) (-152) (-27) (-1145))) (T -1115)) +((-3845 (*1 *2 *2 *3) (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1115 *4 *2)))) (-3845 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145)))))) +(-10 -7 (-15 -3845 (|#2| |#2| (-1123))) (-15 -3845 (|#2| |#2| (-1044 |#2|)))) +((-3845 (((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))) 31) (((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|))) 44) (((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123)) 33) (((-392 (-905 |#1|)) (-905 |#1|) (-1123)) 36))) +(((-1116 |#1|) (-10 -7 (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1123))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|)))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))))) (-13 (-533) (-811) (-995 (-526)))) (T -1116)) +((-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 *3 (-299 *5))) (-5 *1 (-1116 *5)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1044 (-905 *5))) (-5 *3 (-905 *5)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 *3)) (-5 *1 (-1116 *5)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 (-392 (-905 *5)) (-299 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-392 (-905 *5))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 (-905 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-905 *5))))) +(-10 -7 (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1123))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1123))) (-15 -3845 ((-392 (-905 |#1|)) (-905 |#1|) (-1044 (-905 |#1|)))) (-15 -3845 ((-3 (-392 (-905 |#1|)) (-299 |#1|)) (-392 (-905 |#1|)) (-1044 (-392 (-905 |#1|)))))) +((-2865 (((-111) $ $) 137)) (-3502 (((-111) $) 28)) (-4085 (((-1205 |#1|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#1|)) NIL)) (-3386 (((-1117 $) $ (-1033)) 58) (((-1117 |#1|) $) 47)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) 132 (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) 126 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 71 (|has| |#1| (-869)))) (-4093 (($ $) NIL (|has| |#1| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 91 (|has| |#1| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-4079 (($ $ (-735)) 40)) (-4078 (($ $ (-735)) 41)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#1| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#1| $) NIL) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $ $) 128 (|has| |#1| (-163)))) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) 56)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) NIL) (((-653 |#1|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4077 (($ $ $) 104)) (-4072 (($ $ $) NIL (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-3817 (($ $) 133 (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) 45)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-3846 (((-823) $ (-823)) 117)) (-4090 (((-735) $ $) NIL (|has| |#1| (-533)))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) 49) (($ (-1117 $) (-1033)) 65)) (-4095 (($ $ (-735)) 32)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 63) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 121)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4084 (((-1117 |#1|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) 52)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) NIL (|has| |#1| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 39)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) 31)) (-1891 ((|#1| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 79 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-436))) (($ $ $) 135 (|has| |#1| (-436)))) (-4057 (($ $ (-735) |#1| $) 99)) (-3005 (((-390 (-1117 $)) (-1117 $)) 77 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 76 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 84 (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#1|) NIL) (($ $ (-607 (-1033)) (-607 |#1|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) NIL (|has| |#1| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#1| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) 35)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 138 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#1| (-163))) ((|#1| $) 124 (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4264 (((-735) $) 54) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 130 (|has| |#1| (-436))) (($ $ (-1033)) NIL (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#1| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#1| (-533)))) (-4274 (((-823) $) 118) (($ (-526)) NIL) (($ |#1|) 53) (($ (-1033)) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) 26 (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 15 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) 96)) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 139 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 66)) (** (($ $ (-878)) 14) (($ $ (-735)) 12)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 25) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1117 |#1|) (-13 (-1181 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))) (-15 -4057 ($ $ (-735) |#1| $)))) (-1004)) (T -1117)) +((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1117 *3)) (-4 *3 (-1004)))) (-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1117 *3)) (-4 *3 (-1004))))) +(-13 (-1181 |#1|) (-10 -8 (-15 -3846 ((-823) $ (-823))) (-15 -4057 ($ $ (-735) |#1| $)))) +((-4275 (((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)) 13))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -4275 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) (-1004) (-1004)) (T -1118)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-1118 *5 *6))))) +(-10 -7 (-15 -4275 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) +((-4286 (((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))) 51)) (-4051 (((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))) 52))) +(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|)))) (-15 -4286 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))))) (-757) (-811) (-436) (-909 |#3| |#1| |#2|)) (T -1119)) +((-4286 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) (-5 *3 (-1117 (-392 *7))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) (-5 *3 (-1117 (-392 *7)))))) +(-10 -7 (-15 -4051 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|)))) (-15 -4286 ((-390 (-1117 (-392 |#4|))) (-1117 (-392 |#4|))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1114 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1121 |#1| |#2| |#3|) #1#) $) 36)) (-3469 (((-1114 |#1| |#2| |#3|) $) NIL) (((-1121 |#1| |#2| |#3|) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4099 (((-392 (-526)) $) 55)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) (-1114 |#1| |#2| |#3|)) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 20) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 (((-1114 |#1| |#2| |#3|) $) 41)) (-4096 (((-3 (-1114 |#1| |#2| |#3|) "failed") $) NIL)) (-4097 (((-1114 |#1| |#2| |#3|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 39 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 40 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 38)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 58) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1114 |#1| |#2| |#3|)) 30) (($ (-1121 |#1| |#2| |#3|)) 31) (($ (-1202 |#2|)) 26) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 22 T CONST)) (-2964 (($) 16 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 24)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1120 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1114 |#1| |#2| |#3|)) (-995 (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1120)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1190 |#1| (-1114 |#1| |#2| |#3|)) (-995 (-1121 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 125)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 116)) (-4130 (((-1174 |#2| |#1|) $ (-735)) 63)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 79) (($ $ (-735) (-735)) 76)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 102)) (-3806 (($ $) 169 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 145 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 165 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 115) (($ (-1101 |#1|)) 110)) (-3808 (($ $) 173 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 149 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 23)) (-4135 (($ $) 26)) (-4133 (((-905 |#1|) $ (-735)) 75) (((-905 |#1|) $ (-735) (-735)) 77)) (-3192 (((-111) $) 120)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) 122) (((-735) $ (-735)) 124)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 13) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $) 129 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-4087 (($ $ (-735)) 15)) (-3780 (((-3 $ "failed") $ $) 24 (|has| |#1| (-533)))) (-4260 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 119) (($ $ $) 128 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $ (-1202 |#2|)) 29)) (-4264 (((-735) $) NIL)) (-3809 (($ $) 175 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 151 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 171 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 147 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 167 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 201) (($ (-526)) NIL) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 126 (|has| |#1| (-163))) (($ (-1174 |#2| |#1|)) 51) (($ (-1202 |#2|)) 32)) (-4136 (((-1101 |#1|) $) 98)) (-3999 ((|#1| $ (-735)) 118)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 54)) (-3812 (($ $) 181 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 157 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 177 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 153 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 185 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 161 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 187 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 163 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 183 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 159 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 179 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 155 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 17 T CONST)) (-2964 (($) 19 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 194)) (-4158 (($ $ $) 31)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#1|) 198 (|has| |#1| (-348))) (($ $ $) 134 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 137 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1121 |#1| |#2| |#3|) (-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1121)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-1121 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1121 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-4274 (((-823) $) 27) (($ (-1123)) 29)) (-3850 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 40)) (-3847 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 33) (($ $) 34)) (-3854 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 35)) (-3852 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 37)) (-3853 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 36)) (-3851 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 38)) (-3849 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $))) 39))) +(((-1122) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -3854 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3853 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3852 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3851 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3850 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3849 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ $))))) (T -1122)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1122)))) (-3854 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3853 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3852 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3851 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3850 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3849 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3847 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) (-5 *1 (-1122)))) (-3847 (*1 *1 *1) (-5 *1 (-1122)))) +(-13 (-583 (-823)) (-10 -8 (-15 -4274 ($ (-1123))) (-15 -3854 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3853 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3852 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3851 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3850 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3849 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)) (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) (|:| CF (-299 (-159 (-363)))) (|:| |switch| $)))) (-15 -3847 ($ $)))) +((-2865 (((-111) $ $) NIL)) (-3859 (($ $ (-607 (-823))) 59)) (-3860 (($ $ (-607 (-823))) 57)) (-3857 (((-1106) $) 84)) (-3862 (((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $) 87)) (-3863 (((-111) $) 22)) (-3861 (($ $ (-607 (-607 (-823)))) 56) (($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) 82)) (-3855 (($) 124 T CONST)) (-3865 (((-1211)) 106)) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 66) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 73)) (-3936 (($) 95) (($ $) 101)) (-3864 (($ $) 83)) (-3637 (($ $ $) NIL)) (-3638 (($ $ $) NIL)) (-3856 (((-607 $) $) 107)) (-3554 (((-1106) $) 90)) (-3555 (((-1070) $) NIL)) (-4118 (($ $ (-607 (-823))) 58)) (-4287 (((-515) $) 46) (((-1123) $) 47) (((-849 (-526)) $) 77) (((-849 (-363)) $) 75)) (-4274 (((-823) $) 53) (($ (-1106)) 48)) (-3858 (($ $ (-607 (-823))) 60)) (-2803 (((-1106) $) 33) (((-1106) $ (-111)) 34) (((-1211) (-787) $) 35) (((-1211) (-787) $ (-111)) 36)) (-2863 (((-111) $ $) NIL)) (-2864 (((-111) $ $) NIL)) (-3353 (((-111) $ $) 49)) (-2984 (((-111) $ $) NIL)) (-2985 (((-111) $ $) 50))) +(((-1123) (-13 (-811) (-584 (-515)) (-785) (-584 (-1123)) (-584 (-849 (-526))) (-584 (-849 (-363))) (-845 (-526)) (-845 (-363)) (-10 -8 (-15 -3936 ($)) (-15 -3936 ($ $)) (-15 -3865 ((-1211))) (-15 -4274 ($ (-1106))) (-15 -3864 ($ $)) (-15 -3863 ((-111) $)) (-15 -3862 ((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $)) (-15 -3861 ($ $ (-607 (-607 (-823))))) (-15 -3861 ($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))))) (-15 -3860 ($ $ (-607 (-823)))) (-15 -3859 ($ $ (-607 (-823)))) (-15 -3858 ($ $ (-607 (-823)))) (-15 -4118 ($ $ (-607 (-823)))) (-15 -3857 ((-1106) $)) (-15 -3856 ((-607 $) $)) (-15 -3855 ($) -4268)))) (T -1123)) +((-3936 (*1 *1) (-5 *1 (-1123))) (-3936 (*1 *1 *1) (-5 *1 (-1123))) (-3865 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1123)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) (-3864 (*1 *1 *1) (-5 *1 (-1123))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1123)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) (-5 *1 (-1123)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-1123)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823))))) (-5 *1 (-1123)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3859 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1123)))) (-3855 (*1 *1) (-5 *1 (-1123)))) +(-13 (-811) (-584 (-515)) (-785) (-584 (-1123)) (-584 (-849 (-526))) (-584 (-849 (-363))) (-845 (-526)) (-845 (-363)) (-10 -8 (-15 -3936 ($)) (-15 -3936 ($ $)) (-15 -3865 ((-1211))) (-15 -4274 ($ (-1106))) (-15 -3864 ($ $)) (-15 -3863 ((-111) $)) (-15 -3862 ((-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))) $)) (-15 -3861 ($ $ (-607 (-607 (-823))))) (-15 -3861 ($ $ (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) (|:| |args| (-607 (-823)))))) (-15 -3860 ($ $ (-607 (-823)))) (-15 -3859 ($ $ (-607 (-823)))) (-15 -3858 ($ $ (-607 (-823)))) (-15 -4118 ($ $ (-607 (-823)))) (-15 -3857 ((-1106) $)) (-15 -3856 ((-607 $) $)) (-15 -3855 ($) -4268))) +((-3866 (((-1205 |#1|) |#1| (-878)) 16) (((-1205 |#1|) (-607 |#1|)) 20))) +(((-1124 |#1|) (-10 -7 (-15 -3866 ((-1205 |#1|) (-607 |#1|))) (-15 -3866 ((-1205 |#1|) |#1| (-878)))) (-1004)) (T -1124)) +((-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-1205 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1004)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)) (-5 *1 (-1124 *4))))) +(-10 -7 (-15 -3866 ((-1205 |#1|) (-607 |#1|))) (-15 -3866 ((-1205 |#1|) |#1| (-878)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| |#1| (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| |#1| (-995 (-392 (-526))))) (((-3 |#1| #1#) $) NIL)) (-3469 (((-526) $) NIL (|has| |#1| (-995 (-526)))) (((-392 (-526)) $) NIL (|has| |#1| (-995 (-392 (-526))))) ((|#1| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-3817 (($ $) NIL (|has| |#1| (-436)))) (-1697 (($ $ |#1| (-930) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-930)) NIL)) (-3120 (((-930) $) NIL)) (-1698 (($ (-1 (-930) (-930)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#1| $) NIL)) (-4057 (($ $ (-930) |#1| $) NIL (-12 (|has| (-930) (-129)) (|has| |#1| (-533))))) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-533)))) (-4264 (((-930) $) NIL)) (-3117 ((|#1| $) NIL (|has| |#1| (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) NIL) (($ (-392 (-526))) NIL (-3850 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-995 (-392 (-526))))))) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ (-930)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#1| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-2957 (($) 9 T CONST)) (-2964 (($) 14 T CONST)) (-3353 (((-111) $ $) 16)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 19)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1125 |#1|) (-13 (-311 |#1| (-930)) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| (-930) (-129)) (-15 -4057 ($ $ (-930) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004)) (T -1125)) +((-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-930)) (-4 *2 (-129)) (-5 *1 (-1125 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) +(-13 (-311 |#1| #1=(-930)) (-10 -8 (IF (|has| |#1| (-533)) (IF (|has| #1# (-129)) (-15 -4057 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) +((-3867 (((-1127) (-1123) $) 25)) (-3877 (($) 29)) (-3869 (((-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) (-1123) $) 22)) (-3871 (((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)) $) 41) (((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) 42) (((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) 43)) (-3879 (((-1211) (-1123)) 58)) (-3870 (((-1211) (-1123) $) 55) (((-1211) (-1123)) 56) (((-1211)) 57)) (-3875 (((-1211) (-1123)) 37)) (-3873 (((-1123)) 36)) (-3887 (($) 34)) (-3886 (((-421) (-1123) (-421) (-1123) $) 45) (((-421) (-607 (-1123)) (-421) (-1123) $) 49) (((-421) (-1123) (-421)) 46) (((-421) (-1123) (-421) (-1123)) 50)) (-3874 (((-1123)) 35)) (-4274 (((-823) $) 28)) (-3876 (((-1211)) 30) (((-1211) (-1123)) 33)) (-3868 (((-607 (-1123)) (-1123) $) 24)) (-3872 (((-1211) (-1123) (-607 (-1123)) $) 38) (((-1211) (-1123) (-607 (-1123))) 39) (((-1211) (-607 (-1123))) 40))) +(((-1126) (-13 (-583 (-823)) (-10 -8 (-15 -3877 ($)) (-15 -3876 ((-1211))) (-15 -3876 ((-1211) (-1123))) (-15 -3886 ((-421) (-1123) (-421) (-1123) $)) (-15 -3886 ((-421) (-607 (-1123)) (-421) (-1123) $)) (-15 -3886 ((-421) (-1123) (-421))) (-15 -3886 ((-421) (-1123) (-421) (-1123))) (-15 -3875 ((-1211) (-1123))) (-15 -3874 ((-1123))) (-15 -3873 ((-1123))) (-15 -3872 ((-1211) (-1123) (-607 (-1123)) $)) (-15 -3872 ((-1211) (-1123) (-607 (-1123)))) (-15 -3872 ((-1211) (-607 (-1123)))) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3871 ((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3870 ((-1211) (-1123) $)) (-15 -3870 ((-1211) (-1123))) (-15 -3870 ((-1211))) (-15 -3879 ((-1211) (-1123))) (-15 -3887 ($)) (-15 -3869 ((-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-1123) $)) (-15 -3868 ((-607 (-1123)) (-1123) $)) (-15 -3867 ((-1127) (-1123) $))))) (T -1126)) +((-3877 (*1 *1) (-5 *1 (-1126))) (-3876 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *4 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3886 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3874 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126)))) (-3873 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3870 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) (-3887 (*1 *1) (-5 *1 (-1126))) (-3869 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *1 (-1126)))) (-3868 (*1 *2 *3 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1126)) (-5 *3 (-1123)))) (-3867 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1127)) (-5 *1 (-1126))))) +(-13 (-583 (-823)) (-10 -8 (-15 -3877 ($)) (-15 -3876 ((-1211))) (-15 -3876 ((-1211) (-1123))) (-15 -3886 ((-421) (-1123) (-421) (-1123) $)) (-15 -3886 ((-421) (-607 (-1123)) (-421) (-1123) $)) (-15 -3886 ((-421) (-1123) (-421))) (-15 -3886 ((-421) (-1123) (-421) (-1123))) (-15 -3875 ((-1211) (-1123))) (-15 -3874 ((-1123))) (-15 -3873 ((-1123))) (-15 -3872 ((-1211) (-1123) (-607 (-1123)) $)) (-15 -3872 ((-1211) (-1123) (-607 (-1123)))) (-15 -3872 ((-1211) (-607 (-1123)))) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1="void")) $)) (-15 -3871 ((-1211) (-1123) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3871 ((-1211) (-3 (|:| |fst| (-419)) (|:| -4229 #1#)))) (-15 -3870 ((-1211) (-1123) $)) (-15 -3870 ((-1211) (-1123))) (-15 -3870 ((-1211))) (-15 -3879 ((-1211) (-1123))) (-15 -3887 ($)) (-15 -3869 ((-3 (|:| |fst| (-419)) (|:| -4229 #1#)) (-1123) $)) (-15 -3868 ((-607 (-1123)) (-1123) $)) (-15 -3867 ((-1127) (-1123) $)))) +((-3881 (((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $) 59)) (-3883 (((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $) 43)) (-3878 (($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) 17)) (-3879 (((-1211) $) 67)) (-3884 (((-607 (-1123)) $) 22)) (-3880 (((-1054) $) 55)) (-3885 (((-421) (-1123) $) 27)) (-3882 (((-607 (-1123)) $) 30)) (-3887 (($) 19)) (-3886 (((-421) (-607 (-1123)) (-421) $) 25) (((-421) (-1123) (-421) $) 24)) (-4274 (((-823) $) 9) (((-1132 (-1123) (-421)) $) 13))) +(((-1127) (-13 (-583 (-823)) (-10 -8 (-15 -4274 ((-1132 (-1123) (-421)) $)) (-15 -3887 ($)) (-15 -3886 ((-421) (-607 (-1123)) (-421) $)) (-15 -3886 ((-421) (-1123) (-421) $)) (-15 -3885 ((-421) (-1123) $)) (-15 -3884 ((-607 (-1123)) $)) (-15 -3883 ((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $)) (-15 -3882 ((-607 (-1123)) $)) (-15 -3881 ((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $)) (-15 -3880 ((-1054) $)) (-15 -3879 ((-1211) $)) (-15 -3878 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))))))) (T -1127)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-1132 (-1123) (-421))) (-5 *1 (-1127)))) (-3887 (*1 *1) (-5 *1 (-1127))) (-3886 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *1 (-1127)))) (-3886 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1127)))) (-3885 (*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-421)) (-5 *1 (-1127)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-419)) (-5 *2 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) (-5 *1 (-1127)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))))) (-5 *1 (-1127)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1127)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1127)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) (-5 *1 (-1127))))) +(-13 (-583 (-823)) (-10 -8 (-15 -4274 ((-1132 (-1123) (-421)) $)) (-15 -3887 ($)) (-15 -3886 ((-421) (-607 (-1123)) (-421) $)) (-15 -3886 ((-421) (-1123) (-421) $)) (-15 -3885 ((-421) (-1123) $)) (-15 -3884 ((-607 (-1123)) $)) (-15 -3883 ((-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))) (-419) $)) (-15 -3882 ((-607 (-1123)) $)) (-15 -3881 ((-607 (-607 (-3 (|:| -3864 (-1123)) (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) $)) (-15 -3880 ((-1054) $)) (-15 -3879 ((-1211) $)) (-15 -3878 ($ (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421)))))))) +((-2865 (((-111) $ $) NIL)) (-3892 (((-111) $) 42)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3891 (((-3 (-526) (-211) (-1123) (-1106) $) $) 50)) (-3890 (((-607 $) $) 55)) (-4287 (((-1054) $) 24) (($ (-1054)) 25)) (-3889 (((-111) $) 52)) (-4274 (((-823) $) NIL) (($ (-526)) 26) (((-526) $) 28) (($ (-211)) 29) (((-211) $) 31) (($ (-1123)) 32) (((-1123) $) 34) (($ (-1106)) 35) (((-1106) $) 37)) (-3888 (((-111) $ (|[\|\|]| (-526))) 11) (((-111) $ (|[\|\|]| (-211))) 15) (((-111) $ (|[\|\|]| (-1123))) 23) (((-111) $ (|[\|\|]| (-1106))) 19)) (-3893 (($ (-1123) (-607 $)) 39) (($ $ (-607 $)) 40)) (-3894 (((-526) $) 27) (((-211) $) 30) (((-1123) $) 33) (((-1106) $) 36)) (-3353 (((-111) $ $) 7))) +(((-1128) (-13 (-1201) (-1052) (-10 -8 (-15 -4287 ((-1054) $)) (-15 -4287 ($ (-1054))) (-15 -4274 ($ (-526))) (-15 -4274 ((-526) $)) (-15 -3894 ((-526) $)) (-15 -4274 ($ (-211))) (-15 -4274 ((-211) $)) (-15 -3894 ((-211) $)) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -3894 ((-1123) $)) (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -3894 ((-1106) $)) (-15 -3893 ($ (-1123) (-607 $))) (-15 -3893 ($ $ (-607 $))) (-15 -3892 ((-111) $)) (-15 -3891 ((-3 (-526) (-211) (-1123) (-1106) $) $)) (-15 -3890 ((-607 $) $)) (-15 -3889 ((-111) $)) (-15 -3888 ((-111) $ (|[\|\|]| (-526)))) (-15 -3888 ((-111) $ (|[\|\|]| (-211)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1123)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1106))))))) (T -1128)) +((-4287 (*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-1128))) (-5 *1 (-1128)))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-3 (-526) (-211) (-1123) (-1106) (-1128))) (-5 *1 (-1128)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-211))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-111)) (-5 *1 (-1128)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-111)) (-5 *1 (-1128))))) +(-13 (-1201) (-1052) (-10 -8 (-15 -4287 ((-1054) $)) (-15 -4287 ($ (-1054))) (-15 -4274 ($ (-526))) (-15 -4274 ((-526) $)) (-15 -3894 ((-526) $)) (-15 -4274 ($ (-211))) (-15 -4274 ((-211) $)) (-15 -3894 ((-211) $)) (-15 -4274 ($ (-1123))) (-15 -4274 ((-1123) $)) (-15 -3894 ((-1123) $)) (-15 -4274 ($ (-1106))) (-15 -4274 ((-1106) $)) (-15 -3894 ((-1106) $)) (-15 -3893 ($ (-1123) (-607 $))) (-15 -3893 ($ $ (-607 $))) (-15 -3892 ((-111) $)) (-15 -3891 ((-3 (-526) (-211) (-1123) (-1106) $) $)) (-15 -3890 ((-607 $) $)) (-15 -3889 ((-111) $)) (-15 -3888 ((-111) $ (|[\|\|]| (-526)))) (-15 -3888 ((-111) $ (|[\|\|]| (-211)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1123)))) (-15 -3888 ((-111) $ (|[\|\|]| (-1106)))))) +((-3896 (((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 57)) (-3895 (((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|)))) 69) (((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|))) 65) (((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123)) 70) (((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123)) 64) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|))))) 93) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|)))) 92) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123))) 94) (((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123))) 91))) +(((-1129 |#1|) (-10 -7 (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))))) (-15 -3896 ((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))))) (-533)) (T -1129)) +((-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-905 *5)))) (-5 *1 (-1129 *5)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) (-5 *3 (-278 (-392 (-905 *4)))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) (-5 *3 (-392 (-905 *4))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) (-5 *1 (-1129 *5)) (-5 *3 (-278 (-392 (-905 *5)))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) (-5 *1 (-1129 *5)) (-5 *3 (-392 (-905 *5))))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)) (-5 *3 (-607 (-278 (-392 (-905 *4))))))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)) (-5 *3 (-607 (-278 (-392 (-905 *5))))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5))))) +(-10 -7 (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))) (-607 (-1123)))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-392 (-905 |#1|))))) (-15 -3895 ((-607 (-607 (-278 (-392 (-905 |#1|))))) (-607 (-278 (-392 (-905 |#1|)))))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))) (-1123))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-392 (-905 |#1|)))) (-15 -3895 ((-607 (-278 (-392 (-905 |#1|)))) (-278 (-392 (-905 |#1|))))) (-15 -3896 ((-607 (-607 (-905 |#1|))) (-607 (-392 (-905 |#1|))) (-607 (-1123))))) +((-3897 (((-1106)) 7)) (-3899 (((-1106)) 9)) (-3900 (((-1211) (-1106)) 11)) (-3898 (((-1106)) 8))) +(((-1130) (-10 -7 (-15 -3897 ((-1106))) (-15 -3898 ((-1106))) (-15 -3899 ((-1106))) (-15 -3900 ((-1211) (-1106))))) (T -1130)) +((-3900 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1130)))) (-3899 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130)))) (-3898 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130)))) (-3897 (*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) +(-10 -7 (-15 -3897 ((-1106))) (-15 -3898 ((-1106))) (-15 -3899 ((-1106))) (-15 -3900 ((-1211) (-1106)))) +((-3904 (((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|)))) 38)) (-3907 (((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|))) 24)) (-3908 (((-1133 (-607 |#1|)) (-607 |#1|)) 34)) (-3910 (((-607 (-607 |#1|)) (-607 |#1|)) 30)) (-3913 (((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))) 37)) (-3912 (((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|)))) 36)) (-3909 (((-607 (-607 |#1|)) (-607 (-607 |#1|))) 28)) (-3911 (((-607 |#1|) (-607 |#1|)) 31)) (-3903 (((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|)))) 18)) (-3902 (((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|)))) 16)) (-3901 (((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|))) 14)) (-3905 (((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|)))) 39)) (-3906 (((-607 (-607 |#1|)) (-1133 (-607 |#1|))) 41))) +(((-1131 |#1|) (-10 -7 (-15 -3901 ((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|)))) (-15 -3902 ((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3903 ((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3904 ((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3905 ((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3906 ((-607 (-607 |#1|)) (-1133 (-607 |#1|)))) (-15 -3907 ((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)))) (-15 -3908 ((-1133 (-607 |#1|)) (-607 |#1|))) (-15 -3909 ((-607 (-607 |#1|)) (-607 (-607 |#1|)))) (-15 -3910 ((-607 (-607 |#1|)) (-607 |#1|))) (-15 -3911 ((-607 |#1|) (-607 |#1|))) (-15 -3912 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))))) (-15 -3913 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))))) (-811)) (T -1131)) +((-3913 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-2 (|:| |f1| (-607 *4)) (|:| |f2| (-607 (-607 (-607 *4)))) (|:| |f3| (-607 (-607 *4))) (|:| |f4| (-607 (-607 (-607 *4)))))) (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 (-607 *4)))))) (-3912 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-811)) (-5 *3 (-607 *6)) (-5 *5 (-607 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-607 *5)) (|:| |f3| *5) (|:| |f4| (-607 *5)))) (-5 *1 (-1131 *6)) (-5 *4 (-607 *5)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-1131 *3)))) (-3910 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) (-5 *3 (-607 *4)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-811)) (-5 *1 (-1131 *3)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-1133 (-607 *4))) (-5 *1 (-1131 *4)) (-5 *3 (-607 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 (-607 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 *4))))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1133 (-607 *4))) (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) (-4 *4 (-811)))) (-3904 (*1 *2 *2 *3) (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-4 *4 (-811)) (-5 *1 (-1131 *4)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *1 (-1131 *4)))) (-3902 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-607 *5)) (-4 *5 (-811)) (-5 *1 (-1131 *5)))) (-3901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-811)) (-5 *4 (-607 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-607 *4)))) (-5 *1 (-1131 *6)) (-5 *5 (-607 *4))))) +(-10 -7 (-15 -3901 ((-2 (|:| |fs| (-111)) (|:| |sd| (-607 |#1|)) (|:| |td| (-607 (-607 |#1|)))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 |#1|)))) (-15 -3902 ((-607 (-607 (-607 |#1|))) (-1 (-111) |#1| |#1|) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3903 ((-607 (-607 (-607 |#1|))) (-607 |#1|) (-607 (-607 (-607 |#1|))))) (-15 -3904 ((-607 (-607 |#1|)) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3905 ((-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))))) (-15 -3906 ((-607 (-607 |#1|)) (-1133 (-607 |#1|)))) (-15 -3907 ((-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)))) (-15 -3908 ((-1133 (-607 |#1|)) (-607 |#1|))) (-15 -3909 ((-607 (-607 |#1|)) (-607 (-607 |#1|)))) (-15 -3910 ((-607 (-607 |#1|)) (-607 |#1|))) (-15 -3911 ((-607 |#1|) (-607 |#1|))) (-15 -3912 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 |#1|) (-607 (-607 (-607 |#1|))) (-607 (-607 |#1|)) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))) (-607 (-607 (-607 |#1|))))) (-15 -3913 ((-2 (|:| |f1| (-607 |#1|)) (|:| |f2| (-607 (-607 (-607 |#1|)))) (|:| |f3| (-607 (-607 |#1|))) (|:| |f4| (-607 (-607 (-607 |#1|))))) (-607 (-607 (-607 |#1|)))))) +((-2865 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-3919 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2276 (((-1211) $ |#1| |#1|) NIL (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3855 (($) NIL T CONST)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) NIL)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) NIL)) (-2278 ((|#1| $) NIL (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-607 |#2|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2279 ((|#1| $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-2713 (((-607 |#1|) $) NIL)) (-2286 (((-111) |#1| $) NIL)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2281 (((-607 |#1|) $) NIL)) (-2282 (((-111) |#1| $) NIL)) (-3555 (((-1070) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4119 ((|#2| $) NIL (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL)) (-2277 (($ $ |#2|) NIL (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1499 (($) NIL) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) NIL (-12 (|has| $ (-6 -4310)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (((-735) |#2| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052)))) (((-735) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-4274 (((-823) $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) NIL)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) NIL (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) NIL (-3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1132 |#1| |#2|) (-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) (-1052) (-1052)) (T -1132)) +NIL +(-13 (-1136 |#1| |#2|) (-10 -7 (-6 -4310))) +((-3914 (($ (-607 (-607 |#1|))) 10)) (-3915 (((-607 (-607 |#1|)) $) 11)) (-4274 (((-823) $) 26))) +(((-1133 |#1|) (-10 -8 (-15 -3914 ($ (-607 (-607 |#1|)))) (-15 -3915 ((-607 (-607 |#1|)) $)) (-15 -4274 ((-823) $))) (-1052)) (T -1133)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-1133 *3))))) +(-10 -8 (-15 -3914 ($ (-607 (-607 |#1|)))) (-15 -3915 ((-607 (-607 |#1|)) $)) (-15 -4274 ((-823) $))) +((-3916 ((|#1| (-607 |#1|)) 32)) (-3918 ((|#1| |#1| (-526)) 18)) (-3917 (((-1117 |#1|) |#1| (-878)) 15))) +(((-1134 |#1|) (-10 -7 (-15 -3916 (|#1| (-607 |#1|))) (-15 -3917 ((-1117 |#1|) |#1| (-878))) (-15 -3918 (|#1| |#1| (-526)))) (-348)) (T -1134)) +((-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-1134 *2)) (-4 *2 (-348)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *4 (-878)) (-5 *2 (-1117 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-348)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) +(-10 -7 (-15 -3916 (|#1| (-607 |#1|))) (-15 -3917 ((-1117 |#1|) |#1| (-878))) (-15 -3918 (|#1| |#1| (-526)))) +((-3919 (($) 10) (($ (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)))) 14)) (-3724 (($ (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2044 (((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 39) (((-607 |#3|) $) 41)) (-2048 (($ (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4275 (($ (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1306 (((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 54)) (-3929 (($ (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 16)) (-2281 (((-607 |#2|) $) 19)) (-2282 (((-111) |#2| $) 59)) (-1376 (((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) 58)) (-1307 (((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) 63)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-2283 (((-607 |#3|) $) 43)) (-4118 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) $) NIL) (((-735) |#3| $) NIL) (((-735) (-1 (-111) |#3|) $) 68)) (-4274 (((-823) $) 27)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-3353 (((-111) $ $) 49))) +(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3919 (|#1| (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))))) (-15 -3919 (|#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#3|) |#1|)) (-15 -2044 ((-607 |#3|) |#1|)) (-15 -2045 ((-735) |#3| |#1|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -2282 ((-111) |#2| |#1|)) (-15 -2281 ((-607 |#2|) |#1|)) (-15 -3724 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3724 (|#1| (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -3724 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1376 ((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -1306 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -3929 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1307 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2045 ((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2044 ((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2045 ((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2046 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2047 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2048 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -4275 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|))) (-1136 |#2| |#3|) (-1052) (-1052)) (T -1135)) +NIL +(-10 -8 (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4275 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3919 (|#1| (-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))))) (-15 -3919 (|#1|)) (-15 -4275 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2048 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2047 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2046 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2045 ((-735) (-1 (-111) |#3|) |#1|)) (-15 -2044 ((-607 |#3|) |#1|)) (-15 -2045 ((-735) |#3| |#1|)) (-15 -4118 (|#3| |#1| |#2| |#3|)) (-15 -4118 (|#3| |#1| |#2|)) (-15 -2283 ((-607 |#3|) |#1|)) (-15 -2282 ((-111) |#2| |#1|)) (-15 -2281 ((-607 |#2|) |#1|)) (-15 -3724 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3724 (|#1| (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -3724 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1376 ((-3 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) "failed") (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -1306 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -3929 (|#1| (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -1307 ((-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2045 ((-735) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) |#1|)) (-15 -2044 ((-607 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2045 ((-735) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2046 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2047 ((-111) (-1 (-111) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -2048 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|)) (-15 -4275 (|#1| (-1 (-2 (|:| -4179 |#2|) (|:| -2164 |#3|)) (-2 (|:| -4179 |#2|) (|:| -2164 |#3|))) |#1|))) +((-2865 (((-111) $ $) 19 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-3919 (($) 72) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 71)) (-2276 (((-1211) $ |#1| |#1|) 99 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#2| $ |#1| |#2|) 73)) (-1607 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 45 (|has| $ (-6 -4310)))) (-4032 (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 55 (|has| $ (-6 -4310)))) (-2285 (((-3 |#2| #1="failed") |#1| $) 61)) (-3855 (($) 7 T CONST)) (-1375 (($ $) 58 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310))))) (-3724 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 47 (|has| $ (-6 -4310))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 46 (|has| $ (-6 -4310))) (((-3 |#2| #1#) |#1| $) 62)) (-3725 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 54 (|has| $ (-6 -4310)))) (-4161 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 56 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 53 (|has| $ (-6 -4310))) (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 52 (|has| $ (-6 -4310)))) (-1613 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4311)))) (-3410 ((|#2| $ |#1|) 88)) (-2044 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 30 (|has| $ (-6 -4310))) (((-607 |#2|) $) 79 (|has| $ (-6 -4310)))) (-4041 (((-111) $ (-735)) 9)) (-2278 ((|#1| $) 96 (|has| |#1| (-811)))) (-2480 (((-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 29 (|has| $ (-6 -4310))) (((-607 |#2|) $) 80 (|has| $ (-6 -4310)))) (-3557 (((-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310))))) (-2279 ((|#1| $) 95 (|has| |#1| (-811)))) (-2048 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 34 (|has| $ (-6 -4311))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4311)))) (-4275 (($ (-1 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4038 (((-111) $ (-735)) 10)) (-3554 (((-1106) $) 22 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-2713 (((-607 |#1|) $) 63)) (-2286 (((-111) |#1| $) 64)) (-1306 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 39)) (-3929 (($ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 40)) (-2281 (((-607 |#1|) $) 93)) (-2282 (((-111) |#1| $) 92)) (-3555 (((-1070) $) 21 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4119 ((|#2| $) 97 (|has| |#1| (-811)))) (-1376 (((-3 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) "failed") (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 51)) (-2277 (($ $ |#2|) 98 (|has| $ (-6 -4311)))) (-1307 (((-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 41)) (-2046 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 32 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))))) 26 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-278 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 25 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) 24 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 23 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)))) (($ $ (-607 |#2|) (-607 |#2|)) 86 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052)))) (($ $ (-607 (-278 |#2|))) 83 (-12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4310)) (|has| |#2| (-1052))))) (-2283 (((-607 |#2|) $) 91)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1499 (($) 49) (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 48)) (-2045 (((-735) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 31 (|has| $ (-6 -4310))) (((-735) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| $ (-6 -4310)))) (((-735) |#2| $) 81 (-12 (|has| |#2| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4310)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 59 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))))) (-3844 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 50)) (-4274 (((-823) $) 18 (-3850 (|has| |#2| (-583 (-823))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823)))))) (-1308 (($ (-607 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) 42)) (-2047 (((-111) (-1 (-111) (-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) $) 33 (|has| $ (-6 -4310))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (-3850 (|has| |#2| (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1136 |#1| |#2|) (-134) (-1052) (-1052)) (T -1136)) +((-4106 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) (-3919 (*1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-607 (-2 (|:| -4179 *3) (|:| -2164 *4)))) (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *1 (-1136 *3 *4)))) (-4275 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(-13 (-580 |t#1| |t#2|) (-574 |t#1| |t#2|) (-10 -8 (-15 -4106 (|t#2| $ |t#1| |t#2|)) (-15 -3919 ($)) (-15 -3919 ($ (-607 (-2 (|:| -4179 |t#1|) (|:| -2164 |t#2|))))) (-15 -4275 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-105 #1=(-2 (|:| -4179 |#1|) (|:| -2164 |#2|))) . T) ((-100) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))) ((-583 (-823)) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-583 (-823))) (|has| |#2| (-1052)) (|has| |#2| (-583 (-823)))) ((-145 #1#) . T) ((-584 (-515)) |has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-584 (-515))) ((-215 #1#) . T) ((-221 #1#) . T) ((-271 |#1| |#2|) . T) ((-273 |#1| |#2|) . T) ((-294 #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-294 |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-472 #1#) . T) ((-472 |#2|) . T) ((-574 |#1| |#2|) . T) ((-496 #1# #1#) -12 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-294 (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)))) (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052))) ((-496 |#2| |#2|) -12 (|has| |#2| (-294 |#2|)) (|has| |#2| (-1052))) ((-580 |#1| |#2|) . T) ((-1052) -3850 (|has| (-2 (|:| -4179 |#1|) (|:| -2164 |#2|)) (-1052)) (|has| |#2| (-1052))) ((-1159) . T)) +((-3925 (((-111)) 24)) (-3922 (((-1211) (-1106)) 26)) (-3926 (((-111)) 36)) (-3923 (((-1211)) 34)) (-3921 (((-1211) (-1106) (-1106)) 25)) (-3927 (((-111)) 37)) (-3929 (((-1211) |#1| |#2|) 44)) (-3920 (((-1211)) 20)) (-3928 (((-3 |#2| "failed") |#1|) 42)) (-3924 (((-1211)) 35))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -3920 ((-1211))) (-15 -3921 ((-1211) (-1106) (-1106))) (-15 -3922 ((-1211) (-1106))) (-15 -3923 ((-1211))) (-15 -3924 ((-1211))) (-15 -3925 ((-111))) (-15 -3926 ((-111))) (-15 -3927 ((-111))) (-15 -3928 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-1211) |#1| |#2|))) (-1052) (-1052)) (T -1137)) +((-3929 (*1 *2 *3 *4) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3928 (*1 *2 *3) (|partial| -12 (-4 *2 (-1052)) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1052)))) (-3927 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3926 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3925 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3924 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3923 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)))) (-3921 (*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)))) (-3920 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(-10 -7 (-15 -3920 ((-1211))) (-15 -3921 ((-1211) (-1106) (-1106))) (-15 -3922 ((-1211) (-1106))) (-15 -3923 ((-1211))) (-15 -3924 ((-1211))) (-15 -3925 ((-111))) (-15 -3926 ((-111))) (-15 -3927 ((-111))) (-15 -3928 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-1211) |#1| |#2|))) +((-3931 (((-1106) (-1106)) 18)) (-3930 (((-50) (-1106)) 21))) +(((-1138) (-10 -7 (-15 -3930 ((-50) (-1106))) (-15 -3931 ((-1106) (-1106))))) (T -1138)) +((-3931 (*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1138)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-1138))))) +(-10 -7 (-15 -3930 ((-50) (-1106))) (-15 -3931 ((-1106) (-1106)))) +((-2865 (((-111) $ $) NIL)) (-3937 (((-607 (-1106)) $) 34)) (-3933 (((-607 (-1106)) $ (-607 (-1106))) 37)) (-3932 (((-607 (-1106)) $ (-607 (-1106))) 36)) (-3934 (((-607 (-1106)) $ (-607 (-1106))) 38)) (-3935 (((-607 (-1106)) $) 33)) (-3936 (($) 22)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3938 (((-607 (-1106)) $) 35)) (-3939 (((-1211) $ (-526)) 29) (((-1211) $) 30)) (-4287 (($ (-823) (-526)) 26) (($ (-823) (-526) (-823)) NIL)) (-4274 (((-823) $) 40) (($ (-823)) 24)) (-3353 (((-111) $ $) NIL))) +(((-1139) (-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -4287 ($ (-823) (-526) (-823))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -3937 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3933 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106))))))) (T -1139)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1139)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) (-4287 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) (-3939 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1139)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1139)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3936 (*1 *1) (-5 *1 (-1139))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3934 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3933 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139)))) (-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(-13 (-1052) (-10 -8 (-15 -4274 ($ (-823))) (-15 -4287 ($ (-823) (-526))) (-15 -4287 ($ (-823) (-526) (-823))) (-15 -3939 ((-1211) $ (-526))) (-15 -3939 ((-1211) $)) (-15 -3938 ((-607 (-1106)) $)) (-15 -3937 ((-607 (-1106)) $)) (-15 -3936 ($)) (-15 -3935 ((-607 (-1106)) $)) (-15 -3934 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3933 ((-607 (-1106)) $ (-607 (-1106)))) (-15 -3932 ((-607 (-1106)) $ (-607 (-1106)))))) +((-4274 (((-1139) |#1|) 11))) +(((-1140 |#1|) (-10 -7 (-15 -4274 ((-1139) |#1|))) (-1052)) (T -1140)) +((-4274 (*1 *2 *3) (-12 (-5 *2 (-1139)) (-5 *1 (-1140 *3)) (-4 *3 (-1052))))) +(-10 -7 (-15 -4274 ((-1139) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3944 (((-1106) $ (-1106)) 17) (((-1106) $) 16)) (-1789 (((-1106) $ (-1106)) 15)) (-1793 (($ $ (-1106)) NIL)) (-3942 (((-3 (-1106) "failed") $) 11)) (-3943 (((-1106) $) 8)) (-3941 (((-3 (-1106) "failed") $) 12)) (-1790 (((-1106) $) 9)) (-1794 (($ (-373)) NIL) (($ (-373) (-1106)) NIL)) (-3864 (((-373) $) NIL)) (-3554 (((-1106) $) NIL)) (-1791 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-3940 (((-111) $) 18)) (-4274 (((-823) $) NIL)) (-1792 (($ $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-1141) (-13 (-350 (-373) (-1106)) (-10 -8 (-15 -3944 ((-1106) $ (-1106))) (-15 -3944 ((-1106) $)) (-15 -3943 ((-1106) $)) (-15 -3942 ((-3 (-1106) "failed") $)) (-15 -3941 ((-3 (-1106) "failed") $)) (-15 -3940 ((-111) $))))) (T -1141)) +((-3944 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3942 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3941 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1141))))) +(-13 (-350 (-373) (-1106)) (-10 -8 (-15 -3944 ((-1106) $ (-1106))) (-15 -3944 ((-1106) $)) (-15 -3943 ((-1106) $)) (-15 -3942 ((-3 (-1106) "failed") $)) (-15 -3941 ((-3 (-1106) "failed") $)) (-15 -3940 ((-111) $)))) +((-3945 (((-3 (-526) "failed") |#1|) 19)) (-3946 (((-3 (-526) "failed") |#1|) 14)) (-3947 (((-526) (-1106)) 28))) +(((-1142 |#1|) (-10 -7 (-15 -3945 ((-3 (-526) "failed") |#1|)) (-15 -3946 ((-3 (-526) "failed") |#1|)) (-15 -3947 ((-526) (-1106)))) (-1004)) (T -1142)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-1142 *4)) (-4 *4 (-1004)))) (-3946 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004)))) (-3945 (*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) +(-10 -7 (-15 -3945 ((-3 (-526) "failed") |#1|)) (-15 -3946 ((-3 (-526) "failed") |#1|)) (-15 -3947 ((-526) (-1106)))) +((-3948 (((-1083 (-211))) 9))) +(((-1143) (-10 -7 (-15 -3948 ((-1083 (-211)))))) (T -1143)) +((-3948 (*1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1143))))) +(-10 -7 (-15 -3948 ((-1083 (-211))))) +((-3949 (($) 11)) (-3812 (($ $) 35)) (-3810 (($ $) 33)) (-3798 (($ $) 25)) (-3814 (($ $) 17)) (-3815 (($ $) 15)) (-3813 (($ $) 19)) (-3801 (($ $) 30)) (-3811 (($ $) 34)) (-3799 (($ $) 29))) +(((-1144 |#1|) (-10 -8 (-15 -3949 (|#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3799 (|#1| |#1|))) (-1145)) (T -1144)) +NIL +(-10 -8 (-15 -3949 (|#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3799 (|#1| |#1|))) +((-3806 (($ $) 26)) (-3961 (($ $) 11)) (-3804 (($ $) 27)) (-3960 (($ $) 10)) (-3808 (($ $) 28)) (-3959 (($ $) 9)) (-3949 (($) 16)) (-4259 (($ $) 19)) (-4260 (($ $) 18)) (-3809 (($ $) 29)) (-3958 (($ $) 8)) (-3807 (($ $) 30)) (-3957 (($ $) 7)) (-3805 (($ $) 31)) (-3956 (($ $) 6)) (-3812 (($ $) 20)) (-3800 (($ $) 32)) (-3810 (($ $) 21)) (-3798 (($ $) 33)) (-3814 (($ $) 22)) (-3802 (($ $) 34)) (-3815 (($ $) 23)) (-3803 (($ $) 35)) (-3813 (($ $) 24)) (-3801 (($ $) 36)) (-3811 (($ $) 25)) (-3799 (($ $) 37)) (** (($ $ $) 17))) +(((-1145) (-134)) (T -1145)) +((-3949 (*1 *1) (-4 *1 (-1145)))) +(-13 (-1148) (-93) (-475) (-34) (-269) (-10 -8 (-15 -3949 ($)))) +(((-34) . T) ((-93) . T) ((-269) . T) ((-475) . T) ((-1148) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-3721 ((|#1| $) 17)) (-3954 (($ |#1| (-607 $)) 23) (($ (-607 |#1|)) 27) (($ |#1|) 25)) (-1244 (((-111) $ (-735)) 48)) (-3325 ((|#1| $ |#1|) 14 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 13 (|has| $ (-6 -4311)))) (-3855 (($) NIL T CONST)) (-2044 (((-607 |#1|) $) 52 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 43)) (-3327 (((-111) $ $) 33 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 41)) (-2480 (((-607 |#1|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2048 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 22)) (-4038 (((-111) $ (-735)) 40)) (-3330 (((-607 |#1|) $) 37)) (-3841 (((-111) $) 36)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-2046 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 74)) (-3722 (((-111) $) 9)) (-3887 (($) 10)) (-4118 ((|#1| $ #1#) NIL)) (-3329 (((-526) $ $) 32)) (-3950 (((-607 $) $) 59)) (-3951 (((-111) $ $) 77)) (-3952 (((-607 $) $) 72)) (-3953 (($ $) 73)) (-3955 (((-111) $) 56)) (-2045 (((-735) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4310))) (((-735) |#1| $) 16 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3719 (($ $) 58)) (-4274 (((-823) $) 61 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 12)) (-3328 (((-111) $ $) 29 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 28 (|has| |#1| (-1052)))) (-4273 (((-735) $) 39 (|has| $ (-6 -4310))))) +(((-1146 |#1|) (-13 (-968 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -3954 ($ |#1| (-607 $))) (-15 -3954 ($ (-607 |#1|))) (-15 -3954 ($ |#1|)) (-15 -3955 ((-111) $)) (-15 -3953 ($ $)) (-15 -3952 ((-607 $) $)) (-15 -3951 ((-111) $ $)) (-15 -3950 ((-607 $) $)))) (-1052)) (T -1146)) +((-3955 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3954 (*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1146 *2))) (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-1146 *3)))) (-3954 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3951 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) +(-13 (-968 |#1|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -3954 ($ |#1| (-607 $))) (-15 -3954 ($ (-607 |#1|))) (-15 -3954 ($ |#1|)) (-15 -3955 ((-111) $)) (-15 -3953 ($ $)) (-15 -3952 ((-607 $) $)) (-15 -3951 ((-111) $ $)) (-15 -3950 ((-607 $) $)))) +((-3961 (($ $) 15)) (-3959 (($ $) 12)) (-3958 (($ $) 10)) (-3957 (($ $) 17))) +(((-1147 |#1|) (-10 -8 (-15 -3957 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3961 (|#1| |#1|))) (-1148)) (T -1147)) +NIL +(-10 -8 (-15 -3957 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3961 (|#1| |#1|))) +((-3961 (($ $) 11)) (-3960 (($ $) 10)) (-3959 (($ $) 9)) (-3958 (($ $) 8)) (-3957 (($ $) 7)) (-3956 (($ $) 6))) +(((-1148) (-134)) (T -1148)) +((-3961 (*1 *1 *1) (-4 *1 (-1148))) (-3960 (*1 *1 *1) (-4 *1 (-1148))) (-3959 (*1 *1 *1) (-4 *1 (-1148))) (-3958 (*1 *1 *1) (-4 *1 (-1148))) (-3957 (*1 *1 *1) (-4 *1 (-1148))) (-3956 (*1 *1 *1) (-4 *1 (-1148)))) +(-13 (-10 -8 (-15 -3956 ($ $)) (-15 -3957 ($ $)) (-15 -3958 ($ $)) (-15 -3959 ($ $)) (-15 -3960 ($ $)) (-15 -3961 ($ $)))) +((-3964 ((|#2| |#2|) 88)) (-3967 (((-111) |#2|) 26)) (-3965 ((|#2| |#2|) 30)) (-3966 ((|#2| |#2|) 32)) (-3962 ((|#2| |#2| (-1123)) 83) ((|#2| |#2|) 84)) (-3968 (((-159 |#2|) |#2|) 28)) (-3963 ((|#2| |#2| (-1123)) 85) ((|#2| |#2|) 86))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3964 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3968 ((-159 |#2|) |#2|))) (-13 (-436) (-811) (-995 (-526)) (-606 (-526))) (-13 (-27) (-1145) (-406 |#1|))) (T -1149)) +((-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-159 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3963 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) (-3962 (*1 *2 *2 *3) (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) +(-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3962 (|#2| |#2| (-1123))) (-15 -3963 (|#2| |#2|)) (-15 -3963 (|#2| |#2| (-1123))) (-15 -3964 (|#2| |#2|)) (-15 -3965 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3967 ((-111) |#2|)) (-15 -3968 ((-159 |#2|) |#2|))) +((-3969 ((|#4| |#4| |#1|) 27)) (-3970 ((|#4| |#4| |#1|) 28))) +(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -3970 (|#4| |#4| |#1|))) (-533) (-357 |#1|) (-357 |#1|) (-650 |#1| |#2| |#3|)) (T -1150)) +((-3970 (*1 *2 *2 *3) (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) (-3969 (*1 *2 *2 *3) (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -3970 (|#4| |#4| |#1|))) +((-3988 ((|#2| |#2|) 133)) (-3990 ((|#2| |#2|) 130)) (-3987 ((|#2| |#2|) 121)) (-3989 ((|#2| |#2|) 118)) (-3986 ((|#2| |#2|) 126)) (-3985 ((|#2| |#2|) 114)) (-3974 ((|#2| |#2|) 43)) (-3973 ((|#2| |#2|) 94)) (-3971 ((|#2| |#2|) 74)) (-3984 ((|#2| |#2|) 128)) (-3983 ((|#2| |#2|) 116)) (-3996 ((|#2| |#2|) 138)) (-3994 ((|#2| |#2|) 136)) (-3995 ((|#2| |#2|) 137)) (-3993 ((|#2| |#2|) 135)) (-3972 ((|#2| |#2|) 148)) (-3997 ((|#2| |#2|) 30 (-12 (|has| |#2| (-584 (-849 |#1|))) (|has| |#2| (-845 |#1|)) (|has| |#1| (-584 (-849 |#1|))) (|has| |#1| (-845 |#1|))))) (-3975 ((|#2| |#2|) 75)) (-3976 ((|#2| |#2|) 139)) (-4280 ((|#2| |#2|) 140)) (-3982 ((|#2| |#2|) 127)) (-3981 ((|#2| |#2|) 115)) (-3980 ((|#2| |#2|) 134)) (-3992 ((|#2| |#2|) 132)) (-3979 ((|#2| |#2|) 122)) (-3991 ((|#2| |#2|) 120)) (-3978 ((|#2| |#2|) 124)) (-3977 ((|#2| |#2|) 112))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -4280 (|#2| |#2|)) (-15 -3971 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (IF (|has| |#1| (-845 |#1|)) (IF (|has| |#1| (-584 (-849 |#1|))) (IF (|has| |#2| (-584 (-849 |#1|))) (IF (|has| |#2| (-845 |#1|)) (-15 -3997 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-811) (-436)) (-13 (-406 |#1|) (-1145))) (T -1151)) +((-3997 (*1 *2 *2) (-12 (-4 *3 (-584 (-849 *3))) (-4 *3 (-845 *3)) (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-584 (-849 *3))) (-4 *2 (-845 *3)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-3971 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145))))) (-4280 (*1 *2 *2) (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-406 *3) (-1145)))))) +(-10 -7 (-15 -4280 (|#2| |#2|)) (-15 -3971 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (IF (|has| |#1| (-845 |#1|)) (IF (|has| |#1| (-584 (-849 |#1|))) (IF (|has| |#2| (-584 (-849 |#1|))) (IF (|has| |#2| (-845 |#1|)) (-15 -3997 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1123)) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4133 (((-905 |#1|) $ (-735)) 17) (((-905 |#1|) $ (-735) (-735)) NIL)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $ (-1123)) NIL) (((-735) $ (-1123) (-735)) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4254 (((-111) $) NIL)) (-3193 (($ $ (-607 (-1123)) (-607 (-512 (-1123)))) NIL) (($ $ (-1123) (-512 (-1123))) NIL) (($ |#1| (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4131 (($ $ (-1123)) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123) |#1|) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3998 (($ (-1 $) (-1123) |#1|) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4087 (($ $ (-735)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (($ $ (-1123) $) NIL) (($ $ (-607 (-1123)) (-607 $)) NIL) (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL)) (-4129 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-4264 (((-512 (-1123)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-533))) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-1123)) NIL) (($ (-905 |#1|)) NIL)) (-3999 ((|#1| $ (-512 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (((-905 |#1|) $ (-735)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) NIL T CONST)) (-2964 (($) NIL T CONST)) (-2969 (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1152 |#1|) (-13 (-705 |#1| (-1123)) (-10 -8 (-15 -3999 ((-905 |#1|) $ (-735))) (-15 -4274 ($ (-1123))) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ (-1123) |#1|)) (-15 -3998 ($ (-1 $) (-1123) |#1|))) |%noBranch|))) (-1004)) (T -1152)) +((-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-905 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1004)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-1152 *3)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)))) (-3998 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1152 *4))) (-5 *3 (-1123)) (-5 *1 (-1152 *4)) (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) +(-13 (-705 |#1| (-1123)) (-10 -8 (-15 -3999 ((-905 |#1|) $ (-735))) (-15 -4274 ($ (-1123))) (-15 -4274 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $ (-1123) |#1|)) (-15 -3998 ($ (-1 $) (-1123) |#1|))) |%noBranch|))) +((-4015 (((-111) |#5| $) 60) (((-111) $) 102)) (-4010 ((|#5| |#5| $) 75)) (-4032 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4011 (((-607 |#5|) (-607 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-3470 (((-3 $ "failed") (-607 |#5|)) 126)) (-4117 (((-3 $ "failed") $) 112)) (-4007 ((|#5| |#5| $) 94)) (-4016 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-4005 ((|#5| |#5| $) 98)) (-4161 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-4018 (((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) $) 55)) (-4017 (((-111) |#5| $) 58) (((-111) $) 103)) (-3493 ((|#4| $) 108)) (-4116 (((-3 |#5| "failed") $) 110)) (-4019 (((-607 |#5|) $) 49)) (-4013 (((-111) |#5| $) 67) (((-111) $) 107)) (-4008 ((|#5| |#5| $) 81)) (-4021 (((-111) $ $) 27)) (-4014 (((-111) |#5| $) 63) (((-111) $) 105)) (-4009 ((|#5| |#5| $) 78)) (-4119 (((-3 |#5| "failed") $) 109)) (-4087 (($ $ |#5|) 127)) (-4264 (((-735) $) 52)) (-3844 (($ (-607 |#5|)) 124)) (-3210 (($ $ |#4|) 122)) (-3212 (($ $ |#4|) 121)) (-4006 (($ $) 120)) (-4274 (((-823) $) NIL) (((-607 |#5|) $) 113)) (-4000 (((-735) $) 130)) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-4012 (((-111) $ (-1 (-111) |#5| (-607 |#5|))) 100)) (-4002 (((-607 |#4|) $) 115)) (-4250 (((-111) |#4| $) 118)) (-3353 (((-111) $ $) 19))) +(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4000 ((-735) |#1|)) (-15 -4087 (|#1| |#1| |#5|)) (-15 -4032 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4250 ((-111) |#4| |#1|)) (-15 -4002 ((-607 |#4|) |#1|)) (-15 -4117 ((-3 |#1| "failed") |#1|)) (-15 -4116 ((-3 |#5| "failed") |#1|)) (-15 -4119 ((-3 |#5| "failed") |#1|)) (-15 -4005 (|#5| |#5| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#5| |#5| |#1|)) (-15 -4008 (|#5| |#5| |#1|)) (-15 -4009 (|#5| |#5| |#1|)) (-15 -4010 (|#5| |#5| |#1|)) (-15 -4011 ((-607 |#5|) (-607 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4161 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4013 ((-111) |#1|)) (-15 -4014 ((-111) |#1|)) (-15 -4015 ((-111) |#1|)) (-15 -4012 ((-111) |#1| (-1 (-111) |#5| (-607 |#5|)))) (-15 -4013 ((-111) |#5| |#1|)) (-15 -4014 ((-111) |#5| |#1|)) (-15 -4015 ((-111) |#5| |#1|)) (-15 -4016 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -4017 ((-111) |#1|)) (-15 -4017 ((-111) |#5| |#1|)) (-15 -4018 ((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) |#1|)) (-15 -4264 ((-735) |#1|)) (-15 -4019 ((-607 |#5|) |#1|)) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3493 (|#4| |#1|)) (-15 -3470 ((-3 |#1| "failed") (-607 |#5|))) (-15 -4274 ((-607 |#5|) |#1|)) (-15 -3844 (|#1| (-607 |#5|))) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4032 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) (-1154 |#2| |#3| |#4| |#5|) (-533) (-757) (-811) (-1018 |#2| |#3| |#4|)) (T -1153)) +NIL +(-10 -8 (-15 -4000 ((-735) |#1|)) (-15 -4087 (|#1| |#1| |#5|)) (-15 -4032 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4250 ((-111) |#4| |#1|)) (-15 -4002 ((-607 |#4|) |#1|)) (-15 -4117 ((-3 |#1| "failed") |#1|)) (-15 -4116 ((-3 |#5| "failed") |#1|)) (-15 -4119 ((-3 |#5| "failed") |#1|)) (-15 -4005 (|#5| |#5| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#5| |#5| |#1|)) (-15 -4008 (|#5| |#5| |#1|)) (-15 -4009 (|#5| |#5| |#1|)) (-15 -4010 (|#5| |#5| |#1|)) (-15 -4011 ((-607 |#5|) (-607 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4161 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4013 ((-111) |#1|)) (-15 -4014 ((-111) |#1|)) (-15 -4015 ((-111) |#1|)) (-15 -4012 ((-111) |#1| (-1 (-111) |#5| (-607 |#5|)))) (-15 -4013 ((-111) |#5| |#1|)) (-15 -4014 ((-111) |#5| |#1|)) (-15 -4015 ((-111) |#5| |#1|)) (-15 -4016 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -4017 ((-111) |#1|)) (-15 -4017 ((-111) |#5| |#1|)) (-15 -4018 ((-2 (|:| -4180 (-607 |#5|)) (|:| -1794 (-607 |#5|))) |#1|)) (-15 -4264 ((-735) |#1|)) (-15 -4019 ((-607 |#5|) |#1|)) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -4020 ((-3 (-2 (|:| |bas| |#1|) (|:| -3643 (-607 |#5|))) "failed") (-607 |#5|) (-1 (-111) |#5| |#5|))) (-15 -4021 ((-111) |#1| |#1|)) (-15 -3210 (|#1| |#1| |#4|)) (-15 -3212 (|#1| |#1| |#4|)) (-15 -3493 (|#4| |#1|)) (-15 -3470 ((-3 |#1| "failed") (-607 |#5|))) (-15 -4274 ((-607 |#5|) |#1|)) (-15 -3844 (|#1| (-607 |#5|))) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4032 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -4161 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4274 ((-823) |#1|)) (-15 -3353 ((-111) |#1| |#1|))) +((-2865 (((-111) $ $) 7)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) 85)) (-4004 (((-607 $) (-607 |#4|)) 86)) (-3384 (((-607 |#3|) $) 33)) (-3208 (((-111) $) 26)) (-3199 (((-111) $) 17 (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) 101) (((-111) $) 97)) (-4010 ((|#4| |#4| $) 92)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 27)) (-1244 (((-111) $ (-735)) 44)) (-4032 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4310))) (((-3 |#4| "failed") $ |#3|) 79)) (-3855 (($) 45 T CONST)) (-3204 (((-111) $) 22 (|has| |#1| (-533)))) (-3206 (((-111) $ $) 24 (|has| |#1| (-533)))) (-3205 (((-111) $ $) 23 (|has| |#1| (-533)))) (-3207 (((-111) $) 25 (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3200 (((-607 |#4|) (-607 |#4|) $) 18 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) 19 (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) 36)) (-3469 (($ (-607 |#4|)) 35)) (-4117 (((-3 $ "failed") $) 82)) (-4007 ((|#4| |#4| $) 89)) (-1375 (($ $) 68 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#4| $) 67 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-4005 ((|#4| |#4| $) 87)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) 105)) (-2044 (((-607 |#4|) $) 52 (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) 104) (((-111) $) 103)) (-3493 ((|#3| $) 34)) (-4041 (((-111) $ (-735)) 43)) (-2480 (((-607 |#4|) $) 53 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) 47)) (-3214 (((-607 |#3|) $) 32)) (-3213 (((-111) |#3| $) 31)) (-4038 (((-111) $ (-735)) 42)) (-3554 (((-1106) $) 9)) (-4116 (((-3 |#4| "failed") $) 83)) (-4019 (((-607 |#4|) $) 107)) (-4013 (((-111) |#4| $) 99) (((-111) $) 95)) (-4008 ((|#4| |#4| $) 90)) (-4021 (((-111) $ $) 110)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) 100) (((-111) $) 96)) (-4009 ((|#4| |#4| $) 91)) (-3555 (((-1070) $) 10)) (-4119 (((-3 |#4| "failed") $) 84)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-4001 (((-3 $ "failed") $ |#4|) 78)) (-4087 (($ $ |#4|) 77)) (-2046 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) 59 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) 56 (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) 38)) (-3722 (((-111) $) 41)) (-3887 (($) 40)) (-4264 (((-735) $) 106)) (-2045 (((-735) |#4| $) 54 (-12 (|has| |#4| (-1052)) (|has| $ (-6 -4310)))) (((-735) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4310)))) (-3719 (($ $) 39)) (-4287 (((-515) $) 69 (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) 60)) (-3210 (($ $ |#3|) 28)) (-3212 (($ $ |#3|) 30)) (-4006 (($ $) 88)) (-3211 (($ $ |#3|) 29)) (-4274 (((-823) $) 11) (((-607 |#4|) $) 37)) (-4000 (((-735) $) 76 (|has| |#3| (-353)))) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) "failed") (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) 98)) (-2047 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) 81)) (-4250 (((-111) |#3| $) 80)) (-3353 (((-111) $ $) 6)) (-4273 (((-735) $) 46 (|has| $ (-6 -4310))))) +(((-1154 |#1| |#2| |#3| |#4|) (-134) (-533) (-757) (-811) (-1018 |t#1| |t#2| |t#3|)) (T -1154)) +((-4021 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4020 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *8)))) (-5 *3 (-607 *8)) (-4 *1 (-1154 *5 *6 *7 *8)))) (-4020 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *9)))) (-5 *3 (-607 *9)) (-4 *1 (-1154 *6 *7 *8 *9)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *6)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-735)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-2 (|:| -4180 (-607 *6)) (|:| -1794 (-607 *6)))))) (-4017 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4016 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1154 *5 *6 *7 *3)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111)))) (-4015 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4014 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4013 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-607 *7))) (-4 *1 (-1154 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) (-4161 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1154 *5 *6 *7 *2)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *2 (-1018 *5 *6 *7)))) (-4011 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1154 *5 *6 *7 *8)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)))) (-4010 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4009 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4008 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4007 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4006 (*1 *1 *1) (-12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) (-4005 (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1154 *4 *5 *6 *7)))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-607 (-2 (|:| -4180 *1) (|:| -1794 (-607 *7))))) (-5 *3 (-607 *7)) (-4 *1 (-1154 *4 *5 *6 *7)))) (-4119 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4116 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4117 (*1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) (-4250 (*1 *2 *3 *1) (-12 (-4 *1 (-1154 *4 *5 *3 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) (-4032 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1154 *4 *5 *3 *2)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *2 (-1018 *4 *5 *3)))) (-4001 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *5 (-353)) (-5 *2 (-735))))) +(-13 (-935 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4310) (-6 -4311) (-15 -4021 ((-111) $ $)) (-15 -4020 ((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |t#4|))) "failed") (-607 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4020 ((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |t#4|))) "failed") (-607 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4019 ((-607 |t#4|) $)) (-15 -4264 ((-735) $)) (-15 -4018 ((-2 (|:| -4180 (-607 |t#4|)) (|:| -1794 (-607 |t#4|))) $)) (-15 -4017 ((-111) |t#4| $)) (-15 -4017 ((-111) $)) (-15 -4016 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -4015 ((-111) |t#4| $)) (-15 -4014 ((-111) |t#4| $)) (-15 -4013 ((-111) |t#4| $)) (-15 -4012 ((-111) $ (-1 (-111) |t#4| (-607 |t#4|)))) (-15 -4015 ((-111) $)) (-15 -4014 ((-111) $)) (-15 -4013 ((-111) $)) (-15 -4161 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4011 ((-607 |t#4|) (-607 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4010 (|t#4| |t#4| $)) (-15 -4009 (|t#4| |t#4| $)) (-15 -4008 (|t#4| |t#4| $)) (-15 -4007 (|t#4| |t#4| $)) (-15 -4006 ($ $)) (-15 -4005 (|t#4| |t#4| $)) (-15 -4004 ((-607 $) (-607 |t#4|))) (-15 -4003 ((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |t#4|)))) (-607 |t#4|))) (-15 -4119 ((-3 |t#4| "failed") $)) (-15 -4116 ((-3 |t#4| "failed") $)) (-15 -4117 ((-3 $ "failed") $)) (-15 -4002 ((-607 |t#3|) $)) (-15 -4250 ((-111) |t#3| $)) (-15 -4032 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4001 ((-3 $ "failed") $ |t#4|)) (-15 -4087 ($ $ |t#4|)) (IF (|has| |t#3| (-353)) (-15 -4000 ((-735) $)) |%noBranch|))) +(((-33) . T) ((-100) . T) ((-583 (-607 |#4|)) . T) ((-583 (-823)) . T) ((-145 |#4|) . T) ((-584 (-515)) |has| |#4| (-584 (-515))) ((-294 |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-472 |#4|) . T) ((-496 |#4| |#4|) -12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))) ((-935 |#1| |#2| |#3| |#4|) . T) ((-1052) . T) ((-1159) . T)) +((-4027 (($ |#1| (-607 (-607 (-902 (-211)))) (-111)) 19)) (-4026 (((-111) $ (-111)) 18)) (-4025 (((-111) $) 17)) (-4023 (((-607 (-607 (-902 (-211)))) $) 13)) (-4022 ((|#1| $) 8)) (-4024 (((-111) $) 15))) +(((-1155 |#1|) (-10 -8 (-15 -4022 (|#1| $)) (-15 -4023 ((-607 (-607 (-902 (-211)))) $)) (-15 -4024 ((-111) $)) (-15 -4025 ((-111) $)) (-15 -4026 ((-111) $ (-111))) (-15 -4027 ($ |#1| (-607 (-607 (-902 (-211)))) (-111)))) (-933)) (T -1155)) +((-4027 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-111)) (-5 *1 (-1155 *2)) (-4 *2 (-933)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-1155 *3)) (-4 *3 (-933)))) (-4022 (*1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-933))))) +(-10 -8 (-15 -4022 (|#1| $)) (-15 -4023 ((-607 (-607 (-902 (-211)))) $)) (-15 -4024 ((-111) $)) (-15 -4025 ((-111) $)) (-15 -4026 ((-111) $ (-111))) (-15 -4027 ($ |#1| (-607 (-607 (-902 (-211)))) (-111)))) +((-4029 (((-902 (-211)) (-902 (-211))) 25)) (-4028 (((-902 (-211)) (-211) (-211) (-211) (-211)) 10)) (-4031 (((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211)))) 37)) (-4155 (((-211) (-902 (-211)) (-902 (-211))) 21)) (-4153 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 22)) (-4030 (((-607 (-607 (-211))) (-526)) 31)) (-4156 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 20)) (-4158 (((-902 (-211)) (-902 (-211)) (-902 (-211))) 19)) (* (((-902 (-211)) (-211) (-902 (-211))) 18))) +(((-1156) (-10 -7 (-15 -4028 ((-902 (-211)) (-211) (-211) (-211) (-211))) (-15 * ((-902 (-211)) (-211) (-902 (-211)))) (-15 -4158 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4156 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4155 ((-211) (-902 (-211)) (-902 (-211)))) (-15 -4153 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4029 ((-902 (-211)) (-902 (-211)))) (-15 -4030 ((-607 (-607 (-211))) (-526))) (-15 -4031 ((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211))))))) (T -1156)) +((-4031 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-607 (-607 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 (-902 *4))) (-5 *1 (-1156)) (-5 *3 (-902 *4)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-1156)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4153 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4155 (*1 *2 *3 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-211)) (-5 *1 (-1156)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (-4158 (*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-902 (-211))) (-5 *3 (-211)) (-5 *1 (-1156)))) (-4028 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)) (-5 *3 (-211))))) +(-10 -7 (-15 -4028 ((-902 (-211)) (-211) (-211) (-211) (-211))) (-15 * ((-902 (-211)) (-211) (-902 (-211)))) (-15 -4158 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4156 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4155 ((-211) (-902 (-211)) (-902 (-211)))) (-15 -4153 ((-902 (-211)) (-902 (-211)) (-902 (-211)))) (-15 -4029 ((-902 (-211)) (-902 (-211)))) (-15 -4030 ((-607 (-607 (-211))) (-526))) (-15 -4031 ((-607 (-902 (-211))) (-902 (-211)) (-902 (-211)) (-902 (-211)) (-211) (-607 (-607 (-211)))))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4032 ((|#1| $ (-735)) 13)) (-4152 (((-735) $) 12)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4274 (((-917 |#1|) $) 10) (($ (-917 |#1|)) 9) (((-823) $) 23 (|has| |#1| (-583 (-823))))) (-3353 (((-111) $ $) 16 (|has| |#1| (-1052))))) +(((-1157 |#1|) (-13 (-583 (-917 |#1|)) (-10 -8 (-15 -4274 ($ (-917 |#1|))) (-15 -4032 (|#1| $ (-735))) (-15 -4152 ((-735) $)) (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) (-1159)) (T -1157)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1159)) (-5 *1 (-1157 *3)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-1157 *2)) (-4 *2 (-1159)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1157 *3)) (-4 *3 (-1159))))) +(-13 (-583 (-917 |#1|)) (-10 -8 (-15 -4274 ($ (-917 |#1|))) (-15 -4032 (|#1| $ (-735))) (-15 -4152 ((-735) $)) (IF (|has| |#1| (-583 (-823))) (-6 (-583 (-823))) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|))) +((-4035 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)) 80)) (-4033 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|))) 74)) (-4034 (((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|))) 59))) +(((-1158 |#1|) (-10 -7 (-15 -4033 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4034 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4035 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)))) (-335)) (T -1158)) +((-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-526)) (-4 *5 (-335)) (-5 *2 (-390 (-1117 (-1117 *5)))) (-5 *1 (-1158 *5)) (-5 *3 (-1117 (-1117 *5))))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) (-5 *3 (-1117 (-1117 *4))))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) (-5 *3 (-1117 (-1117 *4)))))) +(-10 -7 (-15 -4033 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4034 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)))) (-15 -4035 ((-390 (-1117 (-1117 |#1|))) (-1117 (-1117 |#1|)) (-526)))) +NIL +(((-1159) (-134)) (T -1159)) +NIL +(-13 (-10 -7 (-6 -2337))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) NIL) (((-1128) $) NIL) (($ (-1128)) 8)) (-3353 (((-111) $ $) NIL))) +(((-1160) (-13 (-1035) (-10 -8 (-15 -4274 ($ (-1128)))))) (T -1160)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-1160))))) +(-13 (-1035) (-10 -8 (-15 -4274 ($ (-1128))))) +((-4039 (((-111)) 15)) (-4036 (((-1211) (-607 |#1|) (-607 |#1|)) 19) (((-1211) (-607 |#1|)) 20)) (-4041 (((-111) |#1| |#1|) 32 (|has| |#1| (-811)))) (-4038 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-4040 ((|#1| (-607 |#1|)) 33 (|has| |#1| (-811))) ((|#1| (-607 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-4037 (((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|)))) 17))) +(((-1161 |#1|) (-10 -7 (-15 -4036 ((-1211) (-607 |#1|))) (-15 -4036 ((-1211) (-607 |#1|) (-607 |#1|))) (-15 -4037 ((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|))))) (-15 -4038 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4038 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4040 (|#1| (-607 |#1|) (-1 (-111) |#1| |#1|))) (-15 -4039 ((-111))) (IF (|has| |#1| (-811)) (PROGN (-15 -4040 (|#1| (-607 |#1|))) (-15 -4041 ((-111) |#1| |#1|))) |%noBranch|)) (-1052)) (T -1161)) +((-4041 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-811)) (-4 *3 (-1052)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-1161 *2)))) (-4039 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1161 *2)) (-4 *2 (-1052)))) (-4038 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1052)) (-5 *2 (-111)) (-5 *1 (-1161 *3)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4037 (*1 *2) (-12 (-5 *2 (-2 (|:| -3542 (-607 *3)) (|:| -3541 (-607 *3)))) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) (-4036 (*1 *2 *3 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4))))) +(-10 -7 (-15 -4036 ((-1211) (-607 |#1|))) (-15 -4036 ((-1211) (-607 |#1|) (-607 |#1|))) (-15 -4037 ((-2 (|:| -3542 (-607 |#1|)) (|:| -3541 (-607 |#1|))))) (-15 -4038 ((-3 (-111) "failed") |#1| |#1|)) (-15 -4038 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -4040 (|#1| (-607 |#1|) (-1 (-111) |#1| |#1|))) (-15 -4039 ((-111))) (IF (|has| |#1| (-811)) (PROGN (-15 -4040 (|#1| (-607 |#1|))) (-15 -4041 ((-111) |#1| |#1|))) |%noBranch|)) +((-4042 (((-1211) (-607 (-1123)) (-607 (-1123))) 13) (((-1211) (-607 (-1123))) 11)) (-4044 (((-1211)) 14)) (-4043 (((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) 18))) +(((-1162) (-10 -7 (-15 -4042 ((-1211) (-607 (-1123)))) (-15 -4042 ((-1211) (-607 (-1123)) (-607 (-1123)))) (-15 -4043 ((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123)))))) (-15 -4044 ((-1211))))) (T -1162)) +((-4044 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1162)))) (-4043 (*1 *2) (-12 (-5 *2 (-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) (-5 *1 (-1162)))) (-4042 (*1 *2 *3 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162))))) +(-10 -7 (-15 -4042 ((-1211) (-607 (-1123)))) (-15 -4042 ((-1211) (-607 (-1123)) (-607 (-1123)))) (-15 -4043 ((-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123)))))) (-15 -4044 ((-1211)))) +((-4093 (($ $) 17)) (-4045 (((-111) $) 24))) +(((-1163 |#1|) (-10 -8 (-15 -4093 (|#1| |#1|)) (-15 -4045 ((-111) |#1|))) (-1164)) (T -1163)) +NIL +(-10 -8 (-15 -4093 (|#1| |#1|)) (-15 -4045 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 49)) (-4286 (((-390 $) $) 50)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-4045 (((-111) $) 51)) (-2471 (((-111) $) 30)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 48)) (-3780 (((-3 $ "failed") $ $) 40)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41)) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24))) +(((-1164) (-134)) (T -1164)) +((-4045 (*1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-111)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) (-4093 (*1 *1 *1) (-4 *1 (-1164))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164))))) +(-13 (-436) (-10 -8 (-15 -4045 ((-111) $)) (-15 -4286 ((-390 $) $)) (-15 -4093 ($ $)) (-15 -4051 ((-390 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-583 (-823)) . T) ((-163) . T) ((-275) . T) ((-436) . T) ((-533) . T) ((-613 $) . T) ((-682 $) . T) ((-691) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3426 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 10)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2151 (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-2149 (((-111) $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-4089 (($ $ (-526)) NIL) (($ $ (-526) (-526)) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) NIL)) (-4050 (((-1195 |#1| |#2| |#3|) $) NIL)) (-4047 (((-3 (-1195 |#1| |#2| |#3|) "failed") $) NIL)) (-4048 (((-1195 |#1| |#2| |#3|) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1195 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1123) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-526) #2#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-3469 (((-1195 |#1| |#2| |#3|) $) NIL) (((-1123) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (((-392 (-526)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348)))) (((-526) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))))) (-4049 (($ $) NIL) (($ (-526) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-1195 |#1| |#2| |#3|)) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1205 (-1195 |#1| |#2| |#3|)))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) NIL)) (-4046 (((-392 (-905 |#1|)) $ (-526)) NIL (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) NIL (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-845 (-526))) (|has| |#1| (-348)))) (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-845 (-363))) (|has| |#1| (-348))))) (-4090 (((-526) $) NIL) (((-526) $ (-526)) NIL)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 (((-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) NIL)) (-4134 (($ (-1 |#1| (-526)) $) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 17) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3638 (($ $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) (-1195 |#1| |#2| |#3|)) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 25 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 26 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-292)) (|has| |#1| (-348))))) (-3427 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-496 (-1123) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-278 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-278 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348)))) (($ $ (-607 (-1195 |#1| |#2| |#3|)) (-607 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-294 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) NIL) (($ $ $) NIL (|has| (-526) (-1063))) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-271 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-1202 |#2|)) 24) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 23 (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 (((-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348)))) (-4264 (((-526) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-515) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-515))) (|has| |#1| (-348)))) (((-363) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-211) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-977)) (|has| |#1| (-348)))) (((-849 (-363)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1195 |#1| |#2| |#3|)) NIL) (($ (-1202 |#2|)) 22) (($ (-1123)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-1123))) (|has| |#1| (-348)))) (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533)))) (($ (-392 (-526))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-995 (-526))) (|has| |#1| (-348))) (|has| |#1| (-37 (-392 (-526))))))) (-3999 ((|#1| $ (-526)) NIL)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-139)) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 11)) (-3428 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-525)) (|has| |#1| (-348))))) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-869)) (|has| |#1| (-348))) (|has| |#1| (-533))))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))))) (-2957 (($) 19 T CONST)) (-2964 (($) 15 T CONST)) (-2969 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-348))) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2864 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-2985 (((-111) $ $) NIL (-3850 (-12 (|has| (-1195 |#1| |#2| |#3|) (-784)) (|has| |#1| (-348))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-811)) (|has| |#1| (-348)))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348))) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 20)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1195 |#1| |#2| |#3|)) NIL (|has| |#1| (-348))) (($ (-1195 |#1| |#2| |#3|) $) NIL (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1165 |#1| |#2| |#3|) (-13 (-1169 |#1| (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1165)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1169 |#1| (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-4275 (((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)) 23))) +(((-1166 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 ((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)))) (-1004) (-1004) (-1123) (-1123) |#1| |#2|) (T -1166)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5 *7 *9)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1165 *6 *8 *10)) (-5 *1 (-1166 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1123))))) +(-10 -7 (-15 -4275 ((-1165 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1165 |#1| |#3| |#5|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 96) (($ $ (-526) (-526)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 171)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 169 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 168 (|has| |#1| (-533)))) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-526) $) 98) (((-526) $ (-526)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 170)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-526)) 59) (($ $ (-1033) (-526)) 74) (($ $ (-607 (-1033)) (-607 (-526))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-526)))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 102) (($ $ $) 79 (|has| (-526) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-4264 (((-526) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1167 |#1|) (-134) (-1004)) (T -1167)) +((-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) (-4 *1 (-1167 *3)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1167 *3)) (-4 *3 (-1004)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) (-5 *2 (-392 (-905 *4))))) (-4046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) (-5 *2 (-392 (-905 *4))))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) +(-13 (-1184 |t#1| (-526)) (-10 -8 (-15 -4137 ($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |t#1|))))) (-15 -4134 ($ (-1 |t#1| (-526)) $)) (IF (|has| |t#1| (-533)) (PROGN (-15 -4046 ((-392 (-905 |t#1|)) $ (-526))) (-15 -4046 ((-392 (-905 |t#1|)) $ (-526) (-526)))) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-526)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-526) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-526) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T)) +((-3502 (((-111) $) 12)) (-3470 (((-3 |#3| #1="failed") $) 17) (((-3 (-1123) #1#) $) NIL) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL)) (-3469 ((|#3| $) 14) (((-1123) $) NIL) (((-392 (-526)) $) NIL) (((-526) $) NIL))) +(((-1168 |#1| |#2| |#3|) (-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1#) |#1|)) (-15 -3502 ((-111) |#1|))) (-1169 |#2| |#3|) (-1004) (-1198 |#2|)) (T -1168)) +NIL +(-10 -8 (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1="failed") |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -3469 ((-1123) |#1|)) (-15 -3470 ((-3 (-1123) #1#) |#1|)) (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| #1#) |#1|)) (-15 -3502 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3426 ((|#2| $) 228 (-3155 (|has| |#2| (-292)) (|has| |#1| (-348))))) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 96) (($ $ (-526) (-526)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 103)) (-4050 ((|#2| $) 264)) (-4047 (((-3 |#2| "failed") $) 260)) (-4048 ((|#2| $) 261)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3007 (((-390 (-1117 $)) (-1117 $)) 237 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 234 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) 246 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 171)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| #2="failed") $) 267) (((-3 (-526) #2#) $) 256 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-392 (-526)) #2#) $) 254 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-3 (-1123) #2#) $) 239 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348))))) (-3469 ((|#2| $) 266) (((-526) $) 257 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-392 (-526)) $) 255 (-3155 (|has| |#2| (-995 (-526))) (|has| |#1| (-348)))) (((-1123) $) 240 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348))))) (-4049 (($ $) 263) (($ (-526) $) 262)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-2331 (((-653 |#2|) (-653 $)) 218 (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) 217 (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 216 (-3155 (|has| |#2| (-606 (-526))) (|has| |#1| (-348)))) (((-653 (-526)) (-653 $)) 215 (-3155 (|has| |#2| (-606 (-526))) (|has| |#1| (-348))))) (-3781 (((-3 $ "failed") $) 32)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 169 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 168 (|has| |#1| (-533)))) (-3294 (($) 230 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3500 (((-111) $) 244 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 222 (-3155 (|has| |#2| (-845 (-363))) (|has| |#1| (-348)))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 221 (-3155 (|has| |#2| (-845 (-526))) (|has| |#1| (-348))))) (-4090 (((-526) $) 98) (((-526) $ (-526)) 97)) (-2471 (((-111) $) 30)) (-3296 (($ $) 226 (|has| |#1| (-348)))) (-3298 ((|#2| $) 224 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) 258 (-3155 (|has| |#2| (-1099)) (|has| |#1| (-348))))) (-3501 (((-111) $) 245 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 170)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-526)) 59) (($ $ (-1033) (-526)) 74) (($ $ (-607 (-1033)) (-607 (-526))) 73)) (-3637 (($ $ $) 248 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-3638 (($ $ $) 249 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-4275 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-348)))) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-4097 (($ (-526) |#2|) 265)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3764 (($) 259 (-3155 (|has| |#2| (-1099)) (|has| |#1| (-348))) CONST)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-3425 (($ $) 229 (-3155 (|has| |#2| (-292)) (|has| |#1| (-348))))) (-3427 ((|#2| $) 232 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-3005 (((-390 (-1117 $)) (-1117 $)) 235 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-3006 (((-390 (-1117 $)) (-1117 $)) 236 (-3155 (|has| |#2| (-869)) (|has| |#1| (-348))))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) |#2|) 209 (-3155 (|has| |#2| (-496 (-1123) |#2|)) (|has| |#1| (-348)))) (($ $ (-607 (-1123)) (-607 |#2|)) 208 (-3155 (|has| |#2| (-496 (-1123) |#2|)) (|has| |#1| (-348)))) (($ $ (-607 (-278 |#2|))) 207 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ (-278 |#2|)) 206 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ |#2| |#2|) 205 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348)))) (($ $ (-607 |#2|) (-607 |#2|)) 204 (-3155 (|has| |#2| (-294 |#2|)) (|has| |#1| (-348))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 102) (($ $ $) 79 (|has| (-526) (-1063))) (($ $ |#2|) 203 (-3155 (|has| |#2| (-271 |#2| |#2|)) (|has| |#1| (-348))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) 213 (|has| |#1| (-348))) (($ $ (-735)) 82 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 80 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) 87 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) 86 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) 85 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) 84 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-3295 (($ $) 227 (|has| |#1| (-348)))) (-3297 ((|#2| $) 225 (|has| |#1| (-348)))) (-4264 (((-526) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-211) $) 243 (-3155 (|has| |#2| (-977)) (|has| |#1| (-348)))) (((-363) $) 242 (-3155 (|has| |#2| (-977)) (|has| |#1| (-348)))) (((-515) $) 241 (-3155 (|has| |#2| (-584 (-515))) (|has| |#1| (-348)))) (((-849 (-363)) $) 220 (-3155 (|has| |#2| (-584 (-849 (-363)))) (|has| |#1| (-348)))) (((-849 (-526)) $) 219 (-3155 (|has| |#2| (-584 (-849 (-526)))) (|has| |#1| (-348))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 233 (-3155 (-3155 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#1| (-348))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 268) (($ (-1123)) 238 (-3155 (|has| |#2| (-995 (-1123))) (|has| |#1| (-348)))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 57)) (-3002 (((-3 $ "failed") $) 46 (-3850 (-3155 (-3850 (|has| |#2| (-139)) (-3155 (|has| $ (-139)) (|has| |#2| (-869)))) (|has| |#1| (-348))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3428 ((|#2| $) 231 (-3155 (|has| |#2| (-525)) (|has| |#1| (-348))))) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) 247 (-3155 (|has| |#2| (-784)) (|has| |#1| (-348))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) 211 (|has| |#1| (-348))) (($ $ (-735)) 83 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 81 (-3850 (-3155 (|has| |#2| (-219)) (|has| |#1| (-348))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) 91 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123) (-735)) 90 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-607 (-1123))) 89 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))))) (($ $ (-1123)) 88 (-3850 (-3155 (|has| |#2| (-859 (-1123))) (|has| |#1| (-348))) (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))))) (-2863 (((-111) $ $) 251 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-2864 (((-111) $ $) 252 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 250 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-2985 (((-111) $ $) 253 (-3155 (|has| |#2| (-811)) (|has| |#1| (-348))))) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348))) (($ |#2| |#2|) 223 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-348))) (($ |#2| $) 201 (|has| |#1| (-348))) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1169 |#1| |#2|) (-134) (-1004) (-1198 |t#1|)) (T -1169)) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)) (-5 *2 (-526)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1169 *3 *2)) (-4 *2 (-1198 *3)))) (-4097 (*1 *1 *2 *3) (-12 (-5 *2 (-526)) (-4 *4 (-1004)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-1198 *4)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3)))) (-4049 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1198 *2)))) (-4049 (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3)))) (-4047 (*1 *2 *1) (|partial| -12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) +(-13 (-1167 |t#1|) (-995 |t#2|) (-10 -8 (-15 -4097 ($ (-526) |t#2|)) (-15 -4264 ((-526) $)) (-15 -4050 (|t#2| $)) (-15 -4049 ($ $)) (-15 -4049 ($ (-526) $)) (-15 -4274 ($ |t#2|)) (-15 -4048 (|t#2| $)) (-15 -4047 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-348)) (-6 (-950 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-526)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 |#2|) |has| |#1| (-348)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-348)) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-139))) (|has| |#1| (-139))) ((-141) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-141))) (|has| |#1| (-141))) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-584 (-211)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-584 (-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-584 (-515)) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))) ((-217 |#2|) |has| |#1| (-348)) ((-219) -3850 (|has| |#1| (-15 * (|#1| (-526) |#1|))) (-12 (|has| |#1| (-348)) (|has| |#2| (-219)))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 |#2| $) -12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))) ((-271 $ $) |has| (-526) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-294 |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) ((-348) |has| |#1| (-348)) ((-323 |#2|) |has| |#1| (-348)) ((-362 |#2|) |has| |#1| (-348)) ((-385 |#2|) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-496 (-1123) |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|))) ((-496 |#2| |#2|) -12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 |#2|) |has| |#1| (-348)) ((-613 $) . T) ((-606 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))) ((-606 |#2|) |has| |#1| (-348)) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 |#2|) |has| |#1| (-348)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-755) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-756) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-758) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-761) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-784) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-809) -12 (|has| |#1| (-348)) (|has| |#2| (-784))) ((-811) -3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-811))) (-12 (|has| |#1| (-348)) (|has| |#2| (-784)))) ((-859 (-1123)) -3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))) ((-845 (-363)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526)))) ((-843 |#2|) |has| |#1| (-348)) ((-869) -12 (|has| |#1| (-348)) (|has| |#2| (-869))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-950 |#2|) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-977) -12 (|has| |#1| (-348)) (|has| |#2| (-977))) ((-995 (-392 (-526))) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) ((-995 (-526)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526)))) ((-995 (-1123)) -12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))) ((-995 |#2|) . T) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 |#2|) |has| |#1| (-348)) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) -12 (|has| |#1| (-348)) (|has| |#2| (-1099))) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1159) |has| |#1| (-348)) ((-1164) |has| |#1| (-348)) ((-1167 |#1|) . T) ((-1184 |#1| #1#) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 70)) (-3426 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-292))))) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 88)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-526)) 97) (($ $ (-526) (-526)) 99)) (-4092 (((-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|))) $) 47)) (-4050 ((|#2| $) 11)) (-4047 (((-3 |#2| "failed") $) 30)) (-4048 ((|#2| $) 31)) (-3806 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-3945 (((-526) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-4137 (($ (-1101 (-2 (|:| |k| (-526)) (|:| |c| |#1|)))) 57)) (-3808 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 172 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) 144) (((-3 (-526) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-3 (-392 (-526)) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-3 (-1123) #2#) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))))) (-3469 ((|#2| $) 143) (((-526) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-392 (-526)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-526))))) (((-1123) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123)))))) (-4049 (($ $) 61) (($ (-526) $) 24)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 |#2|) (-653 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL (|has| |#1| (-348))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526))))) (((-653 (-526)) (-653 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-606 (-526)))))) (-3781 (((-3 $ "failed") $) 77)) (-4046 (((-392 (-905 |#1|)) $ (-526)) 112 (|has| |#1| (-533))) (((-392 (-905 |#1|)) $ (-526) (-526)) 114 (|has| |#1| (-533)))) (-3294 (($) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3500 (((-111) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-3192 (((-111) $) 64)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-845 (-526)))))) (-4090 (((-526) $) 93) (((-526) $ (-526)) 95)) (-2471 (((-111) $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-348)))) (-3298 ((|#2| $) 151 (|has| |#1| (-348)))) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3763 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-1099))))) (-3501 (((-111) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-4095 (($ $ (-878)) 136)) (-4134 (($ (-1 |#1| (-526)) $) 132)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-526)) 19) (($ $ (-1033) (-526)) NIL) (($ $ (-607 (-1033)) (-607 (-526))) NIL)) (-3637 (($ $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-3638 (($ $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-4275 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-348)))) (-4259 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4097 (($ (-526) |#2|) 10)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 145 (|has| |#1| (-348)))) (-4131 (($ $) 214 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 219 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3764 (($) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-1099))) CONST)) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-3425 (($ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-292))))) (-3427 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-869))))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-526)) 126)) (-3780 (((-3 $ "failed") $ $) 116 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-526))))) (($ $ (-1123) |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) (($ $ (-607 (-1123)) (-607 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-496 (-1123) |#2|)))) (($ $ (-607 (-278 |#2|))) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|)))) (($ $ (-607 |#2|) (-607 |#2|)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-294 |#2|))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-526)) 91) (($ $ $) 79 (|has| (-526) (-1063))) (($ $ |#2|) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-271 |#2| |#2|))))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) 137 (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123)) 140 (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))))) (-3295 (($ $) NIL (|has| |#1| (-348)))) (-3297 ((|#2| $) 152 (|has| |#1| (-348)))) (-4264 (((-526) $) 12)) (-3809 (($ $) 198 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 174 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 170 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 166 (|has| |#1| (-37 (-392 (-526)))))) (-4287 (((-211) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-977)))) (((-363) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-977)))) (((-515) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-515))))) (((-849 (-363)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-584 (-849 (-526))))))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-348)) (|has| |#2| (-869))))) (-3191 (($ $) 124)) (-4274 (((-823) $) 245) (($ (-526)) 23) (($ |#1|) 21 (|has| |#1| (-163))) (($ |#2|) 20) (($ (-1123)) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-995 (-1123))))) (($ (-392 (-526))) 155 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-526)) 74)) (-3002 (((-3 $ "failed") $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#1| (-348)) (|has| |#2| (-869))) (|has| |#1| (-139)) (-12 (|has| |#1| (-348)) (|has| |#2| (-139)))))) (-3423 (((-735)) 142)) (-4091 ((|#1| $) 90)) (-3428 ((|#2| $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-525))))) (-3812 (($ $) 204 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 180 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 200 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 176 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 208 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 184 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-526)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-526)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 210 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 206 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 182 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 202 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 178 (|has| |#1| (-37 (-392 (-526)))))) (-3702 (($ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-784))))) (-2957 (($) 13 T CONST)) (-2964 (($) 17 T CONST)) (-2969 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-348))) (($ $ (-1 |#2| |#2|) (-735)) NIL (|has| |#1| (-348))) (($ $ (-735)) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $) NIL (-3850 (-12 (|has| |#1| (-348)) (|has| |#2| (-219))) (|has| |#1| (-15 * (|#1| (-526) |#1|))))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123) (-735)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-607 (-1123))) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123)))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-526) |#1|)))) (-12 (|has| |#1| (-348)) (|has| |#2| (-859 (-1123))))))) (-2863 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-2864 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-3353 (((-111) $ $) 63)) (-2984 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-2985 (((-111) $ $) NIL (-12 (|has| |#1| (-348)) (|has| |#2| (-811))))) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 149 (|has| |#1| (-348))) (($ |#2| |#2|) 150 (|has| |#1| (-348)))) (-4156 (($ $) 213) (($ $ $) 68)) (-4158 (($ $ $) 66)) (** (($ $ (-878)) NIL) (($ $ (-735)) 73) (($ $ (-526)) 146 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 158 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-348))) (($ |#2| $) 147 (|has| |#1| (-348))) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1170 |#1| |#2|) (-1169 |#1| |#2|) (-1004) (-1198 |#1|)) (T -1170)) +NIL +(-1169 |#1| |#2|) +((-4053 (((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)) 12)) (-4052 (((-390 |#1|) |#1|) 22)) (-4051 (((-390 |#1|) |#1|) 21))) +(((-1171 |#1|) (-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)))) (-1181 (-526))) (T -1171)) +((-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526))))) (-4052 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526))))) (-4051 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) +(-10 -7 (-15 -4051 ((-390 |#1|) |#1|)) (-15 -4052 ((-390 |#1|) |#1|)) (-15 -4053 ((-2 (|:| |contp| (-526)) (|:| -2736 (-607 (-2 (|:| |irr| |#1|) (|:| -2456 (-526)))))) |#1| (-111)))) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4055 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4275 (((-1101 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-809)))) (-3542 ((|#1| $) 14)) (-3544 ((|#1| $) 10)) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-3540 (((-526) $) 18)) (-3541 ((|#1| $) 17)) (-3543 ((|#1| $) 11)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4054 (((-111) $) 16)) (-4280 (((-1101 |#1|) $) 38 (|has| |#1| (-809))) (((-1101 |#1|) (-607 $)) 37 (|has| |#1| (-809)))) (-4287 (($ |#1|) 25)) (-4274 (($ (-1041 |#1|)) 24) (((-823) $) 34 (|has| |#1| (-1052)))) (-4056 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3545 (($ $ (-526)) 13)) (-3353 (((-111) $ $) 27 (|has| |#1| (-1052))))) +(((-1172 |#1|) (-13 (-1046 |#1|) (-10 -8 (-15 -4056 ($ |#1|)) (-15 -4055 ($ |#1|)) (-15 -4274 ($ (-1041 |#1|))) (-15 -4054 ((-111) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-1101 |#1|))) |%noBranch|))) (-1159)) (T -1172)) +((-4056 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159)))) (-4055 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1041 *3)) (-4 *3 (-1159)) (-5 *1 (-1172 *3)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172 *3)) (-4 *3 (-1159))))) +(-13 (-1046 |#1|) (-10 -8 (-15 -4056 ($ |#1|)) (-15 -4055 ($ |#1|)) (-15 -4274 ($ (-1041 |#1|))) (-15 -4054 ((-111) $)) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-809)) (-6 (-1047 |#1| (-1101 |#1|))) |%noBranch|))) +((-4275 (((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 23 (|has| |#1| (-809))) (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 17))) +(((-1173 |#1| |#2|) (-10 -7 (-15 -4275 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) |%noBranch|)) (-1159) (-1159)) (T -1173)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1173 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1172 *6)) (-5 *1 (-1173 *5 *6))))) +(-10 -7 (-15 -4275 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (IF (|has| |#1| (-809)) (-15 -4275 ((-1101 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) |%noBranch|)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4085 (((-1205 |#2|) $ (-735)) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4083 (($ (-1117 |#2|)) NIL)) (-3386 (((-1117 $) $ (-1033)) NIL) (((-1117 |#2|) $) NIL)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#2| (-533)))) (-2151 (($ $) NIL (|has| |#2| (-533)))) (-2149 (((-111) $) NIL (|has| |#2| (-533)))) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4074 (($ $ $) NIL (|has| |#2| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4093 (($ $) NIL (|has| |#2| (-436)))) (-4286 (((-390 $) $) NIL (|has| |#2| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-1681 (((-111) $ $) NIL (|has| |#2| (-348)))) (-4079 (($ $ (-735)) NIL)) (-4078 (($ $ (-735)) NIL)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-436)))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| #2="failed") $) NIL) (((-3 (-392 (-526)) #2#) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) NIL (|has| |#2| (-995 (-526)))) (((-3 (-1033) #2#) $) NIL)) (-3469 ((|#2| $) NIL) (((-392 (-526)) $) NIL (|has| |#2| (-995 (-392 (-526))))) (((-526) $) NIL (|has| |#2| (-995 (-526)))) (((-1033) $) NIL)) (-4075 (($ $ $ (-1033)) NIL (|has| |#2| (-163))) ((|#2| $ $) NIL (|has| |#2| (-163)))) (-2861 (($ $ $) NIL (|has| |#2| (-348)))) (-4276 (($ $) NIL)) (-2331 (((-653 (-526)) (-653 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) NIL (|has| |#2| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#2|)) (|:| |vec| (-1205 |#2|))) (-653 $) (-1205 $)) NIL) (((-653 |#2|) (-653 $)) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-2860 (($ $ $) NIL (|has| |#2| (-348)))) (-4077 (($ $ $) NIL)) (-4072 (($ $ $) NIL (|has| |#2| (-533)))) (-4071 (((-2 (|:| -4270 |#2|) (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#2| (-348)))) (-3817 (($ $) NIL (|has| |#2| (-436))) (($ $ (-1033)) NIL (|has| |#2| (-436)))) (-3118 (((-607 $) $) NIL)) (-4045 (((-111) $) NIL (|has| |#2| (-869)))) (-1697 (($ $ |#2| (-735) $) NIL)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) NIL (-12 (|has| (-1033) (-845 (-363))) (|has| |#2| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) NIL (-12 (|has| (-1033) (-845 (-526))) (|has| |#2| (-845 (-526)))))) (-4090 (((-735) $ $) NIL (|has| |#2| (-533)))) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3763 (((-3 $ "failed") $) NIL (|has| |#2| (-1099)))) (-3387 (($ (-1117 |#2|) (-1033)) NIL) (($ (-1117 $) (-1033)) NIL)) (-4095 (($ $ (-735)) NIL)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-3193 (($ |#2| (-735)) 17) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) NIL) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-3637 (($ $ $) NIL (|has| |#2| (-811)))) (-3638 (($ $ $) NIL (|has| |#2| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4084 (((-1117 |#2|) $) NIL)) (-3385 (((-3 (-1033) #4="failed") $) NIL)) (-3194 (($ $) NIL)) (-3487 ((|#2| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-3554 (((-1106) $) NIL)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) NIL)) (-3123 (((-3 (-607 $) #4#) $) NIL)) (-3122 (((-3 (-607 $) #4#) $) NIL)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) NIL)) (-4131 (($ $) NIL (|has| |#2| (-37 (-392 (-526)))))) (-3764 (($) NIL (|has| |#2| (-1099)) CONST)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 ((|#2| $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#2| (-436)))) (-3457 (($ (-607 $)) NIL (|has| |#2| (-436))) (($ $ $) NIL (|has| |#2| (-436)))) (-4057 (($ $ (-735) |#2| $) NIL)) (-3005 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) NIL (|has| |#2| (-869)))) (-4051 (((-390 $) $) NIL (|has| |#2| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#2| (-348)))) (-3780 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-533))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#2| (-348)))) (-4086 (($ $ (-607 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#2|) NIL) (($ $ (-607 (-1033)) (-607 |#2|)) NIL) (($ $ (-1033) $) NIL) (($ $ (-607 (-1033)) (-607 $)) NIL)) (-1680 (((-735) $) NIL (|has| |#2| (-348)))) (-4118 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) NIL (|has| |#2| (-533))) ((|#2| (-392 $) |#2|) NIL (|has| |#2| (-348))) (((-392 $) $ (-392 $)) NIL (|has| |#2| (-533)))) (-4082 (((-3 $ #5="failed") $ (-735)) NIL)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#2| (-348)))) (-4076 (($ $ (-1033)) NIL (|has| |#2| (-163))) ((|#2| $) NIL (|has| |#2| (-163)))) (-4129 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) NIL) (((-607 (-735)) $ (-607 (-1033))) NIL)) (-4287 (((-849 (-363)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#2| (-584 (-849 (-363)))))) (((-849 (-526)) $) NIL (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#2| (-584 (-849 (-526)))))) (((-515) $) NIL (-12 (|has| (-1033) (-584 (-515))) (|has| |#2| (-584 (-515)))))) (-3117 ((|#2| $) NIL (|has| |#2| (-436))) (($ $ (-1033)) NIL (|has| |#2| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-869))))) (-4073 (((-3 $ #5#) $ $) NIL (|has| |#2| (-533))) (((-3 (-392 $) #5#) (-392 $) $) NIL (|has| |#2| (-533)))) (-4274 (((-823) $) 13) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-1033)) NIL) (($ (-1202 |#1|)) 19) (($ (-392 (-526))) NIL (-3850 (|has| |#2| (-37 (-392 (-526)))) (|has| |#2| (-995 (-392 (-526)))))) (($ $) NIL (|has| |#2| (-533)))) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-735)) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3002 (((-3 $ #1#) $) NIL (-3850 (-12 (|has| $ (-139)) (|has| |#2| (-869))) (|has| |#2| (-139))))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| |#2| (-163)))) (-2150 (((-111) $ $) NIL (|has| |#2| (-533)))) (-2957 (($) NIL T CONST)) (-2964 (($) 14 T CONST)) (-2969 (($ $ (-1033)) NIL) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) NIL) (($ $ (-1123)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1123) (-735)) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) NIL (|has| |#2| (-859 (-1123)))) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2863 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#2| (-811)))) (-3353 (((-111) $ $) NIL)) (-2984 (((-111) $ $) NIL (|has| |#2| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#2| (-811)))) (-4265 (($ $ |#2|) NIL (|has| |#2| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-392 (-526))) NIL (|has| |#2| (-37 (-392 (-526))))) (($ (-392 (-526)) $) NIL (|has| |#2| (-37 (-392 (-526))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1174 |#1| |#2|) (-13 (-1181 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))) (-15 -4057 ($ $ (-735) |#2| $)))) (-1123) (-1004)) (T -1174)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-1004)))) (-4057 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1174 *4 *3)) (-14 *4 (-1123)) (-4 *3 (-1004))))) +(-13 (-1181 |#2|) (-10 -8 (-15 -4274 ($ (-1202 |#1|))) (-15 -4057 ($ $ (-735) |#2| $)))) +((-4275 (((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)) 15))) +(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 ((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)))) (-1123) (-1004) (-1123) (-1004)) (T -1175)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1174 *5 *6)) (-14 *5 (-1123)) (-4 *6 (-1004)) (-4 *8 (-1004)) (-5 *2 (-1174 *7 *8)) (-5 *1 (-1175 *5 *6 *7 *8)) (-14 *7 (-1123))))) +(-10 -7 (-15 -4275 ((-1174 |#3| |#4|) (-1 |#4| |#2|) (-1174 |#1| |#2|)))) +((-4060 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4058 ((|#1| |#3|) 13)) (-4059 ((|#3| |#3|) 19))) +(((-1176 |#1| |#2| |#3|) (-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-533) (-950 |#1|) (-1181 |#2|)) (T -1176)) +((-4060 (*1 *2 *3) (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1176 *4 *5 *3)) (-4 *3 (-1181 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-1176 *3 *4 *2)) (-4 *2 (-1181 *4)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-1176 *2 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -4058 (|#1| |#3|)) (-15 -4059 (|#3| |#3|)) (-15 -4060 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4062 (((-3 |#2| "failed") |#2| (-735) |#1|) 29)) (-4061 (((-3 |#2| "failed") |#2| (-735)) 30)) (-4064 (((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|) 43)) (-4065 (((-607 |#2|) |#2|) 45)) (-4063 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1177 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 |#2| "failed") |#2| (-735))) (-15 -4062 ((-3 |#2| "failed") |#2| (-735) |#1|)) (-15 -4063 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4064 ((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|)) (-15 -4065 ((-607 |#2|) |#2|))) (-13 (-533) (-141)) (-1181 |#1|)) (T -1177)) +((-4065 (*1 *2 *3) (-12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-607 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1181 *4)))) (-4064 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1181 *4)))) (-4063 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1181 *3)))) (-4062 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4)))) (-4061 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) +(-10 -7 (-15 -4061 ((-3 |#2| "failed") |#2| (-735))) (-15 -4062 ((-3 |#2| "failed") |#2| (-735) |#1|)) (-15 -4063 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4064 ((-3 (-2 (|:| -3435 |#2|) (|:| -3434 |#2|)) "failed") |#2|)) (-15 -4065 ((-607 |#2|) |#2|))) +((-4066 (((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|) 32))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -4066 ((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|))) (-533) (-1181 |#1|)) (T -1178)) +((-4066 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-1178 *4 *3)) (-4 *3 (-1181 *4))))) +(-10 -7 (-15 -4066 ((-3 (-2 (|:| -2072 |#2|) (|:| -3202 |#2|)) "failed") |#2| |#2|))) +((-4067 ((|#2| |#2| |#2|) 19)) (-4068 ((|#2| |#2| |#2|) 30)) (-4069 ((|#2| |#2| |#2| (-735) (-735)) 36))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -4067 (|#2| |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| (-735) (-735)))) (-1004) (-1181 |#1|)) (T -1179)) +((-4069 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-1179 *4 *2)) (-4 *2 (-1181 *4)))) (-4068 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3)))) (-4067 (*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) +(-10 -7 (-15 -4067 (|#2| |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| (-735) (-735)))) +((-4085 (((-1205 |#2|) $ (-735)) 114)) (-3384 (((-607 (-1033)) $) 15)) (-4083 (($ (-1117 |#2|)) 67)) (-3119 (((-735) $) NIL) (((-735) $ (-607 (-1033))) 18)) (-3007 (((-390 (-1117 $)) (-1117 $)) 185)) (-4093 (($ $) 175)) (-4286 (((-390 $) $) 173)) (-3004 (((-3 (-607 (-1117 $)) "failed") (-607 (-1117 $)) (-1117 $)) 82)) (-4079 (($ $ (-735)) 71)) (-4078 (($ $ (-735)) 73)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3470 (((-3 |#2| #1="failed") $) 117) (((-3 (-392 (-526)) #1#) $) NIL) (((-3 (-526) #1#) $) NIL) (((-3 (-1033) #1#) $) NIL)) (-3469 ((|#2| $) 115) (((-392 (-526)) $) NIL) (((-526) $) NIL) (((-1033) $) NIL)) (-4072 (($ $ $) 151)) (-4071 (((-2 (|:| -4270 |#2|) (|:| -2072 $) (|:| -3202 $)) $ $) 153)) (-4090 (((-735) $ $) 170)) (-3763 (((-3 $ "failed") $) 123)) (-3193 (($ |#2| (-735)) NIL) (($ $ (-1033) (-735)) 47) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-3120 (((-735) $) NIL) (((-735) $ (-1033)) 42) (((-607 (-735)) $ (-607 (-1033))) 43)) (-4084 (((-1117 |#2|) $) 59)) (-3385 (((-3 (-1033) "failed") $) 40)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 70)) (-4131 (($ $) 197)) (-3764 (($) 119)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 182)) (-3005 (((-390 (-1117 $)) (-1117 $)) 88)) (-3006 (((-390 (-1117 $)) (-1117 $)) 86)) (-4051 (((-390 $) $) 107)) (-4086 (($ $ (-607 (-278 $))) 39) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-607 $) (-607 $)) NIL) (($ $ (-1033) |#2|) 31) (($ $ (-607 (-1033)) (-607 |#2|)) 28) (($ $ (-1033) $) 25) (($ $ (-607 (-1033)) (-607 $)) 23)) (-1680 (((-735) $) 188)) (-4118 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-392 $) (-392 $) (-392 $)) 147) ((|#2| (-392 $) |#2|) 187) (((-392 $) $ (-392 $)) 169)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 191)) (-4129 (($ $ (-1033)) 140) (($ $ (-607 (-1033))) NIL) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL) (($ $ (-735)) NIL) (($ $) 138) (($ $ (-1123)) NIL) (($ $ (-607 (-1123))) NIL) (($ $ (-1123) (-735)) NIL) (($ $ (-607 (-1123)) (-607 (-735))) NIL) (($ $ (-1 |#2| |#2|) (-735)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4264 (((-735) $) NIL) (((-735) $ (-1033)) 16) (((-607 (-735)) $ (-607 (-1033))) 20)) (-3117 ((|#2| $) NIL) (($ $ (-1033)) 125)) (-4073 (((-3 $ "failed") $ $) 161) (((-3 (-392 $) "failed") (-392 $) $) 157)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#2|) NIL) (($ (-1033)) 51) (($ (-392 (-526))) NIL) (($ $) NIL))) +(((-1180 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4118 ((-392 |#1|) |#1| (-392 |#1|))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4118 (|#2| (-392 |#1|) |#2|)) (-15 -4070 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4071 ((-2 (|:| -4270 |#2|) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -4073 ((-3 (-392 |#1|) "failed") (-392 |#1|) |#1|)) (-15 -4073 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4090 ((-735) |#1| |#1|)) (-15 -4118 ((-392 |#1|) (-392 |#1|) (-392 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4078 (|#1| |#1| (-735))) (-15 -4079 (|#1| |#1| (-735))) (-15 -4080 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| (-735))) (-15 -4083 (|#1| (-1117 |#2|))) (-15 -4084 ((-1117 |#2|) |#1|)) (-15 -4085 ((-1205 |#2|) |#1| (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| |#2|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3007 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3117 (|#1| |#1| (-1033))) (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3119 ((-735) |#1| (-607 (-1033)))) (-15 -3119 ((-735) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -3193 (|#1| |#1| (-1033) (-735))) (-15 -3120 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -3120 ((-735) |#1| (-1033))) (-15 -3385 ((-3 (-1033) "failed") |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -4264 ((-735) |#1| (-1033))) (-15 -3469 ((-1033) |#1|)) (-15 -3470 ((-3 (-1033) #1="failed") |#1|)) (-15 -4274 (|#1| (-1033))) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-1033) |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1033) |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 ((-735) |#1|)) (-15 -3193 (|#1| |#2| (-735))) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3120 ((-735) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -4129 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1033) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1033)))) (-15 -4129 (|#1| |#1| (-1033))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) (-1181 |#2|) (-1004)) (T -1180)) +NIL +(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3008 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -4286 ((-390 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -3764 (|#1|)) (-15 -3763 ((-3 |#1| "failed") |#1|)) (-15 -4118 ((-392 |#1|) |#1| (-392 |#1|))) (-15 -1680 ((-735) |#1|)) (-15 -3181 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4118 (|#2| (-392 |#1|) |#2|)) (-15 -4070 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4071 ((-2 (|:| -4270 |#2|) (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| |#1|)) (-15 -4072 (|#1| |#1| |#1|)) (-15 -4073 ((-3 (-392 |#1|) "failed") (-392 |#1|) |#1|)) (-15 -4073 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4090 ((-735) |#1| |#1|)) (-15 -4118 ((-392 |#1|) (-392 |#1|) (-392 |#1|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4078 (|#1| |#1| (-735))) (-15 -4079 (|#1| |#1| (-735))) (-15 -4080 ((-2 (|:| -2072 |#1|) (|:| -3202 |#1|)) |#1| (-735))) (-15 -4083 (|#1| (-1117 |#2|))) (-15 -4084 ((-1117 |#2|) |#1|)) (-15 -4085 ((-1205 |#2|) |#1| (-735))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 (|#1| |#1| (-1 |#2| |#2|) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1123) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1123)))) (-15 -4129 (|#1| |#1| (-1123))) (-15 -4129 (|#1| |#1|)) (-15 -4129 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4118 (|#2| |#1| |#2|)) (-15 -4051 ((-390 |#1|) |#1|)) (-15 -3007 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3006 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3005 ((-390 (-1117 |#1|)) (-1117 |#1|))) (-15 -3004 ((-3 (-607 (-1117 |#1|)) "failed") (-607 (-1117 |#1|)) (-1117 |#1|))) (-15 -3117 (|#1| |#1| (-1033))) (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3119 ((-735) |#1| (-607 (-1033)))) (-15 -3119 ((-735) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -3193 (|#1| |#1| (-1033) (-735))) (-15 -3120 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -3120 ((-735) |#1| (-1033))) (-15 -3385 ((-3 (-1033) "failed") |#1|)) (-15 -4264 ((-607 (-735)) |#1| (-607 (-1033)))) (-15 -4264 ((-735) |#1| (-1033))) (-15 -3469 ((-1033) |#1|)) (-15 -3470 ((-3 (-1033) #1="failed") |#1|)) (-15 -4274 (|#1| (-1033))) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#1|))) (-15 -4086 (|#1| |#1| (-1033) |#1|)) (-15 -4086 (|#1| |#1| (-607 (-1033)) (-607 |#2|))) (-15 -4086 (|#1| |#1| (-1033) |#2|)) (-15 -4086 (|#1| |#1| (-607 |#1|) (-607 |#1|))) (-15 -4086 (|#1| |#1| |#1| |#1|)) (-15 -4086 (|#1| |#1| (-278 |#1|))) (-15 -4086 (|#1| |#1| (-607 (-278 |#1|)))) (-15 -4264 ((-735) |#1|)) (-15 -3193 (|#1| |#2| (-735))) (-15 -3469 ((-526) |#1|)) (-15 -3470 ((-3 (-526) #1#) |#1|)) (-15 -3469 ((-392 (-526)) |#1|)) (-15 -3470 ((-3 (-392 (-526)) #1#) |#1|)) (-15 -4274 (|#1| |#2|)) (-15 -3470 ((-3 |#2| #1#) |#1|)) (-15 -3469 (|#2| |#1|)) (-15 -3120 ((-735) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -4129 (|#1| |#1| (-607 (-1033)) (-607 (-735)))) (-15 -4129 (|#1| |#1| (-1033) (-735))) (-15 -4129 (|#1| |#1| (-607 (-1033)))) (-15 -4129 (|#1| |#1| (-1033))) (-15 -4274 (|#1| (-526))) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4085 (((-1205 |#1|) $ (-735)) 236)) (-3384 (((-607 (-1033)) $) 108)) (-4083 (($ (-1117 |#1|)) 234)) (-3386 (((-1117 $) $ (-1033)) 123) (((-1117 |#1|) $) 122)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 85 (|has| |#1| (-533)))) (-2151 (($ $) 86 (|has| |#1| (-533)))) (-2149 (((-111) $) 88 (|has| |#1| (-533)))) (-3119 (((-735) $) 110) (((-735) $ (-607 (-1033))) 109)) (-1345 (((-3 $ "failed") $ $) 19)) (-4074 (($ $ $) 221 (|has| |#1| (-533)))) (-3007 (((-390 (-1117 $)) (-1117 $)) 98 (|has| |#1| (-869)))) (-4093 (($ $) 96 (|has| |#1| (-436)))) (-4286 (((-390 $) $) 95 (|has| |#1| (-436)))) (-3004 (((-3 (-607 (-1117 $)) #1="failed") (-607 (-1117 $)) (-1117 $)) 101 (|has| |#1| (-869)))) (-1681 (((-111) $ $) 206 (|has| |#1| (-348)))) (-4079 (($ $ (-735)) 229)) (-4078 (($ $ (-735)) 228)) (-4070 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-436)))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| #2="failed") $) 162) (((-3 (-392 (-526)) #2#) $) 160 (|has| |#1| (-995 (-392 (-526))))) (((-3 (-526) #2#) $) 158 (|has| |#1| (-995 (-526)))) (((-3 (-1033) #2#) $) 134)) (-3469 ((|#1| $) 163) (((-392 (-526)) $) 159 (|has| |#1| (-995 (-392 (-526))))) (((-526) $) 157 (|has| |#1| (-995 (-526)))) (((-1033) $) 133)) (-4075 (($ $ $ (-1033)) 106 (|has| |#1| (-163))) ((|#1| $ $) 224 (|has| |#1| (-163)))) (-2861 (($ $ $) 210 (|has| |#1| (-348)))) (-4276 (($ $) 152)) (-2331 (((-653 (-526)) (-653 $)) 132 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 (-526))) (|:| |vec| (-1205 (-526)))) (-653 $) (-1205 $)) 131 (|has| |#1| (-606 (-526)))) (((-2 (|:| -1676 (-653 |#1|)) (|:| |vec| (-1205 |#1|))) (-653 $) (-1205 $)) 130) (((-653 |#1|) (-653 $)) 129)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 209 (|has| |#1| (-348)))) (-4077 (($ $ $) 227)) (-4072 (($ $ $) 218 (|has| |#1| (-533)))) (-4071 (((-2 (|:| -4270 |#1|) (|:| -2072 $) (|:| -3202 $)) $ $) 217 (|has| |#1| (-533)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 204 (|has| |#1| (-348)))) (-3817 (($ $) 174 (|has| |#1| (-436))) (($ $ (-1033)) 103 (|has| |#1| (-436)))) (-3118 (((-607 $) $) 107)) (-4045 (((-111) $) 94 (|has| |#1| (-869)))) (-1697 (($ $ |#1| (-735) $) 170)) (-3096 (((-847 (-363) $) $ (-849 (-363)) (-847 (-363) $)) 82 (-12 (|has| (-1033) (-845 (-363))) (|has| |#1| (-845 (-363))))) (((-847 (-526) $) $ (-849 (-526)) (-847 (-526) $)) 81 (-12 (|has| (-1033) (-845 (-526))) (|has| |#1| (-845 (-526)))))) (-4090 (((-735) $ $) 222 (|has| |#1| (-533)))) (-2471 (((-111) $) 30)) (-2479 (((-735) $) 167)) (-3763 (((-3 $ "failed") $) 202 (|has| |#1| (-1099)))) (-3387 (($ (-1117 |#1|) (-1033)) 115) (($ (-1117 $) (-1033)) 114)) (-4095 (($ $ (-735)) 233)) (-1678 (((-3 (-607 $) #3="failed") (-607 $) $) 213 (|has| |#1| (-348)))) (-3121 (((-607 $) $) 124)) (-4254 (((-111) $) 150)) (-3193 (($ |#1| (-735)) 151) (($ $ (-1033) (-735)) 117) (($ $ (-607 (-1033)) (-607 (-735))) 116)) (-4081 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $ (-1033)) 118) (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 231)) (-3120 (((-735) $) 168) (((-735) $ (-1033)) 120) (((-607 (-735)) $ (-607 (-1033))) 119)) (-3637 (($ $ $) 77 (|has| |#1| (-811)))) (-3638 (($ $ $) 76 (|has| |#1| (-811)))) (-1698 (($ (-1 (-735) (-735)) $) 169)) (-4275 (($ (-1 |#1| |#1|) $) 149)) (-4084 (((-1117 |#1|) $) 235)) (-3385 (((-3 (-1033) #4="failed") $) 121)) (-3194 (($ $) 147)) (-3487 ((|#1| $) 146)) (-1989 (($ (-607 $)) 92 (|has| |#1| (-436))) (($ $ $) 91 (|has| |#1| (-436)))) (-3554 (((-1106) $) 9)) (-4080 (((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735)) 230)) (-3123 (((-3 (-607 $) #4#) $) 112)) (-3122 (((-3 (-607 $) #4#) $) 113)) (-3124 (((-3 (-2 (|:| |var| (-1033)) (|:| -2462 (-735))) #4#) $) 111)) (-4131 (($ $) 214 (|has| |#1| (-37 (-392 (-526)))))) (-3764 (($) 201 (|has| |#1| (-1099)) CONST)) (-3555 (((-1070) $) 10)) (-1892 (((-111) $) 164)) (-1891 ((|#1| $) 165)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 93 (|has| |#1| (-436)))) (-3457 (($ (-607 $)) 90 (|has| |#1| (-436))) (($ $ $) 89 (|has| |#1| (-436)))) (-3005 (((-390 (-1117 $)) (-1117 $)) 100 (|has| |#1| (-869)))) (-3006 (((-390 (-1117 $)) (-1117 $)) 99 (|has| |#1| (-869)))) (-4051 (((-390 $) $) 97 (|has| |#1| (-869)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 211 (|has| |#1| (-348)))) (-3780 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-533))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 205 (|has| |#1| (-348)))) (-4086 (($ $ (-607 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-607 $) (-607 $)) 140) (($ $ (-1033) |#1|) 139) (($ $ (-607 (-1033)) (-607 |#1|)) 138) (($ $ (-1033) $) 137) (($ $ (-607 (-1033)) (-607 $)) 136)) (-1680 (((-735) $) 207 (|has| |#1| (-348)))) (-4118 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-392 $) (-392 $) (-392 $)) 223 (|has| |#1| (-533))) ((|#1| (-392 $) |#1|) 215 (|has| |#1| (-348))) (((-392 $) $ (-392 $)) 203 (|has| |#1| (-533)))) (-4082 (((-3 $ "failed") $ (-735)) 232)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 208 (|has| |#1| (-348)))) (-4076 (($ $ (-1033)) 105 (|has| |#1| (-163))) ((|#1| $) 225 (|has| |#1| (-163)))) (-4129 (($ $ (-1033)) 40) (($ $ (-607 (-1033))) 39) (($ $ (-1033) (-735)) 38) (($ $ (-607 (-1033)) (-607 (-735))) 37) (($ $ (-735)) 251) (($ $) 249) (($ $ (-1123)) 248 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 247 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 246 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 245 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4264 (((-735) $) 148) (((-735) $ (-1033)) 128) (((-607 (-735)) $ (-607 (-1033))) 127)) (-4287 (((-849 (-363)) $) 80 (-12 (|has| (-1033) (-584 (-849 (-363)))) (|has| |#1| (-584 (-849 (-363)))))) (((-849 (-526)) $) 79 (-12 (|has| (-1033) (-584 (-849 (-526)))) (|has| |#1| (-584 (-849 (-526)))))) (((-515) $) 78 (-12 (|has| (-1033) (-584 (-515))) (|has| |#1| (-584 (-515)))))) (-3117 ((|#1| $) 173 (|has| |#1| (-436))) (($ $ (-1033)) 104 (|has| |#1| (-436)))) (-3003 (((-3 (-1205 $) #1#) (-653 $)) 102 (-3155 (|has| $ (-139)) (|has| |#1| (-869))))) (-4073 (((-3 $ "failed") $ $) 220 (|has| |#1| (-533))) (((-3 (-392 $) "failed") (-392 $) $) 219 (|has| |#1| (-533)))) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 161) (($ (-1033)) 135) (($ (-392 (-526))) 70 (-3850 (|has| |#1| (-995 (-392 (-526)))) (|has| |#1| (-37 (-392 (-526)))))) (($ $) 83 (|has| |#1| (-533)))) (-4136 (((-607 |#1|) $) 166)) (-3999 ((|#1| $ (-735)) 153) (($ $ (-1033) (-735)) 126) (($ $ (-607 (-1033)) (-607 (-735))) 125)) (-3002 (((-3 $ #1#) $) 71 (-3850 (-3155 (|has| $ (-139)) (|has| |#1| (-869))) (|has| |#1| (-139))))) (-3423 (((-735)) 28)) (-1696 (($ $ $ (-735)) 171 (|has| |#1| (-163)))) (-2150 (((-111) $ $) 87 (|has| |#1| (-533)))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-1033)) 36) (($ $ (-607 (-1033))) 35) (($ $ (-1033) (-735)) 34) (($ $ (-607 (-1033)) (-607 (-735))) 33) (($ $ (-735)) 252) (($ $) 250) (($ $ (-1123)) 244 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123))) 243 (|has| |#1| (-859 (-1123)))) (($ $ (-1123) (-735)) 242 (|has| |#1| (-859 (-1123)))) (($ $ (-607 (-1123)) (-607 (-735))) 241 (|has| |#1| (-859 (-1123)))) (($ $ (-1 |#1| |#1|) (-735)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2863 (((-111) $ $) 74 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 73 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 6)) (-2984 (((-111) $ $) 75 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 72 (|has| |#1| (-811)))) (-4265 (($ $ |#1|) 154 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 156 (|has| |#1| (-37 (-392 (-526))))) (($ (-392 (-526)) $) 155 (|has| |#1| (-37 (-392 (-526))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1181 |#1|) (-134) (-1004)) (T -1181)) +((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-5 *2 (-1117 *3)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1004)) (-4 *1 (-1181 *3)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4082 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4081 (*1 *2 *1 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *3)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *4)))) (-4079 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4077 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)))) (-4129 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163)))) (-4075 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163)))) (-4118 (*1 *2 *2 *2) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) (-4090 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)) (-5 *2 (-735)))) (-4074 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4073 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4073 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) (-4071 (*1 *2 *1 *1) (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| -4270 *3) (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *3)))) (-4070 (*1 *2 *1 *1) (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1181 *3)))) (-4118 (*1 *2 *3 *2) (-12 (-5 *3 (-392 *1)) (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526))))))) +(-13 (-909 |t#1| (-735) (-1033)) (-271 |t#1| |t#1|) (-271 $ $) (-219) (-217 |t#1|) (-10 -8 (-15 -4085 ((-1205 |t#1|) $ (-735))) (-15 -4084 ((-1117 |t#1|) $)) (-15 -4083 ($ (-1117 |t#1|))) (-15 -4095 ($ $ (-735))) (-15 -4082 ((-3 $ "failed") $ (-735))) (-15 -4081 ((-2 (|:| -2072 $) (|:| -3202 $)) $ $)) (-15 -4080 ((-2 (|:| -2072 $) (|:| -3202 $)) $ (-735))) (-15 -4079 ($ $ (-735))) (-15 -4078 ($ $ (-735))) (-15 -4077 ($ $ $)) (-15 -4129 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4076 (|t#1| $)) (-15 -4075 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-6 (-271 (-392 $) (-392 $))) (-15 -4118 ((-392 $) (-392 $) (-392 $))) (-15 -4090 ((-735) $ $)) (-15 -4074 ($ $ $)) (-15 -4073 ((-3 $ "failed") $ $)) (-15 -4073 ((-3 (-392 $) "failed") (-392 $) $)) (-15 -4072 ($ $ $)) (-15 -4071 ((-2 (|:| -4270 |t#1|) (|:| -2072 $) (|:| -3202 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-436)) (-15 -4070 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-348)) (PROGN (-6 (-292)) (-6 -4306) (-15 -4118 (|t#1| (-392 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (-15 -4131 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-735)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-584 (-515)) -12 (|has| |#1| (-584 (-515))) (|has| (-1033) (-584 (-515)))) ((-584 (-849 (-363))) -12 (|has| |#1| (-584 (-849 (-363)))) (|has| (-1033) (-584 (-849 (-363))))) ((-584 (-849 (-526))) -12 (|has| |#1| (-584 (-849 (-526)))) (|has| (-1033) (-584 (-849 (-526))))) ((-217 |#1|) . T) ((-219) . T) ((-271 (-392 $) (-392 $)) |has| |#1| (-533)) ((-271 |#1| |#1|) . T) ((-271 $ $) . T) ((-275) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-294 $) . T) ((-311 |#1| #1#) . T) ((-362 |#1|) . T) ((-397 |#1|) . T) ((-436) -3850 (|has| |#1| (-869)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-496 #3=(-1033) |#1|) . T) ((-496 #3# $) . T) ((-496 $ $) . T) ((-533) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-606 (-526)) |has| |#1| (-606 (-526))) ((-606 |#1|) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348))) ((-691) . T) ((-811) |has| |#1| (-811)) ((-859 #3#) . T) ((-859 (-1123)) |has| |#1| (-859 (-1123))) ((-845 (-363)) -12 (|has| |#1| (-845 (-363))) (|has| (-1033) (-845 (-363)))) ((-845 (-526)) -12 (|has| |#1| (-845 (-526))) (|has| (-1033) (-845 (-526)))) ((-909 |#1| #1# #3#) . T) ((-869) |has| |#1| (-869)) ((-880) |has| |#1| (-348)) ((-995 (-392 (-526))) |has| |#1| (-995 (-392 (-526)))) ((-995 (-526)) |has| |#1| (-995 (-526))) ((-995 #3#) . T) ((-995 |#1|) . T) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-869)) (|has| |#1| (-533)) (|has| |#1| (-436)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1099) |has| |#1| (-1099)) ((-1164) |has| |#1| (-869))) +((-4275 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1182 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) (-1004) (-1181 |#1|) (-1004) (-1181 |#3|)) (T -1182)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1181 *6)) (-5 *1 (-1182 *5 *4 *6 *2)) (-4 *4 (-1181 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#3| |#1|) |#2|))) +((-3384 (((-607 (-1033)) $) 28)) (-4276 (($ $) 25)) (-3193 (($ |#2| |#3|) NIL) (($ $ (-1033) |#3|) 22) (($ $ (-607 (-1033)) (-607 |#3|)) 21)) (-3194 (($ $) 14)) (-3487 ((|#2| $) 12)) (-4264 ((|#3| $) 10))) +(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 |#3|))) (-15 -3193 (|#1| |#1| (-1033) |#3|)) (-15 -4276 (|#1| |#1|)) (-15 -3193 (|#1| |#2| |#3|)) (-15 -4264 (|#3| |#1|)) (-15 -3194 (|#1| |#1|)) (-15 -3487 (|#2| |#1|))) (-1184 |#2| |#3|) (-1004) (-756)) (T -1183)) +NIL +(-10 -8 (-15 -3384 ((-607 (-1033)) |#1|)) (-15 -3193 (|#1| |#1| (-607 (-1033)) (-607 |#3|))) (-15 -3193 (|#1| |#1| (-1033) |#3|)) (-15 -4276 (|#1| |#1|)) (-15 -3193 (|#1| |#2| |#3|)) (-15 -4264 (|#3| |#1|)) (-15 -3194 (|#1| |#1|)) (-15 -3487 (|#2| |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4092 (((-1101 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-3192 (((-111) $) 71)) (-4090 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2471 (((-111) $) 30)) (-4095 (($ $ (-878)) 99)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| |#2|) 59) (($ $ (-1033) |#2|) 74) (($ $ (-607 (-1033)) (-607 |#2|)) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4087 (($ $ |#2|) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4118 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4264 ((|#2| $) 62)) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3999 ((|#1| $ |#2|) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-4088 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1184 |#1| |#2|) (-134) (-1004) (-756)) (T -1184)) +((-4092 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1101 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4118 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1123)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4090 (*1 *2 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4089 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4088 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4274 (*2 (-1123)))) (-4 *2 (-1004)))) (-4087 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) (-4086 (*1 *2 *1 *3) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1101 *3))))) +(-13 (-932 |t#1| |t#2| (-1033)) (-10 -8 (-15 -4092 ((-1101 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4118 (|t#1| $ |t#2|)) (-15 -4150 ((-1123) $)) (-15 -4091 (|t#1| $)) (-15 -4095 ($ $ (-878))) (-15 -4090 (|t#2| $)) (-15 -4090 (|t#2| $ |t#2|)) (-15 -4089 ($ $ |t#2|)) (-15 -4089 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4274 (|t#1| (-1123)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4088 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4087 ($ $ |t#2|)) (IF (|has| |t#2| (-1063)) (-6 (-271 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-219)) (IF (|has| |t#1| (-859 (-1123))) (-6 (-859 (-1123))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4086 ((-1101 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #1=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-271 $ $) |has| |#2| (-1063)) ((-275) |has| |#1| (-533)) ((-533) |has| |#1| (-533)) ((-613 #1#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-932 |#1| |#2| (-1033)) . T) ((-1010 #1#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-4093 ((|#2| |#2|) 12)) (-4286 (((-390 |#2|) |#2|) 14)) (-4094 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))) 30))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -4286 ((-390 |#2|) |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))))) (-533) (-13 (-1181 |#1|) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (T -1185)) +((-4094 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-526)))) (-4 *4 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (-4 *3 (-533)) (-5 *1 (-1185 *3 *4)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))))) (-4286 (*1 *2 *3) (-12 (-4 *4 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-1181 *4) (-533) (-10 -8 (-15 -3457 ($ $ $)))))))) +(-10 -7 (-15 -4286 ((-390 |#2|) |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-526))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-526)))))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 11)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) NIL) (($ $ (-392 (-526)) (-392 (-526))) NIL)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) NIL)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-1165 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1195 |#1| |#2| |#3|) #1#) $) 22)) (-3469 (((-1165 |#1| |#2| |#3|) $) NIL) (((-1195 |#1| |#2| |#3|) $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4099 (((-392 (-526)) $) 57)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) (-1165 |#1| |#2| |#3|)) NIL)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) NIL) (((-392 (-526)) $ (-392 (-526))) NIL)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) NIL) (($ $ (-392 (-526))) NIL)) (-1678 (((-3 (-607 $) #2="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 30) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 (((-1165 |#1| |#2| |#3|) $) 60)) (-4096 (((-3 (-1165 |#1| |#2| |#3|) "failed") $) NIL)) (-4097 (((-1165 |#1| |#2| |#3|) $) NIL)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-348)))) (-4131 (($ $) 39 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) NIL (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 40 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) NIL)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) NIL) (($ $ $) NIL (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $ (-1202 |#2|)) 38)) (-4264 (((-392 (-526)) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) NIL)) (-4274 (((-823) $) 89) (($ (-526)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1165 |#1| |#2| |#3|)) 16) (($ (-1195 |#1| |#2| |#3|)) 17) (($ (-1202 |#2|)) 36) (($ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 12)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 32 T CONST)) (-2964 (($) 26 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 34)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ (-526)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1186 |#1| |#2| |#3|) (-13 (-1190 |#1| (-1165 |#1| |#2| |#3|)) (-995 (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1186)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1190 |#1| (-1165 |#1| |#2| |#3|)) (-995 (-1195 |#1| |#2| |#3|)) (-10 -8 (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-4275 (((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)) 24))) +(((-1187 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4275 ((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)))) (-1004) (-1004) (-1123) (-1123) |#1| |#2|) (T -1187)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5 *7 *9)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1186 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1123))))) +(-10 -7 (-15 -4275 ((-1186 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1186 |#1| |#3| |#5|)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 96) (($ $ (-392 (-526)) (-392 (-526))) 95)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 169)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 98) (((-392 (-526)) $ (-392 (-526))) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99) (($ $ (-392 (-526))) 168)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-392 (-526))) 59) (($ $ (-1033) (-392 (-526))) 74) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 102) (($ $ $) 79 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1188 |#1|) (-134) (-1004)) (T -1188)) +((-4137 (*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))) (-4 *4 (-1004)) (-4 *1 (-1188 *4)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-1188 *3)) (-4 *3 (-1004)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) +(-13 (-1184 |t#1| (-392 (-526))) (-10 -8 (-15 -4137 ($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |t#1|))))) (-15 -4095 ($ $ (-392 (-526)))) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-392 (-526))) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-392 (-526)) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T)) +((-3502 (((-111) $) 12)) (-3470 (((-3 |#3| "failed") $) 17)) (-3469 ((|#3| $) 14))) +(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| "failed") |#1|)) (-15 -3502 ((-111) |#1|))) (-1190 |#2| |#3|) (-1004) (-1167 |#2|)) (T -1189)) +NIL +(-10 -8 (-15 -3469 (|#3| |#1|)) (-15 -3470 ((-3 |#3| "failed") |#1|)) (-15 -3502 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 96) (($ $ (-392 (-526)) (-392 (-526))) 95)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 160 (|has| |#1| (-348)))) (-4286 (((-390 $) $) 161 (|has| |#1| (-348)))) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) 151 (|has| |#1| (-348)))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 169)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#2| "failed") $) 180)) (-3469 ((|#2| $) 179)) (-2861 (($ $ $) 155 (|has| |#1| (-348)))) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4099 (((-392 (-526)) $) 177)) (-2860 (($ $ $) 154 (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) |#2|) 178)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 149 (|has| |#1| (-348)))) (-4045 (((-111) $) 162 (|has| |#1| (-348)))) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 98) (((-392 (-526)) $ (-392 (-526))) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99) (($ $ (-392 (-526))) 168)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 158 (|has| |#1| (-348)))) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-392 (-526))) 59) (($ $ (-1033) (-392 (-526))) 74) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-1989 (($ (-607 $)) 147 (|has| |#1| (-348))) (($ $ $) 146 (|has| |#1| (-348)))) (-4098 ((|#2| $) 176)) (-4096 (((-3 |#2| "failed") $) 174)) (-4097 ((|#2| $) 175)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 163 (|has| |#1| (-348)))) (-4131 (($ $) 167 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 166 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 148 (|has| |#1| (-348)))) (-3457 (($ (-607 $)) 145 (|has| |#1| (-348))) (($ $ $) 144 (|has| |#1| (-348)))) (-4051 (((-390 $) $) 159 (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 156 (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 150 (|has| |#1| (-348)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) 152 (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 102) (($ $ $) 79 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 153 (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 181) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348))) (($ $ $) 165 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 164 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1190 |#1| |#2|) (-134) (-1004) (-1167 |t#1|)) (T -1190)) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) (-5 *2 (-392 (-526))))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1167 *3)))) (-4100 (*1 *1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-4 *4 (-1004)) (-4 *1 (-1190 *4 *3)) (-4 *3 (-1167 *4)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) (-5 *2 (-392 (-526))))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3)))) (-4096 (*1 *2 *1) (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) +(-13 (-1188 |t#1|) (-995 |t#2|) (-10 -8 (-15 -4100 ($ (-392 (-526)) |t#2|)) (-15 -4099 ((-392 (-526)) $)) (-15 -4098 (|t#2| $)) (-15 -4264 ((-392 (-526)) $)) (-15 -4274 ($ |t#2|)) (-15 -4097 (|t#2| $)) (-15 -4096 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-392 (-526))) . T) ((-25) . T) ((-37 #2=(-392 (-526))) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))) ((-229) |has| |#1| (-348)) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-392 (-526)) (-1063)) ((-275) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-292) |has| |#1| (-348)) ((-348) |has| |#1| (-348)) ((-436) |has| |#1| (-348)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-613 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348))) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-880) |has| |#1| (-348)) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-995 |#2|) . T) ((-1010 #2#) -3850 (|has| |#1| (-348)) (|has| |#1| (-37 (-392 (-526))))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-348)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1164) |has| |#1| (-348)) ((-1184 |#1| #1#) . T) ((-1188 |#1|) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 96)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) NIL (|has| |#1| (-533)))) (-4089 (($ $ (-392 (-526))) 106) (($ $ (-392 (-526)) (-392 (-526))) 108)) (-4092 (((-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|))) $) 51)) (-3806 (($ $) 180 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 156 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-4093 (($ $) NIL (|has| |#1| (-348)))) (-4286 (((-390 $) $) NIL (|has| |#1| (-348)))) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1681 (((-111) $ $) NIL (|has| |#1| (-348)))) (-3804 (($ $) 176 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 152 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-735) (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#1|)))) 61)) (-3808 (($ $) 184 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 160 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) NIL)) (-3469 ((|#2| $) NIL)) (-2861 (($ $ $) NIL (|has| |#1| (-348)))) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 79)) (-4099 (((-392 (-526)) $) 13)) (-2860 (($ $ $) NIL (|has| |#1| (-348)))) (-4100 (($ (-392 (-526)) |#2|) 11)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) NIL (|has| |#1| (-348)))) (-4045 (((-111) $) NIL (|has| |#1| (-348)))) (-3192 (((-111) $) 68)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-392 (-526)) $) 103) (((-392 (-526)) $ (-392 (-526))) 104)) (-2471 (((-111) $) NIL)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 120) (($ $ (-392 (-526))) 118)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-392 (-526))) 31) (($ $ (-1033) (-392 (-526))) NIL) (($ $ (-607 (-1033)) (-607 (-392 (-526)))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 115)) (-4259 (($ $) 150 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-1989 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4098 ((|#2| $) 12)) (-4096 (((-3 |#2| "failed") $) 41)) (-4097 ((|#2| $) 42)) (-3554 (((-1106) $) NIL)) (-2703 (($ $) 93 (|has| |#1| (-348)))) (-4131 (($ $) 135 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 140 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))))))) (-3555 (((-1070) $) NIL)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) NIL (|has| |#1| (-348)))) (-3457 (($ (-607 $)) NIL (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-348)))) (-4051 (((-390 $) $) NIL (|has| |#1| (-348)))) (-1679 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-348))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) NIL (|has| |#1| (-348)))) (-4087 (($ $ (-392 (-526))) 112)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-3040 (((-3 (-607 $) "failed") (-607 $) $) NIL (|has| |#1| (-348)))) (-4260 (($ $) 148 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))))) (-1680 (((-735) $) NIL (|has| |#1| (-348)))) (-4118 ((|#1| $ (-392 (-526))) 100) (($ $ $) 86 (|has| (-392 (-526)) (-1063)))) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) NIL (|has| |#1| (-348)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) 127 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-4264 (((-392 (-526)) $) 16)) (-3809 (($ $) 186 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 162 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 182 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 158 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 178 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 154 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 110)) (-4274 (((-823) $) NIL) (($ (-526)) 35) (($ |#1|) 27 (|has| |#1| (-163))) (($ |#2|) 32) (($ (-392 (-526))) 128 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533)))) (-3999 ((|#1| $ (-392 (-526))) 99)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) 117)) (-4091 ((|#1| $) 98)) (-3812 (($ $) 192 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 168 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) 188 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 164 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 196 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 172 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-392 (-526))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-392 (-526))))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 198 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 174 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 194 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 170 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 190 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 166 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 21 T CONST)) (-2964 (($) 17 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-392 (-526)) |#1|))))) (-3353 (((-111) $ $) 66)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348))) (($ $ $) 92 (|has| |#1| (-348)))) (-4156 (($ $) 131) (($ $ $) 72)) (-4158 (($ $ $) 70)) (** (($ $ (-878)) NIL) (($ $ (-735)) 76) (($ $ (-526)) 145 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 146 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1191 |#1| |#2|) (-1190 |#1| |#2|) (-1004) (-1167 |#1|)) (T -1191)) +NIL +(-1190 |#1| |#2|) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 34)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL)) (-2151 (($ $) NIL)) (-2149 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 (-526) #1="failed") $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-526)))) (((-3 (-392 (-526)) #1#) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526))))) (((-3 (-1186 |#2| |#3| |#4|) #1#) $) 20)) (-3469 (((-526) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-526)))) (((-392 (-526)) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526))))) (((-1186 |#2| |#3| |#4|) $) NIL)) (-4276 (($ $) 35)) (-3781 (((-3 $ "failed") $) 25)) (-3817 (($ $) NIL (|has| (-1186 |#2| |#3| |#4|) (-436)))) (-1697 (($ $ (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|) $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) 11)) (-4254 (((-111) $) NIL)) (-3193 (($ (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) 23)) (-3120 (((-304 |#2| |#3| |#4|) $) NIL)) (-1698 (($ (-1 (-304 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) $) NIL)) (-4275 (($ (-1 (-1186 |#2| |#3| |#4|) (-1186 |#2| |#3| |#4|)) $) NIL)) (-4102 (((-3 (-803 |#2|) "failed") $) 75)) (-3194 (($ $) NIL)) (-3487 (((-1186 |#2| |#3| |#4|) $) 18)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-1892 (((-111) $) NIL)) (-1891 (((-1186 |#2| |#3| |#4|) $) NIL)) (-3780 (((-3 $ "failed") $ (-1186 |#2| |#3| |#4|)) NIL (|has| (-1186 |#2| |#3| |#4|) (-533))) (((-3 $ "failed") $ $) NIL)) (-4101 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $) 58)) (-4264 (((-304 |#2| |#3| |#4|) $) 14)) (-3117 (((-1186 |#2| |#3| |#4|) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-436)))) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ (-1186 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-392 (-526))) NIL (-3850 (|has| (-1186 |#2| |#3| |#4|) (-995 (-392 (-526)))) (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))))) (-4136 (((-607 (-1186 |#2| |#3| |#4|)) $) NIL)) (-3999 (((-1186 |#2| |#3| |#4|) $ (-304 |#2| |#3| |#4|)) NIL)) (-3002 (((-3 $ "failed") $) NIL (|has| (-1186 |#2| |#3| |#4|) (-139)))) (-3423 (((-735)) NIL)) (-1696 (($ $ $ (-735)) NIL (|has| (-1186 |#2| |#3| |#4|) (-163)))) (-2150 (((-111) $ $) NIL)) (-2957 (($) 63 T CONST)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ (-1186 |#2| |#3| |#4|)) NIL (|has| (-1186 |#2| |#3| |#4|) (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ (-1186 |#2| |#3| |#4|)) NIL) (($ (-1186 |#2| |#3| |#4|) $) NIL) (($ (-392 (-526)) $) NIL (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| (-1186 |#2| |#3| |#4|) (-37 (-392 (-526))))))) +(((-1192 |#1| |#2| |#3| |#4|) (-13 (-311 (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) (-533) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $)))) (-13 (-811) (-995 (-526)) (-606 (-526)) (-436)) (-13 (-27) (-1145) (-406 |#1|)) (-1123) |#2|) (T -1192)) +((-4102 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-803 *4)) (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4))) (-4101 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 *4 *5 *6)) (|:| |%expon| (-304 *4 *5 *6)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))))) (|:| |%type| (-1106)))) (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) +(-13 (-311 (-1186 |#2| |#3| |#4|) (-304 |#2| |#3| |#4|)) (-533) (-10 -8 (-15 -4102 ((-3 (-803 |#2|) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1186 |#2| |#3| |#4|)) (|:| |%expon| (-304 |#2| |#3| |#4|)) (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| |#2|)))))) (|:| |%type| (-1106))) "failed") $)))) +((-3721 ((|#2| $) 29)) (-4113 ((|#2| $) 18)) (-4115 (($ $) 36)) (-4103 (($ $ (-526)) 64)) (-1244 (((-111) $ (-735)) 33)) (-3325 ((|#2| $ |#2|) 61)) (-4104 ((|#2| $ |#2|) 59)) (-4106 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3326 (($ $ (-607 $)) 60)) (-4114 ((|#2| $) 17)) (-4117 (($ $) NIL) (($ $ (-735)) 42)) (-3331 (((-607 $) $) 26)) (-3327 (((-111) $ $) 50)) (-4041 (((-111) $ (-735)) 32)) (-4038 (((-111) $ (-735)) 31)) (-3841 (((-111) $) 28)) (-4116 ((|#2| $) 24) (($ $ (-735)) 46)) (-4118 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3955 (((-111) $) 22)) (-4110 (($ $) 39)) (-4108 (($ $) 65)) (-4111 (((-735) $) 41)) (-4112 (($ $) 40)) (-4120 (($ $ $) 58) (($ |#2| $) NIL)) (-3836 (((-607 $) $) 27)) (-3353 (((-111) $ $) 48)) (-4273 (((-735) $) 35))) +(((-1193 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| (-526))) (-15 -4106 (|#2| |#1| "last" |#2|)) (-15 -4104 (|#2| |#1| |#2|)) (-15 -4106 (|#1| |#1| "rest" |#1|)) (-15 -4106 (|#2| |#1| "first" |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4118 (|#2| |#1| "first")) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -3325 (|#2| |#1| |#2|)) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3326 (|#1| |#1| (-607 |#1|))) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) (-1194 |#2|) (-1159)) (T -1193)) +NIL +(-10 -8 (-15 -4103 (|#1| |#1| (-526))) (-15 -4106 (|#2| |#1| "last" |#2|)) (-15 -4104 (|#2| |#1| |#2|)) (-15 -4106 (|#1| |#1| "rest" |#1|)) (-15 -4106 (|#2| |#1| "first" |#2|)) (-15 -4108 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4111 ((-735) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-735))) (-15 -4118 (|#2| |#1| "last")) (-15 -4116 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-735))) (-15 -4118 (|#1| |#1| "rest")) (-15 -4117 (|#1| |#1|)) (-15 -4118 (|#2| |#1| "first")) (-15 -4120 (|#1| |#2| |#1|)) (-15 -4120 (|#1| |#1| |#1|)) (-15 -3325 (|#2| |#1| |#2|)) (-15 -4106 (|#2| |#1| #1="value" |#2|)) (-15 -3326 (|#1| |#1| (-607 |#1|))) (-15 -3327 ((-111) |#1| |#1|)) (-15 -3955 ((-111) |#1|)) (-15 -4118 (|#2| |#1| #1#)) (-15 -3721 (|#2| |#1|)) (-15 -3841 ((-111) |#1|)) (-15 -3331 ((-607 |#1|) |#1|)) (-15 -3836 ((-607 |#1|) |#1|)) (-15 -3353 ((-111) |#1| |#1|)) (-15 -4273 ((-735) |#1|)) (-15 -1244 ((-111) |#1| (-735))) (-15 -4041 ((-111) |#1| (-735))) (-15 -4038 ((-111) |#1| (-735)))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-3721 ((|#1| $) 48)) (-4113 ((|#1| $) 65)) (-4115 (($ $) 67)) (-4103 (($ $ (-526)) 52 (|has| $ (-6 -4311)))) (-1244 (((-111) $ (-735)) 8)) (-3325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4311)))) (-4105 (($ $ $) 56 (|has| $ (-6 -4311)))) (-4104 ((|#1| $ |#1|) 54 (|has| $ (-6 -4311)))) (-4107 ((|#1| $ |#1|) 58 (|has| $ (-6 -4311)))) (-4106 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4311))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4311))) (($ $ "rest" $) 55 (|has| $ (-6 -4311))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4311)))) (-3326 (($ $ (-607 $)) 41 (|has| $ (-6 -4311)))) (-4114 ((|#1| $) 66)) (-3855 (($) 7 T CONST)) (-4117 (($ $) 73) (($ $ (-735)) 71)) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-3331 (((-607 $) $) 50)) (-3327 (((-111) $ $) 42 (|has| |#1| (-1052)))) (-4041 (((-111) $ (-735)) 9)) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35)) (-4038 (((-111) $ (-735)) 10)) (-3330 (((-607 |#1|) $) 45)) (-3841 (((-111) $) 49)) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-4116 ((|#1| $) 70) (($ $ (-735)) 68)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 76) (($ $ (-735)) 74)) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3329 (((-526) $ $) 44)) (-3955 (((-111) $) 46)) (-4110 (($ $) 62)) (-4108 (($ $) 59 (|has| $ (-6 -4311)))) (-4111 (((-735) $) 63)) (-4112 (($ $) 64)) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3719 (($ $) 13)) (-4109 (($ $ $) 61 (|has| $ (-6 -4311))) (($ $ |#1|) 60 (|has| $ (-6 -4311)))) (-4120 (($ $ $) 78) (($ |#1| $) 77)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-3836 (((-607 $) $) 51)) (-3328 (((-111) $ $) 43 (|has| |#1| (-1052)))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1194 |#1|) (-134) (-1159)) (T -1194)) +((-4120 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4120 (*1 *1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4112 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4109 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4108 (*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4107 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4105 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) (-4104 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4106 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) (-4 *3 (-1159))))) +(-13 (-968 |t#1|) (-10 -8 (-15 -4120 ($ $ $)) (-15 -4120 ($ |t#1| $)) (-15 -4119 (|t#1| $)) (-15 -4118 (|t#1| $ "first")) (-15 -4119 ($ $ (-735))) (-15 -4117 ($ $)) (-15 -4118 ($ $ "rest")) (-15 -4117 ($ $ (-735))) (-15 -4116 (|t#1| $)) (-15 -4118 (|t#1| $ "last")) (-15 -4116 ($ $ (-735))) (-15 -4115 ($ $)) (-15 -4114 (|t#1| $)) (-15 -4113 (|t#1| $)) (-15 -4112 ($ $)) (-15 -4111 ((-735) $)) (-15 -4110 ($ $)) (IF (|has| $ (-6 -4311)) (PROGN (-15 -4109 ($ $ $)) (-15 -4109 ($ $ |t#1|)) (-15 -4108 ($ $)) (-15 -4107 (|t#1| $ |t#1|)) (-15 -4106 (|t#1| $ "first" |t#1|)) (-15 -4105 ($ $ $)) (-15 -4106 ($ $ "rest" $)) (-15 -4104 (|t#1| $ |t#1|)) (-15 -4106 (|t#1| $ "last" |t#1|)) (-15 -4103 ($ $ (-526)))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1052)) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-583 (-823)))) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-472 |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-968 |#1|) . T) ((-1052) |has| |#1| (-1052)) ((-1159) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-3384 (((-607 (-1033)) $) NIL)) (-4150 (((-1123) $) 87)) (-4130 (((-1174 |#2| |#1|) $ (-735)) 73)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) NIL (|has| |#1| (-533)))) (-2151 (($ $) NIL (|has| |#1| (-533)))) (-2149 (((-111) $) 137 (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 122) (($ $ (-735) (-735)) 124)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 42)) (-3806 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) NIL)) (-3337 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 53) (($ (-1101 |#1|)) NIL)) (-3808 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) NIL T CONST)) (-4123 (($ $) 128)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4135 (($ $) 135)) (-4133 (((-905 |#1|) $ (-735)) 63) (((-905 |#1|) $ (-735) (-735)) 65)) (-3192 (((-111) $) NIL)) (-3949 (($) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) NIL) (((-735) $ (-735)) NIL)) (-2471 (((-111) $) NIL)) (-4126 (($ $) 112)) (-3311 (($ $ (-526)) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4122 (($ (-526) (-526) $) 130)) (-4095 (($ $ (-878)) 134)) (-4134 (($ (-1 |#1| (-526)) $) 106)) (-4254 (((-111) $) NIL)) (-3193 (($ |#1| (-735)) 15) (($ $ (-1033) (-735)) NIL) (($ $ (-607 (-1033)) (-607 (-735))) NIL)) (-4275 (($ (-1 |#1| |#1|) $) 94)) (-4259 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-4127 (($ $) 110)) (-4128 (($ $) 108)) (-4121 (($ (-526) (-526) $) 132)) (-4131 (($ $) 145 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 151 (-3850 (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145))) (-12 (|has| |#1| (-37 (-392 (-526)))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|)))))) (($ $ (-1202 |#2|)) 146 (|has| |#1| (-37 (-392 (-526)))))) (-3555 (((-1070) $) NIL)) (-4124 (($ $ (-526) (-526)) 116)) (-4087 (($ $ (-735)) 118)) (-3780 (((-3 $ "failed") $ $) NIL (|has| |#1| (-533)))) (-4260 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4125 (($ $) 114)) (-4086 (((-1101 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 91) (($ $ $) 126 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 103 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $ (-1202 |#2|)) 99)) (-4264 (((-735) $) NIL)) (-3809 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 120)) (-4274 (((-823) $) NIL) (($ (-526)) 24) (($ (-392 (-526))) 143 (|has| |#1| (-37 (-392 (-526))))) (($ $) NIL (|has| |#1| (-533))) (($ |#1|) 23 (|has| |#1| (-163))) (($ (-1174 |#2| |#1|)) 80) (($ (-1202 |#2|)) 20)) (-4136 (((-1101 |#1|) $) NIL)) (-3999 ((|#1| $ (-735)) 90)) (-3002 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3423 (((-735)) NIL)) (-4091 ((|#1| $) 88)) (-3812 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3810 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) NIL (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 17 T CONST)) (-2964 (($) 13 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) NIL (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) NIL)) (-4265 (($ $ |#1|) NIL (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) 102)) (-4158 (($ $ $) 18)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#1|) 140 (|has| |#1| (-348))) (($ $ $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-392 (-526)) $) NIL (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) NIL (|has| |#1| (-37 (-392 (-526))))))) +(((-1195 |#1| |#2| |#3|) (-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (-15 -4128 ($ $)) (-15 -4127 ($ $)) (-15 -4126 ($ $)) (-15 -4125 ($ $)) (-15 -4124 ($ $ (-526) (-526))) (-15 -4123 ($ $)) (-15 -4122 ($ (-526) (-526) $)) (-15 -4121 ($ (-526) (-526) $)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) (-1004) (-1123) |#1|) (T -1195)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *5 *3))) (-4128 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4126 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4124 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4123 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2))) (-4122 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4121 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3)))) +(-13 (-1198 |#1|) (-10 -8 (-15 -4274 ($ (-1174 |#2| |#1|))) (-15 -4130 ((-1174 |#2| |#1|) $ (-735))) (-15 -4274 ($ (-1202 |#2|))) (-15 -4129 ($ $ (-1202 |#2|))) (-15 -4128 ($ $)) (-15 -4127 ($ $)) (-15 -4126 ($ $)) (-15 -4125 ($ $)) (-15 -4124 ($ $ (-526) (-526))) (-15 -4123 ($ $)) (-15 -4122 ($ (-526) (-526) $)) (-15 -4121 ($ (-526) (-526) $)) (IF (|has| |#1| (-37 (-392 (-526)))) (-15 -4131 ($ $ (-1202 |#2|))) |%noBranch|))) +((-4275 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) (-1004) (-1004) (-1198 |#1|) (-1198 |#2|)) (T -1196)) +((-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1198 *6)) (-5 *1 (-1196 *5 *6 *4 *2)) (-4 *4 (-1198 *5))))) +(-10 -7 (-15 -4275 (|#4| (-1 |#2| |#1|) |#3|))) +((-3502 (((-111) $) 15)) (-3806 (($ $) 92)) (-3961 (($ $) 68)) (-3804 (($ $) 88)) (-3960 (($ $) 64)) (-3808 (($ $) 96)) (-3959 (($ $) 72)) (-4259 (($ $) 62)) (-4260 (($ $) 60)) (-3809 (($ $) 98)) (-3958 (($ $) 74)) (-3807 (($ $) 94)) (-3957 (($ $) 70)) (-3805 (($ $) 90)) (-3956 (($ $) 66)) (-4274 (((-823) $) 48) (($ (-526)) NIL) (($ (-392 (-526))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3812 (($ $) 104)) (-3800 (($ $) 80)) (-3810 (($ $) 100)) (-3798 (($ $) 76)) (-3814 (($ $) 108)) (-3802 (($ $) 84)) (-3815 (($ $) 110)) (-3803 (($ $) 86)) (-3813 (($ $) 106)) (-3801 (($ $) 82)) (-3811 (($ $) 102)) (-3799 (($ $) 78)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-392 (-526))) 58))) +(((-1197 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -3502 ((-111) |#1|)) (-15 -4274 ((-823) |#1|))) (-1198 |#2|) (-1004)) (T -1197)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-392 (-526)))) (-15 -3961 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#2|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| (-392 (-526)))) (-15 -4274 (|#1| (-526))) (-15 ** (|#1| |#1| (-735))) (-15 ** (|#1| |#1| (-878))) (-15 -3502 ((-111) |#1|)) (-15 -4274 ((-823) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-3384 (((-607 (-1033)) $) 72)) (-4150 (((-1123) $) 101)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 49 (|has| |#1| (-533)))) (-2151 (($ $) 50 (|has| |#1| (-533)))) (-2149 (((-111) $) 52 (|has| |#1| (-533)))) (-4089 (($ $ (-735)) 96) (($ $ (-735) (-735)) 95)) (-4092 (((-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|))) $) 103)) (-3806 (($ $) 133 (|has| |#1| (-37 (-392 (-526)))))) (-3961 (($ $) 116 (|has| |#1| (-37 (-392 (-526)))))) (-1345 (((-3 $ "failed") $ $) 19)) (-3337 (($ $) 115 (|has| |#1| (-37 (-392 (-526)))))) (-3804 (($ $) 132 (|has| |#1| (-37 (-392 (-526)))))) (-3960 (($ $) 117 (|has| |#1| (-37 (-392 (-526)))))) (-4137 (($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |#1|)))) 153) (($ (-1101 |#1|)) 151)) (-3808 (($ $) 131 (|has| |#1| (-37 (-392 (-526)))))) (-3959 (($ $) 118 (|has| |#1| (-37 (-392 (-526)))))) (-3855 (($) 17 T CONST)) (-4276 (($ $) 58)) (-3781 (((-3 $ "failed") $) 32)) (-4135 (($ $) 150)) (-4133 (((-905 |#1|) $ (-735)) 148) (((-905 |#1|) $ (-735) (-735)) 147)) (-3192 (((-111) $) 71)) (-3949 (($) 143 (|has| |#1| (-37 (-392 (-526)))))) (-4090 (((-735) $) 98) (((-735) $ (-735)) 97)) (-2471 (((-111) $) 30)) (-3311 (($ $ (-526)) 114 (|has| |#1| (-37 (-392 (-526)))))) (-4095 (($ $ (-878)) 99)) (-4134 (($ (-1 |#1| (-526)) $) 149)) (-4254 (((-111) $) 60)) (-3193 (($ |#1| (-735)) 59) (($ $ (-1033) (-735)) 74) (($ $ (-607 (-1033)) (-607 (-735))) 73)) (-4275 (($ (-1 |#1| |#1|) $) 61)) (-4259 (($ $) 140 (|has| |#1| (-37 (-392 (-526)))))) (-3194 (($ $) 63)) (-3487 ((|#1| $) 64)) (-3554 (((-1106) $) 9)) (-4131 (($ $) 145 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-1123)) 144 (-3850 (-12 (|has| |#1| (-29 (-526))) (|has| |#1| (-919)) (|has| |#1| (-1145)) (|has| |#1| (-37 (-392 (-526))))) (-12 (|has| |#1| (-15 -3384 ((-607 (-1123)) |#1|))) (|has| |#1| (-15 -4131 (|#1| |#1| (-1123)))) (|has| |#1| (-37 (-392 (-526)))))))) (-3555 (((-1070) $) 10)) (-4087 (($ $ (-735)) 93)) (-3780 (((-3 $ "failed") $ $) 48 (|has| |#1| (-533)))) (-4260 (($ $) 141 (|has| |#1| (-37 (-392 (-526)))))) (-4086 (((-1101 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-735)))))) (-4118 ((|#1| $ (-735)) 102) (($ $ $) 79 (|has| (-735) (-1063)))) (-4129 (($ $ (-607 (-1123)) (-607 (-735))) 87 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) 86 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) 85 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 84 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) 82 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-4264 (((-735) $) 62)) (-3809 (($ $) 130 (|has| |#1| (-37 (-392 (-526)))))) (-3958 (($ $) 119 (|has| |#1| (-37 (-392 (-526)))))) (-3807 (($ $) 129 (|has| |#1| (-37 (-392 (-526)))))) (-3957 (($ $) 120 (|has| |#1| (-37 (-392 (-526)))))) (-3805 (($ $) 128 (|has| |#1| (-37 (-392 (-526)))))) (-3956 (($ $) 121 (|has| |#1| (-37 (-392 (-526)))))) (-3191 (($ $) 70)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ (-392 (-526))) 55 (|has| |#1| (-37 (-392 (-526))))) (($ $) 47 (|has| |#1| (-533))) (($ |#1|) 45 (|has| |#1| (-163)))) (-4136 (((-1101 |#1|) $) 152)) (-3999 ((|#1| $ (-735)) 57)) (-3002 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3423 (((-735)) 28)) (-4091 ((|#1| $) 100)) (-3812 (($ $) 139 (|has| |#1| (-37 (-392 (-526)))))) (-3800 (($ $) 127 (|has| |#1| (-37 (-392 (-526)))))) (-2150 (((-111) $ $) 51 (|has| |#1| (-533)))) (-3810 (($ $) 138 (|has| |#1| (-37 (-392 (-526)))))) (-3798 (($ $) 126 (|has| |#1| (-37 (-392 (-526)))))) (-3814 (($ $) 137 (|has| |#1| (-37 (-392 (-526)))))) (-3802 (($ $) 125 (|has| |#1| (-37 (-392 (-526)))))) (-4088 ((|#1| $ (-735)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-735)))) (|has| |#1| (-15 -4274 (|#1| (-1123))))))) (-3815 (($ $) 136 (|has| |#1| (-37 (-392 (-526)))))) (-3803 (($ $) 124 (|has| |#1| (-37 (-392 (-526)))))) (-3813 (($ $) 135 (|has| |#1| (-37 (-392 (-526)))))) (-3801 (($ $) 123 (|has| |#1| (-37 (-392 (-526)))))) (-3811 (($ $) 134 (|has| |#1| (-37 (-392 (-526)))))) (-3799 (($ $) 122 (|has| |#1| (-37 (-392 (-526)))))) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-2969 (($ $ (-607 (-1123)) (-607 (-735))) 91 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123) (-735)) 90 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-607 (-1123))) 89 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-1123)) 88 (-12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (($ $ (-735)) 83 (|has| |#1| (-15 * (|#1| (-735) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-735) |#1|))))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 56 (|has| |#1| (-348)))) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ |#1|) 146 (|has| |#1| (-348))) (($ $ $) 142 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 113 (|has| |#1| (-37 (-392 (-526)))))) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-392 (-526)) $) 54 (|has| |#1| (-37 (-392 (-526))))) (($ $ (-392 (-526))) 53 (|has| |#1| (-37 (-392 (-526))))))) +(((-1198 |#1|) (-134) (-1004)) (T -1198)) +((-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 (-2 (|:| |k| (-735)) (|:| |c| *3)))) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-5 *2 (-1101 *3)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)))) (-4134 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1198 *3)) (-4 *3 (-1004)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) (-4131 (*1 *1 *1 *2) (-3850 (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) (-4 *3 (-37 (-392 (-526)))))) (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526))))))))) +(-13 (-1184 |t#1| (-735)) (-10 -8 (-15 -4137 ($ (-1101 (-2 (|:| |k| (-735)) (|:| |c| |t#1|))))) (-15 -4136 ((-1101 |t#1|) $)) (-15 -4137 ($ (-1101 |t#1|))) (-15 -4135 ($ $)) (-15 -4134 ($ (-1 |t#1| (-526)) $)) (-15 -4133 ((-905 |t#1|) $ (-735))) (-15 -4133 ((-905 |t#1|) $ (-735) (-735))) (IF (|has| |t#1| (-348)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-392 (-526)))) (PROGN (-15 -4131 ($ $)) (IF (|has| |t#1| (-15 -4131 (|t#1| |t#1| (-1123)))) (IF (|has| |t#1| (-15 -3384 ((-607 (-1123)) |t#1|))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1145)) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-29 (-526))) (-15 -4131 ($ $ (-1123))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-960)) (-6 (-1145))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #1=(-735)) . T) ((-25) . T) ((-37 #2=(-392 (-526))) |has| |#1| (-37 (-392 (-526)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-533)) ((-34) |has| |#1| (-37 (-392 (-526)))) ((-93) |has| |#1| (-37 (-392 (-526)))) ((-100) . T) ((-110 #2# #2#) |has| |#1| (-37 (-392 (-526)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-219) |has| |#1| (-15 * (|#1| (-735) |#1|))) ((-269) |has| |#1| (-37 (-392 (-526)))) ((-271 $ $) |has| (-735) (-1063)) ((-275) |has| |#1| (-533)) ((-475) |has| |#1| (-37 (-392 (-526)))) ((-533) |has| |#1| (-533)) ((-613 #2#) |has| |#1| (-37 (-392 (-526)))) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #2#) |has| |#1| (-37 (-392 (-526)))) ((-682 |#1|) |has| |#1| (-163)) ((-682 $) |has| |#1| (-533)) ((-691) . T) ((-859 (-1123)) -12 (|has| |#1| (-859 (-1123))) (|has| |#1| (-15 * (|#1| (-735) |#1|)))) ((-932 |#1| #1# (-1033)) . T) ((-960) |has| |#1| (-37 (-392 (-526)))) ((-1010 #2#) |has| |#1| (-37 (-392 (-526)))) ((-1010 |#1|) . T) ((-1010 $) -3850 (|has| |#1| (-533)) (|has| |#1| (-163))) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1145) |has| |#1| (-37 (-392 (-526)))) ((-1148) |has| |#1| (-37 (-392 (-526)))) ((-1184 |#1| #1#) . T)) +((-4140 (((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|))) 24)) (-4139 (((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4138 (((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|)) 13)) (-4143 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4142 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4144 ((|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|)) 54)) (-4145 (((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))) 61)) (-4141 ((|#2| |#2| |#2|) 43))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -4138 ((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|))) (-15 -4139 ((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4140 ((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|)))) (-15 -4141 (|#2| |#2| |#2|)) (-15 -4142 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4143 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|))) (-15 -4145 ((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))))) (-37 (-392 (-526))) (-1198 |#1|)) (T -1199)) +((-4145 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 (-1 *6 (-607 *6)))) (-4 *5 (-37 (-392 (-526)))) (-4 *6 (-1198 *5)) (-5 *2 (-607 *6)) (-5 *1 (-1199 *5 *6)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-607 *2))) (-5 *4 (-607 *5)) (-4 *5 (-37 (-392 (-526)))) (-4 *2 (-1198 *5)) (-5 *1 (-1199 *5 *2)))) (-4143 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) (-4 *4 (-37 (-392 (-526)))))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) (-4 *4 (-37 (-392 (-526)))))) (-4141 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1198 *3)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-607 *5))) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-607 (-1101 *4)))) (-5 *1 (-1199 *4 *5)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) +(-10 -7 (-15 -4138 ((-1 (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2|))) (-15 -4139 ((-1 (-1101 |#1|) (-1101 |#1|) (-1101 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4140 ((-1 (-1101 |#1|) (-607 (-1101 |#1|))) (-1 |#2| (-607 |#2|)))) (-15 -4141 (|#2| |#2| |#2|)) (-15 -4142 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4143 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4144 (|#2| (-1 |#2| (-607 |#2|)) (-607 |#1|))) (-15 -4145 ((-607 |#2|) (-607 |#1|) (-607 (-1 |#2| (-607 |#2|)))))) +((-4147 ((|#2| |#4| (-735)) 30)) (-4146 ((|#4| |#2|) 25)) (-4149 ((|#4| (-392 |#2|)) 52 (|has| |#1| (-533)))) (-4148 (((-1 |#4| (-607 |#4|)) |#3|) 46))) +(((-1200 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4146 (|#4| |#2|)) (-15 -4147 (|#2| |#4| (-735))) (-15 -4148 ((-1 |#4| (-607 |#4|)) |#3|)) (IF (|has| |#1| (-533)) (-15 -4149 (|#4| (-392 |#2|))) |%noBranch|)) (-1004) (-1181 |#1|) (-623 |#2|) (-1198 |#1|)) (T -1200)) +((-4149 (*1 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-533)) (-4 *4 (-1004)) (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *5 *6 *2)) (-4 *6 (-623 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *5 (-1181 *4)) (-5 *2 (-1 *6 (-607 *6))) (-5 *1 (-1200 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-1198 *4)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-4 *2 (-1181 *5)) (-5 *1 (-1200 *5 *2 *6 *3)) (-4 *6 (-623 *2)) (-4 *3 (-1198 *5)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-1004)) (-4 *3 (-1181 *4)) (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *3 *5 *2)) (-4 *5 (-623 *3))))) +(-10 -7 (-15 -4146 (|#4| |#2|)) (-15 -4147 (|#2| |#4| (-735))) (-15 -4148 ((-1 |#4| (-607 |#4|)) |#3|)) (IF (|has| |#1| (-533)) (-15 -4149 (|#4| (-392 |#2|))) |%noBranch|)) +NIL +(((-1201) (-134)) (T -1201)) +NIL +(-13 (-10 -7 (-6 -2337))) +((-2865 (((-111) $ $) NIL)) (-4150 (((-1123)) 12)) (-3554 (((-1106) $) 17)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 11) (((-1123) $) 8)) (-3353 (((-111) $ $) 14))) +(((-1202 |#1|) (-13 (-1052) (-583 (-1123)) (-10 -8 (-15 -4274 ((-1123) $)) (-15 -4150 ((-1123))))) (-1123)) (T -1202)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2))) (-4150 (*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2)))) +(-13 (-1052) (-583 (-1123)) (-10 -8 (-15 -4274 ((-1123) $)) (-15 -4150 ((-1123))))) +((-4157 (($ (-735)) 18)) (-4154 (((-653 |#2|) $ $) 40)) (-4151 ((|#2| $) 48)) (-4152 ((|#2| $) 47)) (-4155 ((|#2| $ $) 35)) (-4153 (($ $ $) 44)) (-4156 (($ $) 22) (($ $ $) 28)) (-4158 (($ $ $) 15)) (* (($ (-526) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1203 |#1| |#2|) (-10 -8 (-15 -4151 (|#2| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| |#1|)) (-15 -4154 ((-653 |#2|) |#1| |#1|)) (-15 -4155 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| (-735))) (-15 -4158 (|#1| |#1| |#1|))) (-1204 |#2|) (-1159)) (T -1203)) +NIL +(-10 -8 (-15 -4151 (|#2| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| |#1|)) (-15 -4154 ((-653 |#2|) |#1| |#1|)) (-15 -4155 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-526) |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| (-735))) (-15 -4158 (|#1| |#1| |#1|))) +((-2865 (((-111) $ $) 19 (|has| |#1| (-1052)))) (-4157 (($ (-735)) 112 (|has| |#1| (-23)))) (-2276 (((-1211) $ (-526) (-526)) 40 (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4311))) (($ $) 88 (-12 (|has| |#1| (-811)) (|has| $ (-6 -4311))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) 8)) (-4106 ((|#1| $ (-526) |#1|) 52 (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) 58 (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4310)))) (-3855 (($) 7 T CONST)) (-2346 (($ $) 90 (|has| $ (-6 -4311)))) (-2347 (($ $) 100)) (-1375 (($ $) 78 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-3725 (($ |#1| $) 77 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) 53 (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) 51)) (-3738 (((-526) (-1 (-111) |#1|) $) 97) (((-526) |#1| $) 96 (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) 95 (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 30 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) 105 (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) 69)) (-4041 (((-111) $ (-735)) 9)) (-2278 (((-526) $) 43 (|has| (-526) (-811)))) (-3637 (($ $ $) 87 (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-2279 (((-526) $) 44 (|has| (-526) (-811)))) (-3638 (($ $ $) 86 (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4151 ((|#1| $) 102 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-4038 (((-111) $ (-735)) 10)) (-4152 ((|#1| $) 103 (-12 (|has| |#1| (-1004)) (|has| |#1| (-960))))) (-3554 (((-1106) $) 22 (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) 60) (($ $ $ (-526)) 59)) (-2281 (((-607 (-526)) $) 46)) (-2282 (((-111) (-526) $) 47)) (-3555 (((-1070) $) 21 (|has| |#1| (-1052)))) (-4119 ((|#1| $) 42 (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2277 (($ $ |#1|) 41 (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) 26 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) 23 (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) 14)) (-2280 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) 48)) (-3722 (((-111) $) 11)) (-3887 (($) 12)) (-4118 ((|#1| $ (-526) |#1|) 50) ((|#1| $ (-526)) 49) (($ $ (-1172 (-526))) 63)) (-4155 ((|#1| $ $) 106 (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) 62) (($ $ (-1172 (-526))) 61)) (-4153 (($ $ $) 104 (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4310))) (((-735) |#1| $) 28 (-12 (|has| |#1| (-1052)) (|has| $ (-6 -4310))))) (-1823 (($ $ $ (-526)) 91 (|has| $ (-6 -4311)))) (-3719 (($ $) 13)) (-4287 (((-515) $) 79 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 70)) (-4120 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-607 $)) 65)) (-4274 (((-823) $) 18 (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) 84 (|has| |#1| (-811)))) (-2864 (((-111) $ $) 83 (|has| |#1| (-811)))) (-3353 (((-111) $ $) 20 (|has| |#1| (-1052)))) (-2984 (((-111) $ $) 85 (|has| |#1| (-811)))) (-2985 (((-111) $ $) 82 (|has| |#1| (-811)))) (-4156 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4158 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-526) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-691))) (($ $ |#1|) 107 (|has| |#1| (-691)))) (-4273 (((-735) $) 6 (|has| $ (-6 -4310))))) +(((-1204 |#1|) (-134) (-1159)) (T -1204)) +((-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-25)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1204 *3)) (-4 *3 (-23)) (-4 *3 (-1159)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) (-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (-4154 (*1 *2 *1 *1) (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-1004)) (-5 *2 (-653 *3)))) (-4153 (*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4158 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4157 ($ (-735))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4156 ($ $)) (-15 -4156 ($ $ $)) (-15 * ($ (-526) $))) |%noBranch|) (IF (|has| |t#1| (-691)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1004)) (PROGN (-15 -4155 (|t#1| $ $)) (-15 -4154 ((-653 |t#1|) $ $)) (-15 -4153 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -4152 (|t#1| $)) (-15 -4151 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-100) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-583 (-823)) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811)) (|has| |#1| (-583 (-823)))) ((-145 |#1|) . T) ((-584 (-515)) |has| |#1| (-584 (-515))) ((-271 #1=(-526) |#1|) . T) ((-273 #1# |#1|) . T) ((-294 |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-357 |#1|) . T) ((-472 |#1|) . T) ((-574 #1# |#1|) . T) ((-496 |#1| |#1|) -12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))) ((-616 |#1|) . T) ((-19 |#1|) . T) ((-811) |has| |#1| (-811)) ((-1052) -3850 (|has| |#1| (-1052)) (|has| |#1| (-811))) ((-1159) . T)) +((-2865 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-4157 (($ (-735)) NIL (|has| |#1| (-23)))) (-4159 (($ (-607 |#1|)) 9)) (-2276 (((-1211) $ (-526) (-526)) NIL (|has| $ (-6 -4311)))) (-1824 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-811)))) (-1822 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4311))) (($ $) NIL (-12 (|has| $ (-6 -4311)) (|has| |#1| (-811))))) (-3209 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-811)))) (-1244 (((-111) $ (-735)) NIL)) (-4106 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311))) ((|#1| $ (-1172 (-526)) |#1|) NIL (|has| $ (-6 -4311)))) (-4032 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-3855 (($) NIL T CONST)) (-2346 (($ $) NIL (|has| $ (-6 -4311)))) (-2347 (($ $) NIL)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-3725 (($ |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4161 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4310))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4310)))) (-1613 ((|#1| $ (-526) |#1|) NIL (|has| $ (-6 -4311)))) (-3410 ((|#1| $ (-526)) NIL)) (-3738 (((-526) (-1 (-111) |#1|) $) NIL) (((-526) |#1| $) NIL (|has| |#1| (-1052))) (((-526) |#1| $ (-526)) NIL (|has| |#1| (-1052)))) (-2044 (((-607 |#1|) $) 15 (|has| $ (-6 -4310)))) (-4154 (((-653 |#1|) $ $) NIL (|has| |#1| (-1004)))) (-3936 (($ (-735) |#1|) NIL)) (-4041 (((-111) $ (-735)) NIL)) (-2278 (((-526) $) NIL (|has| (-526) (-811)))) (-3637 (($ $ $) NIL (|has| |#1| (-811)))) (-3832 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-811)))) (-2480 (((-607 |#1|) $) NIL (|has| $ (-6 -4310)))) (-3557 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2279 (((-526) $) NIL (|has| (-526) (-811)))) (-3638 (($ $ $) NIL (|has| |#1| (-811)))) (-2048 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4151 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-4038 (((-111) $ (-735)) NIL)) (-4152 ((|#1| $) NIL (-12 (|has| |#1| (-960)) (|has| |#1| (-1004))))) (-3554 (((-1106) $) NIL (|has| |#1| (-1052)))) (-2351 (($ |#1| $ (-526)) NIL) (($ $ $ (-526)) NIL)) (-2281 (((-607 (-526)) $) NIL)) (-2282 (((-111) (-526) $) NIL)) (-3555 (((-1070) $) NIL (|has| |#1| (-1052)))) (-4119 ((|#1| $) NIL (|has| (-526) (-811)))) (-1376 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2277 (($ $ |#1|) NIL (|has| $ (-6 -4311)))) (-2046 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 (-278 |#1|))) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052)))) (($ $ (-607 |#1|) (-607 |#1|)) NIL (-12 (|has| |#1| (-294 |#1|)) (|has| |#1| (-1052))))) (-1245 (((-111) $ $) NIL)) (-2280 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-2283 (((-607 |#1|) $) NIL)) (-3722 (((-111) $) NIL)) (-3887 (($) NIL)) (-4118 ((|#1| $ (-526) |#1|) NIL) ((|#1| $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4155 ((|#1| $ $) NIL (|has| |#1| (-1004)))) (-2352 (($ $ (-526)) NIL) (($ $ (-1172 (-526))) NIL)) (-4153 (($ $ $) NIL (|has| |#1| (-1004)))) (-2045 (((-735) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310))) (((-735) |#1| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#1| (-1052))))) (-1823 (($ $ $ (-526)) NIL (|has| $ (-6 -4311)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) 19 (|has| |#1| (-584 (-515))))) (-3844 (($ (-607 |#1|)) 8)) (-4120 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-607 $)) NIL)) (-4274 (((-823) $) NIL (|has| |#1| (-583 (-823))))) (-2047 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4310)))) (-2863 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2864 (((-111) $ $) NIL (|has| |#1| (-811)))) (-3353 (((-111) $ $) NIL (|has| |#1| (-1052)))) (-2984 (((-111) $ $) NIL (|has| |#1| (-811)))) (-2985 (((-111) $ $) NIL (|has| |#1| (-811)))) (-4156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4158 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-526) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-691))) (($ $ |#1|) NIL (|has| |#1| (-691)))) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1205 |#1|) (-13 (-1204 |#1|) (-10 -8 (-15 -4159 ($ (-607 |#1|))))) (-1159)) (T -1205)) +((-4159 (*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1205 *3))))) +(-13 (-1204 |#1|) (-10 -8 (-15 -4159 ($ (-607 |#1|))))) +((-4160 (((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|) 13)) (-4161 ((|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|) 15)) (-4275 (((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)) 28) (((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|)) 18))) +(((-1206 |#1| |#2|) (-10 -7 (-15 -4160 ((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4275 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (-15 -4275 ((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)))) (-1159) (-1159)) (T -1206)) +((-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) (-4161 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) (-5 *1 (-1206 *5 *2)))) (-4160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1205 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-5 *2 (-1205 *5)) (-5 *1 (-1206 *6 *5))))) +(-10 -7 (-15 -4160 ((-1205 |#2|) (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4161 (|#2| (-1 |#2| |#1| |#2|) (-1205 |#1|) |#2|)) (-15 -4275 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (-15 -4275 ((-3 (-1205 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1205 |#1|)))) +((-4162 (((-452) (-607 (-607 (-902 (-211)))) (-607 (-246))) 21) (((-452) (-607 (-607 (-902 (-211))))) 20) (((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246))) 19)) (-4163 (((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246))) 27) (((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246))) 26)) (-4274 (((-1208) (-452)) 38))) +(((-1207) (-10 -7 (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4274 ((-1208) (-452))))) (T -1207)) +((-4274 (*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4163 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *6 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-452)) (-5 *1 (-1207)))) (-4162 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *6 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207))))) +(-10 -7 (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))))) (-15 -4162 ((-452) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-833) (-833) (-878) (-607 (-246)))) (-15 -4163 ((-1208) (-607 (-607 (-902 (-211)))) (-607 (-246)))) (-15 -4274 ((-1208) (-452)))) +((-2865 (((-111) $ $) NIL)) (-4181 (((-1106) $ (-1106)) 90) (((-1106) $ (-1106) (-1106)) 88) (((-1106) $ (-1106) (-607 (-1106))) 87)) (-4177 (($) 59)) (-4164 (((-1211) $ (-452) (-878)) 45)) (-4170 (((-1211) $ (-878) (-1106)) 73) (((-1211) $ (-878) (-833)) 74)) (-4192 (((-1211) $ (-878) (-363) (-363)) 48)) (-4202 (((-1211) $ (-1106)) 69)) (-4165 (((-1211) $ (-878) (-1106)) 78)) (-4166 (((-1211) $ (-878) (-363) (-363)) 49)) (-4203 (((-1211) $ (-878) (-878)) 46)) (-4183 (((-1211) $) 70)) (-4168 (((-1211) $ (-878) (-1106)) 77)) (-4172 (((-1211) $ (-452) (-878)) 31)) (-4169 (((-1211) $ (-878) (-1106)) 76)) (-4205 (((-607 (-246)) $) 23) (($ $ (-607 (-246))) 24)) (-4204 (((-1211) $ (-735) (-735)) 43)) (-4176 (($ $) 60) (($ (-452) (-607 (-246))) 61)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 38)) (-3555 (((-1070) $) NIL)) (-4173 (((-1205 (-3 (-452) "undefined")) $) 37)) (-4174 (((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $) 36)) (-4175 (((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526)) 68)) (-4178 (((-607 (-902 (-211))) $) NIL)) (-4171 (((-452) $ (-878)) 33)) (-4201 (((-1211) $ (-735) (-735) (-878) (-878)) 40)) (-4199 (((-1211) $ (-1106)) 79)) (-4167 (((-1211) $ (-878) (-1106)) 75)) (-4274 (((-823) $) 85)) (-4180 (((-1211) $) 80)) (-4198 (((-1211) $ (-878) (-1106)) 71) (((-1211) $ (-878) (-833)) 72)) (-3353 (((-111) $ $) NIL))) +(((-1208) (-13 (-1052) (-10 -8 (-15 -4178 ((-607 (-902 (-211))) $)) (-15 -4177 ($)) (-15 -4176 ($ $)) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4176 ($ (-452) (-607 (-246)))) (-15 -4175 ((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526))) (-15 -4174 ((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $)) (-15 -4173 ((-1205 (-3 (-452) "undefined")) $)) (-15 -4202 ((-1211) $ (-1106))) (-15 -4172 ((-1211) $ (-452) (-878))) (-15 -4171 ((-452) $ (-878))) (-15 -4198 ((-1211) $ (-878) (-1106))) (-15 -4198 ((-1211) $ (-878) (-833))) (-15 -4170 ((-1211) $ (-878) (-1106))) (-15 -4170 ((-1211) $ (-878) (-833))) (-15 -4169 ((-1211) $ (-878) (-1106))) (-15 -4168 ((-1211) $ (-878) (-1106))) (-15 -4167 ((-1211) $ (-878) (-1106))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4180 ((-1211) $)) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4166 ((-1211) $ (-878) (-363) (-363))) (-15 -4192 ((-1211) $ (-878) (-363) (-363))) (-15 -4165 ((-1211) $ (-878) (-1106))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4164 ((-1211) $ (-452) (-878))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4183 ((-1211) $)) (-15 -4179 ((-526) $)) (-15 -4274 ((-823) $))))) (T -1208)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1208)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-607 (-902 (-211)))) (-5 *1 (-1208)))) (-4177 (*1 *1) (-5 *1 (-1208))) (-4176 (*1 *1 *1) (-5 *1 (-1208))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-452)) (-5 *3 (-607 (-246))) (-5 *1 (-1208)))) (-4175 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-878)) (-5 *4 (-211)) (-5 *5 (-526)) (-5 *6 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526))))) (-5 *1 (-1208)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-1205 (-3 (-452) "undefined"))) (-5 *1 (-1208)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4172 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-5 *2 (-452)) (-5 *1 (-1208)))) (-4198 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4198 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4169 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4168 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4167 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4201 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4166 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4192 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4165 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4164 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4181 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1208)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1208))))) +(-13 (-1052) (-10 -8 (-15 -4178 ((-607 (-902 (-211))) $)) (-15 -4177 ($)) (-15 -4176 ($ $)) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4176 ($ (-452) (-607 (-246)))) (-15 -4175 ((-1211) $ (-878) (-211) (-211) (-211) (-211) (-526) (-526) (-526) (-526) (-833) (-526) (-833) (-526))) (-15 -4174 ((-1205 (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526)))) $)) (-15 -4173 ((-1205 (-3 (-452) "undefined")) $)) (-15 -4202 ((-1211) $ (-1106))) (-15 -4172 ((-1211) $ (-452) (-878))) (-15 -4171 ((-452) $ (-878))) (-15 -4198 ((-1211) $ (-878) (-1106))) (-15 -4198 ((-1211) $ (-878) (-833))) (-15 -4170 ((-1211) $ (-878) (-1106))) (-15 -4170 ((-1211) $ (-878) (-833))) (-15 -4169 ((-1211) $ (-878) (-1106))) (-15 -4168 ((-1211) $ (-878) (-1106))) (-15 -4167 ((-1211) $ (-878) (-1106))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4180 ((-1211) $)) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4166 ((-1211) $ (-878) (-363) (-363))) (-15 -4192 ((-1211) $ (-878) (-363) (-363))) (-15 -4165 ((-1211) $ (-878) (-1106))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4164 ((-1211) $ (-452) (-878))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4183 ((-1211) $)) (-15 -4179 ((-526) $)) (-15 -4274 ((-823) $)))) +((-2865 (((-111) $ $) NIL)) (-4193 (((-1211) $ (-363)) 140) (((-1211) $ (-363) (-363) (-363)) 141)) (-4181 (((-1106) $ (-1106)) 148) (((-1106) $ (-1106) (-1106)) 146) (((-1106) $ (-1106) (-607 (-1106))) 145)) (-4209 (($) 50)) (-4200 (((-1211) $ (-363) (-363) (-363) (-363) (-363)) 116) (((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $) 114) (((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) 115) (((-1211) $ (-526) (-526) (-363) (-363) (-363)) 117) (((-1211) $ (-363) (-363)) 118) (((-1211) $ (-363) (-363) (-363)) 125)) (-4212 (((-363)) 97) (((-363) (-363)) 98)) (-4214 (((-363)) 92) (((-363) (-363)) 94)) (-4213 (((-363)) 95) (((-363) (-363)) 96)) (-4210 (((-363)) 101) (((-363) (-363)) 102)) (-4211 (((-363)) 99) (((-363) (-363)) 100)) (-4192 (((-1211) $ (-363) (-363)) 142)) (-4202 (((-1211) $ (-1106)) 126)) (-4207 (((-1083 (-211)) $) 51) (($ $ (-1083 (-211))) 52)) (-4188 (((-1211) $ (-1106)) 154)) (-4187 (((-1211) $ (-1106)) 155)) (-4194 (((-1211) $ (-363) (-363)) 124) (((-1211) $ (-526) (-526)) 139)) (-4203 (((-1211) $ (-878) (-878)) 132)) (-4183 (((-1211) $) 112)) (-4191 (((-1211) $ (-1106)) 153)) (-4196 (((-1211) $ (-1106)) 109)) (-4205 (((-607 (-246)) $) 53) (($ $ (-607 (-246))) 54)) (-4204 (((-1211) $ (-735) (-735)) 131)) (-4206 (((-1211) $ (-735) (-902 (-211))) 160)) (-4208 (($ $) 56) (($ (-1083 (-211)) (-1106)) 57) (($ (-1083 (-211)) (-607 (-246))) 58)) (-4185 (((-1211) $ (-363) (-363) (-363)) 106)) (-3554 (((-1106) $) NIL)) (-4179 (((-526) $) 103)) (-4184 (((-1211) $ (-363)) 143)) (-4189 (((-1211) $ (-363)) 158)) (-3555 (((-1070) $) NIL)) (-4190 (((-1211) $ (-363)) 157)) (-4195 (((-1211) $ (-1106)) 111)) (-4201 (((-1211) $ (-735) (-735) (-878) (-878)) 130)) (-4197 (((-1211) $ (-1106)) 108)) (-4199 (((-1211) $ (-1106)) 110)) (-4182 (((-1211) $ (-149) (-149)) 129)) (-4274 (((-823) $) 137)) (-4180 (((-1211) $) 113)) (-4186 (((-1211) $ (-1106)) 156)) (-4198 (((-1211) $ (-1106)) 107)) (-3353 (((-111) $ $) NIL))) +(((-1209) (-13 (-1052) (-10 -8 (-15 -4214 ((-363))) (-15 -4214 ((-363) (-363))) (-15 -4213 ((-363))) (-15 -4213 ((-363) (-363))) (-15 -4212 ((-363))) (-15 -4212 ((-363) (-363))) (-15 -4211 ((-363))) (-15 -4211 ((-363) (-363))) (-15 -4210 ((-363))) (-15 -4210 ((-363) (-363))) (-15 -4209 ($)) (-15 -4208 ($ $)) (-15 -4208 ($ (-1083 (-211)) (-1106))) (-15 -4208 ($ (-1083 (-211)) (-607 (-246)))) (-15 -4207 ((-1083 (-211)) $)) (-15 -4207 ($ $ (-1083 (-211)))) (-15 -4206 ((-1211) $ (-735) (-902 (-211)))) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4202 ((-1211) $ (-1106))) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4200 ((-1211) $ (-363) (-363) (-363) (-363) (-363))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $)) (-15 -4200 ((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4200 ((-1211) $ (-526) (-526) (-363) (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363) (-363))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4198 ((-1211) $ (-1106))) (-15 -4197 ((-1211) $ (-1106))) (-15 -4196 ((-1211) $ (-1106))) (-15 -4195 ((-1211) $ (-1106))) (-15 -4194 ((-1211) $ (-363) (-363))) (-15 -4194 ((-1211) $ (-526) (-526))) (-15 -4193 ((-1211) $ (-363))) (-15 -4193 ((-1211) $ (-363) (-363) (-363))) (-15 -4192 ((-1211) $ (-363) (-363))) (-15 -4191 ((-1211) $ (-1106))) (-15 -4190 ((-1211) $ (-363))) (-15 -4189 ((-1211) $ (-363))) (-15 -4188 ((-1211) $ (-1106))) (-15 -4187 ((-1211) $ (-1106))) (-15 -4186 ((-1211) $ (-1106))) (-15 -4185 ((-1211) $ (-363) (-363) (-363))) (-15 -4184 ((-1211) $ (-363))) (-15 -4183 ((-1211) $)) (-15 -4182 ((-1211) $ (-149) (-149))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4180 ((-1211) $)) (-15 -4179 ((-526) $))))) (T -1209)) +((-4214 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4213 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4212 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4212 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4211 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4210 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4210 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) (-4209 (*1 *1) (-5 *1 (-1209))) (-4208 (*1 *1 *1) (-5 *1 (-1209))) (-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1106)) (-5 *1 (-1209)))) (-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-607 (-246))) (-5 *1 (-1209)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-735)) (-5 *4 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4201 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-526)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4200 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4199 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4198 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4194 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4194 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4193 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4192 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4185 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4182 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4181 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1209)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1209))))) +(-13 (-1052) (-10 -8 (-15 -4214 ((-363))) (-15 -4214 ((-363) (-363))) (-15 -4213 ((-363))) (-15 -4213 ((-363) (-363))) (-15 -4212 ((-363))) (-15 -4212 ((-363) (-363))) (-15 -4211 ((-363))) (-15 -4211 ((-363) (-363))) (-15 -4210 ((-363))) (-15 -4210 ((-363) (-363))) (-15 -4209 ($)) (-15 -4208 ($ $)) (-15 -4208 ($ (-1083 (-211)) (-1106))) (-15 -4208 ($ (-1083 (-211)) (-607 (-246)))) (-15 -4207 ((-1083 (-211)) $)) (-15 -4207 ($ $ (-1083 (-211)))) (-15 -4206 ((-1211) $ (-735) (-902 (-211)))) (-15 -4205 ((-607 (-246)) $)) (-15 -4205 ($ $ (-607 (-246)))) (-15 -4204 ((-1211) $ (-735) (-735))) (-15 -4203 ((-1211) $ (-878) (-878))) (-15 -4202 ((-1211) $ (-1106))) (-15 -4201 ((-1211) $ (-735) (-735) (-878) (-878))) (-15 -4200 ((-1211) $ (-363) (-363) (-363) (-363) (-363))) (-15 -4200 ((-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))) $)) (-15 -4200 ((-1211) $ (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) (|:| |deltaX| (-211)) (|:| |deltaY| (-211))))) (-15 -4200 ((-1211) $ (-526) (-526) (-363) (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363))) (-15 -4200 ((-1211) $ (-363) (-363) (-363))) (-15 -4199 ((-1211) $ (-1106))) (-15 -4198 ((-1211) $ (-1106))) (-15 -4197 ((-1211) $ (-1106))) (-15 -4196 ((-1211) $ (-1106))) (-15 -4195 ((-1211) $ (-1106))) (-15 -4194 ((-1211) $ (-363) (-363))) (-15 -4194 ((-1211) $ (-526) (-526))) (-15 -4193 ((-1211) $ (-363))) (-15 -4193 ((-1211) $ (-363) (-363) (-363))) (-15 -4192 ((-1211) $ (-363) (-363))) (-15 -4191 ((-1211) $ (-1106))) (-15 -4190 ((-1211) $ (-363))) (-15 -4189 ((-1211) $ (-363))) (-15 -4188 ((-1211) $ (-1106))) (-15 -4187 ((-1211) $ (-1106))) (-15 -4186 ((-1211) $ (-1106))) (-15 -4185 ((-1211) $ (-363) (-363) (-363))) (-15 -4184 ((-1211) $ (-363))) (-15 -4183 ((-1211) $)) (-15 -4182 ((-1211) $ (-149) (-149))) (-15 -4181 ((-1106) $ (-1106))) (-15 -4181 ((-1106) $ (-1106) (-1106))) (-15 -4181 ((-1106) $ (-1106) (-607 (-1106)))) (-15 -4180 ((-1211) $)) (-15 -4179 ((-526) $)))) +((-4223 (((-607 (-1106)) (-607 (-1106))) 94) (((-607 (-1106))) 90)) (-4224 (((-607 (-1106))) 88)) (-4221 (((-607 (-878)) (-607 (-878))) 63) (((-607 (-878))) 60)) (-4220 (((-607 (-735)) (-607 (-735))) 57) (((-607 (-735))) 53)) (-4222 (((-1211)) 65)) (-4226 (((-878) (-878)) 81) (((-878)) 80)) (-4225 (((-878) (-878)) 79) (((-878)) 78)) (-4218 (((-833) (-833)) 75) (((-833)) 74)) (-4228 (((-211)) 85) (((-211) (-363)) 87)) (-4227 (((-878)) 82) (((-878) (-878)) 83)) (-4219 (((-878) (-878)) 77) (((-878)) 76)) (-4215 (((-833) (-833)) 69) (((-833)) 67)) (-4216 (((-833) (-833)) 71) (((-833)) 70)) (-4217 (((-833) (-833)) 73) (((-833)) 72))) +(((-1210) (-10 -7 (-15 -4215 ((-833))) (-15 -4215 ((-833) (-833))) (-15 -4216 ((-833))) (-15 -4216 ((-833) (-833))) (-15 -4217 ((-833))) (-15 -4217 ((-833) (-833))) (-15 -4218 ((-833))) (-15 -4218 ((-833) (-833))) (-15 -4219 ((-878))) (-15 -4219 ((-878) (-878))) (-15 -4220 ((-607 (-735)))) (-15 -4220 ((-607 (-735)) (-607 (-735)))) (-15 -4221 ((-607 (-878)))) (-15 -4221 ((-607 (-878)) (-607 (-878)))) (-15 -4222 ((-1211))) (-15 -4223 ((-607 (-1106)))) (-15 -4223 ((-607 (-1106)) (-607 (-1106)))) (-15 -4224 ((-607 (-1106)))) (-15 -4225 ((-878))) (-15 -4226 ((-878))) (-15 -4225 ((-878) (-878))) (-15 -4226 ((-878) (-878))) (-15 -4227 ((-878) (-878))) (-15 -4227 ((-878))) (-15 -4228 ((-211) (-363))) (-15 -4228 ((-211))))) (T -1210)) +((-4228 (*1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1210)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-1210)))) (-4227 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4225 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4226 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4225 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4224 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4223 (*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4223 (*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) (-4222 (*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1210)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) (-4221 (*1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) (-4220 (*1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4219 (*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4218 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4217 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4216 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) (-4215 (*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) +(-10 -7 (-15 -4215 ((-833))) (-15 -4215 ((-833) (-833))) (-15 -4216 ((-833))) (-15 -4216 ((-833) (-833))) (-15 -4217 ((-833))) (-15 -4217 ((-833) (-833))) (-15 -4218 ((-833))) (-15 -4218 ((-833) (-833))) (-15 -4219 ((-878))) (-15 -4219 ((-878) (-878))) (-15 -4220 ((-607 (-735)))) (-15 -4220 ((-607 (-735)) (-607 (-735)))) (-15 -4221 ((-607 (-878)))) (-15 -4221 ((-607 (-878)) (-607 (-878)))) (-15 -4222 ((-1211))) (-15 -4223 ((-607 (-1106)))) (-15 -4223 ((-607 (-1106)) (-607 (-1106)))) (-15 -4224 ((-607 (-1106)))) (-15 -4225 ((-878))) (-15 -4226 ((-878))) (-15 -4225 ((-878) (-878))) (-15 -4226 ((-878) (-878))) (-15 -4227 ((-878) (-878))) (-15 -4227 ((-878))) (-15 -4228 ((-211) (-363))) (-15 -4228 ((-211)))) +((-4229 (($) 7)) (-4274 (((-823) $) 10))) +(((-1211) (-10 -8 (-15 -4229 ($)) (-15 -4274 ((-823) $)))) (T -1211)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1211)))) (-4229 (*1 *1) (-5 *1 (-1211)))) +(-10 -8 (-15 -4229 ($)) (-15 -4274 ((-823) $))) +((-4265 (($ $ |#2|) 10))) +(((-1212 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#2|))) (-1213 |#2|) (-348)) (T -1212)) +NIL +(-10 -8 (-15 -4265 (|#1| |#1| |#2|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4230 (((-131)) 28)) (-4274 (((-823) $) 11)) (-2957 (($) 18 T CONST)) (-3353 (((-111) $ $) 6)) (-4265 (($ $ |#1|) 29)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1213 |#1|) (-134) (-348)) (T -1213)) +((-4265 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-348)))) (-4230 (*1 *2) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-348)) (-5 *2 (-131))))) +(-13 (-682 |t#1|) (-10 -8 (-15 -4265 ($ $ |t#1|)) (-15 -4230 ((-131))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-682 |#1|) . T) ((-1010 |#1|) . T) ((-1052) . T)) +((-4235 (((-607 (-1152 |#1|)) (-1123) (-1152 |#1|)) 74)) (-4233 (((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|))) 53)) (-4236 (((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))) 64)) (-4231 (((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735)) 55)) (-4234 (((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123)) 29)) (-4232 (((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735)) 54))) +(((-1214 |#1|) (-10 -7 (-15 -4231 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4232 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4233 ((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|)))) (-15 -4234 ((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123))) (-15 -4235 ((-607 (-1152 |#1|)) (-1123) (-1152 |#1|))) (-15 -4236 ((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))))) (-348)) (T -1214)) +((-4236 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-735)) (-4 *6 (-348)) (-5 *4 (-1152 *6)) (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1214 *6)) (-5 *5 (-1101 *4)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-607 (-1152 *5))) (-5 *1 (-1214 *5)) (-5 *4 (-1152 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1 (-1117 (-905 *4)) (-905 *4))) (-5 *1 (-1214 *4)) (-4 *4 (-348)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-1101 (-1101 (-905 *5)))) (-5 *1 (-1214 *5)) (-5 *4 (-1101 (-905 *5))))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) (-5 *1 (-1214 *4)) (-4 *4 (-348)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) (-5 *1 (-1214 *4)) (-4 *4 (-348))))) +(-10 -7 (-15 -4231 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4232 ((-1 (-1101 (-905 |#1|)) (-1101 (-905 |#1|))) (-735))) (-15 -4233 ((-1101 (-1101 (-905 |#1|))) (-1123) (-1101 (-905 |#1|)))) (-15 -4234 ((-1 (-1117 (-905 |#1|)) (-905 |#1|)) (-1123))) (-15 -4235 ((-607 (-1152 |#1|)) (-1123) (-1152 |#1|))) (-15 -4236 ((-1 (-1101 (-1152 |#1|)) (-1101 (-1152 |#1|))) (-735) (-1152 |#1|) (-1101 (-1152 |#1|))))) +((-4238 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|) 75)) (-4237 (((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|)))) 74))) +(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|))) (-335) (-1181 |#1|) (-1181 |#2|) (-395 |#2| |#3|)) (T -1215)) +((-4238 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) (-5 *2 (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) (-5 *1 (-1215 *4 *3 *5 *6)) (-4 *6 (-395 *3 *5)))) (-4237 (*1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) (-5 *1 (-1215 *3 *4 *5 *6)) (-4 *6 (-395 *4 *5))))) +(-10 -7 (-15 -4237 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))))) (-15 -4238 ((-2 (|:| -2104 (-653 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-653 |#2|))) |#2|))) +((-2865 (((-111) $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4239 (((-1128) $) 9)) (-4274 (((-823) $) NIL) (((-1128) $) NIL)) (-3353 (((-111) $ $) NIL))) +(((-1216) (-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $))))) (T -1216)) +((-4239 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1216))))) +(-13 (-1035) (-10 -8 (-15 -4239 ((-1128) $)))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 43)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) NIL)) (-2471 (((-111) $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4274 (((-823) $) 64) (($ (-526)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-163)))) (-3423 (((-735)) NIL)) (-4240 (((-1211) (-735)) 16)) (-2957 (($) 27 T CONST)) (-2964 (($) 67 T CONST)) (-3353 (((-111) $ $) 69)) (-4265 (((-3 $ "failed") $ $) NIL (|has| |#1| (-348)))) (-4156 (($ $) 71) (($ $ $) NIL)) (-4158 (($ $ $) 47)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-1217 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 (|#4| $)) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4274 ($ |#4|)) (-15 -4240 ((-1211) (-735))))) (-1004) (-811) (-757) (-909 |#1| |#3| |#2|) (-607 |#2|) (-607 (-735)) (-735)) (T -1217)) +((-4274 (*1 *2 *1) (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4265 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-757)) (-14 *6 (-607 *3)) (-5 *1 (-1217 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-909 *2 *4 *3)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-909 *3 *5 *4)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) (-14 *8 (-607 *5)) (-5 *2 (-1211)) (-5 *1 (-1217 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-909 *4 *6 *5)) (-14 *9 (-607 *3)) (-14 *10 *3)))) +(-13 (-1004) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4274 (|#4| $)) (IF (|has| |#1| (-348)) (-15 -4265 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4274 ($ |#4|)) (-15 -4240 ((-1211) (-735))))) +((-2865 (((-111) $ $) NIL)) (-4003 (((-607 (-2 (|:| -4180 $) (|:| -1794 (-607 |#4|)))) (-607 |#4|)) NIL)) (-4004 (((-607 $) (-607 |#4|)) 88)) (-3384 (((-607 |#3|) $) NIL)) (-3208 (((-111) $) NIL)) (-3199 (((-111) $) NIL (|has| |#1| (-533)))) (-4015 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4010 ((|#4| |#4| $) NIL)) (-3209 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-1244 (((-111) $ (-735)) NIL)) (-4032 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3855 (($) NIL T CONST)) (-3204 (((-111) $) NIL (|has| |#1| (-533)))) (-3206 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3205 (((-111) $ $) NIL (|has| |#1| (-533)))) (-3207 (((-111) $) NIL (|has| |#1| (-533)))) (-4011 (((-607 |#4|) (-607 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-3200 (((-607 |#4|) (-607 |#4|) $) 25 (|has| |#1| (-533)))) (-3201 (((-607 |#4|) (-607 |#4|) $) NIL (|has| |#1| (-533)))) (-3470 (((-3 $ "failed") (-607 |#4|)) NIL)) (-3469 (($ (-607 |#4|)) NIL)) (-4117 (((-3 $ #1#) $) 70)) (-4007 ((|#4| |#4| $) 75)) (-1375 (($ $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-3725 (($ |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3202 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4016 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-4005 ((|#4| |#4| $) NIL)) (-4161 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4310))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4310))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4018 (((-2 (|:| -4180 (-607 |#4|)) (|:| -1794 (-607 |#4|))) $) NIL)) (-2044 (((-607 |#4|) $) NIL (|has| $ (-6 -4310)))) (-4017 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3493 ((|#3| $) 76)) (-4041 (((-111) $ (-735)) NIL)) (-2480 (((-607 |#4|) $) 29 (|has| $ (-6 -4310)))) (-3557 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052))))) (-4243 (((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-607 |#4|)) 35)) (-2048 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4311)))) (-4275 (($ (-1 |#4| |#4|) $) NIL)) (-3214 (((-607 |#3|) $) NIL)) (-3213 (((-111) |#3| $) NIL)) (-4038 (((-111) $ (-735)) NIL)) (-3554 (((-1106) $) NIL)) (-4116 (((-3 |#4| #1#) $) NIL)) (-4019 (((-607 |#4|) $) 50)) (-4013 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4008 ((|#4| |#4| $) 74)) (-4021 (((-111) $ $) 85)) (-3203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-533)))) (-4014 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4009 ((|#4| |#4| $) NIL)) (-3555 (((-1070) $) NIL)) (-4119 (((-3 |#4| #1#) $) 69)) (-1376 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-4001 (((-3 $ #1#) $ |#4|) NIL)) (-4087 (($ $ |#4|) NIL)) (-2046 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4086 (($ $ (-607 |#4|) (-607 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052)))) (($ $ (-607 (-278 |#4|))) NIL (-12 (|has| |#4| (-294 |#4|)) (|has| |#4| (-1052))))) (-1245 (((-111) $ $) NIL)) (-3722 (((-111) $) 67)) (-3887 (($) 42)) (-4264 (((-735) $) NIL)) (-2045 (((-735) |#4| $) NIL (-12 (|has| $ (-6 -4310)) (|has| |#4| (-1052)))) (((-735) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-3719 (($ $) NIL)) (-4287 (((-515) $) NIL (|has| |#4| (-584 (-515))))) (-3844 (($ (-607 |#4|)) NIL)) (-3210 (($ $ |#3|) NIL)) (-3212 (($ $ |#3|) NIL)) (-4006 (($ $) NIL)) (-3211 (($ $ |#3|) NIL)) (-4274 (((-823) $) NIL) (((-607 |#4|) $) 57)) (-4000 (((-735) $) NIL (|has| |#3| (-353)))) (-4242 (((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-607 |#4|)) 41)) (-4241 (((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-607 $) (-607 |#4|)) 66)) (-4020 (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3643 (-607 |#4|))) #1#) (-607 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4012 (((-111) $ (-1 (-111) |#4| (-607 |#4|))) NIL)) (-2047 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4310)))) (-4002 (((-607 |#3|) $) NIL)) (-4250 (((-111) |#3| $) NIL)) (-3353 (((-111) $ $) NIL)) (-4273 (((-735) $) NIL (|has| $ (-6 -4310))))) +(((-1218 |#1| |#2| |#3| |#4|) (-13 (-1154 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4243 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-607 |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|))) (-15 -4241 ((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4241 ((-607 $) (-607 |#4|))))) (-533) (-757) (-811) (-1018 |#1| |#2| |#3|)) (T -1218)) +((-4243 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8)))) (-4243 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) (-4242 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8)))) (-4242 (*1 *1 *2) (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 (-607 (-1218 *6 *7 *8 *9))) (-5 *1 (-1218 *6 *7 *8 *9)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 (-1218 *4 *5 *6 *7))) (-5 *1 (-1218 *4 *5 *6 *7))))) +(-13 (-1154 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4243 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-607 |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4242 ((-3 $ "failed") (-607 |#4|))) (-15 -4241 ((-607 $) (-607 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4241 ((-607 $) (-607 |#4|))))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-1345 (((-3 $ "failed") $ $) 19)) (-3855 (($) 17 T CONST)) (-3781 (((-3 $ "failed") $) 32)) (-2471 (((-111) $) 30)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#1|) 36)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1219 |#1|) (-134) (-1004)) (T -1219)) +((-4274 (*1 *1 *2) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1004))))) +(-13 (-1004) (-110 |t#1| |t#1|) (-10 -8 (-15 -4274 ($ |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 |#1|) |has| |#1| (-163)) ((-691) . T) ((-1010 |#1|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T)) +((-2865 (((-111) $ $) 60)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 45)) (-4263 (($ $ (-735)) 39)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ (-735)) 18 (|has| |#2| (-163))) (($ $ $) 19 (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ $) 63) (($ $ (-783 |#1|)) 49) (($ $ |#1|) 53)) (-3470 (((-3 (-783 |#1|) "failed") $) NIL)) (-3469 (((-783 |#1|) $) NIL)) (-4276 (($ $) 32)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) NIL)) (-4266 (($ $) NIL)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) 31)) (-4253 (($ $) 33)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 12)) (-4271 (((-783 |#1|) $) NIL)) (-4272 (((-783 |#1|) $) 34)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (($ $ $) 62) (($ $ (-783 |#1|)) 51) (($ $ |#1|) 55)) (-1841 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-783 |#1|) $) 28)) (-3487 ((|#2| $) 30)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4264 (((-735) $) 36)) (-4269 (((-111) $) 40)) (-4268 ((|#2| $) NIL)) (-4274 (((-823) $) NIL) (($ (-783 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-526)) NIL)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-783 |#1|)) NIL)) (-4270 ((|#2| $ $) 65) ((|#2| $ (-783 |#1|)) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 13 T CONST)) (-2964 (($) 15 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3353 (((-111) $ $) 38)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 22)) (** (($ $ (-735)) NIL) (($ $ (-878)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-783 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1220 |#1| |#2|) (-13 (-369 |#2| (-783 |#1|)) (-1227 |#1| |#2|)) (-811) (-1004)) (T -1220)) +NIL +(-13 (-369 |#2| (-783 |#1|)) (-1227 |#1| |#2|)) +((-4259 ((|#3| |#3| (-735)) 23)) (-4260 ((|#3| |#3| (-735)) 27)) (-4244 ((|#3| |#3| |#3| (-735)) 28))) +(((-1221 |#1| |#2| |#3|) (-10 -7 (-15 -4260 (|#3| |#3| (-735))) (-15 -4259 (|#3| |#3| (-735))) (-15 -4244 (|#3| |#3| |#3| (-735)))) (-13 (-1004) (-682 (-392 (-526)))) (-811) (-1227 |#2| |#1|)) (T -1221)) +((-4244 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) (-4260 (*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4))))) +(-10 -7 (-15 -4260 (|#3| |#3| (-735))) (-15 -4259 (|#3| |#3| (-735))) (-15 -4244 (|#3| |#3| |#3| (-735)))) +((-4249 (((-111) $) 15)) (-4250 (((-111) $) 14)) (-4245 (($ $) 19) (($ $ (-735)) 20))) +(((-1222 |#1| |#2|) (-10 -8 (-15 -4245 (|#1| |#1| (-735))) (-15 -4245 (|#1| |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|))) (-1223 |#2|) (-348)) (T -1222)) +NIL +(-10 -8 (-15 -4245 (|#1| |#1| (-735))) (-15 -4245 (|#1| |#1|)) (-15 -4249 ((-111) |#1|)) (-15 -4250 ((-111) |#1|))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-2152 (((-2 (|:| -1868 $) (|:| -4297 $) (|:| |associate| $)) $) 39)) (-2151 (($ $) 38)) (-2149 (((-111) $) 36)) (-4249 (((-111) $) 91)) (-4246 (((-735)) 87)) (-1345 (((-3 $ "failed") $ $) 19)) (-4093 (($ $) 70)) (-4286 (((-390 $) $) 69)) (-1681 (((-111) $ $) 57)) (-3855 (($) 17 T CONST)) (-3470 (((-3 |#1| "failed") $) 98)) (-3469 ((|#1| $) 97)) (-2861 (($ $ $) 53)) (-3781 (((-3 $ "failed") $) 32)) (-2860 (($ $ $) 54)) (-3041 (((-2 (|:| -4270 (-607 $)) (|:| -2470 $)) (-607 $)) 49)) (-1862 (($ $ (-735)) 84 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353)))) (($ $) 83 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4045 (((-111) $) 68)) (-4090 (((-796 (-878)) $) 81 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-2471 (((-111) $) 30)) (-1678 (((-3 (-607 $) #1="failed") (-607 $) $) 50)) (-1989 (($ $ $) 44) (($ (-607 $)) 43)) (-3554 (((-1106) $) 9)) (-2703 (($ $) 67)) (-4248 (((-111) $) 90)) (-3555 (((-1070) $) 10)) (-3008 (((-1117 $) (-1117 $) (-1117 $)) 42)) (-3457 (($ $ $) 46) (($ (-607 $)) 45)) (-4051 (((-390 $) $) 71)) (-4247 (((-796 (-878))) 88)) (-1679 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2470 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3780 (((-3 $ "failed") $ $) 40)) (-3040 (((-3 (-607 $) "failed") (-607 $) $) 48)) (-1680 (((-735) $) 56)) (-3181 (((-2 (|:| -2072 $) (|:| -3202 $)) $ $) 55)) (-1863 (((-3 (-735) "failed") $ $) 82 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-4230 (((-131)) 96)) (-4264 (((-796 (-878)) $) 89)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ $) 41) (($ (-392 (-526))) 63) (($ |#1|) 99)) (-3002 (((-3 $ "failed") $) 80 (-3850 (|has| |#1| (-139)) (|has| |#1| (-353))))) (-3423 (((-735)) 28)) (-2150 (((-111) $ $) 37)) (-4250 (((-111) $) 92)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-4245 (($ $) 86 (|has| |#1| (-353))) (($ $ (-735)) 85 (|has| |#1| (-353)))) (-3353 (((-111) $ $) 6)) (-4265 (($ $ $) 62) (($ $ |#1|) 95)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31) (($ $ (-526)) 66)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ $ (-392 (-526))) 65) (($ (-392 (-526)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1223 |#1|) (-134) (-348)) (T -1223)) +((-4250 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) (-4247 (*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) (-4246 (*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-735)))) (-4245 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-348)) (-4 *2 (-353)))) (-4245 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-4 *3 (-353))))) +(-13 (-348) (-995 |t#1|) (-1213 |t#1|) (-10 -8 (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-387)) |%noBranch|) (-15 -4250 ((-111) $)) (-15 -4249 ((-111) $)) (-15 -4248 ((-111) $)) (-15 -4264 ((-796 (-878)) $)) (-15 -4247 ((-796 (-878)))) (-15 -4246 ((-735))) (IF (|has| |t#1| (-353)) (PROGN (-6 (-387)) (-15 -4245 ($ $)) (-15 -4245 ($ $ (-735)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #1=(-392 (-526))) . T) ((-37 $) . T) ((-100) . T) ((-110 #1# #1#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-583 (-823)) . T) ((-163) . T) ((-229) . T) ((-275) . T) ((-292) . T) ((-348) . T) ((-387) -3850 (|has| |#1| (-353)) (|has| |#1| (-139))) ((-436) . T) ((-533) . T) ((-613 #1#) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-682 #1#) . T) ((-682 |#1|) . T) ((-682 $) . T) ((-691) . T) ((-880) . T) ((-995 |#1|) . T) ((-1010 #1#) . T) ((-1010 |#1|) . T) ((-1010 $) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1164) . T) ((-1213 |#1|) . T)) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 38)) (-1345 (((-3 $ "failed") $ $) 19)) (-4252 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-735)) 40 (|has| |#2| (-163)))) (-3855 (($) 17 T CONST)) (-4256 (($ $ |#1|) 52) (($ $ (-783 |#1|)) 51) (($ $ $) 50)) (-3470 (((-3 (-783 |#1|) "failed") $) 62)) (-3469 (((-783 |#1|) $) 61)) (-3781 (((-3 $ "failed") $) 32)) (-4267 (((-111) $) 43)) (-4266 (($ $) 42)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 48)) (-4255 (($ (-783 |#1|) |#2|) 49)) (-4253 (($ $) 47)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 58)) (-4271 (((-783 |#1|) $) 59)) (-4275 (($ (-1 |#2| |#2|) $) 39)) (-4257 (($ $ |#1|) 55) (($ $ (-783 |#1|)) 54) (($ $ $) 53)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4269 (((-111) $) 45)) (-4268 ((|#2| $) 44)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#2|) 66) (($ (-783 |#1|)) 63) (($ |#1|) 46)) (-4270 ((|#2| $ (-783 |#1|)) 57) ((|#2| $ $) 56)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1224 |#1| |#2|) (-134) (-811) (-1004)) (T -1224)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) (-4258 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| |k| (-783 *3)) (|:| |c| *4))))) (-4270 (*1 *2 *1 *3) (-12 (-5 *3 (-783 *4)) (-4 *1 (-1224 *4 *2)) (-4 *4 (-811)) (-4 *2 (-1004)))) (-4270 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (-4257 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4257 (*1 *1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4257 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4256 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4256 (*1 *1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4256 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-783 *4)) (-4 *4 (-811)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1004)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4253 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4274 (*1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)) (-4 *3 (-163)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-4 *4 (-163)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4251 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-607 *3))))) +(-13 (-1004) (-1219 |t#2|) (-995 (-783 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4271 ((-783 |t#1|) $)) (-15 -4258 ((-2 (|:| |k| (-783 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4270 (|t#2| $ (-783 |t#1|))) (-15 -4270 (|t#2| $ $)) (-15 -4257 ($ $ |t#1|)) (-15 -4257 ($ $ (-783 |t#1|))) (-15 -4257 ($ $ $)) (-15 -4256 ($ $ |t#1|)) (-15 -4256 ($ $ (-783 |t#1|))) (-15 -4256 ($ $ $)) (-15 -4255 ($ (-783 |t#1|) |t#2|)) (-15 -4254 ((-111) $)) (-15 -4253 ($ $)) (-15 -4274 ($ |t#1|)) (-15 -4269 ((-111) $)) (-15 -4268 (|t#2| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (IF (|has| |t#2| (-163)) (PROGN (-15 -4252 ($ $ $)) (-15 -4252 ($ $ (-735)))) |%noBranch|) (-15 -4275 ($ (-1 |t#2| |t#2|) $)) (-15 -4251 ((-607 |t#1|) $)) (IF (|has| |t#2| (-6 -4303)) (-6 -4303) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-613 $) . T) ((-682 |#2|) |has| |#2| (-163)) ((-691) . T) ((-995 (-783 |#1|)) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1219 |#2|) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 86)) (-4263 (($ $ (-735)) 89)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) NIL (|has| |#2| (-163))) (($ $ (-735)) NIL (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ |#1|) NIL) (($ $ (-783 |#1|)) NIL) (($ $ $) NIL)) (-3470 (((-3 (-783 |#1|) #1="failed") $) NIL) (((-3 (-852 |#1|) #1#) $) NIL)) (-3469 (((-783 |#1|) $) NIL) (((-852 |#1|) $) NIL)) (-4276 (($ $) 88)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) 77)) (-4266 (($ $) 81)) (-4261 (($ $ $ (-735)) 90)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) NIL) (($ (-852 |#1|) |#2|) 26)) (-4253 (($ $) 103)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4271 (((-783 |#1|) $) NIL)) (-4272 (((-783 |#1|) $) NIL)) (-4275 (($ (-1 |#2| |#2|) $) NIL)) (-4257 (($ $ |#1|) NIL) (($ $ (-783 |#1|)) NIL) (($ $ $) NIL)) (-4259 (($ $ (-735)) 97 (|has| |#2| (-682 (-392 (-526)))))) (-1841 (((-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3194 (((-852 |#1|) $) 70)) (-3487 ((|#2| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4260 (($ $ (-735)) 94 (|has| |#2| (-682 (-392 (-526)))))) (-4264 (((-735) $) 87)) (-4269 (((-111) $) 71)) (-4268 ((|#2| $) 75)) (-4274 (((-823) $) 57) (($ (-526)) NIL) (($ |#2|) 51) (($ (-783 |#1|)) NIL) (($ |#1|) 59) (($ (-852 |#1|)) NIL) (($ (-629 |#1| |#2|)) 43) (((-1220 |#1| |#2|) $) 64) (((-1229 |#1| |#2|) $) 69)) (-4136 (((-607 |#2|) $) NIL)) (-3999 ((|#2| $ (-852 |#1|)) NIL)) (-4270 ((|#2| $ (-783 |#1|)) NIL) ((|#2| $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) 21 T CONST)) (-2964 (($) 25 T CONST)) (-2963 (((-607 (-2 (|:| |k| (-852 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4262 (((-3 (-629 |#1| |#2|) "failed") $) 102)) (-3353 (((-111) $ $) 65)) (-4156 (($ $) 96) (($ $ $) 95)) (-4158 (($ $ $) 20)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-852 |#1|)) NIL))) +(((-1225 |#1| |#2|) (-13 (-1227 |#1| |#2|) (-369 |#2| (-852 |#1|)) (-10 -8 (-15 -4274 ($ (-629 |#1| |#2|))) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1229 |#1| |#2|) $)) (-15 -4262 ((-3 (-629 |#1| |#2|) "failed") $)) (-15 -4261 ($ $ $ (-735))) (IF (|has| |#2| (-682 (-392 (-526)))) (PROGN (-15 -4260 ($ $ (-735))) (-15 -4259 ($ $ (-735)))) |%noBranch|))) (-811) (-163)) (T -1225)) +((-4274 (*1 *1 *2) (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *1 (-1225 *3 *4)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1229 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4262 (*1 *2 *1) (|partial| -12 (-5 *2 (-629 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4261 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) (-4260 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) (-4 *3 (-811)) (-4 *4 (-163)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) (-4 *3 (-811)) (-4 *4 (-163))))) +(-13 (-1227 |#1| |#2|) (-369 |#2| (-852 |#1|)) (-10 -8 (-15 -4274 ($ (-629 |#1| |#2|))) (-15 -4274 ((-1220 |#1| |#2|) $)) (-15 -4274 ((-1229 |#1| |#2|) $)) (-15 -4262 ((-3 (-629 |#1| |#2|) "failed") $)) (-15 -4261 ($ $ $ (-735))) (IF (|has| |#2| (-682 (-392 (-526)))) (PROGN (-15 -4260 ($ $ (-735))) (-15 -4259 ($ $ (-735)))) |%noBranch|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-4251 (((-607 (-1123)) $) NIL)) (-4279 (($ (-1220 (-1123) |#1|)) NIL)) (-4263 (($ $ (-735)) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) NIL (|has| |#1| (-163))) (($ $ (-735)) NIL (|has| |#1| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ (-1123)) NIL) (($ $ (-783 (-1123))) NIL) (($ $ $) NIL)) (-3470 (((-3 (-783 (-1123)) "failed") $) NIL)) (-3469 (((-783 (-1123)) $) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-4267 (((-111) $) NIL)) (-4266 (($ $) NIL)) (-2471 (((-111) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 (-1123)) |#1|) NIL)) (-4253 (($ $) NIL)) (-4258 (((-2 (|:| |k| (-783 (-1123))) (|:| |c| |#1|)) $) NIL)) (-4271 (((-783 (-1123)) $) NIL)) (-4272 (((-783 (-1123)) $) NIL)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-4257 (($ $ (-1123)) NIL) (($ $ (-783 (-1123))) NIL) (($ $ $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4280 (((-1220 (-1123) |#1|) $) NIL)) (-4264 (((-735) $) NIL)) (-4269 (((-111) $) NIL)) (-4268 ((|#1| $) NIL)) (-4274 (((-823) $) NIL) (($ (-526)) NIL) (($ |#1|) NIL) (($ (-783 (-1123))) NIL) (($ (-1123)) NIL)) (-4270 ((|#1| $ (-783 (-1123))) NIL) ((|#1| $ $) NIL)) (-3423 (((-735)) NIL)) (-2957 (($) NIL T CONST)) (-4278 (((-607 (-2 (|:| |k| (-1123)) (|:| |c| $))) $) NIL)) (-2964 (($) NIL T CONST)) (-3353 (((-111) $ $) NIL)) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (** (($ $ (-878)) NIL) (($ $ (-735)) NIL)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1123) $) NIL))) +(((-1226 |#1|) (-13 (-1227 (-1123) |#1|) (-10 -8 (-15 -4280 ((-1220 (-1123) |#1|) $)) (-15 -4279 ($ (-1220 (-1123) |#1|))) (-15 -4278 ((-607 (-2 (|:| |k| (-1123)) (|:| |c| $))) $)))) (-1004)) (T -1226)) +((-4280 (*1 *2 *1) (-12 (-5 *2 (-1220 (-1123) *3)) (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-1220 (-1123) *3)) (-4 *3 (-1004)) (-5 *1 (-1226 *3)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| (-1123)) (|:| |c| (-1226 *3))))) (-5 *1 (-1226 *3)) (-4 *3 (-1004))))) +(-13 (-1227 #1=(-1123) |#1|) (-10 -8 (-15 -4280 ((-1220 #1# |#1|) $)) (-15 -4279 ($ (-1220 #1# |#1|))) (-15 -4278 ((-607 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-2865 (((-111) $ $) 7)) (-3502 (((-111) $) 16)) (-4251 (((-607 |#1|) $) 38)) (-4263 (($ $ (-735)) 71)) (-1345 (((-3 $ "failed") $ $) 19)) (-4252 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-735)) 40 (|has| |#2| (-163)))) (-3855 (($) 17 T CONST)) (-4256 (($ $ |#1|) 52) (($ $ (-783 |#1|)) 51) (($ $ $) 50)) (-3470 (((-3 (-783 |#1|) "failed") $) 62)) (-3469 (((-783 |#1|) $) 61)) (-3781 (((-3 $ "failed") $) 32)) (-4267 (((-111) $) 43)) (-4266 (($ $) 42)) (-2471 (((-111) $) 30)) (-4254 (((-111) $) 48)) (-4255 (($ (-783 |#1|) |#2|) 49)) (-4253 (($ $) 47)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) 58)) (-4271 (((-783 |#1|) $) 59)) (-4272 (((-783 |#1|) $) 73)) (-4275 (($ (-1 |#2| |#2|) $) 39)) (-4257 (($ $ |#1|) 55) (($ $ (-783 |#1|)) 54) (($ $ $) 53)) (-3554 (((-1106) $) 9)) (-3555 (((-1070) $) 10)) (-4264 (((-735) $) 72)) (-4269 (((-111) $) 45)) (-4268 ((|#2| $) 44)) (-4274 (((-823) $) 11) (($ (-526)) 27) (($ |#2|) 66) (($ (-783 |#1|)) 63) (($ |#1|) 46)) (-4270 ((|#2| $ (-783 |#1|)) 57) ((|#2| $ $) 56)) (-3423 (((-735)) 28)) (-2957 (($) 18 T CONST)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 6)) (-4156 (($ $) 22) (($ $ $) 21)) (-4158 (($ $ $) 14)) (** (($ $ (-878)) 25) (($ $ (-735)) 31)) (* (($ (-878) $) 13) (($ (-735) $) 15) (($ (-526) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1227 |#1| |#2|) (-134) (-811) (-1004)) (T -1227)) +((-4272 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-735)))) (-4263 (*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) +(-13 (-1224 |t#1| |t#2|) (-10 -8 (-15 -4272 ((-783 |t#1|) $)) (-15 -4264 ((-735) $)) (-15 -4263 ($ $ (-735))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-583 (-823)) . T) ((-613 |#2|) . T) ((-613 $) . T) ((-682 |#2|) |has| |#2| (-163)) ((-691) . T) ((-995 (-783 |#1|)) . T) ((-1010 |#2|) . T) ((-1004) . T) ((-1011) . T) ((-1063) . T) ((-1052) . T) ((-1219 |#2|) . T) ((-1224 |#1| |#2|) . T)) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) NIL)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3855 (($) NIL T CONST)) (-3470 (((-3 |#2| "failed") $) NIL)) (-3469 ((|#2| $) NIL)) (-4276 (($ $) NIL)) (-3781 (((-3 $ "failed") $) 36)) (-4267 (((-111) $) 30)) (-4266 (($ $) 32)) (-2471 (((-111) $) NIL)) (-2479 (((-735) $) NIL)) (-3121 (((-607 $) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ |#2| |#1|) NIL)) (-4271 ((|#2| $) 19)) (-4272 ((|#2| $) 16)) (-4275 (($ (-1 |#1| |#1|) $) NIL)) (-1841 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3194 ((|#2| $) NIL)) (-3487 ((|#1| $) NIL)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4269 (((-111) $) 27)) (-4268 ((|#1| $) 28)) (-4274 (((-823) $) 55) (($ (-526)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4136 (((-607 |#1|) $) NIL)) (-3999 ((|#1| $ |#2|) NIL)) (-4270 ((|#1| $ |#2|) 24)) (-3423 (((-735)) 14)) (-2957 (($) 25 T CONST)) (-2964 (($) 11 T CONST)) (-2963 (((-607 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3353 (((-111) $ $) 26)) (-4265 (($ $ |#1|) 57 (|has| |#1| (-348)))) (-4156 (($ $) NIL) (($ $ $) NIL)) (-4158 (($ $ $) 44)) (** (($ $ (-878)) NIL) (($ $ (-735)) 46)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4273 (((-735) $) 15))) +(((-1228 |#1| |#2|) (-13 (-1004) (-1219 |#1|) (-369 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4273 ((-735) $)) (-15 -4274 ($ |#2|)) (-15 -4272 (|#2| $)) (-15 -4271 (|#2| $)) (-15 -4276 ($ $)) (-15 -4270 (|#1| $ |#2|)) (-15 -4269 ((-111) $)) (-15 -4268 (|#1| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-348)) (-15 -4265 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4303)) (-6 -4303) |%noBranch|) (IF (|has| |#1| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) (-1004) (-807)) (T -1228)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-1228 *3 *4)) (-4 *4 (-807)))) (-4274 (*1 *1 *2) (-12 (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-807)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4272 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)))) (-4271 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)))) (-4270 (*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4268 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807)))) (-4266 (*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807)))) (-4265 (*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-807))))) +(-13 (-1004) (-1219 |#1|) (-369 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4273 ((-735) $)) (-15 -4274 ($ |#2|)) (-15 -4272 (|#2| $)) (-15 -4271 (|#2| $)) (-15 -4276 ($ $)) (-15 -4270 (|#1| $ |#2|)) (-15 -4269 ((-111) $)) (-15 -4268 (|#1| $)) (-15 -4267 ((-111) $)) (-15 -4266 ($ $)) (-15 -4275 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-348)) (-15 -4265 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4303)) (-6 -4303) |%noBranch|) (IF (|has| |#1| (-6 -4307)) (-6 -4307) |%noBranch|) (IF (|has| |#1| (-6 -4308)) (-6 -4308) |%noBranch|))) +((-2865 (((-111) $ $) 26)) (-3502 (((-111) $) NIL)) (-4251 (((-607 |#1|) $) 120)) (-4279 (($ (-1220 |#1| |#2|)) 44)) (-4263 (($ $ (-735)) 32)) (-1345 (((-3 $ "failed") $ $) NIL)) (-4252 (($ $ $) 48 (|has| |#2| (-163))) (($ $ (-735)) 46 (|has| |#2| (-163)))) (-3855 (($) NIL T CONST)) (-4256 (($ $ |#1|) 102) (($ $ (-783 |#1|)) 103) (($ $ $) 25)) (-3470 (((-3 (-783 |#1|) "failed") $) NIL)) (-3469 (((-783 |#1|) $) NIL)) (-3781 (((-3 $ "failed") $) 110)) (-4267 (((-111) $) 105)) (-4266 (($ $) 106)) (-2471 (((-111) $) NIL)) (-4254 (((-111) $) NIL)) (-4255 (($ (-783 |#1|) |#2|) 19)) (-4253 (($ $) NIL)) (-4258 (((-2 (|:| |k| (-783 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4271 (((-783 |#1|) $) 111)) (-4272 (((-783 |#1|) $) 114)) (-4275 (($ (-1 |#2| |#2|) $) 119)) (-4257 (($ $ |#1|) 100) (($ $ (-783 |#1|)) 101) (($ $ $) 56)) (-3554 (((-1106) $) NIL)) (-3555 (((-1070) $) NIL)) (-4280 (((-1220 |#1| |#2|) $) 84)) (-4264 (((-735) $) 117)) (-4269 (((-111) $) 70)) (-4268 ((|#2| $) 28)) (-4274 (((-823) $) 63) (($ (-526)) 77) (($ |#2|) 74) (($ (-783 |#1|)) 17) (($ |#1|) 73)) (-4270 ((|#2| $ (-783 |#1|)) 104) ((|#2| $ $) 27)) (-3423 (((-735)) 108)) (-2957 (($) 14 T CONST)) (-4278 (((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2964 (($) 29 T CONST)) (-3353 (((-111) $ $) 13)) (-4156 (($ $) 88) (($ $ $) 91)) (-4158 (($ $ $) 55)) (** (($ $ (-878)) NIL) (($ $ (-735)) 49)) (* (($ (-878) $) NIL) (($ (-735) $) 47) (($ (-526) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1229 |#1| |#2|) (-13 (-1227 |#1| |#2|) (-10 -8 (-15 -4280 ((-1220 |#1| |#2|) $)) (-15 -4279 ($ (-1220 |#1| |#2|))) (-15 -4278 ((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-811) (-1004)) (T -1229)) +((-4280 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *1 (-1229 *3 *4)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-607 (-2 (|:| |k| *3) (|:| |c| (-1229 *3 *4))))) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) +(-13 (-1227 |#1| |#2|) (-10 -8 (-15 -4280 ((-1220 |#1| |#2|) $)) (-15 -4279 ($ (-1220 |#1| |#2|))) (-15 -4278 ((-607 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4281 (((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)) 15) (((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|))) 11))) +(((-1230 |#1|) (-10 -7 (-15 -4281 ((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|)))) (-15 -4281 ((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)))) (-1159)) (T -1230)) +((-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-607 (-1101 *5)) (-607 (-1101 *5)))) (-5 *4 (-526)) (-5 *2 (-607 (-1101 *5))) (-5 *1 (-1230 *5)) (-4 *5 (-1159)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1 (-1101 *4) (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1159))))) +(-10 -7 (-15 -4281 ((-1101 |#1|) (-1 (-1101 |#1|) (-1101 |#1|)))) (-15 -4281 ((-607 (-1101 |#1|)) (-1 (-607 (-1101 |#1|)) (-607 (-1101 |#1|))) (-526)))) +((-4283 (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|))) 148) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111)) 147) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111)) 146) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111)) 145) (((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|)) 130)) (-4282 (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|))) 72) (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111)) 71) (((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111)) 70)) (-4286 (((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|)) 61)) (-4284 (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|))) 115) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111)) 114) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111)) 113) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111)) 112) (((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|)) 107)) (-4285 (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|))) 120) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111)) 119) (((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111)) 118) (((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|)) 117)) (-4287 (((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) 98) (((-1117 (-981 (-392 |#1|))) (-1117 |#1|)) 89) (((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|))) 96) (((-905 (-981 (-392 |#1|))) (-905 |#1|)) 94) (((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|))) 33))) +(((-1231 |#1| |#2| |#3|) (-10 -7 (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4286 ((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|))) (-15 -4287 ((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|)))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-905 |#1|))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|)))) (-15 -4287 ((-1117 (-981 (-392 |#1|))) (-1117 |#1|))) (-15 -4287 ((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))))) (-13 (-809) (-292) (-141) (-977)) (-607 (-1123)) (-607 (-1123))) (T -1231)) +((-4287 (*1 *2 *3) (-12 (-5 *3 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6)))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-744 *4 (-824 *6)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-1117 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-744 *4 (-824 *6))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-744 *4 (-824 *5))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-744 *4 (-824 *6))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4286 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4285 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4283 (*1 *2 *3) (-12 (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1231 *4 *5 *6)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4283 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *4 *5))) (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) (-4282 (*1 *2 *3 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) (-4282 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123)))))) +(-10 -7 (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)) (-111))) (-15 -4282 ((-607 (-1001 |#1| |#2|)) (-607 (-905 |#1|)))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-1001 |#1| |#2|))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)) (-111))) (-15 -4283 ((-607 (-2 (|:| -1839 (-1117 |#1|)) (|:| -3537 (-607 (-905 |#1|))))) (-607 (-905 |#1|)))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4284 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-1001 |#1| |#2|))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)) (-111))) (-15 -4285 ((-607 (-607 (-981 (-392 |#1|)))) (-607 (-905 |#1|)))) (-15 -4286 ((-607 (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))) (-1001 |#1| |#2|))) (-15 -4287 ((-744 |#1| (-824 |#3|)) (-744 |#1| (-824 |#2|)))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-905 |#1|))) (-15 -4287 ((-905 (-981 (-392 |#1|))) (-744 |#1| (-824 |#3|)))) (-15 -4287 ((-1117 (-981 (-392 |#1|))) (-1117 |#1|))) (-15 -4287 ((-607 (-744 |#1| (-824 |#3|))) (-1094 |#1| (-512 (-824 |#3|)) (-824 |#3|) (-744 |#1| (-824 |#3|)))))) +((-4290 (((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|) 21)) (-4288 (((-111) (-1205 |#1|)) 12)) (-4289 (((-3 (-1205 (-526)) "failed") (-1205 |#1|)) 16))) +(((-1232 |#1|) (-10 -7 (-15 -4288 ((-111) (-1205 |#1|))) (-15 -4289 ((-3 (-1205 (-526)) "failed") (-1205 |#1|))) (-15 -4290 ((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|))) (-606 (-526))) (T -1232)) +((-4290 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-1205 (-392 (-526)))) (-5 *1 (-1232 *4)))) (-4289 (*1 *2 *3) (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-1205 (-526))) (-5 *1 (-1232 *4)))) (-4288 (*1 *2 *3) (-12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-111)) (-5 *1 (-1232 *4))))) +(-10 -7 (-15 -4288 ((-111) (-1205 |#1|))) (-15 -4289 ((-3 (-1205 (-526)) "failed") (-1205 |#1|))) (-15 -4290 ((-3 (-1205 (-392 (-526))) "failed") (-1205 |#1|) |#1|))) +((-2865 (((-111) $ $) NIL)) (-3502 (((-111) $) 11)) (-1345 (((-3 $ "failed") $ $) NIL)) (-3433 (((-735)) 8)) (-3855 (($) NIL T CONST)) (-3781 (((-3 $ "failed") $) 43)) (-3294 (($) 36)) (-2471 (((-111) $) NIL)) (-3763 (((-3 $ "failed") $) 29)) (-2102 (((-878) $) 15)) (-3554 (((-1106) $) NIL)) (-3764 (($) 25 T CONST)) (-2461 (($ (-878)) 37)) (-3555 (((-1070) $) NIL)) (-4287 (((-526) $) 13)) (-4274 (((-823) $) 22) (($ (-526)) 19)) (-3423 (((-735)) 9)) (-2957 (($) 23 T CONST)) (-2964 (($) 24 T CONST)) (-3353 (((-111) $ $) 27)) (-4156 (($ $) 38) (($ $ $) 35)) (-4158 (($ $ $) 26)) (** (($ $ (-878)) NIL) (($ $ (-735)) 40)) (* (($ (-878) $) NIL) (($ (-735) $) NIL) (($ (-526) $) 32) (($ $ $) 31))) +(((-1233 |#1|) (-13 (-163) (-353) (-584 (-526)) (-1099)) (-878)) (T -1233)) +NIL +(-13 (-163) (-353) (-584 (-526)) (-1099)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3141263 3141268 3141273 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3141248 3141253 3141258 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3141233 3141238 3141243 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3141218 3141223 3141228 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1233 3140394 3141093 3141170 "ZMOD" 3141175 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1232 3139504 3139668 3139877 "ZLINDEP" 3140226 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1231 3128880 3130632 3132591 "ZDSOLVE" 3137646 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1230 3128126 3128267 3128456 "YSTREAM" 3128726 NIL YSTREAM (NIL T) -7 NIL NIL) (-1229 3125937 3127427 3127631 "XRPOLY" 3127969 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1228 3122429 3123712 3124296 "XPR" 3125400 NIL XPR (NIL T T) -8 NIL NIL) (-1227 3120279 3121613 3121668 "XPOLYC" 3121956 NIL XPOLYC (NIL T T) -9 NIL 3122069) (-1226 3118044 3119619 3119823 "XPOLY" 3120119 NIL XPOLY (NIL T) -8 NIL NIL) (-1225 3114464 3116561 3116949 "XPBWPOLY" 3117702 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1224 3109858 3111113 3111168 "XFALG" 3113340 NIL XFALG (NIL T T) -9 NIL 3114128) (-1223 3105847 3108093 3108135 "XF" 3108756 NIL XF (NIL T) -9 NIL 3109155) (-1222 3105468 3105556 3105725 "XF-" 3105730 NIL XF- (NIL T T) -8 NIL NIL) (-1221 3104601 3104705 3104910 "XEXPPKG" 3105360 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1220 3102745 3104451 3104547 "XDPOLY" 3104552 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1219 3101661 3102227 3102270 "XALG" 3102333 NIL XALG (NIL T) -9 NIL 3102453) (-1218 3095157 3099638 3100132 "WUTSET" 3101253 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1217 3093008 3093769 3094122 "WP" 3094938 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1216 3092654 3092830 3092900 "WHILEAST" 3092960 T WHILEAST (NIL) -8 NIL NIL) (-1215 3091540 3091738 3092033 "WFFINTBS" 3092451 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1214 3089444 3089871 3090333 "WEIER" 3091112 NIL WEIER (NIL T) -7 NIL NIL) (-1213 3088591 3089015 3089057 "VSPACE" 3089193 NIL VSPACE (NIL T) -9 NIL 3089267) (-1212 3088429 3088456 3088547 "VSPACE-" 3088552 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1211 3088175 3088218 3088289 "VOID" 3088380 T VOID (NIL) -8 NIL NIL) (-1210 3084600 3085238 3085975 "VIEWDEF" 3087460 T VIEWDEF (NIL) -7 NIL NIL) (-1209 3073938 3076148 3078321 "VIEW3D" 3082449 T VIEW3D (NIL) -8 NIL NIL) (-1208 3066220 3067849 3069428 "VIEW2D" 3072381 T VIEW2D (NIL) -8 NIL NIL) (-1207 3064356 3064715 3065121 "VIEW" 3065836 T VIEW (NIL) -7 NIL NIL) (-1206 3062933 3063192 3063510 "VECTOR2" 3064086 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1205 3058337 3062703 3062795 "VECTOR" 3062876 NIL VECTOR (NIL T) -8 NIL NIL) (-1204 3051864 3056121 3056164 "VECTCAT" 3057157 NIL VECTCAT (NIL T) -9 NIL 3057743) (-1203 3050878 3051132 3051522 "VECTCAT-" 3051527 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1202 3050359 3050529 3050649 "VARIABLE" 3050793 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1201 3050292 3050297 3050327 "UTYPE" 3050332 T UTYPE (NIL) -9 NIL NIL) (-1200 3049122 3049276 3049538 "UTSODETL" 3050118 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1199 3046562 3047022 3047546 "UTSODE" 3048663 NIL UTSODE (NIL T T) -7 NIL NIL) (-1198 3037935 3043254 3043297 "UTSCAT" 3044409 NIL UTSCAT (NIL T) -9 NIL 3045166) (-1197 3035289 3036005 3036994 "UTSCAT-" 3036999 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1196 3034916 3034959 3035092 "UTS2" 3035240 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1195 3026792 3032542 3033031 "UTS" 3034485 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1194 3021068 3023632 3023675 "URAGG" 3025745 NIL URAGG (NIL T) -9 NIL 3026467) (-1193 3018010 3018872 3019994 "URAGG-" 3019999 NIL URAGG- (NIL T T) -8 NIL NIL) (-1192 3013749 3016627 3017098 "UPXSSING" 3017674 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1191 3006864 3013653 3013725 "UPXSCONS" 3013730 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1190 2997226 3003969 3004031 "UPXSCCA" 3004687 NIL UPXSCCA (NIL T T) -9 NIL 3004928) (-1189 2996864 2996949 2997123 "UPXSCCA-" 2997128 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1188 2987150 2993666 2993709 "UPXSCAT" 2994357 NIL UPXSCAT (NIL T) -9 NIL 2994965) (-1187 2986580 2986659 2986838 "UPXS2" 2987065 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1186 2978556 2985697 2985978 "UPXS" 2986357 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1185 2977213 2977465 2977815 "UPSQFREE" 2978300 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1184 2971131 2974140 2974195 "UPSCAT" 2975356 NIL UPSCAT (NIL T T) -9 NIL 2976130) (-1183 2970335 2970542 2970869 "UPSCAT-" 2970874 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1182 2969962 2970005 2970138 "UPOLYC2" 2970286 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1181 2956097 2964055 2964098 "UPOLYC" 2966199 NIL UPOLYC (NIL T) -9 NIL 2967420) (-1180 2947462 2949875 2953010 "UPOLYC-" 2953015 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1179 2946801 2946908 2947072 "UPMP" 2947351 NIL UPMP (NIL T T) -7 NIL NIL) (-1178 2946354 2946435 2946574 "UPDIVP" 2946714 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1177 2944922 2945171 2945487 "UPDECOMP" 2946103 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1176 2944157 2944269 2944454 "UPCDEN" 2944806 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1175 2943676 2943745 2943894 "UP2" 2944082 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1174 2935178 2943242 2943380 "UP" 2943586 NIL UP (NIL NIL T) -8 NIL NIL) (-1173 2934393 2934520 2934725 "UNISEG2" 2935021 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1172 2932910 2933597 2933874 "UNISEG" 2934151 NIL UNISEG (NIL T) -8 NIL NIL) (-1171 2931970 2932150 2932376 "UNIFACT" 2932726 NIL UNIFACT (NIL T) -7 NIL NIL) (-1170 2920035 2931874 2931946 "ULSCONS" 2931951 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1169 2902870 2914782 2914844 "ULSCCAT" 2915564 NIL ULSCCAT (NIL T T) -9 NIL 2915860) (-1168 2901956 2902189 2902565 "ULSCCAT-" 2902570 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1167 2892019 2898449 2898492 "ULSCAT" 2899355 NIL ULSCAT (NIL T) -9 NIL 2900085) (-1166 2891449 2891528 2891707 "ULS2" 2891934 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1165 2875442 2890626 2890877 "ULS" 2891256 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1164 2873880 2874803 2874833 "UFD" 2875045 T UFD (NIL) -9 NIL 2875159) (-1163 2873674 2873720 2873815 "UFD-" 2873820 NIL UFD- (NIL T) -8 NIL NIL) (-1162 2872756 2872939 2873155 "UDVO" 2873480 T UDVO (NIL) -7 NIL NIL) (-1161 2870572 2870981 2871452 "UDPO" 2872320 NIL UDPO (NIL T) -7 NIL NIL) (-1160 2870226 2870394 2870464 "TYPEAST" 2870524 T TYPEAST (NIL) -8 NIL NIL) (-1159 2870159 2870164 2870194 "TYPE" 2870199 T TYPE (NIL) -9 NIL NIL) (-1158 2869130 2869332 2869572 "TWOFACT" 2869953 NIL TWOFACT (NIL T) -7 NIL NIL) (-1157 2868068 2868405 2868668 "TUPLE" 2868902 NIL TUPLE (NIL T) -8 NIL NIL) (-1156 2865759 2866278 2866817 "TUBETOOL" 2867551 T TUBETOOL (NIL) -7 NIL NIL) (-1155 2864608 2864813 2865054 "TUBE" 2865552 NIL TUBE (NIL T) -8 NIL NIL) (-1154 2853275 2857367 2857464 "TSETCAT" 2862733 NIL TSETCAT (NIL T T T T) -9 NIL 2864264) (-1153 2848009 2849607 2851498 "TSETCAT-" 2851503 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1152 2842773 2846981 2847264 "TS" 2847761 NIL TS (NIL T) -8 NIL NIL) (-1151 2837036 2837882 2838824 "TRMANIP" 2841909 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1150 2836477 2836540 2836703 "TRIMAT" 2836968 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1149 2834283 2834520 2834883 "TRIGMNIP" 2836226 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1148 2833803 2833916 2833946 "TRIGCAT" 2834159 T TRIGCAT (NIL) -9 NIL NIL) (-1147 2833472 2833551 2833692 "TRIGCAT-" 2833697 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1146 2830372 2832332 2832612 "TREE" 2833227 NIL TREE (NIL T) -8 NIL NIL) (-1145 2829646 2830174 2830204 "TRANFUN" 2830239 T TRANFUN (NIL) -9 NIL 2830305) (-1144 2828925 2829116 2829396 "TRANFUN-" 2829401 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1143 2828729 2828761 2828822 "TOPSP" 2828886 T TOPSP (NIL) -7 NIL NIL) (-1142 2828077 2828192 2828346 "TOOLSIGN" 2828610 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1141 2826738 2827254 2827493 "TEXTFILE" 2827860 T TEXTFILE (NIL) -8 NIL NIL) (-1140 2826519 2826550 2826622 "TEX1" 2826701 NIL TEX1 (NIL T) -7 NIL NIL) (-1139 2824384 2824898 2825336 "TEX" 2826103 T TEX (NIL) -8 NIL NIL) (-1138 2824032 2824095 2824185 "TEMUTL" 2824316 T TEMUTL (NIL) -7 NIL NIL) (-1137 2822186 2822466 2822791 "TBCMPPK" 2823755 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1136 2814076 2820346 2820402 "TBAGG" 2820802 NIL TBAGG (NIL T T) -9 NIL 2821013) (-1135 2809146 2810634 2812388 "TBAGG-" 2812393 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1134 2808530 2808637 2808782 "TANEXP" 2809035 NIL TANEXP (NIL T) -7 NIL NIL) (-1133 2807942 2808041 2808179 "TABLEAU" 2808427 NIL TABLEAU (NIL T) -8 NIL NIL) (-1132 2801445 2807799 2807892 "TABLE" 2807897 NIL TABLE (NIL T T) -8 NIL NIL) (-1131 2796053 2797273 2798521 "TABLBUMP" 2800231 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1130 2795481 2795581 2795709 "SYSTEM" 2795947 T SYSTEM (NIL) -7 NIL NIL) (-1129 2791944 2792639 2793422 "SYSSOLP" 2794732 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1128 2788235 2788943 2789677 "SYNTAX" 2791232 T SYNTAX (NIL) -8 NIL NIL) (-1127 2785393 2785995 2786627 "SYMTAB" 2787625 T SYMTAB (NIL) -8 NIL NIL) (-1126 2780666 2781562 2782539 "SYMS" 2784438 T SYMS (NIL) -8 NIL NIL) (-1125 2777953 2780127 2780357 "SYMPOLY" 2780474 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1124 2777470 2777545 2777668 "SYMFUNC" 2777865 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1123 2773447 2774707 2775529 "SYMBOL" 2776670 T SYMBOL (NIL) -8 NIL NIL) (-1122 2766986 2768675 2770395 "SWITCH" 2771749 T SWITCH (NIL) -8 NIL NIL) (-1121 2760256 2765807 2766110 "SUTS" 2766741 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1120 2752231 2759373 2759654 "SUPXS" 2760033 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1119 2751390 2751517 2751734 "SUPFRACF" 2752099 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1118 2751011 2751070 2751183 "SUP2" 2751325 NIL SUP2 (NIL T T) -7 NIL NIL) (-1117 2742585 2750629 2750755 "SUP" 2750920 NIL SUP (NIL T) -8 NIL NIL) (-1116 2741003 2741277 2741639 "SUMRF" 2742284 NIL SUMRF (NIL T) -7 NIL NIL) (-1115 2740320 2740386 2740584 "SUMFS" 2740924 NIL SUMFS (NIL T T) -7 NIL NIL) (-1114 2724353 2739497 2739748 "SULS" 2740127 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1113 2723675 2723878 2724018 "SUCH" 2724261 NIL SUCH (NIL T T) -8 NIL NIL) (-1112 2717569 2718581 2719540 "SUBSPACE" 2722763 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1111 2716999 2717089 2717253 "SUBRESP" 2717457 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1110 2711172 2712292 2713439 "STTFNC" 2715899 NIL STTFNC (NIL T) -7 NIL NIL) (-1109 2704541 2705837 2707148 "STTF" 2709908 NIL STTF (NIL T) -7 NIL NIL) (-1108 2695856 2697723 2699517 "STTAYLOR" 2702782 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1107 2689102 2695720 2695803 "STRTBL" 2695808 NIL STRTBL (NIL T) -8 NIL NIL) (-1106 2684493 2689057 2689088 "STRING" 2689093 T STRING (NIL) -8 NIL NIL) (-1105 2679381 2683866 2683896 "STRICAT" 2683955 T STRICAT (NIL) -9 NIL 2684017) (-1104 2678891 2678968 2679112 "STREAM3" 2679298 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1103 2677873 2678056 2678291 "STREAM2" 2678704 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1102 2677561 2677613 2677706 "STREAM1" 2677815 NIL STREAM1 (NIL T) -7 NIL NIL) (-1101 2670277 2675084 2675704 "STREAM" 2676976 NIL STREAM (NIL T) -8 NIL NIL) (-1100 2669293 2669474 2669705 "STINPROD" 2670093 NIL STINPROD (NIL T) -7 NIL NIL) (-1099 2668871 2669055 2669085 "STEP" 2669165 T STEP (NIL) -9 NIL 2669243) (-1098 2662416 2668770 2668847 "STBL" 2668852 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1097 2657593 2661638 2661681 "STAGG" 2661834 NIL STAGG (NIL T) -9 NIL 2661923) (-1096 2655301 2655901 2656771 "STAGG-" 2656776 NIL STAGG- (NIL T T) -8 NIL NIL) (-1095 2653496 2655071 2655163 "STACK" 2655244 NIL STACK (NIL T) -8 NIL NIL) (-1094 2646248 2651637 2652093 "SREGSET" 2653126 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1093 2638674 2640042 2641555 "SRDCMPK" 2644854 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1092 2631641 2636114 2636144 "SRAGG" 2637447 T SRAGG (NIL) -9 NIL 2638055) (-1091 2630658 2630913 2631292 "SRAGG-" 2631297 NIL SRAGG- (NIL T) -8 NIL NIL) (-1090 2625153 2629573 2630001 "SQMATRIX" 2630277 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1089 2618906 2621873 2622599 "SPLTREE" 2624499 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1088 2614896 2615562 2616208 "SPLNODE" 2618332 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1087 2613943 2614176 2614206 "SPFCAT" 2614650 T SPFCAT (NIL) -9 NIL NIL) (-1086 2612680 2612890 2613154 "SPECOUT" 2613701 T SPECOUT (NIL) -7 NIL NIL) (-1085 2612441 2612481 2612550 "SPADPRSR" 2612633 T SPADPRSR (NIL) -7 NIL NIL) (-1084 2604412 2606159 2606202 "SPACEC" 2610575 NIL SPACEC (NIL T) -9 NIL 2612391) (-1083 2602583 2604344 2604393 "SPACE3" 2604398 NIL SPACE3 (NIL T) -8 NIL NIL) (-1082 2601335 2601506 2601797 "SORTPAK" 2602388 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1081 2599391 2599694 2600112 "SOLVETRA" 2600999 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1080 2598402 2598624 2598898 "SOLVESER" 2599164 NIL SOLVESER (NIL T) -7 NIL NIL) (-1079 2593622 2594503 2595505 "SOLVERAD" 2597454 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1078 2589437 2590046 2590775 "SOLVEFOR" 2592989 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1077 2583761 2588786 2588883 "SNTSCAT" 2588888 NIL SNTSCAT (NIL T T T T) -9 NIL 2588958) (-1076 2577903 2582084 2582475 "SMTS" 2583451 NIL SMTS (NIL T T T) -8 NIL NIL) (-1075 2572384 2577791 2577868 "SMP" 2577873 NIL SMP (NIL T T) -8 NIL NIL) (-1074 2570543 2570844 2571242 "SMITH" 2572081 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1073 2563534 2567680 2567783 "SMATCAT" 2569137 NIL SMATCAT (NIL NIL T T T) -9 NIL 2569687) (-1072 2560495 2561311 2562482 "SMATCAT-" 2562487 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1071 2558208 2559731 2559774 "SKAGG" 2560035 NIL SKAGG (NIL T) -9 NIL 2560170) (-1070 2554314 2557312 2557590 "SINT" 2557952 T SINT (NIL) -8 NIL NIL) (-1069 2554086 2554124 2554190 "SIMPAN" 2554270 T SIMPAN (NIL) -7 NIL NIL) (-1068 2552945 2553159 2553427 "SIGNRF" 2553852 NIL SIGNRF (NIL T) -7 NIL NIL) (-1067 2551775 2551919 2552202 "SIGNEF" 2552781 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1066 2551082 2551310 2551450 "SIG" 2551657 T SIG (NIL) -8 NIL NIL) (-1065 2548772 2549226 2549732 "SHP" 2550623 NIL SHP (NIL T NIL) -7 NIL NIL) (-1064 2542691 2548673 2548749 "SHDP" 2548754 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1063 2542290 2542456 2542486 "SGROUP" 2542579 T SGROUP (NIL) -9 NIL 2542641) (-1062 2542148 2542174 2542247 "SGROUP-" 2542252 NIL SGROUP- (NIL T) -8 NIL NIL) (-1061 2538984 2539681 2540404 "SGCF" 2541447 T SGCF (NIL) -7 NIL NIL) (-1060 2533406 2538431 2538528 "SFRTCAT" 2538533 NIL SFRTCAT (NIL T T T T) -9 NIL 2538572) (-1059 2526830 2527845 2528981 "SFRGCD" 2532389 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1058 2519958 2521029 2522215 "SFQCMPK" 2525763 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1057 2519580 2519669 2519779 "SFORT" 2519899 NIL SFORT (NIL T T) -8 NIL NIL) (-1056 2518725 2519420 2519541 "SEXOF" 2519546 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1055 2513501 2514190 2514285 "SEXCAT" 2518056 NIL SEXCAT (NIL T T T T T) -9 NIL 2518675) (-1054 2512635 2513382 2513450 "SEX" 2513455 T SEX (NIL) -8 NIL NIL) (-1053 2510892 2511352 2511655 "SETMN" 2512378 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1052 2510498 2510624 2510654 "SETCAT" 2510771 T SETCAT (NIL) -9 NIL 2510856) (-1051 2510278 2510330 2510429 "SETCAT-" 2510434 NIL SETCAT- (NIL T) -8 NIL NIL) (-1050 2506665 2508739 2508782 "SETAGG" 2509652 NIL SETAGG (NIL T) -9 NIL 2509992) (-1049 2506123 2506239 2506476 "SETAGG-" 2506481 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1048 2503303 2506057 2506105 "SET" 2506110 NIL SET (NIL T) -8 NIL NIL) (-1047 2502507 2502800 2502861 "SEGXCAT" 2503147 NIL SEGXCAT (NIL T T) -9 NIL 2503267) (-1046 2501414 2501627 2501670 "SEGCAT" 2502252 NIL SEGCAT (NIL T) -9 NIL 2502490) (-1045 2501035 2501094 2501207 "SEGBIND2" 2501349 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1044 2500084 2500414 2500614 "SEGBIND" 2500870 NIL SEGBIND (NIL T) -8 NIL NIL) (-1043 2499702 2499885 2499962 "SEGAST" 2500029 T SEGAST (NIL) -8 NIL NIL) (-1042 2498921 2499047 2499251 "SEG2" 2499546 NIL SEG2 (NIL T T) -7 NIL NIL) (-1041 2497977 2498587 2498769 "SEG" 2498774 NIL SEG (NIL T) -8 NIL NIL) (-1040 2497414 2497912 2497959 "SDVAR" 2497964 NIL SDVAR (NIL T) -8 NIL NIL) (-1039 2489752 2497186 2497315 "SDPOL" 2497320 NIL SDPOL (NIL T) -8 NIL NIL) (-1038 2488345 2488611 2488930 "SCPKG" 2489467 NIL SCPKG (NIL T) -7 NIL NIL) (-1037 2487481 2487661 2487861 "SCOPE" 2488167 T SCOPE (NIL) -8 NIL NIL) (-1036 2486702 2486835 2487014 "SCACHE" 2487336 NIL SCACHE (NIL T) -7 NIL NIL) (-1035 2486428 2486571 2486601 "SASTCAT" 2486606 T SASTCAT (NIL) -9 NIL 2486619) (-1034 2486217 2486262 2486360 "SASTCAT-" 2486365 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1033 2485656 2485977 2486062 "SAOS" 2486154 T SAOS (NIL) -8 NIL NIL) (-1032 2485221 2485256 2485429 "SAERFFC" 2485615 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1031 2484814 2484849 2485008 "SAEFACT" 2485180 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1030 2478802 2484711 2484791 "SAE" 2484796 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1029 2477123 2477437 2477838 "RURPK" 2478468 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1028 2475759 2476038 2476350 "RULESET" 2476957 NIL RULESET (NIL T T T) -8 NIL NIL) (-1027 2475398 2475553 2475636 "RULECOLD" 2475711 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1026 2472587 2473090 2473554 "RULE" 2475080 NIL RULE (NIL T T T) -8 NIL NIL) (-1025 2467436 2468230 2469150 "RSETGCD" 2471786 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1024 2456720 2461745 2461842 "RSETCAT" 2465961 NIL RSETCAT (NIL T T T T) -9 NIL 2467058) (-1023 2454647 2455186 2456010 "RSETCAT-" 2456015 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1022 2447034 2448409 2449929 "RSDCMPK" 2453246 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1021 2445039 2445480 2445554 "RRCC" 2446640 NIL RRCC (NIL T T) -9 NIL 2446984) (-1020 2444390 2444564 2444843 "RRCC-" 2444848 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1019 2443877 2444086 2444187 "RPTAST" 2444311 T RPTAST (NIL) -8 NIL NIL) (-1018 2418150 2427698 2427765 "RPOLCAT" 2438429 NIL RPOLCAT (NIL T T T) -9 NIL 2441587) (-1017 2409686 2412012 2415122 "RPOLCAT-" 2415127 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1016 2400735 2407897 2408379 "ROUTINE" 2409226 T ROUTINE (NIL) -8 NIL NIL) (-1015 2397483 2400286 2400435 "ROMAN" 2400608 T ROMAN (NIL) -8 NIL NIL) (-1014 2395760 2396343 2396603 "ROIRC" 2397288 NIL ROIRC (NIL T T) -8 NIL NIL) (-1013 2392219 2394454 2394484 "RNS" 2394788 T RNS (NIL) -9 NIL 2395058) (-1012 2390728 2391111 2391645 "RNS-" 2391720 NIL RNS- (NIL T) -8 NIL NIL) (-1011 2390177 2390559 2390589 "RNG" 2390594 T RNG (NIL) -9 NIL 2390615) (-1010 2389569 2389931 2389974 "RMODULE" 2390036 NIL RMODULE (NIL T) -9 NIL 2390078) (-1009 2388405 2388499 2388835 "RMCAT2" 2389470 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1008 2385110 2387579 2387904 "RMATRIX" 2388139 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1007 2378052 2380286 2380401 "RMATCAT" 2383760 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2384742) (-1006 2377427 2377574 2377881 "RMATCAT-" 2377886 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1005 2376994 2377069 2377197 "RINTERP" 2377346 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1004 2376082 2376602 2376632 "RING" 2376744 T RING (NIL) -9 NIL 2376839) (-1003 2375874 2375918 2376015 "RING-" 2376020 NIL RING- (NIL T) -8 NIL NIL) (-1002 2374715 2374952 2375210 "RIDIST" 2375638 T RIDIST (NIL) -7 NIL NIL) (-1001 2366058 2374183 2374389 "RGCHAIN" 2374563 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1000 2365704 2365767 2365870 "RFFACTOR" 2365989 NIL RFFACTOR (NIL T) -7 NIL NIL) (-999 2365432 2365467 2365562 "RFFACT" 2365663 NIL RFFACT (NIL T) -7 NIL NIL) (-998 2363562 2363926 2364306 "RFDIST" 2365072 T RFDIST (NIL) -7 NIL NIL) (-997 2360567 2361181 2361849 "RF" 2362926 NIL RF (NIL T) -7 NIL NIL) (-996 2360025 2360117 2360277 "RETSOL" 2360469 NIL RETSOL (NIL T T) -7 NIL NIL) (-995 2359618 2359698 2359739 "RETRACT" 2359929 NIL RETRACT (NIL T) -9 NIL NIL) (-994 2359470 2359495 2359579 "RETRACT-" 2359584 NIL RETRACT- (NIL T T) -8 NIL NIL) (-993 2359119 2359295 2359363 "RETAST" 2359422 T RETAST (NIL) -8 NIL NIL) (-992 2351979 2358776 2358901 "RESULT" 2359014 T RESULT (NIL) -8 NIL NIL) (-991 2350610 2351253 2351450 "RESRING" 2351882 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-990 2350250 2350299 2350395 "RESLATC" 2350547 NIL RESLATC (NIL T) -7 NIL NIL) (-989 2349959 2349993 2350098 "REPSQ" 2350209 NIL REPSQ (NIL T) -7 NIL NIL) (-988 2349660 2349694 2349803 "REPDB" 2349918 NIL REPDB (NIL T) -7 NIL NIL) (-987 2343588 2344967 2346188 "REP2" 2348472 NIL REP2 (NIL T) -7 NIL NIL) (-986 2339980 2340661 2341467 "REP1" 2342815 NIL REP1 (NIL T) -7 NIL NIL) (-985 2337411 2337991 2338591 "REP" 2339400 T REP (NIL) -7 NIL NIL) (-984 2330176 2335564 2336018 "REGSET" 2337041 NIL REGSET (NIL T T T T) -8 NIL NIL) (-983 2328997 2329332 2329580 "REF" 2329961 NIL REF (NIL T) -8 NIL NIL) (-982 2328378 2328481 2328646 "REDORDER" 2328881 NIL REDORDER (NIL T T) -7 NIL NIL) (-981 2324435 2327606 2327829 "RECLOS" 2328207 NIL RECLOS (NIL T) -8 NIL NIL) (-980 2323492 2323673 2323886 "REALSOLV" 2324242 T REALSOLV (NIL) -7 NIL NIL) (-979 2319983 2320785 2321667 "REAL0Q" 2322657 NIL REAL0Q (NIL T) -7 NIL NIL) (-978 2315594 2316582 2317641 "REAL0" 2318964 NIL REAL0 (NIL T) -7 NIL NIL) (-977 2315442 2315483 2315511 "REAL" 2315516 T REAL (NIL) -9 NIL 2315551) (-976 2314850 2314922 2315127 "RDIV" 2315364 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-975 2313923 2314097 2314308 "RDIST" 2314672 NIL RDIST (NIL T) -7 NIL NIL) (-974 2312527 2312814 2313183 "RDETRS" 2313631 NIL RDETRS (NIL T T) -7 NIL NIL) (-973 2310348 2310802 2311337 "RDETR" 2312069 NIL RDETR (NIL T T) -7 NIL NIL) (-972 2308964 2309242 2309643 "RDEEFS" 2310064 NIL RDEEFS (NIL T T) -7 NIL NIL) (-971 2307464 2307770 2308199 "RDEEF" 2308652 NIL RDEEF (NIL T T) -7 NIL NIL) (-970 2301817 2304675 2304703 "RCFIELD" 2305980 T RCFIELD (NIL) -9 NIL 2306710) (-969 2299886 2300390 2301083 "RCFIELD-" 2301156 NIL RCFIELD- (NIL T) -8 NIL NIL) (-968 2296217 2298002 2298043 "RCAGG" 2299114 NIL RCAGG (NIL T) -9 NIL 2299579) (-967 2295848 2295942 2296102 "RCAGG-" 2296107 NIL RCAGG- (NIL T T) -8 NIL NIL) (-966 2295192 2295304 2295466 "RATRET" 2295732 NIL RATRET (NIL T) -7 NIL NIL) (-965 2294749 2294816 2294935 "RATFACT" 2295120 NIL RATFACT (NIL T) -7 NIL NIL) (-964 2294064 2294184 2294334 "RANDSRC" 2294619 T RANDSRC (NIL) -7 NIL NIL) (-963 2293801 2293845 2293916 "RADUTIL" 2294013 T RADUTIL (NIL) -7 NIL NIL) (-962 2286894 2292544 2292861 "RADIX" 2293516 NIL RADIX (NIL NIL) -8 NIL NIL) (-961 2278566 2286738 2286866 "RADFF" 2286871 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-960 2278218 2278293 2278321 "RADCAT" 2278478 T RADCAT (NIL) -9 NIL NIL) (-959 2278003 2278051 2278148 "RADCAT-" 2278153 NIL RADCAT- (NIL T) -8 NIL NIL) (-958 2276154 2277778 2277867 "QUEUE" 2277947 NIL QUEUE (NIL T) -8 NIL NIL) (-957 2275792 2275835 2275962 "QUATCT2" 2276105 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-956 2269669 2272958 2272998 "QUATCAT" 2273778 NIL QUATCAT (NIL T) -9 NIL 2274544) (-955 2265834 2266864 2268244 "QUATCAT-" 2268338 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-954 2262422 2265771 2265816 "QUAT" 2265821 NIL QUAT (NIL T) -8 NIL NIL) (-953 2259942 2261506 2261547 "QUAGG" 2261922 NIL QUAGG (NIL T) -9 NIL 2262097) (-952 2258867 2259340 2259512 "QFORM" 2259814 NIL QFORM (NIL NIL T) -8 NIL NIL) (-951 2258505 2258548 2258675 "QFCAT2" 2258818 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-950 2249874 2255054 2255094 "QFCAT" 2255752 NIL QFCAT (NIL T) -9 NIL 2256745) (-949 2245482 2246671 2248250 "QFCAT-" 2248344 NIL QFCAT- (NIL T T) -8 NIL NIL) (-948 2244942 2245052 2245182 "QEQUAT" 2245372 T QEQUAT (NIL) -8 NIL NIL) (-947 2238090 2239161 2240345 "QCMPACK" 2243875 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-946 2237335 2237509 2237741 "QALGSET2" 2237910 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-945 2234917 2235336 2235762 "QALGSET" 2236992 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-944 2233608 2233831 2234148 "PWFFINTB" 2234690 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-943 2231807 2231975 2232329 "PUSHVAR" 2233422 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-942 2227725 2228779 2228820 "PTRANFN" 2230704 NIL PTRANFN (NIL T) -9 NIL NIL) (-941 2226127 2226418 2226740 "PTPACK" 2227436 NIL PTPACK (NIL T) -7 NIL NIL) (-940 2225759 2225816 2225925 "PTFUNC2" 2226064 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-939 2220225 2224570 2224611 "PTCAT" 2224984 NIL PTCAT (NIL T) -9 NIL 2225146) (-938 2219883 2219918 2220042 "PSQFR" 2220184 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-937 2218478 2218776 2219110 "PSEUDLIN" 2219581 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-936 2205247 2207612 2209936 "PSETPK" 2216238 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-935 2198291 2201005 2201101 "PSETCAT" 2204122 NIL PSETCAT (NIL T T T T) -9 NIL 2204936) (-934 2196127 2196761 2197582 "PSETCAT-" 2197587 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-933 2195476 2195641 2195669 "PSCURVE" 2195937 T PSCURVE (NIL) -9 NIL 2196104) (-932 2191957 2193439 2193504 "PSCAT" 2194348 NIL PSCAT (NIL T T T) -9 NIL 2194588) (-931 2191020 2191236 2191636 "PSCAT-" 2191641 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-930 2189672 2190305 2190519 "PRTITION" 2190826 T PRTITION (NIL) -8 NIL NIL) (-929 2189192 2189393 2189485 "PRTDAST" 2189600 T PRTDAST (NIL) -8 NIL NIL) (-928 2178290 2180496 2182684 "PRS" 2187054 NIL PRS (NIL T T) -7 NIL NIL) (-927 2176148 2177640 2177680 "PRQAGG" 2177863 NIL PRQAGG (NIL T) -9 NIL 2177965) (-926 2175719 2175821 2175849 "PROPLOG" 2176034 T PROPLOG (NIL) -9 NIL NIL) (-925 2172842 2173407 2173934 "PROPFRML" 2175224 NIL PROPFRML (NIL T) -8 NIL NIL) (-924 2172302 2172412 2172542 "PROPERTY" 2172732 T PROPERTY (NIL) -8 NIL NIL) (-923 2166387 2170468 2171288 "PRODUCT" 2171528 NIL PRODUCT (NIL T T) -8 NIL NIL) (-922 2166183 2166215 2166274 "PRINT" 2166348 T PRINT (NIL) -7 NIL NIL) (-921 2165523 2165640 2165792 "PRIMES" 2166063 NIL PRIMES (NIL T) -7 NIL NIL) (-920 2163588 2163989 2164455 "PRIMELT" 2165102 NIL PRIMELT (NIL T) -7 NIL NIL) (-919 2163317 2163366 2163394 "PRIMCAT" 2163518 T PRIMCAT (NIL) -9 NIL NIL) (-918 2162324 2162502 2162730 "PRIMARR2" 2163135 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-917 2158485 2162262 2162307 "PRIMARR" 2162312 NIL PRIMARR (NIL T) -8 NIL NIL) (-916 2158128 2158184 2158295 "PREASSOC" 2158423 NIL PREASSOC (NIL T T) -7 NIL NIL) (-915 2155453 2157586 2157820 "PR" 2157939 NIL PR (NIL T T) -8 NIL NIL) (-914 2154928 2155061 2155089 "PPCURVE" 2155294 T PPCURVE (NIL) -9 NIL 2155430) (-913 2154550 2154723 2154806 "PORTNUM" 2154865 T PORTNUM (NIL) -8 NIL NIL) (-912 2151909 2152308 2152900 "POLYROOT" 2154131 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-911 2151292 2151350 2151584 "POLYLIFT" 2151845 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-910 2147567 2148016 2148645 "POLYCATQ" 2150837 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-909 2134632 2139969 2140034 "POLYCAT" 2143548 NIL POLYCAT (NIL T T T) -9 NIL 2145475) (-908 2128139 2129981 2132346 "POLYCAT-" 2132351 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-907 2127726 2127794 2127914 "POLY2UP" 2128065 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-906 2127358 2127415 2127524 "POLY2" 2127663 NIL POLY2 (NIL T T) -7 NIL NIL) (-905 2121339 2126962 2127122 "POLY" 2127231 NIL POLY (NIL T) -8 NIL NIL) (-904 2120024 2120263 2120539 "POLUTIL" 2121113 NIL POLUTIL (NIL T T) -7 NIL NIL) (-903 2118379 2118656 2118987 "POLTOPOL" 2119746 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-902 2113897 2118315 2118361 "POINT" 2118366 NIL POINT (NIL T) -8 NIL NIL) (-901 2112084 2112441 2112816 "PNTHEORY" 2113542 T PNTHEORY (NIL) -7 NIL NIL) (-900 2110506 2110803 2111214 "PMTOOLS" 2111782 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-899 2110099 2110177 2110294 "PMSYM" 2110422 NIL PMSYM (NIL T) -7 NIL NIL) (-898 2109609 2109678 2109852 "PMQFCAT" 2110024 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-897 2109005 2109091 2109252 "PMPREDFS" 2109510 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-896 2108360 2108470 2108626 "PMPRED" 2108882 NIL PMPRED (NIL T) -7 NIL NIL) (-895 2107003 2107211 2107596 "PMPLCAT" 2108122 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-894 2106535 2106614 2106766 "PMLSAGG" 2106918 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-893 2106012 2106088 2106268 "PMKERNEL" 2106453 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-892 2105629 2105704 2105817 "PMINS" 2105931 NIL PMINS (NIL T) -7 NIL NIL) (-891 2105059 2105128 2105343 "PMFS" 2105554 NIL PMFS (NIL T T T) -7 NIL NIL) (-890 2104290 2104408 2104612 "PMDOWN" 2104936 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-889 2103564 2103675 2103838 "PMASSFS" 2104176 NIL PMASSFS (NIL T T) -7 NIL NIL) (-888 2102727 2102886 2103068 "PMASS" 2103402 T PMASS (NIL) -7 NIL NIL) (-887 2102382 2102450 2102544 "PLOTTOOL" 2102653 T PLOTTOOL (NIL) -7 NIL NIL) (-886 2098196 2099230 2100151 "PLOT3D" 2101481 T PLOT3D (NIL) -8 NIL NIL) (-885 2097108 2097285 2097520 "PLOT1" 2098000 NIL PLOT1 (NIL T) -7 NIL NIL) (-884 2091730 2092919 2094067 "PLOT" 2095980 T PLOT (NIL) -8 NIL NIL) (-883 2067124 2071796 2076647 "PLEQN" 2086996 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-882 2066817 2066864 2066967 "PINTERPA" 2067071 NIL PINTERPA (NIL T T) -7 NIL NIL) (-881 2066135 2066257 2066437 "PINTERP" 2066682 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-880 2064567 2065508 2065536 "PID" 2065718 T PID (NIL) -9 NIL 2065852) (-879 2064292 2064329 2064417 "PICOERCE" 2064524 NIL PICOERCE (NIL T) -7 NIL NIL) (-878 2063577 2064098 2064185 "PI" 2064225 T PI (NIL) -8 NIL NIL) (-877 2062897 2063036 2063212 "PGROEB" 2063433 NIL PGROEB (NIL T) -7 NIL NIL) (-876 2058484 2059298 2060203 "PGE" 2062012 T PGE (NIL) -7 NIL NIL) (-875 2056608 2056854 2057220 "PGCD" 2058201 NIL PGCD (NIL T T T T) -7 NIL NIL) (-874 2055946 2056049 2056210 "PFRPAC" 2056492 NIL PFRPAC (NIL T) -7 NIL NIL) (-873 2052628 2054494 2054847 "PFR" 2055625 NIL PFR (NIL T) -8 NIL NIL) (-872 2051017 2051261 2051586 "PFOTOOLS" 2052375 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-871 2049550 2049789 2050140 "PFOQ" 2050774 NIL PFOQ (NIL T T T) -7 NIL NIL) (-870 2048027 2048239 2048601 "PFO" 2049334 NIL PFO (NIL T T T T T) -7 NIL NIL) (-869 2045496 2046733 2046761 "PFECAT" 2047346 T PFECAT (NIL) -9 NIL 2047730) (-868 2044941 2045095 2045309 "PFECAT-" 2045314 NIL PFECAT- (NIL T) -8 NIL NIL) (-867 2043545 2043796 2044097 "PFBRU" 2044690 NIL PFBRU (NIL T T) -7 NIL NIL) (-866 2041412 2041763 2042195 "PFBR" 2043196 NIL PFBR (NIL T T T T) -7 NIL NIL) (-865 2038002 2041301 2041370 "PF" 2041375 NIL PF (NIL NIL) -8 NIL NIL) (-864 2033268 2034209 2035079 "PERMGRP" 2037165 NIL PERMGRP (NIL T) -8 NIL NIL) (-863 2031400 2032331 2032372 "PERMCAT" 2032818 NIL PERMCAT (NIL T) -9 NIL 2033123) (-862 2031053 2031094 2031218 "PERMAN" 2031353 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-861 2026969 2028429 2029105 "PERM" 2030410 NIL PERM (NIL T) -8 NIL NIL) (-860 2024411 2026538 2026669 "PENDTREE" 2026871 NIL PENDTREE (NIL T) -8 NIL NIL) (-859 2022524 2023258 2023299 "PDRING" 2023956 NIL PDRING (NIL T) -9 NIL 2024242) (-858 2021627 2021845 2022207 "PDRING-" 2022212 NIL PDRING- (NIL T T) -8 NIL NIL) (-857 2018768 2019519 2020210 "PDEPROB" 2020956 T PDEPROB (NIL) -8 NIL NIL) (-856 2016331 2016829 2017380 "PDEPACK" 2018237 T PDEPACK (NIL) -7 NIL NIL) (-855 2015243 2015433 2015684 "PDECOMP" 2016130 NIL PDECOMP (NIL T T) -7 NIL NIL) (-854 2012851 2013667 2013695 "PDECAT" 2014481 T PDECAT (NIL) -9 NIL 2015193) (-853 2012602 2012635 2012725 "PCOMP" 2012812 NIL PCOMP (NIL T T) -7 NIL NIL) (-852 2010809 2011405 2011701 "PBWLB" 2012332 NIL PBWLB (NIL T) -8 NIL NIL) (-851 2010441 2010498 2010607 "PATTERN2" 2010746 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-850 2008198 2008586 2009043 "PATTERN1" 2010030 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-849 2000708 2002275 2003611 "PATTERN" 2006883 NIL PATTERN (NIL T) -8 NIL NIL) (-848 2000272 2000339 2000471 "PATRES2" 2000635 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-847 1997667 1998221 1998702 "PATRES" 1999837 NIL PATRES (NIL T T) -8 NIL NIL) (-846 1995558 1995960 1996366 "PATMATCH" 1997335 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-845 1995094 1995277 1995318 "PATMAB" 1995425 NIL PATMAB (NIL T) -9 NIL 1995508) (-844 1993639 1993948 1994206 "PATLRES" 1994899 NIL PATLRES (NIL T T T) -8 NIL NIL) (-843 1993185 1993308 1993349 "PATAB" 1993354 NIL PATAB (NIL T) -9 NIL 1993526) (-842 1990666 1991198 1991771 "PARTPERM" 1992632 T PARTPERM (NIL) -7 NIL NIL) (-841 1990287 1990350 1990452 "PARSURF" 1990597 NIL PARSURF (NIL T) -8 NIL NIL) (-840 1989919 1989976 1990085 "PARSU2" 1990224 NIL PARSU2 (NIL T T) -7 NIL NIL) (-839 1989683 1989723 1989790 "PARSER" 1989872 T PARSER (NIL) -7 NIL NIL) (-838 1989304 1989367 1989469 "PARSCURV" 1989614 NIL PARSCURV (NIL T) -8 NIL NIL) (-837 1988936 1988993 1989102 "PARSC2" 1989241 NIL PARSC2 (NIL T T) -7 NIL NIL) (-836 1988575 1988633 1988730 "PARPCURV" 1988872 NIL PARPCURV (NIL T) -8 NIL NIL) (-835 1988207 1988264 1988373 "PARPC2" 1988512 NIL PARPC2 (NIL T T) -7 NIL NIL) (-834 1987727 1987813 1987932 "PAN2EXPR" 1988108 T PAN2EXPR (NIL) -7 NIL NIL) (-833 1986533 1986848 1987076 "PALETTE" 1987519 T PALETTE (NIL) -8 NIL NIL) (-832 1985001 1985538 1985898 "PAIR" 1986219 NIL PAIR (NIL T T) -8 NIL NIL) (-831 1978937 1984260 1984454 "PADICRC" 1984856 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-830 1972231 1978283 1978467 "PADICRAT" 1978785 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-829 1969478 1971006 1971046 "PADICCT" 1971627 NIL PADICCT (NIL NIL) -9 NIL 1971909) (-828 1967830 1969415 1969460 "PADIC" 1969465 NIL PADIC (NIL NIL) -8 NIL NIL) (-827 1966787 1966987 1967255 "PADEPAC" 1967617 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-826 1965999 1966132 1966338 "PADE" 1966649 NIL PADE (NIL T T T) -7 NIL NIL) (-825 1964049 1964835 1965152 "OWP" 1965766 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-824 1963158 1963654 1963826 "OVAR" 1963917 NIL OVAR (NIL NIL) -8 NIL NIL) (-823 1952212 1954383 1956553 "OUTFORM" 1961008 T OUTFORM (NIL) -8 NIL NIL) (-822 1951849 1951932 1951960 "OUTBCON" 1952111 T OUTBCON (NIL) -9 NIL 1952196) (-821 1951689 1951724 1951800 "OUTBCON-" 1951805 NIL OUTBCON- (NIL T) -8 NIL NIL) (-820 1950953 1951074 1951235 "OUT" 1951548 T OUT (NIL) -7 NIL NIL) (-819 1950361 1950682 1950771 "OSI" 1950884 T OSI (NIL) -8 NIL NIL) (-818 1949917 1950229 1950257 "OSGROUP" 1950262 T OSGROUP (NIL) -9 NIL 1950284) (-817 1948662 1948889 1949174 "ORTHPOL" 1949664 NIL ORTHPOL (NIL T) -7 NIL NIL) (-816 1946091 1948321 1948460 "OREUP" 1948605 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-815 1943548 1945782 1945909 "ORESUP" 1946033 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-814 1941076 1941576 1942137 "OREPCTO" 1943037 NIL OREPCTO (NIL T T) -7 NIL NIL) (-813 1935004 1937159 1937200 "OREPCAT" 1939548 NIL OREPCAT (NIL T) -9 NIL 1940652) (-812 1932172 1932947 1933998 "OREPCAT-" 1934003 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-811 1931349 1931621 1931649 "ORDSET" 1931958 T ORDSET (NIL) -9 NIL 1932122) (-810 1930868 1930990 1931183 "ORDSET-" 1931188 NIL ORDSET- (NIL T) -8 NIL NIL) (-809 1929522 1930279 1930307 "ORDRING" 1930509 T ORDRING (NIL) -9 NIL 1930634) (-808 1929167 1929261 1929405 "ORDRING-" 1929410 NIL ORDRING- (NIL T) -8 NIL NIL) (-807 1928573 1929010 1929038 "ORDMON" 1929043 T ORDMON (NIL) -9 NIL 1929064) (-806 1927735 1927882 1928077 "ORDFUNS" 1928422 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-805 1927246 1927605 1927633 "ORDFIN" 1927638 T ORDFIN (NIL) -9 NIL 1927659) (-804 1926512 1926639 1926825 "ORDCOMP2" 1927106 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-803 1923117 1925098 1925507 "ORDCOMP" 1926136 NIL ORDCOMP (NIL T) -8 NIL NIL) (-802 1919624 1920507 1921344 "OPTPROB" 1922300 T OPTPROB (NIL) -8 NIL NIL) (-801 1916458 1917089 1917785 "OPTPACK" 1918948 T OPTPACK (NIL) -7 NIL NIL) (-800 1914177 1914915 1914943 "OPTCAT" 1915760 T OPTCAT (NIL) -9 NIL 1916408) (-799 1913945 1913984 1914050 "OPQUERY" 1914131 T OPQUERY (NIL) -7 NIL NIL) (-798 1911117 1912260 1912762 "OP" 1913476 NIL OP (NIL T) -8 NIL NIL) (-797 1910422 1910537 1910711 "ONECOMP2" 1910989 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-796 1907280 1909219 1909588 "ONECOMP" 1910086 NIL ONECOMP (NIL T) -8 NIL NIL) (-795 1906699 1906805 1906935 "OMSERVER" 1907170 T OMSERVER (NIL) -7 NIL NIL) (-794 1903587 1906139 1906179 "OMSAGG" 1906240 NIL OMSAGG (NIL T) -9 NIL 1906304) (-793 1902210 1902473 1902755 "OMPKG" 1903325 T OMPKG (NIL) -7 NIL NIL) (-792 1900792 1901759 1901928 "OMLO" 1902091 NIL OMLO (NIL T T) -8 NIL NIL) (-791 1899717 1899864 1900091 "OMEXPR" 1900618 NIL OMEXPR (NIL T) -7 NIL NIL) (-790 1898895 1899138 1899298 "OMERRK" 1899577 T OMERRK (NIL) -8 NIL NIL) (-789 1898213 1898441 1898577 "OMERR" 1898779 T OMERR (NIL) -8 NIL NIL) (-788 1897691 1897890 1897998 "OMENC" 1898125 T OMENC (NIL) -8 NIL NIL) (-787 1891586 1892771 1893942 "OMDEV" 1896540 T OMDEV (NIL) -8 NIL NIL) (-786 1890655 1890826 1891020 "OMCONN" 1891412 T OMCONN (NIL) -8 NIL NIL) (-785 1890085 1890188 1890216 "OM" 1890515 T OM (NIL) -9 NIL NIL) (-784 1888741 1889683 1889711 "OINTDOM" 1889716 T OINTDOM (NIL) -9 NIL 1889737) (-783 1884549 1885733 1886448 "OFMONOID" 1888058 NIL OFMONOID (NIL T) -8 NIL NIL) (-782 1883987 1884486 1884531 "ODVAR" 1884536 NIL ODVAR (NIL T) -8 NIL NIL) (-781 1881199 1883484 1883669 "ODR" 1883862 NIL ODR (NIL T T NIL) -8 NIL NIL) (-780 1873591 1880977 1881102 "ODPOL" 1881107 NIL ODPOL (NIL T) -8 NIL NIL) (-779 1867480 1873463 1873568 "ODP" 1873573 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-778 1866246 1866461 1866736 "ODETOOLS" 1867254 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-777 1863215 1863871 1864587 "ODESYS" 1865579 NIL ODESYS (NIL T T) -7 NIL NIL) (-776 1858119 1859027 1860050 "ODERTRIC" 1862290 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-775 1857545 1857627 1857821 "ODERED" 1858031 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-774 1854455 1855001 1855674 "ODERAT" 1856970 NIL ODERAT (NIL T T) -7 NIL NIL) (-773 1851423 1851887 1852483 "ODEPRRIC" 1853984 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-772 1849292 1849861 1850370 "ODEPROB" 1850934 T ODEPROB (NIL) -8 NIL NIL) (-771 1845824 1846307 1846953 "ODEPRIM" 1848771 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-770 1845077 1845179 1845437 "ODEPAL" 1845716 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-769 1841271 1842054 1842910 "ODEPACK" 1844241 T ODEPACK (NIL) -7 NIL NIL) (-768 1840308 1840415 1840643 "ODEINT" 1841160 NIL ODEINT (NIL T T) -7 NIL NIL) (-767 1834409 1835834 1837281 "ODEIFTBL" 1838881 T ODEIFTBL (NIL) -8 NIL NIL) (-766 1829767 1830549 1831503 "ODEEF" 1833572 NIL ODEEF (NIL T T) -7 NIL NIL) (-765 1829104 1829193 1829422 "ODECONST" 1829672 NIL ODECONST (NIL T T T) -7 NIL NIL) (-764 1827258 1827892 1827920 "ODECAT" 1828524 T ODECAT (NIL) -9 NIL 1829054) (-763 1826896 1826939 1827066 "OCTCT2" 1827209 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-762 1823825 1826608 1826727 "OCT" 1826809 NIL OCT (NIL T) -8 NIL NIL) (-761 1823203 1823645 1823673 "OCAMON" 1823678 T OCAMON (NIL) -9 NIL 1823699) (-760 1818081 1820469 1820509 "OC" 1821606 NIL OC (NIL T) -9 NIL 1822464) (-759 1815329 1816070 1817053 "OC-" 1817147 NIL OC- (NIL T T) -8 NIL NIL) (-758 1814886 1815201 1815229 "OASGP" 1815234 T OASGP (NIL) -9 NIL 1815254) (-757 1814173 1814636 1814664 "OAMONS" 1814704 T OAMONS (NIL) -9 NIL 1814747) (-756 1813613 1814020 1814048 "OAMON" 1814053 T OAMON (NIL) -9 NIL 1814073) (-755 1812917 1813409 1813437 "OAGROUP" 1813442 T OAGROUP (NIL) -9 NIL 1813462) (-754 1812607 1812657 1812745 "NUMTUBE" 1812861 NIL NUMTUBE (NIL T) -7 NIL NIL) (-753 1806180 1807698 1809234 "NUMQUAD" 1811091 T NUMQUAD (NIL) -7 NIL NIL) (-752 1801936 1802924 1803949 "NUMODE" 1805175 T NUMODE (NIL) -7 NIL NIL) (-751 1799333 1800181 1800209 "NUMINT" 1801128 T NUMINT (NIL) -9 NIL 1801886) (-750 1798281 1798478 1798696 "NUMFMT" 1799135 T NUMFMT (NIL) -7 NIL NIL) (-749 1784640 1787585 1790117 "NUMERIC" 1795788 NIL NUMERIC (NIL T) -7 NIL NIL) (-748 1779064 1784089 1784184 "NTSCAT" 1784189 NIL NTSCAT (NIL T T T T) -9 NIL 1784228) (-747 1778258 1778423 1778616 "NTPOLFN" 1778903 NIL NTPOLFN (NIL T) -7 NIL NIL) (-746 1777890 1777947 1778056 "NSUP2" 1778195 NIL NSUP2 (NIL T T) -7 NIL NIL) (-745 1765782 1774717 1775528 "NSUP" 1777112 NIL NSUP (NIL T) -8 NIL NIL) (-744 1755835 1765558 1765690 "NSMP" 1765695 NIL NSMP (NIL T T) -8 NIL NIL) (-743 1754267 1754568 1754925 "NREP" 1755523 NIL NREP (NIL T) -7 NIL NIL) (-742 1752858 1753110 1753468 "NPCOEF" 1754010 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-741 1751924 1752039 1752255 "NORMRETR" 1752739 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-740 1749965 1750255 1750664 "NORMPK" 1751632 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-739 1749650 1749678 1749802 "NORMMA" 1749931 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-738 1749439 1749468 1749537 "NONE1" 1749614 NIL NONE1 (NIL T) -7 NIL NIL) (-737 1749266 1749396 1749425 "NONE" 1749430 T NONE (NIL) -8 NIL NIL) (-736 1748751 1748813 1748998 "NODE1" 1749198 NIL NODE1 (NIL T T) -7 NIL NIL) (-735 1747091 1747914 1748169 "NNI" 1748516 T NNI (NIL) -8 NIL NIL) (-734 1745511 1745824 1746188 "NLINSOL" 1746759 NIL NLINSOL (NIL T) -7 NIL NIL) (-733 1741678 1742646 1743568 "NIPROB" 1744609 T NIPROB (NIL) -8 NIL NIL) (-732 1740435 1740669 1740971 "NFINTBAS" 1741440 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-731 1739143 1739374 1739655 "NCODIV" 1740203 NIL NCODIV (NIL T T) -7 NIL NIL) (-730 1738905 1738942 1739017 "NCNTFRAC" 1739100 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-729 1737085 1737449 1737869 "NCEP" 1738530 NIL NCEP (NIL T) -7 NIL NIL) (-728 1736003 1736735 1736763 "NASRING" 1736873 T NASRING (NIL) -9 NIL 1736947) (-727 1735798 1735842 1735936 "NASRING-" 1735941 NIL NASRING- (NIL T) -8 NIL NIL) (-726 1734951 1735450 1735478 "NARNG" 1735595 T NARNG (NIL) -9 NIL 1735686) (-725 1734643 1734710 1734844 "NARNG-" 1734849 NIL NARNG- (NIL T) -8 NIL NIL) (-724 1733522 1733729 1733964 "NAGSP" 1734428 T NAGSP (NIL) -7 NIL NIL) (-723 1724946 1726592 1728227 "NAGS" 1731907 T NAGS (NIL) -7 NIL NIL) (-722 1723510 1723814 1724141 "NAGF07" 1724639 T NAGF07 (NIL) -7 NIL NIL) (-721 1718092 1719372 1720668 "NAGF04" 1722234 T NAGF04 (NIL) -7 NIL NIL) (-720 1711124 1712722 1714339 "NAGF02" 1716495 T NAGF02 (NIL) -7 NIL NIL) (-719 1706388 1707478 1708585 "NAGF01" 1710037 T NAGF01 (NIL) -7 NIL NIL) (-718 1700048 1701606 1703183 "NAGE04" 1704831 T NAGE04 (NIL) -7 NIL NIL) (-717 1691289 1693392 1695504 "NAGE02" 1697956 T NAGE02 (NIL) -7 NIL NIL) (-716 1687282 1688219 1689173 "NAGE01" 1690355 T NAGE01 (NIL) -7 NIL NIL) (-715 1685089 1685620 1686175 "NAGD03" 1686747 T NAGD03 (NIL) -7 NIL NIL) (-714 1676875 1678794 1680739 "NAGD02" 1683164 T NAGD02 (NIL) -7 NIL NIL) (-713 1670734 1672147 1673575 "NAGD01" 1675467 T NAGD01 (NIL) -7 NIL NIL) (-712 1666991 1667801 1668626 "NAGC06" 1669929 T NAGC06 (NIL) -7 NIL NIL) (-711 1665468 1665797 1666150 "NAGC05" 1666658 T NAGC05 (NIL) -7 NIL NIL) (-710 1664852 1664969 1665111 "NAGC02" 1665346 T NAGC02 (NIL) -7 NIL NIL) (-709 1663912 1664469 1664509 "NAALG" 1664588 NIL NAALG (NIL T) -9 NIL 1664649) (-708 1663747 1663776 1663866 "NAALG-" 1663871 NIL NAALG- (NIL T T) -8 NIL NIL) (-707 1657697 1658805 1659992 "MULTSQFR" 1662643 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-706 1657016 1657091 1657275 "MULTFACT" 1657609 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-705 1650239 1654104 1654157 "MTSCAT" 1655227 NIL MTSCAT (NIL T T) -9 NIL 1655741) (-704 1649951 1650005 1650097 "MTHING" 1650179 NIL MTHING (NIL T) -7 NIL NIL) (-703 1649743 1649776 1649836 "MSYSCMD" 1649911 T MSYSCMD (NIL) -7 NIL NIL) (-702 1646838 1649304 1649345 "MSETAGG" 1649350 NIL MSETAGG (NIL T) -9 NIL 1649384) (-701 1642950 1645593 1645913 "MSET" 1646551 NIL MSET (NIL T) -8 NIL NIL) (-700 1638839 1640333 1641076 "MRING" 1642252 NIL MRING (NIL T T) -8 NIL NIL) (-699 1638405 1638472 1638603 "MRF2" 1638766 NIL MRF2 (NIL T T T) -7 NIL NIL) (-698 1638023 1638058 1638202 "MRATFAC" 1638364 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-697 1635635 1635930 1636361 "MPRFF" 1637728 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-696 1629726 1635489 1635586 "MPOLY" 1635591 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-695 1629216 1629251 1629459 "MPCPF" 1629685 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-694 1628730 1628773 1628957 "MPC3" 1629167 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-693 1627925 1628006 1628227 "MPC2" 1628645 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-692 1626226 1626563 1626953 "MONOTOOL" 1627585 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-691 1625477 1625768 1625796 "MONOID" 1626015 T MONOID (NIL) -9 NIL 1626162) (-690 1625023 1625142 1625323 "MONOID-" 1625328 NIL MONOID- (NIL T) -8 NIL NIL) (-689 1616092 1621984 1622043 "MONOGEN" 1622717 NIL MONOGEN (NIL T T) -9 NIL 1623173) (-688 1613331 1614059 1615052 "MONOGEN-" 1615171 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-687 1612190 1612610 1612638 "MONADWU" 1613030 T MONADWU (NIL) -9 NIL 1613268) (-686 1611562 1611721 1611969 "MONADWU-" 1611974 NIL MONADWU- (NIL T) -8 NIL NIL) (-685 1610947 1611165 1611193 "MONAD" 1611400 T MONAD (NIL) -9 NIL 1611512) (-684 1610632 1610710 1610842 "MONAD-" 1610847 NIL MONAD- (NIL T) -8 NIL NIL) (-683 1608948 1609545 1609824 "MOEBIUS" 1610385 NIL MOEBIUS (NIL T) -8 NIL NIL) (-682 1608340 1608718 1608758 "MODULE" 1608763 NIL MODULE (NIL T) -9 NIL 1608789) (-681 1607908 1608004 1608194 "MODULE-" 1608199 NIL MODULE- (NIL T T) -8 NIL NIL) (-680 1605667 1606316 1606643 "MODRING" 1607732 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-679 1602659 1603776 1604295 "MODOP" 1605198 NIL MODOP (NIL T T) -8 NIL NIL) (-678 1600846 1601298 1601639 "MODMONOM" 1602458 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-677 1590599 1599038 1599461 "MODMON" 1600474 NIL MODMON (NIL T T) -8 NIL NIL) (-676 1587816 1589467 1589743 "MODFIELD" 1590474 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-675 1586820 1587097 1587287 "MMLFORM" 1587646 T MMLFORM (NIL) -8 NIL NIL) (-674 1586346 1586389 1586568 "MMAP" 1586771 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-673 1584615 1585348 1585389 "MLO" 1585812 NIL MLO (NIL T) -9 NIL 1586054) (-672 1581982 1582497 1583099 "MLIFT" 1584096 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-671 1581373 1581457 1581611 "MKUCFUNC" 1581893 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-670 1580972 1581042 1581165 "MKRECORD" 1581296 NIL MKRECORD (NIL T T) -7 NIL NIL) (-669 1580020 1580181 1580409 "MKFUNC" 1580783 NIL MKFUNC (NIL T) -7 NIL NIL) (-668 1579408 1579512 1579668 "MKFLCFN" 1579903 NIL MKFLCFN (NIL T) -7 NIL NIL) (-667 1578834 1579201 1579290 "MKCHSET" 1579352 NIL MKCHSET (NIL T) -8 NIL NIL) (-666 1578111 1578213 1578398 "MKBCFUNC" 1578727 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-665 1574843 1577665 1577801 "MINT" 1577995 T MINT (NIL) -8 NIL NIL) (-664 1573655 1573898 1574175 "MHROWRED" 1574598 NIL MHROWRED (NIL T) -7 NIL NIL) (-663 1569000 1572100 1572524 "MFLOAT" 1573251 T MFLOAT (NIL) -8 NIL NIL) (-662 1568357 1568433 1568604 "MFINFACT" 1568912 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-661 1564692 1565535 1566414 "MESH" 1567498 T MESH (NIL) -7 NIL NIL) (-660 1563082 1563394 1563747 "MDDFACT" 1564379 NIL MDDFACT (NIL T) -7 NIL NIL) (-659 1559924 1562241 1562282 "MDAGG" 1562537 NIL MDAGG (NIL T) -9 NIL 1562680) (-658 1549725 1559217 1559424 "MCMPLX" 1559737 T MCMPLX (NIL) -8 NIL NIL) (-657 1548866 1549012 1549212 "MCDEN" 1549574 NIL MCDEN (NIL T T) -7 NIL NIL) (-656 1546756 1547026 1547406 "MCALCFN" 1548596 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-655 1545667 1545840 1546081 "MAYBE" 1546554 NIL MAYBE (NIL T) -8 NIL NIL) (-654 1543279 1543802 1544364 "MATSTOR" 1545138 NIL MATSTOR (NIL T) -7 NIL NIL) (-653 1539284 1542651 1542899 "MATRIX" 1543064 NIL MATRIX (NIL T) -8 NIL NIL) (-652 1535053 1535757 1536493 "MATLIN" 1538641 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-651 1533647 1533800 1534133 "MATCAT2" 1534888 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-650 1523795 1526936 1527013 "MATCAT" 1531896 NIL MATCAT (NIL T T T) -9 NIL 1533313) (-649 1520159 1521172 1522528 "MATCAT-" 1522533 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-648 1518271 1518595 1518979 "MAPPKG3" 1519834 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-647 1517252 1517425 1517647 "MAPPKG2" 1518095 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-646 1515751 1516035 1516362 "MAPPKG1" 1516958 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-645 1514874 1515157 1515334 "MAPPAST" 1515594 T MAPPAST (NIL) -8 NIL NIL) (-644 1514485 1514543 1514666 "MAPHACK3" 1514810 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-643 1514077 1514138 1514252 "MAPHACK2" 1514417 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-642 1513515 1513618 1513760 "MAPHACK1" 1513968 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-641 1511623 1512217 1512520 "MAGMA" 1513244 NIL MAGMA (NIL T) -8 NIL NIL) (-640 1508090 1509862 1510323 "M3D" 1511195 NIL M3D (NIL T) -8 NIL NIL) (-639 1502247 1506460 1506501 "LZSTAGG" 1507283 NIL LZSTAGG (NIL T) -9 NIL 1507578) (-638 1498220 1499378 1500835 "LZSTAGG-" 1500840 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-637 1495336 1496113 1496599 "LWORD" 1497766 NIL LWORD (NIL T) -8 NIL NIL) (-636 1494956 1495140 1495215 "LSTAST" 1495281 T LSTAST (NIL) -8 NIL NIL) (-635 1488193 1494727 1494861 "LSQM" 1494866 NIL LSQM (NIL NIL T) -8 NIL NIL) (-634 1487417 1487556 1487784 "LSPP" 1488048 NIL LSPP (NIL T T T T) -7 NIL NIL) (-633 1484259 1484916 1485629 "LSMP1" 1486736 NIL LSMP1 (NIL T) -7 NIL NIL) (-632 1482094 1482388 1482837 "LSMP" 1483955 NIL LSMP (NIL T T T T) -7 NIL NIL) (-631 1476022 1481262 1481303 "LSAGG" 1481365 NIL LSAGG (NIL T) -9 NIL 1481443) (-630 1472717 1473641 1474854 "LSAGG-" 1474859 NIL LSAGG- (NIL T T) -8 NIL NIL) (-629 1470343 1471861 1472110 "LPOLY" 1472512 NIL LPOLY (NIL T T) -8 NIL NIL) (-628 1469925 1470010 1470133 "LPEFRAC" 1470252 NIL LPEFRAC (NIL T) -7 NIL NIL) (-627 1469577 1469689 1469717 "LOGIC" 1469828 T LOGIC (NIL) -9 NIL 1469909) (-626 1469439 1469462 1469533 "LOGIC-" 1469538 NIL LOGIC- (NIL T) -8 NIL NIL) (-625 1468632 1468772 1468965 "LODOOPS" 1469295 NIL LODOOPS (NIL T T) -7 NIL NIL) (-624 1467178 1467413 1467764 "LODOF" 1468379 NIL LODOF (NIL T T) -7 NIL NIL) (-623 1463645 1466023 1466064 "LODOCAT" 1466502 NIL LODOCAT (NIL T) -9 NIL 1466713) (-622 1463378 1463436 1463563 "LODOCAT-" 1463568 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-621 1460752 1463219 1463337 "LODO2" 1463342 NIL LODO2 (NIL T T) -8 NIL NIL) (-620 1458241 1460689 1460734 "LODO1" 1460739 NIL LODO1 (NIL T) -8 NIL NIL) (-619 1455718 1458157 1458223 "LODO" 1458228 NIL LODO (NIL T NIL) -8 NIL NIL) (-618 1454581 1454746 1455057 "LODEEF" 1455541 NIL LODEEF (NIL T T T) -7 NIL NIL) (-617 1452928 1453675 1453928 "LO" 1454413 NIL LO (NIL T T T) -8 NIL NIL) (-616 1448214 1451058 1451099 "LNAGG" 1452046 NIL LNAGG (NIL T) -9 NIL 1452490) (-615 1447361 1447575 1447917 "LNAGG-" 1447922 NIL LNAGG- (NIL T T) -8 NIL NIL) (-614 1443526 1444288 1444926 "LMOPS" 1446777 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-613 1442921 1443283 1443324 "LMODULE" 1443385 NIL LMODULE (NIL T) -9 NIL 1443427) (-612 1440167 1442566 1442689 "LMDICT" 1442831 NIL LMDICT (NIL T) -8 NIL NIL) (-611 1439911 1440075 1440135 "LITERAL" 1440140 NIL LITERAL (NIL T) -8 NIL NIL) (-610 1439436 1439510 1439649 "LIST3" 1439831 NIL LIST3 (NIL T T T) -7 NIL NIL) (-609 1437570 1437882 1438281 "LIST2MAP" 1439083 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-608 1436577 1436755 1436983 "LIST2" 1437388 NIL LIST2 (NIL T T) -7 NIL NIL) (-607 1429806 1435523 1435821 "LIST" 1436312 NIL LIST (NIL T) -8 NIL NIL) (-606 1428556 1429192 1429233 "LINEXP" 1429488 NIL LINEXP (NIL T) -9 NIL 1429637) (-605 1427203 1427463 1427760 "LINDEP" 1428308 NIL LINDEP (NIL T T) -7 NIL NIL) (-604 1424041 1424741 1425499 "LIMITRF" 1426477 NIL LIMITRF (NIL T) -7 NIL NIL) (-603 1422344 1422632 1423040 "LIMITPS" 1423743 NIL LIMITPS (NIL T T) -7 NIL NIL) (-602 1421393 1421836 1421876 "LIECAT" 1422016 NIL LIECAT (NIL T) -9 NIL 1422167) (-601 1421234 1421261 1421349 "LIECAT-" 1421354 NIL LIECAT- (NIL T T) -8 NIL NIL) (-600 1415721 1420745 1420973 "LIE" 1421055 NIL LIE (NIL T T) -8 NIL NIL) (-599 1408335 1415170 1415335 "LIB" 1415576 T LIB (NIL) -8 NIL NIL) (-598 1403972 1404853 1405788 "LGROBP" 1407452 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-597 1402812 1403504 1403532 "LFCAT" 1403739 T LFCAT (NIL) -9 NIL 1403878) (-596 1400678 1400952 1401314 "LF" 1402533 NIL LF (NIL T T) -7 NIL NIL) (-595 1397582 1398210 1398898 "LEXTRIPK" 1400042 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-594 1394353 1395152 1395655 "LEXP" 1397162 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-593 1393873 1394074 1394166 "LETAST" 1394281 T LETAST (NIL) -8 NIL NIL) (-592 1392271 1392584 1392985 "LEADCDET" 1393555 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-591 1391461 1391535 1391764 "LAZM3PK" 1392192 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-590 1386438 1389540 1390077 "LAUPOL" 1390974 NIL LAUPOL (NIL T T) -8 NIL NIL) (-589 1386005 1386049 1386216 "LAPLACE" 1386388 NIL LAPLACE (NIL T T) -7 NIL NIL) (-588 1385106 1385656 1385697 "LALG" 1385759 NIL LALG (NIL T) -9 NIL 1385818) (-587 1384820 1384879 1385015 "LALG-" 1385020 NIL LALG- (NIL T T) -8 NIL NIL) (-586 1382794 1383921 1384172 "LA" 1384653 NIL LA (NIL T T T) -8 NIL NIL) (-585 1381704 1381891 1382188 "KOVACIC" 1382594 NIL KOVACIC (NIL T T) -7 NIL NIL) (-584 1381539 1381563 1381604 "KONVERT" 1381666 NIL KONVERT (NIL T) -9 NIL NIL) (-583 1381374 1381398 1381439 "KOERCE" 1381501 NIL KOERCE (NIL T) -9 NIL NIL) (-582 1380876 1380957 1381087 "KERNEL2" 1381288 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-581 1378610 1379370 1379763 "KERNEL" 1380515 NIL KERNEL (NIL T) -8 NIL NIL) (-580 1372461 1377149 1377203 "KDAGG" 1377580 NIL KDAGG (NIL T T) -9 NIL 1377786) (-579 1371990 1372114 1372319 "KDAGG-" 1372324 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-578 1365167 1371651 1371806 "KAFILE" 1371868 NIL KAFILE (NIL T) -8 NIL NIL) (-577 1359654 1364678 1364906 "JORDAN" 1364988 NIL JORDAN (NIL T T) -8 NIL NIL) (-576 1359078 1359303 1359424 "JOINAST" 1359553 T JOINAST (NIL) -8 NIL NIL) (-575 1358807 1358866 1358953 "JAVACODE" 1359011 T JAVACODE (NIL) -8 NIL NIL) (-574 1355106 1357012 1357066 "IXAGG" 1357995 NIL IXAGG (NIL T T) -9 NIL 1358454) (-573 1354025 1354331 1354750 "IXAGG-" 1354755 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-572 1349605 1353947 1354006 "IVECTOR" 1354011 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-571 1348371 1348608 1348874 "ITUPLE" 1349372 NIL ITUPLE (NIL T) -8 NIL NIL) (-570 1346807 1346984 1347290 "ITRIGMNP" 1348193 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-569 1345552 1345756 1346039 "ITFUN3" 1346583 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-568 1345184 1345241 1345350 "ITFUN2" 1345489 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-567 1343021 1344046 1344345 "ITAYLOR" 1344918 NIL ITAYLOR (NIL T) -8 NIL NIL) (-566 1332015 1337167 1338327 "ISUPS" 1341894 NIL ISUPS (NIL T) -8 NIL NIL) (-565 1331119 1331259 1331495 "ISUMP" 1331862 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-564 1326383 1330920 1330999 "ISTRING" 1331072 NIL ISTRING (NIL NIL) -8 NIL NIL) (-563 1325593 1325674 1325890 "IRURPK" 1326297 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-562 1324529 1324730 1324970 "IRSN" 1325373 T IRSN (NIL) -7 NIL NIL) (-561 1322564 1322919 1323354 "IRRF2F" 1324167 NIL IRRF2F (NIL T) -7 NIL NIL) (-560 1322311 1322349 1322425 "IRREDFFX" 1322520 NIL IRREDFFX (NIL T) -7 NIL NIL) (-559 1320926 1321185 1321484 "IROOT" 1322044 NIL IROOT (NIL T) -7 NIL NIL) (-558 1320002 1320115 1320335 "IR2F" 1320809 NIL IR2F (NIL T T) -7 NIL NIL) (-557 1317615 1318110 1318676 "IR2" 1319480 NIL IR2 (NIL T T) -7 NIL NIL) (-556 1314253 1315304 1315994 "IR" 1316957 NIL IR (NIL T) -8 NIL NIL) (-555 1314044 1314078 1314138 "IPRNTPK" 1314213 T IPRNTPK (NIL) -7 NIL NIL) (-554 1310665 1313933 1314002 "IPF" 1314007 NIL IPF (NIL NIL) -8 NIL NIL) (-553 1309030 1310590 1310647 "IPADIC" 1310652 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-552 1308794 1308934 1308962 "IOBCON" 1308967 T IOBCON (NIL) -9 NIL 1308988) (-551 1308293 1308351 1308540 "INVLAPLA" 1308730 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-550 1297990 1300331 1302705 "INTTR" 1305969 NIL INTTR (NIL T T) -7 NIL NIL) (-549 1294338 1295079 1295942 "INTTOOLS" 1297176 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-548 1293924 1294015 1294132 "INTSLPE" 1294241 T INTSLPE (NIL) -7 NIL NIL) (-547 1291919 1293847 1293906 "INTRVL" 1293911 NIL INTRVL (NIL T) -8 NIL NIL) (-546 1289526 1290038 1290612 "INTRF" 1291404 NIL INTRF (NIL T) -7 NIL NIL) (-545 1288941 1289038 1289179 "INTRET" 1289424 NIL INTRET (NIL T) -7 NIL NIL) (-544 1286943 1287332 1287801 "INTRAT" 1288549 NIL INTRAT (NIL T T) -7 NIL NIL) (-543 1284176 1284759 1285384 "INTPM" 1286428 NIL INTPM (NIL T T) -7 NIL NIL) (-542 1280908 1281500 1282237 "INTPAF" 1283569 NIL INTPAF (NIL T T T) -7 NIL NIL) (-541 1276139 1277088 1278126 "INTPACK" 1279890 T INTPACK (NIL) -7 NIL NIL) (-540 1275391 1275543 1275751 "INTHERTR" 1275981 NIL INTHERTR (NIL T T) -7 NIL NIL) (-539 1274830 1274910 1275098 "INTHERAL" 1275305 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-538 1272676 1273119 1273576 "INTHEORY" 1274393 T INTHEORY (NIL) -7 NIL NIL) (-537 1264056 1265659 1267419 "INTG0" 1271046 NIL INTG0 (NIL T T T) -7 NIL NIL) (-536 1250329 1253694 1257079 "INTFTBL" 1260691 T INTFTBL (NIL) -8 NIL NIL) (-535 1249578 1249716 1249889 "INTFACT" 1250188 NIL INTFACT (NIL T) -7 NIL NIL) (-534 1246975 1247419 1247980 "INTEF" 1249134 NIL INTEF (NIL T T) -7 NIL NIL) (-533 1245477 1246182 1246210 "INTDOM" 1246511 T INTDOM (NIL) -9 NIL 1246718) (-532 1244846 1245020 1245262 "INTDOM-" 1245267 NIL INTDOM- (NIL T) -8 NIL NIL) (-531 1241381 1243267 1243321 "INTCAT" 1244120 NIL INTCAT (NIL T) -9 NIL 1244439) (-530 1240854 1240956 1241084 "INTBIT" 1241273 T INTBIT (NIL) -7 NIL NIL) (-529 1239529 1239683 1239996 "INTALG" 1240699 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-528 1238986 1239076 1239246 "INTAF" 1239433 NIL INTAF (NIL T T) -7 NIL NIL) (-527 1232442 1238796 1238936 "INTABL" 1238941 NIL INTABL (NIL T T T) -8 NIL NIL) (-526 1229344 1232171 1232298 "INT" 1232335 T INT (NIL) -8 NIL NIL) (-525 1224339 1227020 1227048 "INS" 1228016 T INS (NIL) -9 NIL 1228697) (-524 1221579 1222350 1223324 "INS-" 1223397 NIL INS- (NIL T) -8 NIL NIL) (-523 1220427 1220632 1220908 "INPSIGN" 1221354 NIL INPSIGN (NIL T T) -7 NIL NIL) (-522 1219545 1219662 1219859 "INPRODPF" 1220307 NIL INPRODPF (NIL T T) -7 NIL NIL) (-521 1218439 1218556 1218793 "INPRODFF" 1219425 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-520 1217439 1217591 1217851 "INNMFACT" 1218275 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-519 1216636 1216733 1216921 "INMODGCD" 1217338 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-518 1215145 1215389 1215713 "INFSP" 1216381 NIL INFSP (NIL T T T) -7 NIL NIL) (-517 1214329 1214446 1214629 "INFPROD0" 1215025 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-516 1213939 1213999 1214097 "INFORM1" 1214264 NIL INFORM1 (NIL T) -7 NIL NIL) (-515 1210950 1212108 1212599 "INFORM" 1213456 T INFORM (NIL) -8 NIL NIL) (-514 1210473 1210562 1210676 "INFINITY" 1210856 T INFINITY (NIL) -7 NIL NIL) (-513 1209090 1209339 1209660 "INEP" 1210221 NIL INEP (NIL T T T) -7 NIL NIL) (-512 1208366 1208987 1209052 "INDE" 1209057 NIL INDE (NIL T) -8 NIL NIL) (-511 1207930 1207998 1208115 "INCRMAPS" 1208293 NIL INCRMAPS (NIL T) -7 NIL NIL) (-510 1203241 1204166 1205110 "INBFF" 1207018 NIL INBFF (NIL T) -7 NIL NIL) (-509 1202910 1202986 1203014 "INBCON" 1203147 T INBCON (NIL) -9 NIL 1203225) (-508 1202750 1202785 1202861 "INBCON-" 1202866 NIL INBCON- (NIL T) -8 NIL NIL) (-507 1202269 1202471 1202563 "INAST" 1202678 T INAST (NIL) -8 NIL NIL) (-506 1201740 1201948 1202054 "IMPTAST" 1202183 T IMPTAST (NIL) -8 NIL NIL) (-505 1198233 1201584 1201688 "IMATRIX" 1201693 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-504 1196945 1197068 1197383 "IMATQF" 1198089 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-503 1195165 1195392 1195729 "IMATLIN" 1196701 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-502 1189793 1195089 1195147 "ILIST" 1195152 NIL ILIST (NIL T NIL) -8 NIL NIL) (-501 1187746 1189653 1189766 "IIARRAY2" 1189771 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-500 1183181 1187657 1187721 "IFF" 1187726 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-499 1182572 1182798 1182914 "IFAST" 1183085 T IFAST (NIL) -8 NIL NIL) (-498 1177615 1181864 1182052 "IFARRAY" 1182429 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-497 1176822 1177519 1177592 "IFAMON" 1177597 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-496 1176406 1176471 1176525 "IEVALAB" 1176732 NIL IEVALAB (NIL T T) -9 NIL NIL) (-495 1176081 1176149 1176309 "IEVALAB-" 1176314 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-494 1175358 1175970 1176045 "IDPOAMS" 1176050 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-493 1174692 1175247 1175322 "IDPOAM" 1175327 NIL IDPOAM (NIL T T) -8 NIL NIL) (-492 1174350 1174606 1174669 "IDPO" 1174674 NIL IDPO (NIL T T) -8 NIL NIL) (-491 1173435 1173685 1173738 "IDPC" 1174151 NIL IDPC (NIL T T) -9 NIL 1174300) (-490 1172931 1173327 1173400 "IDPAM" 1173405 NIL IDPAM (NIL T T) -8 NIL NIL) (-489 1172334 1172823 1172896 "IDPAG" 1172901 NIL IDPAG (NIL T T) -8 NIL NIL) (-488 1172082 1172249 1172299 "IDENT" 1172304 T IDENT (NIL) -8 NIL NIL) (-487 1168337 1169185 1170080 "IDECOMP" 1171239 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-486 1161210 1162260 1163307 "IDEAL" 1167373 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-485 1160374 1160486 1160685 "ICDEN" 1161094 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-484 1159473 1159854 1160001 "ICARD" 1160247 T ICARD (NIL) -8 NIL NIL) (-483 1157533 1157846 1158251 "IBPTOOLS" 1159150 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-482 1153167 1157153 1157266 "IBITS" 1157452 NIL IBITS (NIL NIL) -8 NIL NIL) (-481 1149890 1150466 1151161 "IBATOOL" 1152584 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-480 1147670 1148131 1148664 "IBACHIN" 1149425 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-479 1145547 1147516 1147619 "IARRAY2" 1147624 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-478 1141700 1145473 1145530 "IARRAY1" 1145535 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-477 1135710 1140118 1140596 "IAN" 1141242 T IAN (NIL) -8 NIL NIL) (-476 1135221 1135278 1135451 "IALGFACT" 1135647 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-475 1134749 1134862 1134890 "HYPCAT" 1135097 T HYPCAT (NIL) -9 NIL NIL) (-474 1134287 1134404 1134590 "HYPCAT-" 1134595 NIL HYPCAT- (NIL T) -8 NIL NIL) (-473 1133909 1134082 1134165 "HOSTNAME" 1134224 T HOSTNAME (NIL) -8 NIL NIL) (-472 1130588 1131919 1131960 "HOAGG" 1132941 NIL HOAGG (NIL T) -9 NIL 1133620) (-471 1129182 1129581 1130107 "HOAGG-" 1130112 NIL HOAGG- (NIL T T) -8 NIL NIL) (-470 1123098 1128623 1128789 "HEXADEC" 1129036 T HEXADEC (NIL) -8 NIL NIL) (-469 1121846 1122068 1122331 "HEUGCD" 1122875 NIL HEUGCD (NIL T) -7 NIL NIL) (-468 1120949 1121683 1121813 "HELLFDIV" 1121818 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-467 1119177 1120726 1120814 "HEAP" 1120893 NIL HEAP (NIL T) -8 NIL NIL) (-466 1118485 1118729 1118863 "HEADAST" 1119063 T HEADAST (NIL) -8 NIL NIL) (-465 1112418 1118400 1118462 "HDP" 1118467 NIL HDP (NIL NIL T) -8 NIL NIL) (-464 1106205 1112053 1112205 "HDMP" 1112319 NIL HDMP (NIL NIL T) -8 NIL NIL) (-463 1105530 1105669 1105833 "HB" 1106061 T HB (NIL) -7 NIL NIL) (-462 1099029 1105376 1105480 "HASHTBL" 1105485 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-461 1096851 1098657 1098836 "HACKPI" 1098870 T HACKPI (NIL) -8 NIL NIL) (-460 1092573 1096704 1096817 "GTSET" 1096822 NIL GTSET (NIL T T T T) -8 NIL NIL) (-459 1086101 1092451 1092549 "GSTBL" 1092554 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-458 1078416 1085132 1085397 "GSERIES" 1085892 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-457 1077583 1077974 1078002 "GROUP" 1078205 T GROUP (NIL) -9 NIL 1078339) (-456 1076949 1077108 1077359 "GROUP-" 1077364 NIL GROUP- (NIL T) -8 NIL NIL) (-455 1075318 1075637 1076024 "GROEBSOL" 1076626 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-454 1074258 1074520 1074571 "GRMOD" 1075100 NIL GRMOD (NIL T T) -9 NIL 1075268) (-453 1074026 1074062 1074190 "GRMOD-" 1074195 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-452 1069351 1070380 1071380 "GRIMAGE" 1073046 T GRIMAGE (NIL) -8 NIL NIL) (-451 1067818 1068078 1068402 "GRDEF" 1069047 T GRDEF (NIL) -7 NIL NIL) (-450 1067262 1067378 1067519 "GRAY" 1067697 T GRAY (NIL) -7 NIL NIL) (-449 1066495 1066875 1066926 "GRALG" 1067079 NIL GRALG (NIL T T) -9 NIL 1067171) (-448 1066156 1066229 1066392 "GRALG-" 1066397 NIL GRALG- (NIL T T T) -8 NIL NIL) (-447 1062960 1065741 1065919 "GPOLSET" 1066063 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-446 1062316 1062373 1062630 "GOSPER" 1062897 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-445 1058075 1058754 1059280 "GMODPOL" 1062015 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-444 1057080 1057264 1057502 "GHENSEL" 1057887 NIL GHENSEL (NIL T T) -7 NIL NIL) (-443 1051146 1051989 1053015 "GENUPS" 1056164 NIL GENUPS (NIL T T) -7 NIL NIL) (-442 1050843 1050894 1050983 "GENUFACT" 1051089 NIL GENUFACT (NIL T) -7 NIL NIL) (-441 1050255 1050332 1050497 "GENPGCD" 1050761 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-440 1049729 1049764 1049977 "GENMFACT" 1050214 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-439 1048297 1048552 1048859 "GENEEZ" 1049472 NIL GENEEZ (NIL T T) -7 NIL NIL) (-438 1042246 1047908 1048070 "GDMP" 1048220 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-437 1031645 1036017 1037123 "GCNAALG" 1041229 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-436 1030107 1030935 1030963 "GCDDOM" 1031218 T GCDDOM (NIL) -9 NIL 1031375) (-435 1029577 1029704 1029919 "GCDDOM-" 1029924 NIL GCDDOM- (NIL T) -8 NIL NIL) (-434 1018197 1020523 1022915 "GBINTERN" 1027268 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-433 1016034 1016326 1016747 "GBF" 1017872 NIL GBF (NIL T T T T) -7 NIL NIL) (-432 1014815 1014980 1015247 "GBEUCLID" 1015850 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-431 1013487 1013672 1013976 "GB" 1014594 NIL GB (NIL T T T T) -7 NIL NIL) (-430 1012836 1012961 1013110 "GAUSSFAC" 1013358 T GAUSSFAC (NIL) -7 NIL NIL) (-429 1011203 1011505 1011819 "GALUTIL" 1012555 NIL GALUTIL (NIL T) -7 NIL NIL) (-428 1009511 1009785 1010109 "GALPOLYU" 1010930 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-427 1006888 1007178 1007584 "GALFACTU" 1009208 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-426 998694 1000193 1001801 "GALFACT" 1005320 NIL GALFACT (NIL T) -7 NIL NIL) (-425 996082 996740 996768 "FVFUN" 997924 T FVFUN (NIL) -9 NIL 998644) (-424 995348 995530 995558 "FVC" 995849 T FVC (NIL) -9 NIL 996032) (-423 994990 995145 995226 "FUNCTION" 995300 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-422 993808 994291 994494 "FTEM" 994807 T FTEM (NIL) -8 NIL NIL) (-421 991490 992038 992524 "FT" 993342 T FT (NIL) -8 NIL NIL) (-420 989755 990043 990445 "FSUPFACT" 991182 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-419 988152 988441 988773 "FST" 989443 T FST (NIL) -8 NIL NIL) (-418 987327 987433 987627 "FSRED" 988034 NIL FSRED (NIL T T) -7 NIL NIL) (-417 986006 986261 986615 "FSPRMELT" 987042 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-416 983091 983529 984028 "FSPECF" 985569 NIL FSPECF (NIL T T) -7 NIL NIL) (-415 982607 982661 982837 "FSINT" 983032 NIL FSINT (NIL T T) -7 NIL NIL) (-414 980934 981600 981903 "FSERIES" 982386 NIL FSERIES (NIL T T) -8 NIL NIL) (-413 979952 980068 980298 "FSCINT" 980814 NIL FSCINT (NIL T T) -7 NIL NIL) (-412 978994 979137 979364 "FSAGG2" 979805 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-411 975228 977938 977979 "FSAGG" 978349 NIL FSAGG (NIL T) -9 NIL 978608) (-410 972990 973591 974387 "FSAGG-" 974482 NIL FSAGG- (NIL T T) -8 NIL NIL) (-409 970649 970928 971481 "FS2UPS" 972708 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-408 969509 969680 969988 "FS2EXPXP" 970474 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-407 969091 969134 969289 "FS2" 969460 NIL FS2 (NIL T T T T) -7 NIL NIL) (-406 951588 959990 960030 "FS" 963878 NIL FS (NIL T) -9 NIL 966162) (-405 940319 943282 947311 "FS-" 947608 NIL FS- (NIL T T) -8 NIL NIL) (-404 939745 939860 940012 "FRUTIL" 940199 NIL FRUTIL (NIL T) -7 NIL NIL) (-403 934852 937463 937503 "FRNAALG" 938899 NIL FRNAALG (NIL T) -9 NIL 939506) (-402 930581 931635 932893 "FRNAALG-" 933643 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-401 930219 930262 930389 "FRNAAF2" 930532 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-400 928630 929076 929370 "FRMOD" 930032 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-399 927829 927916 928203 "FRIDEAL2" 928537 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-398 925616 926220 926536 "FRIDEAL" 927620 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-397 924881 925282 925323 "FRETRCT" 925328 NIL FRETRCT (NIL T) -9 NIL 925499) (-396 924014 924238 924582 "FRETRCT-" 924587 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-395 921264 922440 922499 "FRAMALG" 923381 NIL FRAMALG (NIL T T) -9 NIL 923673) (-394 919398 919853 920483 "FRAMALG-" 920706 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-393 919034 919091 919198 "FRAC2" 919335 NIL FRAC2 (NIL T T) -7 NIL NIL) (-392 913022 918509 918785 "FRAC" 918790 NIL FRAC (NIL T) -8 NIL NIL) (-391 912658 912715 912822 "FR2" 912959 NIL FR2 (NIL T T) -7 NIL NIL) (-390 904239 908238 909567 "FR" 911361 NIL FR (NIL T) -8 NIL NIL) (-389 898975 901819 901847 "FPS" 902966 T FPS (NIL) -9 NIL 903523) (-388 898424 898533 898697 "FPS-" 898843 NIL FPS- (NIL T) -8 NIL NIL) (-387 895932 897565 897593 "FPC" 897818 T FPC (NIL) -9 NIL 897960) (-386 895725 895765 895862 "FPC-" 895867 NIL FPC- (NIL T) -8 NIL NIL) (-385 894603 895213 895254 "FPATMAB" 895259 NIL FPATMAB (NIL T) -9 NIL 895411) (-384 892303 892779 893205 "FPARFRAC" 894240 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-383 887735 888234 888916 "FORTRAN" 891735 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-382 885411 885973 886001 "FORTFN" 887061 T FORTFN (NIL) -9 NIL 887685) (-381 885175 885225 885253 "FORTCAT" 885312 T FORTCAT (NIL) -9 NIL 885374) (-380 882891 883391 883930 "FORT" 884656 T FORT (NIL) -7 NIL NIL) (-379 882679 882709 882778 "FORMULA1" 882855 NIL FORMULA1 (NIL T) -7 NIL NIL) (-378 880739 881222 881621 "FORMULA" 882300 T FORMULA (NIL) -8 NIL NIL) (-377 880262 880314 880487 "FORDER" 880681 NIL FORDER (NIL T T T T) -7 NIL NIL) (-376 879358 879522 879715 "FOP" 880089 T FOP (NIL) -7 NIL NIL) (-375 877966 878638 878812 "FNLA" 879240 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-374 876634 877023 877051 "FNCAT" 877623 T FNCAT (NIL) -9 NIL 877916) (-373 876200 876593 876621 "FNAME" 876626 T FNAME (NIL) -8 NIL NIL) (-372 874900 875829 875857 "FMTC" 875862 T FMTC (NIL) -9 NIL 875897) (-371 871264 872425 873053 "FMONOID" 874305 NIL FMONOID (NIL T) -8 NIL NIL) (-370 868688 869334 869362 "FMFUN" 870506 T FMFUN (NIL) -9 NIL 871214) (-369 865902 866736 866790 "FMCAT" 867985 NIL FMCAT (NIL T T) -9 NIL 868479) (-368 865171 865352 865380 "FMC" 865670 T FMC (NIL) -9 NIL 865852) (-367 864064 864937 865037 "FM1" 865116 NIL FM1 (NIL T T) -8 NIL NIL) (-366 863283 863806 863955 "FM" 863960 NIL FM (NIL T T) -8 NIL NIL) (-365 861057 861473 861967 "FLOATRP" 862834 NIL FLOATRP (NIL T) -7 NIL NIL) (-364 858495 858995 859573 "FLOATCP" 860524 NIL FLOATCP (NIL T) -7 NIL NIL) (-363 852050 856151 856781 "FLOAT" 857885 T FLOAT (NIL) -8 NIL NIL) (-362 850879 851683 851724 "FLINEXP" 851729 NIL FLINEXP (NIL T) -9 NIL 851822) (-361 850033 850268 850596 "FLINEXP-" 850601 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-360 849109 849253 849477 "FLASORT" 849885 NIL FLASORT (NIL T T) -7 NIL NIL) (-359 846326 847168 847220 "FLALG" 848447 NIL FLALG (NIL T T) -9 NIL 848914) (-358 845368 845511 845738 "FLAGG2" 846179 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-357 839152 842854 842895 "FLAGG" 844157 NIL FLAGG (NIL T) -9 NIL 844809) (-356 837878 838217 838707 "FLAGG-" 838712 NIL FLAGG- (NIL T T) -8 NIL NIL) (-355 834891 835865 835924 "FINRALG" 837052 NIL FINRALG (NIL T T) -9 NIL 837560) (-354 834051 834280 834619 "FINRALG-" 834624 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-353 833457 833670 833698 "FINITE" 833894 T FINITE (NIL) -9 NIL 834001) (-352 825915 828076 828116 "FINAALG" 831783 NIL FINAALG (NIL T) -9 NIL 833236) (-351 821256 822297 823441 "FINAALG-" 824820 NIL FINAALG- (NIL T T) -8 NIL NIL) (-350 819940 820252 820306 "FILECAT" 820990 NIL FILECAT (NIL T T) -9 NIL 821206) (-349 819335 819695 819798 "FILE" 819870 NIL FILE (NIL T) -8 NIL NIL) (-348 817257 818749 818777 "FIELD" 818817 T FIELD (NIL) -9 NIL 818897) (-347 815877 816262 816773 "FIELD-" 816778 NIL FIELD- (NIL T) -8 NIL NIL) (-346 813757 814514 814860 "FGROUP" 815564 NIL FGROUP (NIL T) -8 NIL NIL) (-345 812847 813011 813231 "FGLMICPK" 813589 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-344 808716 812772 812829 "FFX" 812834 NIL FFX (NIL T NIL) -8 NIL NIL) (-343 808317 808378 808513 "FFSLPE" 808649 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-342 807821 807857 808066 "FFPOLY2" 808275 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-341 803814 804593 805389 "FFPOLY" 807057 NIL FFPOLY (NIL T) -7 NIL NIL) (-340 799702 803733 803796 "FFP" 803801 NIL FFP (NIL T NIL) -8 NIL NIL) (-339 794865 799045 799235 "FFNBX" 799556 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-338 789841 794000 794258 "FFNBP" 794719 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-337 784511 789125 789336 "FFNB" 789674 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-336 783343 783541 783856 "FFINTBAS" 784308 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-335 779629 781802 781830 "FFIELDC" 782450 T FFIELDC (NIL) -9 NIL 782826) (-334 778292 778662 779159 "FFIELDC-" 779164 NIL FFIELDC- (NIL T) -8 NIL NIL) (-333 777862 777907 778031 "FFHOM" 778234 NIL FFHOM (NIL T T T) -7 NIL NIL) (-332 775560 776044 776561 "FFF" 777377 NIL FFF (NIL T) -7 NIL NIL) (-331 771215 775302 775403 "FFCGX" 775503 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-330 766884 770947 771054 "FFCGP" 771158 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-329 762104 766611 766719 "FFCG" 766820 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-328 761515 761558 761793 "FFCAT2" 762055 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-327 743592 752614 752700 "FFCAT" 757865 NIL FFCAT (NIL T T T) -9 NIL 759316) (-326 738790 739837 741151 "FFCAT-" 742381 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-325 734225 738701 738765 "FF" 738770 NIL FF (NIL NIL NIL) -8 NIL NIL) (-324 723471 727215 728432 "FEXPR" 733080 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-323 722471 722906 722947 "FEVALAB" 723031 NIL FEVALAB (NIL T) -9 NIL 723292) (-322 721630 721840 722178 "FEVALAB-" 722183 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-321 718696 719411 719526 "FDIVCAT" 721094 NIL FDIVCAT (NIL T T T T) -9 NIL 721531) (-320 718458 718485 718655 "FDIVCAT-" 718660 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-319 717678 717765 718042 "FDIV2" 718365 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-318 716271 717061 717264 "FDIV" 717577 NIL FDIV (NIL T T T T) -8 NIL NIL) (-317 714957 715216 715505 "FCPAK1" 716002 T FCPAK1 (NIL) -7 NIL NIL) (-316 714085 714457 714598 "FCOMP" 714848 NIL FCOMP (NIL T) -8 NIL NIL) (-315 697720 701134 704695 "FC" 710544 T FC (NIL) -8 NIL NIL) (-314 690377 694356 694396 "FAXF" 696198 NIL FAXF (NIL T) -9 NIL 696889) (-313 687656 688311 689136 "FAXF-" 689601 NIL FAXF- (NIL T T) -8 NIL NIL) (-312 682756 687032 687208 "FARRAY" 687513 NIL FARRAY (NIL T) -8 NIL NIL) (-311 678180 680200 680253 "FAMR" 681276 NIL FAMR (NIL T T) -9 NIL 681736) (-310 677070 677372 677807 "FAMR-" 677812 NIL FAMR- (NIL T T T) -8 NIL NIL) (-309 676266 676992 677045 "FAMONOID" 677050 NIL FAMONOID (NIL T) -8 NIL NIL) (-308 674098 674782 674835 "FAMONC" 675776 NIL FAMONC (NIL T T) -9 NIL 676161) (-307 672790 673852 673989 "FAGROUP" 673994 NIL FAGROUP (NIL T) -8 NIL NIL) (-306 670585 670904 671307 "FACUTIL" 672471 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-305 669684 669869 670091 "FACTFUNC" 670395 NIL FACTFUNC (NIL T) -7 NIL NIL) (-304 662091 668935 669147 "EXPUPXS" 669540 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-303 659574 660114 660700 "EXPRTUBE" 661525 T EXPRTUBE (NIL) -7 NIL NIL) (-302 655768 656360 657097 "EXPRODE" 658913 NIL EXPRODE (NIL T T) -7 NIL NIL) (-301 650196 650783 651595 "EXPR2UPS" 655066 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-300 649832 649889 649996 "EXPR2" 650133 NIL EXPR2 (NIL T T) -7 NIL NIL) (-299 635284 648491 648917 "EXPR" 649438 NIL EXPR (NIL T) -8 NIL NIL) (-298 626729 634421 634716 "EXPEXPAN" 635122 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-297 626378 626554 626622 "EXITAST" 626681 T EXITAST (NIL) -8 NIL NIL) (-296 626205 626335 626364 "EXIT" 626369 T EXIT (NIL) -8 NIL NIL) (-295 625832 625894 626007 "EVALCYC" 626137 NIL EVALCYC (NIL T) -7 NIL NIL) (-294 625373 625491 625532 "EVALAB" 625702 NIL EVALAB (NIL T) -9 NIL 625806) (-293 624854 624976 625197 "EVALAB-" 625202 NIL EVALAB- (NIL T T) -8 NIL NIL) (-292 622357 623625 623653 "EUCDOM" 624208 T EUCDOM (NIL) -9 NIL 624558) (-291 620762 621204 621794 "EUCDOM-" 621799 NIL EUCDOM- (NIL T) -8 NIL NIL) (-290 620394 620451 620560 "ESTOOLS2" 620699 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-289 620145 620187 620267 "ESTOOLS1" 620346 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-288 607723 610471 613211 "ESTOOLS" 617425 T ESTOOLS (NIL) -7 NIL NIL) (-287 607468 607500 607582 "ESCONT1" 607685 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-286 603843 604603 605383 "ESCONT" 606708 T ESCONT (NIL) -7 NIL NIL) (-285 603518 603568 603668 "ES2" 603787 NIL ES2 (NIL T T) -7 NIL NIL) (-284 603148 603206 603315 "ES1" 603454 NIL ES1 (NIL T T) -7 NIL NIL) (-283 597080 598806 598834 "ES" 601600 T ES (NIL) -9 NIL 603007) (-282 592027 593314 595131 "ES-" 595295 NIL ES- (NIL T) -8 NIL NIL) (-281 591243 591372 591548 "ERROR" 591871 T ERROR (NIL) -7 NIL NIL) (-280 584748 591102 591193 "EQTBL" 591198 NIL EQTBL (NIL T T) -8 NIL NIL) (-279 584380 584437 584546 "EQ2" 584685 NIL EQ2 (NIL T T) -7 NIL NIL) (-278 576937 579694 581143 "EQ" 582964 NIL -3849 (NIL T) -8 NIL NIL) (-277 572229 573275 574368 "EP" 575876 NIL EP (NIL T) -7 NIL NIL) (-276 570811 571112 571429 "ENV" 571932 T ENV (NIL) -8 NIL NIL) (-275 570010 570530 570558 "ENTIRER" 570563 T ENTIRER (NIL) -9 NIL 570609) (-274 566568 568019 568389 "EMR" 569809 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-273 565712 565897 565951 "ELTAGG" 566331 NIL ELTAGG (NIL T T) -9 NIL 566542) (-272 565431 565493 565634 "ELTAGG-" 565639 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-271 565220 565249 565303 "ELTAB" 565387 NIL ELTAB (NIL T T) -9 NIL NIL) (-270 564346 564492 564691 "ELFUTS" 565071 NIL ELFUTS (NIL T T) -7 NIL NIL) (-269 564088 564144 564172 "ELEMFUN" 564277 T ELEMFUN (NIL) -9 NIL NIL) (-268 563958 563979 564047 "ELEMFUN-" 564052 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-267 558849 562058 562099 "ELAGG" 563039 NIL ELAGG (NIL T) -9 NIL 563502) (-266 557134 557568 558231 "ELAGG-" 558236 NIL ELAGG- (NIL T T) -8 NIL NIL) (-265 555791 556071 556366 "ELABEXPR" 556859 T ELABEXPR (NIL) -8 NIL NIL) (-264 548784 550458 551285 "EFUPXS" 555067 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-263 542361 544035 544845 "EFULS" 548060 NIL EFULS (NIL T T T) -8 NIL NIL) (-262 539792 540150 540628 "EFSTRUC" 541993 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-261 528864 530429 531989 "EF" 538307 NIL EF (NIL T T) -7 NIL NIL) (-260 527965 528349 528498 "EAB" 528735 T EAB (NIL) -8 NIL NIL) (-259 527176 527924 527952 "E04UCFA" 527957 T E04UCFA (NIL) -8 NIL NIL) (-258 526387 527135 527163 "E04NAFA" 527168 T E04NAFA (NIL) -8 NIL NIL) (-257 525598 526346 526374 "E04MBFA" 526379 T E04MBFA (NIL) -8 NIL NIL) (-256 524809 525557 525585 "E04JAFA" 525590 T E04JAFA (NIL) -8 NIL NIL) (-255 524022 524768 524796 "E04GCFA" 524801 T E04GCFA (NIL) -8 NIL NIL) (-254 523235 523981 524009 "E04FDFA" 524014 T E04FDFA (NIL) -8 NIL NIL) (-253 522446 523194 523222 "E04DGFA" 523227 T E04DGFA (NIL) -8 NIL NIL) (-252 516631 517976 519338 "E04AGNT" 521104 T E04AGNT (NIL) -7 NIL NIL) (-251 515357 515837 515877 "DVARCAT" 516352 NIL DVARCAT (NIL T) -9 NIL 516550) (-250 514561 514773 515087 "DVARCAT-" 515092 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-249 507509 514362 514490 "DSMP" 514495 NIL DSMP (NIL T T T) -8 NIL NIL) (-248 507174 507233 507331 "DROPT1" 507444 NIL DROPT1 (NIL T) -7 NIL NIL) (-247 502289 503415 504552 "DROPT0" 506057 T DROPT0 (NIL) -7 NIL NIL) (-246 497099 498234 499302 "DROPT" 501241 T DROPT (NIL) -8 NIL NIL) (-245 495444 495769 496155 "DRAWPT" 496733 T DRAWPT (NIL) -7 NIL NIL) (-244 495077 495130 495248 "DRAWHACK" 495385 NIL DRAWHACK (NIL T) -7 NIL NIL) (-243 493808 494077 494368 "DRAWCX" 494806 T DRAWCX (NIL) -7 NIL NIL) (-242 493326 493394 493544 "DRAWCURV" 493734 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-241 483797 485756 487871 "DRAWCFUN" 491231 T DRAWCFUN (NIL) -7 NIL NIL) (-240 478384 479307 480386 "DRAW" 482771 NIL DRAW (NIL T) -7 NIL NIL) (-239 475197 477079 477120 "DQAGG" 477749 NIL DQAGG (NIL T) -9 NIL 478022) (-238 463765 470421 470504 "DPOLCAT" 472356 NIL DPOLCAT (NIL T T T T) -9 NIL 472900) (-237 458655 459984 461925 "DPOLCAT-" 461930 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-236 451823 458516 458614 "DPMO" 458619 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-235 444894 451603 451770 "DPMM" 451775 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-234 444314 444517 444631 "DOMAIN" 444800 T DOMAIN (NIL) -8 NIL NIL) (-233 438101 443949 444101 "DMP" 444215 NIL DMP (NIL NIL T) -8 NIL NIL) (-232 437701 437757 437901 "DLP" 438039 NIL DLP (NIL T) -7 NIL NIL) (-231 431347 436802 437029 "DLIST" 437506 NIL DLIST (NIL T) -8 NIL NIL) (-230 428194 430202 430243 "DLAGG" 430793 NIL DLAGG (NIL T) -9 NIL 431022) (-229 427044 427674 427702 "DIVRING" 427794 T DIVRING (NIL) -9 NIL 427877) (-228 426281 426471 426771 "DIVRING-" 426776 NIL DIVRING- (NIL T) -8 NIL NIL) (-227 424383 424740 425146 "DISPLAY" 425895 T DISPLAY (NIL) -7 NIL NIL) (-226 423231 423434 423699 "DIRPROD2" 424176 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-225 417186 423145 423208 "DIRPROD" 423213 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-224 406742 412681 412734 "DIRPCAT" 413144 NIL DIRPCAT (NIL NIL T) -9 NIL 413984) (-223 404068 404710 405591 "DIRPCAT-" 405928 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-222 403355 403515 403701 "DIOSP" 403902 T DIOSP (NIL) -7 NIL NIL) (-221 400057 402267 402308 "DIOPS" 402742 NIL DIOPS (NIL T) -9 NIL 402971) (-220 399606 399720 399911 "DIOPS-" 399916 NIL DIOPS- (NIL T T) -8 NIL NIL) (-219 398518 399112 399140 "DIFRING" 399327 T DIFRING (NIL) -9 NIL 399437) (-218 398164 398241 398393 "DIFRING-" 398398 NIL DIFRING- (NIL T) -8 NIL NIL) (-217 395989 397227 397268 "DIFEXT" 397631 NIL DIFEXT (NIL T) -9 NIL 397925) (-216 394274 394702 395368 "DIFEXT-" 395373 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-215 391596 393806 393847 "DIAGG" 393852 NIL DIAGG (NIL T) -9 NIL 393872) (-214 390980 391137 391389 "DIAGG-" 391394 NIL DIAGG- (NIL T T) -8 NIL NIL) (-213 386444 389939 390216 "DHMATRIX" 390749 NIL DHMATRIX (NIL T) -8 NIL NIL) (-212 382056 382965 383975 "DFSFUN" 385454 T DFSFUN (NIL) -7 NIL NIL) (-211 376911 380770 381135 "DFLOAT" 381711 T DFLOAT (NIL) -8 NIL NIL) (-210 375144 375425 375820 "DFINTTLS" 376619 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-209 372211 373167 373566 "DERHAM" 374811 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-208 370060 371986 372075 "DEQUEUE" 372155 NIL DEQUEUE (NIL T) -8 NIL NIL) (-207 369275 369408 369604 "DEGRED" 369922 NIL DEGRED (NIL T T) -7 NIL NIL) (-206 365855 366555 367362 "DEFINTRF" 368548 NIL DEFINTRF (NIL T) -7 NIL NIL) (-205 363498 363939 364509 "DEFINTEF" 365402 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-204 357414 362939 363105 "DECIMAL" 363352 T DECIMAL (NIL) -8 NIL NIL) (-203 354926 355384 355890 "DDFACT" 356958 NIL DDFACT (NIL T T) -7 NIL NIL) (-202 354522 354565 354716 "DBLRESP" 354877 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-201 352232 352566 352935 "DBASE" 354280 NIL DBASE (NIL T) -8 NIL NIL) (-200 351501 351712 351858 "DATABUF" 352131 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-199 350635 351460 351488 "D03FAFA" 351493 T D03FAFA (NIL) -8 NIL NIL) (-198 349770 350594 350622 "D03EEFA" 350627 T D03EEFA (NIL) -8 NIL NIL) (-197 347720 348186 348675 "D03AGNT" 349301 T D03AGNT (NIL) -7 NIL NIL) (-196 347037 347679 347707 "D02EJFA" 347712 T D02EJFA (NIL) -8 NIL NIL) (-195 346354 346996 347024 "D02CJFA" 347029 T D02CJFA (NIL) -8 NIL NIL) (-194 345671 346313 346341 "D02BHFA" 346346 T D02BHFA (NIL) -8 NIL NIL) (-193 344988 345630 345658 "D02BBFA" 345663 T D02BBFA (NIL) -8 NIL NIL) (-192 338186 339774 341380 "D02AGNT" 343402 T D02AGNT (NIL) -7 NIL NIL) (-191 335955 336477 337023 "D01WGTS" 337660 T D01WGTS (NIL) -7 NIL NIL) (-190 335056 335914 335942 "D01TRNS" 335947 T D01TRNS (NIL) -8 NIL NIL) (-189 334157 335015 335043 "D01GBFA" 335048 T D01GBFA (NIL) -8 NIL NIL) (-188 333258 334116 334144 "D01FCFA" 334149 T D01FCFA (NIL) -8 NIL NIL) (-187 332359 333217 333245 "D01ASFA" 333250 T D01ASFA (NIL) -8 NIL NIL) (-186 331460 332318 332346 "D01AQFA" 332351 T D01AQFA (NIL) -8 NIL NIL) (-185 330561 331419 331447 "D01APFA" 331452 T D01APFA (NIL) -8 NIL NIL) (-184 329662 330520 330548 "D01ANFA" 330553 T D01ANFA (NIL) -8 NIL NIL) (-183 328763 329621 329649 "D01AMFA" 329654 T D01AMFA (NIL) -8 NIL NIL) (-182 327864 328722 328750 "D01ALFA" 328755 T D01ALFA (NIL) -8 NIL NIL) (-181 326965 327823 327851 "D01AKFA" 327856 T D01AKFA (NIL) -8 NIL NIL) (-180 326066 326924 326952 "D01AJFA" 326957 T D01AJFA (NIL) -8 NIL NIL) (-179 319370 320919 322478 "D01AGNT" 324527 T D01AGNT (NIL) -7 NIL NIL) (-178 318707 318835 318987 "CYCLOTOM" 319238 T CYCLOTOM (NIL) -7 NIL NIL) (-177 315442 316155 316882 "CYCLES" 318000 T CYCLES (NIL) -7 NIL NIL) (-176 314754 314888 315059 "CVMP" 315303 NIL CVMP (NIL T) -7 NIL NIL) (-175 312535 312793 313168 "CTRIGMNP" 314482 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-174 312046 312235 312334 "CTORCALL" 312456 T CTORCALL (NIL) -8 NIL NIL) (-173 311420 311519 311672 "CSTTOOLS" 311943 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-172 307219 307876 308634 "CRFP" 310732 NIL CRFP (NIL T T) -7 NIL NIL) (-171 306739 306940 307032 "CRCAST" 307147 T CRCAST (NIL) -8 NIL NIL) (-170 305786 305971 306199 "CRAPACK" 306543 NIL CRAPACK (NIL T) -7 NIL NIL) (-169 305170 305271 305475 "CPMATCH" 305662 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-168 304895 304923 305029 "CPIMA" 305136 NIL CPIMA (NIL T T T) -7 NIL NIL) (-167 301259 301931 302649 "COORDSYS" 304230 NIL COORDSYS (NIL T) -7 NIL NIL) (-166 300643 300772 300922 "CONTOUR" 301129 T CONTOUR (NIL) -8 NIL NIL) (-165 296571 298646 299138 "CONTFRAC" 300183 NIL CONTFRAC (NIL T) -8 NIL NIL) (-164 296451 296472 296500 "CONDUIT" 296537 T CONDUIT (NIL) -9 NIL NIL) (-163 295644 296164 296192 "COMRING" 296197 T COMRING (NIL) -9 NIL 296249) (-162 294725 295002 295186 "COMPPROP" 295480 T COMPPROP (NIL) -8 NIL NIL) (-161 294386 294421 294549 "COMPLPAT" 294684 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-160 294022 294079 294186 "COMPLEX2" 294323 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-159 284104 293831 293940 "COMPLEX" 293945 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 283822 283857 283955 "COMPFACT" 284063 NIL COMPFACT (NIL T T) -7 NIL NIL) (-157 268239 278441 278481 "COMPCAT" 279485 NIL COMPCAT (NIL T) -9 NIL 280880) (-156 257775 260692 264312 "COMPCAT-" 264668 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-155 257504 257532 257635 "COMMUPC" 257741 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-154 257299 257332 257391 "COMMONOP" 257465 T COMMONOP (NIL) -7 NIL NIL) (-153 256882 257050 257137 "COMM" 257232 T COMM (NIL) -8 NIL NIL) (-152 256131 256325 256353 "COMBOPC" 256691 T COMBOPC (NIL) -9 NIL 256866) (-151 255027 255237 255479 "COMBINAT" 255921 NIL COMBINAT (NIL T) -7 NIL NIL) (-150 251225 251798 252438 "COMBF" 254449 NIL COMBF (NIL T T) -7 NIL NIL) (-149 250011 250341 250576 "COLOR" 251010 T COLOR (NIL) -8 NIL NIL) (-148 249651 249698 249823 "CMPLXRT" 249958 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-147 245153 246181 247261 "CLIP" 248591 T CLIP (NIL) -7 NIL NIL) (-146 243535 244259 244498 "CLIF" 244980 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-145 239757 241681 241722 "CLAGG" 242651 NIL CLAGG (NIL T) -9 NIL 243187) (-144 238179 238636 239219 "CLAGG-" 239224 NIL CLAGG- (NIL T T) -8 NIL NIL) (-143 237723 237808 237948 "CINTSLPE" 238088 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-142 235224 235695 236243 "CHVAR" 237251 NIL CHVAR (NIL T T T) -7 NIL NIL) (-141 234487 235007 235035 "CHARZ" 235040 T CHARZ (NIL) -9 NIL 235055) (-140 234241 234281 234359 "CHARPOL" 234441 NIL CHARPOL (NIL T) -7 NIL NIL) (-139 233388 233941 233969 "CHARNZ" 234016 T CHARNZ (NIL) -9 NIL 234072) (-138 231413 232078 232413 "CHAR" 233073 T CHAR (NIL) -8 NIL NIL) (-137 231139 231200 231228 "CFCAT" 231339 T CFCAT (NIL) -9 NIL NIL) (-136 230384 230495 230677 "CDEN" 231023 NIL CDEN (NIL T T T) -7 NIL NIL) (-135 226376 229537 229817 "CCLASS" 230124 T CCLASS (NIL) -8 NIL NIL) (-134 226295 226321 226356 "CATEGORY" 226361 T -10 (NIL) -8 NIL NIL) (-133 225403 225551 225772 "CARTEN2" 226142 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220455 221432 222185 "CARTEN" 224706 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 218799 219607 219863 "CARD" 220219 T CARD (NIL) -8 NIL NIL) (-130 218171 218499 218527 "CACHSET" 218659 T CACHSET (NIL) -9 NIL 218736) (-129 217667 217963 217991 "CABMON" 218041 T CABMON (NIL) -9 NIL 218097) (-128 213615 217614 217648 "BYTEARY" 217653 T BYTEARY (NIL) -8 NIL NIL) (-127 212783 213162 213305 "BYTE" 213492 T BYTE (NIL) -8 NIL NIL) (-126 210342 212475 212582 "BTREE" 212709 NIL BTREE (NIL T) -8 NIL NIL) (-125 207842 209990 210112 "BTOURN" 210252 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205262 207313 207354 "BTCAT" 207422 NIL BTCAT (NIL T) -9 NIL 207499) (-123 204929 205009 205158 "BTCAT-" 205163 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200221 204072 204100 "BTAGG" 204322 T BTAGG (NIL) -9 NIL 204483) (-121 199711 199836 200042 "BTAGG-" 200047 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 196757 198989 199204 "BSTREE" 199528 NIL BSTREE (NIL T) -8 NIL NIL) (-119 195895 196021 196205 "BRILL" 196613 NIL BRILL (NIL T) -7 NIL NIL) (-118 192597 194623 194664 "BRAGG" 195313 NIL BRAGG (NIL T) -9 NIL 195570) (-117 191129 191534 192088 "BRAGG-" 192093 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184423 190475 190659 "BPADICRT" 190977 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 182775 184360 184405 "BPADIC" 184410 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182475 182505 182618 "BOUNDZRO" 182739 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 180096 180540 181060 "BOP1" 181988 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175611 176702 177569 "BOP" 179249 T BOP (NIL) -8 NIL NIL) (-111 174335 175021 175221 "BOOLEAN" 175431 T BOOLEAN (NIL) -8 NIL NIL) (-110 173697 174075 174129 "BMODULE" 174134 NIL BMODULE (NIL T T) -9 NIL 174199) (-109 169527 173495 173568 "BITS" 173644 T BITS (NIL) -8 NIL NIL) (-108 168624 169059 169211 "BINFILE" 169395 T BINFILE (NIL) -8 NIL NIL) (-107 168036 168158 168300 "BINDING" 168502 T BINDING (NIL) -8 NIL NIL) (-106 161956 167480 167645 "BINARY" 167891 T BINARY (NIL) -8 NIL NIL) (-105 159783 161211 161252 "BGAGG" 161512 NIL BGAGG (NIL T) -9 NIL 161649) (-104 159614 159646 159737 "BGAGG-" 159742 NIL BGAGG- (NIL T T) -8 NIL NIL) (-103 158712 158998 159203 "BFUNCT" 159429 T BFUNCT (NIL) -8 NIL NIL) (-102 157396 157577 157865 "BEZOUT" 158536 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-101 153915 156248 156578 "BBTREE" 157099 NIL BBTREE (NIL T) -8 NIL NIL) (-100 153649 153702 153730 "BASTYPE" 153849 T BASTYPE (NIL) -9 NIL NIL) (-99 153503 153532 153603 "BASTYPE-" 153608 NIL BASTYPE- (NIL T) -8 NIL NIL) (-98 152941 153017 153167 "BALFACT" 153414 NIL BALFACT (NIL T T) -7 NIL NIL) (-97 151824 152356 152542 "AUTOMOR" 152786 NIL AUTOMOR (NIL T) -8 NIL NIL) (-96 151550 151555 151581 "ATTREG" 151586 T ATTREG (NIL) -9 NIL NIL) (-95 149829 150247 150599 "ATTRBUT" 151216 T ATTRBUT (NIL) -8 NIL NIL) (-94 149481 149657 149723 "ATTRAST" 149781 T ATTRAST (NIL) -8 NIL NIL) (-93 149017 149130 149156 "ATRIG" 149357 T ATRIG (NIL) -9 NIL NIL) (-92 148826 148867 148954 "ATRIG-" 148959 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 148551 148694 148720 "ASTCAT" 148725 T ASTCAT (NIL) -9 NIL 148755) (-90 148348 148391 148483 "ASTCAT-" 148488 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 146545 148124 148212 "ASTACK" 148291 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145050 145347 145712 "ASSOCEQ" 146227 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144104 144709 144833 "ASP9" 144957 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 142995 143709 143851 "ASP80" 143993 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142759 142943 142982 "ASP8" 142987 NIL ASP8 (NIL NIL) -8 NIL NIL) (-84 141735 142436 142554 "ASP78" 142672 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140726 141415 141532 "ASP77" 141649 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139660 140364 140495 "ASP74" 140626 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138582 139295 139427 "ASP73" 139559 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137503 138217 138349 "ASP7" 138481 NIL ASP7 (NIL NIL) -8 NIL NIL) (-79 136480 137180 137298 "ASP6" 137416 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135450 136157 136275 "ASP55" 136393 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134422 135124 135243 "ASP50" 135362 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133532 134123 134233 "ASP49" 134343 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132339 133071 133239 "ASP42" 133421 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131138 131872 132042 "ASP41" 132226 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130248 130839 130949 "ASP4" 131059 NIL ASP4 (NIL NIL) -8 NIL NIL) (-72 129220 129925 130043 "ASP35" 130161 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 128985 129168 129207 "ASP34" 129212 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128722 128789 128865 "ASP33" 128940 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127639 128357 128489 "ASP31" 128621 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127404 127587 127626 "ASP30" 127631 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127139 127208 127284 "ASP29" 127359 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 126904 127087 127126 "ASP28" 127131 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126669 126852 126891 "ASP27" 126896 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125775 126367 126478 "ASP24" 126589 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124713 125416 125546 "ASP20" 125676 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123679 124387 124506 "ASP19" 124625 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123416 123483 123559 "ASP12" 123634 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122290 123015 123159 "ASP10" 123303 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 121400 121991 122101 "ASP1" 122211 NIL ASP1 (NIL NIL) -8 NIL NIL) (-58 119299 121244 121335 "ARRAY2" 121340 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 118331 118504 118725 "ARRAY12" 119122 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 114147 117979 118093 "ARRAY1" 118248 NIL ARRAY1 (NIL T) -8 NIL NIL) (-55 108506 110377 110452 "ARR2CAT" 113082 NIL ARR2CAT (NIL T T T) -9 NIL 113840) (-54 105940 106684 107638 "ARR2CAT-" 107643 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104688 104840 105146 "APPRULE" 105776 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104339 104387 104506 "APPLYORE" 104634 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103617 103740 103897 "ANY1" 104213 NIL ANY1 (NIL T) -7 NIL NIL) (-50 102591 102882 103077 "ANY" 103440 T ANY (NIL) -8 NIL NIL) (-49 100158 101030 101356 "ANTISYM" 102316 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99673 99862 99959 "ANON" 100079 T ANON (NIL) -8 NIL NIL) (-47 93822 98218 98669 "AN" 99240 T AN (NIL) -8 NIL NIL) (-46 90203 91557 91608 "AMR" 92356 NIL AMR (NIL T T) -9 NIL 92956) (-45 89315 89536 89899 "AMR-" 89904 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73871 89232 89293 "ALIST" 89298 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70740 73465 73634 "ALGSC" 73789 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67296 67850 68457 "ALGPKG" 70180 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66573 66674 66858 "ALGMFACT" 67182 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62322 63003 63657 "ALGMANIP" 66097 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53744 61948 62098 "ALGFF" 62255 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52940 53071 53250 "ALGFACT" 53602 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51970 52536 52574 "ALGEBRA" 52634 NIL ALGEBRA (NIL T) -9 NIL 52693) (-36 51688 51747 51879 "ALGEBRA-" 51884 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33954 49691 49743 "ALAGG" 49879 NIL ALAGG (NIL T T) -9 NIL 50040) (-34 33490 33603 33629 "AHYP" 33830 T AHYP (NIL) -9 NIL NIL) (-33 32421 32669 32695 "AGG" 33194 T AGG (NIL) -9 NIL 33473) (-32 31855 32017 32231 "AGG-" 32236 NIL AGG- (NIL T) -8 NIL NIL) (-31 29542 29960 30377 "AF" 31498 NIL AF (NIL T T) -7 NIL NIL) (-30 28811 29069 29225 "ACPLOT" 29404 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26213 26264 "ACFS" 26975 NIL ACFS (NIL T) -9 NIL 27214) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 04ab71d3..fe9c2a1c 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,4486 +1,3960 @@ -(729449 . 3429568334) -(((*1 *2 *1) - (-12 (-5 *2 (-606 *4)) (-5 *1 (-1083 *3 *4)) - (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) - (-5 *2 (-111)) (-5 *1 (-601 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) - (-4 *3 (-609 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) - (-4 *3 (-609 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) - ((*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-874)) (-5 *1 (-425 *2)) - (-4 *2 (-1176 (-537))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-874)) (-5 *4 (-731)) (-5 *1 (-425 *2)) - (-4 *2 (-1176 (-537))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *1 (-425 *2)) - (-4 *2 (-1176 (-537))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) - (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) - (-5 *6 (-111)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-402 *2)) (-4 *2 (-1176 *5)) - (-5 *1 (-427 *5 *2)) (-4 *5 (-998))))) -(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-595))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202))))) +(722866 . 3430368525) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) - (-5 *2 - (-606 - (-2 (|:| -3705 (-731)) - (|:| |eqns| - (-606 - (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) - (|:| |cols| (-606 (-537)))))) - (|:| |fgb| (-606 *8))))) - (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-731))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)) - (-5 *1 (-1098 *4))))) + (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) + (-5 *2 (-1205 (-392 (-526)))) (-5 *1 (-1232 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) - ((*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) + (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) + (-5 *2 (-1205 (-526))) (-5 *1 (-1232 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) - (-5 *2 - (-3 (|:| |overq| (-1113 (-391 (-537)))) - (|:| |overan| (-1113 (-47))) (|:| -4053 (-111)))) - (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) - (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-731)) (-4 *4 (-333)) - (-5 *1 (-507 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-639 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) - (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5)))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-873))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) - (-4 *2 (-1176 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-537) (-210) (-1117) (-1100) (-1122))) - (-5 *1 (-1122))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) - (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-639 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-1010)))) -(((*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1040 *3)) (-4 *3 (-902 *7 *6 *4)) (-4 *6 (-753)) - (-4 *4 (-807)) (-4 *7 (-529)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) - (-5 *1 (-561 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-529)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) - (-5 *1 (-561 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1109 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) - (-5 *2 (-391 (-905 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-905 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) - (-5 *2 (-3 (-391 (-905 *5)) (-300 *5))) (-5 *1 (-1110 *5)) - (-5 *3 (-391 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1038 (-905 *5))) (-5 *3 (-905 *5)) - (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 *3)) - (-5 *1 (-1110 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1038 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) - (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 *3 (-300 *5))) - (-5 *1 (-1110 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-673 *3 *4)) - (-4 *4 (-1176 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-606 (-526))) (-5 *2 (-111)) + (-5 *1 (-1232 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) - (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-874)))) + (-12 (-4 *5 (-13 (-584 *2) (-163))) (-5 *2 (-849 *4)) (-5 *1 (-161 *4 *5 *3)) + (-4 *4 (-1052)) (-4 *3 (-157 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-320 *4 *5 *6 *7)) (-4 *4 (-13 (-352) (-347))) - (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *7 (-326 *4 *5 *6)) - (-5 *2 (-731)) (-5 *1 (-376 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-793 (-874))))) - ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) - (-4 *3 (-807)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)) - (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) - (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) - (-5 *2 (-731)) (-5 *1 (-864 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) - (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) - (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-731)) - (-5 *1 (-865 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-320 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-347)) - (-4 *7 (-1176 *6)) (-4 *4 (-1176 (-391 *7))) (-4 *8 (-326 *6 *7 *4)) - (-4 *9 (-13 (-352) (-347))) (-5 *2 (-731)) - (-5 *1 (-970 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)) (-5 *2 (-731)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) - ((*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) - (-4 *4 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) - ((*1 *1 *1) (-4 *1 (-218))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) - (-4 *3 (-1176 *2)))) - ((*1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *3 (-853 *6)) - (-5 *2 (-649 *3)) (-5 *1 (-652 *6 *3 *7 *4)) (-4 *7 (-357 *3)) - (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-391 (-537))) (-4 *1 (-527 *3)) - (-4 *3 (-13 (-388) (-1139))))) - ((*1 *1 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) - (-5 *1 (-1208 *4)) (-4 *4 (-347))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *4 (-1117)) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284))))) -(((*1 *2 *1) - (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-116 *3)) (-14 *3 (-537)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-291)) (-5 *1 (-164 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-164 (-537))) (-5 *1 (-726 *3)) (-4 *3 (-388)))) + (-12 (-5 *3 (-607 (-1041 (-803 (-363))))) + (-5 *2 (-607 (-1041 (-803 (-211))))) (-5 *1 (-288)))) + ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-363)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-378)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) + (-4 *4 (-1181 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-824 *3)) (-14 *3 (-537)))) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) + (-5 *2 (-1205 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-390 *1)) (-4 *1 (-406 *3)) (-4 *3 (-533)) (-4 *3 (-811)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-447 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015)))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) + (-4 *5 (-584 (-1123))) (-4 *4 (-757)) (-4 *5 (-811)))) + ((*1 *1 *2) + (-3850 + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811))))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) + (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) + (-5 *1 (-1022 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1033)))) + ((*1 *1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-1052)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *2 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *2 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) + (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1060 *4 *5 *6 *7)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1106)) + (-5 *1 (-1093 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1128)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-823)) (-5 *3 (-526)) (-5 *1 (-1139)))) + ((*1 *2 *3) + (-12 (-5 *3 (-744 *4 (-824 *5))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *5 (-607 (-1123))) (-5 *2 (-744 *4 (-824 *6))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *6 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-905 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-744 *4 (-824 *6))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *6 (-607 (-1123))) (-5 *2 (-905 (-981 (-392 *4)))) + (-5 *1 (-1231 *4 *5 *6)) (-14 *5 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-1117 (-981 (-392 *4)))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6)))) + (-4 *4 (-13 (-809) (-292) (-141) (-977))) (-14 *6 (-607 (-1123))) + (-5 *2 (-607 (-744 *4 (-824 *6)))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123)))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) + (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-4 *7 (-909 *6 *4 *5)) + (-5 *2 (-390 (-1117 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) ((*1 *2 *1) - (-12 (-14 *3 (-537)) (-5 *2 (-164 (-391 (-537)))) - (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) - (-5 *1 (-1155 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) - (-5 *1 (-1155 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 (-578 *4))) (-4 *4 (-414 *3)) (-4 *3 (-807)) - (-5 *1 (-546 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) -(((*1 *2 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-819 *4 *5 *6 *7)) - (-4 *4 (-998)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 *3)) - (-14 *7 *3))) + (-12 (-4 *3 (-436)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-390 *1)) (-4 *1 (-909 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) - (-14 *8 (-606 *5)) (-5 *2 (-1205)) - (-5 *1 (-1211 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-902 *4 *6 *5)) - (-14 *9 (-606 *3)) (-14 *10 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-779 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)))) + (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-436)) (-5 *2 (-390 *3)) + (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-291) (-141))) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) - (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) - (-5 *1 (-857 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-712))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-160 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) - (-5 *1 (-719))))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) - (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) - (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998))))) -(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)))) - ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-1203)))) - ((*1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1203))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) - (-4 *3 (-157 *6)) (-4 (-905 *6) (-839 *5)) - (-4 *6 (-13 (-839 *5) (-163))) (-5 *1 (-168 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-842 *4 *1)) (-5 *3 (-845 *4)) (-4 *1 (-839 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) - (-4 *6 (-13 (-1045) (-989 *3))) (-4 *3 (-839 *5)) - (-5 *1 (-884 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) - (-4 *3 (-13 (-414 *6) (-580 *4) (-839 *5) (-989 (-578 $)))) - (-5 *4 (-845 *5)) (-4 *6 (-13 (-529) (-807) (-839 *5))) - (-5 *1 (-885 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 (-537) *3)) (-5 *4 (-845 (-537))) (-4 *3 (-522)) - (-5 *1 (-886 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *6)) (-5 *3 (-578 *6)) (-4 *5 (-1045)) - (-4 *6 (-13 (-807) (-989 (-578 $)) (-580 *4) (-839 *5))) - (-5 *4 (-845 *5)) (-5 *1 (-887 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-838 *5 *6 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) - (-4 *6 (-839 *5)) (-4 *3 (-627 *6)) (-5 *1 (-888 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-842 *6 *3) *8 (-845 *6) (-842 *6 *3))) - (-4 *8 (-807)) (-5 *2 (-842 *6 *3)) (-5 *4 (-845 *6)) - (-4 *6 (-1045)) (-4 *3 (-13 (-902 *9 *7 *8) (-580 *4))) - (-4 *7 (-753)) (-4 *9 (-13 (-998) (-807) (-839 *6))) - (-5 *1 (-889 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) - (-4 *3 (-13 (-902 *8 *6 *7) (-580 *4))) (-5 *4 (-845 *5)) - (-4 *7 (-839 *5)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *8 (-13 (-998) (-807) (-839 *5))) (-5 *1 (-889 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-945 *6)) - (-4 *6 (-13 (-529) (-839 *5) (-580 *4))) (-5 *4 (-845 *5)) - (-5 *1 (-892 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-842 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-845 *5)) - (-4 *5 (-1045)) (-5 *1 (-893 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-606 (-845 *7))) (-5 *5 (-1 *9 (-606 *9))) - (-5 *6 (-1 (-842 *7 *9) *9 (-845 *7) (-842 *7 *9))) (-4 *7 (-1045)) - (-4 *9 (-13 (-998) (-580 (-845 *7)) (-989 *8))) (-5 *2 (-842 *7 *9)) - (-5 *3 (-606 *9)) (-4 *8 (-13 (-998) (-807))) - (-5 *1 (-894 *7 *8 *9))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) - (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) - (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) - (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *7 (-1176 *5)) (-4 *4 (-685 *5 *7)) - (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) - (-5 *1 (-771 *5 *6 *7 *4 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *2)) (-5 *4 (-1117)) (-4 *2 (-414 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-807) (-529))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-4 *1 (-964)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-5 *4 (-816)) - (-4 *1 (-964)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-874)) (-4 *4 (-13 (-805) (-347))) - (-4 *1 (-1015 *4 *2)) (-4 *2 (-1176 *4))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *2 *3) (-12 (-5 *3 (-391 (-537))) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) (-4 *1 (-268))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-5 *1 (-590 *3 *4 *5)) - (-14 *5 (-874)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) - (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) - (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1098 *3))) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-606 (-905 *4))))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) - ((*1 *2) - (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-606 (-905 *3))))) - ((*1 *2) - (-12 (-5 *2 (-606 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) + (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) + (-5 *3 (-1117 (-392 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *2 (-606 (-905 *4))) - (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *4 (-163)) - (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) -(((*1 *2 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)) - (-4 *4 (-333))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-998)) (-5 *1 (-675 *4 *2)) - (-4 *2 (-609 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-794 *2)) (-4 *2 (-998))))) -(((*1 *2 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 *4)) (-5 *3 (-1 *4 (-537))) (-4 *4 (-998)) - (-5 *1 (-1102 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-606 *2))) (-5 *4 (-606 *5)) - (-4 *5 (-37 (-391 (-537)))) (-4 *2 (-1191 *5)) - (-5 *1 (-1193 *5 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-529)) - (-4 *3 (-1154))))) -(((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) - (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) - (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-606 *3)) - (-5 *1 (-559 *5 *6 *7 *8 *3)) (-4 *3 (-1054 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) - (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) - (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) - (-14 *6 (-606 (-1117))))) + (-12 (-4 *4 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-1185 *4 *3)) + (-4 *3 (-13 (-1181 *4) (-533) (-10 -8 (-15 -3457 ($ $ $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-291) (-141))) - (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) - (-5 *1 (-1023 *4 *5)) (-5 *3 (-606 (-905 *4))) - (-14 *5 (-606 (-1117))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) - (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) - (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) - (-14 *6 (-606 (-1117)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-649 (-537))) (-5 *5 (-111)) (-5 *7 (-649 (-210))) - (-5 *3 (-537)) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) - (-5 *1 (-871 *4))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1089 *3))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-905 (-537))) (-5 *3 (-1117)) - (-5 *4 (-1040 (-391 (-537)))) (-5 *1 (-30))))) + (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *5 (-607 (-1123))) + (-5 *2 (-607 (-1094 *4 (-512 (-824 *6)) (-824 *6) (-744 *4 (-824 *6))))) + (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123)))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-178)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *1 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-787 *2 *3)) (-4 *2 (-669 *3))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) - (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) + (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) + (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) + (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) + (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) - (-4 *7 (-805)) - (-4 *8 - (-13 (-1178 *3 *7) (-347) (-1139) - (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) - (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) - (-14 *10 (-1117))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-4 *2 (-853 *5)) (-5 *1 (-652 *5 *2 *3 *4)) - (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-116 *4)) (-14 *4 *3) - (-5 *3 (-537)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-824 *4)) (-14 *4 *3) - (-5 *3 (-537)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-391 (-537))) (-5 *1 (-825 *4 *5)) - (-5 *3 (-537)) (-4 *5 (-822 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-964)) (-5 *2 (-391 (-537))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) - (-4 *3 (-1176 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2341 (*2 (-1117)))) - (-4 *2 (-998))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-717))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1) (-4 *1 (-333))) + (-12 (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-607 (-1123))) + (-5 *2 (-607 (-607 (-363)))) (-5 *1 (-980)) (-5 *5 (-363)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) - (-4 *4 (-13 (-529) (-807) (-141))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-606 (-1113 *5))) - (|:| |prim| (-1113 *5)))) - (-5 *1 (-416 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-141))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1113 *3)) - (|:| |pol2| (-1113 *3)) (|:| |prim| (-1113 *3)))) - (-5 *1 (-416 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-347) (-141))) - (-5 *2 - (-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) - (|:| |prim| (-1113 *5)))) - (-5 *1 (-913 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) - (-4 *5 (-13 (-347) (-141))) - (-5 *2 - (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *5))) - (|:| |prim| (-1113 *5)))) - (-5 *1 (-913 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-5 *5 (-1117)) - (-4 *6 (-13 (-347) (-141))) - (-5 *2 - (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *6))) - (|:| |prim| (-1113 *6)))) - (-5 *1 (-913 *6))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1176 *3)) (-5 *1 (-383 *3 *2)) - (-4 *3 (-13 (-347) (-141)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1098 *4) (-1098 *4))) (-5 *2 (-1098 *4)) - (-5 *1 (-1224 *4)) (-4 *4 (-1154)))) + (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *5 (-607 (-1123))) (-5 *2 (-607 (-607 (-981 (-392 *4))))) + (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) + (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) + (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *5))))) (-5 *1 (-1231 *5 *6 *7)) + (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-607 (-981 (-392 *4))))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1001 *4 *5)) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-14 *5 (-607 (-1123))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) + (-5 *1 (-1231 *4 *5 *6)) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) + (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) + (-14 *7 (-607 (-1123))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) + (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) + (-14 *7 (-607 (-1123))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) + (-5 *1 (-1231 *5 *6 *7)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))) + (-14 *7 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) + (-5 *1 (-1231 *4 *5 *6)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))) + (-14 *6 (-607 (-1123)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) + (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-606 (-1098 *5)) (-606 (-1098 *5)))) (-5 *4 (-537)) - (-5 *2 (-606 (-1098 *5))) (-5 *1 (-1224 *5)) (-4 *5 (-1154))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-606 (-1117))) (-4 *2 (-163)) - (-4 *4 (-223 (-2258 *5) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *4)) - (-2 (|:| -2009 *3) (|:| -3283 *4)))) - (-5 *1 (-444 *5 *2 *3 *4 *6 *7)) (-4 *3 (-807)) - (-4 *7 (-902 *2 *4 (-818 *5)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-809) (-292) (-141) (-977))) (-5 *2 (-607 (-1001 *5 *6))) + (-5 *1 (-1231 *5 *6 *7)) (-14 *6 (-607 (-1123))) (-14 *7 (-607 (-1123))))) ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-809) (-292) (-141) (-977))) + (-5 *2 (-607 (-1001 *4 *5))) (-5 *1 (-1231 *4 *5 *6)) + (-14 *5 (-607 (-1123))) (-14 *6 (-607 (-1123)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1101 *4) (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1230 *4)) + (-4 *4 (-1159)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-4 *2 (-1045)) - (-5 *1 (-842 *4 *2))))) + (-12 (-5 *3 (-1 (-607 (-1101 *5)) (-607 (-1101 *5)))) (-5 *4 (-526)) + (-5 *2 (-607 (-1101 *5))) (-5 *1 (-1230 *5)) (-4 *5 (-1159))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) - (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-874)) (-4 *5 (-291)) (-4 *3 (-1176 *5)) - (-5 *2 (-2 (|:| |plist| (-606 *3)) (|:| |modulo| *5))) - (-5 *1 (-443 *5 *3)) (-5 *4 (-606 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) - (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-785))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-307 *2 *4)) (-4 *4 (-129)) - (-4 *2 (-1045)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-1045)) (-5 *1 (-610 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-779 *2)) (-4 *2 (-807))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-731)) (-4 *2 (-1045)) - (-5 *1 (-638 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) + (-12 (-5 *4 (-878)) (-4 *6 (-13 (-533) (-811))) (-5 *2 (-607 (-299 *6))) + (-5 *1 (-207 *5 *6)) (-5 *3 (-299 *6)) (-4 *5 (-1004)))) + ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-165))) (-5 *1 (-1031))))) -(((*1 *2 *3) - (-12 (-4 *1 (-873)) (-5 *2 (-2 (|:| -3449 (-606 *1)) (|:| -1524 *1))) - (-5 *3 (-606 *1))))) -(((*1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) - (-5 *1 (-1125 *4)) (-4 *4 (-807))))) -(((*1 *2 *3) - (-12 (-4 *1 (-796)) - (-5 *3 - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (-5 *2 (-986)))) + (-12 (-5 *3 (-556 *5)) (-4 *5 (-13 (-29 *4) (-1145))) + (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-607 *5)) + (-5 *1 (-558 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-796)) - (-5 *3 - (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) - (-5 *2 (-986))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-391 *5)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) - (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1176 *3)))) + (-12 (-5 *3 (-556 (-392 (-905 *4)))) + (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) + (-5 *2 (-607 (-299 *4))) (-5 *1 (-561 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *3 *2)) (-4 *3 (-809)) (-4 *2 (-1097 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) - (-5 *1 (-176)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-649 (-300 (-210)))) (-5 *3 (-606 (-1117))) - (-5 *4 (-1200 (-300 (-210)))) (-5 *1 (-191)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-278 *3))) (-4 *3 (-293 *3)) (-4 *3 (-1045)) - (-4 *3 (-1154)) (-5 *1 (-278 *3)))) + (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) + (-4 *2 (-1097 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1220 (-1123) *3)) (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-1004))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1220 (-1123) *3)) (-4 *3 (-1004)) (-5 *1 (-1226 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) + (-5 *1 (-1229 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |k| (-1123)) (|:| |c| (-1226 *3))))) + (-5 *1 (-1226 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |k| *3) (|:| |c| (-1229 *3 *4))))) + (-5 *1 (-1229 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-526)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-735)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-878)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-293 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)) - (-5 *1 (-278 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 (-606 *1)))) - (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 (-606 *1)))) - (-4 *1 (-286)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-278 *3))) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-149)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-149)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145))) (-5 *1 (-213 *3)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1063)) (-4 *2 (-1159)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-367 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) + (-14 *7 + (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) + (-2 (|:| -2461 *5) (|:| -2462 *6)))) + (-5 *1 (-445 *3 *4 *5 *6 *7 *2)) (-4 *5 (-811)) + (-4 *2 (-909 *4 *6 (-824 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-515))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1004)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-4 *7 (-1052)) (-5 *2 (-1 *7 *5)) (-5 *1 (-648 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-650 *3 *2 *4)) (-4 *3 (-1004)) (-4 *2 (-357 *3)) + (-4 *4 (-357 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-650 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *2 (-357 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-278 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-537))) (-5 *4 (-1119 (-391 (-537)))) - (-5 *1 (-294 *2)) (-4 *2 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *1)) (-4 *1 (-358 *4 *5)) - (-4 *4 (-807)) (-4 *5 (-163)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 (-606 *1))) - (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) - (-5 *4 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-807)) - (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) - (-5 *4 (-606 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) - (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 *1)) (-5 *4 (-1117)) - (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-580 (-513))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1117)) (-4 *1 (-414 *4)) (-4 *4 (-807)) - (-4 *4 (-580 (-513))))) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-685))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) + (-5 *1 (-928 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-4 *1 (-1063))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *2 (-224 *3 *4)) + (-4 *5 (-224 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) + (-4 *2 (-224 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) + (-4 *2 (-909 *3 (-512 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-902 (-211))) (-5 *3 (-211)) (-5 *1 (-1156)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-691)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-526)) (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) ((*1 *1 *1) - (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-580 (-513))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-1117))) (-4 *1 (-414 *3)) (-4 *3 (-807)) - (-4 *3 (-580 (-513))))) + (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) + (-14 *3 (-607 (-1123))))) + ((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1052)))) + ((*1 *1 *1) + (-12 (-14 *2 (-607 (-1123))) (-4 *3 (-163)) (-4 *5 (-224 (-4273 *2) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) + (-2 (|:| -2461 *4) (|:| -2462 *5)))) + (-5 *1 (-445 *2 *3 *4 *5 *6 *7)) (-4 *4 (-811)) + (-4 *7 (-909 *3 *5 (-824 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) + ((*1 *1 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1) + (-12 (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1004)) (-4 *3 (-691)))) + ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)) - (-4 *3 (-580 (-513))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-495 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *5)) (-4 *1 (-495 *4 *5)) - (-4 *4 (-1045)) (-4 *5 (-1154)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-793 *3)) (-4 *3 (-347)) (-5 *1 (-679 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-529)) - (-5 *1 (-994 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-606 (-1117))) (-5 *4 (-606 (-391 (-905 *5)))) - (-5 *2 (-391 (-905 *5))) (-4 *5 (-529)) (-5 *1 (-994 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-5 *2 (-391 (-905 *4))) - (-4 *4 (-529)) (-5 *1 (-994 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-5 *2 (-391 (-905 *4))) - (-4 *4 (-529)) (-5 *1 (-994 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1098 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) - (-4 *2 (-1176 (-160 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-537)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) -(((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-1106 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-462))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-716))))) -(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-241))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) - (-5 *2 - (-2 (|:| A (-649 *5)) - (|:| |eqs| - (-606 - (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5)) (|:| -4113 *6) - (|:| |rh| *5)))))) - (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) - (-4 *6 (-617 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *6 (-617 *5)) - (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) - (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-531 *2)) (-4 *2 (-522))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) - ((*1 *2) - (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) - (-5 *2 (-1113 (-905 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-1171 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) - (-5 *3 (-606 (-537))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) - (-5 *3 (-606 (-537)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1176 *2)) (-4 *2 (-1158)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-1176 (-391 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-149)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) - (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) - (-4 *2 (-1154))))) -(((*1 *1) (-5 *1 (-275)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) - (-4 *2 (-223 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1007)) (-4 *3 (-1139)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *3 (-163)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) - (-15 -3315 ((-1069 *4 (-578 $)) $)) - (-15 -2341 ($ (-1069 *4 (-578 $))))))) - (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-578 *2))) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) - (-15 -3315 ((-1069 *4 (-578 $)) $)) - (-15 -2341 ($ (-1069 *4 (-578 $))))))) - (-4 *4 (-529)) (-5 *1 (-40 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-781))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-606 - (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *3)) - (|:| |logand| (-1113 *3))))) - (-5 *1 (-554 *3)) (-4 *3 (-347))))) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-607 (-1123))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-471 *3)) - (-4 *3 (-1154))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-347)) (-5 *1 (-849 *2 *3)) - (-4 *2 (-1176 *3))))) -(((*1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-606 *9)) (-5 *3 (-1 (-111) *9)) - (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) - (-4 *8 (-807)) (-5 *1 (-930 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-4 *4 (-435)) - (-5 *2 (-606 (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4))))) - (-5 *1 (-276 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-138))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) - (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) - (-4 *2 (-647 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-4 *1 (-358 *3 *4)) - (-4 *4 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-136 *3 *4 *2)) - (-4 *2 (-357 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-4 *2 (-357 *4)) - (-5 *1 (-484 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) - (-5 *2 (-649 *4)) (-5 *1 (-653 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-1169 *3 *4 *2)) - (-4 *2 (-1176 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) - (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) -(((*1 *2 *3) - (-12 (-5 *3 (-391 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-529)) - (-4 *4 (-998)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *5 *6 *2)) - (-4 *6 (-617 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) - (-5 *6 (-210)) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-986)) (-5 *1 (-717))))) -(((*1 *2 *3) - (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) - ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) -(((*1 *1 *1 *1) (-4 *1 (-920)))) -(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-845 *6))) - (-5 *5 (-1 (-842 *6 *8) *8 (-845 *6) (-842 *6 *8))) (-4 *6 (-1045)) - (-4 *8 (-13 (-998) (-580 (-845 *6)) (-989 *7))) (-5 *2 (-842 *6 *8)) - (-4 *7 (-13 (-998) (-807))) (-5 *1 (-894 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) -(((*1 *1) - (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) - (-4 *4 (-627 *3)))) - ((*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) - (-4 *3 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) - ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-612 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) - (-14 *4 (-731)) (-4 *5 (-163))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *1 *2) - (-12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) - (-5 *1 (-383 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-1113 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) - (-15 -3315 ((-1069 *4 (-578 $)) $)) - (-15 -2341 ($ (-1069 *4 (-578 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-291) (-141))) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) - (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) - (|:| |wcond| (-606 (-905 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) - (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-275))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) - (-4 *2 (-163))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) - (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) - (-4 *2 (-647 *3 *5 *6))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-734)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3119 (-397 *4 (-391 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -2559 (-391 *6)) - (|:| |special| (-391 *6)))) - (-5 *1 (-688 *5 *6)) (-5 *3 (-391 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-849 *3 *4)) - (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-731)) (-4 *5 (-347)) - (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-849 *3 *5)) - (-4 *3 (-1176 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) - (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) - (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) - (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) - (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1045)) (-4 *4 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *5 *4 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) - (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) - (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) -(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) - (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-1201)) - (-5 *1 (-1204)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) - (-5 *2 (-1201)) (-5 *1 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 *3)))) - (-5 *4 (-731)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) - (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1036))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-5 *2 (-111))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-731)) (-5 *1 (-113))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) - (-14 *4 *2)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-5 *1 (-659)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-649 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-347)) (-5 *1 (-931 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-363)) (-5 *1 (-991))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-905 (-537))))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) + (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) + (-5 *1 (-133 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-163)) (-4 *6 (-163)) + (-5 *2 (-159 *6)) (-5 *1 (-160 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-299 *3) (-299 *3))) (-4 *3 (-13 (-1004) (-811))) + (-5 *1 (-209 *3 *4)) (-14 *4 (-607 (-1123))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) (-4 *6 (-1159)) + (-4 *7 (-1159)) (-5 *2 (-225 *5 *7)) (-5 *1 (-226 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-278 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-278 *6)) (-5 *1 (-279 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-581 *1)) (-4 *1 (-283)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1106)) (-5 *5 (-581 *6)) (-4 *6 (-283)) + (-4 *2 (-1159)) (-5 *1 (-284 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-581 *5)) (-4 *5 (-283)) (-4 *2 (-283)) + (-5 *1 (-285 *5 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-5 *2 (-653 *6)) (-5 *1 (-290 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-299 *5)) (-4 *5 (-811)) (-4 *6 (-811)) + (-5 *2 (-299 *6)) (-5 *1 (-300 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-318 *5 *6 *7 *8)) (-4 *5 (-348)) + (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) + (-4 *9 (-348)) (-4 *10 (-1181 *9)) (-4 *11 (-1181 (-392 *10))) + (-5 *2 (-318 *9 *10 *11 *12)) (-5 *1 (-319 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-327 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1164)) (-4 *8 (-1164)) (-4 *6 (-1181 *5)) + (-4 *7 (-1181 (-392 *6))) (-4 *9 (-1181 *8)) (-4 *2 (-327 *8 *9 *10)) + (-5 *1 (-328 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-327 *5 *6 *7)) + (-4 *10 (-1181 (-392 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *2 (-357 *6)) + (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) + (-4 *4 (-1052)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-533)) (-5 *1 (-390 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-533)) (-4 *6 (-533)) + (-5 *2 (-390 *6)) (-5 *1 (-391 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-533)) (-4 *6 (-533)) + (-5 *2 (-392 *6)) (-5 *1 (-393 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-398 *5 *6 *7 *8)) (-4 *5 (-292)) + (-4 *6 (-950 *5)) (-4 *7 (-1181 *6)) (-4 *8 (-13 (-395 *6 *7) (-995 *6))) + (-4 *9 (-292)) (-4 *10 (-950 *9)) (-4 *11 (-1181 *10)) + (-5 *2 (-398 *9 *10 *11 *12)) (-5 *1 (-399 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-395 *10 *11) (-995 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-403 *6)) + (-5 *1 (-401 *4 *5 *2 *6)) (-4 *4 (-403 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1004) (-811))) + (-4 *6 (-13 (-1004) (-811))) (-4 *2 (-406 *6)) (-5 *1 (-407 *5 *4 *6 *2)) + (-4 *4 (-406 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-411 *6)) + (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-411 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-472 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-556 *5)) (-4 *5 (-348)) (-4 *6 (-348)) + (-5 *2 (-556 *6)) (-5 *1 (-557 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -2222 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-348)) + (-4 *6 (-348)) (-5 *2 (-2 (|:| -2222 *6) (|:| |coeff| *6))) + (-5 *1 (-557 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-348)) + (-4 *2 (-348)) (-5 *1 (-557 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-348)) (-4 *6 (-348)) (-5 *2 - (-606 - (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) - (|:| |radvect| (-606 (-649 (-300 (-537)))))))) - (-5 *1 (-982))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-578 *4)) (-4 *4 (-807)) (-4 *2 (-807)) - (-5 *1 (-577 *2 *4))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-226))))) -(((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-116 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-537)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-824 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-14 *2 (-537)))) + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-557 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-571 *6)) (-5 *1 (-568 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-571 *7)) + (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-571 *8)) + (-5 *1 (-569 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-571 *7)) + (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) + (-5 *1 (-569 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-571 *6)) (-5 *5 (-1101 *7)) + (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) + (-5 *1 (-569 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-607 *6)) (-5 *1 (-608 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) + (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-607 *8)) + (-5 *1 (-610 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-357 *5)) + (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) + (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) + (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1004)) + (-4 *8 (-1004)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-650 *8 *9 *10)) + (-5 *1 (-651 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-650 *5 *6 *7)) + (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-533)) (-4 *7 (-533)) (-4 *6 (-1181 *5)) + (-4 *2 (-1181 (-392 *8))) (-5 *1 (-674 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1181 (-392 *6))) (-4 *8 (-1181 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1004)) (-4 *9 (-1004)) (-4 *5 (-811)) + (-4 *6 (-757)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-811)) (-4 *6 (-811)) (-4 *7 (-757)) + (-4 *9 (-1004)) (-4 *2 (-909 *9 *8 *6)) (-5 *1 (-694 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-757)) (-4 *4 (-909 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5 *7)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-4 *7 (-691)) (-5 *2 (-700 *6 *7)) (-5 *1 (-699 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-537)) (-14 *3 *2) (-5 *1 (-825 *3 *4)) - (-4 *4 (-822 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-537)) (-5 *1 (-825 *2 *3)) (-4 *3 (-822 *2)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-700 *3 *4)) (-4 *4 (-691)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-760 *6)) + (-5 *1 (-763 *4 *5 *2 *6)) (-4 *4 (-760 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-796 *6)) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-796 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-796 *5)) (-4 *5 (-1052)) + (-4 *6 (-1052)) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-803 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1052)) + (-4 *6 (-1052)) (-5 *1 (-804 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-836 *6)) (-5 *1 (-835 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-847 *5 *6)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-4 *7 (-1052)) (-5 *2 (-847 *5 *7)) (-5 *1 (-848 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-849 *6)) (-5 *1 (-851 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-5 *2 (-905 *6)) (-5 *1 (-906 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-811)) (-4 *8 (-1004)) + (-4 *6 (-757)) + (-4 *2 + (-13 (-1052) + (-10 -8 (-15 -4158 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-735)))))) + (-5 *1 (-911 *6 *7 *8 *5 *2)) (-4 *5 (-909 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-917 *6)) (-5 *1 (-918 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-5 *2 (-902 *6)) (-5 *1 (-940 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-1004)) (-4 *2 (-909 (-905 *4) *5 *6)) + (-4 *5 (-757)) + (-4 *6 + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) + (-5 *1 (-943 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-533)) (-4 *6 (-533)) (-4 *2 (-950 *6)) + (-5 *1 (-951 *5 *6 *4 *2)) (-4 *4 (-950 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-956 *6)) + (-5 *1 (-957 *4 *5 *2 *6)) (-4 *4 (-956 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) + (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-537)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-1191 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1191 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *1)) (|has| *1 (-6 -4301)) (-4 *1 (-962 *3)) - (-4 *3 (-1154))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-291)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |rm| (-370 *3)))) - (-5 *1 (-370 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3413 (-731)) (|:| -1672 (-731)))) - (-5 *1 (-731)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-580 *2) (-163))) (-5 *2 (-845 *4)) - (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1045)) (-4 *3 (-157 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-1040 (-800 (-363))))) - (-5 *2 (-606 (-1040 (-800 (-210))))) (-5 *1 (-289)))) - ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-363)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-378)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) + (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1004)) (-4 *10 (-1004)) (-14 *5 (-735)) + (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) + (-4 *2 (-1007 *5 *6 *10 *11 *12)) + (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *11 (-224 *6 *10)) + (-4 *12 (-224 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-1041 *6)) (-5 *1 (-1042 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1041 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) + (-4 *6 (-1159)) (-5 *2 (-607 *6)) (-5 *1 (-1042 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1044 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-1044 *6)) (-5 *1 (-1045 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1047 *4 *2)) (-4 *4 (-809)) + (-4 *2 (-1097 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-1101 *6)) (-5 *1 (-1103 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1101 *6)) (-5 *5 (-1101 *7)) + (-4 *6 (-1159)) (-4 *7 (-1159)) (-4 *8 (-1159)) (-5 *2 (-1101 *8)) + (-5 *1 (-1104 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) + (-5 *2 (-1117 *6)) (-5 *1 (-1118 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-1052)) + (-4 *4 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5 *7 *9)) (-4 *5 (-1004)) + (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1165 *6 *8 *10)) (-5 *1 (-1166 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-1172 *6)) (-5 *1 (-1173 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-809)) (-4 *5 (-1159)) + (-4 *6 (-1159)) (-5 *2 (-1101 *6)) (-5 *1 (-1173 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1174 *5 *6)) (-14 *5 (-1123)) + (-4 *6 (-1004)) (-4 *8 (-1004)) (-5 *2 (-1174 *7 *8)) + (-5 *1 (-1175 *5 *6 *7 *8)) (-14 *7 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1181 *6)) + (-5 *1 (-1182 *5 *4 *6 *2)) (-4 *4 (-1181 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5 *7 *9)) (-4 *5 (-1004)) + (-4 *6 (-1004)) (-14 *7 (-1123)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1186 *6 *8 *10)) (-5 *1 (-1187 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1198 *6)) + (-5 *1 (-1196 *5 *6 *4 *2)) (-4 *4 (-1198 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *6 (-1159)) + (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1205 *5)) + (-4 *5 (-1159)) (-4 *6 (-1159)) (-5 *2 (-1205 *6)) (-5 *1 (-1206 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-1004)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-1228 *3 *4)) + (-4 *4 (-807))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163)))) ((*1 *1 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) - (-5 *2 (-1200 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-14 *6 (-1205 (-653 *3))) + (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))))) + ((*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1159)))) ((*1 *1 *2) - (-12 (-5 *2 (-402 *1)) (-4 *1 (-414 *3)) (-4 *3 (-529)) - (-4 *3 (-807)))) + (-12 (-5 *2 (-324 (-3844 'X) (-3844) (-663))) (-5 *1 (-59 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-446 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-513)))) - ((*1 *2 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-1154)))) + (-12 (-5 *2 (-1205 (-324 (-3844 'JINT 'X 'ELAM) (-3844) (-663)))) + (-5 *1 (-60 *3)) (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) + (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'XC) (-663)))) (-5 *1 (-62 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) + (-12 (-5 *2 (-653 (-324 (-3844) (-3844 'X 'HESS) (-663)))) (-5 *1 (-63 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) - (-4 *5 (-580 (-1117))) (-4 *4 (-753)) (-4 *5 (-807)))) + (-12 (-5 *2 (-324 (-3844) (-3844 'XC) (-663))) (-5 *1 (-64 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-1533 - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) - (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) + (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844 '-4281) (-663)))) (-5 *1 (-69 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) - (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) - (-5 *1 (-1016 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1027)))) - ((*1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) + (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-72 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-324 (-3844) (-3844 'X) (-663))) (-5 *1 (-73 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-1045)))) + (-12 (-5 *2 (-1205 (-324 (-3844 'X 'EPS) (-3844 '-4281) (-663)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123)))) ((*1 *1 *2) - (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *2 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + (-12 (-5 *2 (-1205 (-324 (-3844 'EPS) (-3844 'YA 'YB) (-663)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1123)) (-14 *4 (-1123)) (-14 *5 (-1123)))) ((*1 *1 *2) - (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *2 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + (-12 (-5 *2 (-324 (-3844) (-3844 'X) (-663))) (-5 *1 (-76 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'XC) (-663)))) (-5 *1 (-77 *3)) + (-14 *3 (-1123)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) - (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) - ((*1 *2 *3) - (-12 (-5 *3 (-740 *4 (-818 *5))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) - (-5 *2 (-740 *4 (-818 *6))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *6 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-740 *4 (-818 *6))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) - (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-1113 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) + (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-78 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-324 (-3844) (-3844 'X) (-663)))) (-5 *1 (-79 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844 '-4281) (-663)))) (-5 *1 (-80 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-324 (-3844 'X '-4281) (-3844) (-663)))) (-5 *1 (-81 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-324 (-3844 'X '-4281) (-3844) (-663)))) (-5 *1 (-82 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-324 (-3844 'X) (-3844) (-663)))) (-5 *1 (-83 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-324 (-3844 'X) (-3844) (-663)))) (-5 *1 (-84 *3)) + (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-324 (-3844 'XL 'XR 'ELAM) (-3844) (-663)))) + (-5 *1 (-86 *3)) (-14 *3 (-1123)))) + ((*1 *1 *2) + (-12 (-5 *2 (-324 (-3844 'X) (-3844 '-4281) (-663))) (-5 *1 (-87 *3)) + (-14 *3 (-1123)))) + ((*1 *2 *1) (-12 (-5 *2 (-962 2)) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) + ((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) + (-14 *4 (-735)) (-4 *5 (-163)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) + (-14 *4 (-735)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1090 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) + (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) + ((*1 *1 *2) + (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-735)) (-4 *5 (-163)) + (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)))) ((*1 *2 *3) - (-12 - (-5 *3 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6)))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) - (-5 *2 (-606 (-740 *4 (-818 *6)))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) - (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) + (-5 *2 (-1205 (-653 (-392 (-905 *4))))) (-5 *1 (-176 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *3)) + (-4 *3 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) + (-15 -2063 ((-1211) $))))) + (-5 *1 (-201 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-962 10)) (-5 *1 (-204)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-231 *3)) (-4 *3 (-811)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1044 (-299 *4))) (-4 *4 (-13 (-811) (-533) (-584 (-363)))) + (-5 *2 (-1044 (-363))) (-5 *1 (-244 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1181 *3)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1186 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) + (-14 *5 (-1123)) (-14 *6 *4) + (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) + (-5 *1 (-298 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-315)))) + ((*1 *2 *1) + (-12 (-5 *2 (-299 *5)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) + (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) - (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-291))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-606 - (-2 (|:| -3705 (-731)) - (|:| |eqns| - (-606 - (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) - (|:| |cols| (-606 (-537)))))) - (|:| |fgb| (-606 *7))))) - (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) - (-5 *1 (-877 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-578 *4)) (-5 *1 (-577 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-807))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-927))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-402 *3)) (-4 *3 (-529)) (-5 *1 (-403 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) - (-4 *2 (-1176 *4))))) -(((*1 *1 *1) (-4 *1 (-1007)))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-347)) (-5 *2 (-606 (-1098 *4))) (-5 *1 (-269 *4 *5)) - (-5 *3 (-1098 *4)) (-4 *5 (-1191 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-113)) (-5 *1 (-154)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *4)) - (-4 *4 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-285 *3)) (-4 *3 (-286)))) - ((*1 *2 *2) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-807)) (-5 *1 (-413 *3 *4)) - (-4 *3 (-414 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *4)) - (-4 *4 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-347)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) - (-5 *1 (-727 *3 *4)) (-4 *3 (-669 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) - (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) - (-4 *3 (-809 *5))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-578 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) - (-4 *2 (-13 (-414 *5) (-27) (-1139))) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *1 (-539 *5 *2 *6)) (-4 *6 (-1045))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1113 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1040 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) - (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-1064)) (-5 *2 (-111)) (-5 *1 (-781))))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-165))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1160 *3)) (-4 *3 (-998)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1191 *3)) (-4 *3 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-207 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-238 *3)))) - ((*1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *2 *3) - (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) - (-5 *2 (-874))))) -(((*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-975 *3)) - (-4 *3 (-13 (-805) (-347) (-973))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) - (-4 *3 (-1176 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) - (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) - (-5 *1 (-591 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) - (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) + (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *3 *4 *2)) + (-4 *3 (-314 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) - (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) + (-12 (-4 *4 (-335)) (-4 *2 (-314 *4)) (-5 *1 (-333 *2 *4 *3)) + (-4 *3 (-314 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) - (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998))))) -(((*1 *1 *1) (-5 *1 (-210))) ((*1 *1 *1) (-5 *1 (-363))) - ((*1 *1) (-5 *1 (-363)))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) + (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) + (-5 *2 (-1229 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) + (-5 *2 (-1220 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-663))) (-4 *1 (-368)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-378)))) + ((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-379 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-382)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-159 (-363))))) (-5 *1 (-383 *3 *4 *5 *6)) + (-14 *3 (-1123)) (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) + (-14 *5 (-607 (-1123))) (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-526)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-363))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-526))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-658)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-663)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-278 (-299 (-665)))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-658))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-663))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-299 (-665))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-607 (-315))) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-315)) (-5 *1 (-383 *3 *4 *5 *6)) (-14 *3 (-1123)) + (-14 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-14 *5 (-607 (-1123))) + (-14 *6 (-1127)))) ((*1 *1 *2) - (-12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-392 (-905 (-392 *3)))) (-4 *3 (-533)) (-4 *3 (-811)) + (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + (-12 (-5 *2 (-905 (-392 *3))) (-4 *3 (-533)) (-4 *3 (-811)) + (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) - (-14 *4 (-606 *2)) (-4 *5 (-371)))) + (-12 (-5 *2 (-392 *3)) (-4 *3 (-533)) (-4 *3 (-811)) (-4 *1 (-406 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) - (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) + (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-1004)) (-4 *3 (-811)) + (-4 *1 (-406 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 *4)) (-4 *4 (-13 (-811) (-21))) (-5 *1 (-414 *3 *4)) + (-4 *3 (-13 (-163) (-37 (-392 (-526))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-414 *2 *3)) (-4 *2 (-13 (-163) (-37 (-392 (-526))))) + (-4 *3 (-13 (-811) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-419)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-419)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-419)))) + ((*1 *1 *2) (-12 (-5 *2 (-419)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-421)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-663))) (-4 *1 (-424)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1127)) (|:| -1706 (-607 (-315))))) + (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-315)) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-4 *1 (-425)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-392 (-905 *3)))) (-4 *3 (-163)) + (-14 *6 (-1205 (-653 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-14 *4 (-878)) + (-14 *5 (-607 (-1123))))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-452)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) + (-5 *1 (-458 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-962 16)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-484)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506)))) + ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-575)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576)))) + ((*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-577 *3 *2)) (-4 *2 (-709 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1004)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1225 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + ((*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-600 *3 *2)) (-4 *2 (-709 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) + (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-5 *1 (-640 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-917 (-917 (-917 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) + ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-645)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *2)) (-4 *4 (-357 *3)) + (-4 *2 (-357 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) + ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) + ((*1 *2 *1) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) + ((*1 *1 *2) (-12 (-5 *2 (-159 (-665))) (-5 *1 (-658)))) + ((*1 *1 *2) (-12 (-5 *2 (-159 (-663))) (-5 *1 (-658)))) + ((*1 *1 *2) (-12 (-5 *2 (-159 (-526))) (-5 *1 (-658)))) + ((*1 *1 *2) (-12 (-5 *2 (-159 (-363))) (-5 *1 (-658)))) + ((*1 *1 *2) (-12 (-5 *2 (-665)) (-5 *1 (-663)))) + ((*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-663)))) + ((*1 *2 *3) (-12 (-5 *3 (-299 (-526))) (-5 *2 (-299 (-665))) (-5 *1 (-665)))) + ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1052)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675)))) ((*1 *2 *1) + (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-5 *1 (-678 *3 *4 *5)) + (-4 *3 (-811)) (-4 *4 (-1052)) (-14 *5 (-1 (-111) *2 *2)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| -2461 *3) (|:| -2462 *4))) (-4 *3 (-811)) + (-4 *4 (-1052)) (-5 *1 (-678 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-163)) (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-4 *3 (-1004)) + (-4 *4 (-691)) (-5 *1 (-700 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-728)))) + ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (|:| |mdnia| - (-2 (|:| |fn| (-300 (-210))) - (|:| -2133 (-606 (-1040 (-800 (-210))))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) - (-5 *1 (-729)))) - ((*1 *2 *1) + (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) + (-5 *1 (-733)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *1 (-733)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *1 (-768)))) + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *1 (-733)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-733)))) + ((*1 *2 *3) (-12 (-5 *2 (-737)) (-5 *1 (-738 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-772)))) ((*1 *2 *1) + (-12 (-4 *2 (-859 *3)) (-5 *1 (-781 *3 *2 *4)) (-4 *3 (-1052)) (-14 *4 *3))) + ((*1 *1 *2) + (-12 (-4 *3 (-1052)) (-14 *4 *3) (-5 *1 (-781 *3 *2 *4)) (-4 *2 (-859 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-790)))) + ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) - (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) (|:| |lsa| - (-2 (|:| |lfn| (-606 (-300 (-210)))) - (|:| -3956 (-606 (-210))))))) - (-5 *1 (-798)))) + (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) + (-5 *1 (-802)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) + (-5 *1 (-802)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (-5 *1 (-802)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-802)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-816 *3 *4 *5 *6)) + (-4 *4 (-1004)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-825 *3 *4 *5 *6)) + (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) ((*1 *2 *1) + (-12 (-5 *2 (-905 *3)) (-5 *1 (-825 *3 *4 *5 *6)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))) (-14 *5 (-607 (-735))) (-14 *6 (-735)))) + ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) + ((*1 *2 *3) + (-12 (-5 *3 (-392 (-905 (-47)))) (-5 *2 (-299 (-526))) (-5 *1 (-834)))) + ((*1 *1 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-783 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-606 (-300 (-210)))) + (-2 (|:| |pde| (-607 (-299 (-211)))) (|:| |constraints| - (-606 - (-2 (|:| |start| (-210)) (|:| |finish| (-210)) - (|:| |grid| (-731)) (|:| |boundaryType| (-537)) - (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) - (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) - (|:| |tol| (-210)))) - (-5 *1 (-851)))) + (-607 + (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) + (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) + (|:| |dFinish| (-653 (-211)))))) + (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) + (|:| |tol| (-211)))) + (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-1146 *3)) (-5 *1 (-860 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-392 (-390 *3))) (-4 *3 (-292)) (-5 *1 (-873 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292)))) + ((*1 *2 *3) + (-12 (-5 *3 (-461)) (-5 *2 (-299 *4)) (-5 *1 (-879 *4)) + (-4 *4 (-13 (-811) (-533))))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) + ((*1 *1 *2) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) + ((*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-990 *3)) (-4 *3 (-1159)))) + ((*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-990 *2)) (-4 *2 (-1159)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) + ((*1 *2 *3) (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-997 *3)) (-4 *3 (-533)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1004)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 *5)) (-5 *1 (-1008 *3 *4 *5)) (-14 *3 (-735)) + (-14 *4 (-735)) (-4 *5 (-1004)))) ((*1 *1 *2) - (-1533 - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) - (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) - (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) - (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))))) + (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-5 *1 (-1076 *3 *4 *2)) + (-4 *2 (-909 *3 (-512 *4) *4)))) ((*1 *1 *2) - (-1533 - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) - (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) + (-12 (-4 *3 (-1004)) (-4 *2 (-811)) (-5 *1 (-1076 *3 *2 *4)) + (-4 *4 (-909 *3 (-512 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-823)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 *4)) (-5 *1 (-1090 *3 *4)) (-14 *3 (-735)) + (-4 *4 (-1004)))) + ((*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) ((*1 *1 *2) - (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) - (-4 *2 (-617 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)))) - ((*1 *1) (-4 *1 (-1093)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-578 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-1113 *2)) - (-4 *2 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-578 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) - (-5 *5 (-391 (-1113 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045))))) -(((*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-429)) (-5 *3 (-537))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-160 (-210))) (-5 *6 (-1100)) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-807)) (-5 *1 (-882 *4 *2)) - (-4 *2 (-414 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-1100)) (-5 *2 (-300 (-537))) - (-5 *1 (-883))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-606 (-742 *3))) (-5 *1 (-742 *3)) (-4 *3 (-529)) - (-4 *3 (-998))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-1132))))) -(((*1 *2 *3) - (-12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) - (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) - (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-111)) - (-5 *1 (-864 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) - (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) - (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-111)) - (-5 *1 (-865 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) - (-4 *7 (-1176 (-391 *6))) (-5 *2 (-606 (-905 *5))) - (-5 *1 (-325 *4 *5 *6 *7)) (-4 *4 (-326 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) - (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *4 (-347)) - (-5 *2 (-606 (-905 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) - ((*1 *1 *1) - (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) - (-14 *3 (-606 (-1117))))) - ((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) - ((*1 *1 *1) - (-12 (-14 *2 (-606 (-1117))) (-4 *3 (-163)) - (-4 *5 (-223 (-2258 *2) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) - (-2 (|:| -2009 *4) (|:| -3283 *5)))) - (-5 *1 (-444 *2 *3 *4 *5 *6 *7)) (-4 *4 (-807)) - (-4 *7 (-902 *3 *5 (-818 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) - ((*1 *1 *1) - (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) - ((*1 *1 *1) - (-12 (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *2 (-998)) - (-4 *3 (-687)))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) - (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) - (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) - (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) - (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) - (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) - (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) - (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) - (-5 *1 (-247)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-537)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) + (-5 *1 (-1121 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1123)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132 (-1123) (-421))) (-5 *1 (-1127)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1133 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1139)))) + ((*1 *2 *3) (-12 (-5 *2 (-1139)) (-5 *1 (-1140 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-1004)) (-5 *1 (-1152 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-1004)))) + ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1159)) (-5 *1 (-1157 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-1160)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1169 *3 *2)) (-4 *2 (-1198 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1041 *3)) (-4 *3 (-1159)) (-5 *1 (-1172 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *3)) (-14 *3 (-1123)) (-5 *1 (-1174 *3 *4)) + (-4 *4 (-1004)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-4 *1 (-1190 *3 *2)) (-4 *2 (-1167 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1174 *4 *3)) (-4 *3 (-1004)) (-14 *4 (-1123)) (-14 *5 *3) + (-5 *1 (-1195 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-452)) (-5 *2 (-1208)) (-5 *1 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-1211)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) + (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-909 *3 *5 *4)) + (-14 *7 (-607 (-735))) (-14 *8 (-735)))) + ((*1 *2 *1) + (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-1217 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) (-14 *6 (-607 *4)) + (-14 *7 (-607 (-735))) (-14 *8 (-735)))) + ((*1 *1 *2) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1004)))) + ((*1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1229 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-163)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1220 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-163)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) + (-5 *1 (-1225 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-807))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-33)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-783 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-1228 *3 *2)) (-4 *3 (-1004))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1229 *4 *2)) (-4 *1 (-359 *4 *2)) (-4 *4 (-811)) + (-4 *2 (-163)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) - (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) - (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) - (-5 *2 (-1205)) (-5 *1 (-1202)))) + (-12 (-5 *3 (-783 *4)) (-4 *1 (-1224 *4 *2)) (-4 *4 (-811)) (-4 *2 (-1004)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) - (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) - (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) - (-5 *1 (-1202)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1013))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *1 *2) - (-12 (-5 *2 (-300 *3)) (-4 *3 (-13 (-998) (-807))) - (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117)))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-902 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) - (-4 *1 (-1176 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-160 (-210)))) - (-5 *2 (-986)) (-5 *1 (-716))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *3 *5 *6 *7)) - (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) - (-4 *7 (-1154)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *3 *5 *6)) - (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-111)) - (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-111)) (-5 *1 (-1143 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-296)) (-5 *1 (-280)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1100))) (-5 *3 (-1100)) (-5 *2 (-296)) - (-5 *1 (-280))))) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) (-5 *1 (-647 *4 *5)) + (-4 *4 (-1052)))) + ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) + ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-811)) (-4 *2 (-1004)))) + ((*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1228 *2 *3)) (-4 *3 (-807))))) (((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-902 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) - (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-94)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-1045)))) - ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-422 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-465)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-918)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1020 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1117)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) - ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) - (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *9 (-1012 *6 *7 *8)) - (-5 *2 - (-606 - (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) - (-5 *1 (-941 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) - (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *9 (-1012 *6 *7 *8)) - (-5 *2 - (-606 - (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) - (-5 *1 (-1052 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-731)) (-4 *4 (-291)) (-4 *6 (-1176 *4)) - (-5 *2 (-1200 (-606 *6))) (-5 *1 (-438 *4 *6)) (-5 *5 (-606 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-649 (-905 *4))) (-5 *1 (-979 *4)) - (-4 *4 (-998))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807))) - (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) - (-5 *1 (-566 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-954) (-1139)))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1117)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-606 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1139) (-27) (-414 *8))) - (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) - (-5 *3 (-537)) (-5 *2 (-606 *4)) (-5 *1 (-966 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) - (-4 *3 (-580 (-363))))) - ((*1 *2 *3) - (-12 (-5 *3 (-160 *4)) (-4 *4 (-163)) (-4 *4 (-580 (-363))) - (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-160 *5)) (-5 *4 (-874)) (-4 *5 (-163)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) - (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) - (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) - (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) - (-5 *1 (-745 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1228 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-807))))) +(((*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) + ((*1 *1 *1) (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-807))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-348)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) + ((*1 *1 *1 *1) + (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) + ((*1 *1 *1 *1) (-4 *1 (-348))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1075 *3 (-581 *1))) (-4 *3 (-533)) (-4 *3 (-811)) + (-4 *1 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-457))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-515))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-163)) (-5 *1 (-586 *2 *4 *3)) (-4 *2 (-37 *4)) + (-4 *3 (|SubsetCategory| (-691) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-163)) (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)) + (-4 *2 (|SubsetCategory| (-691) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)) (-4 *2 (-348)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-163)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-682 *4)) + (-4 *3 (|SubsetCategory| (-691) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-163)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)) + (-4 *2 (|SubsetCategory| (-691) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-348)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-825 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *2 (-1004)) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-735))) (-14 *5 (-735)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) (-4 *5 (-224 *4 *2)) + (-4 *6 (-224 *3 *2)) (-4 *2 (-348)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-348)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-811)) (-4 *4 (-757)) + (-14 *6 (-607 *3)) (-5 *1 (-1217 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-909 *2 *4 *3)) (-14 *7 (-607 (-735))) (-14 *8 (-735)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1228 *2 *3)) (-4 *2 (-348)) (-4 *2 (-1004)) (-4 *3 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) ((*1 *2 *1) - (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) + (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))))) ((*1 *2 *1) - (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) - (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) - ((*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) + (-12 (-5 *2 (-526)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) + (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *8)) (-5 *4 (-607 *6)) (-4 *6 (-811)) + (-4 *8 (-909 *7 *5 *6)) (-4 *5 (-757)) (-4 *7 (-1004)) (-5 *2 (-607 (-735))) + (-5 *1 (-306 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) ((*1 *2 *1) - (-12 (-14 *3 (-606 (-1117))) (-4 *5 (-223 (-2258 *3) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) - (-2 (|:| -2009 *4) (|:| -3283 *5)))) - (-4 *2 (-163)) (-5 *1 (-444 *3 *2 *4 *5 *6 *7)) (-4 *4 (-807)) - (-4 *7 (-902 *2 *5 (-818 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *3 (-807)) (-4 *2 (-1045)))) + (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-454 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) + (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 (-735))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-5 *2 (-735)))) ((*1 *2 *1) - (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) - (-4 *3 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) + (-12 (-4 *1 (-932 *3 *2 *4)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *2 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *3 (-752)) (-4 *4 (-807)) - (-4 *2 (-998)))) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1198 *3)) + (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) + (-5 *2 (-392 (-526))))) + ((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-735))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-210)) (-5 *5 (-537)) (-5 *2 (-1149 *3)) - (-5 *1 (-750 *3)) (-4 *3 (-927)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-111)) - (-5 *1 (-1149 *2)) (-4 *2 (-927))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-391 (-537))) (-5 *1 (-289))))) + (-12 (-5 *2 (-735)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1220 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) + (-5 *1 (-629 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-629 *3 *4)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-163))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) + (-5 *1 (-150 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-526))) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) (-4 *1 (-269))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-629 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-5 *1 (-594 *3 *4 *5)) + (-14 *5 (-878)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) + (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) + (-4 *3 (-811)) (-4 *4 (-163))))) (((*1 *2 *2) - (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *1 (-866 *3 *2)) - (-4 *2 (-1176 (-391 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) - (-4 *3 (-1176 (-391 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) - ((*1 *1 *1) (-4 *1 (-1007)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) - (-4 *4 (-998))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) - ((*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) (-4 *1 (-269))) + ((*1 *2 *3) + (-12 (-5 *3 (-390 *4)) (-4 *4 (-533)) + (-5 *2 (-607 (-2 (|:| -4270 (-735)) (|:| |logand| *4)))) (-5 *1 (-305 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) ((*1 *2 *1) - (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) - (-4 *6 (-223 (-2258 *3) (-731))) - (-14 *7 - (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) - (-2 (|:| -2009 *5) (|:| -3283 *6)))) - (-5 *2 (-674 *5 *6 *7)) (-5 *1 (-444 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-807)) (-4 *8 (-902 *4 *6 (-818 *3))))) + (-12 (-5 *2 (-629 *3 *4)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) + (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-1225 *3 *4)) (-4 *4 (-682 (-392 (-526)))) + (-4 *3 (-811)) (-4 *4 (-163))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) + (-5 *2 (-2 (|:| |k| (-783 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-163)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1229 *3 *4)) (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) + (-4 *4 (-163)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783 *3)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-526)) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-783 *4)) (-4 *4 (-811)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-4 *3 (-533)) (-5 *2 (-111)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) ((*1 *2 *1) - (-12 (-4 *2 (-687)) (-4 *2 (-807)) (-5 *1 (-696 *3 *2)) - (-4 *3 (-998)))) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) ((*1 *1 *1) - (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) - (-4 *4 (-807))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-418)) - (-5 *2 - (-606 - (-3 (|:| -3923 (-1117)) - (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) - (-5 *1 (-1121))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1010)) (-5 *3 (-1100))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-414 *3)))) + (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-811)) + (-4 *3 (-13 (-163) (-682 (-392 (-526))))) (-14 *4 (-878)))) + ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) + (-4 *4 (-163)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-811)) (-4 *3 (-1004)) (-4 *3 (-163))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-735)) (-5 *2 (-607 (-1123))) (-5 *1 (-197)) (-5 *3 (-1123)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 (-211))) (-5 *4 (-735)) (-5 *2 (-607 (-1123))) + (-5 *1 (-252)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) - (-4 *3 (-1045)))) + (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-811)) (-4 *4 (-163)) (-5 *2 (-607 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) - (-5 *1 (-903 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) - (-15 -3315 (*7 $)))))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435))))) + (-12 (-5 *2 (-607 *3)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-811)) (-4 *4 (-1004)) (-5 *2 (-607 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1154 *4 *5 *3 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *3 (-811)) + (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-348)) (-5 *2 (-878)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) + ((*1 *2) + (-12 (-4 *4 (-348)) (-5 *2 (-796 (-878))) (-5 *1 (-313 *3 *4)) + (-4 *3 (-314 *4)))) + ((*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-878)))) + ((*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-796 (-878)))))) +(((*1 *2) + (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) + ((*1 *2) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-5 *2 (-735))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-111) *7 (-606 *7))) (-4 *1 (-1147 *4 *5 *6 *7)) - (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111))))) + (-12 (-4 *3 (-335)) (-4 *4 (-314 *3)) (-4 *5 (-1181 *4)) + (-5 *1 (-741 *3 *4 *5 *2 *6)) (-4 *2 (-1181 *5)) (-14 *6 (-878)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-1223 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) + ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-348)) (-4 *2 (-353))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-13 (-1004) (-682 (-392 (-526))))) (-4 *5 (-811)) + (-5 *1 (-1221 *4 *5 *2)) (-4 *2 (-1227 *5 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) + (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) + (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8))))) (((*1 *1 *2) - (-12 (-5 *2 (-606 (-485 *3 *4 *5 *6))) (-4 *3 (-347)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807))))) -(((*1 *1) - (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) - (-3679 (|has| *1 (-6 -4283))))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (-4 *1 (-807))) - ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) - ((*1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) - ((*1 *1 *1) (-4 *1 (-286))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-149)))) + (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1218 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) + (-4 *7 (-811)) (-5 *1 (-1218 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-513))) (-5 *2 (-1117)) (-5 *1 (-513))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) - ((*1 *1 *1 *1) (-4 *1 (-522))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-731))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-402 *4) *4)) (-4 *4 (-529)) (-5 *2 (-402 *4)) - (-5 *1 (-403 *4)))) - ((*1 *1 *1) (-5 *1 (-879))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) - (-5 *4 (-391 (-537))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) - (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) - (-5 *4 (-391 (-537))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) - (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-578 *4)) (-5 *6 (-1113 *4)) - (-4 *4 (-13 (-414 *7) (-27) (-1139))) - (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 (-1218 *4 *5 *6 *7))) + (-5 *1 (-1218 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) + (-5 *2 (-607 (-1218 *6 *7 *8 *9))) (-5 *1 (-1218 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-825 *4 *5 *6 *7)) + (-4 *4 (-1004)) (-14 *5 (-607 (-1123))) (-14 *6 (-607 *3)) (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) + (-14 *8 (-607 *5)) (-5 *2 (-1211)) (-5 *1 (-1217 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-909 *4 *6 *5)) (-14 *9 (-607 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *2)) + (-4 *3 (-13 (-1052) (-33))))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1216))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-578 *4)) (-5 *6 (-391 (-1113 *4))) - (-4 *4 (-13 (-414 *7) (-27) (-1139))) - (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-1181 *3)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-5 *1 (-732 *4 *5)) (-4 *5 (-395 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2122 (-606 *6))) - *7 *6)) - (-4 *6 (-347)) (-4 *7 (-617 *6)) + (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) + (-5 *2 + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-5 *1 (-944 *4 *3 *5 *6)) (-4 *6 (-689 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 *3)) + (-5 *2 + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-5 *1 (-1215 *4 *3 *5 *6)) (-4 *6 (-395 *3 *5))))) +(((*1 *2) + (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) + (-5 *2 + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-5 *1 (-336 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1181 (-526))) + (-5 *2 + (-2 (|:| -2104 (-653 (-526))) (|:| |basisDen| (-526)) + (|:| |basisInv| (-653 (-526))))) + (-5 *1 (-732 *3 *4)) (-4 *4 (-395 (-526) *3)))) + ((*1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) (-5 *2 - (-2 (|:| |particular| (-3 (-1200 *6) "failed")) - (|:| -2122 (-606 (-1200 *6))))) - (-5 *1 (-773 *6 *7)) (-5 *4 (-1200 *6))))) + (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) + (-5 *1 (-944 *3 *4 *5 *6)) (-4 *6 (-689 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 *4)) + (-5 *2 + (-2 (|:| -2104 (-653 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-653 *4)))) + (-5 *1 (-1215 *3 *4 *5 *6)) (-4 *6 (-395 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1200 *6)) (-5 *4 (-1200 (-537))) (-5 *5 (-537)) - (-4 *6 (-1045)) (-5 *2 (-1 *6)) (-5 *1 (-969 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-731)) (-5 *1 (-558))))) + (-12 (-5 *3 (-735)) (-4 *6 (-348)) (-5 *4 (-1152 *6)) + (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1214 *6)) (-5 *5 (-1101 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-607 (-1152 *5))) + (-5 *1 (-1214 *5)) (-5 *4 (-1152 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-1 (-1117 (-905 *4)) (-905 *4))) + (-5 *1 (-1214 *4)) (-4 *4 (-348))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-4 *5 (-348)) (-5 *2 (-1101 (-1101 (-905 *5)))) + (-5 *1 (-1214 *5)) (-5 *4 (-1101 (-905 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) + (-5 *1 (-1214 *4)) (-4 *4 (-348))))) +(((*1 *2 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1 (-1101 (-905 *4)) (-1101 (-905 *4)))) + (-5 *1 (-1214 *4)) (-4 *4 (-348))))) +(((*1 *2) + (-12 (-14 *4 (-735)) (-4 *5 (-1159)) (-5 *2 (-131)) (-5 *1 (-223 *3 *4 *5)) + (-4 *3 (-224 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-348)) (-5 *2 (-131)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) + ((*1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-163)))) + ((*1 *2 *1) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) + (-5 *2 (-526)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-939 *3)) (-4 *3 (-1004)) (-5 *2 (-878)))) + ((*1 *2) (-12 (-4 *1 (-1213 *3)) (-4 *3 (-348)) (-5 *2 (-131))))) +(((*1 *1) (-5 *1 (-1211)))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-1210)))) + ((*1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-1210))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) + ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210)))) + ((*1 *2 *2) (-12 (-5 *2 (-833)) (-5 *1 (-1210))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1209))))) +(((*1 *1) (-5 *1 (-1209)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-607 (-246))) (-5 *1 (-1209)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1106)) (-5 *1 (-1209)))) + ((*1 *1 *1) (-5 *1 (-1209)))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-1112 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1209))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-735)) (-5 *3 (-902 *4)) (-4 *1 (-1084 *4)) (-4 *4 (-1004)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-735)) (-5 *4 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1208)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-246))) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-735)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) + (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) + (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) + (-5 *1 (-246)))) + ((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) + (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) + (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) + (-5 *3 (-607 (-246))) (-5 *1 (-247)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-526)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) + (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) + (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) + (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-211)) (|:| |phi| (-211)) (|:| -4166 (-211)) + (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |scaleZ| (-211)) + (|:| |deltaX| (-211)) (|:| |deltaY| (-211)))) + (-5 *1 (-1209)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1208)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1208)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-1209)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1209))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-902 (-211)))) (-5 *1 (-1208))))) +(((*1 *1) (-5 *1 (-1208)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-452)) (-5 *3 (-607 (-246))) (-5 *1 (-1208)))) + ((*1 *1 *1) (-5 *1 (-1208)))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-878)) (-5 *4 (-211)) (-5 *5 (-526)) (-5 *6 (-833)) + (-5 *2 (-1211)) (-5 *1 (-1208))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-111)))) + (-12 + (-5 *2 + (-1205 + (-2 (|:| |scaleX| (-211)) (|:| |scaleY| (-211)) (|:| |deltaX| (-211)) + (|:| |deltaY| (-211)) (|:| -4169 (-526)) (|:| -4167 (-526)) + (|:| |spline| (-526)) (|:| -4198 (-526)) (|:| |axesColor| (-833)) + (|:| -4170 (-526)) (|:| |unitsColor| (-833)) (|:| |showing| (-526))))) + (-5 *1 (-1208))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205 (-3 (-452) "undefined"))) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-878)) (-5 *2 (-452)) (-5 *1 (-1208))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-607 (-363))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-452)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-1208)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-363)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-452)) (-5 *4 (-878)) (-5 *2 (-1211)) (-5 *1 (-1208))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) + (-5 *6 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-1207)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) + (-5 *2 (-1208)) (-5 *1 (-1207))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-833)) (-5 *5 (-878)) + (-5 *6 (-607 (-246))) (-5 *2 (-452)) (-5 *1 (-1207)))) ((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) - (-5 *1 (-341 *4)))) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-452)) (-5 *1 (-1207)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-607 (-246))) (-5 *2 (-452)) + (-5 *1 (-1207))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-57 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (|has| *1 (-6 -4310)) + (-4 *1 (-145 *2)) (-4 *2 (-1159)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) + (-4 *2 (-1159)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) + (-4 *2 (-1159)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-111)) - (-5 *1 (-507 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-800 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 *4)) - (-5 *1 (-251))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) - (-5 *2 (-606 (-2 (|:| -2787 *5) (|:| -4113 *3)))) - (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) - (-4 *7 (-617 (-391 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-649 *4)) (-4 *5 (-617 *4))))) -(((*1 *1 *1) (-4 *1 (-228))) - ((*1 *1 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) - ((*1 *1 *1) (-4 *1 (-456))) - ((*1 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) + (-12 (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2096 (-1117 *4)) (|:| |deg| (-878)))) + (-5 *1 (-207 *4 *5)) (-5 *3 (-1117 *4)) (-4 *5 (-13 (-533) (-811))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-735)) + (-4 *6 (-1159)) (-4 *2 (-1159)) (-5 *1 (-226 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-163)) (-5 *1 (-274 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1181 *4)) + (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-533)) (-4 *2 (-811)))) ((*1 *1 *1) + (-12 (-4 *1 (-321 *2 *3 *4 *5)) (-4 *2 (-348)) (-4 *3 (-1181 *2)) + (-4 *4 (-1181 (-392 *3))) (-4 *5 (-327 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-358 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) + (-5 *1 (-412 *5 *4 *2 *6)) (-4 *4 (-411 *5)) (-4 *6 (-411 *2)))) + ((*1 *1 *1) (-5 *1 (-477))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-607 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-608 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-357 *5)) + (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) + (-5 *1 (-651 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-650 *5 *6 *7)) + (-4 *10 (-650 *2 *8 *9)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) + ((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-348)) + (-4 *3 (-163)) (-4 *1 (-689 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-689 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-917 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-918 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *2 (-909 *3 *4 *5)) (-14 *6 (-607 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1004)) (-4 *2 (-1004)) (-14 *5 (-735)) + (-14 *6 (-735)) (-4 *8 (-224 *6 *7)) (-4 *9 (-224 *5 *7)) + (-4 *10 (-224 *6 *2)) (-4 *11 (-224 *5 *2)) + (-5 *1 (-1009 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1007 *5 *6 *7 *8 *9)) (-4 *12 (-1007 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1101 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-1103 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) + (-4 *1 (-1154 *5 *6 *7 *2)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *2 (-1018 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1205 *5)) (-4 *5 (-1159)) (-4 *2 (-1159)) + (-5 *1 (-1206 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-4 *2 (-1045)) (-5 *1 (-640 *5 *6 *2))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-347)) (-4 *7 (-1176 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) - (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) - (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) + (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-735)) + (-4 *7 (-1159)) (-4 *5 (-1159)) (-5 *2 (-225 *6 *5)) + (-5 *1 (-226 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1159)) (-4 *5 (-1159)) (-4 *2 (-357 *5)) + (-5 *1 (-358 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1052)) (-4 *5 (-1052)) (-4 *2 (-411 *5)) + (-5 *1 (-412 *6 *4 *5 *2)) (-4 *4 (-411 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-607 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) + (-5 *2 (-607 *5)) (-5 *1 (-608 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-917 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) + (-5 *2 (-917 *5)) (-5 *1 (-918 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1101 *6)) (-4 *6 (-1159)) (-4 *3 (-1159)) + (-5 *2 (-1101 *3)) (-5 *1 (-1103 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1205 *6)) (-4 *6 (-1159)) (-4 *5 (-1159)) + (-5 *2 (-1205 *5)) (-5 *1 (-1206 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1205 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-149))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-201 *2)) + (-4 *2 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) + (-15 -2063 ((-1211) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-515))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-25))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-1204 *3)) (-4 *3 (-23)) (-4 *3 (-1159))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-131))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-201 *2)) + (-4 *2 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) + (-15 -2063 ((-1211) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-224 *3 *2)) (-4 *2 (-1159)) (-4 *2 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-211)) (-5 *1 (-1156)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1204 *3)) (-4 *3 (-1159)) (-4 *3 (-1004)) (-5 *2 (-653 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-1004)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-1004))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) + (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) + ((*1 *1 *1) (-4 *1 (-525))) + ((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-4 *1 (-953 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1157 *3)) (-4 *3 (-1159)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *1 *1 *1) (-5 *1 (-153))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-153))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) - (-5 *2 (-2 (|:| -3449 (-391 *5)) (|:| |poly| *3))) - (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1204 *2)) (-4 *2 (-1159)) (-4 *2 (-960)) (-4 *2 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-824 *3)) (-14 *3 (-607 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-948)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) - (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) - (|:| |args| (-606 (-816))))) - (-5 *1 (-1117))))) -(((*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) - ((*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) - (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-529)) (-4 *4 (-807)) - (-5 *1 (-546 *4 *2)) (-4 *2 (-414 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) - (-5 *2 (-606 *3)) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) - (-14 *7 (-874))))) -(((*1 *2) (-12 (-5 *2 (-606 *3)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-1176 *4)) (-4 *4 (-998)) - (-5 *2 (-1200 *4))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) - (-5 *1 (-717))))) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-1123)))) + ((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) - (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) - ((*1 *1 *1) (-4 *1 (-522))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-4 *1 (-947 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1151 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) - (-4 *2 (-998))))) -(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1132))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) + (-12 (-5 *3 (-392 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-533)) (-4 *4 (-1004)) + (-4 *2 (-1198 *4)) (-5 *1 (-1200 *4 *5 *6 *2)) (-4 *6 (-623 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-606 *5)) - (-5 *1 (-843 *4 *5)) (-4 *5 (-1154))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) + (-12 (-4 *4 (-1004)) (-4 *5 (-1181 *4)) (-5 *2 (-1 *6 (-607 *6))) + (-5 *1 (-1200 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-1198 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-4 *2 (-1181 *5)) + (-5 *1 (-1200 *5 *2 *6 *3)) (-4 *6 (-623 *2)) (-4 *3 (-1198 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) - (-4 *5 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-391 (-537))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) - (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) - (-4 *8 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) - (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) - (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-391 (-537))) (-4 *4 (-998)) (-4 *1 (-1183 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) + (-12 (-4 *4 (-1004)) (-4 *3 (-1181 *4)) (-4 *2 (-1198 *4)) + (-5 *1 (-1200 *4 *3 *5 *2)) (-4 *5 (-623 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-160 *4))) - (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *1 (-625 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-625 *3 *4)) (-5 *1 (-1219 *3 *4)) - (-4 *3 (-807)) (-4 *4 (-163))))) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 (-1 *6 (-607 *6)))) + (-4 *5 (-37 (-392 (-526)))) (-4 *6 (-1198 *5)) (-5 *2 (-607 *6)) + (-5 *1 (-1199 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-607 *2))) (-5 *4 (-607 *5)) (-4 *5 (-37 (-392 (-526)))) + (-4 *2 (-1198 *5)) (-5 *1 (-1199 *5 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) + (-4 *4 (-37 (-392 (-526))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1198 *4)) (-5 *1 (-1199 *4 *2)) + (-4 *4 (-37 (-392 (-526))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-1198 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) - (-5 *2 (-402 *3)) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) + (-12 (-5 *3 (-1 *5 (-607 *5))) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) + (-5 *2 (-1 (-1101 *4) (-607 (-1101 *4)))) (-5 *1 (-1199 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-734)) (-5 *1 (-51))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163)))) - ((*1 *1) (-4 *1 (-687))) ((*1 *1) (-5 *1 (-1117)))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) - ((*1 *1 *1) (-4 *1 (-1007)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -2872 *4)))) - (-5 *1 (-656 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *5)) (-4 *5 (-998)) (-5 *1 (-1002 *3 *4 *5)) - (-14 *3 (-731)) (-14 *4 (-731))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) + (-5 *2 (-1 (-1101 *4) (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) - (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1198 *4)) (-4 *4 (-37 (-392 (-526)))) + (-5 *2 (-1 (-1101 *4) (-1101 *4))) (-5 *1 (-1199 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4))))) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-4 *5 (-13 (-435) (-807) (-989 *4) (-602 *4))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + (-12 (-5 *4 (-392 (-526))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-989 *5) (-602 *5))) (-5 *5 (-537)) - (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) - (-4 *7 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) - (-4 *3 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-537)) (-4 *4 (-998)) (-4 *1 (-1162 *4 *3)) - (-4 *3 (-1191 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-940 (-391 (-537)) (-818 *3) (-225 *4 (-731)) - (-232 *3 (-391 (-537))))) - (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-939 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *5)) (-4 *5 (-1176 *3)) (-4 *3 (-291)) - (-5 *2 (-111)) (-5 *1 (-438 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-1200 (-649 *4))))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) - ((*1 *2) - (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 (-649 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) - (-5 *2 (-1200 (-649 (-391 (-905 *5))))) (-5 *1 (-1032 *5)) - (-5 *4 (-649 (-391 (-905 *5)))))) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) + (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) - (-5 *2 (-1200 (-649 (-905 *5)))) (-5 *1 (-1032 *5)) - (-5 *4 (-649 (-905 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) - (-5 *2 (-1200 (-649 *4))) (-5 *1 (-1032 *4))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363)))) - (-5 *1 (-763))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) - ((*1 *1 *1) (|partial| -4 *1 (-683)))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-816) (-816) (-816))) (-5 *4 (-537)) (-5 *2 (-816)) - (-5 *1 (-610 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-816)) (-5 *1 (-811 *3 *4 *5)) (-4 *3 (-998)) - (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-816)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-816)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1113 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *4 (-1117)) - (-5 *1 (-1120)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1121)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *1 (-1121))))) -(((*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) - ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) - (-4 *5 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-731)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) - (-4 *6 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) + (-4 *6 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-731))) - (-4 *7 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) + (-4 *7 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-731))) - (-4 *3 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) + (-4 *3 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) + (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) + (-4 *8 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) + (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) + (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) + (-5 *1 (-566 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-567 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-4 *3 (-1004)) + (-4 *1 (-1167 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-735)) (-5 *3 (-1101 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))) + (-4 *4 (-1004)) (-4 *1 (-1188 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-4 *1 (-1198 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1101 (-2 (|:| |k| (-735)) (|:| |c| *3)))) (-4 *3 (-1004)) + (-4 *1 (-1198 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-607 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-57 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-57 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) - (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) - (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) - (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) - (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) - (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) - (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-251))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-554 *3)) (-4 *3 (-347))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) - (-4 *2 (-13 (-807) (-21)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1191 *4)) - (-4 *4 (-37 (-391 (-537)))) - (-5 *2 (-1 (-1098 *4) (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-233))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) - (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) - (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-4 *3 (-529))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) - ((*1 *1 *1) (|partial| -4 *1 (-683)))) -(((*1 *2 *3) - (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) - (-4 *3 (-1012 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) - (-4 *3 (-1176 *4)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1045))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) - (-14 *4 (-874))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) - (-4 *5 (-839 (-537))) - (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-800 *2)) (-4 *2 (-1081)) - (-4 *2 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) - (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) - (-5 *1 (-540 *5 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1117))) (-4 *6 (-347)) - (-5 *2 (-606 (-278 (-905 *6)))) (-5 *1 (-515 *5 *6 *7)) - (-4 *5 (-435)) (-4 *7 (-13 (-347) (-805)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) - (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210))) (-5 *1 (-664 *3)) - (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210) (-210))) - (-5 *1 (-664 *3)) (-4 *3 (-580 (-513)))))) + (-12 (-5 *2 (-607 *3)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-607 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1004)) (-5 *2 (-1101 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-566 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1167 *3)) (-4 *3 (-1004)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-526))) (-4 *1 (-1198 *3)) (-4 *3 (-1004))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-857 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807))) - (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-5 *1 (-566 *4 *2 *3)) - (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139)))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-149))))) + (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) + (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-811)) + (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-1198 *4)) (-4 *4 (-1004)) (-5 *2 (-905 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-391 (-537))) (-4 *4 (-989 (-537))) - (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)) (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-392 (-526))) (-4 *4 (-995 (-526))) (-4 *4 (-13 (-811) (-533))) + (-5 *1 (-31 *4 *2)) (-4 *2 (-406 *4)))) ((*1 *1 *1 *1) (-5 *1 (-131))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-210))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-537)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-211))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-526)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) - (-4 *5 (-1191 *4)) (-5 *1 (-262 *4 *5 *2)) (-4 *2 (-1162 *4 *5)))) + (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1198 *4)) + (-5 *1 (-263 *4 *5 *2)) (-4 *2 (-1169 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) - (-4 *5 (-1160 *4)) (-5 *1 (-263 *4 *5 *2 *6)) (-4 *2 (-1183 *4 *5)) - (-4 *6 (-936 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-268))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) + (-12 (-5 *3 (-392 (-526))) (-4 *4 (-348)) (-4 *4 (-37 *3)) (-4 *5 (-1167 *4)) + (-5 *1 (-264 *4 *5 *2 *6)) (-4 *2 (-1190 *4 *5)) (-4 *6 (-942 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-269))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) ((*1 *1 *1 *1) (-5 *1 (-363))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-456)) (-5 *2 (-537)))) + (-12 (-5 *2 (-735)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-457)) (-5 *2 (-526)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + (-12 (-5 *2 (-735)) (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) - (-5 *1 (-507 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-513)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-513)))) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-515)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-515)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *4 (-1045)) - (-5 *1 (-642 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *4 (-1052)) (-5 *1 (-646 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-347)))) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-348)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + (-12 (-5 *2 (-735)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) - (-5 *1 (-650 *4)))) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)) - (-4 *4 (-609 *3)))) + (-12 (-5 *2 (-526)) (-4 *3 (-1004)) (-5 *1 (-679 *3 *4)) (-4 *4 (-613 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-4 *4 (-998)) - (-5 *1 (-675 *4 *5)) (-4 *5 (-609 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-731)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-794 *3)) (-4 *3 (-998)))) + (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *5)) + (-4 *5 (-613 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-691)) (-5 *2 (-735)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-798 *3)) (-4 *3 (-1004)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-5 *1 (-794 *4)) (-4 *4 (-998)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-391 (-537))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-874)))) + (-12 (-5 *2 (-112)) (-5 *3 (-526)) (-5 *1 (-798 *4)) (-4 *4 (-1004)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-392 (-526))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1063)) (-5 *2 (-878)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)) (-4 *4 (-347)))) + (-12 (-5 *2 (-526)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *4 (-1004)) + (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4)) (-4 *4 (-348)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045))))) -(((*1 *2) - (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1044 (-803 *3))) (-4 *3 (-13 (-1145) (-919) (-29 *5))) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1176 (-537))) + (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) + (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) + (-5 *1 (-205 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1044 (-803 *3))) (-5 *5 (-1106)) + (-4 *3 (-13 (-1145) (-919) (-29 *6))) + (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 - (-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) - (|:| |basisInv| (-649 (-537))))) - (-5 *1 (-728 *3 *4)) (-4 *4 (-393 (-537) *3)))) - ((*1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) + (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| #1#) + (|:| |pole| #2#))) + (-5 *1 (-205 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1044 (-803 (-299 *5)))) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 - (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-649 *4)))) - (-5 *1 (-938 *3 *4 *5 *6)) (-4 *6 (-685 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) + (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) + (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) + (-5 *1 (-206 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1044 (-803 (-299 *6)))) + (-5 *5 (-1106)) + (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) (-5 *2 - (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-649 *4)))) - (-5 *1 (-1209 *3 *4 *5 *6)) (-4 *6 (-393 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) - (-5 *5 (-111)) (-5 *2 (-1202)) (-5 *1 (-241))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *2 *1) - (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *5)) (-5 *1 (-838 *3 *4 *5)) - (-4 *3 (-1045)) (-4 *5 (-627 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) - (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) - (-4 *4 (-13 (-347) (-805))))) + (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-206 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-278 (-391 (-905 (-160 (-537))))))) - (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) - (-4 *4 (-13 (-347) (-805))))) + (-12 (-5 *4 (-1044 (-803 (-392 (-905 *5))))) (-5 *3 (-392 (-905 *5))) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 + (-3 (|:| |f1| (-803 (-299 *5))) (|:| |f2| (-607 (-803 (-299 *5)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-206 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1044 (-803 (-392 (-905 *6))))) (-5 *5 (-1106)) + (-5 *3 (-392 (-905 *6))) + (-4 *6 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 + (-3 (|:| |f1| (-803 (-299 *6))) (|:| |f2| (-607 (-803 (-299 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-206 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-3 *3 (-607 *3))) (-5 *1 (-415 *5 *3)) + (-4 *3 (-13 (-1145) (-919) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) + (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3) (-12 (-5 *3 (-733)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) + (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *5 (-363)) + (-5 *2 (-992)) (-5 *1 (-541)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 (-160 (-537))))) - (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) - (-4 *4 (-13 (-347) (-805))))) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-1041 (-803 (-363)))) (-5 *2 (-992)) + (-5 *1 (-541)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-391 (-905 (-160 (-537)))))) - (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) - (-4 *4 (-13 (-347) (-805)))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661))))) -(((*1 *2 *3) - (-12 (-5 *2 (-402 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-896 *5)) (-5 *3 (-731)) (-4 *5 (-998)) - (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-606 (-300 (-210)))) - (|:| |constraints| - (-606 - (-2 (|:| |start| (-210)) (|:| |finish| (-210)) - (|:| |grid| (-731)) (|:| |boundaryType| (-537)) - (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) - (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) - (|:| |tol| (-210)))) - (-5 *2 (-111)) (-5 *1 (-196))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) - (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) - (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) - (-4 *3 (-13 (-347) (-141) (-989 (-537)))) (-5 *1 (-541 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) - (-5 *1 (-120 *3)) (-4 *3 (-807)))) - ((*1 *2 *2) - (-12 (-5 *2 (-554 *4)) (-4 *4 (-13 (-29 *3) (-1139))) - (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *1 (-552 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-554 (-391 (-905 *3)))) - (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *1 (-557 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 (-2 (|:| -2559 *3) (|:| |special| *3))) (-5 *1 (-688 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-4 *5 (-998)) - (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) - (-5 *3 (-606 (-649 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1200 (-1200 *5))) (-4 *5 (-347)) (-4 *5 (-998)) - (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) - (-5 *3 (-606 (-649 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-606 *1)) (-4 *1 (-1086))))) -(((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) - (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4))))) -(((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-111)) - (-5 *1 (-344 *4 *5)) (-14 *5 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-740 *4 (-818 *5)))) (-4 *4 (-435)) - (-14 *5 (-606 (-1117))) (-5 *2 (-111)) (-5 *1 (-591 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-537))) (-5 *4 (-858 (-537))) - (-5 *2 (-649 (-537))) (-5 *1 (-558)))) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) + (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) + (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) + (-5 *5 (-363)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-1041 (-803 (-363))))) + (-5 *5 (-363)) (-5 *6 (-1016)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) + (-5 *5 (-1106)) (-5 *2 (-992)) (-5 *1 (-541)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-299 (-363))) (-5 *4 (-1044 (-803 (-363)))) + (-5 *5 (-1123)) (-5 *2 (-992)) (-5 *1 (-541)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) - (-5 *1 (-558)))) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) + (-5 *2 (-556 (-392 *5))) (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-537))) (-5 *4 (-606 (-858 (-537)))) - (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) - (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-606 *5)) - (-5 *1 (-305 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-323 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-371)))) - ((*1 *2 *1) - (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-606 (-1117))))) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) + (-5 *2 (-3 (-299 *5) (-607 (-299 *5)))) (-5 *1 (-561 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-811)) + (-4 *3 (-37 (-392 (-526)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1123)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-392 (-526)))) + (-4 *3 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-4 *2 (-811)) + (-5 *1 (-1076 *3 *2 *4)) (-4 *4 (-909 *3 (-512 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) + (-5 *1 (-1108 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *1 (-1152 *3)) (-4 *3 (-37 (-392 (-526)))) + (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3850 + (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) + (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) + (-4 *3 (-37 (-392 (-526)))))) + (-12 (-5 *2 (-1123)) (-4 *1 (-1167 *3)) (-4 *3 (-1004)) + (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) + (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3850 + (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) + (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) + (-4 *3 (-37 (-392 (-526)))))) + (-12 (-5 *2 (-1123)) (-4 *1 (-1188 *3)) (-4 *3 (-1004)) + (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) + (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3850 + (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) + (-12 (-4 *3 (-29 (-526))) (-4 *3 (-919)) (-4 *3 (-1145)) + (-4 *3 (-37 (-392 (-526)))))) + (-12 (-5 *2 (-1123)) (-4 *1 (-1198 *3)) (-4 *3 (-1004)) + (-12 (|has| *3 (-15 -3384 ((-607 *2) *3))) + (|has| *3 (-15 -4131 (*3 *3 *2))) (-4 *3 (-37 (-392 (-526)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1004)) (-4 *2 (-37 (-392 (-526))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1121 *4 *5 *6)) + (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1174 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) + (-4 *4 (-1004)) (-14 *5 (-1123)) (-14 *6 *4)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) + ((*1 *1 *1) (-4 *1 (-219))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-251 *3)) (-4 *3 (-811)))) + ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) + (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) + (-4 *4 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-458 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-348)) (-4 *2 (-859 *3)) (-5 *1 (-556 *2)) (-5 *3 (-1123)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-556 *2)) (-4 *2 (-348)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) + (-4 *4 (-1052)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1120 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1121 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1165 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *4)) (-14 *4 (-1123)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-1004)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) + (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3 *4)) (-4 *2 (-1004)) (-14 *3 (-1123)) (-14 *4 *2)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) + (-14 *5 *3)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-1004)) (-5 *1 (-1108 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-526)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-1123)) + (-14 *5 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-992)) (-5 *1 (-288)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-992))) (-5 *2 (-992)) (-5 *1 (-288)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *1) (-5 *1 (-1016))) + ((*1 *2 *3) + (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1102 *4)) + (-4 *4 (-1159)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) + (-12 (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) (-4 *3 (-811)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *2 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-852 *3)) (-4 *3 (-811)))) ((*1 *2 *1) - (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-607 (-526))) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) + (-14 *4 (-526)) (-14 *5 (-735)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-735)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-735)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-735)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-163)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-735)))) ((*1 *2 *1) - (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-606 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *5)) - (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-12 (-4 *2 (-163)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-526)) (-14 *4 (-735)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *2 (-1052)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-231 (-1106))) (-5 *1 (-201 *4)) + (-4 *4 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ *3)) (-15 -3939 ((-1211) $)) + (-15 -2063 ((-1211) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-948)) (-5 *1 (-201 *3)) (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1047 (-1117))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) - ((*1 *2 *1) - (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) - (-4 *5 (-807)) (-5 *2 (-606 *5)))) + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 ((-1211) $)) + (-15 -2063 ((-1211) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-735)) (-5 *1 (-231 *4)) (-4 *4 (-811)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-231 *3)) (-4 *3 (-811)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-231 *3)) (-4 *3 (-811)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-271 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-163)) (-5 *1 (-274 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1181 *3)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) + (-4 *4 (-1181 (-392 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-403 *2)) (-4 *2 (-163)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1106)) (-5 *1 (-484)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-50)) (-5 *1 (-599)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-607 (-849 *4))) (-5 *1 (-849 *4)) + (-4 *4 (-1052)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-878)) (-4 *2 (-348)) + (-5 *1 (-952 *4 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-968 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *2 (-1004)) + (-4 *6 (-224 *5 *2)) (-4 *7 (-224 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) + (-4 *7 (-224 *4 *2)) (-4 *2 (-1004)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-878)) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-5 *1 (-1026 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-878)) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-5 *1 (-1028 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-526))) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-526)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)))) + ((*1 *1 *1 *1) (-4 *1 (-1092))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-392 *1)) (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) + (-4 *4 (-811)) (-4 *5 (-1018 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) ((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-1117))) - (-5 *1 (-994 *4))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-606 (-487))) (-5 *2 (-487)) (-5 *1 (-465))))) + (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1194 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) + ((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *2 (-1159)) (-5 *1 (-832 *3 *2)) (-4 *3 (-1159)))) + ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) +(((*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) + (-4 *3 (-1159)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4311)) (-4 *1 (-118 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-735)) (-5 *1 (-200 *4 *2)) (-14 *4 (-878)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) + (-4 *2 (-1159)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1123)) (-5 *1 (-599)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1172 (-526))) (|has| *1 (-6 -4311)) (-4 *1 (-616 *2)) + (-4 *2 (-1159)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-607 (-526))) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) + (-4 *2 (-1159)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) + (-4 *2 (-1159)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) + (-4 *3 (-1159)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) + (-4 *2 (-1159))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1101 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-1194 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-1194 *3)) + (-4 *3 (-1159))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) - (-5 *2 (-397 *4 (-391 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))) - (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) - (-5 *1 (-397 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) - (-5 *2 (-606 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) - (-4 *1 (-29 *4)))) + (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) + (-5 *2 (-803 *4)) (-5 *1 (-298 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) - (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *3)))) - (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-731)) (|:| -2990 *4))) (-5 *5 (-731)) - (-4 *4 (-902 *6 *7 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-432 *6 *7 *8 *4))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-490 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-807))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) - (-4 *7 (-805)) - (-4 *8 - (-13 (-1178 *3 *7) (-347) (-1139) - (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) + (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) + (-5 *2 (-803 *4)) (-5 *1 (-1192 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1145) (-406 *3))) (-14 *5 (-1123)) (-14 *6 *4)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-811) (-995 (-526)) (-606 (-526)) (-436))) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) - (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) - (-14 *10 (-1117))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *2)) (-5 *1 (-169 *2)) (-4 *2 (-291)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-606 (-606 *4))) (-5 *2 (-606 *4)) (-4 *4 (-291)) - (-5 *1 (-169 *4)))) + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1186 *4 *5 *6)) (|:| |%expon| (-304 *4 *5 *6)) + (|:| |%expTerms| (-607 (-2 (|:| |k| (-392 (-526))) (|:| |c| *4)))))) + (|:| |%type| (-1106)))) + (-5 *1 (-1192 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1145) (-406 *3))) + (-14 *5 (-1123)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-392 (-526))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 *8)) - (-5 *4 - (-606 - (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-649 *7))))) - (-5 *5 (-731)) (-4 *8 (-1176 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-333)) - (-5 *2 - (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-649 *7)))) - (-5 *1 (-479 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1113 (-391 (-1113 *2)))) (-5 *4 (-578 *2)) - (-4 *2 (-13 (-414 *5) (-27) (-1139))) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1045)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *3 (-807)))) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-392 (-526))) + (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-392 (-526)))) (-5 *4 (-278 *8)) + (-5 *5 (-1172 (-392 (-526)))) (-5 *6 (-392 (-526))) + (-4 *8 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-392 (-526)))) + (-5 *7 (-392 (-526))) (-4 *3 (-13 (-27) (-1145) (-406 *8))) + (-4 *8 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1113 *4)) (-4 *4 (-998)) (-4 *1 (-902 *4 *5 *3)) - (-4 *5 (-753)) (-4 *3 (-807)))) + (-12 (-5 *2 (-392 (-526))) (-4 *4 (-1004)) (-4 *1 (-1190 *4 *3)) + (-4 *3 (-1167 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1167 *3)) + (-5 *2 (-392 (-526)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-1113 *2))) (-4 *5 (-753)) (-4 *4 (-807)) - (-4 *6 (-998)) - (-4 *2 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) - (-5 *1 (-903 *5 *4 *6 *7 *2)) (-4 *7 (-902 *6 *5 *4)))) + (-12 (-5 *4 (-526)) (-4 *5 (-13 (-436) (-811) (-995 *4) (-606 *4))) + (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-1113 (-391 (-905 *5))))) (-5 *4 (-1117)) - (-5 *2 (-391 (-905 *5))) (-5 *1 (-994 *5)) (-4 *5 (-529))))) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-995 *5) (-606 *5))) (-5 *5 (-526)) (-5 *2 (-50)) + (-5 *1 (-301 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-526))) + (-4 *7 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-526))) + (-4 *3 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-526)) (-4 *4 (-1004)) (-4 *1 (-1169 *4 *3)) + (-4 *3 (-1198 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1167 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-878)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-1188 *3)) (-4 *3 (-1004))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-526)))) + (-4 *4 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $))))) (-4 *3 (-533)) + (-5 *1 (-1185 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) + (-4 *1 (-1024 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1164))) + ((*1 *2 *2) + (-12 (-4 *3 (-533)) (-5 *1 (-1185 *3 *2)) + (-4 *2 (-13 (-1181 *3) (-533) (-10 -8 (-15 -3457 ($ $ $)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) + (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| -4270 *3) (|:| -4255 *4)))) (-5 *1 (-700 *3 *4)) + (-4 *3 (-1004)) (-4 *4 (-691)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) + (-5 *2 (-1101 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-607 (-1106))) (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *1 (-227)))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) + ((*1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004))))) +(((*1 *2 *1) + (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) + (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) + (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-878)))) + ((*1 *2 *3) + (-12 (-5 *3 (-318 *4 *5 *6 *7)) (-4 *4 (-13 (-353) (-348))) + (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *7 (-327 *4 *5 *6)) + (-5 *2 (-735)) (-5 *1 (-377 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-796 (-878))))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-4 *3 (-533)) (-5 *2 (-526)) (-5 *1 (-590 *3 *4)) (-4 *4 (-1181 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-705 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) + (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-735)) + (-5 *1 (-870 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) + (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) + (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-735)) (-5 *1 (-871 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-318 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-348)) + (-4 *7 (-1181 *6)) (-4 *4 (-1181 (-392 *7))) (-4 *8 (-327 *6 *7 *4)) + (-4 *9 (-13 (-353) (-348))) (-5 *2 (-735)) (-5 *1 (-976 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-4 *3 (-533)) (-5 *2 (-735)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) +(((*1 *1 *1) (-4 *1 (-1013))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-1047 *3)))) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-526)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-606 *4))) (-5 *1 (-857 *4)) - (-5 *3 (-606 *4)))) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-830 *4)) (-14 *4 *3) (-5 *3 (-526)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-1047 *4))) (-5 *1 (-857 *4)) - (-5 *3 (-1047 *4)))) + (-12 (-14 *4 *3) (-5 *2 (-392 (-526))) (-5 *1 (-831 *4 *5)) (-5 *3 (-526)) + (-4 *5 (-829 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-392 (-526))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) - (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) - (-4 *4 (-250 *3)) (-4 *5 (-753))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-1200 *5)) (-4 *5 (-291)) - (-4 *5 (-998)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) - (-5 *1 (-31 *4 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1113 *3)) (-4 *3 (-998)) (-4 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-874)) (-5 *1 (-981 *2)) - (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)))))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 (-391 (-905 *6)))) - (-5 *3 (-391 (-905 *6))) - (-4 *6 (-13 (-529) (-989 (-537)) (-141))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-543 *6))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-606 (-874))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) - (-4 *2 (-347)) (-14 *5 (-946 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-674 *5 *6 *7)) (-4 *5 (-807)) - (-4 *6 (-223 (-2258 *4) (-731))) - (-14 *7 - (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) - (-2 (|:| -2009 *5) (|:| -3283 *6)))) - (-14 *4 (-606 (-1117))) (-4 *2 (-163)) - (-5 *1 (-444 *4 *2 *5 *6 *7 *8)) (-4 *8 (-902 *2 *6 (-818 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) - (-4 *4 (-1176 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-696 *2 *3)) (-4 *2 (-998)) (-4 *3 (-687)))) + (-12 (-4 *1 (-1184 *2 *3)) (-4 *3 (-756)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4274 (*2 (-1123)))) (-4 *2 (-1004))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-165 *3)) (-4 *3 (-292)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-705 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-811)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-939 *3)) (-4 *3 (-1004)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) + (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-392 *5)) (-4 *4 (-1164)) (-4 *5 (-1181 *4)) + (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-653 (-299 (-211)))) (-5 *3 (-607 (-1123))) + (-5 *4 (-1205 (-299 (-211)))) (-5 *1 (-192)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-278 *3))) (-4 *3 (-294 *3)) (-4 *3 (-1052)) + (-4 *3 (-1159)) (-5 *1 (-278 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-294 *2)) (-4 *2 (-1052)) (-4 *2 (-1159)) (-5 *1 (-278 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) - (-4 *4 (-998)) (-4 *5 (-807)))) + (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) - (-4 *2 (-807)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) + (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) - (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) + (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *2 (-807)))) + (-12 (-5 *2 (-1123)) (-5 *3 (-1 *1 (-607 *1))) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 *5)) (-4 *1 (-926 *4 *5 *6)) - (-4 *4 (-998)) (-4 *5 (-752)) (-4 *6 (-807)))) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-283)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-926 *4 *3 *2)) (-4 *4 (-998)) (-4 *3 (-752)) - (-4 *2 (-807))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| -3619 *4) (|:| -3073 (-537))))) - (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-722)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-929 *4 *5 *3 *6)) (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) - (-4 *4 (-13 (-529) (-989 (-537)) (-141))) (-5 *1 (-543 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) - (-5 *1 (-1102 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) - (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) - (-5 *1 (-432 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-27) (-414 *4))) - (-4 *4 (-13 (-807) (-529) (-989 (-537)))) - (-4 *7 (-1176 (-391 *6))) (-5 *1 (-525 *4 *5 *6 *7 *2)) - (-4 *2 (-326 *5 *6 *7))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-649 (-537))) (-5 *3 (-606 (-537))) (-5 *1 (-1055))))) -(((*1 *2 *2) - (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) - (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-606 (-278 *4))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) - (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) - (-4 *4 (-647 *2 *5 *6))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1070 *4 *3 *5))) (-4 *4 (-37 (-391 (-537)))) - (-4 *4 (-998)) (-4 *3 (-807)) (-5 *1 (-1070 *4 *3 *5)) - (-4 *5 (-902 *4 (-509 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1148 *4))) (-5 *3 (-1117)) (-5 *1 (-1148 *4)) - (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) - (-4 *2 (-1176 (-160 *3)))))) -(((*1 *1) (-5 *1 (-783)))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-907))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) - (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) -(((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) - (-14 *4 *2) (-4 *5 (-163)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-874)) (-5 *1 (-156 *3 *4)) - (-4 *3 (-157 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-874)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) - (-5 *2 (-874)))) - ((*1 *2 *3) - (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) - (-5 *2 (-731)) (-5 *1 (-628 *5)))) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-1 *1 *1))) (-4 *1 (-283)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-278 *3))) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1052)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-731)) - (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) - (-4 *3 (-647 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) - (-5 *2 (-731))))) + (-12 (-5 *3 (-1 *2 (-526))) (-5 *4 (-1125 (-392 (-526)))) (-5 *1 (-295 *2)) + (-4 *2 (-37 (-392 (-526)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *1)) (-4 *1 (-359 *4 *5)) (-4 *4 (-811)) + (-4 *5 (-163)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-811)) (-4 *3 (-163)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 *1)) (-4 *1 (-406 *5)) + (-4 *5 (-811)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *4 (-1 *1 (-607 *1))) + (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) + (-5 *4 (-607 (-1 *1 (-607 *1)))) (-4 *1 (-406 *5)) (-4 *5 (-811)) + (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-607 (-735))) (-5 *4 (-607 (-1 *1 *1))) + (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-607 (-112))) (-5 *3 (-607 *1)) (-5 *4 (-1123)) + (-4 *1 (-406 *5)) (-4 *5 (-811)) (-4 *5 (-584 (-515))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-1123)) (-4 *1 (-406 *4)) (-4 *4 (-811)) + (-4 *4 (-584 (-515))))) + ((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-584 (-515))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-1123))) (-4 *1 (-406 *3)) (-4 *3 (-811)) + (-4 *3 (-584 (-515))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)) (-4 *3 (-584 (-515))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-496 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 *5)) (-4 *1 (-496 *4 *5)) (-4 *4 (-1052)) + (-4 *5 (-1159)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-796 *3)) (-4 *3 (-348)) (-5 *1 (-683 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1052)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) (-4 *4 (-533)) + (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-607 (-1123))) (-5 *4 (-607 (-392 (-905 *5)))) + (-5 *2 (-392 (-905 *5))) (-4 *5 (-533)) (-5 *1 (-997 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-5 *2 (-392 (-905 *4))) (-4 *4 (-533)) + (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) (-5 *2 (-392 (-905 *4))) + (-4 *4 (-533)) (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1101 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-1181 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-1004)) (-5 *2 (-1117 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1004)) (-4 *1 (-1181 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) - (-4 *3 (-1154))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) - (-5 *2 (-606 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-958))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-472))))) -(((*1 *2 *1) - (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) + (|partial| -12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-909 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1004)) (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) + (-4 *1 (-1181 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-1004)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1181 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1181 *3)) (-4 *3 (-1004))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004))))) +(((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *2 *4)) (-4 *4 (-1181 *2)) + (-4 *2 (-163)))) ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) - ((*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1154))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) - (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-4 *7 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 (-2 (|:| -3121 (-391 *6)) (|:| |coeff| (-391 *6)))) - (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1153))) (-5 *3 (-1153)) (-5 *1 (-641))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *2 *1) - (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) - (-4 *4 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) - (-5 *2 (-1200 (-537))) (-5 *1 (-1226 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) - (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) - (-5 *2 - (-2 (|:| |upol| (-1113 *8)) (|:| |Lval| (-606 *8)) - (|:| |Lfact| - (-606 (-2 (|:| -3622 (-1113 *8)) (|:| -3283 (-537))))) - (|:| |ctpol| *8))) - (-5 *1 (-703 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 - (-2 (|:| |solns| (-606 *5)) - (|:| |maps| (-606 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1072 *3 *5)) (-4 *3 (-1176 *5))))) -(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1) (-4 *1 (-920))) ((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-606 (-1200 *4))) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) + (-12 (-4 *4 (-1181 *2)) (-4 *2 (-163)) (-5 *1 (-394 *3 *2 *4)) + (-4 *3 (-395 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) ((*1 *2) - (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) - (-5 *2 (-606 (-1200 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 (-463 *3 *4))) (-14 *3 (-606 (-1117))) - (-4 *4 (-435)) (-5 *1 (-594 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1191 *4)) - (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4))) - (-5 *1 (-1193 *4 *5))))) + (-12 (-4 *3 (-1181 *2)) (-5 *2 (-526)) (-5 *1 (-732 *3 *4)) + (-4 *4 (-395 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *3 (-163)))) + ((*1 *2 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *3 (-163)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-163))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-392 *1)) (-4 *1 (-1181 *3)) (-4 *3 (-1004)) + (-4 *3 (-533)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-1004)) (-4 *2 (-533))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2211 *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) - (-4 *2 (-1176 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *2 (-606 (-210))) (-5 *1 (-289))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *1 (-1102 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1154)) (-4 *1 (-223 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) - (-5 *1 (-316))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1126 (-606 *4))) (-4 *4 (-807)) - (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4))))) -(((*1 *1) (-5 *1 (-149)))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-291)))) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -4270 *4) (|:| -2072 *3) (|:| -3202 *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) - (-4 *1 (-291))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1176 (-391 (-537)))) - (-5 *2 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))) - (-5 *1 (-866 *3 *4)) (-4 *4 (-1176 (-391 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) - (-4 *3 (-1176 (-391 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-606 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) - (-5 *2 (-606 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-731)) (-4 *5 (-163)))) - ((*1 *1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163)))) - ((*1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *2 *4)) (-4 *2 (-357 *3)) - (-4 *4 (-357 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-731)) (-4 *3 (-998))))) -(((*1 *1 *2) (-12 (-5 *2 (-173)) (-5 *1 (-233))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) - (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-1018 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| -4270 *3) (|:| -2072 *1) (|:| -3202 *1))) + (-4 *1 (-1181 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-347)) (-4 *4 (-529)) (-4 *5 (-1176 *4)) - (-5 *2 (-2 (|:| -4144 (-586 *4 *5)) (|:| -2660 (-391 *5)))) - (-5 *1 (-586 *4 *5)) (-5 *3 (-391 *5)))) + (-12 (-4 *4 (-348)) (-4 *4 (-533)) (-4 *5 (-1181 *4)) + (-5 *2 (-2 (|:| -1860 (-590 *4 *5)) (|:| -1859 (-392 *5)))) + (-5 *1 (-590 *4 *5)) (-5 *3 (-392 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) - (-14 *3 (-874)) (-4 *4 (-998)))) + (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-435)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1176 *3))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-156 *3 *4)) - (-4 *3 (-157 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) - (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-807)) (-5 *2 (-731)) (-5 *1 (-413 *3 *4)) - (-4 *3 (-414 *4)))) - ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-521 *3)) (-4 *3 (-522)))) - ((*1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-731)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-756 *3 *4)) - (-4 *3 (-757 *4)))) - ((*1 *2) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-944 *3 *4)) - (-4 *3 (-945 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-948 *3 *4)) - (-4 *3 (-949 *4)))) - ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) - ((*1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-731)))) - ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) - (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *5)) - (-4 *5 (-1176 (-391 *4)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-816)))) + (-12 (-4 *3 (-436)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1181 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-1179 *4 *2)) + (-4 *2 (-1181 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) + (-5 *1 (-1178 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-141))) (-5 *2 (-607 *3)) (-5 *1 (-1177 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-533) (-141))) + (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-1177 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-1181 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) + (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) - (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) + (|partial| -12 (-5 *3 (-735)) (-4 *4 (-13 (-533) (-141))) + (-5 *1 (-1177 *4 *2)) (-4 *2 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-880)) - (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) - (-5 *1 (-147)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) - (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) - (-5 *1 (-147))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) + (-4 *3 (-357 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) - (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-838 *3 *4 *5)) - (-4 *3 (-1045)) (-4 *5 (-627 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-734)) (-5 *1 (-51))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1205)) (-5 *1 (-791))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-391 *2)) (-4 *2 (-1176 *5)) - (-5 *1 (-767 *5 *2 *3 *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *3 (-617 *2)) (-4 *6 (-617 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-391 *2))) (-4 *2 (-1176 *5)) - (-5 *1 (-767 *5 *2 *3 *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) - (-4 *6 (-617 (-391 *2)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) - (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) - (-5 *1 (-330 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) - ((*1 *1 *1) (-4 *1 (-954))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-964)))) - ((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-964)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-874)))) - ((*1 *1 *1) (-4 *1 (-964)))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) + (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-485 *4 *5 *6 *3)) + (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) + (-5 *2 (-2 (|:| |num| (-653 *4)) (|:| |den| *4))) (-5 *1 (-657 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) + (-5 *2 (-2 (|:| -3578 *7) (|:| |rh| (-607 (-392 *6))))) + (-5 *1 (-771 *5 *6 *7 *3)) (-5 *4 (-607 (-392 *6))) (-4 *7 (-623 *6)) + (-4 *3 (-623 (-392 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1176 *4 *5 *3)) + (-4 *3 (-1181 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) + (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-136 *3 *4 *2)) + (-4 *2 (-357 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) - (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) - (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-291)))) + (-12 (-4 *4 (-533)) (-4 *5 (-950 *4)) (-4 *2 (-357 *4)) + (-5 *1 (-485 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-950 *4)) (-4 *4 (-533)) (-5 *2 (-653 *4)) + (-5 *1 (-657 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) - (-4 *2 (-647 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1001 *2 *3 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *2 *4)) (-4 *4 (-291))))) + (-12 (-4 *3 (-533)) (-4 *4 (-950 *3)) (-5 *1 (-1176 *3 *4 *2)) + (-4 *2 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) - (-5 *2 (-606 (-606 (-232 *5 *6)))) (-5 *1 (-454 *5 *6 *7)) - (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-716)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-372)) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716))))) + (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-136 *2 *4 *3)) + (-4 *3 (-357 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-485 *2 *4 *5 *3)) + (-4 *5 (-357 *2)) (-4 *3 (-357 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-950 *2)) (-4 *2 (-533)) + (-5 *1 (-657 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-950 *2)) (-4 *2 (-533)) (-5 *1 (-1176 *2 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-745 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-915 *3 *2)) (-4 *2 (-129)) (-4 *3 (-533)) (-4 *3 (-1004)) + (-4 *2 (-756)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-735)) (-5 *1 (-1117 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-930)) (-4 *2 (-129)) (-5 *1 (-1125 *3)) (-4 *3 (-533)) + (-4 *3 (-1004)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-1174 *4 *3)) (-14 *4 (-1123)) (-4 *3 (-1004))))) +(((*1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-5 *2 (-1041 *3)) (-5 *1 (-1044 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1172 *3)) (-4 *3 (-1159))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-529)) (-4 *2 (-902 *3 *5 *4)) - (-5 *1 (-693 *5 *4 *6 *2)) (-5 *3 (-391 (-905 *6))) (-4 *5 (-753)) - (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2756 (-649 (-391 (-905 *4)))) - (|:| |vec| (-606 (-391 (-905 *4)))) (|:| -3705 (-731)) - (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-526)) + (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) + (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-5 *2 - (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) - (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) + (-2 (|:| |contp| (-526)) + (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) + (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)) - (-5 *1 (-392 *3 *4 *5)) (-4 *3 (-393 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) - (-5 *2 (-649 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-47))) (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1176 (-47))))) + (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) + (-4 *3 (-1181 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) + (-4 *3 (-1181 (-47))))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) - (-5 *2 (-402 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-902 (-47) *6 *5)))) + (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) + (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-909 (-47) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) - (-4 *7 (-902 (-47) *6 *5)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1113 *7)))) + (-12 (-5 *4 (-607 (-47))) (-4 *5 (-811)) (-4 *6 (-757)) + (-4 *7 (-909 (-47) *6 *5)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-41 *5 *6 *7)) + (-5 *3 (-1117 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-158 *4 *3)) - (-4 *3 (-1176 (-160 *4))))) + (-12 (-4 *4 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-158 *4 *3)) + (-4 *3 (-1181 (-159 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1181 (-159 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) - (-4 *3 (-1176 *4)))) + (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1181 (-159 *4))))) ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + (-12 (-4 *4 (-335)) (-5 *2 (-390 *3)) (-5 *1 (-203 *4 *3)) + (-4 *3 (-1181 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) + (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) + (-12 (-5 *4 (-607 (-735))) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) - (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + (-12 (-5 *4 (-607 (-735))) (-5 *5 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) + (-12 (-5 *4 (-735)) (-5 *2 (-390 *3)) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526))))) ((*1 *2 *3) - (-12 (-5 *2 (-402 (-160 (-537)))) (-5 *1 (-429)) - (-5 *3 (-160 (-537))))) + (-12 (-5 *2 (-390 (-159 (-526)))) (-5 *1 (-430)) (-5 *3 (-159 (-526))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-4 *5 (-753)) (-4 *7 (-529)) (-5 *2 (-402 *3)) - (-5 *1 (-439 *4 *5 *6 *7 *3)) (-4 *6 (-529)) - (-4 *3 (-902 *7 *5 *4)))) + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) + (-4 *5 (-757)) (-4 *7 (-533)) (-5 *2 (-390 *3)) + (-5 *1 (-440 *4 *5 *6 *7 *3)) (-4 *6 (-533)) (-4 *3 (-909 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-291)) (-5 *2 (-402 (-1113 *4))) (-5 *1 (-441 *4)) - (-5 *3 (-1113 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-4 *7 (-13 (-347) (-141) (-685 *5 *6))) (-5 *2 (-402 *3)) - (-5 *1 (-475 *5 *6 *7 *3)) (-4 *3 (-1176 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) - (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) - (-5 *2 (-402 *3)) (-5 *1 (-517 *5 *6 *7 *3)) - (-4 *3 (-902 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) - (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) - (-4 *8 (-902 *7 *6 *5)) (-5 *2 (-402 (-1113 *8))) - (-5 *1 (-517 *5 *6 *7 *8)) (-5 *3 (-1113 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) (-5 *2 (-606 (-614 (-391 *6)))) - (-5 *1 (-618 *5 *6)) (-5 *3 (-614 (-391 *6))))) + (-12 (-4 *4 (-292)) (-5 *2 (-390 (-1117 *4))) (-5 *1 (-442 *4)) + (-5 *3 (-1117 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) + (-4 *7 (-13 (-348) (-141) (-689 *5 *6))) (-5 *2 (-390 *3)) + (-5 *1 (-476 *5 *6 *7 *3)) (-4 *3 (-1181 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) + (-4 *5 (-811)) (-4 *6 (-757)) (-5 *2 (-390 *3)) (-5 *1 (-520 *5 *6 *7 *3)) + (-4 *3 (-909 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 (-1117 *7)) (-1117 *7))) (-4 *7 (-13 (-292) (-141))) + (-4 *5 (-811)) (-4 *6 (-757)) (-4 *8 (-909 *7 *6 *5)) + (-5 *2 (-390 (-1117 *8))) (-5 *1 (-520 *5 *6 *7 *8)) (-5 *3 (-1117 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *6 (-1181 *5)) (-5 *2 (-607 (-620 (-392 *6)))) (-5 *1 (-624 *5 *6)) + (-5 *3 (-620 (-392 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) - (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) + (-5 *3 (-620 (-392 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-633 *4))) - (-5 *1 (-633 *4)))) + (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-637 *4))) + (-5 *1 (-637 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-5 *2 (-606 *3)) (-5 *1 (-656 *3)) - (-4 *3 (-1176 *4)))) + (-12 (-5 *4 (-526)) (-5 *2 (-607 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1181 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-5 *2 (-402 *3)) - (-5 *1 (-658 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) + (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-5 *2 (-390 *3)) + (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) - (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-658 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-335)) (-4 *7 (-909 *6 *5 *4)) + (-5 *2 (-390 (-1117 *7))) (-5 *1 (-662 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-753)) + (-12 (-4 *4 (-757)) (-4 *5 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-691 *4 *5 *6 *3)) - (-4 *3 (-902 (-905 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-753)) - (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) - (-5 *2 (-402 *3)) (-5 *1 (-693 *4 *5 *6 *3)) - (-4 *3 (-902 (-391 (-905 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-13 (-291) (-141))) - (-5 *2 (-402 *3)) (-5 *1 (-694 *4 *5 *6 *3)) - (-4 *3 (-902 (-391 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) - (-5 *2 (-402 *3)) (-5 *1 (-702 *4 *5 *6 *3)) - (-4 *3 (-902 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) - (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-702 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) - (-4 *3 (-1176 (-391 (-537)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-992 *3)) - (-4 *3 (-1176 (-391 (-905 (-537))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1176 (-391 (-537)))) - (-4 *5 (-13 (-347) (-141) (-685 (-391 (-537)) *4))) - (-5 *2 (-402 *3)) (-5 *1 (-1024 *4 *5 *3)) (-4 *3 (-1176 *5)))) + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ "failed") (-1123)))))) + (-4 *6 (-292)) (-5 *2 (-390 *3)) (-5 *1 (-695 *4 *5 *6 *3)) + (-4 *3 (-909 (-905 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) + (-4 *6 (-533)) (-5 *2 (-390 *3)) (-5 *1 (-697 *4 *5 *6 *3)) + (-4 *3 (-909 (-392 (-905 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-13 (-292) (-141))) + (-5 *2 (-390 *3)) (-5 *1 (-698 *4 *5 *6 *3)) + (-4 *3 (-909 (-392 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) + (-5 *2 (-390 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-909 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-811)) (-4 *5 (-757)) (-4 *6 (-13 (-292) (-141))) + (-4 *7 (-909 *6 *5 *4)) (-5 *2 (-390 (-1117 *7))) (-5 *1 (-706 *4 *5 *6 *7)) + (-5 *3 (-1117 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1181 (-392 (-526)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-999 *3)) + (-4 *3 (-1181 (-392 (-905 (-526))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1181 (-392 (-526)))) + (-4 *5 (-13 (-348) (-141) (-689 (-392 (-526)) *4))) (-5 *2 (-390 *3)) + (-5 *1 (-1031 *4 *5 *3)) (-4 *3 (-1181 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1181 (-392 (-905 (-526))))) + (-4 *5 (-13 (-348) (-141) (-689 (-392 (-905 (-526))) *4))) (-5 *2 (-390 *3)) + (-5 *1 (-1032 *4 *5 *3)) (-4 *3 (-1181 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-436)) (-4 *7 (-909 *6 *4 *5)) + (-5 *2 (-390 (-1117 (-392 *7)))) (-5 *1 (-1119 *4 *5 *6 *7)) + (-5 *3 (-1117 (-392 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1164)))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-116 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-526)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-830 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-14 *2 (-526)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-526)) (-14 *3 *2) (-5 *1 (-831 *3 *4)) (-4 *4 (-829 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-526)) (-5 *1 (-831 *2 *3)) (-4 *3 (-829 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-526)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-1004)) + (-4 *4 (-1198 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1198 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-50)) (-5 *1 (-301 *4 *5)) (-4 *5 (-13 (-27) (-1145) (-406 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-1176 (-391 (-905 (-537))))) - (-4 *5 (-13 (-347) (-141) (-685 (-391 (-905 (-537))) *4))) - (-5 *2 (-402 *3)) (-5 *1 (-1026 *4 *5 *3)) (-4 *3 (-1176 *5)))) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-50)) (-5 *1 (-301 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-735)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-301 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-526))) (-5 *4 (-278 *6)) + (-4 *6 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-526))) (-5 *4 (-278 *7)) (-5 *5 (-1172 (-735))) + (-4 *7 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1123)) (-5 *5 (-278 *3)) (-5 *6 (-1172 (-735))) + (-4 *3 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-50)) + (-5 *1 (-443 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1198 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) + (-5 *2 (-392 (-905 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1167 *4)) (-4 *4 (-1004)) (-4 *4 (-533)) + (-5 *2 (-392 (-905 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-159 (-526))) (-5 *2 (-111)) (-5 *1 (-430)))) ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) - (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) + (-12 + (-5 *3 + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) + (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) + (-5 *1 (-487 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-921 *3)) (-4 *3 (-525)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1162))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3541 (-607 (-1123))) (|:| -3542 (-607 (-1123))))) + (-5 *1 (-1162))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1162))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-811)) (-4 *3 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1161 *2)) + (-4 *2 (-1052)))) ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-37 (-391 (-537)))) - (-4 *2 (-163))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-200 (-483))) (-5 *1 (-795))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-918)))) - ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-942)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *2 *3)) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-606 *5))) (-4 *5 (-1191 *4)) - (-4 *4 (-37 (-391 (-537)))) - (-5 *2 (-1 (-1098 *4) (-606 (-1098 *4)))) (-5 *1 (-1193 *4 *5))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-811)) (-5 *1 (-1161 *2))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1161 *3)) (-4 *3 (-1052)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1052)) (-5 *2 (-111)) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3542 (-607 *3)) (|:| -3541 (-607 *3)))) + (-5 *1 (-1161 *3)) (-4 *3 (-1052))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-210))) - (-5 *1 (-451))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(((*1 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-5 *2 (-1211)) (-5 *1 (-1161 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) - (-4 *4 (-37 (-391 (-537))))))) + (-12 (-5 *4 (-526)) (-4 *5 (-335)) (-5 *2 (-390 (-1117 (-1117 *5)))) + (-5 *1 (-1158 *5)) (-5 *3 (-1117 (-1117 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-874))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) - (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) - (-4 *6 (-902 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-587 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *2 (-1054 *3 *4 *5 *6))))) + (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) + (-5 *3 (-1117 (-1117 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-259))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716))))) -(((*1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) - (-5 *1 (-709))))) -(((*1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-513))) (-5 *1 (-513))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) -(((*1 *1 *1) - (-12 (-4 *2 (-291)) (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) - (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3)))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-1010))))) + (-12 (-4 *4 (-335)) (-5 *2 (-390 (-1117 (-1117 *4)))) (-5 *1 (-1158 *4)) + (-5 *3 (-1117 (-1117 *4)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) + (-4 *3 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1154 *4 *5 *3 *2)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *3 (-811)) (-4 *2 (-1018 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-1157 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-607 (-607 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 (-902 *4))) + (-5 *1 (-1156)) (-5 *3 (-902 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-1156))))) +(((*1 *1 *2) + (-12 (-5 *2 (-878)) (-4 *1 (-224 *3 *4)) (-4 *4 (-1004)) (-4 *4 (-1159)))) + ((*1 *1 *2) + (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) + (-2 (|:| -2461 *2) (|:| -2462 *5)))) + (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) (-4 *2 (-811)) + (-4 *7 (-909 *4 *5 (-824 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *2 (-1211)) (-5 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-939 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-902 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-902 *3)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-902 (-211))) (-5 *1 (-1156)) (-5 *3 (-211))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-211)) (-5 *5 (-526)) (-5 *2 (-1155 *3)) (-5 *1 (-754 *3)) + (-4 *3 (-933)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *4 (-111)) (-5 *1 (-1155 *2)) + (-4 *2 (-933))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) (((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-451)) (-5 *3 (-606 (-247))) (-5 *1 (-1201)))) - ((*1 *1 *1) (-5 *1 (-1201)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) + (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-1155 *3)) (-4 *3 (-933))))) +(((*1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-933))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) + (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) (-4 *8 (-811)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *9)))) (-5 *3 (-607 *9)) + (-4 *1 (-1154 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3643 (-607 *8)))) (-5 *3 (-607 *8)) + (-4 *1 (-1154 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-5 *2 (-1113 *3))))) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-2 (|:| -4180 (-607 *6)) (|:| -1794 (-607 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)) - (-4 *4 (-529)) (-5 *2 (-391 (-1113 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-1113 (-391 (-1113 *3)))) (-5 *1 (-533 *6 *3 *7)) - (-5 *5 (-1113 *3)) (-4 *7 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196 *5)) (-14 *5 (-1117)) (-4 *6 (-998)) - (-5 *2 (-1173 *5 (-905 *6))) (-5 *1 (-900 *5 *6)) (-5 *3 (-905 *6)))) + (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-1113 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-1113 *1)) - (-4 *1 (-902 *4 *5 *3)))) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1154 *5 *6 *7 *3)) (-4 *5 (-533)) + (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *1)) (-4 *1 (-1018 *4 *5 *6)) (-4 *4 (-1004)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1154 *4 *5 *6 *3)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-111) *7 (-607 *7))) (-4 *1 (-1154 *4 *5 *6 *7)) + (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) + (-4 *1 (-1154 *5 *6 *7 *8)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-1018 *5 *6 *7))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *2 (-533)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *5 (-1018 *2 *3 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *10)) + (-5 *1 (-591 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1024 *5 *6 *7 *8)) + (-4 *10 (-1060 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) + (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) + (-14 *6 (-607 (-1123))) + (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) + (-5 *1 (-595 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) + (-5 *1 (-984 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) + (-5 *1 (-984 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) + (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-1001 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-391 (-1113 *3))) - (-5 *1 (-903 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1113 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) - (-4 *7 (-902 *6 *5 *4)) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) - (-5 *1 (-903 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-529)) - (-5 *2 (-391 (-1113 (-391 (-905 *5))))) (-5 *1 (-994 *5)) - (-5 *3 (-391 (-905 *5)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-731)) (-5 *3 (-896 *5)) (-4 *5 (-998)) - (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-1024 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) + (-5 *1 (-1094 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) + (-5 *1 (-1094 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1154 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-607 (-2 (|:| -4180 *1) (|:| -1794 (-607 *7))))) (-5 *3 (-607 *7)) + (-4 *1 (-1154 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *2 (-1018 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *5 (-353)) (-5 *2 (-735))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-607 (-878))) (-4 *2 (-348)) (-5 *1 (-146 *4 *2 *5)) + (-14 *4 (-878)) (-14 *5 (-952 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-308 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-129)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-691)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) - (-14 *4 (-874)) (-4 *5 (-998)))) + (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) + (-4 *4 (-1004)) (-4 *5 (-811)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) - (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505))))) -(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *6 (-111)) - (-4 *7 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-4 *3 (-13 (-1139) (-912) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-204 *7 *3)) (-5 *5 (-800 *3))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1176 *4)) (-5 *1 (-769 *4 *2 *3 *5)) - (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) - (-4 *5 (-617 (-391 *2)))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) - (-5 *1 (-176))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) - ((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) - (-5 *1 (-707))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-1212 *3 *4 *5 *6)))) + (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) + (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *2 (-811)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-4 *2 (-909 *4 (-512 *5) *5)) (-5 *1 (-1076 *4 *5 *2)) + (-4 *4 (-1004)) (-4 *5 (-811)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-905 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1004))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1076 *4 *3 *5))) (-4 *4 (-37 (-392 (-526)))) + (-4 *4 (-1004)) (-4 *3 (-811)) (-5 *1 (-1076 *4 *3 *5)) + (-4 *5 (-909 *4 (-512 *3) *3)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-129)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-345 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-370 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-610 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2) - (-12 (-4 *1 (-333)) - (-5 *2 (-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-817)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1098 *4)) - (-4 *4 (-1045)) (-4 *4 (-1154))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1173 *4 *5)) (-5 *3 (-606 *5)) (-14 *4 (-1117)) - (-4 *5 (-347)) (-5 *1 (-876 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *5)) (-4 *5 (-347)) (-5 *2 (-1113 *5)) - (-5 *1 (-876 *4 *5)) (-14 *4 (-1117)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-731)) (-4 *6 (-347)) - (-5 *2 (-391 (-905 *6))) (-5 *1 (-999 *5 *6)) (-14 *5 (-1117))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-606 (-1117))) - (-4 *2 (-13 (-414 (-160 *5)) (-954) (-1139))) - (-4 *5 (-13 (-529) (-807))) (-5 *1 (-566 *5 *6 *2)) - (-4 *6 (-13 (-414 *5) (-954) (-1139)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) -(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1 *1) (-5 *1 (-731))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-278 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) - (-4 *5 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-606 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) - (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) - (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-606 (-278 *8))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *8)) - (-5 *6 (-606 *8)) (-4 *8 (-414 *7)) - (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) - (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-113))) (-5 *6 (-606 (-278 *8))) - (-4 *8 (-414 *7)) (-5 *5 (-278 *8)) - (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-278 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) - (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) - (-5 *1 (-301 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-5 *6 (-606 *3)) - (-4 *3 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) - (-5 *2 (-51)) (-5 *1 (-301 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) + (-12 (-5 *2 (-1 (-1152 *4))) (-5 *3 (-1123)) (-5 *1 (-1152 *4)) + (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) (((*1 *2 *2) - (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) - (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) - (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) - (-4 *3 (-809 *5))))) -(((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816)))))) -(((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) + (-12 (-4 *3 (-584 (-849 *3))) (-4 *3 (-845 *3)) (-4 *3 (-13 (-811) (-436))) + (-5 *1 (-1151 *3 *2)) (-4 *2 (-584 (-849 *3))) (-4 *2 (-845 *3)) + (-4 *2 (-13 (-406 *3) (-1145)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) - (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *2)) (-4 *2 (-902 *3 *5 *4))))) -(((*1 *1) (-4 *1 (-333)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) - (-4 *4 (-1045)) (-4 *5 (-1045))))) -(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) - (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-210)) (-5 *3 (-731)) (-5 *1 (-211)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-160 (-210))) (-5 *3 (-731)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) - (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) - (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-606 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) - (-5 *1 (-432 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-606 (-606 *4))) (-5 *1 (-325 *3 *4 *5 *6)) - (-4 *3 (-326 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-4 *3 (-352)) (-5 *2 (-606 (-606 *3)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *5 *6)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-432 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241))))) -(((*1 *2 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) - (-14 *3 (-537)) (-14 *4 (-731))))) -(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1 *1) (-5 *1 (-731))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) (((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) - (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-930 *4 *5 *6 *7))))) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) (((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *1) (-4 *1 (-822 *2)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-1200 *5))) (-5 *4 (-537)) (-5 *2 (-1200 *5)) - (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1113 *6)) (-4 *6 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-1113 *7)) (-5 *1 (-305 *4 *5 *6 *7)) - (-4 *7 (-902 *6 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |rm| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-807)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) - (-5 *2 (-986)) (-5 *1 (-717))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) - (-5 *2 (-986)) (-5 *1 (-706))))) -(((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) - ((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) - (-4 *4 (-333))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-160 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) - (-4 *4 (-13 (-529) (-807))) - (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) - (-5 *1 (-566 *4 *5 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-842 *4 *5)) (-5 *3 (-842 *4 *6)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-627 *5)) (-5 *1 (-838 *4 *5 *6))))) + (-12 (-4 *2 (-141)) (-4 *2 (-292)) (-4 *2 (-436)) (-4 *3 (-811)) + (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) (-4 *5 (-909 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-299 (-526))) (-5 *1 (-1069)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-436))) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-406 *3) (-1145)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 (-1200 (-537)))) (-5 *3 (-874)) (-5 *1 (-449))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) (-5 *2 (-1113 (-391 *5))) (-5 *1 (-581 *4 *5)) - (-5 *3 (-391 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-1113 (-391 *6))) (-5 *1 (-581 *5 *6)) (-5 *3 (-391 *6))))) + (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-533)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1150 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-363)) (-5 *1 (-178))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) - (-4 *2 (-529)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-529))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) - (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-529)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-731))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-159 (-299 *4))) + (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-159 *3)) (-5 *1 (-1149 *4 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-111)) + (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-111)) + (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) + (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-299 *4)) + (-5 *1 (-175 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) + (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) + (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) - (-5 *1 (-922 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) - (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-529)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) + (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-275))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) + (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)))) (-5 *1 (-175 *3 *2)) + (-4 *2 (-13 (-27) (-1145) (-406 (-159 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) + (-5 *1 (-175 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 (-159 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-5 *1 (-941 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) ((*1 *2 *2) - (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-5 *1 (-1052 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-905 (-537))))) - (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-606 - (-2 - (|:| -2926 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) - (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) - (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (|:| -2140 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363))))))) - (-5 *1 (-763))))) -(((*1 *1) (-5 *1 (-763)))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-952 *3))))) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) (((*1 *2 *2) - (-12 (-5 *2 (-606 (-606 *6))) (-4 *6 (-902 *3 *5 *4)) - (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) - (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2909 (-537)) (|:| -3415 (-606 *3)))) - (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-986)) (-5 *1 (-709))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 (-874))) (-4 *2 (-347)) (-5 *1 (-146 *4 *2 *5)) - (-14 *4 (-874)) (-14 *5 (-946 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) - (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-1146 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-607 (-1146 *2))) (-5 *1 (-1146 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-1146 *3))) (-5 *1 (-1146 *3)) (-4 *3 (-1052))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) + (-4 *3 (-13 (-811) (-533))))) + ((*1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1) (-5 *1 (-461))) ((*1 *1) (-4 *1 (-1145)))) +(((*1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-1143))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-1142 *4)) (-4 *4 (-1004))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) - (-4 *4 (-1176 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-687)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) - (-4 *4 (-998)) (-4 *5 (-807)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) - (-4 *2 (-807)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) - (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *2 (-807)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *2 (-902 *4 (-509 *5) *5)) - (-5 *1 (-1070 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-807)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-905 *4)) (-5 *1 (-1148 *4)) - (-4 *4 (-998))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-266 *2)) (-4 *2 (-1154)))) + (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) + (-5 *2 (-526)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) + (-5 *2 (-526)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) + (-5 *1 (-1067 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-1106)) + (-4 *6 (-13 (-533) (-811) (-995 *2) (-606 *2) (-436))) (-5 *2 (-526)) + (-5 *1 (-1067 *6 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-526)) + (-5 *1 (-1068 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-803 (-392 (-905 *6)))) + (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-392 (-905 *6))) (-5 *4 (-1123)) (-5 *5 (-1106)) + (-4 *6 (-436)) (-5 *2 (-526)) (-5 *1 (-1068 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-526)) (-5 *1 (-1142 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1141))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1141))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-108)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-1141))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1141))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-823))) (-5 *1 (-112)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-823) (-607 (-823)))) (-5 *1 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) + (-4 *3 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) + (-15 -2063 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-378)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484)))) + ((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-675)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1139)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-735)) (-4 *3 (-1159)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)))) + ((*1 *1) (-5 *1 (-162))) + ((*1 *1) (-12 (-5 *1 (-200 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1052)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374)))) + ((*1 *1) (-5 *1 (-378))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *1) + (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) + (-4 *4 (-631 *3)))) + ((*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) + ((*1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004)))) + ((*1 *1 *1) (-5 *1 (-1123))) ((*1 *1) (-5 *1 (-1123))) + ((*1 *1) (-5 *1 (-1139)))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1139))))) +(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1138))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-1138))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-267 *2)) (-4 *2 (-1159)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2926 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (|:| -2140 + (|:| -4179 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (|:| -2164 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -4493,7688 +3967,8428 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) + (-3 (|:| |str| (-1101 (-211))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2133 + (|:| -1537 (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") + (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-532)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-655 *2)) (-4 *2 (-1045)))) + (-5 *1 (-536)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-735)) (-4 *1 (-659 *2)) (-4 *2 (-1052)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2926 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (|:| -2140 + (|:| -4179 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (|:| -2164 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) - (-5 *1 (-763)))) + (-5 *1 (-767)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) - (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-547 *5 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *1 *2) - (-12 (-5 *2 (-874)) (-4 *1 (-223 *3 *4)) (-4 *4 (-998)) - (-4 *4 (-1154)))) - ((*1 *1 *2) - (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) - (-4 *5 (-223 (-2258 *3) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) - (-2 (|:| -2009 *2) (|:| -3283 *5)))) - (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *2 (-807)) - (-4 *7 (-902 *4 *5 (-818 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-874)) (-4 *3 (-347)) - (-14 *4 (-946 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *1 *1) (|partial| -4 *1 (-683))) - ((*1 *1 *1) (|partial| -4 *1 (-687))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) - (-4 *2 (-1176 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-782))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-606 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-753)) (-4 *3 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) - (-5 *1 (-432 *4 *5 *6 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) - (-4 *2 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) - (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) - (-4 *2 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) - (-5 *1 (-1094 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) - (-4 *2 (-1176 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *2 (-731)) - (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) - (-14 *4 (-874)) (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) - (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *1) (-5 *1 (-1010)))) + (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) (((*1 *2 *3) - (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-29 *4) (-1139))) - (-5 *1 (-552 *4 *2)) - (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-554 (-391 (-905 *4)))) - (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *2 (-300 *4)) (-5 *1 (-557 *4))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) - (-5 *1 (-716))))) + (|partial| -12 (-4 *2 (-1052)) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1052))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *2) + (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *2) + (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) - (|:| |expense| (-363)) (|:| |accuracy| (-363)) - (|:| |intermediateResults| (-363)))) - (-5 *2 (-986)) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451))))) + (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) + (-4 *5 (-1052))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1137 *4 *5)) (-4 *4 (-1052)) + (-4 *5 (-1052))))) +(((*1 *2) + (-12 (-5 *2 (-1211)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| -4179 *3) (|:| -2164 *4)))) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *1 (-1136 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) - (-4 *5 (-839 (-537))) - (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) - (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-902 *4 *6 *5)) (-4 *4 (-435)) - (-4 *5 (-807)) (-4 *6 (-753)) (-5 *1 (-940 *4 *5 *6 *3))))) + (-12 (-5 *4 (-878)) (-5 *2 (-1117 *3)) (-5 *1 (-1134 *3)) (-4 *3 (-348))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-1134 *2)) (-4 *2 (-348))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-606 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) - (-5 *2 (-606 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-607 (-607 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-606 *3)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-606 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-5 *2 (-1098 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *5 (-352)) - (-5 *2 (-731))))) -(((*1 *1) (-5 *1 (-1202)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) - (-4 *4 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) - ((*1 *1 *1) (-4 *1 (-218))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-250 *3)) (-4 *3 (-807)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) - (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) - (-4 *3 (-1176 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-347)) (-4 *2 (-853 *3)) (-5 *1 (-554 *2)) - (-5 *3 (-1117)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-554 *2)) (-4 *2 (-347)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-708))))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-607 (-607 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-607 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-1133 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) - (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-107))) (-5 *1 (-165))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-1158)) - (-4 *6 (-1176 (-391 *5))) + (-12 (-4 *4 (-811)) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-326 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1223 *4 *2)) (-4 *1 (-358 *4 *2)) (-4 *4 (-807)) - (-4 *2 (-163)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-779 *4)) (-4 *1 (-1216 *4 *2)) (-4 *4 (-807)) - (-4 *2 (-998)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *10)) - (-5 *1 (-587 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1018 *5 *6 *7 *8)) - (-4 *10 (-1054 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) - (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) - (-5 *1 (-591 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) - (-14 *6 (-606 (-1117))) + (-2 (|:| |f1| (-607 *4)) (|:| |f2| (-607 (-607 (-607 *4)))) + (|:| |f3| (-607 (-607 *4))) (|:| |f4| (-607 (-607 (-607 *4)))))) + (-5 *1 (-1131 *4)) (-5 *3 (-607 (-607 (-607 *4))))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-811)) (-5 *3 (-607 *6)) (-5 *5 (-607 *3)) (-5 *2 - (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) - (-5 *1 (-591 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) - (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) - (-5 *1 (-995 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) + (-2 (|:| |f1| *3) (|:| |f2| (-607 *5)) (|:| |f3| *5) (|:| |f4| (-607 *5)))) + (-5 *1 (-1131 *6)) (-5 *4 (-607 *5))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1147 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-4 *1 (-313 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) - (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) - (-4 *1 (-351 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) - (-4 *1 (-354 *4 *5)) (-4 *5 (-1176 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1031))) (-5 *1 (-275))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1200 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) (-12 (-5 *3 (-513)) (-5 *1 (-512 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-513))))) + (|partial| -12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-4 *7 (-950 *4)) (-4 *2 (-650 *7 *8 *9)) + (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-650 *4 *5 *6)) + (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-348)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-348)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2)) (-4 *2 (-348)) (-4 *2 (-1004)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1073 *2 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-224 *2 *3)) (-4 *5 (-224 *2 *3)) (-4 *3 (-348)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-1131 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *2)) - (-4 *3 (-13 (-1045) (-33))))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1210))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-5 *1 (-849 *2 *4)) - (-4 *2 (-1176 *4))))) + (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) (-5 *1 (-1131 *4)) + (-5 *3 (-607 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-811)) (-5 *1 (-1131 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) - (-5 *2 (-1200 (-649 (-905 *4)))) (-5 *1 (-175 *4))))) + (-12 (-4 *4 (-811)) (-5 *2 (-1133 (-607 *4))) (-5 *1 (-1131 *4)) + (-5 *3 (-607 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 (-1200 *4))) (-4 *4 (-998)) (-5 *2 (-649 *4)) - (-5 *1 (-980 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) - (-4 *3 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-986)) (-5 *1 (-289)))) - ((*1 *2 *3) (-12 (-5 *3 (-606 (-986))) (-5 *2 (-986)) (-5 *1 (-289)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *1) (-5 *1 (-1010))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1095 *4)) - (-4 *4 (-1154)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) - (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) - (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-303 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363))))) + (-12 (-4 *4 (-811)) (-5 *2 (-607 (-607 (-607 *4)))) (-5 *1 (-1131 *4)) + (-5 *3 (-607 (-607 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) - (-5 *2 (-391 (-537))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537)))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-606 - (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) - (|:| |wcond| (-606 (-905 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) - (-5 *4 (-1100)) (-4 *5 (-13 (-291) (-141))) (-4 *8 (-902 *5 *7 *6)) - (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) + (-12 (-5 *3 (-1133 (-607 *4))) (-4 *4 (-811)) (-5 *2 (-607 (-607 *4))) + (-5 *1 (-1131 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) - (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-606 (-300 (-210)))) - (|:| -3956 (-606 (-210))))))) - (-5 *2 (-606 (-1100))) (-5 *1 (-251))))) + (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) + (-5 *1 (-1131 *4)) (-4 *4 (-811))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-607 (-607 *4)))) (-5 *2 (-607 (-607 *4))) (-4 *4 (-811)) + (-5 *1 (-1131 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-607 *4)) (-4 *4 (-811)) + (-5 *1 (-1131 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-1 (-111) *5 *5)) + (-5 *4 (-607 *5)) (-4 *5 (-811)) (-5 *1 (-1131 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-811)) (-5 *4 (-607 *6)) + (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-607 *4)))) + (-5 *1 (-1131 *6)) (-5 *5 (-607 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-905 *5)))) (-5 *1 (-1129 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-392 (-905 (-526))))) + (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) + (-4 *4 (-13 (-809) (-348))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + (-12 (-5 *3 (-607 (-278 (-392 (-905 (-526)))))) + (-5 *2 (-607 (-607 (-278 (-905 *4))))) (-5 *1 (-365 *4)) + (-4 *4 (-13 (-809) (-348))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 (-278 (-905 *4)))) + (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-392 (-905 (-526))))) (-5 *2 (-607 (-278 (-905 *4)))) + (-5 *1 (-365 *4)) (-4 *4 (-13 (-809) (-348))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + (|partial| -12 (-5 *5 (-1123)) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-4 *4 (-13 (-29 *6) (-1145) (-919))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) + (-5 *1 (-618 *6 *4 *3)) (-4 *3 (-623 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *2)) + (-4 *2 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *1 (-618 *6 *2 *3)) (-4 *3 (-623 *2)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-5 *2 (-607 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2104 (-607 *7))))) + (-5 *1 (-632 *5 *6 *7 *3)) (-5 *4 (-607 *7)) (-4 *3 (-650 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1205 *5) #2="failed")) + (|:| -2104 (-607 (-1205 *5))))) + (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1205 *5) #2#)) (|:| -2104 (-607 (-1205 *5))))) + (-5 *1 (-633 *5)) (-5 *4 (-1205 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-348)) + (-5 *2 + (-607 + (-2 (|:| |particular| (-3 (-1205 *5) #2#)) + (|:| -2104 (-607 (-1205 *5)))))) + (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-607 *5))) (-4 *5 (-348)) + (-5 *2 + (-607 + (-2 (|:| |particular| (-3 (-1205 *5) #2#)) + (|:| -2104 (-607 (-1205 *5)))))) + (-5 *1 (-633 *5)) (-5 *4 (-607 (-1205 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1123)) + (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *1 (-736 *5 *2)) (-4 *2 (-13 (-29 *5) (-1145) (-919))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) - (-5 *1 (-243 *6)))) + (|partial| -12 (-5 *3 (-653 *7)) (-5 *5 (-1123)) + (-4 *7 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) + (-5 *1 (-766 *6 *7)) (-5 *4 (-1205 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-653 *6)) (-5 *4 (-1123)) + (-4 *6 (-13 (-29 *5) (-1145) (-919))) + (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-1205 *6))) (-5 *1 (-766 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) + (-4 *7 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) + (-5 *1 (-766 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-1123)) + (-4 *7 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-2 (|:| |particular| (-1205 *7)) (|:| -2104 (-607 (-1205 *7))))) + (-5 *1 (-766 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-1123)) + (-4 *7 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2104 (-607 *7))) *7 #3="failed")) + (-5 *1 (-766 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-1123)) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2104 (-607 *3))) *3 #3#)) + (-5 *1 (-766 *6 *3)) (-4 *3 (-13 (-29 *6) (-1145) (-919))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-112)) (-5 *5 (-607 *2)) + (-4 *2 (-13 (-29 *6) (-1145) (-919))) (-5 *1 (-766 *6 *2)) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-112)) (-5 *4 (-278 *2)) (-5 *5 (-607 *2)) + (-4 *2 (-13 (-29 *6) (-1145) (-919))) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *1 (-766 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-992)) (-5 *1 (-769)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) - (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) - (-5 *1 (-243 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) - (-4 *3 (-13 (-580 (-513)) (-1045))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) - (-4 *3 (-13 (-580 (-513)) (-1045))))) + (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) - (-5 *1 (-243 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) - (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) - (-5 *1 (-243 *5))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-275))) - ((*1 *1) (-5 *1 (-816))) + (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) + (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) + (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) + (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1205 (-299 (-363)))) (-5 *4 (-363)) (-5 *5 (-607 *4)) + (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) + (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1205 (-299 *4))) (-5 *5 (-607 (-363))) (-5 *6 (-299 (-363))) + (-5 *4 (-363)) (-5 *2 (-992)) (-5 *1 (-769)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2104 (-607 *6))) "failed") *7 *6)) + (-4 *6 (-348)) (-4 *7 (-623 *6)) + (-5 *2 (-2 (|:| |particular| (-1205 *6)) (|:| -2104 (-653 *6)))) + (-5 *1 (-777 *6 *7)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-992)) (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-856)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) + (-5 *8 (-211)) (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) + (-5 *1 (-856)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-735)) (-5 *6 (-607 (-607 (-299 *3)))) (-5 *7 (-1106)) + (-5 *5 (-607 (-299 (-363)))) (-5 *3 (-363)) (-5 *2 (-992)) (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) + (-5 *4 (-363)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 (-363))) (-5 *1 (-980)) + (-5 *4 (-363)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-299 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1081 *4)) + (-5 *3 (-278 (-299 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) + (-5 *3 (-278 (-299 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-278 (-299 *5)))) (-5 *1 (-1081 *5)) (-5 *3 (-299 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1123))) + (-4 *5 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-607 (-607 (-278 (-299 *5))))) (-5 *1 (-1081 *5)) + (-5 *3 (-607 (-278 (-299 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1123))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-1129 *5)) + (-5 *3 (-607 (-278 (-392 (-905 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-1129 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) + (-5 *1 (-1129 *4)) (-5 *3 (-607 (-278 (-392 (-905 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) + (-5 *1 (-1129 *5)) (-5 *3 (-392 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *5))))) + (-5 *1 (-1129 *5)) (-5 *3 (-278 (-392 (-905 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) + (-5 *3 (-392 (-905 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-607 (-278 (-392 (-905 *4))))) (-5 *1 (-1129 *4)) + (-5 *3 (-278 (-392 (-905 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823))))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-1128))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-1128))) (-5 *1 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-526) (-211) (-1123) (-1106) (-1128))) (-5 *1 (-1128))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-607 (-265))) (-5 *1 (-265)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1128))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2415)) (-5 *2 (-111)) (-5 *1 (-655 *4)) + (-4 *4 (-583 (-823))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-583 (-823))) (-5 *2 (-111)) + (-5 *1 (-655 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-111)) (-5 *1 (-1128)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-111)) (-5 *1 (-1128)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-211))) (-5 *2 (-111)) (-5 *1 (-1128)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-111)) (-5 *1 (-1128))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-276))) ((*1 *1) (-5 *1 (-823))) ((*1 *1) - (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) - (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1031))) + (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1037))) ((*1 *1) - (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33))))) - ((*1 *1) (-5 *1 (-1120))) ((*1 *1) (-5 *1 (-1121)))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-807)) (-5 *3 (-606 *6)) (-5 *5 (-606 *3)) + (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33))))) + ((*1 *1) (-5 *1 (-1126))) ((*1 *1) (-5 *1 (-1127)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *4 (-1123)) (-5 *1 (-1126)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1126)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1123)) (-5 *1 (-1127)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-607 (-1123))) (-5 *1 (-1127))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-421)) (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-419)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-606 *5)) (|:| |f3| *5) - (|:| |f4| (-606 *5)))) - (-5 *1 (-1125 *6)) (-5 *4 (-606 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-1084 *3 *4)) - (-14 *3 (-731))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) - (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-1117)) (-4 *6 (-414 *5)) - (-4 *5 (-807)) (-5 *2 (-606 (-578 *6))) (-5 *1 (-546 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-717))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(((*1 *2 *3) + (-607 + (-3 (|:| -3864 (-1123)) + (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526))))))))) + (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-178))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-896 (-210))) (-5 *2 (-210)) (-5 *1 (-1150)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-537))))) - (-5 *1 (-345 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) - (-5 *1 (-370 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -3283 (-537))))) - (-5 *1 (-402 *3)) (-4 *3 (-529)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) - (-5 *1 (-779 *3)) (-4 *3 (-807))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) - (-5 *1 (-675 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) - (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) - (-4 *3 (-809 *5))))) + (-607 + (-607 + (-3 (|:| -3864 (-1123)) + (|:| -3538 (-607 (-3 (|:| S (-1123)) (|:| P (-905 (-526)))))))))) + (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-1127))))) +(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1127))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 (-421))))) + (-5 *1 (-1127))))) +(((*1 *1) (-5 *1 (-1126)))) +(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126))))) +(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) +(((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126))))) +(((*1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1126))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1120)))) + (-12 (-5 *3 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) (-5 *2 (-1211)) + (-5 *1 (-1126)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) - (-5 *1 (-1120)))) + (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) + (-5 *2 (-1211)) (-5 *1 (-1126)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) - (-5 *1 (-1120))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-4 *1 (-856 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 (-2 (|:| -2559 (-402 *3)) (|:| |special| (-402 *3)))) - (-5 *1 (-688 *5 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-200 *4)) - (-4 *4 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) - (-15 -3404 (*2 $))))))) + (-12 (-5 *3 (-1123)) (-5 *4 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) + (-5 *2 (-1211)) (-5 *1 (-1126))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-1126))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1123)) (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 "void"))) + (-5 *1 (-1126))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1126)) (-5 *3 (-1123))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1123)) (-5 *2 (-1127)) (-5 *1 (-1126))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-1004)) (-5 *2 (-1205 *4)) + (-5 *1 (-1124 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-5 *2 (-1205 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1004))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-94)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-423 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-466)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-924)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1027 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1123)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) ((*1 *2 *1) - (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) - (-15 -3404 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-606 *3)) - (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-879)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-879)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880))))) -(((*1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) + (-12 + (-5 *2 + (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) + (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) + (|:| |args| (-607 (-823))))) + (-5 *1 (-1123))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2881 (-607 (-823))) (|:| -2702 (-607 (-823))) + (|:| |presup| (-607 (-823))) (|:| -2879 (-607 (-823))) + (|:| |args| (-607 (-823))))) + (-5 *1 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-1123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-1123))))) +(((*1 *1 *1) (-5 *1 (-823))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-874)) (-5 *4 (-210)) (-5 *5 (-537)) (-5 *6 (-827)) - (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) - (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) - (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-537))) (-5 *4 (-537)) (-5 *2 (-51)) - (-5 *1 (-957))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-874)) - (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) - (-5 *1 (-330 *4)) (-4 *4 (-333))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998))))) + (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1105)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1123))))) +(((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-1123))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) + ((*1 *1) (-4 *1 (-691))) ((*1 *1) (-5 *1 (-1123)))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *1 *1) (-5 *1 (-1122))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-299 (-526))) (|:| -3395 (-299 (-363))) + (|:| CF (-299 (-159 (-363)))) (|:| |switch| (-1122)))) + (-5 *1 (-1122))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-823) (-823) (-823))) (-5 *4 (-526)) (-5 *2 (-823)) + (-5 *1 (-614 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-823)) (-5 *1 (-815 *3 *4 *5)) (-4 *3 (-1004)) (-14 *4 (-97 *3)) + (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-823)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-823)))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1117 *3)) (-4 *3 (-1004))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1201)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1201)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) + (-12 (-5 *5 (-1041 *3)) (-4 *3 (-909 *7 *6 *4)) (-4 *6 (-757)) (-4 *4 (-811)) + (-4 *7 (-533)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) + (-5 *1 (-565 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-533)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-526)))) (-5 *1 (-565 *5 *4 *6 *3)) + (-4 *3 (-909 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-152) (-27) (-1145))) + (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-1115 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) + (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) + (-5 *2 (-392 (-905 *5))) (-5 *1 (-1116 *5)) (-5 *3 (-905 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) - (-5 *2 (-1202)) (-5 *1 (-239)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-1117)) (-5 *5 (-606 (-247))) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-529) (-807) (-989 (-537)))) - (-5 *2 (-1201)) (-5 *1 (-240 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) - (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) + (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)))) + (-5 *2 (-3 (-392 (-905 *5)) (-299 *5))) (-5 *1 (-1116 *5)) + (-5 *3 (-392 (-905 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) - (-4 *3 (-13 (-580 (-513)) (-1045))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-830 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) - (-5 *1 (-243 *6)))) + (-12 (-5 *4 (-1044 (-905 *5))) (-5 *3 (-905 *5)) + (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-392 *3)) + (-5 *1 (-1116 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-830 *5)) (-5 *4 (-1038 (-363))) - (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) - (-5 *1 (-243 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) - (-5 *1 (-243 *6)))) + (-12 (-5 *4 (-1044 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) + (-4 *5 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-3 *3 (-299 *5))) + (-5 *1 (-1116 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-145 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) + (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1="void"))) + (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-111)) (-5 *1 (-421)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 #1#))) (-5 *3 (-607 (-1123))) + (-5 *4 (-111)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-571 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-163)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-5 *1 (-629 *3 *4)) (-4 *4 (-163)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-607 (-607 *3)))) (-4 *3 (-1052)) (-5 *1 (-640 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-678 *2 *3 *4)) (-4 *2 (-811)) (-4 *3 (-1052)) + (-14 *4 + (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) + (-2 (|:| -2461 *2) (|:| -2462 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) (-4 *4 (-1052)) + (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) - (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) - (-5 *1 (-243 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) - (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) - (-4 *3 (-13 (-580 (-513)) (-1045))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) - (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) - (-5 *1 (-243 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) - (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) - (-5 *1 (-243 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1201)) (-5 *1 (-244)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) - (-5 *1 (-244)))) + (-12 (-5 *4 (-607 *5)) (-4 *5 (-13 (-1052) (-33))) + (-5 *2 (-607 (-1088 *3 *5))) (-5 *1 (-1088 *3 *5)) + (-4 *3 (-13 (-1052) (-33))))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *2 (-1201)) (-5 *1 (-244)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-606 (-247))) - (-5 *2 (-1201)) (-5 *1 (-244)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1202)) (-5 *1 (-244)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1202)) - (-5 *1 (-244))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3121 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) - (-5 *3 (-391 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-547 *7 *8))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-731)) - (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) + (-12 (-5 *3 (-607 (-2 (|:| |val| *4) (|:| -1636 *5)))) + (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) + (-5 *2 (-607 (-1088 *4 *5))) (-5 *1 (-1088 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1636 *4))) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1088 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-807)) - (-5 *1 (-578 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1064)) (-4 *4 (-333)) - (-5 *1 (-507 *4))))) -(((*1 *1 *1) (-4 *1 (-529)))) + (-12 (-5 *4 (-111)) (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)) + (-4 *2 (-13 (-1052) (-33))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1088 *2 *3))) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33))) (-5 *1 (-1089 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1089 *2 *3))) (-5 *1 (-1089 *2 *3)) + (-4 *2 (-13 (-1052) (-33))) (-4 *3 (-13 (-1052) (-33))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) + (-5 *1 (-1026 *3 *4 *2)) + (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *2 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-593)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) + (-5 *1 (-1026 *3 *4 *2)) + (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) (((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) +(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + (-12 (-5 *2 (-607 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *2 (-735)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) + (-5 *1 (-1112 *4 *5)) (-14 *4 (-878))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-902 *4)) (-4 *4 (-1004)) (-5 *1 (-1112 *3 *4)) + (-14 *3 (-878))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-902 *5)) (-5 *3 (-735)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-735)) (-5 *3 (-902 *5)) (-4 *5 (-1004)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-735)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-902 *5)) (-4 *5 (-1004)) + (-5 *1 (-1112 *4 *5)) (-14 *4 (-878))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-111)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)) (-4 *5 (-1004))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-735))) (-5 *3 (-162)) (-5 *1 (-1112 *4 *5)) + (-14 *4 (-878)) (-4 *5 (-1004))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-735))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-902 *4)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-162)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) (-4 *4 (-1004))))) +(((*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-14 *2 (-878)) (-4 *3 (-1004))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-902 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-1004))))) +(((*1 *1 *1) + (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *2 (-436)))) + ((*1 *1 *1) + (-12 (-4 *1 (-327 *2 *3 *4)) (-4 *2 (-1164)) (-4 *3 (-1181 *2)) + (-4 *4 (-1181 (-392 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) + (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *3 (-436)))) + ((*1 *1 *1) + (-12 (-4 *1 (-909 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-292)) (-4 *3 (-533)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-917 *3)) (-5 *1 (-1111 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-211))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *1 *1) (-5 *1 (-363))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1198 *3)) (-5 *1 (-263 *3 *4 *2)) + (-4 *2 (-1169 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *4 (-1167 *3)) + (-5 *1 (-264 *3 *4 *2 *5)) (-4 *2 (-1190 *3 *4)) (-4 *5 (-942 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1109 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-37 (-392 (-526)))) (-5 *1 (-1110 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-392 (-526)))) + (-5 *2 (-2 (|:| -3804 (-1101 *4)) (|:| -3805 (-1101 *4)))) + (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-392 (-526)))) + (-5 *2 (-2 (|:| -3960 (-1101 *4)) (|:| -3956 (-1101 *4)))) + (-5 *1 (-1109 *4)) (-5 *3 (-1101 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-526))) (-5 *5 (-1 (-1101 *4))) (-4 *4 (-348)) + (-4 *4 (-1004)) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-348)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1101 *4)) (-4 *4 (-37 *3)) (-4 *4 (-1004)) + (-5 *3 (-392 (-526))) (-5 *1 (-1108 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) + (-4 *4 (-37 (-392 (-526)))) (-4 *4 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1101 *3))) (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) + (-4 *3 (-37 (-392 (-526)))) (-4 *3 (-1004))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 (-1101 *4))) (-5 *2 (-1101 *4)) (-5 *1 (-1108 *4)) + (-4 *4 (-1004))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-853 *2 *3)) (-4 *2 (-1181 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1101 *4)) (-5 *3 (-1 *4 (-526))) (-4 *4 (-1004)) + (-5 *1 (-1108 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) + (-12 (-5 *3 (-1123)) + (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1004))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) + (-5 *3 (-526))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-1108 *4)) (-4 *4 (-1004)) + (-5 *3 (-526))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-606 (-247))) (-5 *1 (-1202)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1100)) (-5 *1 (-1202)))) - ((*1 *1 *1) (-5 *1 (-1202)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-414 *4)))) + (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-878)) (-4 *3 (-348)) + (-14 *4 (-952 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *1 *1) (|partial| -4 *1 (-687))) ((*1 *1 *1) (|partial| -4 *1 (-691))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-740 *5 *6 *7 *3 *4)) + (-4 *4 (-1024 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) + (-4 *2 (-1181 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)) + (-4 *2 (-533)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-533))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-533)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-735))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-533)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) - (-5 *1 (-150 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163))))) -(((*1 *2 *3) - (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) - (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) - ((*1 *2 *3) - (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *1 *2) + (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-533)) + (-5 *1 (-928 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *2 (-1004)) + (-4 *5 (-224 *4 *2)) (-4 *6 (-224 *3 *2)) (-4 *2 (-533)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1101 *3)) (-4 *3 (-1004)) (-5 *1 (-1108 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111)) + (-5 *1 (-1101 *4))))) +(((*1 *2 *3 *1) (-12 - (-5 *2 - (-606 - (-2 - (|:| -2926 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (|:| -2140 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-532))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) + (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2892 (-735)) (|:| |period| (-735)))) + (-5 *1 (-1101 *4)) (-4 *4 (-1159)) (-5 *3 (-735))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1159))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-820)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-820)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-1101 *4)) (-4 *4 (-1052)) + (-4 *4 (-1159))))) +(((*1 *2 *1) + (-12 (-5 *2 (-823)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-712))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1101 *3)) (-4 *3 (-1052)) (-4 *3 (-1159))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-735)) (-5 *2 (-1205 (-607 (-526)))) (-5 *1 (-463)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-571 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1159)) (-5 *1 (-1101 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) (-5 *1 (-517 *4 *2)) + (-4 *2 (-1198 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) (-4 *5 (-1181 *4)) + (-4 *6 (-689 *4 *5)) (-5 *1 (-521 *4 *5 *6 *2)) (-4 *2 (-1198 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-13 (-348) (-353) (-584 *3))) + (-5 *1 (-522 *4 *2)) (-4 *2 (-1198 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1101 *4)) (-5 *3 (-526)) (-4 *4 (-13 (-533) (-141))) + (-5 *1 (-1100 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) - (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) + (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) - (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-391 (-1113 (-300 *3)))) (-4 *3 (-13 (-529) (-807))) - (-5 *1 (-1074 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1117)) - (|:| |arrayIndex| (-606 (-905 (-537)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) - (|:| |ints2Floats?| (-111)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-314)) - (|:| |elseClause| (-314)))) - (|:| |returnBranch| - (-2 (|:| -2193 (-111)) - (|:| -3619 - (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) - (|:| |blockBranch| (-606 (-314))) - (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) - (|:| |forBranch| - (-2 (|:| -2133 (-1038 (-905 (-537)))) - (|:| |span| (-905 (-537))) (|:| -3936 (-314)))) - (|:| |labelBranch| (-1064)) - (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 (-314)))) - (|:| |commonBranch| - (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) - (|:| |printBranch| (-606 (-816))))) - (-5 *1 (-314))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-5 *1 (-421))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-226)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-537)) (-5 *1 (-226))))) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) + (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) + (-4 *2 (-1198 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) + (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) + (-4 *2 (-1198 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-533) (-141))) (-5 *1 (-517 *3 *2)) (-4 *2 (-1198 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-4 *4 (-1181 *3)) + (-4 *5 (-689 *3 *4)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-1198 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-353) (-584 (-526)))) (-5 *1 (-522 *3 *2)) + (-4 *2 (-1198 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1101 *3)) (-4 *3 (-13 (-533) (-141))) (-5 *1 (-1100 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)))) + ((*1 *1) (-4 *1 (-1099)))) +(((*1 *1 *1) (|partial| -4 *1 (-1099)))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-1095 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-978 *5 *6 *7 *3))) (-5 *1 (-978 *5 *6 *7 *3)) - (-4 *3 (-1012 *5 *6 *7)))) + (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-607 (-984 *5 *6 *7 *3))) (-5 *1 (-984 *5 *6 *7 *3)) + (-4 *3 (-1018 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-606 *6)) (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)))) + (-12 (-5 *2 (-607 *6)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) + (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *2 (-1018 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-1088 *5 *6 *7 *3))) (-5 *1 (-1088 *5 *6 *7 *3)) - (-4 *3 (-1012 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1098 *7))) (-4 *6 (-807)) - (-4 *7 (-902 *5 (-509 *6) *6)) (-4 *5 (-998)) - (-5 *2 (-1 (-1098 *7) *7)) (-5 *1 (-1070 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-210)) - (-5 *2 (-986)) (-5 *1 (-710))))) + (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-607 (-1094 *5 *6 *7 *3))) (-5 *1 (-1094 *5 *6 *7 *3)) + (-4 *3 (-1018 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-984 *5 *6 *7 *8))) + (-5 *1 (-984 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-111)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-607 (-1094 *5 *6 *7 *8))) + (-5 *1 (-1094 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-1018 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-984 *5 *6 *7 *8))))) + (-5 *1 (-984 *5 *6 *7 *8)) (-5 *3 (-607 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-1018 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-607 *8)) (|:| |towers| (-607 (-1094 *5 *6 *7 *8))))) + (-5 *1 (-1094 *5 *6 *7 *8)) (-5 *3 (-607 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-537))) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) - (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *9) (|:| |radicand| *9))) - (-5 *1 (-906 *5 *6 *7 *8 *9)) (-5 *4 (-731)) - (-4 *9 - (-13 (-347) - (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8)))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-847 *2 *3)) (-4 *2 (-1176 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) - (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-391 (-537)))) - (-5 *1 (-289))))) -(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-606 (-113)))))) -(((*1 *2) (-12 (-5 *2 (-793 (-537))) (-5 *1 (-511)))) - ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1045))))) + (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) + (-5 *1 (-1022 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *4 (-735)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-1211)) + (-5 *1 (-1093 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-607 *11)) + (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) + (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) + (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) + (-4 *11 (-1024 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) + (-5 *1 (-1022 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-607 *11)) + (|:| |todo| (-607 (-2 (|:| |val| *3) (|:| -1636 *11)))))) + (-5 *6 (-735)) (-5 *2 (-607 (-2 (|:| |val| (-607 *10)) (|:| -1636 *11)))) + (-5 *3 (-607 *10)) (-5 *4 (-607 *11)) (-4 *10 (-1018 *7 *8 *9)) + (-4 *11 (-1060 *7 *8 *9 *10)) (-4 *7 (-436)) (-4 *8 (-757)) (-4 *9 (-811)) + (-5 *1 (-1093 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) - ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-911 *3)) (-5 *1 (-1105 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-1150))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) - (-4 *3 (-13 (-807) (-529))))) - ((*1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1) (-5 *1 (-460))) ((*1 *1) (-4 *1 (-1139)))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) + (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) + (-2 (|:| -2386 (-398 *4 (-392 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3392 (-392 *6)) (|:| |special| (-392 *6)))) + (-5 *1 (-692 *5 *6)) (-5 *3 (-392 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-1176 *3)) + (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-855 *3 *4)) + (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-735)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| -3435 *3) (|:| -3434 *3))) (-5 *1 (-855 *3 *5)) + (-4 *3 (-1181 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-607 *9)) (-5 *3 (-607 *8)) (-5 *4 (-111)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) + (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-5 *1 (-728 *4 *5)) (-4 *5 (-393 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *7 *8 *9 *3 *4)) (-4 *4 (-1024 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-5 *1 (-938 *4 *3 *5 *6)) (-4 *6 (-685 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-5 *1 (-1209 *4 *3 *5 *6)) (-4 *6 (-393 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-162))))))) + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-735)) (-5 *6 (-111)) (-4 *7 (-436)) (-4 *8 (-757)) + (-4 *9 (-811)) (-4 *3 (-1018 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *7 *8 *9 *3 *4)) (-4 *4 (-1060 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-731)) (-5 *5 (-606 *3)) (-4 *3 (-291)) (-4 *6 (-807)) - (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-588 *6 *7 *3 *8)) - (-4 *8 (-902 *3 *7 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) - (-4 *3 (-13 (-1139) (-29 *5)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) (-5 *2 - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (-5 *1 (-251))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 *4))) (-5 *3 (-1113 *4)) - (-4 *4 (-862)) (-5 *1 (-624 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782))))) + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-735)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1060 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-178)))) + (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-607 *4)) + (|:| |todo| (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))))) + (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1060 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *9 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-735)) (-5 *1 (-1022 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *9)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *9 (-1060 *5 *6 *7 *8)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-735)) (-5 *1 (-1093 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) + ((*1 *1 *1) (-4 *1 (-1092)))) +(((*1 *1 *1) (-4 *1 (-1092)))) +(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) + ((*1 *1 *1) (-4 *1 (-1092)))) +(((*1 *1 *1) (-4 *1 (-1092)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-111))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-526)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) (-4 *6 (-1159)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-609 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284))))) -(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) - (-4 *1 (-351 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-436 *3 *4 *5 *6)) - (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) - (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-60 *3)) (-14 *3 (-1117)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-67 *3)) (-14 *3 (-1117)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-70 *3)) (-14 *3 (-1117)))) - ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-1205)))) - ((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-381)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) - (-4 *2 (-13 (-807) (-21)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) - (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) (-4 *1 (-920)))) -(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) -(((*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) + (-5 *1 (-609 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 *5)) (-4 *6 (-1052)) (-4 *5 (-1159)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-609 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-4 *5 (-1052)) (-4 *2 (-1159)) + (-5 *1 (-609 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-607 *5)) (-5 *4 (-607 *6)) (-4 *5 (-1052)) + (-4 *6 (-1159)) (-5 *1 (-609 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-607 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1052)) + (-4 *2 (-1159)) (-5 *1 (-609 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-735))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1092)) (-5 *3 (-138)) (-5 *2 (-111))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1172 (-526)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-735)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-526)) (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-526)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) + (-5 *2 (-526)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526)) (-5 *3 (-135)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) + (-5 *1 (-120 *3)) (-4 *3 (-811)))) + ((*1 *2 *2) + (-12 (-5 *2 (-556 *4)) (-4 *4 (-13 (-29 *3) (-1145))) + (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) + (-5 *1 (-558 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-556 (-392 (-905 *3)))) + (-4 *3 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *1 (-561 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| -3392 *3) (|:| |special| *3))) (-5 *1 (-692 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) + (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1205 (-1205 *5))) (-4 *5 (-348)) (-4 *5 (-1004)) + (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-607 *1)) (-4 *1 (-1092)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-607 *1)) (-4 *1 (-1092))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1092)) (-5 *2 (-138))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) + (-4 *5 (-163)))) + ((*1 *1 *1) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163)))) + ((*1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1004)) (-4 *1 (-650 *3 *2 *4)) (-4 *2 (-357 *3)) + (-4 *4 (-357 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1090 *2 *3)) (-14 *2 (-735)) (-4 *3 (-1004))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *4)) (-4 *4 (-1004)) (-5 *1 (-1090 *3 *4)) + (-14 *3 (-735))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 *4)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) (-5 *1 (-1089 *3 *4)) + (-4 *3 (-13 (-1052) (-33))) (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33))) + (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) (-5 *1 (-1089 *4 *5))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1088 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) + (-5 *1 (-1089 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) + (-4 *2 (-1052)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-145 *3)) + (-4 *3 (-1159)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-639 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) + (-5 *1 (-701 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) + (-4 *3 (-1052)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4310)) (-4 *1 (-221 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-526)) (-4 *4 (-1052)) + (-5 *1 (-701 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-701 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-1088 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) + (-4 *4 (-13 (-1052) (-33))) (-4 *5 (-13 (-1052) (-33))) + (-5 *1 (-1089 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-607 (-1088 *3 *4))) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33))) (-5 *1 (-1089 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-4 *2 (-291)) - (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) + (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) + (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-819)))) + ((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-924)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-948)))) + ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1159)))) ((*1 *2 *1) - (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) - (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)))) + (-12 (-4 *2 (-13 (-1052) (-33))) (-5 *1 (-1088 *2 *3)) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-111)) + (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) - (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112))) + ((*1 *1 *1) (-5 *1 (-162))) ((*1 *1 *1) (-4 *1 (-525))) + ((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1088 *3 *2)) (-4 *3 (-13 (-1052) (-33))) + (-4 *2 (-13 (-1052) (-33)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-13 (-1052) (-33))) + (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1088 *2 *3)) (-4 *2 (-13 (-1052) (-33))) + (-4 *3 (-13 (-1052) (-33)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1052) (-33))) (-4 *6 (-13 (-1052) (-33))) (-5 *2 (-111)) + (-5 *1 (-1088 *5 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1052) (-33))) (-5 *2 (-111)) + (-5 *1 (-1088 *4 *5)) (-4 *4 (-13 (-1052) (-33)))))) +(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *1 *1) (-5 *1 (-211))) ((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1087))) ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-211)) (-5 *3 (-735)) (-5 *1 (-212)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-159 (-211))) (-5 *3 (-735)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *1 *1) (-4 *1 (-1087)))) +(((*1 *1 *1 *1) (-5 *1 (-211))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998)))) + ((*1 *1 *1 *1) (-4 *1 (-1087)))) +(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) + ((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-4 *1 (-809))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-4 *1 (-1013))) ((*1 *1 *1) (-4 *1 (-1087)))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-61 *3)) (-14 *3 (-1123)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-67 *3)) (-14 *3 (-1123)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-70 *3)) (-14 *3 (-1123)))) + ((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1211)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-1086)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-823))) (-5 *2 (-1211)) (-5 *1 (-1086))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-1085))))) +(((*1 *1 *2) (-12 (-5 *2 (-1112 3 *3)) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004))))) +(((*1 *2) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-735))))) +(((*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1004)) (-5 *2 (-607 *1)) (-4 *1 (-1084 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-607 (-902 *4))) (-4 *1 (-1084 *4)) (-4 *4 (-1004)) + (-5 *2 (-735))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-902 *3))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-607 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-902 *3))) (-4 *1 (-1084 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-940 *3 *4 *5 *2)) - (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1100)) (-4 *1 (-348 *2 *4)) (-4 *2 (-1045)) - (-4 *4 (-1045)))) + (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-902 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *4 (-1004)) + (-4 *1 (-1084 *4)))) ((*1 *1 *2) - (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-375))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) - (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-2 (|:| |num| (-649 *5)) (|:| |den| *5)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) - (-5 *2 (-2 (|:| |ans| (-391 *5)) (|:| |nosol| (-111)))) - (-5 *1 (-967 *4 *5)) (-5 *3 (-391 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-12 (-5 *2 (-607 (-607 (-902 *3)))) (-4 *3 (-1004)) (-4 *1 (-1084 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-607 (-607 (-607 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) + (-4 *4 (-1004)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-607 (-607 (-902 *4)))) (-5 *3 (-111)) (-4 *1 (-1084 *4)) + (-4 *4 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-607 (-607 (-607 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) + (-4 *1 (-1084 *5)) (-4 *5 (-1004)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-607 (-607 (-902 *5)))) (-5 *3 (-607 (-162))) (-5 *4 (-162)) + (-4 *1 (-1084 *5)) (-4 *5 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-902 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-607 (-735)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) + (-5 *2 (-607 (-607 (-607 (-902 *3)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-607 (-162))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 (-607 (-162)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1004)) (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) - (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) - (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) - ((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-584 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-687) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-678 *3)) (-5 *1 (-623 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-687) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) -(((*1 *1) (-5 *1 (-111)))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-816)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1084 *3 *4)) (-5 *1 (-946 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-347)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *5))) (-4 *5 (-998)) - (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *6 (-223 *4 *5)) - (-4 *7 (-223 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) + (-2 (|:| -4169 (-735)) (|:| |curves| (-735)) (|:| |polygons| (-735)) + (|:| |constructs| (-735))))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-435) (-141))) (-5 *2 (-402 *3)) - (-5 *1 (-98 *4 *3)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-13 (-435) (-141))) - (-5 *2 (-402 *3)) (-5 *1 (-98 *5 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 *4)) (-4 *4 (-37 *3)) (-4 *4 (-998)) - (-5 *3 (-391 (-537))) (-5 *1 (-1102 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-580 (-845 *3))) (-4 *3 (-839 *3)) - (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-580 (-845 *3))) (-4 *2 (-839 *3)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-391 (-905 *6)) (-1107 (-1117) (-905 *6)))) - (-5 *5 (-731)) (-4 *6 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *6))))) - (-5 *1 (-276 *6)) (-5 *4 (-649 (-391 (-905 *6)))))) + (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) + (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1004))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) + (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) + (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-1082 *4 *2)) + (-4 *2 (-13 (-574 (-526) *4) (-10 -7 (-6 -4310) (-6 -4311)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-811)) (-4 *3 (-1159)) (-5 *1 (-1082 *3 *2)) + (-4 *2 (-13 (-574 (-526) *3) (-10 -7 (-6 -4310) (-6 -4311))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-1004)) (-4 *2 (-1181 *4)) + (-5 *1 (-428 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-392 (-1117 (-299 *5)))) (-5 *3 (-1205 (-299 *5))) + (-5 *4 (-526)) (-4 *5 (-13 (-533) (-811))) (-5 *1 (-1080 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-392 (-1117 (-299 *3)))) (-4 *3 (-13 (-533) (-811))) + (-5 *1 (-1080 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141))) + (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) + (-5 *1 (-1079 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141))) + (-5 *2 (-1113 (-607 (-299 *5)) (-607 (-278 (-299 *5))))) + (-5 *1 (-1079 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-299 *5))) + (-5 *1 (-1079 *5)))) ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) - (|:| |eigmult| (-731)) (|:| |eigvec| (-606 *4)))) - (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) - (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| -3449 *4) (|:| -3413 *3) (|:| -1672 *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| -3449 *3) (|:| -3413 *1) (|:| -1672 *1))) - (-4 *1 (-1176 *3))))) + (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-299 *5)))) + (-5 *1 (-1079 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-347) (-805))) - (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *5)))) - (-5 *1 (-171 *5 *3)) (-4 *3 (-1176 (-160 *5))))) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) + (-5 *1 (-1079 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-13 (-292) (-811) (-141))) + (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-392 (-905 *5)))) (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-278 (-299 *5)))) + (-5 *1 (-1079 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-278 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) + (-5 *2 (-607 (-278 (-299 *4)))) (-5 *1 (-1079 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-392 (-905 *5)))) (-5 *4 (-607 (-1123))) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) + (-5 *1 (-1079 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-392 (-905 *4)))) (-4 *4 (-13 (-292) (-811) (-141))) + (-5 *2 (-607 (-607 (-278 (-299 *4))))) (-5 *1 (-1079 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-278 (-392 (-905 *5))))) (-5 *4 (-607 (-1123))) + (-4 *5 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *5))))) + (-5 *1 (-1079 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-278 (-392 (-905 *4))))) + (-4 *4 (-13 (-292) (-811) (-141))) (-5 *2 (-607 (-607 (-278 (-299 *4))))) + (-5 *1 (-1079 *4))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *4)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1181 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-347) (-805))) - (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *4)))) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) + (-12 (-4 *3 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *2 (-607 *3)) (-5 *1 (-1078 *4 *3)) (-4 *4 (-1181 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) - (-4 *3 (-902 *7 *5 *6)) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) (-5 *2 - (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| (-606 *3)))) - (-5 *1 (-906 *5 *6 *7 *3 *8)) (-5 *4 (-731)) - (-4 *8 - (-13 (-347) - (-10 -8 (-15 -3301 (*3 $)) (-15 -3315 (*3 $)) (-15 -2341 ($ *3)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)))) - ((*1 *2 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) + (-2 (|:| |solns| (-607 *5)) + (|:| |maps| (-607 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1078 *3 *5)) (-4 *3 (-1181 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-348)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4311)))) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311)))) (-5 *1 (-632 *4 *5 *2 *3)) + (-4 *3 (-650 *4 *5 *2)))) + ((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1205 *4)) (-5 *3 (-653 *4)) (-4 *4 (-348)) + (-5 *1 (-633 *4)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-607 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-348)) + (-5 *1 (-778 *2 *3)) (-4 *3 (-623 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-348) (-10 -8 (-15 ** ($ $ (-392 (-526))))))) + (-5 *1 (-1078 *3 *2)) (-4 *3 (-1181 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-896 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1082 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) - (-5 *2 (-111)) (-5 *1 (-1083 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1185 *3 *4 *5)) (-5 *1 (-303 *3 *4 *5)) - (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-674 *3 *2 *4)) (-4 *3 (-807)) - (-14 *4 - (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *2)) - (-2 (|:| -2009 *3) (|:| -3283 *2))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154))))) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1101 *7))) (-4 *6 (-811)) + (-4 *7 (-909 *5 (-512 *6) *6)) (-4 *5 (-1004)) (-5 *2 (-1 (-1101 *7) *7)) + (-5 *1 (-1076 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-292)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-1074 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) - (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) + (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1074 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1045)) (-4 *6 (-1045)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-1045))))) + (-12 (-4 *4 (-292)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1074 *4 *5 *6 *3)) + (-4 *3 (-650 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526)))) + ((*1 *2 *2) + (-12 (-4 *3 (-292)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1074 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-107))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + (-12 (-5 *2 (-735)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1004)) (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) + (-4 *5 (-224 *3 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 *1)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *3)) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-653 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *4)) (-4 *4 (-1004)) (-4 *1 (-1073 *3 *4 *5 *6)) + (-4 *5 (-224 *3 *4)) (-4 *6 (-224 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1073 *3 *4 *2 *5)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) + (-4 *2 (-224 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2))))) + (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) + (-4 *2 (-1004))))) (((*1 *2 *3) - (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) - (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1155 *2)) - (-4 *2 (-1045)))) + (-12 (-5 *3 (-653 *2)) (-4 *4 (-1181 *2)) + (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-5 *1 (-481 *2 *4 *5)) (-4 *5 (-395 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) + (-4 *2 (-1004))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-348)) + (-5 *1 (-503 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) + (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-807)) - (-5 *1 (-1155 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-111)) (-5 *1 (-109)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) - ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) -(((*1 *1) (-5 *1 (-210))) ((*1 *1) (-5 *1 (-363)))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-578 *4)) (-5 *6 (-1117)) - (-4 *4 (-13 (-414 *7) (-27) (-1139))) - (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-539 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) + (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) + (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004))))) +(((*1 *2 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) + (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004)))) + ((*1 *2 *3) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) + (-5 *1 (-652 *2 *4 *5 *3)) (-4 *3 (-650 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) + (-12 (-4 *1 (-1073 *3 *2 *4 *5)) (-4 *4 (-224 *3 *2)) (-4 *5 (-224 *3 *2)) + (|has| *2 (-6 (-4312 "*"))) (-4 *2 (-1004))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) +(((*1 *1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1) (-4 *1 (-627))) ((*1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1) + (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) + (-3636 (|has| *1 (-6 -4293))))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-4 *1 (-811))) + ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811)))) ((*1 *1) (-5 *1 (-1070)))) +(((*1 *1) + (-12 (-4 *1 (-389)) (-3636 (|has| *1 (-6 -4301))) + (-3636 (|has| *1 (-6 -4293))))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-811)))) + ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) (-4 *1 (-811))) ((*1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1) (-4 *1 (-926))) ((*1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) + ((*1 *1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) + ((*1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) + ((*1 *1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-482 *2)) (-14 *2 (-526)))) + ((*1 *1 *1 *1) (-5 *1 (-1070)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1128))) (-5 *3 (-1128)) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-645)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-929)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-645)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1066))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) + (-5 *2 (-526)) (-5 *1 (-1065 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-436)) (-4 *4 (-784)) (-14 *5 (-1123)) + (-5 *2 (-526)) (-5 *1 (-1065 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) + (-5 *1 (-1065 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-526)) + (-5 *1 (-1065 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1174 *5 *4)) (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 *4)) + (-5 *1 (-1065 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) + (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-784)) (-14 *5 (-1123)) (-5 *2 (-607 (-1174 *5 *4))) + (-5 *1 (-1065 *4 *5)) (-5 *3 (-1174 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-1061)) (-5 *3 (-526))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1061))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-526)) (-5 *1 (-1061)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1205 (-526))) (-5 *3 (-607 (-526))) (-5 *4 (-526)) + (-5 *1 (-1061))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *3 (-111)) (-5 *1 (-1061))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-653 (-526))) (-5 *3 (-607 (-526))) (-5 *1 (-1061))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-1061))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-607 (-526))) (-5 *3 (-653 (-526))) (-5 *1 (-1061))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-1061))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) + (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) + (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) + (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) + (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) + (-4 *7 (-757)) (-4 *4 (-811)) + (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) + (-5 *1 (-1059 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) + (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *9 (-1018 *6 *7 *8)) + (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) + (-5 *1 (-947 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) + (-4 *4 (-1024 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *9 (-1018 *6 *7 *8)) + (-5 *2 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *4) (|:| |ineq| (-607 *9)))) + (-5 *1 (-1058 *6 *7 *8 *9 *4)) (-5 *3 (-607 *9)) + (-4 *4 (-1024 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) + (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) + (-5 *2 + (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) + (-5 *1 (-947 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-607 *10)) (-5 *5 (-111)) (-4 *10 (-1024 *6 *7 *8 *9)) + (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-1018 *6 *7 *8)) + (-5 *2 + (-607 (-2 (|:| -3578 (-607 *9)) (|:| -1636 *10) (|:| |ineq| (-607 *9))))) + (-5 *1 (-1058 *6 *7 *8 *9 *10)) (-5 *3 (-607 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) + (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-947 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-607 (-2 (|:| |val| (-607 *6)) (|:| -1636 *7)))) + (-4 *6 (-1018 *3 *4 *5)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-1058 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) + (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-607 *7)) (|:| -1636 *8))) + (-4 *7 (-1018 *4 *5 *6)) (-4 *8 (-1024 *4 *5 *6 *7)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-1058 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *1 (-947 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *1 (-1058 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-947 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-1024 *5 *6 *7 *8)) (-4 *5 (-436)) + (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1058 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) + (-4 *3 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *1 (-947 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-607 *7)) (-4 *7 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *1 (-1058 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-111)) (-5 *1 (-1058 *4 *5 *6 *7 *3)) (-4 *3 (-1024 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) - (-4 *4 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-947 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *2 (-1211)) (-5 *1 (-1058 *3 *4 *5 *6 *7)) (-4 *7 (-1024 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-947 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) (-5 *2 (-1211)) (-5 *1 (-1058 *4 *5 *6 *7 *8)) + (-4 *8 (-1024 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-419)) (-4 *5 (-811)) (-5 *1 (-1057 *5 *4)) + (-4 *4 (-406 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-530 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 (-537)))) (-5 *1 (-449))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *3 (-606 (-537))) - (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) -(((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347))))) -(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) - (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) - (-5 *1 (-381)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) - (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) - (-5 *1 (-381)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-606 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) - (-5 *2 (-1049)) (-5 *1 (-381))))) -(((*1 *1) (-5 *1 (-149)))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-5 *2 (-1200 (-731))) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-537)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-402 *2)) (-4 *2 (-529))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) - (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) - (-14 *4 (-731)) (-4 *5 (-163))))) -(((*1 *2) - (-12 (-4 *1 (-333)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-606 *11)) (-5 *5 (-606 (-1113 *9))) - (-5 *6 (-606 *9)) (-5 *7 (-606 *12)) (-5 *8 (-606 (-731))) - (-4 *11 (-807)) (-4 *9 (-291)) (-4 *12 (-902 *9 *10 *11)) - (-4 *10 (-753)) (-5 *2 (-606 (-1113 *12))) - (-5 *1 (-668 *10 *11 *9 *12)) (-5 *3 (-1113 *12))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-708))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) - (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) - (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) - (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4)))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) - (-5 *1 (-1156))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 - (-2 (|:| |ir| (-554 (-391 *6))) (|:| |specpart| (-391 *6)) - (|:| |polypart| *6))) - (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6))))) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) + ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-545 *3)) (-4 *3 (-995 (-526))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| -4179 (-1123)) (|:| -2164 *4)))) + (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-4 *7 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-1055 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *2 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-4 *1 (-389)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-4 *1 (-389)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1055 *3 *4 *5 *6 *2)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1052))))) (((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-807)) (-4 *5 (-753)) - (-4 *6 (-529)) (-4 *7 (-902 *6 *5 *3)) - (-5 *1 (-445 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-989 (-391 (-537))) (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) - (-15 -3315 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-537)) - (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-111)) (-5 *1 (-781))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-202 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333))))) + (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) - (-4 *2 (-1045))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-138))) (-5 *1 (-135)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-135))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-731)) (-5 *2 (-1205))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-5 *2 (-1100))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *2 (-1052)) (-4 *3 (-1052)) + (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-878)) (-5 *1 (-1053 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-636)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) + (-14 *4 (-878))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-878))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) + (-14 *4 (-878))))) +(((*1 *2) + (-12 (-5 *2 (-1205 (-1053 *3 *4))) (-5 *1 (-1053 *3 *4)) (-14 *3 (-878)) + (-14 *4 (-878))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) + (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-864 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-878)) (-5 *2 (-111)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-735)) (-5 *1 (-1053 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-211)))) ((*1 *1 *1) (-4 *1 (-525))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-564 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1070))))) +(((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1106))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) + ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-1050 *3)))) + ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-486 *3 *4 *5 *6))) (-4 *3 (-348)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) + (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-607 (-581 *4))) (-4 *4 (-406 *3)) (-4 *3 (-811)) + (-5 *1 (-549 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-1046 *3)) (-4 *3 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-1159)) (-5 *2 (-526))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-948)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1041 *4)) (-4 *4 (-1159)) (-5 *1 (-1044 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1043))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-314 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1205 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-1205 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *3 *4)) - (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1181 *4)) (-5 *2 (-1205 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-395 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) + (-5 *2 (-1205 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-403 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *6)) (-4 *6 (-839 *5)) (-4 *5 (-1045)) - (-5 *2 (-111)) (-5 *1 (-840 *5 *6 *4)) (-4 *4 (-580 (-845 *5)))))) -(((*1 *1) (-5 *1 (-314)))) + (-12 (-5 *4 (-607 (-653 *5))) (-5 *3 (-653 *5)) (-4 *5 (-348)) + (-5 *2 (-1205 *5)) (-5 *1 (-1038 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-807)) (-5 *2 (-1126 (-606 *4))) (-5 *1 (-1125 *4)) - (-5 *3 (-606 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-722)))) -(((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-720))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) - (-4 *4 (-1154)) (-5 *2 (-111))))) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) + (-5 *2 (-1205 (-653 *4))))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-1205 (-653 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) + (-5 *2 (-1205 (-653 (-392 (-905 *5))))) (-5 *1 (-1038 *5)) + (-5 *4 (-653 (-392 (-905 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-1123))) (-4 *5 (-348)) (-5 *2 (-1205 (-653 (-905 *5)))) + (-5 *1 (-1038 *5)) (-5 *4 (-653 (-905 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-5 *2 (-1205 (-653 *4))) + (-5 *1 (-1038 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-166))) (-5 *1 (-1037))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-166)))) + ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-107)) (-5 *1 (-1037))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1037))))) +(((*1 *1) (-5 *1 (-1037)))) +(((*1 *1) (-5 *1 (-1037)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-526) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1036 *2))))) +(((*1 *2) (-12 (-5 *2 (-607 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-1036 *3)) (-4 *3 (-130))))) +(((*1 *1) (-5 *1 (-1033)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-607 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) + (-4 *3 (-1060 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) + (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-292) (-141))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *4)) (|:| -3537 (-607 (-905 *4)))))) + (-5 *1 (-1029 *4 *5)) (-5 *3 (-607 (-905 *4))) (-14 *5 (-607 (-1123))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) + (-5 *2 (-607 (-2 (|:| -1839 (-1117 *5)) (|:| -3537 (-607 (-905 *5)))))) + (-5 *1 (-1029 *5 *6)) (-5 *3 (-607 (-905 *5))) (-14 *6 (-607 (-1123)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-1026 *3 *4 *5))) (-4 *3 (-1052)) + (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) + (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3)))) + (-5 *1 (-1028 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) - (-4 *3 (-920))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) + (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) + (-5 *2 (-607 (-1026 *3 *4 *5))) (-5 *1 (-1028 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-5 *1 (-1026 *4 *5 *2)) + (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) + (-5 *1 (-1026 *3 *4 *2)) + (-4 *2 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-849 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1052)) (-4 *5 (-1159)) + (-5 *1 (-850 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-849 *4)) (-5 *3 (-607 (-1 (-111) *5))) (-4 *4 (-1052)) + (-4 *5 (-1159)) (-5 *1 (-850 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-849 *5)) (-5 *3 (-607 (-1123))) (-5 *4 (-1 (-111) (-607 *6))) + (-4 *5 (-1052)) (-4 *6 (-1159)) (-5 *1 (-850 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1159)) + (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) + (-5 *2 (-299 (-526))) (-5 *1 (-896 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1159)) (-4 *4 (-811)) + (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-1 (-111) *5))) (-4 *5 (-1159)) (-4 *4 (-811)) + (-5 *1 (-897 *4 *2 *5)) (-4 *2 (-406 *4)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1 (-111) (-607 *6))) + (-4 *6 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-5 *1 (-1026 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 *2))) + (-5 *2 (-849 *3)) (-5 *1 (-1026 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-845 *3) (-584 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-13 (-1004) (-845 *3) (-811) (-584 (-849 *3)))) + (-5 *2 (-607 (-1123))) (-5 *1 (-1026 *3 *4 *5)) + (-4 *5 (-13 (-406 *4) (-845 *3) (-584 (-849 *3))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) - (-5 *2 (-1 *5)) (-5 *1 (-643 *4 *5))))) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-4 *2 (-1176 *5)) - (-5 *1 (-1194 *5 *2 *6 *3)) (-4 *6 (-617 *2)) (-4 *3 (-1191 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111)))) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 *4)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) + (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) + (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *3 (-1018 *6 *7 *8)) (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-1025 *6 *7 *8 *3 *4)) (-4 *4 (-1024 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 (-2 (|:| |val| (-607 *8)) (|:| -1636 *9)))) (-5 *5 (-111)) + (-4 *8 (-1018 *6 *7 *4)) (-4 *9 (-1024 *6 *7 *4 *8)) (-4 *6 (-436)) + (-4 *7 (-757)) (-4 *4 (-811)) + (-5 *2 (-607 (-2 (|:| |val| *8) (|:| -1636 *9)))) + (-5 *1 (-1025 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-607 *3)) (|:| -1636 *4)))) + (-5 *1 (-1025 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-3 (-111) (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *1)))) + (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-3 *3 (-607 *1))) (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-533)) (-4 *2 (-1004)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *1)))) + (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-5 *3 (-607 *7)) (-4 *1 (-1024 *4 *5 *6 *7)) + (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-1018 *4 *5 *6)) + (-5 *2 (-607 *1)) (-4 *1 (-1024 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) - (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-874)) (-4 *4 (-352)) (-4 *4 (-347)) (-5 *2 (-1113 *1)) - (-4 *1 (-313 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) + (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-809)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1021 *4 *3)) (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) + (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-995 (-526))) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *2)) + (-4 *2 (-406 *3)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-1117 *4)) (-5 *1 (-156 *3 *4)) + (-4 *3 (-157 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1004)) (-4 *1 (-283)))) + ((*1 *2) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) + ((*1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *3 (-347)) - (-4 *2 (-1176 *3)))) + (-12 (-4 *1 (-1021 *3 *2)) (-4 *3 (-13 (-809) (-348))) (-4 *2 (-1181 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-905 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) - (-5 *1 (-507 *4))))) -(((*1 *2) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) - (-4 *3 (-13 (-807) (-529)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) - (-5 *1 (-176))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) - (-4 *2 (-1154)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (|has| *1 (-6 -4300)) - (-4 *1 (-145 *2)) (-4 *2 (-1154)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) - (-4 *2 (-1154)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) - (-4 *2 (-1154)))) + (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) ((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-5 *2 (-2 (|:| -2990 (-1113 *4)) (|:| |deg| (-874)))) - (-5 *1 (-206 *4 *5)) (-5 *3 (-1113 *4)) (-4 *5 (-13 (-529) (-807))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) - (-4 *6 (-1154)) (-4 *2 (-1154)) (-5 *1 (-224 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-273 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1176 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-529)) (-4 *2 (-807)))) - ((*1 *1 *1) - (-12 (-4 *1 (-319 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *3 (-1176 *2)) - (-4 *4 (-1176 (-391 *3))) (-4 *5 (-326 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1154)) (-4 *2 (-1154)) - (-5 *1 (-355 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) - (-5 *1 (-407 *5 *4 *2 *6)) (-4 *4 (-409 *5)) (-4 *6 (-409 *2)))) - ((*1 *1 *1) (-5 *1 (-476))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) - (-4 *2 (-1154)) (-5 *1 (-604 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-998)) (-4 *2 (-998)) - (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) - (-4 *9 (-357 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-647 *5 *6 *7)) (-4 *10 (-647 *2 *8 *9)))) + (-12 (-5 *3 (-1117 (-392 (-526)))) (-5 *2 (-607 *1)) (-4 *1 (-970)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-970)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-809) (-348))) (-4 *3 (-1181 *4)) (-5 *2 (-607 *1)) + (-4 *1 (-1021 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *2)) (-5 *4 (-1123)) (-4 *2 (-406 *5)) (-5 *1 (-31 *5 *2)) + (-4 *5 (-13 (-811) (-533))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) + (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-4 *1 (-970)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1117 *1)) (-5 *3 (-878)) (-5 *4 (-823)) + (-4 *1 (-970)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-347)) - (-4 *3 (-163)) (-4 *1 (-685 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) - (-4 *2 (-1154)) (-5 *1 (-910 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) - (-14 *6 (-606 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-998)) (-4 *2 (-998)) - (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) - (-4 *9 (-223 *5 *7)) (-4 *10 (-223 *6 *2)) (-4 *11 (-223 *5 *2)) - (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *12 (-1001 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) - (-4 *2 (-1154)) (-5 *1 (-1096 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) - (-4 *1 (-1147 *5 *6 *7 *2)) (-4 *5 (-529)) (-4 *6 (-753)) - (-4 *7 (-807)) (-4 *2 (-1012 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) - (-4 *2 (-1154)) (-5 *1 (-1199 *5 *2))))) + (|partial| -12 (-5 *3 (-878)) (-4 *4 (-13 (-809) (-348))) + (-4 *1 (-1021 *4 *2)) (-4 *2 (-1181 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-981 *3)) + (-4 *3 (-13 (-809) (-348) (-977))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1021 *2 *3)) (-4 *2 (-13 (-809) (-348))) (-4 *3 (-1181 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1019))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *1)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-649 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *4)) (-4 *4 (-998)) (-4 *1 (-1067 *3 *4 *5 *6)) - (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4))))) + (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *5 (-1018 *3 *4 *2)) (-4 *2 (-811)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811))))) (((*1 *2 *1) - (-12 (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *3 (-807)) - (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-735))))) +(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) + ((*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-49 *2 *3)) (-14 *3 (-607 (-1123))))) + ((*1 *2 *1) + (-12 (-5 *2 (-299 *3)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1052)) (-4 *2 (-1004)))) + ((*1 *2 *1) + (-12 (-14 *3 (-607 (-1123))) (-4 *5 (-224 (-4273 *3) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *4) (|:| -2462 *5)) + (-2 (|:| -2461 *4) (|:| -2462 *5)))) + (-4 *2 (-163)) (-5 *1 (-445 *3 *2 *4 *5 *6 *7)) (-4 *4 (-811)) + (-4 *7 (-909 *2 *5 (-824 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-491 *2 *3)) (-4 *3 (-811)) (-4 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1004)))) ((*1 *2 *1) - (-12 (-4 *2 (-1154)) (-5 *1 (-826 *2 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) + (-12 (-4 *2 (-1004)) (-5 *1 (-700 *2 *3)) (-4 *3 (-811)) (-4 *3 (-691)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) + (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *3 (-756)) (-4 *4 (-811)) (-4 *2 (-1004)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-644 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) + (-12 (-4 *4 (-1004)) (-5 *2 (-111)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1181 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111))))) (((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1139))) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-1113 (-391 (-1113 *6)))) (-5 *1 (-533 *5 *6 *7)) - (-5 *3 (-1113 *6)) (-4 *7 (-1045)))) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-111))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1018 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) + (-4 *1 (-1018 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -3202 *1))) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -4270 *3) (|:| |gap| (-735)) (|:| -2072 (-745 *3)) + (|:| -3202 (-745 *3)))) + (-5 *1 (-745 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) + (-4 *1 (-1018 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -4270 *1) (|:| |gap| (-735)) (|:| -2072 *1) (|:| -3202 *1))) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |polnum| (-745 *3)) (|:| |polden| *3) (|:| -3795 (-735)))) + (-5 *1 (-745 *3)) (-4 *3 (-1004)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3795 (-735)))) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) + (-14 *4 (-607 *2)) (-4 *5 (-372)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) + (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) + (-14 *7 (-878)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) + (|partial| -3850 + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) + (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) + ((*1 *1 *2) + (|partial| -3850 + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811))))) +(((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-392 (-905 (-363)))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-363))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-363))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-363))) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-392 (-905 (-526)))) (-5 *1 (-324 *3 *4 *5)) + (-4 *5 (-995 (-526))) (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) + (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 (-526))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-995 (-526))) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1123)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 *2)) + (-14 *4 (-607 *2)) (-4 *5 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-299 *5)) (-4 *5 (-372)) (-5 *1 (-324 *3 *4 *5)) + (-14 *3 (-607 (-1123))) (-14 *4 (-607 (-1123))))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-526))))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-392 (-905 (-363))))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-526)))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-905 (-363)))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-299 (-363)))) (-4 *1 (-370)))) + ((*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-526)))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-392 (-905 (-363)))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 (-526))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-526))))) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-392 (-905 (-363))))) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-526)))) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-905 (-363)))) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-526)))) (-4 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 (-299 (-363)))) (-4 *1 (-425)))) ((*1 *2 *1) - (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (|:| |mdnia| + (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) + (-5 *1 (-733)))) ((*1 *2 *1) - (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1113 *11)) (-5 *6 (-606 *10)) - (-5 *7 (-606 (-731))) (-5 *8 (-606 *11)) (-4 *10 (-807)) - (-4 *11 (-291)) (-4 *9 (-753)) (-4 *5 (-902 *11 *9 *10)) - (-5 *2 (-606 (-1113 *5))) (-5 *1 (-703 *9 *10 *11 *5)) - (-5 *3 (-1113 *5)))) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *1 (-772)))) ((*1 *2 *1) - (-12 (-4 *2 (-902 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *2 *6)) - (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-14 *6 (-606 *2))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) - (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *2 (-1149 (-879))) - (-5 *1 (-302)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) - (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *7 (-1100)) - (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) - (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) - (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) - (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *8 (-1100)) - (-5 *2 (-1149 (-879))) (-5 *1 (-302))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) - (-4 *5 (-529)) (-5 *2 (-606 (-606 (-905 *5)))) (-5 *1 (-1123 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-739 *4)) - (-4 *4 (-13 (-347) (-805)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-141)) (-4 *2 (-291)) (-4 *2 (-435)) (-4 *3 (-807)) - (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-300 (-537))) (-5 *1 (-1063)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) + (-12 (-5 *2 - (-2 (|:| |dpolys| (-606 (-232 *5 *6))) - (|:| |coords| (-606 (-537))))) - (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) + (-5 *1 (-802)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-607 (-299 (-211)))) + (|:| |constraints| + (-607 + (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) + (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) + (|:| |dFinish| (-653 (-211)))))) + (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) + (|:| |tol| (-211)))) + (-5 *1 (-857)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *1 (-935 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1159)))) + ((*1 *1 *2) + (-3850 + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-3636 (-4 *3 (-37 (-526)))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-525))) (-3636 (-4 *3 (-37 (-392 (-526))))) + (-4 *3 (-37 (-526))) (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3636 (-4 *3 (-950 (-526)))) (-4 *3 (-37 (-392 (-526)))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *1 (-1018 *3 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811))))) + ((*1 *1 *2) + (-3850 + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-3636 (-4 *3 (-37 (-392 (-526))))) (-4 *3 (-37 (-526))) + (-4 *5 (-584 (-1123)))) + (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811))) + (-12 (-5 *2 (-905 (-526))) (-4 *1 (-1018 *3 *4 *5)) + (-12 (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123)))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811))))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-392 (-526)))) (-4 *1 (-1018 *3 *4 *5)) + (-4 *3 (-37 (-392 (-526)))) (-4 *5 (-584 (-1123))) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-874)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-752)))) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-391 (-537))) (-4 *1 (-1181 *3)) (-4 *3 (-998))))) -(((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-291)) - (-5 *2 (-731)) (-5 *1 (-438 *5 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-1200 *2)) (-4 *5 (-291)) - (-4 *6 (-945 *5)) (-4 *2 (-13 (-393 *6 *7) (-989 *6))) - (-5 *1 (-397 *5 *6 *7 *2)) (-4 *7 (-1176 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1205)) - (-5 *1 (-417 *3 *4)) (-4 *4 (-414 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) - (-4 *3 (-1176 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) - (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) - (-4 *3 (-1176 (-537))))) + (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) + (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef1| (-745 *3)))) + (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -3457 *1) (|:| |coef1| *1))) (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3457 (-745 *3)) (|:| |coef2| (-745 *3)))) + (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-2 (|:| -3457 *1) (|:| |coef2| *1))) (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-607 *1)) (-4 *1 (-1018 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *3 (-533))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-1018 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *3 (-533))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-533))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) + ((*1 *1 *1 *1) (-4 *1 (-436))) + ((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-735))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) + (-4 *2 (-909 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) - (-4 *3 (-1176 (-391 (-537)))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-731)) (-4 *3 (-1154)) (-4 *1 (-55 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1) (-5 *1 (-162))) - ((*1 *1) (-12 (-5 *1 (-199 *2 *3)) (-14 *2 (-874)) (-4 *3 (-1045)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) - ((*1 *1) (-5 *1 (-378))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *1) - (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) - (-4 *4 (-627 *3)))) - ((*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) - ((*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) - ((*1 *1 *1) (-5 *1 (-1117))) ((*1 *1) (-5 *1 (-1117))) - ((*1 *1) (-5 *1 (-1134)))) -(((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-606 (-606 *3))))) + (-12 (-5 *3 (-607 (-1117 *7))) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) + (-5 *2 (-1117 *7)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-878))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-436)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1018 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *2 (-436))))) +(((*1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1) (-5 *1 (-1016)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-363)) (-5 *1 (-1016))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-363)) (-5 *1 (-1016))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-1016)) (-5 *3 (-1106))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1016))))) +(((*1 *1) (-5 *1 (-1016)))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1015))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-606 (-606 *5))))) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-811)))) + ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) ((*1 *2 *1) - (-12 (-5 *2 (-606 (-606 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) - (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) - (-5 *1 (-657))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) - (-5 *1 (-316))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-1212 *4 *5 *6 *7))) - (-5 *1 (-1212 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 *9)) (-5 *4 (-1 (-111) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) - (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-606 (-1212 *6 *7 *8 *9))) - (-5 *1 (-1212 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) - (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) + (-4 *3 (-224 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) - (-5 *2 (-731)))) + (-12 (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)) (-5 *2 (-735)))) ((*1 *2) - (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) - ((*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) + (-12 (-4 *4 (-348)) (-5 *2 (-735)) (-5 *1 (-313 *3 *4)) (-4 *3 (-314 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) + ((*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) ((*1 *2) - (-12 (-4 *4 (-1045)) (-5 *2 (-731)) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) + (-12 (-4 *4 (-1052)) (-5 *2 (-735)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-23)) (-14 *5 *4))) + (-12 (-5 *2 (-735)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) + (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-731)) - (-5 *1 (-684 *3 *4 *5)) (-4 *3 (-685 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) + (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-735)) (-5 *1 (-688 *3 *4 *5)) + (-4 *3 (-689 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-783 *3)) (-4 *3 (-811)))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *5)))) - (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *2 (-606 *5)) - (-5 *1 (-202 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-2 (|:| -3622 *5) (|:| -2872 (-537))))) - (-5 *4 (-537)) (-4 *5 (-1176 *4)) (-5 *2 (-606 *5)) - (-5 *1 (-656 *5))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-742 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-916 *3 *2)) (-4 *2 (-129)) (-4 *3 (-529)) - (-4 *3 (-998)) (-4 *2 (-752)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1113 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-924)) (-4 *2 (-129)) (-5 *1 (-1119 *3)) (-4 *3 (-529)) - (-4 *3 (-998)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1173 *4 *3)) (-14 *4 (-1117)) - (-4 *3 (-998))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-606 (-1117))) (-4 *2 (-163)) - (-4 *3 (-223 (-2258 *4) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *3)) - (-2 (|:| -2009 *5) (|:| -3283 *3)))) - (-5 *1 (-444 *4 *2 *5 *3 *6 *7)) (-4 *5 (-807)) - (-4 *7 (-902 *2 *3 (-818 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-606 *2)) (-5 *1 (-112 *2)) - (-4 *2 (-1045)))) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-211)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-606 *4))) (-4 *4 (-1045)) - (-5 *1 (-112 *4)))) + (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-533)) (-5 *2 (-390 *4)) + (-5 *1 (-404 *4)))) + ((*1 *1 *1) (-5 *1 (-884))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) + (-5 *4 (-392 (-526))) (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) + (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) + (-5 *4 (-392 (-526))) (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) + (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-809) (-348))) (-5 *1 (-1014 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-809) (-348))) (-5 *2 (-111)) (-5 *1 (-1014 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-581 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) - (-5 *1 (-112 *4)))) + (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-607 (-581 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1117 (-47))) (-5 *3 (-581 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-606 *4))) - (-5 *1 (-112 *4)) (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) - (-5 *1 (-675 *3 *4)))) + (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) + (-4 *3 (-1181 (-159 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) - (-4 *3 (-1176 (-160 *2)))))) + (-12 (-5 *2 (-878)) (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-348)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1181 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-398 *3 *2 *4 *5)) + (-4 *3 (-292)) (-4 *5 (-13 (-395 *2 *4) (-995 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1181 *2)) (-4 *2 (-950 *3)) (-5 *1 (-400 *3 *2 *4 *5 *6)) + (-4 *3 (-292)) (-4 *5 (-395 *2 *4)) (-14 *6 (-1205 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-4 *5 (-1004)) + (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) + (-4 *3 (-1181 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-581 (-477)))) (-5 *1 (-477)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-581 (-477))) (-5 *1 (-477)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-607 (-581 (-477)))) (-5 *1 (-477)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1117 (-477))) (-5 *3 (-581 (-477))) (-5 *1 (-477)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-878)) (-4 *4 (-335)) (-5 *1 (-510 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-689 *4 *2)) (-4 *2 (-1181 *4)) + (-5 *1 (-739 *4 *2 *5 *3)) (-4 *3 (-1181 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163)))) + ((*1 *1 *1) (-4 *1 (-1013)))) +(((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) + ((*1 *1 *1) (-4 *1 (-1013)))) +(((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-525)))) + ((*1 *1 *1) (-4 *1 (-1013)))) +(((*1 *2 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) + ((*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-526))))) +(((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470)))) + ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533)) (-4 *2 (-292)))) + ((*1 *2 *1) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526)))) + ((*1 *1 *1) (-4 *1 (-1013)))) +(((*1 *1 *1) (-4 *1 (-1013)))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1159)) (-5 *2 (-735)) (-5 *1 (-223 *3 *4 *5)) + (-4 *3 (-224 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-811)) (-5 *2 (-735)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) + ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-524 *3)) (-4 *3 (-525)))) + ((*1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-735)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-759 *3 *4)) (-4 *3 (-760 *4)))) + ((*1 *2) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-949 *3 *4)) (-4 *3 (-950 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-735)) (-5 *1 (-955 *3 *4)) (-4 *3 (-956 *4)))) + ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-969 *3)) (-4 *3 (-970)))) + ((*1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-735)))) + ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))) (((*1 *1 *2) - (-12 (-5 *2 (-606 (-2 (|:| -2926 *3) (|:| -2140 *4)))) - (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *1 (-1130 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-2 (|:| -4157 (-113)) (|:| |w| (-210)))) (-5 *1 (-190))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-653 *5)) (-4 *5 (-1004)) (-5 *1 (-1008 *3 *4 *5)) + (-14 *3 (-735)) (-14 *4 (-735))))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1004)) (-4 *1 (-650 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-823)))) (-5 *1 (-823)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1090 *3 *4)) (-5 *1 (-952 *3 *4)) (-14 *3 (-878)) + (-4 *4 (-348)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 (-607 *5))) (-4 *5 (-1004)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) + (-4 *6 (-224 *4 *5)) (-4 *7 (-224 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-526)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-526))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-735))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-5 *2 (-735))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *2 *6 *7)) (-4 *6 (-224 *5 *2)) + (-4 *7 (-224 *4 *2)) (-4 *2 (-1004))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) + (-4 *2 (-357 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *2 *7)) (-4 *6 (-1004)) + (-4 *7 (-224 *4 *6)) (-4 *2 (-224 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) + (-4 *2 (-357 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-1007 *4 *5 *6 *7 *2)) (-4 *6 (-1004)) + (-4 *7 (-224 *5 *6)) (-4 *2 (-224 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) + (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1605 *3) (|:| -3283 (-731)))) (-5 *1 (-555 *3)) - (-4 *3 (-522))))) -(((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-459 *4 *5 *6 *7)) (|:| -2992 (-606 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) + (-12 (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-950 *4)) + (-4 *2 (-650 *7 *8 *9)) (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-650 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-292)))) + ((*1 *2 *2) + (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-224 *3 *4)) + (-4 *6 (-224 *2 *4)) (-4 *4 (-292))))) +(((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) (-14 *4 *2) + (-4 *5 (-163)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-878)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-878)))) + ((*1 *2) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-878)))) + ((*1 *2 *3) + (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-735)) + (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-735)) + (-5 *1 (-633 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746))))) + (-12 (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-735)) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-735)))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-735)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-735))))) (((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-805) (-347))) (-5 *2 (-111)) (-5 *1 (-1008 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-537)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) - (-5 *1 (-432 *5 *6 *7 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1) (-5 *1 (-816))) + (-12 (|has| *6 (-6 -4311)) (-4 *4 (-348)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-607 *6)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4311)) (-4 *4 (-533)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-4 *7 (-950 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-607 *6)) + (-5 *1 (-504 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-650 *4 *5 *6)) + (-4 *10 (-650 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-533)) (-5 *2 (-607 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-607 *6)) (-5 *1 (-652 *4 *5 *6 *3)) (-4 *3 (-650 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-224 *4 *5)) + (-4 *7 (-224 *3 *5)) (-4 *5 (-533)) (-5 *2 (-607 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1174 *4 *5)) (-5 *3 (-607 *5)) (-14 *4 (-1123)) (-4 *5 (-348)) + (-5 *1 (-881 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *5)) (-4 *5 (-348)) (-5 *2 (-1117 *5)) (-5 *1 (-881 *4 *5)) + (-14 *4 (-1123)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-735)) (-4 *6 (-348)) (-5 *2 (-392 (-905 *6))) + (-5 *1 (-1005 *5 *6)) (-14 *5 (-1123))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) +(((*1 *1 *1 *1) (-4 *1 (-137))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-526))) (-5 *1 (-1002)) + (-5 *3 (-526))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1048 *4)) (-4 *4 (-1052)) (-5 *2 (-1 *4)) (-5 *1 (-975 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363)))) + ((*1 *2 *3) (-12 (-5 *3 (-1041 (-526))) (-5 *2 (-1 (-526))) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-292)) (-5 *2 (-392 (-390 (-905 *4)))) + (-5 *1 (-1000 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1 (-363))) (-5 *1 (-998))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1186 *3 *4 *5)) (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) + (-14 *5 *3) (-5 *1 (-304 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-998)) (-5 *3 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-363)) (-5 *1 (-998))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-998))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-609 *5)) (-4 *5 (-998)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-809 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-649 *3)) (-4 *1 (-401 *3)) (-4 *3 (-163)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-998)) - (-5 *1 (-810 *2 *3)) (-4 *3 (-809 *2))))) + (-12 (-5 *3 (-1117 (-392 (-1117 *2)))) (-5 *4 (-581 *2)) + (-4 *2 (-13 (-406 *5) (-27) (-1145))) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *1 (-537 *5 *2 *6)) (-4 *6 (-1052)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117 *1)) (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) + (-4 *5 (-757)) (-4 *3 (-811)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117 *4)) (-4 *4 (-1004)) (-4 *1 (-909 *4 *5 *3)) + (-4 *5 (-757)) (-4 *3 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-1117 *2))) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) + (-4 *2 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) + (-5 *1 (-910 *5 *4 *6 *7 *2)) (-4 *7 (-909 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-1117 (-392 (-905 *5))))) (-5 *4 (-1123)) + (-5 *2 (-392 (-905 *5))) (-5 *1 (-997 *5)) (-4 *5 (-533))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-581 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)) (-4 *4 (-533)) + (-5 *2 (-392 (-1117 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-1117 (-392 (-1117 *3)))) (-5 *1 (-537 *6 *3 *7)) (-5 *5 (-1117 *3)) + (-4 *7 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1202 *5)) (-14 *5 (-1123)) (-4 *6 (-1004)) + (-5 *2 (-1174 *5 (-905 *6))) (-5 *1 (-907 *5 *6)) (-5 *3 (-905 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-1117 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-5 *2 (-1117 *1)) + (-4 *1 (-909 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *5 *4)) + (-5 *2 (-392 (-1117 *3))) (-5 *1 (-910 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1117 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))) + (-4 *7 (-909 *6 *5 *4)) (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-1004)) + (-5 *1 (-910 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-533)) (-5 *2 (-392 (-1117 (-392 (-905 *5))))) + (-5 *1 (-997 *5)) (-5 *3 (-392 (-905 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-537)))) + (|partial| -12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *2 (-811)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-757)) (-4 *5 (-1004)) (-4 *6 (-909 *5 *4 *2)) + (-4 *2 (-811)) (-5 *1 (-910 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *6)) (-15 -3298 (*6 $)) (-15 -3297 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-1123)) + (-5 *1 (-997 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) + (-5 *2 (-607 (-1123))) (-5 *1 (-252)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1004)) (-5 *2 (-607 *5)) (-5 *1 (-306 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) -(((*1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-165)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-1031))))) + (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-324 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-372)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-607 (-1123))))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-607 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) (-4 *7 (-909 *6 *4 *5)) + (-5 *2 (-607 *5)) (-5 *1 (-910 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1048 (-1123))) (-5 *1 (-925 *3)) (-4 *3 (-926)))) + ((*1 *2 *1) + (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) + (-5 *2 (-607 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-5 *2 (-607 (-1123))) + (-5 *1 (-997 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) - (-4 *3 (-1045)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) - (-5 *1 (-857 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-874)) (-5 *2 (-111)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *2 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-4 *3 (-529))))) -(((*1 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) + (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) + (-4 *6 (-13 (-533) (-995 *5))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *6)))))) (-5 *1 (-996 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-297)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-929)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-993))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-992))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-581 *6)) (-4 *6 (-13 (-406 *5) (-27) (-1145))) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-1117 (-392 (-1117 *6)))) (-5 *1 (-537 *5 *6 *7)) (-5 *3 (-1117 *6)) + (-4 *7 (-1052)))) + ((*1 *2 *1) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) + ((*1 *2 *1) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1117 *11)) (-5 *6 (-607 *10)) (-5 *7 (-607 (-735))) + (-5 *8 (-607 *11)) (-4 *10 (-811)) (-4 *11 (-292)) (-4 *9 (-757)) + (-4 *5 (-909 *11 *9 *10)) (-5 *2 (-607 (-1117 *5))) + (-5 *1 (-707 *9 *10 *11 *5)) (-5 *3 (-1117 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-909 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *2 *6)) (-4 *3 (-348)) + (-4 *4 (-757)) (-4 *5 (-811)) (-14 *6 (-607 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-878)) (-5 *1 (-989 *2)) + (-4 *2 (-13 (-1052) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-878)) (-5 *1 (-988 *2)) + (-4 *2 (-13 (-1052) (-10 -8 (-15 -4158 ($ $ $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-1205 *5))) (-5 *4 (-526)) (-5 *2 (-1205 *5)) + (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-111)) (-5 *5 (-526)) (-4 *6 (-348)) (-4 *6 (-353)) + (-4 *6 (-1004)) (-5 *2 (-607 (-607 (-653 *6)))) (-5 *1 (-987 *6)) + (-5 *3 (-607 (-653 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-348)) (-4 *4 (-353)) (-4 *4 (-1004)) + (-5 *2 (-607 (-607 (-653 *4)))) (-5 *1 (-987 *4)) (-5 *3 (-607 (-653 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) + (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-4 *5 (-348)) (-4 *5 (-353)) (-4 *5 (-1004)) + (-5 *2 (-607 (-607 (-653 *5)))) (-5 *1 (-987 *5)) (-5 *3 (-607 (-653 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-4 *5 (-348)) (-4 *5 (-1004)) + (-5 *2 (-111)) (-5 *1 (-987 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-653 *4))) (-4 *4 (-348)) (-4 *4 (-1004)) (-5 *2 (-111)) + (-5 *1 (-987 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-607 (-653 *6))) (-5 *4 (-111)) (-5 *5 (-526)) (-5 *2 (-653 *6)) + (-5 *1 (-987 *6)) (-4 *6 (-348)) (-4 *6 (-1004)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-5 *1 (-987 *4)) + (-4 *4 (-348)) (-4 *4 (-1004)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-526)) (-5 *2 (-653 *5)) + (-5 *1 (-987 *5)) (-4 *5 (-348)) (-4 *5 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-653 *5))) (-5 *4 (-1205 *5)) (-4 *5 (-292)) + (-4 *5 (-1004)) (-5 *2 (-653 *5)) (-5 *1 (-987 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-653 *5))) (-4 *5 (-292)) (-4 *5 (-1004)) + (-5 *2 (-1205 (-1205 *5))) (-5 *1 (-987 *5)) (-5 *4 (-1205 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-607 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-1004)) + (-5 *1 (-987 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) - ((*1 *2 *2) - (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) -(((*1 *2) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) - (-5 *2 (-1113 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) - (-14 *4 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-998)) (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) - (-4 *5 (-223 *3 *2))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-986)) (-5 *1 (-710)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-372)) (-5 *2 (-986)) (-5 *1 (-710))))) + (-12 (-5 *3 (-1205 (-1205 *4))) (-4 *4 (-1004)) (-5 *2 (-653 *4)) + (-5 *1 (-987 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-861 (-526))) (-5 *4 (-526)) (-5 *2 (-653 *4)) (-5 *1 (-986 *5)) + (-4 *5 (-1004)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-653 (-526))) (-5 *1 (-986 *4)) + (-4 *4 (-1004)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-861 (-526)))) (-5 *4 (-526)) (-5 *2 (-607 (-653 *4))) + (-5 *1 (-986 *5)) (-4 *5 (-1004)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-607 (-526)))) (-5 *2 (-607 (-653 (-526)))) + (-5 *1 (-986 *4)) (-4 *4 (-1004))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-986 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-653 *3))) (-4 *3 (-1004)) (-5 *1 (-986 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (-4 *4 (-1004)) (-5 *1 (-986 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (-4 *4 (-1004)) + (-5 *1 (-986 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) - (-5 *1 (-191))))) + (-12 (-5 *3 (-735)) (-5 *2 (-653 (-905 *4))) (-5 *1 (-986 *4)) + (-4 *4 (-1004))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) + (-4 *4 (-1004)) (-5 *1 (-986 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-607 (-653 *4))) (-5 *3 (-878)) (|has| *4 (-6 (-4312 "*"))) + (-4 *4 (-1004)) (-5 *1 (-986 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-178))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) - (-5 *2 (-606 (-606 (-896 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *4 (-998)) - (-4 *1 (-1078 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 (-896 *3)))) (-4 *3 (-998)) - (-4 *1 (-1078 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-111)) - (-4 *1 (-1078 *4)) (-4 *4 (-998)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) - (-4 *1 (-1078 *4)) (-4 *4 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-606 (-162))) - (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-606 (-606 (-896 *5)))) (-5 *3 (-606 (-162))) - (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998))))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1117))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) - (-5 *1 (-709))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-614 *4)) (-4 *4 (-326 *5 *6 *7)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-766 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) + (-5 *1 (-985))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 (-653 (-299 (-526))))) (-5 *1 (-985))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537))))) - (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) - (-5 *1 (-486 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1047 *4)) (-4 *4 (-1045)) (-5 *2 (-1 *4)) - (-5 *1 (-969 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1040 (-537))) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *2 (-529)) (-5 *1 (-922 *2 *4)) - (-4 *4 (-1176 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *1) (-5 *1 (-149)))) + (|partial| -12 (-5 *3 (-653 (-392 (-905 (-526))))) + (-5 *2 (-653 (-299 (-526)))) (-5 *1 (-985))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-299 (-526)))) + (-5 *1 (-985))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1038 (-800 *3))) (-4 *3 (-13 (-1139) (-912) (-29 *5))) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-204 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1038 (-800 *3))) (-5 *5 (-1100)) - (-4 *3 (-13 (-1139) (-912) (-29 *6))) - (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-12 (-5 *4 (-653 (-392 (-905 (-526))))) (-5 *2 (-607 (-653 (-299 (-526))))) + (-5 *1 (-985)) (-5 *3 (-299 (-526)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-392 (-905 (-526))))) (-5 *2 - (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-204 *6 *3)))) + (-607 + (-2 (|:| |radval| (-299 (-526))) (|:| |radmult| (-526)) + (|:| |radvect| (-607 (-653 (-299 (-526)))))))) + (-5 *1 (-985))))) +(((*1 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-983 *3)) (-4 *3 (-1159))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-982 *3 *2)) (-4 *2 (-623 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-5 *2 (-2 (|:| -3578 *3) (|:| -2805 (-607 *5)))) + (-5 *1 (-982 *5 *3)) (-5 *4 (-607 *5)) (-4 *3 (-623 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1014 (-981 *4) (-1117 (-981 *4)))) (-5 *3 (-823)) + (-5 *1 (-981 *4)) (-4 *4 (-13 (-809) (-348) (-977)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1014 (-981 *3) (-1117 (-981 *3)))) (-5 *1 (-981 *3)) + (-4 *3 (-13 (-809) (-348) (-977)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1038 (-800 (-300 *5)))) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-205 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1038 (-800 (-300 *6)))) - (-5 *5 (-1100)) - (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-205 *6)))) + (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) + (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1038 (-800 (-391 (-905 *5))))) (-5 *3 (-391 (-905 *5))) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-205 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1038 (-800 (-391 (-905 *6))))) (-5 *5 (-1100)) - (-5 *3 (-391 (-905 *6))) - (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-205 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-3 *3 (-606 *3))) (-5 *1 (-412 *5 *3)) - (-4 *3 (-13 (-1139) (-912) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) - (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) - (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) (-5 *4 (-392 (-526))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) - (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) + (-5 *1 (-978 *3)) (-4 *3 (-1181 (-526))) + (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) - (-5 *2 (-986)) (-5 *1 (-538)))) + (-12 (-5 *2 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *1 (-979 *3)) (-4 *3 (-1181 (-392 (-526)))) + (-5 *4 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) - (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) - (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) - (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) - (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) + (-12 (-5 *4 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *4) (|:| -3434 *4)))) + (-5 *1 (-979 *3)) (-4 *3 (-1181 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) - (-5 *5 (-1100)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) - (-5 *5 (-1117)) (-5 *2 (-986)) (-5 *1 (-538)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) - (-5 *2 (-554 (-391 *5))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *2 (-3 (-300 *5) (-606 (-300 *5)))) (-5 *1 (-557 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)) - (-4 *3 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-391 (-537)))) - (-4 *3 (-998)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-4 *2 (-807)) - (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) - (-5 *1 (-1102 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-37 (-391 (-537)))) - (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-1533 - (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) - (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) - (-4 *3 (-37 (-391 (-537)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) - (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) - (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1160 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2) - (-1533 - (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) - (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) - (-4 *3 (-37 (-391 (-537)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) - (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) - (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1181 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-1533 - (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) - (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) - (-4 *3 (-37 (-391 (-537)))))) - (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) - (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) - (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371))))) + (-12 (-5 *5 (-392 (-526))) (-5 *2 (-607 (-2 (|:| -3435 *5) (|:| -3434 *5)))) + (-5 *1 (-979 *3)) (-4 *3 (-1181 *5)) + (-5 *4 (-2 (|:| -3435 *5) (|:| -3434 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-435)) - (-5 *2 - (-606 - (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) - (|:| |eigmult| (-731)) - (|:| |eigvec| (-606 (-649 (-391 (-905 *4)))))))) - (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) + (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *2 (-607 (-392 (-526)))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526)))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *2 (-1113 *4)) - (-5 *1 (-510 *4 *5 *6)) (-4 *5 (-347)) (-4 *6 (-13 (-347) (-805)))))) -(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100))))) + (-12 (-5 *3 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526))))) + (-5 *2 (-392 (-526))) (-5 *1 (-978 *4)) (-4 *4 (-1181 (-526)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1205 *6)) (-5 *4 (-1205 (-526))) (-5 *5 (-526)) (-4 *6 (-1052)) + (-5 *2 (-1 *6)) (-5 *1 (-975 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) + (-12 (-5 *3 (-607 (-2 (|:| -3721 *4) (|:| -1553 (-526))))) (-4 *4 (-1052)) + (-5 *2 (-1 *4)) (-5 *1 (-975 *4))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) + (-5 *2 (-607 (-392 *5))) (-5 *1 (-974 *4 *5)) (-5 *3 (-392 *5))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 - (-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) - (|:| |singularities| (-1098 (-210))))) - (-5 *1 (-103))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) - (-5 *2 (-160 (-300 *4))) (-5 *1 (-174 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) + (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |h| *6) (|:| |c1| (-392 *6)) + (|:| |c2| (-392 *6)) (|:| -3396 *6))) + (-5 *1 (-974 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1181 *6)) + (-4 *6 (-13 (-348) (-141) (-995 *4))) (-5 *4 (-526)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) + (|:| -3578 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-973 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) + (-5 *2 (-2 (|:| |ans| (-392 *5)) (|:| |nosol| (-111)))) (-5 *1 (-973 *4 *5)) + (-5 *3 (-392 *5))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-392 *6)) (|:| |c| (-392 *6)) (|:| -3396 *6))) + (-5 *1 (-973 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1123)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-607 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1145) (-27) (-406 *8))) + (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) + (-5 *2 (-607 *4)) (-5 *1 (-972 *8 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1123)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-607 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1145) (-27) (-406 *8))) + (-4 *8 (-13 (-436) (-811) (-141) (-995 *3) (-606 *3))) (-5 *3 (-526)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111)))) + (-5 *1 (-971 *8 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526)))) + ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-970)))) + ((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-4 *1 (-970)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-878)))) + ((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-970)) (-5 *2 (-823))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117 *1)) (-4 *1 (-970))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-823))))) +(((*1 *2 *1) (-12 (-4 *3 (-1159)) (-5 *2 (-607 *1)) (-4 *1 (-968 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-607 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-5 *2 (-526))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-968 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-607 *1)) (|has| *1 (-6 -4311)) (-4 *1 (-968 *3)) + (-4 *3 (-1159))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-968 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) + (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) + (-4 *3 (-533)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) + (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) + (-4 *3 (-1052)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) + (-4 *3 (-1052)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) + (-5 *2 (-392 (-526))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-160 *3)) (-5 *1 (-1143 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) + (|partial| -12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) + ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-966 *3)) (-4 *3 (-995 (-392 (-526))))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1397 *1) (|:| -4287 *1) (|:| |associate| *1))) - (-4 *1 (-529))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-390 *3)) (-4 *3 (-525)) (-4 *3 (-533)))) + ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (-12 (-4 *1 (-760 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) + ((*1 *2 *1) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-796 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-803 *3)) (-4 *3 (-525)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *1 (-956 *3)) (-4 *3 (-163)) (-4 *3 (-525)) (-5 *2 (-392 (-526))))) + ((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-966 *3)) (-4 *3 (-995 *2))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) +(((*1 *2 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-964))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-964))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-526))) (-5 *4 (-526)) (-5 *2 (-50)) (-5 *1 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-962 *3)) (-14 *3 (-526))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-390 *5)) (-4 *5 (-533)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *5) (|:| |radicand| (-607 *5)))) + (-5 *1 (-305 *5)) (-5 *4 (-735)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-526))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-958 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *1 *1 *1) (-4 *1 (-457))) + ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-930))) + ((*1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-163))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1159))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1090 *3 *4)) (-14 *3 (-878)) (-4 *4 (-348)) + (-5 *1 (-952 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) + (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) + ((*1 *2 *1) + (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-586 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-691) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-163)) (-4 *2 (-682 *3)) (-5 *1 (-617 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-691) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) +(((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) (-4 *2 (-292)) + (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-811)) (-5 *2 (-1075 *3 (-581 *1))) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1075 (-526) (-581 (-477)))) (-5 *1 (-477)))) + ((*1 *2 *1) + (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) + (-5 *1 (-586 *3 *4 *2)) (-4 *3 (-37 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-691) *4)) + (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-682 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-1004)))) + ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) +(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811)) (-4 *2 (-533)))) + ((*1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-533))))) +(((*1 *2 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335)))) + ((*1 *1) (-4 *1 (-353))) + ((*1 *2 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) + ((*1 *1 *1) (-4 *1 (-525))) ((*1 *1) (-4 *1 (-525))) + ((*1 *1 *1) (-5 *1 (-526))) ((*1 *1 *1) (-5 *1 (-735))) + ((*1 *2 *1) (-12 (-5 *2 (-861 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-5 *2 (-861 *4)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) + ((*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-525)) (-4 *2 (-533))))) (((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-291)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-430 *3 *4 *5 *6)))) + (-12 + (-5 *2 + (-945 (-392 (-526)) (-824 *3) (-225 *4 (-735)) (-233 *3 (-392 (-526))))) + (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-946 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-607 *3)) (-4 *3 (-909 *4 *6 *5)) (-4 *4 (-436)) (-4 *5 (-811)) + (-4 *6 (-757)) (-5 *1 (-945 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-436)) (-4 *4 (-811)) + (-4 *5 (-757)) (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-436)) (-4 *4 (-811)) (-4 *5 (-757)) (-5 *2 (-607 *6)) + (-5 *1 (-945 *3 *4 *5 *6)) (-4 *6 (-909 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *3 (-436)) + (-4 *4 (-811)) (-4 *5 (-757))))) +(((*1 *1 *1) + (-12 (-4 *2 (-436)) (-4 *3 (-811)) (-4 *4 (-757)) (-5 *1 (-945 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *4 *3))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1181 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-944 *4 *2 *3 *5)) + (-4 *4 (-335)) (-4 *5 (-689 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) + (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) + (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) - (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-430 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) - (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-430 *4 *5 *6 *7))))) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *3 + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) + (-15 -4150 ((-3 $ #1="failed") (-1123)))))) + (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *6)) + (-4 *6 + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) + (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) + (-4 *2 (-909 (-905 *4) *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-757)) (-4 *3 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) + (-4 *5 (-533)) (-5 *1 (-697 *4 *3 *5 *2)) + (-4 *2 (-909 (-392 (-905 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *3 + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) + (-15 -4150 ((-3 $ #1="failed") (-1123)))))) + (-5 *1 (-943 *4 *5 *3 *2)) (-4 *2 (-909 (-905 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *6)) + (-4 *6 + (-13 (-811) + (-10 -8 (-15 -4287 ((-1123) $)) (-15 -4150 ((-3 $ #1#) (-1123)))))) + (-4 *4 (-1004)) (-4 *5 (-757)) (-5 *1 (-943 *4 *5 *6 *2)) + (-4 *2 (-909 (-905 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-735)) (-4 *1 (-942 *2)) (-4 *2 (-1145))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-833)))) + ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) + ((*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-833)))) + ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-149)))) + ((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3) (-12 (-5 *3 (-902 *2)) (-5 *1 (-941 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) + (-5 *2 (-607 (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5))))) (-5 *1 (-937 *5)) + (-5 *3 (-653 *5)) (-5 *4 (-1205 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-878)) (-5 *1 (-663)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-653 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) + (-5 *1 (-937 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-348)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-348)) + (-5 *2 (-2 (|:| R (-653 *6)) (|:| A (-653 *6)) (|:| |Ainv| (-653 *6)))) + (-5 *1 (-937 *6)) (-5 *3 (-653 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) + (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) + (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-292)) + (-4 *3 (-533)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *1 (-1102 *3))))) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-436)) (-4 *3 (-533)) + (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-436)) + (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-347)) - (-5 *1 (-502 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) - (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) - (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) - (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) - (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) - ((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) - (-4 *2 (-1176 *4))))) + (-12 (-4 *4 (-436)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-5 *2 (-607 *3)) (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-607 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *1 (-936 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-607 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1018 *6 *7 *8)) (-4 *6 (-533)) (-4 *7 (-757)) + (-4 *8 (-811)) (-5 *1 (-936 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) - (-4 *3 (-1045))))) -(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) - (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998))))) + (|partial| -12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-460 *4 *5 *6 *7)) (|:| -3643 (-607 *7)))) + (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-111)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)) - (-5 *1 (-774 *4 *5)) (-4 *5 (-617 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-347)) - (-5 *2 (-649 *5)) (-5 *1 (-774 *5 *6)) (-4 *6 (-617 *5))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) - (-5 *1 (-709))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731))))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) - (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-942)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1040 *4)) (-4 *4 (-1154)) - (-5 *1 (-1038 *4))))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) + (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-1200 (-300 (-363)))) - (-5 *1 (-289))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-5 *2 - (-2 (|:| |contp| (-537)) - (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) - (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-5 *2 - (-2 (|:| |contp| (-537)) - (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) - (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) - ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) (-5 *2 (-986)) - (-5 *1 (-707))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-95))))) -(((*1 *2 *3) - (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) - (-4 *3 (-1176 *4)) - (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-606 (-111))) (-5 *7 (-649 (-210))) - (-5 *8 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *5 (-111)) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1200 - (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) - (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) - (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) - (|:| |axesColor| (-827)) (|:| -1547 (-537)) - (|:| |unitsColor| (-827)) (|:| |showing| (-537))))) - (-5 *1 (-1201))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-781))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1147 *4 *5 *3 *6)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-163)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *1 (-648 *4 *5 *6 *2)) - (-4 *2 (-647 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1154)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) - (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) - (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) + (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252)))) ((*1 *2 *3) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *1 *1) (-4 *1 (-1086)))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) -(((*1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1117))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-97 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33))) - (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5))))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) - (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529))))) -(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-731)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-386)) (-5 *2 (-731))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 *3 (-606 *1))) - (-4 *1 (-1018 *4 *5 *6 *3))))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) + (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) - (-4 *3 (-1045)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-220 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) - (-5 *1 (-698 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) - ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) - ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) - ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-1098 (-537)))))) -(((*1 *2 *3) (-12 (-5 *3 (-606 (-51))) (-5 *2 (-1205)) (-5 *1 (-817))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-700 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-1018 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-607 *7)) (|:| |badPols| (-607 *7)))) + (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-606 (-578 *3))) - (|:| |vals| (-606 *3)))) - (-5 *1 (-261 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) + (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) + (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) + (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-874)) (-4 *5 (-529)) (-5 *2 (-649 *5)) - (-5 *1 (-909 *5 *3)) (-4 *3 (-617 *5))))) + (-12 (-5 *3 (-607 (-1 (-111) *8))) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) + (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) + (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-160 *4))) - (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) - (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-160 *5)))) - (-5 *1 (-362 *5)) (-4 *5 (-13 (-347) (-805)))))) + (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1018 *5 *6 *7)) (-4 *5 (-533)) + (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *2 (-2 (|:| |goodPols| (-607 *8)) (|:| |badPols| (-607 *8)))) + (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-607 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *4 (-1176 *2)) - (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-5 *1 (-480 *2 *4 *5)) (-4 *5 (-393 *2 *4)))) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-1018 *5 *6 *7)) + (-4 *5 (-533)) (-4 *6 (-757)) (-4 *7 (-811)) (-5 *2 (-111)) + (-5 *1 (-936 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-111)) (-5 *1 (-936 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) + (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-607 *3)) (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *1 (-936 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-607 *7) (-607 *7))) (-5 *2 (-607 *7)) + (-4 *7 (-1018 *4 *5 *6)) (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) + (-5 *1 (-936 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-607 *3)) + (-5 *1 (-936 *4 *5 *6 *3)) (-4 *3 (-1018 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-936 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-607 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-935 *4 *5 *3 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-4 *6 (-1018 *4 *5 *3)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *5 (-1018 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *5 (-1018 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-935 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *5 (-1018 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1159)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) (-4 *6 (-1018 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) + (-4 *1 (-935 *4 *5 *3 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-935 *4 *5 *6 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *3 (-1018 *4 *5 *6)) (-4 *4 (-533)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-607 *6)) (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533))))) +(((*1 *2 *1) + (-12 (-4 *1 (-935 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1018 *3 *4 *5)) (-4 *3 (-533)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-607 (-607 (-902 (-211))))))) + ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-607 (-607 (-902 (-211)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) + ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1041 (-211))))) + ((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-933)) (-5 *2 (-1041 (-211)))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) - (-4 *5 (-223 *3 *2)) (-4 *2 (-998))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-522))))) -(((*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-1140 *3)))) + (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *6 (-224 (-4273 *3) (-735))) + (-14 *7 + (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) + (-2 (|:| -2461 *5) (|:| -2462 *6)))) + (-5 *2 (-678 *5 *6 *7)) (-5 *1 (-445 *3 *4 *5 *6 *7 *8)) (-4 *5 (-811)) + (-4 *8 (-909 *4 *6 (-824 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-691)) (-4 *2 (-811)) (-5 *1 (-700 *3 *2)) (-4 *3 (-1004)))) + ((*1 *1 *1) + (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-606 (-1140 *2))) (-5 *1 (-1140 *2)) (-4 *2 (-1045))))) -(((*1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1137))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-420))))) -(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1100)) (-5 *1 (-51))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-606 - (-2 - (|:| -2926 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (|:| -2140 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-532)))) + (-12 (-5 *3 (-607 (-878))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-878)) + (-4 *2 (-348)) (-14 *5 (-952 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-678 *5 *6 *7)) (-4 *5 (-811)) (-4 *6 (-224 (-4273 *4) (-735))) + (-14 *7 + (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *6)) + (-2 (|:| -2461 *5) (|:| -2462 *6)))) + (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-5 *1 (-445 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-909 *2 *6 (-824 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-811)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-533)) (-5 *1 (-590 *2 *4)) (-4 *4 (-1181 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-673 *2)) (-4 *2 (-1004)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-691)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *5)) (-5 *3 (-607 (-735))) (-4 *1 (-705 *4 *5)) + (-4 *4 (-1004)) (-4 *5 (-811)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-705 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-811)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-813 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 (-735))) (-4 *1 (-909 *4 *5 *6)) + (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *6 (-811)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-735)) (-4 *1 (-909 *4 *5 *2)) (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *2 (-811)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *6)) (-5 *3 (-607 *5)) (-4 *1 (-932 *4 *5 *6)) + (-4 *4 (-1004)) (-4 *5 (-756)) (-4 *6 (-811)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-932 *4 *3 *2)) (-4 *4 (-1004)) (-4 *3 (-756)) (-4 *2 (-811))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-567 *3)) (-4 *3 (-1004)))) ((*1 *2 *1) - (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) - (-5 *2 (-606 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) - (-4 *3 (-13 (-1139) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) - (-5 *2 (-554 (-391 (-905 *5)))) (-5 *1 (-543 *5)) - (-5 *3 (-391 (-905 *5)))))) + (-12 (-4 *1 (-932 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-756)) (-4 *5 (-811)) + (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292)))) + ((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526)))) + ((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) (-4 *1 (-829 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-932 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-756)) (-4 *4 (-811))))) +(((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-930))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-514 *4 *2)) - (-4 *2 (-1191 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) - (-4 *5 (-1176 *4)) (-4 *6 (-685 *4 *5)) (-5 *1 (-518 *4 *5 *6 *2)) - (-4 *2 (-1191 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) - (-5 *1 (-519 *4 *2)) (-4 *2 (-1191 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) - (-5 *1 (-1094 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-5 *2 (-451)) (-5 *1 (-1201))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-606 (-537))) (-5 *3 (-649 (-537))) (-5 *1 (-1055))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-606 *11)) - (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) - (-5 *6 (-731)) - (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) - (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) - (-4 *11 (-1018 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) - (-4 *9 (-807)) (-5 *1 (-1016 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-606 *11)) - (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) - (-5 *6 (-731)) - (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) - (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) - (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) - (-4 *9 (-807)) (-5 *1 (-1087 *7 *8 *9 *10 *11))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) + (-12 (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-930)) (-5 *3 (-607 (-526)))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-930))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-533)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-735)) (-4 *3 (-533)) (-5 *1 (-928 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *2 (-533)) (-5 *1 (-928 *2 *4)) (-4 *4 (-1181 *2))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) - (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) - (-4 *3 (-809 *5))))) + (-12 (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-292)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |rm| (-371 *3)))) + (-5 *1 (-371 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2072 (-735)) (|:| -3202 (-735)))) (-5 *1 (-735)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3178 *4))) (-5 *1 (-928 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3178 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-533)) (-4 *2 (-436)) (-5 *1 (-928 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-607 (-735))) (-5 *1 (-928 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-928 *4 *3)) + (-4 *3 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-606 (-2 (|:| |func| *2) (|:| |pole| (-111))))) - (-4 *2 (-13 (-414 *4) (-954))) (-4 *4 (-13 (-807) (-529))) - (-5 *1 (-260 *4 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) - (-5 *1 (-507 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-807)) (-4 *5 (-862)) (-4 *6 (-753)) - (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-402 (-1113 *8))) - (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-1113 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) - (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) - (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) - (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-998)) (-4 *4 (-807)) - (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) - (-4 *1 (-414 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-998)) (-4 *4 (-807)) - (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) - (-4 *1 (-414 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) - (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-731)))) - (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-731)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-537)))) - (-5 *1 (-903 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) - (-15 -3315 (*7 $)))))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-347)) (-5 *1 (-976 *3 *2)) (-4 *2 (-617 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| -4113 *3) (|:| -4157 (-606 *5)))) - (-5 *1 (-976 *5 *3)) (-5 *4 (-606 *5)) (-4 *3 (-617 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4076 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-1079))))) + (-12 (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4076 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3457 *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3457 *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3457 *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-533)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) + (-4 *3 (-1181 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-533)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-928 *5 *3)) + (-4 *3 (-1181 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-928 *5 *3)) (-4 *3 (-1181 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-533)) (-5 *1 (-928 *4 *2)) (-4 *2 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4075 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4075 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-533)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4075 *4))) + (-5 *1 (-928 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-811))))) +(((*1 *1 *1 *1) (-4 *1 (-926)))) +(((*1 *1 *1 *1) (-4 *1 (-926)))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) (-4 *1 (-926)))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *1) (-4 *1 (-926)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) (((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-606 - (-2 (|:| -3705 (-731)) - (|:| |eqns| - (-606 - (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) - (|:| |cols| (-606 (-537)))))) - (|:| |fgb| (-606 *7))))) - (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) - (-5 *1 (-877 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) - (-5 *1 (-341 *4))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832 (-925 *3) (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-737)) (-5 *1 (-112)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-924))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-923 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-923 *3 *2)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-823)))) + ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1211)) (-5 *1 (-922))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-607 *3)) (-5 *1 (-921 *3)) (-4 *3 (-525))))) +(((*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525))))) +(((*1 *2 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-525))))) +(((*1 *1) (-4 *1 (-335))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-607 (-1117 *5))) + (|:| |prim| (-1117 *5)))) + (-5 *1 (-417 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *3)) - (-4 *3 (-13 (-414 *4) (-954)))))) -(((*1 *1 *1 *1) (-4 *1 (-137))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) - (-4 *2 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) - (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) - (-4 *2 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) - (-5 *1 (-1094 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1154)) - (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *2 *7)) (-4 *6 (-998)) - (-4 *7 (-223 *4 *6)) (-4 *2 (-223 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-551))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-4 *4 (-13 (-533) (-811) (-141))) (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) - (-5 *2 (-986)) (-5 *1 (-706))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) - (-5 *2 (-111)) (-5 *1 (-628 *5)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1117 *3)) (|:| |pol2| (-1117 *3)) + (|:| |prim| (-1117 *3)))) + (-5 *1 (-417 *4 *3)) (-4 *3 (-27)) (-4 *3 (-406 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-1123)) (-4 *5 (-13 (-348) (-141))) + (-5 *2 + (-2 (|:| |coef1| (-526)) (|:| |coef2| (-526)) (|:| |prim| (-1117 *5)))) + (-5 *1 (-920 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-111)) - (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1200 (-1117))) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) - (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) - (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) - (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) - (-14 *6 (-606 *2)) (-14 *7 (-1200 (-649 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-436 *3 *4 *5 *6))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) - (-14 *6 (-1200 (-649 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-1117))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) - (-14 *6 (-1200 (-649 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-874)) (-14 *5 (-606 *2)) (-14 *6 (-1200 (-649 *3))))) - ((*1 *1) - (-12 (-5 *1 (-436 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-874)) - (-14 *4 (-606 (-1117))) (-14 *5 (-1200 (-649 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1121))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) - (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-529)) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) + (-4 *5 (-13 (-348) (-141))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373))))) -(((*1 *1 *2 *2) - (-12 + (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *5))) + (|:| |prim| (-1117 *5)))) + (-5 *1 (-920 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-5 *5 (-1123)) + (-4 *6 (-13 (-348) (-141))) (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) + (-2 (|:| -4270 (-607 (-526))) (|:| |poly| (-607 (-1117 *6))) + (|:| |prim| (-1117 *6)))) + (-5 *1 (-920 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *1 (-556 *2)) (-4 *2 (-995 *3)) (-4 *2 (-348)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)) + (-4 *2 (-13 (-406 *4) (-960) (-1145))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1044 *2)) (-4 *2 (-13 (-406 *4) (-960) (-1145))) + (-4 *4 (-13 (-811) (-533))) (-5 *1 (-596 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-1123)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-919))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-878)) (-4 *5 (-533)) (-5 *2 (-653 *5)) + (-5 *1 (-916 *5 *3)) (-4 *3 (-623 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-913))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) (-4 *3 (-909 *7 *5 *6)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| (-607 *3)))) + (-5 *1 (-912 *5 *6 *7 *3 *8)) (-5 *4 (-735)) + (-4 *8 + (-13 (-348) + (-10 -8 (-15 -3298 (*3 $)) (-15 -3297 (*3 $)) (-15 -4274 ($ *3)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) + (-4 *8 (-909 *7 *5 *6)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *3))) + (-5 *1 (-912 *5 *6 *7 *8 *3)) (-5 *4 (-735)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-526))) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-533)) + (-4 *8 (-909 *7 *5 *6)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *9) (|:| |radicand| *9))) + (-5 *1 (-912 *5 *6 *7 *8 *9)) (-5 *4 (-735)) + (-4 *9 + (-13 (-348) + (-10 -8 (-15 -3298 (*8 $)) (-15 -3297 (*8 $)) (-15 -4274 ($ *8)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-757)) (-4 *6 (-811)) (-4 *3 (-533)) (-4 *7 (-909 *3 *5 *6)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *8) (|:| |radicand| *8))) + (-5 *1 (-912 *5 *6 *3 *7 *8)) (-5 *4 (-735)) + (-4 *8 + (-13 (-348) + (-10 -8 (-15 -3298 (*7 $)) (-15 -3297 (*7 $)) (-15 -4274 ($ *7)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-731)))) + (|partial| -12 (-4 *3 (-1004)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-513))) ((*1 *1) (-4 *1 (-683))) - ((*1 *1) (-4 *1 (-687))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-731)) - (-4 *3 (-13 (-687) (-352) (-10 -7 (-15 ** (*3 *3 (-537)))))) - (-5 *1 (-231 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-414 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) - ((*1 *1 *1) (-4 *1 (-152)))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-649 *2)) (-5 *4 (-731)) - (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) - (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-1200 *4)) - (-5 *1 (-774 *4 *3)) (-4 *3 (-617 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-391 (-905 *4))) (-5 *1 (-877 *4 *5 *6 *3)) - (-4 *3 (-902 *4 *6 *5)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-849 *3)))) + (-5 *1 (-849 *3)) (-4 *3 (-1052)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-649 (-391 (-905 *4)))) - (-5 *1 (-877 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) + (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2462 (-526)))) + (-5 *1 (-910 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1123)) (-4 *4 (-1004)) (-4 *4 (-811)) + (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-112)) (-4 *4 (-1004)) (-4 *4 (-811)) + (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| |var| (-581 *1)) (|:| -2462 (-526)))) (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-849 *3)) (|:| -2462 (-735)))) + (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-735)))))) ((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) - (-5 *1 (-877 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) - ((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) - (-14 *4 (-537))))) + (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) + (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2462 (-526)))) + (-5 *1 (-910 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-731)))) + (|partial| -12 (-4 *3 (-1063)) (-4 *3 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731))))) -(((*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) + (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-513))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045))))) -(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1202))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) - (-5 *1 (-715))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-718))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) - (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-173))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) - (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) - (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) - (-4 *3 (-326 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) - (-4 *4 (-1176 (-537))) (-5 *2 (-698 (-731))) (-5 *1 (-425 *4)))) + (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) + (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-406 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-607 *1)) (-4 *1 (-909 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-402 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-998)) - (-5 *2 (-698 (-731))) (-5 *1 (-427 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3557)) (-5 *2 (-111)) (-5 *1 (-651 *4)) - (-4 *4 (-579 (-816))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-579 (-816))) (-5 *2 (-111)) - (-5 *1 (-651 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-111)) (-5 *1 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-111)) (-5 *1 (-1122)))) + (|partial| -12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1004)) + (-4 *7 (-909 *6 *4 *5)) (-5 *2 (-607 *3)) (-5 *1 (-910 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-607 *1)) (-4 *1 (-369 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-700 *3 *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) + (-4 *4 (-691)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-909 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-311 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-1004)) (-5 *2 (-735)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-210))) (-5 *2 (-111)) (-5 *1 (-1122)))) + (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-607 (-735))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-111)) (-5 *1 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1045))))) + (-12 (-4 *1 (-909 *4 *5 *3)) (-4 *4 (-1004)) (-4 *5 (-757)) (-4 *3 (-811)) + (-5 *2 (-735))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *6)) (-4 *1 (-909 *4 *5 *6)) (-4 *4 (-1004)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-909 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-735))))) (((*1 *2 *1) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) + (-12 (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *1)) + (-4 *1 (-909 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-731))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 *6)) (-5 *3 (-537)) (-4 *6 (-291)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-606 (-160 *4))) (-5 *1 (-148 *3 *4)) - (-4 *3 (-1176 (-160 (-537)))) (-4 *4 (-13 (-347) (-805))))) + (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)) (-4 *2 (-436)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-131))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-1181 (-526))) (-5 *2 (-607 (-526))) + (-5 *1 (-469 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-436)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-909 *3 *4 *2)) (-4 *3 (-1004)) (-4 *4 (-757)) (-4 *2 (-811)) + (-4 *3 (-436))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-526)) (-4 *5 (-809)) (-4 *5 (-348)) + (-5 *2 (-735)) (-5 *1 (-904 *5 *6)) (-4 *6 (-1181 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-807) (-529))) - (-5 *2 (-816)) (-5 *1 (-31 *4 *5))))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-809)) (-4 *4 (-348)) (-5 *2 (-735)) + (-5 *1 (-904 *4 *5)) (-4 *5 (-1181 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-427 *4 *3)) - (-4 *3 (-1176 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-606 *3)) (-4 *3 (-1154))))) -(((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) -(((*1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *2 (-998)) (-5 *1 (-673 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3449 *3) (|:| |gap| (-731)) (|:| -3413 (-742 *3)) - (|:| -1672 (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-998)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) - (-5 *2 - (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) - (|:| -1672 *1))) - (-4 *1 (-1012 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 - (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) - (|:| -1672 *1))) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) - (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) - (-4 *8 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *9)))) - (-5 *3 (-606 *9)) (-4 *1 (-1147 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *8)))) - (-5 *3 (-606 *8)) (-4 *1 (-1147 *5 *6 *7 *8))))) + (-12 (-4 *2 (-348)) (-4 *2 (-809)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1181 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-111)) - (-5 *1 (-1226 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-160 (-363)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-363))) (-5 *1 (-314)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-537))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-160 (-363))))) - (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-363)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-537)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-160 (-363))))) - (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-363)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-537)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-160 (-363)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-363))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-537))) (-5 *1 (-314)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-654))) (-5 *1 (-314)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-659))) (-5 *1 (-314)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) - (-5 *4 (-300 (-661))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-654)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-659)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-661)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-654)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-659)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-661)))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-654))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-659))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-661))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-654))) (-5 *1 (-314)))) + (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-607 *3)) (-5 *1 (-904 *4 *3)) + (-4 *3 (-1181 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-233 *4 *5)) + (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) + (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) + (-5 *2 (-905 *5)) (-5 *1 (-903 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-1004)) (-5 *2 (-464 *4 *5)) + (-5 *1 (-903 *4 *5)) (-14 *4 (-607 (-1123)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-464 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) + (-5 *2 (-233 *4 *5)) (-5 *1 (-903 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-1004)) + (-5 *2 (-464 *4 *5)) (-5 *1 (-903 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117 (-526))) (-5 *2 (-526)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-178)) (-5 *3 (-526)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526)))) + ((*1 *2 *3) (-12 (-5 *2 (-1117 (-392 (-526)))) (-5 *1 (-901)) (-5 *3 (-526))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-849 *6))) + (-5 *5 (-1 (-847 *6 *8) *8 (-849 *6) (-847 *6 *8))) (-4 *6 (-1052)) + (-4 *8 (-13 (-1004) (-584 (-849 *6)) (-995 *7))) (-5 *2 (-847 *6 *8)) + (-4 *7 (-13 (-1004) (-811))) (-5 *1 (-900 *6 *7 *8))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *3 (-157 *6)) + (-4 (-905 *6) (-845 *5)) (-4 *6 (-13 (-845 *5) (-163))) + (-5 *1 (-169 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-847 *4 *1)) (-5 *3 (-849 *4)) (-4 *1 (-845 *4)) + (-4 *4 (-1052)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) + (-4 *6 (-13 (-1052) (-995 *3))) (-4 *3 (-845 *5)) (-5 *1 (-890 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) + (-4 *3 (-13 (-406 *6) (-584 *4) (-845 *5) (-995 (-581 $)))) + (-5 *4 (-849 *5)) (-4 *6 (-13 (-533) (-811) (-845 *5))) + (-5 *1 (-891 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 (-526) *3)) (-5 *4 (-849 (-526))) (-4 *3 (-525)) + (-5 *1 (-892 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *6)) (-5 *3 (-581 *6)) (-4 *5 (-1052)) + (-4 *6 (-13 (-811) (-995 (-581 $)) (-584 *4) (-845 *5))) (-5 *4 (-849 *5)) + (-5 *1 (-893 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-844 *5 *6 *3)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) + (-4 *6 (-845 *5)) (-4 *3 (-631 *6)) (-5 *1 (-894 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-847 *6 *3) *8 (-849 *6) (-847 *6 *3))) (-4 *8 (-811)) + (-5 *2 (-847 *6 *3)) (-5 *4 (-849 *6)) (-4 *6 (-1052)) + (-4 *3 (-13 (-909 *9 *7 *8) (-584 *4))) (-4 *7 (-757)) + (-4 *9 (-13 (-1004) (-811) (-845 *6))) (-5 *1 (-895 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) + (-4 *3 (-13 (-909 *8 *6 *7) (-584 *4))) (-5 *4 (-849 *5)) (-4 *7 (-845 *5)) + (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-13 (-1004) (-811) (-845 *5))) + (-5 *1 (-895 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 *3)) (-4 *5 (-1052)) (-4 *3 (-950 *6)) + (-4 *6 (-13 (-533) (-845 *5) (-584 *4))) (-5 *4 (-849 *5)) + (-5 *1 (-898 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-847 *5 (-1123))) (-5 *3 (-1123)) (-5 *4 (-849 *5)) + (-4 *5 (-1052)) (-5 *1 (-899 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-607 (-849 *7))) (-5 *5 (-1 *9 (-607 *9))) + (-5 *6 (-1 (-847 *7 *9) *9 (-849 *7) (-847 *7 *9))) (-4 *7 (-1052)) + (-4 *9 (-13 (-1004) (-584 (-849 *7)) (-995 *8))) (-5 *2 (-847 *7 *9)) + (-5 *3 (-607 *9)) (-4 *8 (-13 (-1004) (-811))) (-5 *1 (-900 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1052) (-995 *5))) (-4 *5 (-845 *4)) + (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-890 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) + ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) + ((*1 *2 *2) (-12 (-4 *3 (-811)) (-5 *1 (-889 *3 *2)) (-4 *2 (-406 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-1106)) (-5 *2 (-299 (-526))) (-5 *1 (-888)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-811)) (-5 *1 (-889 *4 *2)) (-4 *2 (-406 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-1041 (-211)))) + (-5 *1 (-887))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) + (-5 *1 (-884)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-659))) (-5 *1 (-314)))) + (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) + (-5 *1 (-884)))) + ((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) + (-5 *1 (-886)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-661))) (-5 *1 (-314)))) + (-12 (-5 *2 (-1 (-902 (-211)) (-211))) (-5 *3 (-1041 (-211))) + (-5 *1 (-886))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) + (-5 *1 (-884)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-654))) (-5 *1 (-314)))) + (-12 (-5 *2 (-607 (-1 (-211) (-211)))) (-5 *3 (-1041 (-211))) + (-5 *1 (-884)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-659))) (-5 *1 (-314)))) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) + (-4 *3 (-584 (-515))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) + (-4 *3 (-584 (-515))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *2 *1) (-12 (-5 *2 (-1041 (-211))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-211)))) (-5 *1 (-886))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-884)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-661))) (-5 *1 (-314)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-314)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 (-905 *6))) (-4 *6 (-529)) - (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) - (-4 *5 (-753)) - (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))))))) + (-12 (-5 *2 (-1 (-211) (-211))) (-5 *3 (-1041 (-211))) (-5 *1 (-884)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1123)) (-5 *5 (-1041 (-211))) (-5 *2 (-884)) (-5 *1 (-885 *3)) + (-4 *3 (-584 (-515))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-5 *2 (-884)) (-5 *1 (-885 *3)) (-4 *3 (-584 (-515)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-451)))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-884))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-884))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) + (-5 *1 (-883 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-111)) + (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) + (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *2)) (-4 *2 (-909 *3 *5 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) + (-5 *4 (-653 *12)) (-5 *5 (-607 (-392 (-905 *9)))) (-5 *6 (-607 (-607 *12))) + (-5 *7 (-735)) (-5 *8 (-526)) (-4 *9 (-13 (-292) (-141))) + (-4 *12 (-909 *9 *11 *10)) (-4 *10 (-13 (-811) (-584 (-1123)))) + (-4 *11 (-757)) + (-5 *2 + (-2 (|:| |eqzro| (-607 *12)) (|:| |neqzro| (-607 *12)) + (|:| |wcond| (-607 (-905 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1205 (-392 (-905 *9)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *9))))))))) + (-5 *1 (-883 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) - (-5 *1 (-507 *4))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-649 (-210))) (-5 *6 (-111)) (-5 *7 (-649 (-537))) - (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2 *3) - (-12 (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-283 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1040 (-800 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) - (-5 *1 (-289)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-606 *3)) (|:| |image| (-606 *3)))) - (-5 *1 (-858 *3)) (-4 *3 (-1045))))) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) + (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) (-5 *1 (-883 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-735)) (-4 *8 (-909 *5 *7 *6)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) + (-4 *7 (-757)) + (-5 *2 + (-607 + (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) + (|:| |cols| (-607 (-526)))))) + (-5 *1 (-883 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) + (-12 (-5 *4 (-607 (-607 *8))) (-5 *3 (-607 *8)) (-4 *8 (-909 *5 *7 *6)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) + (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-883 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) (-5 *2 (-607 (-607 (-526)))) (-5 *1 (-883 *4 *5 *6 *7)) + (-5 *3 (-526)) (-4 *7 (-909 *4 *6 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) - (-4 *2 (-647 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) + (-12 (-5 *2 (-607 (-607 *6))) (-4 *6 (-909 *3 *5 *4)) + (-4 *3 (-13 (-292) (-141))) (-4 *4 (-13 (-811) (-584 (-1123)))) + (-4 *5 (-757)) (-5 *1 (-883 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-1098 (-210))) (-5 *1 (-178)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) - (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1045)) - (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) - (-5 *1 (-1021 *3 *4 *2)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-5 *2 (-537)) - (-5 *1 (-426 *5 *3 *6)) (-4 *3 (-1176 *5)) - (-4 *6 (-13 (-388) (-989 *5) (-347) (-1139) (-268))))) - ((*1 *2 *3) - (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) - (-4 *3 (-1176 *4)) - (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) - (-5 *4 (-1 (-210) (-210) (-210) (-210))) - (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *1 (-657))))) -(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-314))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-731)) (-4 *6 (-347)) (-5 *4 (-1148 *6)) - (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1208 *6)) - (-5 *5 (-1098 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-606 *3)) (-5 *1 (-877 *4 *5 *6 *3)) - (-4 *3 (-902 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) - ((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *1) - (-12 (-5 *2 (-537)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) - (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-259)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *8)) (-5 *4 (-606 *6)) (-4 *6 (-807)) - (-4 *8 (-902 *7 *5 *6)) (-4 *5 (-753)) (-4 *7 (-998)) - (-5 *2 (-606 (-731))) (-5 *1 (-305 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *3 (-807)) (-5 *2 (-731)))) - ((*1 *2 *1) - (-12 (-4 *1 (-926 *3 *2 *4)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *2 (-752)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-731)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)) - (-5 *2 (-537)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-731))))) -(((*1 *1 *1) (-4 *1 (-137))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135))))) -(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1045)) - (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) - (-5 *1 (-1021 *3 *4 *2)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *2 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-998)))) - ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) + (-607 + (-2 (|:| -3406 (-735)) + (|:| |eqns| + (-607 + (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) + (|:| |cols| (-607 (-526)))))) + (|:| |fgb| (-607 *7))))) + (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) + (-5 *1 (-883 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-607 + (-2 (|:| -3406 (-735)) + (|:| |eqns| + (-607 + (-2 (|:| |det| *7) (|:| |rows| (-607 (-526))) + (|:| |cols| (-607 (-526)))))) + (|:| |fgb| (-607 *7))))) + (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 (-735)) + (-5 *1 (-883 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) (-5 *2 (-607 *3)) (-5 *1 (-883 *4 *5 *6 *3)) + (-4 *3 (-909 *4 *6 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1676 (-653 (-392 (-905 *4)))) (|:| |vec| (-607 (-392 (-905 *4)))) + (|:| -3406 (-735)) (|:| |rows| (-607 (-526))) (|:| |cols| (-607 (-526))))) + (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) + (-5 *2 + (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) + (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) - (-5 *3 (-606 *7)) (-4 *4 (-13 (-291) (-141))) - (-4 *7 (-902 *4 *6 *5)) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) - (-5 *1 (-485 *4 *5 *6 *2)) (-4 *2 (-902 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *4))))))) + (-5 *3 (-607 *7)) (-4 *4 (-13 (-292) (-141))) (-4 *7 (-909 *4 *6 *5)) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) + (-5 *1 (-883 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) + (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) + (-5 *2 + (-607 + (-2 (|:| -3406 (-735)) + (|:| |eqns| + (-607 + (-2 (|:| |det| *8) (|:| |rows| (-607 (-526))) + (|:| |cols| (-607 (-526)))))) + (|:| |fgb| (-607 *8))))) + (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-735))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) (-4 *7 (-909 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-607 *7)) (|:| |n0| (-607 *7)))) + (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-607 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-292) (-141))) (-4 *2 (-909 *4 *6 *5)) + (-5 *1 (-883 *4 *5 *6 *2)) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) + (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)) + (-4 *7 (-909 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-13 (-811) (-584 (-1123)))) + (-4 *6 (-757)) (-5 *2 (-392 (-905 *4))) (-5 *1 (-883 *4 *5 *6 *3)) + (-4 *3 (-909 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) + (-5 *2 (-653 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) + (-5 *2 (-607 (-392 (-905 *4)))) (-5 *1 (-883 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-653 *11)) (-5 *4 (-607 (-392 (-905 *8)))) (-5 *5 (-735)) + (-5 *6 (-1106)) (-4 *8 (-13 (-292) (-141))) (-4 *11 (-909 *8 *10 *9)) + (-4 *9 (-13 (-811) (-584 (-1123)))) (-4 *10 (-757)) + (-5 *2 + (-2 + (|:| |rgl| + (-607 + (-2 (|:| |eqzro| (-607 *11)) (|:| |neqzro| (-607 *11)) + (|:| |wcond| (-607 (-905 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1205 (-392 (-905 *8)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *8)))))))))) + (|:| |rgsz| (-526)))) + (-5 *1 (-883 *8 *9 *10 *11)) (-5 *7 (-526))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) + (-5 *2 + (-607 + (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) + (|:| |wcond| (-607 (-905 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) + (-5 *1 (-883 *4 *5 *6 *7)) (-4 *7 (-909 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) + (-12 + (-5 *3 + (-607 + (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) + (|:| |wcond| (-607 (-905 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) + (-5 *4 (-1106)) (-4 *5 (-13 (-292) (-141))) (-4 *8 (-909 *5 *7 *6)) + (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 (-526)) + (-5 *1 (-883 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-4 *8 (-909 *5 *7 *6)) (-4 *5 (-13 (-292) (-141))) + (-4 *6 (-13 (-811) (-584 (-1123)))) (-4 *7 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) - (|:| |wcond| (-606 (-905 *5))) + (-607 + (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) + (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) - (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) + (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-607 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-606 (-1117))) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-607 (-1123))) (-4 *8 (-909 *5 *7 *6)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) + (-4 *7 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) - (|:| |wcond| (-606 (-905 *5))) + (-607 + (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) + (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) - (-5 *1 (-877 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) + (-5 *1 (-883 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) - (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-909 *4 *6 *5)) (-4 *4 (-13 (-292) (-141))) + (-4 *5 (-13 (-811) (-584 (-1123)))) (-4 *6 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) - (|:| |wcond| (-606 (-905 *4))) + (-607 + (-2 (|:| |eqzro| (-607 *7)) (|:| |neqzro| (-607 *7)) + (|:| |wcond| (-607 (-905 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) - (-5 *1 (-877 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *4)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *4)))))))))) + (-5 *1 (-883 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) - (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) - (-4 *8 (-753)) + (-12 (-5 *3 (-653 *9)) (-5 *5 (-878)) (-4 *9 (-909 *6 *8 *7)) + (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) + (-4 *8 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) - (|:| |wcond| (-606 (-905 *6))) + (-607 + (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) + (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) - (-5 *1 (-877 *6 *7 *8 *9)) (-5 *4 (-606 *9)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) + (-5 *1 (-883 *6 *7 *8 *9)) (-5 *4 (-607 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) - (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) - (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) + (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) + (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) + (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) - (|:| |wcond| (-606 (-905 *6))) + (-607 + (-2 (|:| |eqzro| (-607 *9)) (|:| |neqzro| (-607 *9)) + (|:| |wcond| (-607 (-905 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) - (-5 *1 (-877 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *6)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *6)))))))))) + (-5 *1 (-883 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-874)) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-878)) (-4 *8 (-909 *5 *7 *6)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) + (-4 *7 (-757)) (-5 *2 - (-606 - (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) - (|:| |wcond| (-606 (-905 *5))) + (-607 + (-2 (|:| |eqzro| (-607 *8)) (|:| |neqzro| (-607 *8)) + (|:| |wcond| (-607 (-905 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) - (-5 *1 (-877 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1205 (-392 (-905 *5)))) + (|:| -2104 (-607 (-1205 (-392 (-905 *5)))))))))) + (-5 *1 (-883 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 *9)) (-5 *5 (-1100)) - (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) - (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *6 *7 *8 *9)))) + (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 *9)) (-5 *5 (-1106)) + (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) + (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) + (-5 *1 (-883 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-1100)) - (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) - (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-1100)) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) + (-12 (-5 *3 (-653 *9)) (-5 *4 (-607 (-1123))) (-5 *5 (-1106)) + (-4 *9 (-909 *6 *8 *7)) (-4 *6 (-13 (-292) (-141))) + (-4 *7 (-13 (-811) (-584 (-1123)))) (-4 *8 (-757)) (-5 *2 (-526)) + (-5 *1 (-883 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-1106)) (-4 *8 (-909 *5 *7 *6)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-13 (-811) (-584 (-1123)))) + (-4 *7 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 *10)) (-5 *5 (-874)) - (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) - (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *7 *8 *9 *10)))) + (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 *10)) (-5 *5 (-878)) (-5 *6 (-1106)) + (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) + (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) + (-5 *1 (-883 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) - (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) - (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *7 *8 *9 *10)))) + (-12 (-5 *3 (-653 *10)) (-5 *4 (-607 (-1123))) (-5 *5 (-878)) (-5 *6 (-1106)) + (-4 *10 (-909 *7 *9 *8)) (-4 *7 (-13 (-292) (-141))) + (-4 *8 (-13 (-811) (-584 (-1123)))) (-4 *9 (-757)) (-5 *2 (-526)) + (-5 *1 (-883 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *4 (-874)) (-5 *5 (-1100)) - (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) - (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) - (-5 *1 (-877 *6 *7 *8 *9))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) - (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) - (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *8))) - (-5 *1 (-864 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) - (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) - (-4 *6 (-326 (-391 (-537)) *4 *5)) - (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *6))) - (-5 *1 (-865 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-731))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-210)) - (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 *4)))) - (|:| |xValues| (-1040 *4)) (|:| |yValues| (-1040 *4)))) - (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-930 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-160 *4)) (-5 *1 (-171 *4 *3)) - (-4 *4 (-13 (-347) (-805))) (-4 *3 (-1176 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-4 *1 (-388)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-388)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) - (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1084 *4 *2)) (-14 *4 (-874)) - (-4 *2 (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (-5 *1 (-855 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-606 (-391 *7))) - (-4 *7 (-1176 *6)) (-5 *3 (-391 *7)) (-4 *6 (-347)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-547 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) + (-12 (-5 *3 (-653 *9)) (-5 *4 (-878)) (-5 *5 (-1106)) (-4 *9 (-909 *6 *8 *7)) + (-4 *6 (-13 (-292) (-141))) (-4 *7 (-13 (-811) (-584 (-1123)))) + (-4 *8 (-757)) (-5 *2 (-526)) (-5 *1 (-883 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-941 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-1052 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |k| (-633 *3)) (|:| |c| *4)))) - (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1113 *3)) (-4 *3 (-352)) (-4 *1 (-313 *3)) - (-4 *3 (-347))))) -(((*1 *2 *1) - (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) - (-4 *3 (-1176 *4)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-683)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111))))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-4 *2 (-1181 *4)) + (-5 *1 (-882 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *1 (-880)) (-5 *2 (-2 (|:| -4270 (-607 *1)) (|:| -2470 *1))) + (-5 *3 (-607 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-880))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-435)) (-4 *4 (-807)) - (-5 *1 (-546 *4 *2)) (-4 *2 (-268)) (-4 *2 (-414 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-998)) - (-5 *1 (-980 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789))))) + (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) + (-5 *1 (-877 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-606 (-818 *4))) - (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-454 *4 *5 *6)) - (-4 *6 (-435))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *1 *1) (|partial| -4 *1 (-1093)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-4 *2 (-1176 *4)) - (-5 *1 (-875 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) - (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) + (-12 (-5 *2 (-607 (-905 *4))) (-5 *3 (-607 (-1123))) (-4 *4 (-436)) + (-5 *1 (-877 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2) (-12 (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-878))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-864 (-526))) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-864 (-526))) (-5 *1 (-876))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *2)) + (-4 *2 (-909 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *5 (-292)) (-5 *1 (-875 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *6 *4 *5)) (-5 *1 (-875 *4 *5 *6 *2)) + (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-390 *2)) (-4 *2 (-292)) (-5 *1 (-873 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) - (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1045) (-989 *5))) - (-4 *5 (-839 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-884 *4 *5 *6))))) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-13 (-292) (-141))) + (-5 *2 (-50)) (-5 *1 (-874 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-390 (-905 *6))) (-5 *5 (-1123)) (-5 *3 (-905 *6)) + (-4 *6 (-13 (-292) (-141))) (-5 *2 (-50)) (-5 *1 (-874 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-873 *3)) (-4 *3 (-292))))) +(((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-4 *2 (-292))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) - (-5 *2 (-1113 *3))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-747)) (-5 *2 (-986)) - (-5 *3 - (-2 (|:| |fn| (-300 (-210))) - (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-747)) (-5 *2 (-986)) - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-138)))) - ((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-138))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) - (-5 *1 (-709))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) - (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1124))))) + (-12 (-4 *3 (-1181 (-392 (-526)))) (-5 *1 (-872 *3 *2)) + (-4 *2 (-1181 (-392 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) + (-4 *3 (-1181 (-392 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526))))) + (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *5)) + (-4 *5 (-1181 (-392 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1181 (-392 (-526)))) + (-5 *2 (-2 (|:| |den| (-526)) (|:| |gcdnum| (-526)))) (-5 *1 (-872 *3 *4)) + (-4 *4 (-1181 (-392 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1181 (-392 *2))) (-5 *2 (-526)) (-5 *1 (-872 *4 *3)) + (-4 *3 (-1181 (-392 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-1181 (-392 *3))) (-5 *2 (-878)) + (-5 *1 (-872 *4 *5)) (-4 *5 (-1181 (-392 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) + (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) + (-4 *4 (-13 (-811) (-533) (-995 (-526)))) + (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *8))) + (-5 *1 (-870 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) + (-4 *4 (-1181 (-392 (-526)))) (-4 *5 (-1181 (-392 *4))) + (-4 *6 (-327 (-392 (-526)) *4 *5)) + (-5 *2 (-2 (|:| -4090 (-735)) (|:| -2444 *6))) (-5 *1 (-871 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-318 *5 *6 *7 *8)) (-4 *5 (-406 *4)) (-4 *6 (-1181 *5)) + (-4 *7 (-1181 (-392 *6))) (-4 *8 (-327 *5 *6 *7)) + (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-111)) + (-5 *1 (-870 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-318 (-392 (-526)) *4 *5 *6)) (-4 *4 (-1181 (-392 (-526)))) + (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 (-392 (-526)) *4 *5)) (-5 *2 (-111)) + (-5 *1 (-871 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-436)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1117 *6)) (-4 *6 (-909 *5 *3 *4)) (-4 *3 (-757)) (-4 *4 (-811)) + (-4 *5 (-869)) (-5 *1 (-441 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-869))))) +(((*1 *2 *3) + (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) + (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) + ((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-390 (-1117 *1))) (-5 *1 (-299 *4)) (-5 *3 (-1117 *1)) + (-4 *4 (-436)) (-4 *4 (-533)) (-4 *4 (-811)))) + ((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *2 (-390 (-1117 *1))) (-5 *3 (-1117 *1))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) (-4 *5 (-157 *4)) + (-4 *4 (-525)) (-5 *1 (-143 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-1181 *4)) + (-4 *4 (-335)) (-5 *1 (-343 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 (-526)))) (-5 *3 (-1117 (-526))) + (-5 *1 (-548)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 *1))) (-5 *3 (-1117 *1)) (-4 *1 (-869))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-649 (-391 (-905 (-537))))) - (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 (-111) (-606 *1))) - (-4 *1 (-1018 *4 *5 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-977 (-800 (-537)))) - (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *4)))) (-4 *4 (-998)) - (-5 *1 (-562 *4))))) -(((*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) - (-14 *3 (-874)) (-4 *4 (-998))))) + (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-335)) (-5 *2 (-1205 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-653 *1)) (-4 *1 (-139)) (-4 *1 (-869)) + (-5 *2 (-1205 *1))))) +(((*1 *1 *1) (|partial| -4 *1 (-139))) ((*1 *1 *1) (-4 *1 (-335))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-869))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-1200 *3)) - (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |h| *6) - (|:| |c1| (-391 *6)) (|:| |c2| (-391 *6)) (|:| -4065 *6))) - (-5 *1 (-968 *5 *6)) (-5 *3 (-391 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |c| (-391 *6)) - (|:| -4065 *6))) - (-5 *1 (-967 *5 *6)) (-5 *3 (-391 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) - (-5 *2 (-606 (-1117))) (-5 *1 (-1021 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-731)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) - (-4 *2 (-1176 *3))))) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-811)) (-4 *5 (-869)) (-4 *6 (-757)) + (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-390 (-1117 *8))) (-5 *1 (-866 *5 *6 *7 *8)) + (-5 *4 (-1117 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) + (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) (((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-731)) (-5 *1 (-534))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-441 *3 *4 *2 *5)) + (-4 *5 (-909 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-757)) (-4 *4 (-811)) (-4 *2 (-869)) (-5 *1 (-866 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-869)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1181 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-911 (-1113 *4))) (-5 *1 (-341 *4)) - (-5 *3 (-1113 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) - (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) - (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-111)) - (-5 *1 (-877 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-476))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2))))) + (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) + (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) + (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-643 *4 *5)) (-4 *4 (-1045)))) - ((*1 *2 *2) - (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) + (-12 (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-909 *4 *5 *6)) + (-5 *2 (-390 (-1117 *7))) (-5 *1 (-866 *4 *5 *6 *7)) (-5 *3 (-1117 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) - ((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) - ((*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-789))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) - (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 *3)))) - (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) - (-4 *7 (-617 (-391 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) - (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 (-615 *6 (-391 *6)))))) - (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6)))))) -(((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) + (-12 (-4 *4 (-869)) (-4 *5 (-1181 *4)) (-5 *2 (-390 (-1117 *5))) + (-5 *1 (-867 *4 *5)) (-5 *3 (-1117 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) + (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-869)) (-4 *5 (-757)) (-4 *6 (-811)) + (-5 *1 (-866 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 *5))) (-5 *3 (-1117 *5)) + (-4 *5 (-1181 *4)) (-4 *4 (-869)) (-5 *1 (-867 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-607 (-1117 *7))) (-5 *3 (-1117 *7)) + (-4 *7 (-909 *5 *6 *4)) (-4 *5 (-869)) (-4 *6 (-757)) (-4 *4 (-811)) + (-5 *1 (-866 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-607 *6)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) ((*1 *1) (-4 *1 (-525))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) + ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-861 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-607 (-735)))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-861 *3))) (-4 *3 (-1052)) (-5 *1 (-864 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-1048 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-607 *4))) (-5 *1 (-864 *4)) + (-5 *3 (-607 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-1048 (-1048 *4))) (-5 *1 (-864 *4)) + (-5 *3 (-1048 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1048 (-1048 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) + (-5 *1 (-864 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1052)) (-5 *2 (-607 (-735))) + (-5 *1 (-864 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1052)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-864 *4)) (-4 *4 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-864 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-863 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-4 *1 (-863 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *2 (-606 (-391 (-537)))) (-5 *1 (-971 *4)) - (-4 *4 (-1176 (-537)))))) + (-12 (-5 *3 (-1090 *4 *2)) (-14 *4 (-878)) + (-4 *2 (-13 (-1004) (-10 -7 (-6 (-4312 "*"))))) (-5 *1 (-862 *4 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-606 *6)) - (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *2 (-986)) - (-5 *1 (-710))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-607 *3)) (|:| |image| (-607 *3)))) + (-5 *1 (-861 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-607 *3))) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 (-526))) (-4 *1 (-283)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-861 *3)) (-4 *3 (-1052))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) - (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-606 (-1148 *5))) - (-5 *1 (-1208 *5)) (-5 *4 (-1148 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-275))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-843 *4 *3)) - (-4 *3 (-1154)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) - (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-537)) (-4 *5 (-805)) (-4 *5 (-347)) - (-5 *2 (-731)) (-5 *1 (-898 *5 *6)) (-4 *6 (-1176 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-391 (-905 (-537))))) - (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)) - (-5 *3 (-300 (-537)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5))))) + (-12 (-5 *2 (-1048 *3)) (-5 *1 (-861 *3)) (-4 *3 (-353)) (-4 *3 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-861 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2) (-12 (-5 *1 (-860 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-735)) (-4 *1 (-217 *4)) (-4 *4 (-1004)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-217 *3)) (-4 *3 (-1004)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-735)))) + ((*1 *1 *1) (-4 *1 (-219))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *3 (-13 (-348) (-141))) (-5 *1 (-384 *3 *4)) + (-4 *4 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-348) (-141))) (-5 *1 (-384 *2 *3)) (-4 *3 (-1181 *2)))) + ((*1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 *4)) (-5 *3 (-607 (-735))) (-4 *1 (-859 *4)) + (-4 *4 (-1052)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-859 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *1 (-859 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-859 *2)) (-4 *2 (-1052))))) (((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1))) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) - (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) - ((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 (-731)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-286))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) - (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) + (-12 (-5 *3 (-733)) (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *7 *8 *9 *3 *4)) (-4 *4 (-1018 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) + (-5 *1 (-541)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) - (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) + (-12 (-5 *3 (-733)) (-5 *4 (-1016)) (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) + (-5 *1 (-541)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-751)) (-5 *3 (-1016)) + (-5 *4 + (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) + (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) + (|:| |extra| (-992)))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) + (-12 (-4 *1 (-751)) (-5 *3 (-1016)) + (-5 *4 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) -(((*1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782))))) -(((*1 *2 *1) - (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) - (-14 *4 (-731)) (-4 *5 (-163))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) - ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) - ((*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-210))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) - (-5 *1 (-289))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-105 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-608 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-314)))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) - (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-606 *7) (-606 *7))) (-5 *2 (-606 *7)) - (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-303 *3 *4 *5)) - (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) - (-4 *4 (-37 (-391 (-537))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-391 (-537)))) - (-5 *2 (-2 (|:| -1378 (-1098 *4)) (|:| -1389 (-1098 *4)))) - (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) - (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-111)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-606 (-537))) - (|:| |cols| (-606 (-537))))) - (-5 *4 (-649 *12)) (-5 *5 (-606 (-391 (-905 *9)))) - (-5 *6 (-606 (-606 *12))) (-5 *7 (-731)) (-5 *8 (-537)) - (-4 *9 (-13 (-291) (-141))) (-4 *12 (-902 *9 *11 *10)) - (-4 *10 (-13 (-807) (-580 (-1117)))) (-4 *11 (-753)) + (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)) + (|:| |extra| (-992)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-764)) (-5 *3 (-1016)) + (-5 *4 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-772)) (-5 *2 - (-2 (|:| |eqzro| (-606 *12)) (|:| |neqzro| (-606 *12)) - (|:| |wcond| (-606 (-905 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *9)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *9))))))))) - (-5 *1 (-877 *9 *10 *11 *12))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1201)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1202)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202))))) -(((*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-251))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-4 *7 (-902 *4 *6 *5)) + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-769)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-772)) (-5 *4 (-1016)) (-5 *2 - (-2 (|:| |sysok| (-111)) (|:| |z0| (-606 *7)) (|:| |n0| (-606 *7)))) - (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-845 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1045)) - (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-845 *4)) (-5 *3 (-606 (-1 (-111) *5))) (-4 *4 (-1045)) - (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-845 *5)) (-5 *3 (-606 (-1117))) - (-5 *4 (-1 (-111) (-606 *6))) (-4 *5 (-1045)) (-4 *6 (-1154)) - (-5 *1 (-843 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1154)) (-4 *4 (-807)) - (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-4 *4 (-807)) - (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-769)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1154)) - (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) + (-12 (-4 *1 (-800)) (-5 *3 (-1016)) + (-5 *4 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) + (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) - (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1 (-111) (-606 *6))) - (-4 *6 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-5 *1 (-1021 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2)))) + (-12 (-4 *1 (-800)) (-5 *3 (-1016)) + (-5 *4 + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) ((*1 *2 *3) - (-12 (-4 *4 (-163)) (-4 *2 (-1176 *4)) (-5 *1 (-167 *4 *2 *3)) - (-4 *3 (-685 *4 *2)))) + (-12 (-5 *3 (-802)) + (-5 *2 + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-801)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-391 (-905 *5)))) (-5 *4 (-1117)) - (-5 *2 (-905 *5)) (-5 *1 (-276 *5)) (-4 *5 (-435)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-5 *2 (-905 *4)) - (-5 *1 (-276 *4)) (-4 *4 (-435)))) - ((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-160 (-391 (-537))))) - (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *4)) - (-4 *4 (-13 (-347) (-805))))) + (-12 (-5 *3 (-802)) (-5 *4 (-1016)) + (-5 *2 + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-801)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *4 (-1117)) - (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *5)) - (-4 *5 (-13 (-347) (-805))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-905 (-391 (-537)))) - (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *4 (-1117)) - (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *5)) - (-4 *5 (-13 (-347) (-805)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-264))) (-5 *1 (-264)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-5 *2 (-111))))) + (-12 (-4 *1 (-854)) (-5 *3 (-1016)) + (-5 *4 + (-2 (|:| |pde| (-607 (-299 (-211)))) + (|:| |constraints| + (-607 + (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) + (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) + (|:| |dFinish| (-653 (-211)))))) + (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) + (|:| |tol| (-211)))) + (-5 *2 (-2 (|:| -2968 (-363)) (|:| |explanations| (-1106)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-857)) + (-5 *2 + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857)) (-5 *4 (-1016)) + (-5 *2 + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *1 (-856))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-5 *1 (-855 *2 *4)) (-4 *2 (-1181 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-717))))) + (|partial| -12 (-4 *3 (-348)) (-5 *1 (-855 *2 *3)) (-4 *2 (-1181 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-578 *5))) (-4 *4 (-807)) (-5 *2 (-578 *5)) - (-5 *1 (-546 *4 *5)) (-4 *5 (-414 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) + (-12 (-4 *1 (-854)) + (-5 *3 + (-2 (|:| |pde| (-607 (-299 (-211)))) + (|:| |constraints| + (-607 + (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) + (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) + (|:| |dFinish| (-653 (-211)))))) + (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) + (|:| |tol| (-211)))) + (-5 *2 (-992))))) +(((*1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-515))) ((*1 *1) (-4 *1 (-687))) ((*1 *1) (-4 *1 (-691))) + ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052)))) + ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-811))))) (((*1 *2 *1) - (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *2)) - (-2 (|:| -2009 *5) (|:| -3283 *2)))) - (-4 *2 (-223 (-2258 *3) (-731))) (-5 *1 (-444 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-807)) (-4 *7 (-902 *4 *2 (-818 *3)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) - (-5 *2 (-1113 *3)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) + (-5 *2 (-607 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) - (-5 *2 (-1113 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) - (-4 *3 (-529)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) - (-4 *5 (-1176 *4)) (-5 *2 (-606 (-391 *5))) (-5 *1 (-968 *4 *5)) - (-5 *3 (-391 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *3 (-210)) - (-5 *2 (-986)) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) - (-5 *2 (-2 (|:| |radicand| (-391 *5)) (|:| |deg| (-731)))) - (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1154)) - (-4 *3 (-357 *4)) (-4 *5 (-357 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) + (-12 (-5 *2 (-607 (-2 (|:| |k| (-852 *3)) (|:| |c| *4)))) + (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-637 *3))) (-5 *1 (-852 *3)) (-4 *3 (-811))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))))) ((*1 *2 *3) - (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) + (-12 (-5 *3 (-50)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1159)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-852 *3)) (-4 *3 (-811))))) +(((*1 *2 *3) + (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-607 *5)) (-5 *1 (-850 *4 *5)) + (-4 *5 (-1159))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1159))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-111)) + (-5 *1 (-847 *4 *5)) (-4 *5 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-850 *5 *3)) + (-4 *3 (-1159)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-849 *5)) (-4 *5 (-1052)) (-4 *6 (-1159)) + (-5 *2 (-111)) (-5 *1 (-850 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-333)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) - (-5 *1 (-202 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1117)) - (-5 *5 (-800 *7)) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-4 *7 (-13 (-1139) (-29 *6))) (-5 *1 (-209 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1113 *6)) (-5 *4 (-800 *6)) - (-4 *6 (-13 (-1139) (-29 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-209 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-1021 *3 *4 *5))) (-4 *3 (-1045)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) - (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) - (-5 *1 (-1022 *3 *4 *5))))) + (-12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-850 *4 *5)) (-4 *5 (-1159))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-515))) ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052))))) (((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) - (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) - (-4 *6 (-435)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) - (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) - (-4 *6 (-435))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (|partial| -12 (-5 *2 (-2 (|:| -2805 (-112)) (|:| |arg| (-607 (-849 *3))))) + (-5 *1 (-849 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-849 *4))) (-5 *1 (-849 *4)) + (-4 *4 (-1052))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-288)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-849 *3)) (|:| |den| (-849 *3)))) + (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-111)) (-5 *1 (-849 *4)) (-4 *4 (-1052))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-50)) (-5 *1 (-849 *4)) (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-607 (-1123))) (|:| |pred| (-50)))) + (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-50))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) (((*1 *2 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef2| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| -2211 *1) (|:| |coef2| *1))) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-111)) (-5 *1 (-284))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-530 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) - (-4 *1 (-809 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529))))) + (|partial| -12 (-5 *2 (-607 (-849 *3))) (-5 *1 (-849 *3)) (-4 *3 (-1052))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-5 *2 (-2 (|:| -2337 (-606 *6)) (|:| -3309 (-606 *6))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-300 (-210)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) - (-5 *1 (-191))))) + (-12 (-4 *4 (-1052)) (-5 *2 (-111)) (-5 *1 (-844 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *5 (-631 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-847 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *1) + (-12 (-4 *3 (-1052)) (-5 *1 (-844 *2 *3 *4)) (-4 *2 (-1052)) + (-4 *4 (-631 *3)))) + ((*1 *1) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-570 *4 *3)) (-4 *4 (-1045)) - (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-14 *4 (-606 (-1117))) (-14 *5 (-731)) - (-5 *2 - (-606 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537)))))) - (-5 *1 (-486 *4 *5)) - (-5 *3 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537)))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) -(((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) - ((*1 *1 *1) - (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) - (-14 *3 (-606 (-1117)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1176 *6)) - (-4 *6 (-13 (-347) (-141) (-989 *4))) (-5 *4 (-537)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) - (|:| -4113 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-967 *6 *3))))) + (|partial| -12 (-5 *3 (-849 *4)) (-4 *4 (-1052)) (-4 *2 (-1052)) + (-5 *1 (-847 *4 *2))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-849 *4)) (-4 *4 (-1052)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1052))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) - (-14 *6 (-606 (-1117))) - (-5 *2 - (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) - (-5 *1 (-591 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-998)) (-4 *2 (-1176 *4)) - (-5 *1 (-427 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-391 (-1113 (-300 *5)))) (-5 *3 (-1200 (-300 *5))) - (-5 *4 (-537)) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-1074 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-291)) - (-5 *2 (-391 (-402 (-905 *4)))) (-5 *1 (-993 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-896 (-210)))) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-173))))) + (-12 (-4 *5 (-1052)) (-4 *6 (-845 *5)) (-5 *2 (-844 *5 *6 (-607 *6))) + (-5 *1 (-846 *5 *6 *4)) (-5 *3 (-607 *6)) (-4 *4 (-584 (-849 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 *3))) (-5 *1 (-846 *5 *3 *4)) + (-4 *3 (-995 (-1123))) (-4 *3 (-845 *5)) (-4 *4 (-584 (-849 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-5 *2 (-607 (-278 (-905 *3)))) (-5 *1 (-846 *5 *3 *4)) + (-4 *3 (-1004)) (-3636 (-4 *3 (-995 (-1123)))) (-4 *3 (-845 *5)) + (-4 *4 (-584 (-849 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-5 *2 (-847 *5 *3)) (-5 *1 (-846 *5 *3 *4)) + (-3636 (-4 *3 (-995 (-1123)))) (-3636 (-4 *3 (-1004))) (-4 *3 (-845 *5)) + (-4 *4 (-584 (-849 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-581 *4)) (-4 *4 (-811)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-5 *2 (-111)) (-5 *1 (-846 *5 *3 *4)) (-4 *3 (-845 *5)) + (-4 *4 (-584 (-849 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *6)) (-4 *6 (-845 *5)) (-4 *5 (-1052)) (-5 *2 (-111)) + (-5 *1 (-846 *5 *6 *4)) (-4 *4 (-584 (-849 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 *1)) (-4 *1 (-414 *4)) - (-4 *4 (-807)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807))))) -(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1009)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-529) (-807))) (-5 *2 (-160 *5)) - (-5 *1 (-566 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) - (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139)))))) -(((*1 *2) - (-12 (-4 *4 (-347)) (-5 *2 (-874)) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) - ((*1 *2) - (-12 (-4 *4 (-347)) (-5 *2 (-793 (-874))) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) - ((*1 *2) - (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874)))))) + (-12 (-5 *2 (-847 *4 *5)) (-5 *3 (-847 *4 *6)) (-4 *4 (-1052)) + (-4 *5 (-1052)) (-4 *6 (-631 *5)) (-5 *1 (-844 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-1047 (-1047 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-951 *3)) (-4 *3 (-163)) (-5 *1 (-759 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) - (-4 *6 (-13 (-529) (-989 *5))) (-4 *5 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *6)))))) (-5 *1 (-990 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) (-4 *1 (-920)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-779 *3)) (-4 *3 (-807))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-715))))) -(((*1 *2 *2) - (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1082 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) - (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) - (-5 *1 (-1083 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-606 (-1082 *3 *4))) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-537)) (-5 *1 (-428 *2)) (-4 *2 (-998))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-226)))) + (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *4)) (-5 *1 (-844 *3 *4 *5)) + (-4 *3 (-1052)) (-4 *5 (-631 *4))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1052)) (-5 *2 (-847 *3 *5)) (-5 *1 (-844 *3 *4 *5)) + (-4 *3 (-1052)) (-4 *5 (-631 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526))))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1205)) (-5 *1 (-226))))) -(((*1 *2 *3) - (-12 (-4 *4 (-807)) - (-5 *2 - (-2 (|:| |f1| (-606 *4)) (|:| |f2| (-606 (-606 (-606 *4)))) - (|:| |f3| (-606 (-606 *4))) (|:| |f4| (-606 (-606 (-606 *4)))))) - (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 (-606 *4))))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) - (-5 *1 (-709))))) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *3 (-607 (-526))) (-5 *1 (-842))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-607 (-526)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) + ((*1 *2 *3) (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1101 (-607 (-526)))) (-5 *1 (-842)) (-5 *3 (-526))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-836 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-838 *2)) (-4 *2 (-1159)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *1 (-841 *2)) (-4 *2 (-1159))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-607 (-1128))) (-5 *1 (-839))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)) (-5 *3 (-1106)))) + ((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-227)))) + ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-833))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1159)) (-4 *3 (-1159))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-731)))) + (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-116 *3)) (-14 *3 (-526)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-292)) (-5 *1 (-165 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-165 (-526))) (-5 *1 (-730 *3)) (-4 *3 (-389)))) ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) - (-5 *2 (-731)))) + (-12 (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-830 *3)) (-14 *3 (-526)))) ((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-687))))) + (-12 (-14 *3 (-526)) (-5 *2 (-165 (-392 (-526)))) (-5 *1 (-831 *3 *4)) + (-4 *4 (-829 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) + ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-388 *3)) (-4 *3 (-389)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) + ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-1101 (-526)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-2 (|:| |k| (-779 *3)) (|:| |c| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *2 *3) - (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)) (-5 *3 (-1100))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) + (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-274 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1181 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) - (-5 *2 (-649 *3))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) + (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1181 *3)) (-5 *1 (-677 *3 *2)) (-4 *3 (-1004)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-680 *3 *2 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526))))) +(((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-5 *2 (-526))))) +(((*1 *1 *1) (-4 *1 (-829 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117 (-526))) (-5 *3 (-526)) (-4 *1 (-829 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-392 *6)) + (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) + (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) + (-5 *1 (-827 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-735)) (-5 *4 (-1195 *5 *6 *7)) (-4 *5 (-348)) + (-14 *6 (-1123)) (-14 *7 *5) (-5 *2 (-392 (-1174 *6 *5))) + (-5 *1 (-827 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-735)) (-4 *5 (-348)) (-5 *2 (-165 *6)) + (-5 *1 (-826 *5 *4 *6)) (-4 *4 (-1198 *5)) (-4 *6 (-1181 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-823))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-1159)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-735)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) + (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) + ((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823))))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) + ((*1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) + (-5 *4 (-299 (-159 (-363)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-363))) + (-5 *1 (-315)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-526))) + (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-159 (-363))))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-363)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-526)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-159 (-363))))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-363)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-526)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-159 (-363)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-363))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-526))) (-5 *1 (-315)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-658))) + (-5 *1 (-315)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-663))) + (-5 *1 (-315)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-905 (-526)))) (-5 *4 (-299 (-665))) + (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-658)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-663)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-299 (-665)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-658)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-663)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-299 (-665)))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-658))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-663))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-665))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-658))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-663))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-653 (-665))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-658))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-663))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-299 (-665))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-1106)) (-5 *1 (-315)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-823)))) + ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-823))) ((*1 *1 *1 *1) (-5 *1 (-823))) + ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-283)))) + ((*1 *1 *1) (-4 *1 (-283))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823)))) + ((*1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1106)) (-5 *1 (-179)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-823))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-811)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-347) (-141))) - (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) - (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) - (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) - (-4 *2 (-647 *3 *5 *6))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |rm| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-811)))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1 *1) (-5 *1 (-735))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *1 *1 *1) (-4 *1 (-292))) ((*1 *1 *1 *1) (-5 *1 (-735))) + ((*1 *1 *1 *1) (-5 *1 (-823)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-127)) (-5 *2 (-1070))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-822)) (-5 *3 (-128)) (-5 *2 (-1070))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-50))) (-5 *2 (-1211)) (-5 *1 (-820))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *3 (-606 (-247))) - (-5 *1 (-245)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-463 *5 *6))) (-5 *3 (-463 *5 *6)) - (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-1200 *6)) - (-5 *1 (-594 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998))))) + (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-37 (-392 (-526)))) + (-4 *2 (-163))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-735)) (-5 *1 (-817 *2)) (-4 *2 (-163))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-348)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) + (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) + (-4 *3 (-813 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) + (-5 *1 (-731 *3 *4)) (-4 *3 (-673 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-348)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-348)) (-4 *5 (-1004)) + (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) + (-4 *3 (-813 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) + (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) + (-4 *3 (-813 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-533)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| -2072 *1) (|:| -3202 *1))) (-4 *1 (-813 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-533)) (-4 *5 (-1004)) + (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-814 *5 *3)) + (-4 *3 (-813 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-613 *5)) (-4 *5 (-1004)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-813 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-653 *3)) (-4 *1 (-403 *3)) (-4 *3 (-163)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-814 *2 *3)) + (-4 *3 (-813 *2))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1004)) (-5 *1 (-814 *5 *2)) + (-4 *2 (-813 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-348)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) + (-4 *1 (-813 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-348)) (-4 *3 (-1004)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) + (-4 *1 (-813 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-348)) (-5 *1 (-731 *2 *3)) (-4 *2 (-673 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) + (-14 *4 (-735))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) + (-14 *4 (-735))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1205 *5)) (-4 *5 (-756)) (-5 *2 (-111)) (-5 *1 (-806 *4 *5)) + (-14 *4 (-735))))) +(((*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) + ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-803 (-526))) (-5 *1 (-514)))) + ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-796 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-803 *3)) (-4 *3 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) + (-5 *1 (-801))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) - (-5 *2 (-2 (|:| -2228 *3) (|:| |nconst| *3))) (-5 *1 (-540 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) + (-12 (-5 *3 (-802)) (-5 *4 (-1016)) (-5 *2 (-992)) (-5 *1 (-801)))) + ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-992)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) + (-5 *6 (-607 (-299 (-363)))) (-5 *3 (-299 (-363))) (-5 *2 (-992)) + (-5 *1 (-801)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *5 (-607 (-803 (-363)))) + (-5 *2 (-992)) (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 (-363))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) + (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-299 (-363)))) (-5 *4 (-607 (-363))) (-5 *2 (-992)) + (-5 *1 (-801))))) (((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-807)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-606 (-1113 *13))) (-5 *3 (-1113 *13)) - (-5 *4 (-606 *12)) (-5 *5 (-606 *10)) (-5 *6 (-606 *13)) - (-5 *7 (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *13))))) - (-5 *8 (-606 (-731))) (-5 *9 (-1200 (-606 (-1113 *10)))) - (-4 *12 (-807)) (-4 *10 (-291)) (-4 *13 (-902 *10 *11 *12)) - (-4 *11 (-753)) (-5 *1 (-668 *11 *12 *10 *13))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) + (-12 (-4 *1 (-800)) + (-5 *3 + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (-5 *2 (-992)))) + ((*1 *2 *3) + (-12 (-4 *1 (-800)) + (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) + (-5 *2 (-992))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-201 (-484))) (-5 *1 (-799))))) +(((*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)))) + ((*1 *2 *3) + (-12 (-4 *4 (-533)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-652 *4 *5 *6 *3)) + (-4 *3 (-650 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004)))) + ((*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004))))) +(((*1 *2 *2) + (-12 (-4 *2 (-163)) (-4 *2 (-1004)) (-5 *1 (-679 *2 *3)) (-4 *3 (-613 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-163)) (-4 *2 (-1004))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-112)) (-5 *4 (-607 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1052)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-607 *4))) (-4 *4 (-1052)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-607 *4))) (-5 *1 (-113 *4)) + (-4 *4 (-1052)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1055))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) + (-5 *1 (-679 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-613 *3)) (-4 *3 (-1004)) + (-5 *1 (-679 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-798 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-112)) (-4 *4 (-1004)) (-5 *1 (-679 *4 *2)) (-4 *2 (-613 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-345 (-113))) (-4 *2 (-998)) (-5 *1 (-675 *2 *4)) - (-4 *4 (-609 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-345 (-113))) (-5 *1 (-794 *2)) (-4 *2 (-998))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) + (-12 (-5 *3 (-346 (-112))) (-4 *2 (-1004)) (-5 *1 (-679 *2 *4)) + (-4 *4 (-613 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-346 (-112))) (-5 *1 (-798 *2)) (-4 *2 (-1004))))) +(((*1 *2) (-12 (-5 *2 (-796 (-526))) (-5 *1 (-514)))) + ((*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1211)) (-5 *1 (-795))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) - (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) - (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-4 *7 (-807)) - (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-4 *8 (-291)) - (-5 *2 (-606 (-731))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *5 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-606 (-731)))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *1 *1) (|partial| -4 *1 (-139))) ((*1 *1 *1) (-4 *1 (-333))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-386)) (-5 *2 (-731)))) - ((*1 *1 *1) (-4 *1 (-386)))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-924)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-160 (-537))) (-5 *2 (-111)) (-5 *1 (-429)))) + (-12 (-5 *3 (-786)) (-5 *4 (-50)) (-5 *2 (-1211)) (-5 *1 (-795))))) +(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-50)) (-5 *1 (-795))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-793))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-793))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793)) (-5 *3 (-1106))))) +(((*1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-793))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-50)) (-5 *1 (-793))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-50)) (-5 *1 (-793))))) +(((*1 *1 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-792 *2 *3)) (-4 *2 (-673 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-673 *3)) (-5 *1 (-792 *2 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-4 *1 (-785)) (-5 *2 (-1106)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-785)) (-5 *3 (-111)) (-5 *2 (-1106)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *2 (-1211)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-785)) (-5 *3 (-787)) (-5 *4 (-111)) (-5 *2 (-1211)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537))))) - (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) - (-5 *1 (-486 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-914 *3)) (-4 *3 (-522)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-830 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-832 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-835 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *2 (-347)) (-4 *2 (-805)) (-5 *1 (-898 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) + (-12 (-5 *3 (-299 *4)) (-4 *4 (-13 (-785) (-811) (-1004))) (-5 *2 (-1106)) + (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-785) (-811) (-1004))) + (-5 *2 (-1106)) (-5 *1 (-791 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-299 *5)) (-4 *5 (-13 (-785) (-811) (-1004))) + (-5 *2 (-1211)) (-5 *1 (-791 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-787)) (-5 *4 (-299 *6)) (-5 *5 (-111)) + (-4 *6 (-13 (-785) (-811) (-1004))) (-5 *2 (-1211)) (-5 *1 (-791 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-790))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-789))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-789))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-607 (-1123))) (-5 *1 (-789))))) +(((*1 *1) (-5 *1 (-788)))) +(((*1 *1) (-5 *1 (-788)))) +(((*1 *1) (-5 *1 (-788)))) +(((*1 *1) (-5 *1 (-788)))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1106)) (|:| -3864 (-1106)))) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-787))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-788)) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-111)) (-5 *1 (-786))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-1070)) (-5 *2 (-111)) (-5 *1 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-786))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-811)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-641 *3)) (-4 *3 (-811)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-783 *3)) (-4 *3 (-811))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-811))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111))))) + (-12 + (-5 *2 (-2 (|:| |lm| (-371 *3)) (|:| |mm| (-371 *3)) (|:| |rm| (-371 *3)))) + (-5 *1 (-371 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |lm| (-783 *3)) (|:| |mm| (-783 *3)) (|:| |rm| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-811))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-371 *4)) (-4 *4 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-23)) (-5 *1 (-614 *4 *2 *5)) (-4 *4 (-1052)) + (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-5 *2 (-735)) (-5 *1 (-783 *4)) (-4 *4 (-811))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-308 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-346 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-371 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-1052)) (-5 *1 (-614 *2 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-526)) (-5 *1 (-783 *2)) (-4 *2 (-811))))) (((*1 *2 *1) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4301)) (-4 *4 (-347)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-502 *4 *5 *6 *3)) - (-4 *3 (-647 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4301)) (-4 *4 (-529)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *8 (-357 *7)) - (-4 *9 (-357 *7)) (-5 *2 (-606 *6)) - (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-647 *4 *5 *6)) - (-4 *10 (-647 *7 *8 *9)))) + (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-526))))) (-5 *1 (-346 *3)) + (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-606 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-648 *4 *5 *6 *3)) - (-4 *3 (-647 *4 *5 *6)))) + (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-371 *3)) + (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) - (-5 *2 (-606 *7))))) -(((*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) + (-12 (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -2462 (-526))))) (-5 *1 (-390 *3)) + (-4 *3 (-533)))) + ((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 (-735))))) (-5 *1 (-783 *3)) + (-4 *3 (-811))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-1205 *4)) + (-5 *1 (-778 *4 *3)) (-4 *3 (-623 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-348)) (-5 *2 (-653 *4)) (-5 *1 (-778 *4 *5)) + (-4 *5 (-623 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-348)) (-5 *2 (-653 *5)) + (-5 *1 (-778 *5 *6)) (-4 *6 (-623 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-905 *5))) (-5 *4 (-607 (-1123))) (-4 *5 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *5)))))) (-5 *1 (-734 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) - (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) - ((*1 *1 *1) (-5 *1 (-1064)))) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-533)) + (-5 *2 (-607 (-607 (-278 (-392 (-905 *4)))))) (-5 *1 (-734 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-607 *6))) *7 *6)) + (-4 *6 (-348)) (-4 *7 (-623 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1205 *6) "failed")) + (|:| -2104 (-607 (-1205 *6))))) + (-5 *1 (-777 *6 *7)) (-5 *4 (-1205 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-12 (-4 *5 (-348)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-770 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 (-391 *6))) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) - (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) + (-2 (|:| A (-653 *5)) + (|:| |eqs| + (-607 + (-2 (|:| C (-653 *5)) (|:| |g| (-1205 *5)) (|:| -3578 *6) + (|:| |rh| *5)))))) + (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) + (-4 *6 (-623 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-770 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-615 *6 (-391 *6))) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) - (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6)))))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-120 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) - (-4 *3 (-1176 *4))))) + (-12 (-4 *5 (-348)) (-4 *6 (-623 *5)) + (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) + (-5 *1 (-777 *5 *6)) (-5 *3 (-653 *6)) (-5 *4 (-1205 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-620 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) + (-5 *5 (-1 (-390 *7) *7)) + (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *6 (-1181 *5)) (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-621 *7 (-392 *7))) (-5 *4 (-1 (-607 *6) *7)) + (-5 *5 (-1 (-390 *7) *7)) + (-4 *6 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *7 (-1181 *6)) (-5 *2 (-607 (-392 *7))) (-5 *1 (-776 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-620 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-621 *5 (-392 *5))) (-4 *5 (-1181 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-607 (-392 *5))) (-5 *1 (-776 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-607 (-392 *6))) (-5 *1 (-776 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) + (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 *3)))) + (-5 *1 (-773 *5 *6 *3 *7)) (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *6 (-1181 *5)) + (-5 *2 (-607 (-2 (|:| |poly| *6) (|:| -3578 (-621 *6 (-392 *6)))))) + (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-607 *7) *7 (-1117 *7))) (-5 *5 (-1 (-390 *7) *7)) + (-4 *7 (-1181 *6)) (-4 *6 (-13 (-348) (-141) (-995 (-392 (-526))))) + (-5 *2 (-607 (-2 (|:| |frac| (-392 *7)) (|:| -3578 *3)))) + (-5 *1 (-773 *6 *7 *3 *8)) (-4 *3 (-623 *7)) (-4 *8 (-623 (-392 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-607 (-2 (|:| |frac| (-392 *6)) (|:| -3578 (-621 *6 (-392 *6)))))) + (-5 *1 (-776 *5 *6)) (-5 *3 (-621 *6 (-392 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-4 *7 (-1181 *5)) (-4 *4 (-689 *5 *7)) + (-5 *2 (-2 (|:| -1676 (-653 *6)) (|:| |vec| (-1205 *5)))) + (-5 *1 (-775 *5 *6 *7 *4 *3)) (-4 *6 (-623 *5)) (-4 *3 (-623 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) - (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) - (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) + (-12 (-5 *3 (-620 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) - (-5 *1 (-745 *5))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-1167 (-537)))))) -(((*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) - ((*1 *1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) - (-4 *3 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) - (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) - (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *3) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-111)) (-5 *1 (-50 *4)) (-4 *4 (-1154)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-846 *3)) (-4 *3 (-807))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522))))) + (-12 (-5 *3 (-621 *2 (-392 *2))) (-4 *2 (-1181 *4)) (-5 *1 (-774 *4 *2)) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-620 (-392 *6))) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) + (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-621 *6 (-392 *6))) (-5 *4 (-392 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) + (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-621 *6 (-392 *6))) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-2 (|:| -2104 (-607 (-392 *6))) (|:| -1676 (-653 *5)))) + (-5 *1 (-774 *5 *6)) (-5 *4 (-607 (-392 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-108))))) -(((*1 *1 *1 *1) (-5 *1 (-210))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-347)) (-4 *3 (-998)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) - (-4 *1 (-809 *3))))) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-1181 *4)) + (-5 *1 (-773 *4 *3 *2 *5)) (-4 *2 (-623 *3)) (-4 *5 (-623 (-392 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-392 *5)) (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) + (-4 *5 (-1181 *4)) (-5 *1 (-773 *4 *5 *2 *6)) (-4 *2 (-623 *5)) + (-4 *6 (-623 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-4 *5 (-347)) - (-4 *5 (-529)) (-5 *2 (-1200 *5)) (-5 *1 (-601 *5 *4)))) + (-12 (-5 *4 (-1 (-607 *5) *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *6 (-1181 *5)) + (-5 *2 (-607 (-2 (|:| -4268 *5) (|:| -3578 *3)))) (-5 *1 (-773 *5 *6 *3 *7)) + (-4 *3 (-623 *6)) (-4 *7 (-623 (-392 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) + (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -3578 *5)))) + (-5 *1 (-773 *4 *5 *3 *6)) (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1181 *4)) (-5 *1 (-773 *4 *2 *3 *5)) + (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) + (-4 *5 (-623 (-392 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *3 *5)) + (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) + (-4 *5 (-623 (-392 *2))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) - (-3679 (-4 *5 (-347))) (-4 *5 (-529)) (-5 *2 (-1200 (-391 *5))) - (-5 *1 (-601 *5 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) - ((*1 *1 *1 *1) (-5 *1 (-1064)))) + (-12 (-4 *2 (-1181 *4)) (-5 *1 (-771 *4 *2 *5 *3)) + (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-623 *2)) + (-4 *3 (-623 (-392 *2)))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) - ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) + (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *3 *6)) + (-4 *3 (-623 *5)) (-4 *6 (-623 (-392 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) + (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *3 *6)) + (-4 *3 (-623 *4)) (-4 *6 (-623 (-392 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-606 *1)) - (-4 *1 (-1015 *4 *3))))) + (-12 (-4 *4 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *5 (-1181 *4)) + (-5 *2 (-607 (-2 (|:| -4091 *5) (|:| -3539 *5)))) (-5 *1 (-771 *4 *5 *6 *3)) + (-4 *6 (-623 *5)) (-4 *3 (-623 (-392 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *4 (-1181 *5)) + (-5 *2 (-607 (-2 (|:| -4091 *4) (|:| -3539 *4)))) (-5 *1 (-771 *5 *4 *6 *3)) + (-4 *6 (-623 *4)) (-4 *3 (-623 (-392 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) - (-5 *2 (-1200 (-391 (-537)))) (-5 *1 (-1226 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *1)))) - (-4 *1 (-1018 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-807)) (-5 *1 (-1125 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-586 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111))) - (-537) *4)) - (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *1 (-547 *4 *5))))) -(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) - ((*1 *1 *1) (-4 *1 (-1086)))) + (|partial| -12 (-5 *4 (-392 *2)) (-4 *2 (-1181 *5)) + (-5 *1 (-771 *5 *2 *3 *6)) (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) + (-4 *3 (-623 *2)) (-4 *6 (-623 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-392 *2))) (-4 *2 (-1181 *5)) (-5 *1 (-771 *5 *2 *3 *6)) + (-4 *5 (-13 (-348) (-141) (-995 (-392 (-526))))) (-4 *3 (-623 *2)) + (-4 *6 (-623 (-392 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) - (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) - (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) - (-4 *3 (-326 *6 *7 *8))))) + (-12 (-5 *3 (-620 *4)) (-4 *4 (-327 *5 *6 *7)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *6 (-1181 *5)) (-4 *7 (-1181 (-392 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-770 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) + (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-768 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1145) (-919)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) - (-4 *2 (-414 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) - (-5 *1 (-150 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1084 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)) - (-5 *1 (-946 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) - (-14 *4 (-606 (-1117))))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-433 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-433 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-433 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) - (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-708))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529))))) + (-12 (-5 *3 (-1123)) + (-4 *4 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-5 *1 (-768 *4 *2)) (-4 *2 (-13 (-29 *4) (-1145) (-919)))))) (((*1 *2 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) - (-5 *1 (-1208 *4)) (-4 *4 (-347))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1198 *3)) (-4 *3 (-23)) (-4 *3 (-1154))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 *5)) (-4 *5 (-529)) - (-5 *2 - (-2 (|:| -3283 (-731)) (|:| -3449 *5) (|:| |radicand| (-606 *5)))) - (-5 *1 (-304 *5)) (-5 *4 (-731)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-537))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-924))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-606 *3)) (-5 *1 (-914 *3)) (-4 *3 (-522))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-314))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |k| (-1117)) (|:| |c| (-1221 *3))))) - (-5 *1 (-1221 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |k| *3) (|:| |c| (-1223 *3 *4))))) - (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) - *6)) - (-4 *6 (-347)) (-4 *7 (-1176 *6)) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) (-5 *2 - (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) - (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) - (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) - (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) - (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-731)) (-4 *8 (-902 *5 *7 *6)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) - (-4 *7 (-753)) + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363)))) + (-5 *1 (-767))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-606 - (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) - (|:| |cols| (-606 (-537)))))) - (-5 *1 (-877 *5 *6 *7 *8))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-291))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-785))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-526))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) -(((*1 *2 *1) - (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) - (-4 *3 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1154)) - (-4 *5 (-357 *4)) (-4 *3 (-357 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) -(((*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-402 *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-998)) (-5 *2 (-606 *6)) (-5 *1 (-427 *5 *6))))) -(((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-351 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) - (-4 *3 (-1045)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) - (-5 *1 (-903 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) - (-15 -3315 (*7 $)))))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-347)) (-5 *1 (-547 *4 *2)) (-4 *2 (-1176 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) - (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-537)) (-5 *1 (-468 *4)) - (-4 *4 (-1176 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-314)))) - ((*1 *1) (-5 *1 (-314)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421))))) -(((*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-196))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) - (-5 *7 (-649 (-537))) - (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) - (-5 *2 (-57 (-606 (-633 *5)))) (-5 *1 (-633 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-998)) - (-5 *2 (-649 *3))))) -(((*1 *1) (-5 *1 (-1120)))) + (-607 + (-2 + (|:| -4179 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (|:| -2164 + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363))))))) + (-5 *1 (-767))))) (((*1 *2 *1) (-12 (-5 *2 - (-606 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-537))))) - (-5 *1 (-402 *3)) (-4 *3 (-529)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-731)) (-4 *3 (-333)) (-4 *5 (-1176 *3)) - (-5 *2 (-606 (-1113 *3))) (-5 *1 (-479 *3 *5 *6)) - (-4 *6 (-1176 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1147 *5 *6 *7 *8)) (-4 *5 (-529)) - (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-556 *4)) - (-4 *4 (-333))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1154)) - (-4 *5 (-1154)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-731)) - (-4 *7 (-1154)) (-4 *5 (-1154)) (-5 *2 (-225 *6 *5)) - (-5 *1 (-224 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1154)) (-4 *5 (-1154)) - (-4 *2 (-357 *5)) (-5 *1 (-355 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1045)) (-4 *5 (-1045)) - (-4 *2 (-409 *5)) (-5 *1 (-407 *6 *4 *5 *2)) (-4 *4 (-409 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-606 *6)) (-4 *6 (-1154)) - (-4 *5 (-1154)) (-5 *2 (-606 *5)) (-5 *1 (-604 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-911 *6)) (-4 *6 (-1154)) - (-4 *5 (-1154)) (-5 *2 (-911 *5)) (-5 *1 (-910 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1098 *6)) (-4 *6 (-1154)) - (-4 *3 (-1154)) (-5 *2 (-1098 *3)) (-5 *1 (-1096 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1200 *6)) (-4 *6 (-1154)) - (-4 *5 (-1154)) (-5 *2 (-1200 *5)) (-5 *1 (-1199 *6 *5))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-731)))) - ((*1 *2 *3) - (-12 (-4 *4 (-998)) - (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) - (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-606 (-2 (|:| -2337 *1) (|:| -3309 (-606 *7))))) - (-5 *3 (-606 *7)) (-4 *1 (-1147 *4 *5 *6 *7))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *3 (-210)) - (-5 *2 (-986)) (-5 *1 (-710))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) - (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) - (-5 *1 (-1016 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) - (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) - (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) - (-5 *1 (-1087 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) - (-4 *3 (-1045)) (-5 *2 (-731)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) - (-4 *4 (-1154)) (-5 *2 (-731))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-89 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) - (-4 *3 (-1176 *4)) (-5 *2 (-537)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) - (-5 *2 (-537)) (-5 *1 (-1060 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) - (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1100)) - (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) - (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-537)) - (-5 *1 (-1061 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 (-391 (-905 *6)))) - (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-537)) - (-5 *1 (-1061 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1117)) - (-5 *5 (-1100)) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) -(((*1 *1) (-5 *1 (-451)))) -(((*1 *2 *1) - (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *4)) (-5 *1 (-838 *3 *4 *5)) - (-4 *3 (-1045)) (-4 *5 (-627 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) -(((*1 *2 *3) - (-12 (-5 *3 (-300 (-210))) (-5 *2 (-391 (-537))) (-5 *1 (-289))))) -(((*1 *2 *2) - (-12 (-4 *3 (-989 (-537))) (-4 *3 (-13 (-807) (-529))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1113 *4)) (-5 *1 (-156 *3 *4)) - (-4 *3 (-157 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-998)) (-4 *1 (-286)))) - ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) - ((*1 *2) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) + (-607 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211))))) + (-5 *1 (-536)))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) - (-4 *2 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) - ((*1 *1 *1) (-4 *1 (-522))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-560 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1064))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-699))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) - (-5 *2 (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5))))) - (-5 *1 (-931 *5)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111)))) + (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-607 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) - (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) - (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) - ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-874)) (-5 *1 (-983 *2)) - (-4 *2 (-13 (-1045) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51)))) - (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-712))))) -(((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) - (-4 *2 (-1191 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2) (-12 (-5 *2 - (-1200 (-606 (-2 (|:| -3619 (-863 *3)) (|:| -2009 (-1064)))))) - (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) - ((*1 *2) - (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) - (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) - (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) + (-607 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211))))) + (-5 *1 (-767))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-767))))) +(((*1 *1) (-5 *1 (-767)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1123)) + (-4 *6 (-13 (-811) (-292) (-995 (-526)) (-606 (-526)) (-141))) + (-4 *4 (-13 (-29 *6) (-1145) (-919))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-607 *4)))) + (-5 *1 (-765 *6 *4 *3)) (-4 *3 (-623 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) - (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -4113 *5)))) - (-5 *1 (-769 *4 *5 *3 *6)) (-4 *3 (-617 *5)) - (-4 *6 (-617 (-391 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) - (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) - (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) - (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) - (-5 *1 (-1053 *6 *7 *4 *8 *9))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-101 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-111)) (-5 *1 (-1106 *4 *5)) - (-14 *4 (-874)) (-4 *5 (-998))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111))))) + (-12 (-4 *1 (-764)) + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-992))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-163)) (-5 *1 (-762 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163))))) +(((*1 *1 *1) (-4 *1 (-229))) + ((*1 *1 *1) + (-12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *2)) + (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3850 (-12 (-5 *1 (-278 *2)) (-4 *2 (-348)) (-4 *2 (-1159))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-457)) (-4 *2 (-1159))))) + ((*1 *1 *1) (-4 *1 (-457))) + ((*1 *2 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-335)) (-5 *1 (-510 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-163)) (-4 *2 (-348))))) +(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) + ((*1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3721 *4) (|:| -1632 *4) (|:| |totalpts| (-526)) + (|:| |success| (-111)))) + (-5 *1 (-753)) (-5 *5 (-526))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) + (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-526)) + (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) + (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) + (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-526)) + (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -1508 (-363)))) + (-5 *7 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) (-5 *3 (-1205 (-363))) + (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) + (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748)))) + (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) + (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748))))) -(((*1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) - ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) - ((*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 (-896 *4))) (-4 *1 (-1078 *4)) (-4 *4 (-998)) - (-5 *2 (-731))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) - (-5 *3 (-537))))) + (-12 (-5 *4 (-526)) (-5 *6 (-1 (-1211) (-1205 *5) (-1205 *5) (-363))) + (-5 *3 (-1205 (-363))) (-5 *5 (-363)) (-5 *2 (-1211)) (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-751)) (-5 *2 (-992)) + (-5 *3 + (-2 (|:| |fn| (-299 (-211))) (|:| -1537 (-607 (-1041 (-803 (-211))))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-751)) (-5 *2 (-992)) + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-878)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-1106)) (-5 *1 (-750))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + (|partial| -12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) + (|partial| -12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) - (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) + (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) + (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + (|partial| -12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) + (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) - (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) - (-5 *1 (-745 *5)))) + (|partial| -12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) + (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) - (-5 *1 (-745 *5)))) + (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) - (-5 *1 (-745 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-289)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-845 *3)) (|:| |den| (-845 *3)))) - (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-529)) (-4 *2 (-435)) (-5 *1 (-922 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-162))) ((*1 *1 *1) (-4 *1 (-522))) - ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) - (-4 *3 (-920))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1135))))) + (|partial| -12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) + (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-811)) (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) + (-5 *1 (-749 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1045)) (-5 *2 (-111)) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-537)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) - (-4 *3 (-529)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) - (-4 *3 (-1045)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) - (-4 *3 (-1045)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) - (-5 *2 (-391 (-537))))) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) + (-5 *2 (-363)) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) + (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) - (-4 *3 (-989 *2))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-1176 (-391 *3))) (-5 *2 (-874)) - (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) - ((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *1 *1) (-5 *1 (-363))) + (|partial| -12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) + (-5 *2 (-363)) (-5 *1 (-749 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) - (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) - (-4 *3 (-1154)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) - (-4 *3 (-1154)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)) - (-4 *2 (-1045)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) - (-4 *2 (-1154)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-595)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1167 (-537))) (|has| *1 (-6 -4301)) (-4 *1 (-612 *2)) - (-4 *2 (-1154)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) - (-4 *2 (-1154)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) - (-4 *2 (-1154)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) - (-4 *3 (-1154)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) - (-4 *2 (-1154))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-529)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-513)) (-5 *1 (-512 *4)) - (-4 *4 (-1154))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) - (-4 *1 (-351 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-436 *3 *4 *5 *6)) - (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) - (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-381))))) -(((*1 *2 *3) - (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) - (-5 *2 (-463 *4 *5)) (-5 *1 (-594 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-649 (-863 *3))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) - (-14 *4 (-874)))) - ((*1 *2) - (-12 (-5 *2 (-649 *3)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) - (-14 *4 - (-3 (-1113 *3) - (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) - ((*1 *2) - (-12 (-5 *2 (-649 *3)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) - (-14 *4 (-874))))) -(((*1 *2 *3) - (-12 (-5 *3 (-278 (-905 (-537)))) - (-5 *2 - (-2 (|:| |varOrder| (-606 (-1117))) - (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) - (|:| |hom| (-606 (-1200 (-731)))))) - (-5 *1 (-221))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-333)) (-5 *2 (-1200 *1)))) + (|partial| -12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-139)) (-4 *1 (-862)) - (-5 *2 (-1200 *1))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-606 (-1117))) - (-5 *2 (-606 (-606 (-363)))) (-5 *1 (-974)) (-5 *5 (-363)))) + (|partial| -12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) + (-4 *4 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) + (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) (-4 *3 (-584 (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-5 *2 (-159 (-363))) (-5 *1 (-749 *3)) + (-4 *3 (-584 (-363))))) ((*1 *2 *3) - (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) - (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + (-12 (-5 *3 (-159 *4)) (-4 *4 (-163)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-159 *5)) (-5 *4 (-878)) (-4 *5 (-163)) (-4 *5 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) + (-12 (-5 *3 (-905 (-159 *4))) (-4 *4 (-163)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-163)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1193 *3 *2)) - (-4 *2 (-1191 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) - (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *5 (-529)) - (-5 *2 - (-2 (|:| |minor| (-606 (-874))) (|:| -4113 *3) - (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) -(((*1 *1 *1) (-5 *1 (-513)))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) - (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) - (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1052 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-537)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-375))))) -(((*1 *1) (-5 *1 (-783)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-807)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) - (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1139)))) - ((*1 *2 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-578 *3)) (-4 *3 (-807))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-191)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-363))) (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 (-1 *6 (-606 *6)))) - (-4 *5 (-37 (-391 (-537)))) (-4 *6 (-1191 *5)) (-5 *2 (-606 *6)) - (-5 *1 (-1193 *5 *6))))) -(((*1 *1) - (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) - (-3679 (|has| *1 (-6 -4283))))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (-4 *1 (-807))) ((*1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) - (-5 *2 - (-3 (-1113 *4) - (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064))))))) - (-5 *1 (-330 *4)) (-4 *4 (-333))))) -(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-178)))) - ((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-284)))) - ((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-289))))) -(((*1 *2 *1) - (-12 (-4 *3 (-218)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) - (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *3 *4 *5 *6)))) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) - (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-250 *2)) (-4 *2 (-807))))) -(((*1 *2 *3) - (-12 (-5 *3 (-800 (-363))) (-5 *2 (-800 (-210))) (-5 *1 (-289))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) - (-5 *1 (-1102 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) - (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-391 (-537)))) - (-5 *2 (-2 (|:| -4270 (-1098 *4)) (|:| -1234 (-1098 *4)))) - (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) - (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) - (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1200 (-606 *3))) (-4 *4 (-291)) - (-5 *2 (-606 *3)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-606 (-537))) (-5 *3 (-111)) (-5 *1 (-1055))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) -(((*1 *2) - (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) - (-4 *4 (-1176 *3))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) - (-4 *6 (-326 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-363)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) - (-4 *3 (-1176 *2))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) - (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) - (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) - (-4 *6 (-529))))) -(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) - (-5 *2 (-986)) (-5 *1 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-698 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) - ((*1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)) - (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) + (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) - (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5)))) + (-12 (-5 *3 (-392 (-905 (-159 *4)))) (-4 *4 (-533)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 (-159 *5)))) (-5 *4 (-878)) (-4 *5 (-533)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-402 *1)) (-4 *1 (-902 *3 *4 *5)))) + (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 (-363))) + (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-435)) (-5 *2 (-402 *3)) - (-5 *1 (-932 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) + (-12 (-5 *3 (-299 (-159 *4))) (-4 *4 (-533)) (-4 *4 (-811)) + (-4 *4 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 (-159 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) + (-4 *5 (-584 (-363))) (-5 *2 (-159 (-363))) (-5 *1 (-749 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-5 *2 (-363)) (-5 *1 (-749 *3)) (-4 *3 (-584 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) - (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) - (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1004)) (-4 *4 (-584 *2)) (-5 *2 (-363)) + (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-878)) (-4 *5 (-1004)) (-4 *5 (-584 *2)) + (-5 *2 (-363)) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-1179 *4 *3)) - (-4 *3 (-13 (-1176 *4) (-529) (-10 -8 (-15 -2211 ($ $ $))))))) + (-12 (-5 *3 (-392 (-905 *4))) (-4 *4 (-533)) (-4 *4 (-584 *2)) (-5 *2 (-363)) + (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-584 *2)) + (-5 *2 (-363)) (-5 *1 (-749 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-14 *5 (-606 (-1117))) + (-12 (-5 *3 (-299 *4)) (-4 *4 (-533)) (-4 *4 (-811)) (-4 *4 (-584 *2)) + (-5 *2 (-363)) (-5 *1 (-749 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-299 *5)) (-5 *4 (-878)) (-4 *5 (-533)) (-4 *5 (-811)) + (-4 *5 (-584 *2)) (-5 *2 (-363)) (-5 *1 (-749 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) + (-4 *2 (-163))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-735)) (-5 *1 (-747 *2)) (-4 *2 (-37 (-392 (-526)))) + (-4 *2 (-163))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1004))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-607 (-745 *3))) (-5 *1 (-745 *3)) (-4 *3 (-533)) + (-4 *3 (-1004))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)) (|:| |coef2| (-745 *3)))) + (-5 *1 (-745 *3)) (-4 *3 (-533)) (-4 *3 (-1004))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef1| (-745 *3)))) (-5 *1 (-745 *3)) + (-4 *3 (-533)) (-4 *3 (-1004))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4075 *3) (|:| |coef2| (-745 *3)))) (-5 *1 (-745 *3)) + (-4 *3 (-533)) (-4 *3 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 - (-606 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6))))) - (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-998)) (-4 *4 (-1176 *3)) (-5 *1 (-155 *3 *4 *2)) - (-4 *2 (-1176 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-753)) - (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) - (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *6)) - (-4 *6 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) - (-4 *2 (-902 (-905 *4) *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) - (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + (-607 + (-2 (|:| |outval| *4) (|:| |outmult| (-526)) + (|:| |outvect| (-607 (-653 *4)))))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-743 *4)) + (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-653 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-391 (-537))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) - (-4 *6 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) - (-4 *7 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) - (-4 *3 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) - (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) - (-4 *8 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) - (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) - (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) - (-4 *3 (-998)) (-5 *1 (-562 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-563 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) - (-4 *3 (-998)) (-4 *1 (-1160 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-731)) - (-5 *3 (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))) - (-4 *4 (-998)) (-4 *1 (-1181 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1098 (-2 (|:| |k| (-731)) (|:| |c| *3)))) - (-4 *3 (-998)) (-4 *1 (-1191 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-711))))) + (-12 (-4 *4 (-163)) (-4 *2 (-1181 *4)) (-5 *1 (-168 *4 *2 *3)) + (-4 *3 (-689 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-392 (-905 *5)))) (-5 *4 (-1123)) (-5 *2 (-905 *5)) + (-5 *1 (-277 *5)) (-4 *5 (-436)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-277 *4)) + (-4 *4 (-436)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1181 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-905 (-159 (-392 (-526))))) + (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *4 (-1123)) + (-5 *2 (-905 (-159 (-392 (-526))))) (-5 *1 (-729 *5)) + (-4 *5 (-13 (-348) (-809))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *2 (-905 (-392 (-526)))) + (-5 *1 (-743 *4)) (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-392 (-526)))) (-5 *4 (-1123)) + (-5 *2 (-905 (-392 (-526)))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-348) (-809)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-911 (-1064))) - (-5 *1 (-330 *4))))) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-607 (-735))) + (-5 *1 (-742 *3 *4 *5 *6 *7)) (-4 *3 (-1181 *6)) (-4 *7 (-909 *6 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1181 *9)) (-4 *7 (-757)) (-4 *8 (-811)) (-4 *9 (-292)) + (-4 *10 (-909 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-607 (-1117 *10))) + (|:| |dterm| (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-607 *6)) (|:| |nlead| (-607 *10)))) + (-5 *1 (-742 *6 *7 *8 *9 *10)) (-5 *3 (-1117 *10)) (-5 *4 (-607 *6)) + (-5 *5 (-607 *10))))) +(((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *5 (-314 *4)) (-4 *6 (-1181 *5)) (-5 *2 (-607 *3)) + (-5 *1 (-741 *4 *5 *6 *3 *7)) (-4 *3 (-1181 *6)) (-14 *7 (-878))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| (-111)) (|:| -1636 *4)))) + (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1106)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) + (-4 *4 (-1018 *6 *7 *8)) (-5 *2 (-1211)) (-5 *1 (-740 *6 *7 *8 *4 *5)) + (-4 *5 (-1024 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) + (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-529)) - (-4 *7 (-902 *3 *5 *6)) - (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *8) (|:| |radicand| *8))) - (-5 *1 (-906 *5 *6 *3 *7 *8)) (-5 *4 (-731)) - (-4 *8 - (-13 (-347) - (-10 -8 (-15 -3301 (*7 $)) (-15 -3315 (*7 $)) (-15 -2341 ($ *7)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) - (-5 *1 (-871 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-998)) - (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1154)) (-5 *2 (-731)) (-5 *1 (-172 *4 *3)) - (-4 *3 (-635 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) - (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-410 *4 *2)) (-4 *2 (-13 (-1139) (-29 *4))))) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))))) + ((*1 *1 *1) (-5 *1 (-363))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *2 (-300 *5)) (-5 *1 (-557 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1200 (-659))) (-5 *1 (-289))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-111)) - (-5 *1 (-633 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-513))) (-5 *1 (-513))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-51)) (-5 *1 (-845 *4)) - (-4 *4 (-1045))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) - (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-529)))) - ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-314))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *1) (-5 *1 (-783)))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) -(((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-779 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) - (-4 *4 (-333)) (-5 *2 (-649 *4)) (-5 *1 (-330 *4))))) + (-12 (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *3 (-1018 *5 *6 *7)) + (-5 *2 (-607 (-2 (|:| |val| *3) (|:| -1636 *4)))) + (-5 *1 (-740 *5 *6 *7 *3 *4)) (-4 *4 (-1024 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *2 (-1018 *4 *5 *6)) + (-5 *1 (-740 *4 *5 *6 *2 *3)) (-4 *3 (-1024 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-363)))) + ((*1 *1 *1 *1) (-4 *1 (-525))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-735))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-159 (-392 (-526))))) + (-5 *2 + (-607 + (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-526)) + (|:| |outvect| (-607 (-653 (-159 *4))))))) + (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-159 (-392 (-526))))) (-5 *2 (-607 (-159 *4))) + (-5 *1 (-729 *4)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-726)))) +(((*1 *1 *1 *1) (-4 *1 (-457))) ((*1 *1 *1 *1) (-4 *1 (-726)))) +(((*1 *1 *1 *1) (-4 *1 (-726)))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-724))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-724))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-905 (-526)))) (-5 *1 (-421)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-211))) (-5 *2 (-1054)) (-5 *1 (-724)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-653 (-526))) (-5 *2 (-1054)) (-5 *1 (-724))))) +(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-724))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *2 (-1205)) - (-5 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-896 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-896 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)) (-5 *3 (-210))))) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-159 (-211))) (-5 *6 (-1106)) (-5 *4 (-211)) + (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) + (-5 *1 (-723))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1106)) (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *2 (-992)) + (-5 *1 (-723))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-159 (-211))) (-5 *5 (-526)) (-5 *6 (-1106)) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-159 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-723))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-722))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-722))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) + (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-722))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-722))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-68 APROD)))) (-5 *4 (-211)) + (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) + (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-992)) + (-5 *1 (-721))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) + (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-721))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) + (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-721))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) + (-5 *1 (-721))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-159 (-211)))) + (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-111)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-720))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-211)) + (-5 *2 (-992)) (-5 *1 (-720)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-373)) + (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) (-5 *4 (-211)) + (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-720))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-720))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) + (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-159 (-211)))) + (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-159 (-211)))) (-5 *2 (-992)) + (-5 *1 (-719))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-719))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *3 (-526)) + (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-607 (-111))) (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) + (-5 *7 (-211)) (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-653 (-526))) (-5 *5 (-111)) (-5 *7 (-653 (-211))) + (-5 *3 (-526)) (-5 *6 (-211)) (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-607 (-111))) (-5 *7 (-653 (-211))) (-5 *8 (-653 (-526))) + (-5 *3 (-526)) (-5 *4 (-211)) (-5 *5 (-111)) (-5 *2 (-992)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 + *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *6 (-211)) + (-5 *7 (-653 (-526))) (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-526)) + (-5 *2 (-992)) (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 + *8) + (-12 (-5 *5 (-653 (-211))) (-5 *6 (-111)) (-5 *7 (-653 (-526))) + (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-526)) + (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-111)) (-5 *2 (-992)) + (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-992)) + (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-992)) + (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-992)) + (-5 *1 (-718))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-526)) (-5 *5 (-111)) (-5 *6 (-653 (-211))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-211)) + (-5 *2 (-992)) (-5 *1 (-718))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1106)) (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) + (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) + (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) + (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1106)) (-5 *5 (-653 (-211))) (-5 *6 (-211)) + (-5 *7 (-653 (-526))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-653 (-211))) (-5 *6 (-653 (-526))) (-5 *3 (-526)) + (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-653 (-211))) (-5 *5 (-653 (-526))) (-5 *6 (-211)) + (-5 *3 (-526)) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) (-5 *2 (-992)) + (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-716))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 + *4) + (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) (-5 *6 (-640 (-211))) + (-5 *3 (-211)) (-5 *2 (-992)) (-5 *1 (-715))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *5 (-1106)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-992)) + (-5 *1 (-715))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) (-5 *4 (-211)) (-5 *2 (-992)) + (-5 *1 (-715))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-211)) (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-992)) + (-5 *1 (-714)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-373)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *2 (-992)) + (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) + (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-526)) (-5 *5 (-1106)) (-5 *6 (-653 (-211))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) + (-5 *9 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-80 FCN)))) + (-5 *7 (-3 (|:| |fn| (-373)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-714))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) (-5 *2 (-992)) (-5 *1 (-713))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 G)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-526)) (-5 *5 (-653 (-211))) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *3 (-211)) + (-5 *2 (-992)) (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-1106)) (-5 *5 (-653 (-211))) (-5 *2 (-992)) + (-5 *1 (-712))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *2 (-992)) (-5 *1 (-712))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-72 FCN)))) (-5 *2 (-992)) + (-5 *1 (-711))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-526)) (-5 *4 (-653 (-211))) (-5 *5 (-211)) + (-5 *6 (-3 (|:| |fn| (-373)) (|:| |fp| (-79 FCN)))) (-5 *2 (-992)) + (-5 *1 (-711))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-211)) (-5 *4 (-526)) + (-5 *5 (-3 (|:| |fn| (-373)) (|:| |fp| (-59 -3395)))) (-5 *2 (-992)) + (-5 *1 (-711))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) + (-5 *1 (-710))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-653 (-211))) (-5 *4 (-526)) (-5 *5 (-111)) (-5 *2 (-992)) + (-5 *1 (-710))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-709 *3)) (-4 *3 (-163))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1117 *6)) (-5 *3 (-526)) (-4 *6 (-292)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-4 *7 (-811)) + (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-4 *8 (-292)) (-5 *2 (-607 (-735))) + (-5 *1 (-707 *6 *7 *8 *9)) (-5 *5 (-735))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-526)) (-5 *4 (-390 *2)) (-4 *2 (-909 *7 *5 *6)) + (-5 *1 (-707 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *6 (-811)) (-4 *7 (-292))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1176 *9)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-291)) - (-4 *10 (-902 *9 *7 *8)) + (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) + (-4 *7 (-811)) (-4 *8 (-292)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 - (-2 (|:| |deter| (-606 (-1113 *10))) - (|:| |dterm| - (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-606 *6)) (|:| |nlead| (-606 *10)))) - (-5 *1 (-738 *6 *7 *8 *9 *10)) (-5 *3 (-1113 *10)) (-5 *4 (-606 *6)) - (-5 *5 (-606 *10))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-5 *2 (-2 (|:| -2926 *3) (|:| -2140 *4)))))) + (-2 (|:| |upol| (-1117 *8)) (|:| |Lval| (-607 *8)) + (|:| |Lfact| (-607 (-2 (|:| -4051 (-1117 *8)) (|:| -2462 (-526))))) + (|:| |ctpol| *8))) + (-5 *1 (-707 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-607 *7)) (-5 *5 (-607 (-607 *8))) (-4 *7 (-811)) (-4 *8 (-292)) + (-4 *6 (-757)) (-4 *9 (-909 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| (-607 (-2 (|:| -4051 (-1117 *9)) (|:| -2462 (-526))))))) + (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-526)) (-4 *6 (-757)) (-4 *7 (-811)) (-4 *8 (-292)) + (-4 *9 (-909 *8 *6 *7)) + (-5 *2 (-2 (|:| -2096 (-1117 *9)) (|:| |polval| (-1117 *8)))) + (-5 *1 (-707 *6 *7 *8 *9)) (-5 *3 (-1117 *9)) (-5 *4 (-1117 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) - (-4 *8 (-902 *7 *5 *6)) - (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *3))) - (-5 *1 (-906 *5 *6 *7 *8 *3)) (-5 *4 (-731)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8)))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) - (-5 *1 (-857 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-818 *4)) - (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) + (-12 (-4 *5 (-757)) (-4 *4 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) + (-5 *1 (-707 *5 *4 *6 *3)) (-4 *3 (-909 *6 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-2 (|:| -4051 (-1117 *6)) (|:| -2462 (-526))))) + (-4 *6 (-292)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-526)) + (-5 *1 (-707 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-292)) (-5 *2 (-390 *3)) + (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-909 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-704 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-703))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-701 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052)))) + ((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) + (-5 *2 (-607 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-735)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) (-5 *2 (-735)))) + ((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-700 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-691))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-797)))) - ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) - (-5 *6 (-606 (-300 (-363)))) (-5 *3 (-300 (-363))) (-5 *2 (-986)) - (-5 *1 (-797)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) - (-5 *5 (-606 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) - (-5 *1 (-797)))) + (-12 (-4 *6 (-533)) (-4 *2 (-909 *3 *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) + (-5 *3 (-392 (-905 *6))) (-4 *5 (-757)) + (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 (-905 *6))) (-4 *6 (-533)) + (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) (-5 *1 (-697 *5 *4 *6 *2)) + (-4 *5 (-757)) (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-909 (-392 (-905 *6)) *5 *4)) + (-5 *1 (-697 *5 *4 *6 *2)) (-4 *5 (-757)) + (-4 *4 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) (-4 *6 (-533))))) +(((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-13 (-811) (-10 -8 (-15 -4287 ((-1123) $))))) + (-4 *6 (-533)) (-5 *2 (-2 (|:| -2702 (-905 *6)) (|:| -2146 (-905 *6)))) + (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-909 (-392 (-905 *6)) *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-526)) + (-14 *6 (-735)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-132 *5 *6 *8)) + (-5 *1 (-133 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) - (-5 *2 (-986)) (-5 *1 (-797))))) + (-12 (-5 *3 (-607 *9)) (-4 *9 (-1004)) (-4 *5 (-811)) (-4 *6 (-757)) + (-4 *8 (-1004)) (-4 *2 (-909 *9 *7 *5)) (-5 *1 (-693 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-757)) (-4 *4 (-909 *8 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1181 *5)) + (-5 *1 (-692 *5 *2)) (-4 *5 (-348))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| -3392 (-390 *3)) (|:| |special| (-390 *3)))) + (-5 *1 (-692 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-691)) (-5 *2 (-111))))) +(((*1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))))) + ((*1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123))))) + ((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-321 *3 *4 *5 *2)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *2 (-327 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-163)))) + ((*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-689 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1205 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) + (-4 *1 (-689 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-685)) (-5 *2 (-878)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-735))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) + ((*1 *1 *1) (|partial| -4 *1 (-687)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-163)) (-4 *2 (-533)))) + ((*1 *1 *1) (|partial| -4 *1 (-687)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-348))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-163)) (-5 *1 (-274 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1181 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-680 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) - (-4 *5 (-223 (-2258 *3) (-731))) - (-14 *6 - (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) - (-2 (|:| -2009 *2) (|:| -3283 *5)))) - (-4 *2 (-807)) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-902 *4 *5 (-818 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-1186 *3 *4 *5)) (-5 *1 (-304 *3 *4 *5)) + (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1052)) (-5 *1 (-678 *3 *2 *4)) (-4 *3 (-811)) + (-14 *4 + (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *2)) + (-2 (|:| -2461 *3) (|:| -2462 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-878)) (-4 *1 (-353)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335)))) + ((*1 *2 *1) + (-12 (-4 *2 (-811)) (-5 *1 (-678 *2 *3 *4)) (-4 *3 (-1052)) + (-14 *4 + (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *3)) + (-2 (|:| -2461 *2) (|:| -2462 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-677 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) + (-4 *4 (-1181 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1004)) (-5 *1 (-677 *3 *4)) + (-4 *4 (-1181 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1004)) (-5 *2 (-1205 *3)) (-5 *1 (-677 *3 *4)) + (-4 *4 (-1181 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) + (-4 *4 (-1181 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1004)) (-5 *2 (-917 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) + (-4 *4 (-1181 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-335)) (-4 *2 (-1004)) (-5 *1 (-677 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) +(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1106)) (-5 *1 (-675))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-607 (-1117 *13))) (-5 *3 (-1117 *13)) + (-5 *4 (-607 *12)) (-5 *5 (-607 *10)) (-5 *6 (-607 *13)) + (-5 *7 (-607 (-607 (-2 (|:| -3378 (-735)) (|:| |pcoef| *13))))) + (-5 *8 (-607 (-735))) (-5 *9 (-1205 (-607 (-1117 *10)))) (-4 *12 (-811)) + (-4 *10 (-292)) (-4 *13 (-909 *10 *11 *12)) (-4 *11 (-757)) + (-5 *1 (-672 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-607 *11)) (-5 *5 (-607 (-1117 *9))) (-5 *6 (-607 *9)) + (-5 *7 (-607 *12)) (-5 *8 (-607 (-735))) (-4 *11 (-811)) (-4 *9 (-292)) + (-4 *12 (-909 *9 *10 *11)) (-4 *10 (-757)) (-5 *2 (-607 (-1117 *12))) + (-5 *1 (-672 *10 *11 *9 *12)) (-5 *3 (-1117 *12))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-607 (-1117 *11))) (-5 *3 (-1117 *11)) + (-5 *4 (-607 *10)) (-5 *5 (-607 *8)) (-5 *6 (-607 (-735))) + (-5 *7 (-1205 (-607 (-1117 *8)))) (-4 *10 (-811)) (-4 *8 (-292)) + (-4 *11 (-909 *8 *9 *10)) (-4 *9 (-757)) (-5 *1 (-672 *9 *10 *8 *11))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *3 *5 *6 *7)) + (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) - (-4 *3 (-998)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-779 *4)) (-4 *4 (-807)) (-4 *1 (-1216 *4 *3)) - (-4 *3 (-998))))) + (-12 (-5 *4 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *3 *5 *6)) + (-4 *3 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-1 *6 *5)) (-5 *1 (-671 *4 *5 *6)) + (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-649 *3)) - (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-606 (-1021 *4 *5 *2))) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) - (-5 *1 (-53 *4 *5 *2)))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-670 *3 *4)) + (-4 *3 (-1159)) (-4 *4 (-1159))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-607 (-1123))) (-5 *3 (-1123)) (-5 *1 (-515)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1123)) (-5 *1 (-669 *3)) (-4 *3 (-584 (-515))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-606 (-1021 *5 *6 *2))) (-5 *4 (-874)) (-4 *5 (-1045)) - (-4 *6 (-13 (-998) (-839 *5) (-807) (-580 (-845 *5)))) - (-4 *2 (-13 (-414 *6) (-839 *5) (-580 (-845 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-537))))) + (-12 (-5 *4 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-669 *3)) + (-4 *3 (-584 (-515)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) - (-4 *5 (-807)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *1 *1 *1) (-4 *1 (-137))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) + (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211))) (-5 *1 (-668 *3)) + (-4 *3 (-584 (-515))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1123)) (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-668 *3)) + (-4 *3 (-584 (-515)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-666 *4 *5 *6 *7)) + (-4 *4 (-584 (-515))) (-4 *5 (-1159)) (-4 *6 (-1159)) (-4 *7 (-1159))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-665))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-292)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-652 *3 *4 *5 *6)) + (-4 *6 (-650 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2072 *3) (|:| -3202 *3))) (-5 *1 (-664 *3)) + (-4 *3 (-292))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-292)) (-5 *1 (-664 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) + ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663)))) + ((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-663))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) +(((*1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663)))) + ((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-663))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) + (-5 *4 (-1 (-211) (-211) (-211) (-211))) + (-5 *2 (-1 (-902 (-211)) (-211) (-211))) (-5 *1 (-661))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) + (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) + (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) "undefined")) + (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) + (-5 *1 (-661))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) + (-5 *4 (-3 (-1 (-211) (-211) (-211) (-211)) "undefined")) + (-5 *5 (-1041 (-211))) (-5 *6 (-607 (-246))) (-5 *2 (-1083 (-211))) + (-5 *1 (-661)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-211))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-661)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1083 (-211))) (-5 *3 (-1 (-902 (-211)) (-211) (-211))) + (-5 *4 (-1041 (-211))) (-5 *5 (-607 (-246))) (-5 *1 (-661))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *5)))) (-4 *5 (-1181 *4)) + (-4 *4 (-335)) (-5 *2 (-607 *5)) (-5 *1 (-203 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)) - (-5 *3 (-537))))) + (-12 (-5 *3 (-607 (-2 (|:| -4051 *5) (|:| -4264 (-526))))) (-5 *4 (-526)) + (-4 *5 (-1181 *4)) (-5 *2 (-607 *5)) (-5 *1 (-660 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-526)) (-5 *2 (-607 (-2 (|:| -4051 *3) (|:| -4264 *4)))) + (-5 *1 (-660 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-660 *2)) (-4 *2 (-1181 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-1159)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-659 *3)) (-4 *3 (-1052)) + (-5 *2 (-607 (-2 (|:| -2164 *3) (|:| -2045 (-735)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-111)) (-5 *5 (-537)) (-4 *6 (-347)) (-4 *6 (-352)) - (-4 *6 (-998)) (-5 *2 (-606 (-606 (-649 *6)))) (-5 *1 (-980 *6)) - (-5 *3 (-606 (-649 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-347)) (-4 *4 (-352)) (-4 *4 (-998)) - (-5 *2 (-606 (-606 (-649 *4)))) (-5 *1 (-980 *4)) - (-5 *3 (-606 (-649 *4))))) + (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *7 (-859 *6)) (-5 *2 (-653 *7)) + (-5 *1 (-656 *6 *7 *3 *4)) (-4 *3 (-357 *7)) + (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) + (-5 *2 (-653 (-299 (-211)))) (-5 *1 (-192)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) - (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) - (-5 *3 (-606 (-649 *5))))) + (-12 (-4 *5 (-1052)) (-4 *6 (-859 *5)) (-5 *2 (-653 *6)) + (-5 *1 (-656 *5 *6 *3 *4)) (-4 *3 (-357 *6)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-735)) (-4 *6 (-1052)) (-4 *3 (-859 *6)) (-5 *2 (-653 *3)) + (-5 *1 (-656 *6 *3 *7 *4)) (-4 *7 (-357 *3)) + (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4310))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-653 *3)) + (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-859 *4)) (-5 *1 (-656 *4 *2 *5 *3)) + (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4310))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-4 *2 (-859 *5)) (-5 *1 (-656 *5 *2 *3 *4)) + (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1052)) (-4 *3 (-859 *5)) (-5 *2 (-1205 *3)) + (-5 *1 (-656 *5 *3 *6 *4)) (-4 *6 (-357 *3)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4310))))))) +(((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-583 (-823)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-735)) (-4 *4 (-1004)) (-5 *1 (-654 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1004)) (-5 *1 (-654 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-533)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-652 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) + (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-526)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) + (-5 *1 (-652 *3 *5 *6 *2)) (-4 *2 (-650 *3 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-526)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *1 (-652 *4 *5 *6 *2)) (-4 *2 (-650 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-650 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-526)) (-4 *1 (-650 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-648 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-648 *4 *5 *6)) (-4 *4 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-648 *4 *5 *6)) (-4 *5 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1052)) (-4 *4 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *5 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-647 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1052)) (-4 *5 (-1052)) (-5 *2 (-1 *5)) + (-5 *1 (-647 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-647 *4 *3)) (-4 *4 (-1052)) + (-4 *3 (-1052))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-735) *2)) (-5 *4 (-735)) (-4 *2 (-1052)) + (-5 *1 (-642 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-735) *3)) (-4 *3 (-1052)) (-5 *1 (-646 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-646 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-646 *2)) (-4 *2 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-607 *5) (-607 *5))) (-5 *4 (-526)) (-5 *2 (-607 *5)) + (-5 *1 (-646 *5)) (-4 *5 (-1052))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-607 (-1160))) (-5 *3 (-1160)) (-5 *1 (-645))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-4 *2 (-1052)) (-5 *1 (-644 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-643 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-643 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-735)) (-4 *2 (-1052)) (-5 *1 (-642 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-1044 (-905 (-526)))) (-5 *2 (-315)) + (-5 *1 (-317)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-640 *3)) (-4 *3 (-1004)) (-4 *3 (-1052))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1004)) (-4 *2 (-1052))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-735)) (-5 *1 (-640 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205 (-735))) (-5 *1 (-640 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-639 *3)) (-4 *3 (-1159)) (-5 *2 (-735))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783 *4)) (-4 *4 (-811)) (-5 *2 (-111)) (-5 *1 (-637 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-783 *3)) (-4 *3 (-811)) (-5 *1 (-637 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) + (-5 *2 (-56 (-607 (-637 *5)))) (-5 *1 (-637 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *5)) (-5 *4 (-878)) (-4 *5 (-811)) (-5 *2 (-607 (-637 *5))) + (-5 *1 (-637 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 *7)) (-4 *7 (-811)) + (-4 *8 (-909 *5 *6 *7)) (-4 *5 (-533)) (-4 *6 (-757)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1205 (-392 *8)) "failed")) + (|:| -2104 (-607 (-1205 (-392 *8)))))) + (-5 *1 (-634 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-348)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4311)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4311)))) (-5 *2 (-111)) + (-5 *1 (-632 *5 *6 *4 *3)) (-4 *3 (-650 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) - (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) - (-5 *3 (-606 (-649 *5)))))) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-348)) (-5 *2 (-111)) + (-5 *1 (-633 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 (-1117 *4))) (-5 *3 (-1117 *4)) (-4 *4 (-869)) + (-5 *1 (-628 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) + (-4 *2 (-623 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-623 *3)) (-4 *3 (-1004)) (-4 *3 (-348)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-735)) (-5 *4 (-1 *5 *5)) (-4 *5 (-348)) (-5 *1 (-625 *5 *2)) + (-4 *2 (-623 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-348)) (-5 *1 (-625 *4 *2)) + (-4 *2 (-623 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-1122))) (-5 *1 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-816))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) - (-15 -3404 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-378)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) - ((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-671)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1134)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1134))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-348) (-141) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *5 (-1181 *4)) (-5 *2 (-607 (-620 (-392 *5)))) (-5 *1 (-624 *4 *5)) + (-5 *3 (-620 (-392 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1004)) (-4 *2 (-348))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-616 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-526)) (-4 *1 (-616 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) + (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-607 (-2 (|:| |gen| *3) (|:| -4260 *4)))) (-4 *3 (-1052)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1159)))) + ((*1 *2 *2) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)))) + ((*1 *1 *1) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) - (-4 *2 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) - (-4 *3 (-1154)))) + (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-526) (-526))) (-5 *1 (-346 *3)) (-4 *3 (-1052)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) - (-5 *1 (-698 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-1 (-735) (-735))) (-5 *1 (-371 *3)) (-4 *3 (-1052)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-731)) (-4 *5 (-163)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-731)) (-4 *5 (-163)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537))))) - (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) - (-5 *1 (-486 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-145 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) - (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-111)) (-5 *1 (-421)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-5 *3 (-606 (-1117))) (-5 *4 (-111)) (-5 *1 (-421)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1098 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) - (-4 *4 (-163)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-614 *3 *4 *5)) + (-4 *3 (-1052))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-346 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-371 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) - (-4 *4 (-163)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) - (-4 *4 (-163)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 (-606 *3)))) (-4 *3 (-1045)) - (-5 *1 (-636 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-674 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-1045)) - (-14 *4 - (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) - (-2 (|:| -2009 *2) (|:| -3283 *3)))))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) - (-4 *4 (-1045)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *5)) (-4 *5 (-13 (-1045) (-33))) - (-5 *2 (-606 (-1082 *3 *5))) (-5 *1 (-1082 *3 *5)) - (-4 *3 (-13 (-1045) (-33))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-614 *3 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-612 *3)) (-4 *3 (-1052))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-1052))))) +(((*1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-607 *3)) (-4 *3 (-1159))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1052)) (-4 *2 (-1159))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *1)) (-5 *4 (-1205 *1)) (-4 *1 (-606 *5)) (-4 *5 (-1004)) + (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| |val| *4) (|:| -3852 *5)))) - (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) - (-5 *2 (-606 (-1082 *4 *5))) (-5 *1 (-1082 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3852 *4))) - (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) - (-5 *1 (-1082 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-1045) (-33))) - (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1082 *2 *3))) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1083 *2 *3))) (-5 *1 (-1083 *2 *3)) - (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) - (-5 *2 (-1200 *4)) (-5 *1 (-601 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-232 *5 *6))) (-4 *6 (-435)) - (-5 *2 (-232 *5 *6)) (-14 *5 (-606 (-1117))) (-5 *1 (-594 *5 *6))))) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-606 *4)) (-4 *4 (-1004)) (-5 *2 (-653 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-606 (-391 *6))) (-5 *3 (-391 *6)) - (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-541 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-1126 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1154))))) + (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-4 *5 (-348)) + (-4 *5 (-533)) (-5 *2 (-1205 *5)) (-5 *1 (-605 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1205 *4)) (-4 *4 (-606 *5)) (-3636 (-4 *5 (-348))) + (-4 *5 (-533)) (-5 *2 (-1205 (-392 *5))) (-5 *1 (-605 *5 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) - (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) - (-4 *3 (-647 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) - (-5 *2 (-731))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-14 *6 (-1200 (-649 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) - ((*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'JINT 'X 'ELAM) (-2350) (-659)))) - (-5 *1 (-59 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'XC) (-659)))) - (-5 *1 (-61 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323 (-2350 'X) (-2350) (-659))) (-5 *1 (-62 *3)) - (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-323 (-2350) (-2350 'X 'HESS) (-659)))) - (-5 *1 (-63 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323 (-2350) (-2350 'XC) (-659))) (-5 *1 (-64 *3)) - (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350 '-4142) (-659)))) - (-5 *1 (-69 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) - (-5 *1 (-72 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'X 'EPS) (-2350 '-4142) (-659)))) - (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) - (-14 *5 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'EPS) (-2350 'YA 'YB) (-659)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) - (-14 *5 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323 (-2350) (-2350 'X) (-659))) (-5 *1 (-75 *3)) - (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323 (-2350) (-2350 'X) (-659))) (-5 *1 (-76 *3)) - (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'XC) (-659)))) - (-5 *1 (-77 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) - (-5 *1 (-78 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) - (-5 *1 (-79 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'X '-4142) (-2350) (-659)))) - (-5 *1 (-80 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-323 (-2350 'X '-4142) (-2350) (-659)))) - (-5 *1 (-81 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-323 (-2350 'X) (-2350) (-659)))) (-5 *1 (-82 *3)) - (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350) (-659)))) - (-5 *1 (-83 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350 '-4142) (-659)))) - (-5 *1 (-84 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-323 (-2350 'XL 'XR 'ELAM) (-2350) (-659)))) - (-5 *1 (-85 *3)) (-14 *3 (-1117)))) - ((*1 *1 *2) - (-12 (-5 *2 (-323 (-2350 'X) (-2350 '-4142) (-659))) (-5 *1 (-87 *3)) - (-14 *3 (-1117)))) - ((*1 *2 *1) (-12 (-5 *2 (-956 2)) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) - ((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-133 *3 *4 *5))) (-5 *1 (-133 *3 *4 *5)) - (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) - (-14 *3 (-537)) (-14 *4 (-731)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1084 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) - (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) - ((*1 *1 *2) - (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) - (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) - (-5 *2 (-1200 (-649 (-391 (-905 *4))))) (-5 *1 (-175 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) - (-15 -3404 ((-1205) $))))) - (-5 *1 (-200 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-956 10)) (-5 *1 (-203)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-230 *3)) (-4 *3 (-807)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1038 (-300 *4))) - (-4 *4 (-13 (-807) (-529) (-580 (-363)))) (-5 *2 (-1038 (-363))) - (-5 *1 (-242 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1176 *3)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1185 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) - (-14 *5 (-1117)) (-14 *6 *4) - (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) - (-5 *1 (-297 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-314)))) - ((*1 *2 *1) - (-12 (-5 *2 (-300 *5)) (-5 *1 (-323 *3 *4 *5)) - (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *3 *4 *2)) - (-4 *3 (-313 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *2 *4 *3)) - (-4 *3 (-313 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *2 (-1223 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *2 (-1214 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-4 *1 (-367)))) - ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-367)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-367)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-659))) (-4 *1 (-367)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-368)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) - ((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-377 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-378)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-380)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-380)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-160 (-363))))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-537)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-363))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-537))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-654)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-659)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-278 (-300 (-661)))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-654))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-659))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-300 (-661))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-314))) (-5 *1 (-382 *3 *4 *5 *6)) - (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-314)) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) - (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 *4)) (-4 *4 (-13 (-807) (-21))) - (-5 *1 (-411 *3 *4)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-411 *2 *3)) (-4 *2 (-13 (-163) (-37 (-391 (-537))))) - (-4 *3 (-13 (-807) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-391 (-905 (-391 *3)))) (-4 *3 (-529)) (-4 *3 (-807)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-905 (-391 *3))) (-4 *3 (-529)) (-4 *3 (-807)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-391 *3)) (-4 *3 (-529)) (-4 *3 (-807)) - (-4 *1 (-414 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-998)) (-4 *3 (-807)) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-418)) (-5 *1 (-421)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-421)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-4 *1 (-423)))) - ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-423)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-423)))) - ((*1 *1 *2) (-12 (-5 *2 (-1200 (-659))) (-4 *1 (-423)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) - (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-424)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-424)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 (-391 (-905 *3)))) (-4 *3 (-163)) - (-14 *6 (-1200 (-649 *3))) (-5 *1 (-436 *3 *4 *5 *6)) - (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-451)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) - (-14 *5 *3) (-5 *1 (-457 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-956 16)) (-5 *1 (-469)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) - ((*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-483)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-571)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572)))) - ((*1 *1 *2) - (-12 (-4 *3 (-163)) (-5 *1 (-573 *3 *2)) (-4 *2 (-705 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-998)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1219 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) - ((*1 *1 *2) - (-12 (-4 *3 (-163)) (-5 *1 (-598 *3 *2)) (-4 *2 (-705 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) - (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-5 *1 (-636 *3)) - (-4 *3 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-4 *3 (-1045)) - (-5 *1 (-636 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) - ((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-641)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *2)) (-4 *4 (-357 *3)) - (-4 *2 (-357 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) - ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) - ((*1 *2 *1) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) - ((*1 *1 *2) (-12 (-5 *2 (-160 (-661))) (-5 *1 (-654)))) - ((*1 *1 *2) (-12 (-5 *2 (-160 (-659))) (-5 *1 (-654)))) - ((*1 *1 *2) (-12 (-5 *2 (-160 (-537))) (-5 *1 (-654)))) - ((*1 *1 *2) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) - ((*1 *1 *2) (-12 (-5 *2 (-661)) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-659)))) - ((*1 *2 *3) - (-12 (-5 *3 (-300 (-537))) (-5 *2 (-300 (-661))) (-5 *1 (-661)))) - ((*1 *1 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1045)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) - ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) - (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-1045)) - (-14 *5 (-1 (-111) *2 *2)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-4 *3 (-807)) - (-4 *4 (-1045)) (-5 *1 (-674 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-4 *3 (-998)) - (-4 *4 (-687)) (-5 *1 (-696 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-724)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (|:| |mdnia| - (-2 (|:| |fn| (-300 (-210))) - (|:| -2133 (-606 (-1040 (-800 (-210))))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) - (-5 *1 (-729)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-300 (-210))) - (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *1 (-729)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *1 (-729)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-729)))) - ((*1 *2 *3) (-12 (-5 *2 (-734)) (-5 *1 (-733 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *1 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-768)))) - ((*1 *2 *1) - (-12 (-4 *2 (-853 *3)) (-5 *1 (-777 *3 *2 *4)) (-4 *3 (-1045)) - (-14 *4 *3))) - ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-14 *4 *3) (-5 *1 (-777 *3 *2 *4)) - (-4 *2 (-853 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-784)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) - (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-606 (-300 (-210)))) - (|:| -3956 (-606 (-210))))))) - (-5 *1 (-798)))) - ((*1 *1 *2) - (-12 + (|partial| -12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) + (-5 *2 (-1205 *4)) (-5 *1 (-605 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *5)) (-4 *5 (-606 *4)) (-4 *4 (-533)) (-5 *2 (-111)) + (-5 *1 (-605 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-803 *3))) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 - (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) - (-5 *1 (-798)))) - ((*1 *1 *2) - (-12 + (-3 (-803 *3) + (-2 (|:| |leftHandLimit| (-3 (-803 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-803 *3) #1#))) + "failed")) + (-5 *1 (-603 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1106)) + (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-803 *3)) + (-5 *1 (-603 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-803 (-905 *5)))) (-4 *5 (-436)) (-5 *2 - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (-5 *1 (-798)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-798)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-812 *3 *4 *5 *6)) - (-4 *4 (-998)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) - ((*1 *1 *2) - (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-819 *3 *4 *5 *6)) - (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) - ((*1 *2 *1) - (-12 (-5 *2 (-905 *3)) (-5 *1 (-819 *3 *4 *5 *6)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) - ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 (-47))) (-5 *2 (-300 (-537))) (-5 *1 (-828)))) - ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 (-47)))) (-5 *2 (-300 (-537))) - (-5 *1 (-828)))) - ((*1 *1 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) - ((*1 *1 *2) - (-12 + (-3 (-803 (-392 (-905 *5))) + (-2 (|:| |leftHandLimit| (-3 (-803 (-392 (-905 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-803 (-392 (-905 *5))) #2#))) + #3="failed")) + (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) (-5 *2 - (-2 (|:| |pde| (-606 (-300 (-210)))) - (|:| |constraints| - (-606 - (-2 (|:| |start| (-210)) (|:| |finish| (-210)) - (|:| |grid| (-731)) (|:| |boundaryType| (-537)) - (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) - (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) - (|:| |tol| (-210)))) - (-5 *1 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-851)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1140 *3)) (-5 *1 (-854 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-391 (-402 *3))) (-4 *3 (-291)) (-5 *1 (-867 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) - ((*1 *2 *3) - (-12 (-5 *3 (-460)) (-5 *2 (-300 *4)) (-5 *1 (-872 *4)) - (-4 *4 (-13 (-807) (-529))))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) - ((*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924)))) - ((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) - ((*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-984 *3)) (-4 *3 (-1154)))) - ((*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-984 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) - (-14 *6 (-606 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) - ((*1 *2 *3) - (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-994 *3)) (-4 *3 (-529)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-998)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 *5)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) - (-14 *4 (-731)) (-4 *5 (-998)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) - (-4 *2 (-902 *3 (-509 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) - (-4 *4 (-902 *3 (-509 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-816)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731)) - (-4 *4 (-998)))) - ((*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1086)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) - (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127 (-1117) (-421))) (-5 *1 (-1121)))) - ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *1 (-1133 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1134)))) - ((*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-1148 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-998)))) - ((*1 *1 *2) - (-12 (-5 *2 (-911 *3)) (-4 *3 (-1154)) (-5 *1 (-1151 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *1 (-1162 *3 *2)) (-4 *2 (-1191 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1040 *3)) (-4 *3 (-1154)) (-5 *1 (-1167 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-1173 *3 *4)) - (-4 *4 (-998)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *1 (-1183 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-998)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) - (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1201)))) - ((*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-1201)) (-5 *1 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1205)))) - ((*1 *1 *2) - (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) - (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-902 *3 *5 *4)) - (-14 *7 (-606 (-731))) (-14 *8 (-731)))) - ((*1 *2 *1) - (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) - (-14 *7 (-606 (-731))) (-14 *8 (-731)))) - ((*1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-998)))) - ((*1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *1 (-1219 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)) (-4 *2 (-803))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) - (-4 *2 (-347)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) - ((*1 *1 *1 *1) - (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) - ((*1 *1 *1 *1) (-4 *1 (-347))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-529)) (-4 *3 (-807)) - (-4 *1 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-456))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-513))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-584 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-687) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-163)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-687) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)) (-4 *2 (-347)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-163)) (-5 *1 (-623 *2 *4 *3)) (-4 *2 (-678 *4)) - (-4 *3 (|SubsetCategory| (-687) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-163)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)) - (-4 *2 (|SubsetCategory| (-687) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)) (-4 *2 (-347)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-819 *2 *3 *4 *5)) (-4 *2 (-347)) - (-4 *2 (-998)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-731))) - (-14 *5 (-731)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) - (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-347)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-347)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-807)) - (-4 *4 (-753)) (-14 *6 (-606 *3)) - (-5 *1 (-1211 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-902 *2 *4 *3)) - (-14 *7 (-606 (-731))) (-14 *8 (-731)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-347)) (-4 *2 (-998)) - (-4 *3 (-803))))) + (-3 (-803 *3) + (-2 (|:| |leftHandLimit| (-3 (-803 *3) #2#)) + (|:| |rightHandLimit| (-3 (-803 *3) #2#))) + #3#)) + (-5 *1 (-604 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-278 (-392 (-905 *6)))) (-5 *5 (-1106)) + (-5 *3 (-392 (-905 *6))) (-4 *6 (-436)) (-5 *2 (-803 *3)) + (-5 *1 (-604 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-278 (-796 *3))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) (-5 *2 (-796 *3)) + (-5 *1 (-603 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-796 (-905 *5)))) (-4 *5 (-436)) + (-5 *2 (-796 (-392 (-905 *5)))) (-5 *1 (-604 *5)) (-5 *3 (-392 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-392 (-905 *5)))) (-5 *3 (-392 (-905 *5))) (-4 *5 (-436)) + (-5 *2 (-796 *3)) (-5 *1 (-604 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-599))))) +(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-5 *1 (-599)))) +(((*1 *2 *3) + (-12 (-5 *3 (-233 *4 *5)) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) + (-5 *2 (-464 *4 *5)) (-5 *1 (-598 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-233 *4 *5))) (-5 *2 (-233 *4 *5)) (-14 *4 (-607 (-1123))) + (-4 *5 (-436)) (-5 *1 (-598 *4 *5))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-824 *4)) (-14 *4 (-607 (-1123))) + (-4 *5 (-436)) (-5 *1 (-598 *4 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-233 *5 *6))) (-4 *6 (-436)) + (-5 *2 (-233 *5 *6)) (-14 *5 (-607 (-1123))) (-5 *1 (-598 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *1 (-246)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-902 (-211)) (-902 (-211)))) (-5 *3 (-607 (-246))) + (-5 *1 (-247)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-464 *5 *6))) (-5 *3 (-464 *5 *6)) (-14 *5 (-607 (-1123))) + (-4 *6 (-436)) (-5 *2 (-1205 *6)) (-5 *1 (-598 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 (-464 *3 *4))) (-14 *3 (-607 (-1123))) (-4 *4 (-436)) + (-5 *1 (-598 *3 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) + (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-464 *5 *6))) (-5 *4 (-824 *5)) (-14 *5 (-607 (-1123))) + (-5 *2 (-464 *5 *6)) (-5 *1 (-598 *5 *6)) (-4 *6 (-436))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) + (-5 *2 (-607 (-233 *4 *5))) (-5 *1 (-598 *4 *5))))) +(((*1 *2 *3) + (-12 (-14 *4 (-607 (-1123))) (-4 *5 (-436)) + (-5 *2 (-2 (|:| |glbase| (-607 (-233 *4 *5))) (|:| |glval| (-607 (-526))))) + (-5 *1 (-598 *4 *5)) (-5 *3 (-607 (-233 *4 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-464 *4 *5))) (-14 *4 (-607 (-1123))) (-4 *5 (-436)) + (-5 *2 (-2 (|:| |gblist| (-607 (-233 *4 *5))) (|:| |gvlist| (-607 (-526))))) + (-5 *1 (-598 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) - (-4 *2 (-1191 *3)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960) (-1145))))) + ((*1 *1 *1) (-4 *1 (-597)))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-735)) (-5 *1 (-112)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-112)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) - (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) + (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-154)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) - (-4 *2 (-1191 *3)))) + (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *4)) + (-4 *4 (-13 (-406 *3) (-960))))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-282 *3)) (-4 *3 (-283)))) + ((*1 *2 *2) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) - (-5 *1 (-1094 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202))))) + (-12 (-5 *2 (-112)) (-4 *4 (-811)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *4)) + (-4 *4 (-406 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-4 *3 (-13 (-811) (-533))) (-5 *1 (-596 *3 *4)) + (-4 *4 (-13 (-406 *3) (-960) (-1145)))))) (((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-414 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) - (-5 *1 (-150 *4 *5)) (-4 *5 (-414 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) - (-5 *1 (-260 *4 *5)) (-4 *5 (-13 (-414 *4) (-954))))) + (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-406 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-285 *4)) (-4 *4 (-286)))) - ((*1 *2 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) + (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) + (-5 *1 (-150 *4 *5)) (-4 *5 (-406 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) + (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) + (-5 *1 (-261 *4 *5)) (-4 *5 (-13 (-406 *4) (-960))))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) - (-5 *1 (-415 *4 *5)) (-4 *5 (-414 *4)))) + (-12 (-5 *3 (-112)) (-5 *2 (-111)) (-5 *1 (-282 *4)) (-4 *4 (-283)))) + ((*1 *2 *3) (-12 (-4 *1 (-283)) (-5 *3 (-112)) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) - (-5 *1 (-593 *4 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176))))) -(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-874)))) + (-12 (-5 *3 (-112)) (-4 *5 (-811)) (-5 *2 (-111)) (-5 *1 (-405 *4 *5)) + (-4 *4 (-406 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-874)) - (-5 *1 (-507 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) + (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) + (-5 *1 (-416 *4 *5)) (-4 *5 (-406 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) - (-4 *4 (-1176 (-537))) (-5 *2 (-731)) (-5 *1 (-425 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *3 (-1176 *4)) (-5 *1 (-769 *4 *3 *2 *5)) (-4 *2 (-617 *3)) - (-4 *5 (-617 (-391 *3))))) + (-12 (-5 *3 (-112)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) + (-5 *1 (-596 *4 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) + (-14 *6 (-607 (-1123))) + (-5 *2 (-607 (-1094 *5 (-512 (-824 *6)) (-824 *6) (-744 *5 (-824 *6))))) + (-5 *1 (-595 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-744 *5 (-824 *6)))) (-5 *4 (-111)) (-4 *5 (-436)) + (-14 *6 (-607 (-1123))) (-5 *2 (-607 (-1001 *5 *6))) (-5 *1 (-595 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-431 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-391 *5)) - (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) - (-5 *1 (-769 *4 *5 *2 *6)) (-4 *2 (-617 *5)) (-4 *6 (-617 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1135))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-131))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-200 *2)) - (-4 *2 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) - (-15 -3404 ((-1205) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-431 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21))))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) + (-12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) + (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-998)) - (-5 *1 (-810 *5 *2)) (-4 *2 (-809 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *3 (-537)) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-606 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-537))))) - (-4 *2 (-529)) (-5 *1 (-402 *2)))) + (|partial| -12 (-5 *2 (-607 (-905 *3))) (-4 *3 (-436)) (-5 *1 (-345 *3 *4)) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-607 (-744 *3 (-824 *4)))) (-4 *3 (-436)) + (-14 *4 (-607 (-1123))) (-5 *1 (-595 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-905 *4))) (-4 *4 (-436)) (-5 *2 (-111)) + (-5 *1 (-345 *4 *5)) (-14 *5 (-607 (-1123))))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-537)) - (|:| -3415 (-606 (-2 (|:| |irr| *4) (|:| -2430 (-537))))))) - (-4 *4 (-1176 (-537))) (-5 *2 (-402 *4)) (-5 *1 (-425 *4))))) + (-12 (-5 *3 (-607 (-744 *4 (-824 *5)))) (-4 *4 (-436)) + (-14 *5 (-607 (-1123))) (-5 *2 (-111)) (-5 *1 (-595 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) - (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) - (-4 *3 (-326 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) - (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-5 *2 (-838 *5 *6 (-606 *6))) - (-5 *1 (-840 *5 *6 *4)) (-5 *3 (-606 *6)) (-4 *4 (-580 (-845 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 *3))) (-5 *1 (-840 *5 *3 *4)) - (-4 *3 (-989 (-1117))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 (-905 *3)))) - (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-998)) - (-3679 (-4 *3 (-989 (-1117)))) (-4 *3 (-839 *5)) - (-4 *4 (-580 (-845 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-5 *2 (-842 *5 *3)) (-5 *1 (-840 *5 *3 *4)) - (-3679 (-4 *3 (-989 (-1117)))) (-3679 (-4 *3 (-998))) - (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5)))))) -(((*1 *1) (-5 *1 (-1031)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-149))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-200 *2)) - (-4 *2 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) - (-15 -3404 ((-1205) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *2)) - (-4 *2 (-1176 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-513))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-25))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *1) (-5 *1 (-1027)))) + (-12 (-5 *3 (-607 *4)) (-4 *4 (-811)) (-5 *2 (-607 (-629 *4 *5))) + (-5 *1 (-594 *4 *5 *6)) (-4 *5 (-13 (-163) (-682 (-392 (-526))))) + (-14 *6 (-878))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |k| (-637 *3)) (|:| |c| *4)))) + (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-607 (-278 *4))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-811)) + (-4 *4 (-13 (-163) (-682 (-392 (-526))))) (-14 *5 (-878))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2736 (-607 (-2 (|:| |irr| *10) (|:| -2456 (-526))))))) + (-5 *6 (-607 *3)) (-5 *7 (-607 *8)) (-4 *8 (-811)) (-4 *3 (-292)) + (-4 *10 (-909 *3 *9 *8)) (-4 *9 (-757)) + (-5 *2 + (-2 (|:| |polfac| (-607 *10)) (|:| |correct| *3) + (|:| |corrfact| (-607 (-1117 *3))))) + (-5 *1 (-592 *8 *9 *3 *10)) (-5 *4 (-607 (-1117 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-735)) (-5 *5 (-607 *3)) (-4 *3 (-292)) (-4 *6 (-811)) + (-4 *7 (-757)) (-5 *2 (-111)) (-5 *1 (-592 *6 *7 *3 *8)) + (-4 *8 (-909 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *6 (-1018 *3 *4 *5)) + (-5 *1 (-591 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1024 *3 *4 *5 *6)) + (-4 *2 (-1060 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-533)) (-5 *1 (-590 *2 *3)) (-4 *3 (-1181 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1123)) + (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-29 *4)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) + (-4 *5 (-1181 *4)) (-5 *2 (-1117 (-392 *5))) (-5 *1 (-585 *4 *5)) + (-5 *3 (-392 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-141) (-27) (-995 (-526)) (-995 (-392 (-526))))) + (-5 *2 (-1117 (-392 *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-581 *4)) (-4 *4 (-811)) (-4 *2 (-811)) + (-5 *1 (-582 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-581 *4)) (-5 *1 (-582 *3 *4)) (-4 *3 (-811)) (-4 *4 (-811))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1145)))) + ((*1 *2 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-811)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 *3)) (-5 *1 (-581 *3)) (-4 *3 (-811))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-607 *1)) (-4 *1 (-283)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-112)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-112)) (-5 *3 (-607 *5)) (-5 *4 (-735)) (-4 *5 (-811)) + (-5 *1 (-581 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-581 *3)) (-4 *3 (-811))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-580 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-580 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-576))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1200 *5)) (-5 *3 (-731)) (-5 *4 (-1064)) (-4 *5 (-333)) - (-5 *1 (-507 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *2 *2) (-12 (-5 *2 - (-606 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) - (-5 *1 (-432 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-347)) (-4 *6 (-1176 (-391 *2))) - (-4 *2 (-1176 *5)) (-5 *1 (-201 *5 *2 *6 *3)) - (-4 *3 (-326 *5 *2 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *1) (-5 *1 (-138))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-247))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-537) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) - (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) - (-5 *2 (-649 (-300 (-210)))) (-5 *1 (-191)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1045)) (-4 *6 (-853 *5)) (-5 *2 (-649 *6)) - (-5 *1 (-652 *5 *6 *3 *4)) (-4 *3 (-357 *6)) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) - (-5 *2 (-606 (-633 *5))) (-5 *1 (-633 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) - ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) - ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659))))) -(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-731)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-357 *3)) (-4 *3 (-1154)) - (-4 *3 (-1045)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) - (-5 *2 (-537)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) - (-5 *2 (-537)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)) (-5 *3 (-135)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-435)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *5 (-862)) (-5 *1 (-440 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) + (-607 + (-2 + (|:| -4179 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (|:| -2164 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1101 (-211))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1537 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-536)))) + ((*1 *2 *1) + (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1159)) (-5 *2 (-607 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-574 *4 *3)) (-4 *4 (-1052)) + (-4 *3 (-1159)) (-4 *3 (-1052)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811))))) +(((*1 *2 *1) + (-12 (-4 *1 (-574 *2 *3)) (-4 *3 (-1159)) (-4 *2 (-1052)) (-4 *2 (-811))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1159)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *2)) (-4 *3 (-1052)) + (-4 *2 (-1159))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4311)) (-4 *1 (-574 *3 *4)) (-4 *3 (-1052)) + (-4 *4 (-1159)) (-5 *2 (-1211))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-607 (-1123))) + (-4 *2 (-13 (-406 (-159 *5)) (-960) (-1145))) (-4 *5 (-13 (-533) (-811))) + (-5 *1 (-570 *5 *6 *2)) (-4 *6 (-13 (-406 *5) (-960) (-1145)))))) (((*1 *2 *3) - (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) + (-12 (-4 *4 (-13 (-533) (-811))) (-5 *2 (-159 *5)) (-5 *1 (-570 *4 *5 *3)) + (-4 *5 (-13 (-406 *4) (-960) (-1145))) + (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145)))))) (((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) - (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) - (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) - (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) - (-5 *1 (-657))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-998)) (-4 *2 (-1045))))) + (-12 (-4 *4 (-13 (-533) (-811))) + (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) (-5 *1 (-570 *4 *3 *2)) + (-4 *3 (-13 (-406 *4) (-960) (-1145)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 *4) (-960) (-1145))) + (-5 *1 (-570 *4 *2 *3)) (-4 *3 (-13 (-406 (-159 *4)) (-960) (-1145)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-406 *4) (-960) (-1145))) + (-4 *4 (-13 (-533) (-811))) (-4 *2 (-13 (-406 (-159 *4)) (-960) (-1145))) + (-5 *1 (-570 *4 *5 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-983 (-803 (-526)))) + (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *4)))) (-4 *4 (-1004)) + (-5 *1 (-566 *4))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807))))) -(((*1 *1 *1) (-5 *1 (-111)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529))))) -(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211))))) + (-12 (-5 *2 (-983 (-803 (-526)))) (-5 *1 (-566 *3)) (-4 *3 (-1004))))) (((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) - (-4 *6 (-326 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) - (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-559 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *2 (-1205)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1176 (-391 *5))) (-14 *7 *6)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *7 (-853 *6)) - (-5 *2 (-649 *7)) (-5 *1 (-652 *6 *7 *3 *4)) (-4 *3 (-357 *7)) - (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300))))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-315 *3)) (-4 *3 (-807))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-606 (-210))) (-5 *1 (-190))))) -(((*1 *2 *3) - (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) - (-5 *2 (-606 (-731))) (-5 *1 (-738 *3 *4 *5 *6 *7)) - (-4 *3 (-1176 *6)) (-4 *7 (-902 *6 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-989 (-47))) - (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) - (-5 *2 (-402 (-1113 (-47)))) (-5 *1 (-419 *4 *5 *3)) - (-4 *3 (-1176 *5))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-314)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) - (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) - (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) - (-5 *1 (-648 *3 *4 *5 *6)) (-4 *6 (-647 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-660 *3)) - (-4 *3 (-291))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) + (-12 (-5 *2 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *3)))) (-5 *1 (-566 *3)) + (-4 *3 (-1004))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-566 *3)) (-4 *3 (-1004))))) +(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1101 (-2 (|:| |k| (-526)) (|:| |c| *6)))) + (-5 *4 (-983 (-803 (-526)))) (-5 *5 (-1123)) (-5 *7 (-392 (-526))) + (-4 *6 (-1004)) (-5 *2 (-823)) (-5 *1 (-566 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-566 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-1004))))) (((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *6)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-432 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) (((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) - (-4 *2 (-998))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-33)) (-5 *2 (-731)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-537)))) - ((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-803))))) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *1 *1) + (-12 (-5 *1 (-566 *2)) (-4 *2 (-37 (-392 (-526)))) (-4 *2 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-1060 *5 *6 *7 *8)) + (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-1018 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-563 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) - (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) - (-4 *6 (-1176 *2)))) + (-12 (-5 *3 (-607 (-526))) (-5 *4 (-861 (-526))) (-5 *2 (-653 (-526))) + (-5 *1 (-562)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) - (-4 *4 (-1176 *5)) (-5 *2 (-1113 *7)) (-5 *1 (-482 *5 *4 *6 *7)) - (-4 *6 (-1176 *4))))) + (-12 (-5 *3 (-607 (-526))) (-5 *4 (-607 (-861 (-526)))) + (-5 *2 (-607 (-653 (-526)))) (-5 *1 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-526))) (-5 *2 (-735)) (-5 *1 (-562))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 (-731))) (-5 *1 (-922 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1117)) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51))))) -(((*1 *1 *1) (-5 *1 (-210))) - ((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) - (-5 *2 - (-2 (|:| |mval| (-649 *4)) (|:| |invmval| (-649 *4)) - (|:| |genIdeal| (-485 *4 *5 *6 *7)))) - (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-977 *3)) (-4 *3 (-1154))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-632)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) - (-14 *4 (-874))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-111)) (-5 *1 (-845 *4)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-210) (-210) (-210))) - (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) - (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) - (-5 *1 (-657)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) - (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1 (-896 (-210)) (-210) (-210))) - (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *1 (-657))))) + (-12 (-5 *3 (-1123)) + (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-413 *4 *2)) (-4 *2 (-13 (-1145) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 *5))) (-5 *4 (-1123)) (-4 *5 (-141)) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *5)) + (-5 *1 (-561 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-29 *4) (-1145))) (-5 *1 (-558 *4 *2)) + (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-556 (-392 (-905 *4)))) + (-4 *4 (-13 (-436) (-995 (-526)) (-811) (-606 (-526)))) (-5 *2 (-299 *4)) + (-5 *1 (-561 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-560 *4)) (-4 *4 (-335))))) +(((*1 *2 *2) (-12 (-5 *1 (-559 *2)) (-4 *2 (-525))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-559 *2)) (-4 *2 (-525))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-735)) (-5 *1 (-559 *2)) (-4 *2 (-525)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| -2462 (-735)))) (-5 *1 (-559 *3)) + (-4 *3 (-525))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) - (-5 *1 (-842 *4 *5)) (-4 *5 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) - (-5 *1 (-843 *5 *3)) (-4 *3 (-1154)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) - (-4 *6 (-1154)) (-5 *2 (-111)) (-5 *1 (-843 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) - (-5 *1 (-650 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-363)))) (-5 *2 (-1040 (-800 (-210)))) - (-5 *1 (-289))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-643 *4 *3)) (-4 *4 (-1045)) - (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *1 *1 *2) + (-12 (-5 *4 (-735)) (-5 *2 (-111)) (-5 *1 (-559 *3)) (-4 *3 (-525))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-607 + (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *2)) + (|:| |logand| (-1117 *2))))) + (-5 *4 (-607 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-348)) + (-5 *1 (-556 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-348))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) - (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) - (|:| |args| (-606 (-816))))) - (-5 *1 (-1117)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-1117))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (-607 + (-2 (|:| |scalar| (-392 (-526))) (|:| |coeff| (-1117 *3)) + (|:| |logand| (-1117 *3))))) + (-5 *1 (-556 *3)) (-4 *3 (-348))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-556 *3)) (-4 *3 (-348))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-556 *3)) (-4 *3 (-348))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-555))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1123)) + (-4 *4 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-1145) (-919) (-1087) (-29 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-550 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 + (-2 (|:| |ir| (-556 (-392 *6))) (|:| |specpart| (-392 *6)) + (|:| |polypart| *6))) + (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-590 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3434 *4) (|:| |sol?| (-111))) (-526) *4)) + (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *1 (-550 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 (-1 (-3 (-2 (|:| -2222 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-348)) (-5 *1 (-550 *4 *2)) (-4 *2 (-1181 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-607 (-392 *7))) (-4 *7 (-1181 *6)) + (-5 *3 (-392 *7)) (-4 *6 (-348)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-550 *6 *7))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) + (-5 *2 (-2 (|:| -2222 (-392 *6)) (|:| |coeff| (-392 *6)))) + (-5 *1 (-550 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3434 *7) (|:| |sol?| (-111))) (-526) *7)) + (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-550 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2222 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-607 (-392 *8))) (-4 *7 (-348)) (-4 *8 (-1181 *7)) (-5 *3 (-392 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-550 *7 *8))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) + (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) + (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) + (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-392 *7)) (|:| |a0| *6)) + (-2 (|:| -2222 (-392 *7)) (|:| |coeff| (-392 *7))) "failed")) + (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-607 *6) "failed") (-526) *6 *6)) + (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) + (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3434 *6) (|:| |sol?| (-111))) (-526) *6)) + (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) + (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2222 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-348)) (-4 *7 (-1181 *6)) + (-5 *2 (-2 (|:| |answer| (-556 (-392 *7))) (|:| |a0| *6))) + (-5 *1 (-550 *6 *7)) (-5 *3 (-392 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-554 *3) *3 (-1117))) + (-12 (-5 *5 (-1 (-556 *3) *3 (-1123))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1117))) - (-4 *3 (-268)) (-4 *3 (-592)) (-4 *3 (-989 *4)) (-4 *3 (-414 *7)) - (-5 *4 (-1117)) (-4 *7 (-580 (-845 (-537)))) (-4 *7 (-435)) - (-4 *7 (-839 (-537))) (-4 *7 (-807)) (-5 *2 (-554 *3)) - (-5 *1 (-546 *7 *3))))) -(((*1 *1) (-5 *1 (-111)))) -(((*1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-103))))) -(((*1 *2 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-522))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-998)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-466 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1123))) + (-4 *3 (-269)) (-4 *3 (-597)) (-4 *3 (-995 *4)) (-4 *3 (-406 *7)) + (-5 *4 (-1123)) (-4 *7 (-584 (-849 (-526)))) (-4 *7 (-436)) + (-4 *7 (-845 (-526))) (-4 *7 (-811)) (-5 *2 (-556 *3)) + (-5 *1 (-549 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-436)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) + (-4 *2 (-269)) (-4 *2 (-406 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) + (-12 (-5 *3 (-1123)) (-4 *4 (-533)) (-4 *4 (-811)) (-5 *1 (-549 *4 *2)) + (-4 *2 (-406 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-1123)) (-4 *6 (-406 *5)) (-4 *5 (-811)) + (-5 *2 (-607 (-581 *6))) (-5 *1 (-549 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-607 (-581 *6))) (-5 *4 (-1123)) (-5 *2 (-581 *6)) + (-4 *6 (-406 *5)) (-4 *5 (-811)) (-5 *1 (-549 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) - (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117)))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (-12 (-5 *3 (-607 (-581 *5))) (-4 *4 (-811)) (-5 *2 (-581 *5)) + (-5 *1 (-549 *4 *5)) (-4 *5 (-406 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) - (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-862)) (-4 *5 (-753)) - (-4 *6 (-807)) (-5 *1 (-859 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) - (-4 *5 (-1176 *4)) (-4 *4 (-862)) (-5 *1 (-860 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) - ((*1 *1 *1 *1) (-4 *1 (-435))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-731))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) - (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) - (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-291)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-1113 *7))) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-291)) (-5 *2 (-1113 *7)) (-5 *1 (-869 *4 *5 *6 *7)) - (-4 *7 (-902 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-435)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) - (-4 *2 (-1176 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435))))) + (-12 (-5 *2 (-607 (-581 *5))) (-5 *3 (-1123)) (-4 *5 (-406 *4)) + (-4 *4 (-811)) (-5 *1 (-549 *4 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) + (-5 *2 (-2 (|:| -2222 (-392 (-905 *5))) (|:| |coeff| (-392 (-905 *5))))) + (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 (-392 (-905 *6)))) + (-5 *3 (-392 (-905 *6))) (-4 *6 (-13 (-533) (-995 (-526)) (-141))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-546 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-753)) - (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) - (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *6)) - (-4 *6 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) - (-4 *2 (-902 (-905 *4) *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) - ((*1 *1 *1) (-4 *1 (-805))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) - ((*1 *1 *1) (-4 *1 (-1007))) ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-905 (-537)))) (-5 *1 (-421)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-210))) (-5 *2 (-1049)) - (-5 *1 (-720)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-537))) (-5 *2 (-1049)) - (-5 *1 (-720))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-5 *1 (-941 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) - (-5 *1 (-1052 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-763))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-232 *3 *4)) - (-14 *3 (-606 (-1117))) (-4 *4 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-14 *3 (-606 (-1117))) - (-5 *1 (-437 *3 *4 *5)) (-4 *4 (-998)) - (-4 *5 (-223 (-2258 *3) (-731))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-5 *1 (-463 *3 *4)) - (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-784)) (-5 *3 (-606 (-1117))) (-5 *1 (-785))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-752))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1154)) - (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *7 *2)) (-4 *6 (-998)) - (-4 *7 (-223 *5 *6)) (-4 *2 (-223 *4 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-278 (-793 *3))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-793 *3)) (-5 *1 (-599 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-793 (-905 *5)))) (-4 *5 (-435)) - (-5 *2 (-793 (-391 (-905 *5)))) (-5 *1 (-600 *5)) - (-5 *3 (-391 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) - (-4 *5 (-435)) (-5 *2 (-793 *3)) (-5 *1 (-600 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) - (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33)))))) + (|partial| -12 (-5 *2 (-392 (-905 *4))) (-5 *3 (-1123)) + (-4 *4 (-13 (-533) (-995 (-526)) (-141))) (-5 *1 (-546 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) - (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) - (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *9)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) - (-4 *8 (-998)) (-4 *2 (-902 *9 *7 *5)) - (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) - (-4 *4 (-902 *8 *6 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-129))))) -(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1) (-4 *1 (-286)))) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-995 (-526)) (-141))) + (-5 *2 (-556 (-392 (-905 *5)))) (-5 *1 (-546 *5)) (-5 *3 (-392 (-905 *5)))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-529) (-141))) - (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-1170 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) -(((*1 *2 *1) - (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) - (-4 *2 (-807))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-435)) - (-5 *2 (-606 (-606 *7))) (-5 *1 (-515 *6 *7 *5)) (-4 *7 (-347)) - (-4 *5 (-13 (-347) (-805)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-606 (-1100))) (-5 *3 (-537)) (-5 *4 (-1100)) - (-5 *1 (-226)))) - ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) - ((*1 *2 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) - ((*1 *1 *1 *1) (-4 *1 (-435)))) -(((*1 *2 *3) - (-12 (-4 *4 (-435)) + (|partial| -12 (-5 *2 (-526)) (-5 *1 (-545 *3)) (-4 *3 (-995 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-607 (-392 *6))) (-5 *3 (-392 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-348) (-141) (-995 (-526)))) (-5 *2 - (-606 - (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) - (|:| |geneigvec| (-606 (-649 (-391 (-905 *4)))))))) - (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-544 *5 *6))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-348) (-141) (-995 (-526)))) (-4 *5 (-1181 *4)) + (-5 *2 (-2 (|:| -2222 (-392 *5)) (|:| |coeff| (-392 *5)))) + (-5 *1 (-544 *4 *5)) (-5 *3 (-392 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) (-4 *1 (-268))) - ((*1 *2 *3) - (-12 (-5 *3 (-402 *4)) (-4 *4 (-529)) - (-5 *2 (-606 (-2 (|:| -3449 (-731)) (|:| |logand| *4)))) - (-5 *1 (-304 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) - (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) - (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 *5)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) - (-14 *4 (-731)) (-4 *5 (-163))))) -(((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) - ((*1 *1 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-807)) - (-4 *3 (-13 (-163) (-678 (-391 (-537))))) (-14 *4 (-874)))) - ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-537) "failed") *5)) (-4 *5 (-998)) - (-5 *2 (-537)) (-5 *1 (-520 *5 *3)) (-4 *3 (-1176 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) - (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) - (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-513))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) - (-5 *1 (-451))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) - ((*1 *1 *1 *1) (-4 *1 (-753)))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-462))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) + (|partial| -12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) + (-4 *3 (-13 (-348) (-141) (-995 (-526)))) (-5 *1 (-544 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-800 *3))) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (-800 *3) - (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) - (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) - "failed")) - (-5 *1 (-599 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1100)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-800 *3)) (-5 *1 (-599 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-800 (-905 *5)))) (-4 *5 (-435)) + (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) + (-4 *5 (-845 (-526))) + (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) + (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1123)) (-5 *4 (-803 *2)) (-4 *2 (-1087)) + (-4 *2 (-13 (-27) (-1145) (-406 *5))) (-4 *5 (-584 (-849 (-526)))) + (-4 *5 (-845 (-526))) + (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) + (-5 *1 (-543 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1123)) (-4 *5 (-584 (-849 (-526)))) + (-4 *5 (-845 (-526))) + (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-543 *5 *3)) + (-4 *3 (-597)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-811) (-995 (-526)) (-436) (-606 (-526)))) + (-5 *2 (-2 (|:| -2388 *3) (|:| |nconst| *3))) (-5 *1 (-543 *5 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-581 *4)) (-5 *6 (-1123)) (-4 *4 (-13 (-406 *7) (-27) (-1145))) + (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-542 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1123))) + (-4 *2 (-13 (-406 *5) (-27) (-1145))) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *1 (-542 *5 *2 *6)) (-4 *6 (-1052))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) (-5 *2 - (-3 (-800 (-391 (-905 *5))) - (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-800 (-391 (-905 *5))) "failed"))) - "failed")) - (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-542 *6 *3 *7)) (-4 *7 (-1052))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3 *6)) + (-4 *6 (-1052))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-581 *3)) (-4 *3 (-13 (-406 *5) (-27) (-1145))) + (-4 *5 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-542 *5 *3 *6)) (-4 *6 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) + (-4 *7 (-1181 (-392 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2221 *3))) + (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-327 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) - (-4 *5 (-435)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-348)) (-5 *2 - (-3 (-800 *3) - (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) - (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) - "failed")) - (-5 *1 (-600 *5)))) + (-2 (|:| |answer| (-392 *6)) (|:| -2221 (-392 *6)) + (|:| |specpart| (-392 *6)) (|:| |polypart| *6))) + (-5 *1 (-540 *5 *6)) (-5 *3 (-392 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-526)) (-5 *3 (-735)) (-5 *1 (-538))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-538)) (-5 *3 (-526))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-170 *2)) (-4 *2 (-292)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-607 (-607 *4))) (-5 *2 (-607 *4)) (-4 *4 (-292)) + (-5 *1 (-170 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-278 (-391 (-905 *6)))) (-5 *5 (-1100)) - (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-800 *3)) - (-5 *1 (-600 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-196)) - (-5 *3 (-1117)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 (-210))) (-5 *4 (-731)) (-5 *2 (-606 (-1117))) - (-5 *1 (-251)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) - (-5 *2 (-606 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 *3)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-606 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-803))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *3 (-607 *8)) + (-5 *4 + (-607 + (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-653 *7))))) + (-5 *5 (-735)) (-4 *8 (-1181 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-335)) (-5 *2 - (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-649 *3)))) - (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *1 (-848)) - (-5 *3 - (-2 (|:| |pde| (-606 (-300 (-210)))) - (|:| |constraints| - (-606 - (-2 (|:| |start| (-210)) (|:| |finish| (-210)) - (|:| |grid| (-731)) (|:| |boundaryType| (-537)) - (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) - (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) - (|:| |tol| (-210)))) - (-5 *2 (-986))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) - (-5 *1 (-176))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-606 *2) *2 *2 *2)) (-4 *2 (-1045)) - (-5 *1 (-101 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) - (-5 *2 (-606 (-1021 *3 *4 *5))) (-5 *1 (-1022 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 *2))) - (-5 *2 (-845 *3)) (-5 *1 (-1021 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-839 *3) (-580 *2)))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1185 *4 *5 *6)) - (|:| |%expon| (-303 *4 *5 *6)) - (|:| |%expTerms| - (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))))) - (|:| |%type| (-1100)))) - (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) - (-14 *5 (-1117)) (-14 *6 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) + (-2 (|:| -2104 (-653 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-653 *7)))) + (-5 *1 (-480 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-538))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-581 *4)) (-5 *6 (-1117 *4)) + (-4 *4 (-13 (-406 *7) (-27) (-1145))) + (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2104 (-607 *4)))) + (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-581 *4)) (-5 *6 (-392 (-1117 *4))) + (-4 *4 (-13 (-406 *7) (-27) (-1145))) + (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2104 (-607 *4)))) + (-5 *1 (-537 *7 *4 *3)) (-4 *3 (-623 *4)) (-4 *3 (-1052))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-581 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1123))) (-5 *5 (-1117 *2)) + (-4 *2 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-581 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1123))) + (-5 *5 (-392 (-1117 *2))) (-4 *2 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *1 (-537 *6 *2 *7)) (-4 *7 (-1052))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-1117 *3)) + (-4 *3 (-13 (-406 *7) (-27) (-1145))) + (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-607 *3)) (-5 *6 (-392 (-1117 *3))) + (-4 *3 (-13 (-406 *7) (-27) (-1145))) + (-4 *7 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-537 *7 *3 *8)) (-4 *8 (-1052))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) + (-4 *7 (-1052)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-537 *6 *3 *7)) + (-4 *7 (-1052))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-581 *3)) (-5 *5 (-1117 *3)) + (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-581 *3)) (-5 *5 (-392 (-1117 *3))) + (-4 *3 (-13 (-406 *6) (-27) (-1145))) + (-4 *6 (-13 (-436) (-995 (-526)) (-811) (-141) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-537 *6 *3 *7)) (-4 *7 (-1052))))) (((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-5 *1 (-1021 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1045)) - (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) - (-5 *1 (-1021 *3 *4 *2)) - (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1 *1) (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (-5 *2 - (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)) - (|:| |coef2| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1012 *3 *4 *5))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1101 (-211))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1537 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-536))))) (((*1 *2 *3) - (-12 + (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12183,2081 +12397,1849 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2133 + (-3 (|:| |str| (-1101 (-211))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-532))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1203))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-314))))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-917 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-391 (-537))))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-300 (-537)))) - (-5 *1 (-982))))) -(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) + (-5 *1 (-536))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-607 + (-2 + (|:| -4179 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (|:| -2164 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1101 (-211))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1537 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-536))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-536))))) +(((*1 *1) (-5 *1 (-536)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-525))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-535 *3)) (-4 *3 (-525))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1123)) (-5 *6 (-607 (-581 *3))) (-5 *5 (-581 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *7))) + (-4 *7 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-391 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1176 *5)) - (-5 *1 (-688 *5 *2)) (-4 *5 (-347))))) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-534 *5 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1123)) + (-4 *4 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-534 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1123)) (-5 *5 (-607 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *6))) + (-4 *6 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-607 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-534 *6 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1123)) + (-4 *5 (-13 (-436) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-2 (|:| -2222 *3) (|:| |coeff| *3))) (-5 *1 (-534 *5 *3)) + (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1868 *1) (|:| -4297 *1) (|:| |associate| *1))) + (-4 *1 (-533))))) +(((*1 *1 *1) (-4 *1 (-533)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-111))))) +(((*1 *1 *2) + (-12 (-5 *2 (-392 (-526))) (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))))) + ((*1 *1 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) +(((*1 *2 *1) (-12 (-4 *1 (-531 *2)) (-4 *2 (-13 (-389) (-1145)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-531 *3)) (-4 *3 (-13 (-389) (-1145))) (-5 *2 (-111))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-530))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-530))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1181 *5)) + (-4 *5 (-13 (-27) (-406 *4))) (-4 *4 (-13 (-811) (-533) (-995 (-526)))) + (-4 *7 (-1181 (-392 *6))) (-5 *1 (-529 *4 *5 *6 *7 *2)) + (-4 *2 (-327 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) + (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1181 *6)) (-4 *6 (-13 (-27) (-406 *5))) + (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-4 *8 (-1181 (-392 *7))) + (-5 *2 (-556 *3)) (-5 *1 (-529 *5 *6 *7 *8 *3)) (-4 *3 (-327 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-581 *3)) (-5 *5 (-1 (-1117 *3) (-1117 *3))) + (-4 *3 (-13 (-27) (-406 *6))) (-4 *6 (-13 (-811) (-533))) (-5 *2 (-556 *3)) + (-5 *1 (-528 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-525)) (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *1 *1 *1) (-4 *1 (-525)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-526) #1="failed") *5)) (-4 *5 (-1004)) + (-5 *2 (-526)) (-5 *1 (-523 *5 *3)) (-4 *3 (-1181 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) + (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-526) #1#) *4)) (-4 *4 (-1004)) (-5 *2 (-526)) + (-5 *1 (-523 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-292)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1181 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-292)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-735))) + (-5 *1 (-519 *3 *2 *4 *5)) (-4 *2 (-1181 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *1 *1) (-4 *1 (-592))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) + (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-1181 *4)) (-5 *1 (-519 *4 *2 *5 *6)) + (-4 *4 (-292)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-735)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) + (-12 (-5 *3 (-607 *6)) (-5 *4 (-607 (-1123))) (-4 *6 (-348)) + (-5 *2 (-607 (-278 (-905 *6)))) (-5 *1 (-518 *5 *6 *7)) (-4 *5 (-436)) + (-4 *7 (-13 (-348) (-809)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-607 (-905 *6))) (-5 *4 (-607 (-1123))) (-4 *6 (-436)) + (-5 *2 (-607 (-607 *7))) (-5 *1 (-518 *6 *7 *5)) (-4 *7 (-348)) + (-4 *5 (-13 (-348) (-809)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) + (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-436)) (-5 *2 (-607 *6)) + (-5 *1 (-518 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-515)))) + ((*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *1 (-516 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *2 (-515)) (-5 *1 (-516 *4)) (-4 *4 (-1159))))) +(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-106)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-515))) (-5 *1 (-515))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-515))))) +(((*1 *1 *1) (-5 *1 (-515)))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-515))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-515))) (-5 *2 (-1123)) (-5 *1 (-515))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-515))) (-5 *1 (-515))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 *6)) (-5 *5 (-1 (-390 (-1117 *6)) (-1117 *6))) + (-4 *6 (-348)) + (-5 *2 + (-607 + (-2 (|:| |outval| *7) (|:| |outmult| (-526)) + (|:| |outvect| (-607 (-653 *7)))))) + (-5 *1 (-513 *6 *7 *4)) (-4 *7 (-348)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *5)) (-4 *5 (-348)) (-5 *2 (-607 *6)) + (-5 *1 (-513 *5 *6 *4)) (-4 *6 (-348)) (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-348)) (-5 *2 (-1117 *4)) + (-5 *1 (-513 *4 *5 *6)) (-4 *5 (-348)) (-4 *6 (-13 (-348) (-809)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-511 *3)) (-4 *3 (-13 (-691) (-25)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-878)) (-4 *4 (-353)) (-4 *4 (-348)) (-5 *2 (-1117 *1)) + (-4 *1 (-314 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-5 *2 (-1117 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-163)) (-4 *3 (-348)) (-4 *2 (-1181 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4))))) +(((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348)))) + ((*1 *2 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1205 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335))))) (((*1 *2 *2) - (-12 (-5 *2 (-1200 *4)) (-4 *4 (-401 *3)) (-4 *3 (-291)) - (-4 *3 (-529)) (-5 *1 (-42 *3 *4)))) + (-12 (-5 *2 (-1205 *4)) (-4 *4 (-403 *3)) (-4 *3 (-292)) (-4 *3 (-533)) + (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-874)) (-4 *4 (-347)) (-5 *2 (-1200 *1)) - (-4 *1 (-313 *4)))) - ((*1 *2) (-12 (-4 *3 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *3)))) + (-12 (-5 *3 (-878)) (-4 *4 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *4)))) + ((*1 *2) (-12 (-4 *3 (-348)) (-5 *2 (-1205 *1)) (-4 *1 (-314 *3)))) ((*1 *2) - (-12 (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *1)) - (-4 *1 (-393 *3 *4)))) + (-12 (-4 *3 (-163)) (-4 *4 (-1181 *3)) (-5 *2 (-1205 *1)) + (-4 *1 (-395 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) - (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) - (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) + (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) + (-5 *1 (-398 *3 *4 *5 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) - (-5 *2 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)) - (-4 *6 (-393 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-401 *3)))) + (-12 (-4 *3 (-292)) (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-5 *2 (-1205 *6)) + (-5 *1 (-400 *3 *4 *5 *6 *7)) (-4 *6 (-395 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-403 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 *4))) (-5 *1 (-507 *4)) - (-4 *4 (-333))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 *4))) (-5 *1 (-510 *4)) + (-4 *4 (-335))))) (((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-5 *2 (-111))))) + (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-510 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-878)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-878)) (-5 *1 (-510 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-526)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1070)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-510 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1205 *5)) (-5 *3 (-735)) (-5 *4 (-1070)) (-4 *5 (-335)) + (-5 *1 (-510 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-14 *5 (-606 (-1117))) - (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) - (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) - (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-12 (-5 *3 (-735)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4)) (-4 *4 (-335))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *4)) (-4 *4 (-335)) (-5 *2 (-1117 *4)) (-5 *1 (-510 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) + (-4 *4 (-335)) (-5 *2 (-1211)) (-5 *1 (-510 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-1070))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-509)) (-5 *3 (-128)) (-5 *2 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-507))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-507))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1160))) (-5 *1 (-506))))) +(((*1 *2 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-650 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-499))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-312 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-498 *3 *4)) (-14 *4 (-526))))) +(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) + ((*1 *2 *1) + (-12 (-5 *2 (-735)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-312 *3)) (-4 *3 (-1159)))) + ((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-498 *3 *4)) (-4 *3 (-1159)) (-14 *4 (-526))))) +(((*1 *2 *1) (-12 (-4 *1 (-491 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-811))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) + (-4 *5 (-163)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-735)) + (-4 *5 (-163)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) - (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) + (-5 *3 (-607 (-824 *4))) (-14 *4 (-607 (-1123))) (-14 *5 (-735)) + (-5 *1 (-487 *4 *5))))) +(((*1 *2 *3) + (-12 (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) - (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-607 + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))) + (-5 *1 (-487 *4 *5)) + (-5 *3 + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526)))))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) - (-5 *1 (-1225 *4 *5 *6)) (-5 *3 (-606 (-905 *4))) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) + (-486 (-392 (-526)) (-225 *4 (-735)) (-824 *3) (-233 *3 (-392 (-526))))) + (-14 *3 (-607 (-1123))) (-14 *4 (-735)) (-5 *1 (-487 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1117)) - (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-548 *4 *2)) - (-4 *2 (-13 (-1139) (-912) (-1081) (-29 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-731))) (-5 *3 (-162)) (-5 *1 (-1106 *4 *5)) - (-14 *4 (-874)) (-4 *5 (-998))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *5 (-874)) - (-5 *2 (-1205)) (-5 *1 (-451)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-827)) (-5 *5 (-874)) - (-5 *2 (-1205)) (-5 *1 (-451))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) + (-12 + (-5 *3 + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) + (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) + (-5 *1 (-487 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-347)) (-4 *7 (-1176 *6)) - (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) - (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1100)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *4 (-1012 *6 *7 *8)) (-5 *2 (-1205)) - (-5 *1 (-736 *6 *7 *8 *4 *5)) (-4 *5 (-1018 *6 *7 *8 *4))))) + (-12 + (-5 *3 + (-486 (-392 (-526)) (-225 *5 (-735)) (-824 *4) (-233 *4 (-392 (-526))))) + (-14 *4 (-607 (-1123))) (-14 *5 (-735)) (-5 *2 (-111)) + (-5 *1 (-487 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-211)) (-5 *2 (-111)) (-5 *1 (-287 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1041 (-803 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) + (-5 *1 (-288)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) + (-5 *2 (-111)) (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) + (-4 *2 (-909 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-402 *4)) (-4 *4 (-529))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-731)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1117)) (-5 *3 (-418)) (-4 *5 (-807)) - (-5 *1 (-1051 *5 *4)) (-4 *4 (-414 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1) (-5 *1 (-421)))) + (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) + (-5 *2 + (-2 (|:| |mval| (-653 *4)) (|:| |invmval| (-653 *4)) + (|:| |genIdeal| (-486 *4 *5 *6 *7)))) + (-5 *1 (-486 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) + (-12 + (-5 *2 + (-2 (|:| |mval| (-653 *3)) (|:| |invmval| (-653 *3)) + (|:| |genIdeal| (-486 *3 *4 *5 *6)))) + (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6)) + (-4 *6 (-909 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *3 (-757)) (-4 *4 (-811)) (-5 *1 (-486 *2 *3 *4 *5)) + (-4 *5 (-909 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-917 *3 *2)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100))))) -(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) - ((*1 *1 *1) (-4 *1 (-1086)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-1100)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-986)) - (-5 *1 (-711))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-1117)) - (-4 *2 (-13 (-27) (-1139) (-414 *5))) - (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *5 *2))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-554 *3)) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) + (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) + (-5 *2 (-398 *4 (-392 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 *6)) (-4 *6 (-13 (-395 *4 *5) (-995 *4))) + (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *3 (-292)) + (-5 *1 (-398 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-1106 3 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) - ((*1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998))))) -(((*1 *2) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-731)) (-5 *3 (-896 *4)) (-4 *1 (-1078 *4)) - (-4 *4 (-998)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-896 (-210))) (-5 *2 (-1205)) - (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-348)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-162)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-606 *3)) (-5 *5 (-874)) (-4 *3 (-1176 *4)) - (-4 *4 (-291)) (-5 *1 (-443 *4 *3))))) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-486 *3 *4 *5 *6)) (-4 *6 (-909 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-607 *6)) (-4 *6 (-811)) (-4 *4 (-348)) (-4 *5 (-757)) + (-5 *1 (-486 *4 *5 *6 *2)) (-4 *2 (-909 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-486 *3 *4 *5 *2)) + (-4 *2 (-909 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *6 (-584 (-1123))) + (-4 *4 (-348)) (-4 *5 (-757)) (-4 *6 (-811)) + (-5 *2 (-1113 (-607 (-905 *4)) (-607 (-278 (-905 *4))))) + (-5 *1 (-486 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1202)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1) - (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-273 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1176 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-672 *3 *2 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) + (-12 (-5 *3 (-878)) (-5 *2 (-1211)) (-5 *1 (-201 *4)) + (-4 *4 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) + (-15 -2063 (*2 $))))))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537))))) -(((*1 *2 *3) + (-12 (-5 *2 (-1211)) (-5 *1 (-201 *3)) + (-4 *3 + (-13 (-811) + (-10 -8 (-15 -4118 ((-1106) $ (-1123))) (-15 -3939 (*2 $)) + (-15 -2063 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-484))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *6 (-1181 *5)) + (-5 *2 (-1117 (-1117 *7))) (-5 *1 (-483 *5 *6 *4 *7)) (-4 *4 (-1181 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-653 (-1117 *8))) + (-4 *5 (-1004)) (-4 *8 (-1004)) (-4 *6 (-1181 *5)) (-5 *2 (-653 *6)) + (-5 *1 (-483 *5 *6 *7 *8)) (-4 *7 (-1181 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1117 *7)) + (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *2 (-1181 *5)) + (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1117 *7)) (-4 *5 (-1004)) (-4 *7 (-1004)) + (-4 *2 (-1181 *5)) (-5 *1 (-483 *5 *2 *6 *7)) (-4 *6 (-1181 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1004)) (-4 *7 (-1004)) (-4 *4 (-1181 *5)) + (-5 *2 (-1117 *7)) (-5 *1 (-483 *5 *4 *6 *7)) (-4 *6 (-1181 *4))))) +(((*1 *2 *2 *2) (-12 + (-5 *2 + (-2 (|:| -2104 (-653 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-653 *3)))) + (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *4 (-1181 *3)) + (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-735)) (-4 *3 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) + (-4 *4 (-1181 *3)) (-5 *1 (-481 *3 *4 *5)) (-4 *5 (-395 *3 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-653 *2)) (-5 *4 (-526)) + (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) + (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-653 *2)) (-5 *4 (-735)) + (-4 *2 (-13 (-292) (-10 -8 (-15 -4286 ((-390 $) $))))) (-4 *5 (-1181 *2)) + (-5 *1 (-481 *2 *5 *6)) (-4 *6 (-395 *2 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-735)) (-4 *5 (-335)) (-4 *6 (-1181 *5)) + (-5 *2 + (-607 + (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-653 *6))))) + (-5 *1 (-480 *5 *6 *7)) (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 (-537)) (-5 *1 (-190))))) + (-2 (|:| -2104 (-653 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-653 *6)))) + (-4 *7 (-1181 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-606 - (-606 - (-3 (|:| -3923 (-1117)) - (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))))) - (-5 *1 (-1121))))) + (-607 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-526))))) + (-5 *1 (-390 *3)) (-4 *3 (-533)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-735)) (-4 *3 (-335)) (-4 *5 (-1181 *3)) + (-5 *2 (-607 (-1117 *3))) (-5 *1 (-480 *3 *5 *6)) (-4 *6 (-1181 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-477))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-473))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-472 *3)) + (-4 *3 (-1159))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) + (-4 *4 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) + (-4 *4 (-1159)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) (-4 *3 (-1052)) + (-5 *2 (-735)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4310)) (-4 *1 (-472 *4)) + (-4 *4 (-1159)) (-5 *2 (-735))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1159)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-607 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-472 *3)) (-4 *3 (-1159)) + (-5 *2 (-607 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-470))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-526)) (-5 *1 (-469 *4)) + (-4 *4 (-1181 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1181 (-526))) (-5 *1 (-469 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 *2)) (-5 *1 (-469 *2)) (-4 *2 (-1181 (-526)))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-467 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-607 (-488))) (-5 *2 (-488)) (-5 *1 (-466))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-488))) (-5 *1 (-466))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-526))) (-5 *1 (-233 *3 *4)) (-14 *3 (-607 (-1123))) + (-4 *4 (-1004)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-526))) (-14 *3 (-607 (-1123))) (-5 *1 (-438 *3 *4 *5)) + (-4 *4 (-1004)) (-4 *5 (-224 (-4273 *3) (-735))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-607 (-526))) (-5 *1 (-464 *3 *4)) (-14 *3 (-607 (-1123))) + (-4 *4 (-1004))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-526)) (-5 *2 (-111)) (-5 *1 (-463))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-463))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) + (-5 *2 (-2 (|:| |dpolys| (-607 (-233 *5 *6))) (|:| |coords| (-607 (-526))))) + (-5 *1 (-455 *5 *6 *7)) (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (-4 *4 (-998)) - (-5 *1 (-979 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (-4 *4 (-998)) - (-5 *1 (-979 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) - (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) + (|partial| -12 (-5 *2 (-607 (-464 *4 *5))) (-5 *3 (-607 (-824 *4))) + (-14 *4 (-607 (-1123))) (-4 *5 (-436)) (-5 *1 (-455 *4 *5 *6)) + (-4 *6 (-436))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-824 *5))) (-14 *5 (-607 (-1123))) (-4 *6 (-436)) + (-5 *2 (-607 (-607 (-233 *5 *6)))) (-5 *1 (-455 *5 *6 *7)) + (-5 *3 (-607 (-233 *5 *6))) (-4 *7 (-436))))) +(((*1 *1) (-5 *1 (-452)))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) + (-5 *4 (-607 (-878))) (-5 *5 (-607 (-246))) (-5 *1 (-452)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) + (-5 *4 (-607 (-878))) (-5 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452)))) + ((*1 *1 *1) (-5 *1 (-452)))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *1 (-452))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-452))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-902 (-211))) (-5 *4 (-833)) (-5 *5 (-878)) (-5 *2 (-1211)) + (-5 *1 (-452)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-833)) (-5 *5 (-878)) + (-5 *2 (-1211)) (-5 *1 (-452))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-902 (-211))) (-5 *2 (-1211)) (-5 *1 (-452))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-607 (-607 (-902 (-211))))) (-5 *3 (-607 (-833))) + (-5 *1 (-452))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-607 (-902 (-211))))) (-5 *2 (-607 (-211))) + (-5 *1 (-452))))) +(((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247)))) + ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-451))))) +(((*1 *2 *3) + (-12 (-5 *3 (-878)) (-5 *2 (-1205 (-1205 (-526)))) (-5 *1 (-450))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1205 (-1205 (-526)))) (-5 *3 (-878)) (-5 *1 (-450))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-811)) (-4 *5 (-757)) (-4 *6 (-533)) + (-4 *7 (-909 *6 *5 *3)) (-5 *1 (-446 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-995 (-392 (-526))) (-348) + (-10 -8 (-15 -4274 ($ *7)) (-15 -3298 (*7 $)) (-15 -3297 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *2)) + (-2 (|:| -2461 *5) (|:| -2462 *2)))) + (-4 *2 (-224 (-4273 *3) (-735))) (-5 *1 (-445 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-811)) (-4 *7 (-909 *4 *2 (-824 *3)))))) +(((*1 *2 *1) + (-12 (-14 *3 (-607 (-1123))) (-4 *4 (-163)) (-4 *5 (-224 (-4273 *3) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *2) (|:| -2462 *5)) + (-2 (|:| -2461 *2) (|:| -2462 *5)))) + (-4 *2 (-811)) (-5 *1 (-445 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-909 *4 *5 (-824 *3)))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-607 (-1123))) (-4 *2 (-163)) (-4 *4 (-224 (-4273 *5) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *3) (|:| -2462 *4)) + (-2 (|:| -2461 *3) (|:| -2462 *4)))) + (-5 *1 (-445 *5 *2 *3 *4 *6 *7)) (-4 *3 (-811)) + (-4 *7 (-909 *2 *4 (-824 *5)))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-607 (-1123))) (-4 *2 (-163)) (-4 *3 (-224 (-4273 *4) (-735))) + (-14 *6 + (-1 (-111) (-2 (|:| -2461 *5) (|:| -2462 *3)) + (-2 (|:| -2461 *5) (|:| -2462 *3)))) + (-5 *1 (-445 *4 *2 *5 *3 *6 *7)) (-4 *5 (-811)) + (-4 *7 (-909 *2 *3 (-824 *4)))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-607 *3)) (-5 *5 (-878)) (-4 *3 (-1181 *4)) (-4 *4 (-292)) + (-5 *1 (-444 *4 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-878)) (-4 *5 (-292)) (-4 *3 (-1181 *5)) + (-5 *2 (-2 (|:| |plist| (-607 *3)) (|:| |modulo| *5))) (-5 *1 (-444 *5 *3)) + (-5 *4 (-607 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *5)) (-4 *5 (-1181 *3)) (-4 *3 (-292)) (-5 *2 (-111)) + (-5 *1 (-439 *3 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1205 (-607 *3))) (-4 *4 (-292)) (-5 *2 (-607 *3)) + (-5 *1 (-439 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-735)) (-4 *4 (-292)) (-4 *6 (-1181 *4)) + (-5 *2 (-1205 (-607 *6))) (-5 *1 (-439 *4 *6)) (-5 *5 (-607 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-292)) (-5 *2 (-735)) + (-5 *1 (-439 *5 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-437 *3 *4 *5 *6)) + (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) + (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-533)) (-4 *3 (-163)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-607 *1)))) (-4 *1 (-352 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-437 *3 *4 *5 *6)) + (|:| -2104 (-607 (-437 *3 *4 *5 *6))))) + (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-878)) + (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1205 (-1123))) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) + (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) + (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-1205 (-437 *4 *5 *6 *7))) + (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-878)) (-14 *6 (-607 *2)) + (-14 *7 (-1205 (-653 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-437 *3 *4 *5 *6))) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 (-1123))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-878)) (-14 *5 (-607 (-1123))) (-14 *6 (-1205 (-653 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1123)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-878)) (-14 *5 (-607 *2)) (-14 *6 (-1205 (-653 *3))))) + ((*1 *1) + (-12 (-5 *1 (-437 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-878)) + (-14 *4 (-607 (-1123))) (-14 *5 (-1205 (-653 *2)))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) + (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) + (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) + (-5 *2 (-1117 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-1117 (-905 *4))) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) + (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-4 *3 (-348)) + (-5 *2 (-1117 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1117 (-392 (-905 *3)))) (-5 *1 (-437 *3 *4 *5 *6)) + (-4 *3 (-533)) (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-392 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) + (-5 *2 (-607 (-905 *4))))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-607 (-905 *4))) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-607 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-607 (-905 *3))) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *3 (-533)) + (-4 *3 (-163)) (-14 *4 (-878)) (-14 *5 (-607 (-1123))) + (-14 *6 (-1205 (-653 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1205 (-437 *4 *5 *6 *7))) (-5 *2 (-607 (-905 *4))) + (-5 *1 (-437 *4 *5 *6 *7)) (-4 *4 (-533)) (-4 *4 (-163)) (-14 *5 (-878)) + (-14 *6 (-607 (-1123))) (-14 *7 (-1205 (-653 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *1)) (-4 *1 (-436)))) + ((*1 *1 *1 *1) (-4 *1 (-436)))) +(((*1 *2 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-735)) + (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-735)) (|:| -2096 *4))) (-5 *5 (-735)) + (-4 *4 (-909 *6 *7 *8)) (-4 *6 (-436)) (-4 *7 (-757)) (-4 *8 (-811)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-314))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) + (-5 *1 (-434 *6 *7 *8 *4))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) + (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-642 *2)) (-4 *2 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-606 *5) (-606 *5))) (-5 *4 (-537)) - (-5 *2 (-606 *5)) (-5 *1 (-642 *5)) (-4 *5 (-1045))))) + (-12 (-5 *3 (-526)) (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) + (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7)) (-4 *7 (-909 *4 *5 *6))))) (((*1 *2 *3) + (-12 (-5 *3 (-607 *7)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *2 (-1211)) (-5 *1 (-434 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-526)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) + (-5 *1 (-434 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-526)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-735)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-757)) (-4 *4 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *7 (-811)) + (-5 *1 (-434 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-1211)) + (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-436)) (-4 *5 (-757)) (-4 *6 (-811)) (-5 *2 (-526)) + (-5 *1 (-434 *4 *5 *6 *3)) (-4 *3 (-909 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *4) + (-607 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) + (-5 *1 (-434 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) - (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) - ((*1 *2 *3 *4) + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-757)) (-4 *2 (-909 *4 *5 *6)) (-5 *1 (-434 *4 *5 *6 *2)) + (-4 *4 (-436)) (-4 *6 (-811))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-607 (-2 (|:| |totdeg| (-735)) (|:| -2096 *3)))) (-5 *4 (-735)) + (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) (-4 *7 (-811)) + (-5 *1 (-434 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-436)) (-4 *4 (-757)) (-4 *5 (-811)) (-5 *1 (-434 *3 *4 *5 *2)) + (-4 *2 (-909 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-909 *5 *6 *7)) (-4 *5 (-436)) (-4 *6 (-757)) + (-4 *7 (-811)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-434 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-391 (-537))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-391 (-537))) - (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-971 *3)) - (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) - ((*1 *2 *3) + (-607 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-735)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-757)) (-4 *6 (-909 *4 *3 *5)) (-4 *4 (-436)) (-4 *5 (-811)) + (-5 *1 (-434 *4 *3 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) - ((*1 *2 *3 *4) + (-607 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-735)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-757)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-436)) (-4 *5 (-811)) + (-5 *1 (-434 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) - (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))) - (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-391 (-537))) - (-5 *2 (-606 (-2 (|:| -3267 *4) (|:| -3278 *4)))) (-5 *1 (-972 *3)) - (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-391 (-537))) - (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-972 *3)) - (-4 *3 (-1176 *5)) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-649 *5))) (-4 *5 (-291)) (-4 *5 (-998)) - (-5 *2 (-1200 (-1200 *5))) (-5 *1 (-980 *5)) (-5 *4 (-1200 *5))))) + (-607 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-757)) (-4 *3 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) + (-5 *1 (-434 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-436)) (-4 *3 (-757)) (-4 *5 (-811)) (-5 *2 (-111)) + (-5 *1 (-434 *4 *3 *5 *6)) (-4 *6 (-909 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) - (-232 *4 (-391 (-537))))) - (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) - (-5 *1 (-486 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-333)) (-4 *6 (-1176 *5)) - (-5 *2 - (-606 - (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-649 *6))))) - (-5 *1 (-479 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-649 *6)))) - (-4 *7 (-1176 *6))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-742 *3)) (|:| |polden| *3) (|:| -3669 (-731)))) - (-5 *1 (-742 *3)) (-4 *3 (-998)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3669 (-731)))) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-735)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-757)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *6 (-811)) + (-5 *2 (-111)) (-5 *1 (-434 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-526)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-436)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-436)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *1 (-434 *4 *5 *6 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) + (-5 *3 (-607 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) + (-5 *3 (-607 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *2 *4)) (-4 *4 (-1176 *2)) - (-4 *2 (-163)))) - ((*1 *2) - (-12 (-4 *4 (-1176 *2)) (-4 *2 (-163)) (-5 *1 (-392 *3 *2 *4)) - (-4 *3 (-393 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) + (-5 *3 (-607 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) + (-5 *3 (-607 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-292) (-141))) (-4 *5 (-757)) (-4 *6 (-811)) + (-4 *7 (-909 *4 *5 *6)) (-5 *2 (-607 (-607 *7))) (-5 *1 (-433 *4 *5 *6 *7)) + (-5 *3 (-607 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-292) (-141))) (-4 *6 (-757)) (-4 *7 (-811)) + (-4 *8 (-909 *5 *6 *7)) (-5 *2 (-607 (-607 *8))) (-5 *1 (-433 *5 *6 *7 *8)) + (-5 *3 (-607 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-607 *6)) (-4 *6 (-909 *3 *4 *5)) (-4 *3 (-292)) (-4 *4 (-757)) + (-4 *5 (-811)) (-5 *1 (-432 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-607 *7)) (-5 *3 (-1106)) (-4 *7 (-909 *4 *5 *6)) (-4 *4 (-292)) + (-4 *5 (-757)) (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-909 *4 *5 *6)) (-4 *4 (-292)) (-4 *5 (-757)) + (-4 *6 (-811)) (-5 *1 (-432 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-430)) (-5 *3 (-526))))) +(((*1 *2 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004)))) ((*1 *2) - (-12 (-4 *3 (-1176 *2)) (-5 *2 (-537)) (-5 *1 (-728 *3 *4)) - (-4 *4 (-393 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *3 (-163)))) - ((*1 *2 *3) - (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1117)) (-5 *1 (-513)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-665 *3)) - (-4 *3 (-580 (-513)))))) + (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 (-300 (-210)))) - (-5 *2 - (-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) - (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537)))) - (-5 *1 (-289))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-800 *4)) (-5 *3 (-578 *4)) (-5 *5 (-111)) - (-4 *4 (-13 (-1139) (-29 *6))) - (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-209 *6 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2))))) + (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) (((*1 *2 *3) - (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-896 *4)) (-4 *4 (-998)) (-5 *1 (-1106 *3 *4)) - (-14 *3 (-874))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-720))))) + (-12 (-5 *2 (-526)) (-5 *1 (-429 *3)) (-4 *3 (-389)) (-4 *3 (-1004))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) +(((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) +(((*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004)))) + ((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-429 *3)) (-4 *3 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-735)) (-5 *4 (-526)) (-5 *1 (-429 *2)) (-4 *2 (-1004))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-390 *6)) (-4 *6 (-1181 *5)) (-4 *5 (-1004)) + (-5 *2 (-607 *6)) (-5 *1 (-428 *5 *6))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-878)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-878)) (-5 *4 (-735)) (-5 *1 (-426 *2)) + (-4 *2 (-1181 (-526))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *1 (-426 *2)) + (-4 *2 (-1181 (-526))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) + (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-878)) (-5 *4 (-607 (-735))) (-5 *5 (-735)) + (-5 *6 (-111)) (-5 *1 (-426 *2)) (-4 *2 (-1181 (-526))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-878)) (-5 *4 (-390 *2)) (-4 *2 (-1181 *5)) (-5 *1 (-428 *5 *2)) + (-4 *5 (-1004))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-606 (-578 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-578 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) - (-4 *3 (-1176 (-160 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) - ((*1 *2 *1) - (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-397 *3 *2 *4 *5)) - (-4 *3 (-291)) (-4 *5 (-13 (-393 *2 *4) (-989 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) - (-5 *1 (-398 *3 *2 *4 *5 *6)) (-4 *3 (-291)) (-4 *5 (-393 *2 *4)) - (-14 *6 (-1200 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) - (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-476)))) (-5 *1 (-476)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-476))) (-5 *1 (-476)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-606 (-578 (-476)))) - (-5 *1 (-476)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-578 (-476))) (-5 *1 (-476)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) - (-5 *1 (-507 *4)))) + (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) + (-4 *4 (-1181 (-526))) (-5 *2 (-701 (-735))) (-5 *1 (-426 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-685 *4 *2)) (-4 *2 (-1176 *4)) - (-5 *1 (-735 *4 *2 *5 *3)) (-4 *3 (-1176 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) - ((*1 *1 *1) (-4 *1 (-1007)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (-12 (-5 *3 (-390 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1004)) + (-5 *2 (-701 (-735))) (-5 *1 (-428 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1004)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) + (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) + (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *1)) (-5 *4 (-1200 *1)) (-4 *1 (-602 *5)) - (-4 *5 (-998)) - (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 *5)))))) + (-12 (-5 *4 (-735)) (-4 *5 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *5 *3 *6)) + (-4 *3 (-1181 *5)) (-4 *6 (-13 (-389) (-995 *5) (-348) (-1145) (-269))))) ((*1 *2 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-602 *4)) (-4 *4 (-998)) - (-5 *2 (-649 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-164 *6)) - (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) - (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) + (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) + (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) + (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-13 (-389) (-995 *4) (-348) (-1145) (-269))) + (-5 *1 (-427 *4 *3 *2)) (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-878)) (-4 *5 (-1004)) + (-4 *2 (-13 (-389) (-995 *5) (-348) (-1145) (-269))) (-5 *1 (-427 *5 *3 *2)) + (-4 *3 (-1181 *5))))) (((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-5 *2 (-526)) (-5 *1 (-427 *4 *3 *5)) + (-4 *3 (-1181 *4)) (-4 *5 (-13 (-389) (-995 *4) (-348) (-1145) (-269)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-111)) (-5 *5 (-1048 (-735))) (-5 *6 (-735)) + (-5 *2 + (-2 (|:| |contp| (-526)) + (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) + (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2875 (-526)) (|:| -2736 (-607 *3)))) (-5 *1 (-426 *3)) + (-4 *3 (-1181 (-526)))))) +(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-390 *3)) (-4 *3 (-533)))) + ((*1 *2 *3) + (-12 (-5 *3 (-607 (-2 (|:| -4051 *4) (|:| -4264 (-526))))) + (-4 *4 (-1181 (-526))) (-5 *2 (-735)) (-5 *1 (-426 *4))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-426 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-363)) (-5 *1 (-191))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-1039 *3)) (-4 *3 (-1154))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 *5)) (-4 *5 (-414 *4)) (-4 *4 (-989 (-537))) - (-4 *4 (-13 (-807) (-529))) (-5 *2 (-1113 *5)) (-5 *1 (-31 *4 *5)))) + (-607 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-526))))) + (-4 *2 (-533)) (-5 *1 (-390 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-998)) (-4 *1 (-286)) - (-5 *2 (-1113 *1))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154))))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-526)) + (|:| -2736 (-607 (-2 (|:| |irr| *4) (|:| -2456 (-526))))))) + (-4 *4 (-1181 (-526))) (-5 *2 (-390 *4)) (-5 *1 (-426 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-422))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-422))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-422))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1100)) (|:| -3923 (-1100)))) - (-5 *1 (-782))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289))))) + (-12 (-5 *2 (-3 (|:| |fst| (-419)) (|:| -4229 "void"))) (-5 *1 (-421))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1) (-5 *1 (-421)))) (((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1113 (-905 *4)) (-905 *4))) - (-5 *1 (-1208 *4)) (-4 *4 (-347))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) - (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) - (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) - (-4 *2 (-635 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-578 *3)) (-5 *5 (-1 (-1113 *3) (-1113 *3))) - (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-807) (-529))) - (-5 *2 (-554 *3)) (-5 *1 (-524 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) - (-4 *4 (-1154)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-291)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-1068 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) + (|partial| -12 (-4 *5 (-995 (-47))) (-4 *4 (-13 (-533) (-811) (-995 (-526)))) + (-4 *5 (-406 *4)) (-5 *2 (-390 (-1117 (-47)))) (-5 *1 (-420 *4 *5 *3)) + (-4 *3 (-1181 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-391 (-537))) - (-5 *1 (-417 *4 *3)) (-4 *3 (-414 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-414 *5)) - (-4 *5 (-13 (-807) (-529) (-989 (-537)))) - (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-417 *5 *3))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) - (-5 *2 (-800 *4)) (-5 *1 (-297 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) - (-5 *2 (-800 *4)) (-5 *1 (-1186 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) - (-14 *6 *4)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) - (-5 *1 (-246 *2)) (-4 *2 (-1154)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-51)) - (-5 *1 (-247))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-363)) (-5 *1 (-1010))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3415 (-606 (-2 (|:| |irr| *10) (|:| -2430 (-537))))))) - (-5 *6 (-606 *3)) (-5 *7 (-606 *8)) (-4 *8 (-807)) (-4 *3 (-291)) - (-4 *10 (-902 *3 *9 *8)) (-4 *9 (-753)) - (-5 *2 - (-2 (|:| |polfac| (-606 *10)) (|:| |correct| *3) - (|:| |corrfact| (-606 (-1113 *3))))) - (-5 *1 (-588 *8 *9 *3 *10)) (-5 *4 (-606 (-1113 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) - (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) - (-4 *5 (-157 *4)) (-4 *4 (-522)) (-5 *1 (-143 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 *3)) (-4 *3 (-1176 *5)) - (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *1 (-342 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 (-537)))) (-5 *3 (-1113 (-537))) - (-5 *1 (-545)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-606 (-1113 *1))) (-5 *3 (-1113 *1)) - (-4 *1 (-862))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) - (-5 *2 (-391 (-537)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) - (-5 *3 (-537))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *6)) (-5 *5 (-1 (-402 (-1113 *6)) (-1113 *6))) - (-4 *6 (-347)) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) (-5 *2 - (-606 - (-2 (|:| |outval| *7) (|:| |outmult| (-537)) - (|:| |outvect| (-606 (-649 *7)))))) - (-5 *1 (-510 *6 *7 *4)) (-4 *7 (-347)) (-4 *4 (-13 (-347) (-805)))))) + (-3 (|:| |overq| (-1117 (-392 (-526)))) (|:| |overan| (-1117 (-47))) + (|:| -2936 (-111)))) + (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) + (-5 *2 (-390 (-1117 (-392 (-526))))) (-5 *1 (-420 *4 *5 *3)) + (-4 *3 (-1181 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-533) (-811) (-995 (-526)))) (-4 *5 (-406 *4)) + (-5 *2 (-390 *3)) (-5 *1 (-420 *4 *5 *3)) (-4 *3 (-1181 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-419))))) (((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-108)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) - (-5 *2 (-606 *4)) (-5 *1 (-1059 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-352)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) - (-4 *4 (-333)))) - ((*1 *2 *1) - (-12 (-4 *2 (-807)) (-5 *1 (-674 *2 *3 *4)) (-4 *3 (-1045)) - (-14 *4 - (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) - (-2 (|:| -2009 *2) (|:| -3283 *3))))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-1212 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) - (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420))))) -(((*1 *2 *3) - (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) - (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5))))) + (-12 (-4 *3 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1211)) + (-5 *1 (-418 *3 *4)) (-4 *4 (-406 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) - (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) + (-12 (-4 *4 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-392 (-526))) + (-5 *1 (-418 *4 *3)) (-4 *3 (-406 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) - (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) - (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-731)) (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) + (-12 (-5 *4 (-581 *3)) (-4 *3 (-406 *5)) + (-4 *5 (-13 (-811) (-533) (-995 (-526)))) (-5 *2 (-1117 (-392 (-526)))) + (-5 *1 (-418 *5 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998))))) -(((*1 *2 *3) - (-12 (-5 *2 (-606 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *3) - (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) - (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-435)) (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *1) (-5 *1 (-275)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-416 *3 *2)) (-4 *2 (-406 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) + (-4 *2 (-13 (-811) (-21)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-414 *3 *2)) (-4 *3 (-13 (-163) (-37 (-392 (-526))))) + (-4 *2 (-13 (-811) (-21)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-666 *3 *4)) (-4 *3 (-1154)) (-4 *4 (-1154))))) + (-12 (-5 *4 (-1123)) + (-4 *5 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-556 *3)) (-5 *1 (-413 *5 *3)) (-4 *3 (-13 (-1145) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-1052)) (-5 *2 (-735))))) +(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-1052)) (-4 *2 (-353))))) +(((*1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-353)) (-4 *2 (-1052))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) - (-4 *2 (-414 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *3 (-905 (-537))) - (-5 *1 (-314)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *1 (-314))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1117)) - (-4 *5 (-13 (-529) (-989 (-537)) (-141))) - (-5 *2 - (-2 (|:| -3121 (-391 (-905 *5))) (|:| |coeff| (-391 (-905 *5))))) - (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5)))))) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-408 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1145) (-406 *3))) + (-14 *4 (-1123)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-4 *2 (-13 (-27) (-1145) (-406 *3) (-10 -8 (-15 -4274 ($ *4))))) + (-4 *4 (-809)) + (-4 *5 + (-13 (-1184 *2 *4) (-348) (-1145) + (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) + (-5 *1 (-409 *3 *2 *4 *5 *6 *7)) (-4 *6 (-942 *5)) (-14 *7 (-1123))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 *8)) - (-4 *7 (-807)) (-4 *8 (-998)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) - (-5 *2 (-1113 *8)) (-5 *1 (-305 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) + (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) + (-4 *7 (-809)) + (-4 *8 + (-13 (-1184 *3 *7) (-348) (-1145) + (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) + (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) + (-14 *10 (-1123))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-4 *3 (-13 (-27) (-1145) (-406 *6) (-10 -8 (-15 -4274 ($ *7))))) + (-4 *7 (-809)) + (-4 *8 + (-13 (-1184 *3 *7) (-348) (-1145) + (-10 -8 (-15 -4129 ($ $)) (-15 -4131 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) + (-5 *1 (-409 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1106)) (-4 *9 (-942 *8)) + (-14 *10 (-1123))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 + (-3 (|:| |%expansion| (-298 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1106)) (|:| |prob| (-1106)))))) + (-5 *1 (-408 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1145) (-406 *5))) + (-14 *6 (-1123)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *1 (-562 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) - (-5 *1 (-1055))))) + (-12 (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-811)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-311 *2 *3)) (-4 *3 (-756)) (-4 *2 (-1004)))) + ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-811))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1123)) (-5 *3 (-607 *1)) (-4 *1 (-406 *4)) (-4 *4 (-811)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1123)) (-4 *1 (-406 *3)) (-4 *3 (-811))))) (((*1 *2 *1) - (-12 (-4 *2 (-669 *3)) (-5 *1 (-787 *2 *3)) (-4 *3 (-998))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-941 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-811)) + (-5 *2 (-2 (|:| -4270 (-526)) (|:| |var| (-581 *1)))) (-4 *1 (-406 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-390 *3)) (-4 *3 (-533)) (-5 *1 (-404 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-348)) (-4 *1 (-314 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) + (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) (-4 *1 (-352 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1205 *4)) (-5 *3 (-1205 *1)) (-4 *4 (-163)) + (-4 *1 (-355 *4 *5)) (-4 *5 (-1181 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-395 *3 *4)) + (-4 *4 (-1181 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1205 *3)) (-4 *3 (-163)) (-4 *1 (-403 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) + ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) + ((*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *2)) (-4 *2 (-163)))) + ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-402 *3 *2)) (-4 *3 (-403 *2)))) + ((*1 *2) (-12 (-4 *1 (-403 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) ((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) - (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) - (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) - (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) - (-5 *1 (-1019 *6 *7 *4 *8 *9))))) -(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) - ((*1 *1 *1 *1) (-4 *1 (-456))) - ((*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-836)))) - ((*1 *1 *1) (-5 *1 (-924))) - ((*1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) -(((*1 *2 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) + (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-653 *4)) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-352 *4)) (-4 *4 (-163)) (-5 *2 (-653 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-163)) (-5 *2 (-653 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-398 *3 *4 *5 *6)) (-4 *6 (-995 *4)) (-4 *3 (-292)) + (-4 *4 (-950 *3)) (-4 *5 (-1181 *4)) (-4 *6 (-395 *4 *5)) + (-14 *7 (-1205 *6)) (-5 *1 (-400 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1205 *6)) (-4 *6 (-395 *4 *5)) (-4 *4 (-950 *3)) + (-4 *5 (-1181 *4)) (-4 *3 (-292)) (-5 *1 (-400 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1) + (-12 (-4 *2 (-292)) (-4 *3 (-950 *2)) (-4 *4 (-1181 *3)) + (-5 *1 (-398 *2 *3 *4 *5)) (-4 *5 (-13 (-395 *3 *4) (-995 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) - (-5 *2 (-606 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) - (-4 *1 (-29 *4)))) + (-12 (-5 *3 (-735)) (-5 *4 (-1205 *2)) (-4 *5 (-292)) (-4 *6 (-950 *5)) + (-4 *2 (-13 (-395 *6 *7) (-995 *6))) (-5 *1 (-398 *5 *6 *7 *2)) + (-4 *7 (-1181 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)) + (-5 *1 (-394 *3 *4 *5)) (-4 *3 (-395 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) + (-5 *2 (-653 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1205 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1181 *4)) (-5 *2 (-653 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-402 *2)) (-4 *2 (-291)) (-5 *1 (-867 *2)))) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1181 *3)) + (-5 *2 (-653 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-390 *3)) (-4 *3 (-533))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-390 *4)) (-4 *4 (-533))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-526)) (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-526)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-363))) (-5 *1 (-246)))) + ((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-533))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *3 (-111)) (-5 *1 (-109)))) + ((*1 *2 *2) (-12 (-5 *2 (-878)) (|has| *1 (-6 -4301)) (-4 *1 (-389)))) + ((*1 *2) (-12 (-4 *1 (-389)) (-5 *2 (-878))))) +(((*1 *2 *3) + (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878))))) +(((*1 *2 *3) + (-12 (-5 *3 (-526)) (|has| *1 (-6 -4301)) (-4 *1 (-389)) (-5 *2 (-878))))) +(((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-735)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-387)) (-5 *2 (-735))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-387)) (-5 *2 (-735)))) + ((*1 *1 *1) (-4 *1 (-387)))) +(((*1 *1 *2) + (-12 (-5 *2 (-392 *4)) (-4 *4 (-1181 *3)) (-4 *3 (-13 (-348) (-141))) + (-5 *1 (-384 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1181 *3)) (-5 *1 (-384 *3 *2)) (-4 *3 (-13 (-348) (-141)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-348) (-141))) + (-5 *2 (-607 (-2 (|:| -2462 (-735)) (|:| -4091 *4) (|:| |num| *4)))) + (-5 *1 (-384 *3 *4)) (-4 *4 (-1181 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-380))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) + (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-607 (-607 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-607 (-3 (|:| |array| (-607 *3)) (|:| |scalar| (-1123))))) + (-5 *6 (-607 (-1123))) (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-380)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-607 (-1123))) (-5 *5 (-1126)) (-5 *3 (-1123)) (-5 *2 (-1054)) + (-5 *1 (-380))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-378))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-376))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1211)) (-5 *1 (-376)))) + ((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-376))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-376))))) +(((*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) +(((*1 *2) (-12 (-5 *2 (-1095 (-1106))) (-5 *1 (-376))))) +(((*1 *2 *1) + (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) + (-4 *5 (-163))))) +(((*1 *2 *1) + (-12 (-5 *2 (-823)) (-5 *1 (-375 *3 *4 *5)) (-14 *3 (-735)) (-14 *4 (-735)) + (-4 *5 (-163))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1106)) (-4 *1 (-374))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-1106))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1052)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-607 (-392 (-905 (-526))))) (-5 *4 (-607 (-1123))) + (-5 *2 (-607 (-607 *5))) (-5 *1 (-365 *5)) (-4 *5 (-13 (-809) (-348))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *5)))) + (-12 (-5 *3 (-392 (-905 (-526)))) (-5 *2 (-607 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-13 (-809) (-348)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 (-159 (-526))))) (-5 *2 (-607 (-159 *4))) + (-5 *1 (-364 *4)) (-4 *4 (-13 (-348) (-809))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-402 (-905 *6))) (-5 *5 (-1117)) (-5 *3 (-905 *6)) - (-4 *6 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *6))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *1 *1) (-5 *1 (-210))) + (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) (-5 *4 (-607 (-1123))) + (-5 *2 (-607 (-607 (-159 *5)))) (-5 *1 (-364 *5)) + (-4 *5 (-13 (-348) (-809)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-392 (-905 (-159 (-526)))))) + (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-278 (-392 (-905 (-159 (-526))))))) + (-5 *2 (-607 (-607 (-278 (-905 (-159 *4)))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-392 (-905 (-159 (-526))))) + (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-348) (-809))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-392 (-905 (-159 (-526)))))) + (-5 *2 (-607 (-278 (-905 (-159 *4))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-348) (-809)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-526)) (-5 *1 (-363))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-211)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-735)) (-5 *2 (-392 (-526))) (-5 *1 (-363))))) +(((*1 *1 *1) (-5 *1 (-211))) ((*1 *1 *1) (-5 *1 (-363))) + ((*1 *1) (-5 *1 (-363)))) +(((*1 *1 *1) (-5 *1 (-211))) ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + (-12 (-5 *1 (-324 *2 *3 *4)) (-14 *2 (-607 (-1123))) (-14 *3 (-607 (-1123))) + (-4 *4 (-372)))) ((*1 *1 *1) (-5 *1 (-363))) ((*1 *1) (-5 *1 (-363)))) -(((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *1) (-5 *1 (-211))) ((*1 *1) (-5 *1 (-363)))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-363))))) +(((*1 *2 *3) (-12 (-5 *3 (-735)) (-5 *2 (-1211)) (-5 *1 (-363))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1159)) (-5 *1 (-360 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4311))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-637 *3)) (-4 *3 (-811)) (-4 *1 (-359 *3 *4)) (-4 *4 (-163))))) +(((*1 *2 *1) + (-12 (-4 *1 (-357 *3)) (-4 *3 (-1159)) (-4 *3 (-811)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1159)) + (-5 *2 (-111))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-526)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) (-4 *3 (-1159))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4311)) (-4 *1 (-357 *2)) (-4 *2 (-1159)) (-4 *2 (-811)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4311)) (-4 *1 (-357 *3)) + (-4 *3 (-1159))))) +(((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1205 *1)) (-4 *1 (-352 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-1117 *3))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-351 *3 *4)) (-4 *3 (-352 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-607 (-1205 *4))) (-5 *1 (-351 *3 *4)) + (-4 *3 (-352 *4)))) + ((*1 *2) + (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) + (-5 *2 (-607 (-1205 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-352 *3)) (-4 *3 (-163)) (-4 *3 (-533)) (-5 *2 (-1117 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) +(((*1 *1) (|partial| -12 (-4 *1 (-352 *2)) (-4 *2 (-533)) (-4 *2 (-163))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1106)) (-4 *1 (-350 *2 *4)) (-4 *2 (-1052)) (-4 *4 (-1052)))) + ((*1 *1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1106)) (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052))))) +(((*1 *1 *1) (-4 *1 (-164))) + ((*1 *1 *1) (-12 (-4 *1 (-350 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) (-5 *2 (-1106))))) +(((*1 *2 *1) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-350 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1052))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *2 (-986)) (-5 *1 (-289)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) - (-5 *2 (-986)) (-5 *1 (-289))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-731) *2)) (-5 *4 (-731)) (-4 *2 (-1045)) - (-5 *1 (-638 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-731) *3)) (-4 *3 (-1045)) (-5 *1 (-642 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203))))) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) + (-4 *2 + (-13 (-387) + (-10 -7 (-15 -4274 (*2 *4)) (-15 -2102 ((-878) *2)) + (-15 -2104 ((-1205 *2) (-878))) (-15 -4245 (*2 *2))))) + (-5 *1 (-342 *2 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-335)) (-5 *2 (-917 (-1117 *4))) (-5 *1 (-341 *4)) + (-5 *3 (-1117 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-335)) (-5 *1 (-341 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-1176 *4)) (-5 *2 (-1 *6 (-606 *6))) - (-5 *1 (-1194 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-1191 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-5 *2 (-1113 *3)) (-5 *1 (-1128 *3)) - (-4 *3 (-347))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) (((*1 *2 *3) - (-12 (-14 *4 (-606 (-1117))) (-4 *5 (-435)) - (-5 *2 - (-2 (|:| |glbase| (-606 (-232 *4 *5))) (|:| |glval| (-606 (-537))))) - (-5 *1 (-594 *4 *5)) (-5 *3 (-606 (-232 *4 *5)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)) - (-4 *3 (-752))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2) - (-12 (-5 *2 (-1200 (-1046 *3 *4))) (-5 *1 (-1046 *3 *4)) - (-14 *3 (-874)) (-14 *4 (-874))))) -(((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) - *6)) - (-4 *6 (-347)) (-4 *7 (-1176 *6)) - (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) - (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-606 (-1 *4 (-606 *4)))) (-4 *4 (-1045)) - (-5 *1 (-112 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) - (-5 *1 (-112 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-1 *4 (-606 *4)))) - (-5 *1 (-112 *4)) (-4 *4 (-1045))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) - (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-391 (-537))))) - (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) - ((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) - (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1158)) (-4 *5 (-1176 *3)) (-4 *6 (-1176 (-391 *5))) - (-5 *2 (-111)) (-5 *1 (-325 *4 *3 *5 *6)) (-4 *4 (-326 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1113 *7)) - (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) - (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-51)) (-5 *2 (-1205)) (-5 *1 (-791))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-1098 (-1098 (-905 *5)))) - (-5 *1 (-1208 *5)) (-5 *4 (-1098 (-905 *5)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-537)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-291)) - (-4 *9 (-902 *8 *6 *7)) - (-5 *2 (-2 (|:| -2990 (-1113 *9)) (|:| |polval| (-1113 *8)))) - (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)) (-5 *4 (-1113 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) (-5 *2 (-986)) - (-5 *1 (-707))))) + (-12 (-5 *3 (-878)) (-5 *2 (-1117 *4)) (-5 *1 (-341 *4)) (-4 *4 (-335))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) +(((*1 *2 *2) (-12 (-5 *2 (-878)) (-5 *1 (-341 *3)) (-4 *3 (-335))))) +(((*1 *2 *1) (-12 (-4 *1 (-335)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 (-865 *3)) (|:| -2461 (-1070)))))) + (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) + ((*1 *2) + (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) + (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) (-14 *4 (-3 (-1117 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070)))))) + (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) +(((*1 *2) + (-12 (-5 *2 (-653 (-865 *3))) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) + (-14 *4 (-878)))) + ((*1 *2) + (-12 (-5 *2 (-653 *3)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) + (-14 *4 + (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) + ((*1 *2) + (-12 (-5 *2 (-653 *3)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) - (-5 *1 (-305 *4 *5 *6 *7))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) - (-4 *3 (-1154)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1147 *4 *5 *3 *2)) (-4 *4 (-529)) - (-4 *5 (-753)) (-4 *3 (-807)) (-4 *2 (-1012 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *1 (-1151 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) + (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) + (-4 *4 (-335)) (-5 *2 (-735)) (-5 *1 (-332 *4)))) + ((*1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-337 *3 *4)) (-14 *3 (-878)) (-14 *4 (-878)))) + ((*1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-338 *3 *4)) (-4 *3 (-335)) + (-14 *4 + (-3 (-1117 *3) (-1205 (-607 (-2 (|:| -3721 *3) (|:| -2461 (-1070))))))))) + ((*1 *2) + (-12 (-5 *2 (-735)) (-5 *1 (-339 *3 *4)) (-4 *3 (-335)) (-14 *4 (-878))))) +(((*1 *2) + (-12 (-4 *1 (-335)) + (-5 *2 (-607 (-2 (|:| -4051 (-526)) (|:| -2462 (-526)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-335)) (-5 *3 (-526)) (-5 *2 (-1132 (-878) (-735)))))) +(((*1 *1) (-4 *1 (-335)))) +(((*1 *2) + (-12 (-4 *1 (-335)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-13 (-291) (-141))) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) - (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)) - (-4 *7 (-902 *4 *6 *5))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-606 (-649 *6))) (-5 *4 (-111)) (-5 *5 (-537)) - (-5 *2 (-649 *6)) (-5 *1 (-980 *6)) (-4 *6 (-347)) (-4 *6 (-998)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-5 *1 (-980 *4)) - (-4 *4 (-347)) (-4 *4 (-998)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-5 *2 (-649 *5)) - (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-998))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-718))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *4 (-606 (-1117))) - (-5 *2 (-606 (-606 *5))) (-5 *1 (-364 *5)) - (-4 *5 (-13 (-805) (-347))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-805) (-347)))))) -(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-731))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) - (-5 *1 (-1102 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) - (-14 *4 (-1117)) (-14 *5 *3)))) -(((*1 *1 *1) - (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) - (-14 *3 (-606 (-1117)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1117)) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-4 *4 (-13 (-29 *6) (-1139) (-912))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) - (-5 *1 (-761 *6 *4 *3)) (-4 *3 (-617 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) - (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) - (-4 *5 (-357 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 (-537))) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) - (-14 *4 (-537)) (-14 *5 (-731)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-731)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-731)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-731)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-731)))) - ((*1 *2 *1) - (-12 (-4 *2 (-163)) (-5 *1 (-133 *3 *4 *2)) (-14 *3 (-537)) - (-14 *4 (-731)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *2 (-1045)) (-5 *1 (-199 *4 *2)) - (-14 *4 (-874)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-230 (-1100))) (-5 *1 (-200 *4)) - (-4 *4 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ *3)) (-15 -2356 ((-1205) $)) - (-15 -3404 ((-1205) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-942)) (-5 *1 (-200 *3)) - (-4 *3 - (-13 (-807) - (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) - (-15 -3404 ((-1205) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-731)) (-5 *1 (-230 *4)) (-4 *4 (-807)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-230 *3)) (-4 *3 (-807)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-230 *3)) (-4 *3 (-807)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-163)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1176 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) - (-4 *4 (-1176 (-391 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-401 *2)) (-4 *2 (-163)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1100)) (-5 *1 (-483)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-51)) (-5 *1 (-595)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-606 (-845 *4))) (-5 *1 (-845 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-874)) (-4 *2 (-347)) - (-5 *1 (-946 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-962 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *2 (-998)) - (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) - (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-874)) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-5 *1 (-1021 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-874)) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-5 *1 (-1022 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-537))) (-4 *1 (-1048 *3 *4 *5 *6 *7)) - (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-4 *7 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) - ((*1 *1 *1 *1) (-4 *1 (-1086))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-391 *1)) (-4 *1 (-1176 *2)) (-4 *2 (-998)) - (-4 *2 (-347)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) - (-4 *3 (-529)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *6))) - (-4 *6 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-530 *6 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-12 (-5 *3 (-878)) (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-247))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-391 *6)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) - (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *6))) - (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-731)) (-4 *7 (-1176 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) - (-4 *3 (-1176 (-160 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) - (-4 *3 (-1176 (-160 *2)))))) -(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) - ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-617 *3)) (-4 *3 (-998)) (-4 *3 (-347)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-731)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) - (-5 *1 (-620 *5 *2)) (-4 *2 (-617 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-4 *6 (-13 (-529) (-807))) - (-5 *2 (-606 (-300 *6))) (-5 *1 (-206 *5 *6)) (-5 *3 (-300 *6)) - (-4 *5 (-998)))) - ((*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) - ((*1 *2 *3) - (-12 (-5 *3 (-554 *5)) (-4 *5 (-13 (-29 *4) (-1139))) - (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *2 (-606 *5)) (-5 *1 (-552 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-554 (-391 (-905 *4)))) - (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) - (-5 *2 (-606 (-300 *4))) (-5 *1 (-557 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1041 *3 *2)) (-4 *3 (-805)) (-4 *2 (-1091 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) - (-4 *2 (-1091 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1214 (-1117) *3)) (-5 *1 (-1221 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-311 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-497 *3 *4)) - (-14 *4 (-537))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1013))))) + (-3 (-1117 *4) (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070))))))) + (-5 *1 (-332 *4)) (-4 *4 (-335))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-878)) + (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) + (-5 *1 (-332 *4)) (-4 *4 (-335))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) + (-4 *4 (-335)) (-5 *2 (-653 *4)) (-5 *1 (-332 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) + (-5 *2 (-1205 (-607 (-2 (|:| -3721 *4) (|:| -2461 (-1070)))))) + (-5 *1 (-332 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-335)) (-5 *2 (-917 (-1070))) + (-5 *1 (-332 *4))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) - (-4 *3 (-401 *4)))) + (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-329 *3 *4)) (-14 *3 (-878)) + (-14 *4 (-878)))) ((*1 *2) - (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) - (-5 *2 (-1113 (-905 *3))))) + (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-330 *3 *4)) (-4 *3 (-335)) + (-14 *4 (-1117 *3)))) ((*1 *2) - (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1100)) (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) - (-5 *2 (-391 (-905 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) - (-5 *2 (-391 (-905 *4)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 (-537))))) - (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-805) (-347))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-278 (-391 (-905 (-537)))))) - (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-805) (-347))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 (-278 (-905 *4)))) - (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-391 (-905 (-537))))) - (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) - (-4 *4 (-13 (-805) (-347))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1117)) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-4 *4 (-13 (-29 *6) (-1139) (-912))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) - (-5 *1 (-613 *6 *4 *3)) (-4 *3 (-617 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *2)) - (-4 *2 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *1 (-613 *6 *2 *3)) (-4 *3 (-617 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1200 *5) "failed")) - (|:| -2122 (-606 (-1200 *5))))) - (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1200 *5) "failed")) - (|:| -2122 (-606 (-1200 *5))))) - (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) - (-5 *2 - (-606 - (-2 (|:| |particular| (-3 (-1200 *5) "failed")) - (|:| -2122 (-606 (-1200 *5)))))) - (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) - (-5 *2 - (-606 - (-2 (|:| |particular| (-3 (-1200 *5) "failed")) - (|:| -2122 (-606 (-1200 *5)))))) - (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) - (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4301)))) - (-5 *2 - (-606 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2122 (-606 *7))))) - (-5 *1 (-629 *5 *6 *7 *3)) (-5 *4 (-606 *7)) - (-4 *3 (-647 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1117)) - (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *1 (-732 *5 *2)) (-4 *2 (-13 (-29 *5) (-1139) (-912))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-649 *7)) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 - (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) - (-5 *1 (-762 *6 *7)) (-5 *4 (-1200 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-649 *6)) (-5 *4 (-1117)) - (-4 *6 (-13 (-29 *5) (-1139) (-912))) - (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-1200 *6))) (-5 *1 (-762 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) - (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 - (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) - (-5 *1 (-762 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) - (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 - (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) - (-5 *1 (-762 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-1117)) - (-4 *7 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2122 (-606 *7))) *7 "failed")) - (-5 *1 (-762 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1117)) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2122 (-606 *3))) *3 "failed")) - (-5 *1 (-762 *6 *3)) (-4 *3 (-13 (-29 *6) (-1139) (-912))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-113)) (-5 *5 (-606 *2)) - (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-5 *1 (-762 *6 *2)) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-278 *2)) (-5 *5 (-606 *2)) - (-4 *2 (-13 (-29 *6) (-1139) (-912))) - (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *1 (-762 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) - (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) - (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) - (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) - (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) - (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) - (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2122 (-606 *6))) "failed") - *7 *6)) - (-4 *6 (-347)) (-4 *7 (-617 *6)) - (-5 *2 (-2 (|:| |particular| (-1200 *6)) (|:| -2122 (-649 *6)))) - (-5 *1 (-773 *6 *7)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-986)) (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-850)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) - (-5 *8 (-210)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) - (-5 *2 (-986)) (-5 *1 (-850)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) - (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) - (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 (-363))) - (-5 *1 (-974)) (-5 *4 (-363)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) - (-5 *4 (-363)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) - (-5 *3 (-300 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) - (-5 *3 (-278 (-300 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) - (-5 *3 (-278 (-300 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) - (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) - (-5 *3 (-300 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1117))) - (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1075 *5)) - (-5 *3 (-606 (-278 (-300 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) - (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) - (-5 *1 (-1123 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5)) - (-5 *3 (-606 (-278 (-391 (-905 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-529)) - (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) - (-5 *1 (-1123 *4)) (-5 *3 (-606 (-278 (-391 (-905 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-529)) - (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) - (-5 *3 (-391 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-4 *5 (-529)) - (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) - (-5 *3 (-278 (-391 (-905 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) - (-5 *1 (-1123 *4)) (-5 *3 (-391 (-905 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) - (-5 *1 (-1123 *4)) (-5 *3 (-278 (-391 (-905 *4))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) - (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-705 *3)) (-4 *3 (-163))))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-818 *3)) (-14 *3 (-606 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-942)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-1117)))) - ((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3))))) -(((*1 *1) (-5 *1 (-1031)))) -(((*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-805)) (-5 *1 (-287 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-578 *5))) (-5 *3 (-1117)) (-4 *5 (-414 *4)) - (-4 *4 (-807)) (-5 *1 (-546 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) - ((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *3 (-807)) (-5 *2 (-731))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-485 (-391 (-537)) (-225 *4 (-731)) (-818 *3) - (-232 *3 (-391 (-537))))) - (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-486 *3 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-391 *6)) - (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) - (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) - (-5 *1 (-821 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) - (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) - (-5 *1 (-821 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) - (-4 *6 (-753)) (-4 *7 (-807)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-432 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) - (-4 *5 (-435)) (-5 *2 (-606 (-232 *4 *5))) (-5 *1 (-594 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) - ((*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) - ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-537))))) + (-12 (-5 *2 (-917 (-1070))) (-5 *1 (-331 *3 *4)) (-4 *3 (-335)) + (-14 *4 (-878))))) +(((*1 *2) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-735)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-735))))) +(((*1 *2) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-111)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-327 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1200 (-606 (-537)))) (-5 *1 (-462)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) + (-12 (-4 *3 (-1164)) (-4 *5 (-1181 *3)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-111)) (-5 *1 (-326 *4 *3 *5 *6)) (-4 *4 (-327 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) -(((*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-5 *2 (-363)) (-5 *1 (-745 *3)) - (-4 *3 (-580 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) - (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) - (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) + (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) + (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) - (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) - (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) + (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) - (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) - (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-111)) (-5 *5 (-1047 (-731))) (-5 *6 (-731)) - (-5 *2 - (-2 (|:| |contp| (-537)) - (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) - (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) - (-4 *2 - (-13 (-386) - (-10 -7 (-15 -2341 (*2 *4)) (-15 -2334 ((-874) *2)) - (-15 -2122 ((-1200 *2) (-874))) (-15 -1791 (*2 *2))))) - (-5 *1 (-340 *2 *4))))) + (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) + (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *3 (-1164)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-655 *3)) (-4 *3 (-1045)) - (-5 *2 (-606 (-2 (|:| -2140 *3) (|:| -2539 (-731)))))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) - (-4 *5 (-1176 *4)) - (-5 *2 (-2 (|:| -3121 (-391 *5)) (|:| |coeff| (-391 *5)))) - (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-327 *4 *3 *5)) (-4 *4 (-1164)) (-4 *3 (-1181 *4)) + (-4 *5 (-1181 (-392 *3))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) - (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1045)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1045))))) -(((*1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *3 (-537)) (-4 *1 (-822 *4))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154))))) + (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) + (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) + (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1205 *1)) (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) + (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4)))))) (((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-4 *7 (-1176 (-391 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -4082 *3))) - (-5 *1 (-535 *5 *6 *7 *3)) (-4 *3 (-326 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) - (-5 *2 - (-2 (|:| |answer| (-391 *6)) (|:| -4082 (-391 *6)) - (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) - (-5 *1 (-536 *5 *6)) (-5 *3 (-391 *6))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) (((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-506))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) - (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-606 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-731)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-753)) (-4 *6 (-902 *4 *3 *5)) (-4 *4 (-435)) (-4 *5 (-807)) - (-5 *1 (-432 *4 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-1136 *4)) - (-4 *4 (-998))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-5 *2 (-653 (-392 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1010))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) - ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-529)) (-4 *2 (-998)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) - (-4 *1 (-1018 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-2 (|:| |num| (-1205 *4)) (|:| |den| *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1205 *3)) (-4 *3 (-1181 *4)) (-4 *4 (-1164)) + (-4 *1 (-327 *4 *3 *5)) (-4 *5 (-1181 (-392 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) + (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-2 (|:| |num| (-653 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) + (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) + (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3))))) (((*1 *2) - (-12 (-14 *4 (-731)) (-4 *5 (-1154)) (-5 *2 (-131)) - (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) + (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 (-392 *2))) (-4 *2 (-1181 *4)) + (-5 *1 (-326 *3 *4 *2 *5)) (-4 *3 (-327 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *4 (-347)) (-5 *2 (-131)) (-5 *1 (-312 *3 *4)) - (-4 *3 (-313 *4)))) + (|partial| -12 (-4 *1 (-327 *3 *2 *4)) (-4 *3 (-1164)) + (-4 *4 (-1181 (-392 *2))) (-4 *2 (-1181 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1181 *4)) (-4 *4 (-1164)) + (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) + (-4 *1 (-327 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) + (-4 *7 (-1181 (-392 *6))) (-5 *2 (-607 (-905 *5))) + (-5 *1 (-326 *4 *5 *6 *7)) (-4 *4 (-327 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *1 (-327 *4 *5 *6)) (-4 *4 (-1164)) + (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) (-4 *4 (-348)) + (-5 *2 (-607 (-905 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) (-4 *6 (-1181 (-392 *5))) + (-5 *2 (-607 (-607 *4))) (-5 *1 (-326 *3 *4 *5 *6)) + (-4 *3 (-327 *4 *5 *6)))) ((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-163)))) - ((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) - (-5 *2 (-537)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-998)) (-5 *2 (-874)))) - ((*1 *2) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-347)) (-5 *2 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-506))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) - (-5 *2 (-1202)) (-5 *1 (-241))))) -(((*1 *2 *1) - (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)) - (-4 *2 (-435)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-1176 (-537))) (-5 *2 (-606 (-537))) - (-5 *1 (-468 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *3 (-435))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3)))))) + (-12 (-4 *1 (-327 *3 *4 *5)) (-4 *3 (-1164)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *3 (-353)) (-5 *2 (-607 (-607 *3)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-708))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *2 (-853 *4)) (-5 *1 (-652 *4 *2 *5 *3)) - (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4300))))))) + (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) + (-14 *4 (-607 (-1123))) (-4 *5 (-372)))) + ((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-324 *3 *4 *5)) (-14 *3 (-607 (-1123))) + (-14 *4 (-607 (-1123))) (-4 *5 (-372))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-348)) (-4 *3 (-1181 *4)) (-4 *5 (-1181 (-392 *3))) + (-4 *1 (-321 *4 *3 *5 *2)) (-4 *2 (-327 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-526)) (-4 *2 (-348)) (-4 *4 (-1181 *2)) + (-4 *5 (-1181 (-392 *4))) (-4 *1 (-321 *2 *4 *5 *6)) + (-4 *6 (-327 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-348)) (-4 *3 (-1181 *2)) (-4 *4 (-1181 (-392 *3))) + (-4 *1 (-321 *2 *3 *4 *5)) (-4 *5 (-327 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) + (-4 *1 (-321 *3 *4 *5 *2)) (-4 *2 (-327 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-398 *4 (-392 *4) *5 *6)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-4 *3 (-348)) + (-4 *1 (-321 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-986)) (-5 *1 (-714))))) + (-12 (-4 *1 (-321 *3 *4 *5 *6)) (-4 *3 (-348)) (-4 *4 (-1181 *3)) + (-4 *5 (-1181 (-392 *4))) (-4 *6 (-327 *3 *4 *5)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) - ((*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) + (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-348)) (-4 *4 (-1181 *3)) (-4 *5 (-1181 (-392 *4))) + (-5 *2 (-1205 *6)) (-5 *1 (-318 *3 *4 *5 *6)) (-4 *6 (-327 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 - (-3 (|:| |%expansion| (-297 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) - (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) - (-14 *6 (-1117)) (-14 *7 *3)))) -(((*1 *2 *2) - (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) - (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) - (-15 -3315 ((-1069 *3 (-578 $)) $)) - (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) - ((*1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) + (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-5 *4 (-905 (-526))) (-5 *2 (-315)) (-5 *1 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-316 *3)) (-4 *3 (-811))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *3 (-905 (-526))) (-5 *1 (-315)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1044 (-905 (-526)))) (-5 *1 (-315))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-1106))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-299 (-159 (-363)))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-526))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-363))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-658))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-665))) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-299 (-663))) (-5 *1 (-315)))) + ((*1 *1) (-5 *1 (-315)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-315))) (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-315)))) +(((*1 *1) (-5 *1 (-315)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-823))) (-5 *1 (-315))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-607 (-1123))) (-5 *2 (-1123)) (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) - (-5 *2 (-606 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |k| (-846 *3)) (|:| |c| *4)))) - (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) - (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-633 *3))) (-5 *1 (-846 *3)) (-4 *3 (-807))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *8 (-1012 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-978 *5 *6 *7 *8))))) - (-5 *1 (-978 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *8 (-1012 *5 *6 *7)) + (-12 (-5 *2 - (-2 (|:| |val| (-606 *8)) - (|:| |towers| (-606 (-1088 *5 *6 *7 *8))))) - (-5 *1 (-1088 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-291)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-291)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1176 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-291)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-731))) - (-5 *1 (-516 *3 *2 *4 *5)) (-4 *2 (-1176 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-716))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-717))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *4 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-918))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1008 (-975 *3) (-1113 (-975 *3)))) - (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) - (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-986)) (-5 *1 (-709))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") + (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") + (|:| |Goto| "goto") (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) - (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) - (-4 *4 (-647 *2 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1123)) (|:| |arrayIndex| (-607 (-905 (-526)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1123)) (|:| |rand| (-823)) + (|:| |ints2Floats?| (-111)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1122)) (|:| |thenClause| (-315)) + (|:| |elseClause| (-315)))) + (|:| |returnBranch| + (-2 (|:| -3722 (-111)) + (|:| -3721 (-2 (|:| |ints2Floats?| (-111)) (|:| -3565 (-823)))))) + (|:| |blockBranch| (-607 (-315))) (|:| |commentBranch| (-607 (-1106))) + (|:| |callBranch| (-1106)) + (|:| |forBranch| + (-2 (|:| -1537 (-1044 (-905 (-526)))) (|:| |span| (-905 (-526))) + (|:| -3494 (-315)))) + (|:| |labelBranch| (-1070)) + (|:| |loopBranch| (-2 (|:| |switch| (-1122)) (|:| -3494 (-315)))) + (|:| |commonBranch| + (-2 (|:| -3864 (-1123)) (|:| |contents| (-607 (-1123))))) + (|:| |printBranch| (-607 (-823))))) + (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-315))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-315))))) +(((*1 *1) (-12 (-4 *1 (-314 *2)) (-4 *2 (-353)) (-4 *2 (-348))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1117 *3)) (-4 *3 (-353)) (-4 *1 (-314 *3)) (-4 *3 (-348))))) (((*1 *2 *1) - (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-960 *3)) (-4 *3 (-989 (-391 (-537))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-641)))) - ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-923)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1062))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-649 *2)) (-5 *4 (-537)) - (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) - (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1139) (-414 *3))) - (-14 *4 (-1117)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-4 *2 (-13 (-27) (-1139) (-414 *3) (-10 -8 (-15 -2341 ($ *4))))) - (-4 *4 (-805)) - (-4 *5 - (-13 (-1178 *2 *4) (-347) (-1139) - (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) - (-5 *1 (-406 *3 *2 *4 *5 *6 *7)) (-4 *6 (-936 *5)) (-14 *7 (-1117))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-51)) (-5 *1 (-791))))) -(((*1 *2 *3) - (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)) (-5 *3 (-1100)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)))) - ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) -(((*1 *2 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-313 *3)) (-4 *5 (-1176 *4)) - (-5 *1 (-737 *3 *4 *5 *2 *6)) (-4 *2 (-1176 *5)) (-14 *6 (-874)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) - ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-347)) (-4 *2 (-352))))) -(((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) - ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) - ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) + (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) + (-5 *2 (-1117 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) - ((*1 *1 *1) (-4 *1 (-1007)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) - (-5 *1 (-709))))) + (-12 (-4 *1 (-314 *3)) (-4 *3 (-348)) (-4 *3 (-353)) (-5 *2 (-1117 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-311 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-756))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-735)) (-4 *1 (-311 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-756)) + (-4 *3 (-163))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-526)) (-4 *1 (-308 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-129))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-308 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-129))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-308 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-129)) (-4 *3 (-756))))) (((*1 *2 *3) - (-12 (-4 *3 (-1176 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-938 *4 *2 *3 *5)) - (-4 *4 (-333)) (-4 *5 (-685 *2 *3))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) - (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) - (-4 *3 (-326 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) - (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) - ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-805)) (-4 *4 (-347)) (-5 *2 (-731)) - (-5 *1 (-898 *4 *5)) (-4 *5 (-1176 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-391 (-537))) - (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4)))))) -(((*1 *2) - (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-537)) (-5 *4 (-402 *2)) (-4 *2 (-902 *7 *5 *6)) - (-5 *1 (-703 *5 *6 *7 *2)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) -(((*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) + (-12 (-5 *3 (-526)) (-4 *4 (-757)) (-4 *5 (-811)) (-4 *2 (-1004)) + (-5 *1 (-306 *4 *5 *2 *6)) (-4 *6 (-909 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-232 *4 *5))) (-5 *2 (-232 *4 *5)) - (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) - (-5 *1 (-316)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-1038 (-905 (-537)))) (-5 *2 (-314)) - (-5 *1 (-316)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045))))) -(((*1 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) - (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1117 *7)) (-5 *3 (-526)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) + (-4 *5 (-811)) (-4 *6 (-1004)) (-5 *1 (-306 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117 *6)) (-4 *6 (-1004)) (-4 *4 (-757)) (-4 *5 (-811)) + (-5 *2 (-1117 *7)) (-5 *1 (-306 *4 *5 *6 *7)) (-4 *7 (-909 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117 *7)) (-4 *7 (-909 *6 *4 *5)) (-4 *4 (-757)) (-4 *5 (-811)) + (-4 *6 (-1004)) (-5 *2 (-1117 *6)) (-5 *1 (-306 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1117 *9)) (-5 *4 (-607 *7)) (-5 *5 (-607 *8)) (-4 *7 (-811)) + (-4 *8 (-1004)) (-4 *9 (-909 *8 *6 *7)) (-4 *6 (-757)) (-5 *2 (-1117 *8)) + (-5 *1 (-306 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-816)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) - (-4 *3 (-1154))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-421)) (-5 *1 (-1121))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) - (-5 *1 (-767 *4 *5 *3 *6)) (-4 *3 (-617 *5)) - (-4 *6 (-617 (-391 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) - (-5 *1 (-767 *5 *4 *3 *6)) (-4 *3 (-617 *4)) - (-4 *6 (-617 (-391 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) - (-5 *1 (-767 *4 *5 *6 *3)) (-4 *6 (-617 *5)) - (-4 *3 (-617 (-391 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) - (-5 *1 (-767 *5 *4 *6 *3)) (-4 *6 (-617 *4)) - (-4 *3 (-617 (-391 *4)))))) + (-12 (-5 *2 (-392 (-526))) (-5 *1 (-304 *3 *4 *5)) + (-4 *3 (-13 (-348) (-811))) (-14 *4 (-1123)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) + (-5 *6 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) + (-5 *6 (-526)) (-5 *7 (-1106)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) + (-5 *6 (-211)) (-5 *7 (-526)) (-5 *2 (-1155 (-886))) (-5 *1 (-303)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-299 (-526))) (-5 *4 (-1 (-211) (-211))) (-5 *5 (-1041 (-211))) + (-5 *6 (-211)) (-5 *7 (-526)) (-5 *8 (-1106)) (-5 *2 (-1155 (-886))) + (-5 *1 (-303))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-303)) (-5 *3 (-211))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-278 *6)) (-5 *4 (-112)) (-4 *6 (-406 *5)) + (-4 *5 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-112)) (-5 *5 (-607 *7)) (-4 *7 (-406 *6)) + (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-607 (-278 *7))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-607 (-278 *8))) (-5 *4 (-607 (-112))) (-5 *5 (-278 *8)) + (-5 *6 (-607 *8)) (-4 *8 (-406 *7)) + (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-607 *7)) (-5 *4 (-607 (-112))) (-5 *5 (-278 *7)) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-607 *8)) (-5 *4 (-607 (-112))) (-5 *6 (-607 (-278 *8))) + (-4 *8 (-406 *7)) (-5 *5 (-278 *8)) + (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-278 *5)) (-5 *4 (-112)) (-4 *5 (-406 *6)) + (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-4 *3 (-406 *6)) + (-4 *6 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-278 *3)) (-5 *6 (-607 *3)) (-4 *3 (-406 *7)) + (-4 *7 (-13 (-811) (-533) (-584 (-515)))) (-5 *2 (-50)) + (-5 *1 (-302 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-526)) (-5 *1 (-299 *3)) (-4 *3 (-533)) (-4 *3 (-811))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-292)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-292)) (-5 *2 (-735))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-292)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2470 *1))) + (-4 *1 (-292))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-292))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-809)) (-5 *1 (-289 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-607 (-211))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) + (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-392 (-526))) (-5 *2 (-211)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-211)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-905 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-753)) (-4 *2 (-902 *4 *5 *6)) (-5 *1 (-432 *4 *5 *6 *2)) - (-4 *4 (-435)) (-4 *6 (-807))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) - (-4 *2 (-163))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-532))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) - (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) - (-5 *1 (-941 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) - (-4 *4 (-1018 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) - (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) - (-5 *1 (-1052 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) - (-4 *4 (-1018 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264))))) -(((*1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-210))))) -(((*1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) - ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *3 (-606 (-247))) - (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451))))) -(((*1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-352)) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363)))) + (-5 *2 (-992)) (-5 *1 (-288))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14268,3946 +14250,2162 @@ "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2133 + (-3 (|:| |str| (-1101 (-211))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1537 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-986)) (-5 *1 (-289))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1062))))) + (-5 *2 (-992)) (-5 *1 (-288))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-537)) (-5 *1 (-895))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-641)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1167 *3)) (-4 *3 (-1154))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) - (-5 *2 (-986)) (-5 *1 (-715))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1100)) - (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-111)) (-5 *1 (-209 *4 *5)) (-4 *5 (-13 (-1139) (-29 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) -(((*1 *2) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) - (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-606 (-1113 *11))) (-5 *3 (-1113 *11)) - (-5 *4 (-606 *10)) (-5 *5 (-606 *8)) (-5 *6 (-606 (-731))) - (-5 *7 (-1200 (-606 (-1113 *8)))) (-4 *10 (-807)) - (-4 *8 (-291)) (-4 *11 (-902 *8 *9 *10)) (-4 *9 (-753)) - (-5 *1 (-668 *9 *10 *8 *11))))) -(((*1 *2 *3) - (-12 (-5 *3 (-300 (-363))) (-5 *2 (-300 (-210))) (-5 *1 (-289))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-4 *5 (-333)) (-5 *2 (-402 (-1113 (-1113 *5)))) - (-5 *1 (-1152 *5)) (-5 *3 (-1113 (-1113 *5)))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) -(((*1 *2 *3) - (-12 (-4 *1 (-760)) + (-12 (-5 *3 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-986))))) -(((*1 *1 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-391 *5)) - (|:| |c2| (-391 *5)) (|:| |deg| (-731)))) - (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-160 (-391 (-537))))) + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))))) + (-5 *2 (-992)) (-5 *1 (-288)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2968 (-363)) (|:| -3864 (-1106)) + (|:| |explanations| (-607 (-1106))) (|:| |extra| (-992)))) + (-5 *2 (-992)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) + ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) + ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-179)))) + ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-286)))) + ((*1 *2 *3) (-12 (-5 *3 (-1041 (-803 (-211)))) (-5 *2 (-211)) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1101 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-179)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-286)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-607 (-1106))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1106)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-179)))) + ((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-286)))) + ((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-1106)) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-1205 (-299 (-363)))) + (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-363))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1205 (-663))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-663)) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-2 (|:| -3435 (-392 (-526))) (|:| -3434 (-392 (-526)))))) + (-5 *2 (-607 (-211))) (-5 *1 (-288))))) +(((*1 *2 *2) (-12 (-5 *2 (-1041 (-803 (-211)))) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-299 (-211))) (-5 *2 (-299 (-392 (-526)))) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 - (-606 - (-2 (|:| |outval| (-160 *4)) (|:| |outmult| (-537)) - (|:| |outvect| (-606 (-649 (-160 *4))))))) - (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) + (-2 (|:| |additions| (-526)) (|:| |multiplications| (-526)) + (|:| |exponentiations| (-526)) (|:| |functionCalls| (-526)))) + (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))) + (-5 *2 (-363)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-211)) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-392 (-526))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-211)) (-5 *2 (-392 (-526))) (-5 *1 (-288))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1041 (-803 (-363)))) (-5 *2 (-1041 (-803 (-211)))) + (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-803 (-363))) (-5 *2 (-803 (-211))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-299 (-363))) (-5 *2 (-299 (-211))) (-5 *1 (-288))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-211)) (-5 *1 (-288))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) - (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117)) (-5 *2 (-880)) (-5 *1 (-878 *3)) - (-4 *3 (-580 (-513))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-880)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) + (-12 (-5 *3 (-905 (-392 (-526)))) (-5 *4 (-1123)) + (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-607 (-211))) (-5 *1 (-286))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-1101 (-211))) (-5 *1 (-179)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) + (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1205 (-299 (-211)))) (-5 *4 (-607 (-1123))) + (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *7)) (-4 *7 (-807)) - (-4 *8 (-902 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1200 (-391 *8)) "failed")) - (|:| -2122 (-606 (-1200 (-391 *8)))))) - (-5 *1 (-630 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) - (-4 *5 (-807)) (-5 *2 (-905 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) - (-4 *5 (-807)) (-5 *2 (-905 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) - (-5 *2 (-905 *4)))) + (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) - (-5 *2 (-905 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-295)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-923)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-987))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-606 (-578 *6))) (-5 *4 (-1117)) (-5 *2 (-578 *6)) - (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *1 (-546 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-537)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-649 *11)) (-5 *4 (-606 (-391 (-905 *8)))) - (-5 *5 (-731)) (-5 *6 (-1100)) (-4 *8 (-13 (-291) (-141))) - (-4 *11 (-902 *8 *10 *9)) (-4 *9 (-13 (-807) (-580 (-1117)))) - (-4 *10 (-753)) - (-5 *2 - (-2 - (|:| |rgl| - (-606 - (-2 (|:| |eqzro| (-606 *11)) (|:| |neqzro| (-606 *11)) - (|:| |wcond| (-606 (-905 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1200 (-391 (-905 *8)))) - (|:| -2122 (-606 (-1200 (-391 (-905 *8)))))))))) - (|:| |rgsz| (-537)))) - (-5 *1 (-877 *8 *9 *10 *11)) (-5 *7 (-537))))) -(((*1 *1) (-5 *1 (-783)))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1045) (-33))) - (-5 *2 (-111)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33)))))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-211))) (-5 *4 (-607 (-1123))) + (-5 *5 (-1041 (-803 (-211)))) (-5 *2 (-1101 (-211))) (-5 *1 (-286))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) + (-5 *2 (-607 (-211))) (-5 *1 (-179)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-299 (-211))) (-5 *4 (-1123)) (-5 *5 (-1041 (-803 (-211)))) + (-5 *2 (-607 (-211))) (-5 *1 (-286))))) +(((*1 *2 *3) (-12 (-5 *3 - (-606 - (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *2)) - (|:| |logand| (-1113 *2))))) - (-5 *4 (-606 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-347)) (-5 *1 (-554 *2))))) + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-111)) (-5 *1 (-286))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-283)) (-4 *2 (-1159)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-607 (-581 *1))) (-5 *3 (-607 *1)) (-4 *1 (-283)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-278 *1))) (-4 *1 (-283)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-283))))) +(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1) (-4 *1 (-283)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-581 *1)) (-4 *1 (-283))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-581 *1))) (-4 *1 (-283))))) +(((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-607 (-112)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-283)) (-5 *3 (-1123)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-581 *5)) (-4 *5 (-406 *4)) (-4 *4 (-995 (-526))) + (-4 *4 (-13 (-811) (-533))) (-5 *2 (-1117 *5)) (-5 *1 (-31 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-581 *1)) (-4 *1 (-1004)) (-4 *1 (-283)) (-5 *2 (-1117 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-296)) (-5 *1 (-281)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 (-1106))) (-5 *3 (-1106)) (-5 *2 (-296)) (-5 *1 (-281))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1004)) (-4 *4 (-1181 *3)) (-5 *1 (-155 *3 *4 *2)) + (-4 *2 (-1181 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1159))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-691)) (-4 *2 (-1159))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 (-845 *3))))) - (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-845 *4))) - (-5 *1 (-845 *4)) (-4 *4 (-1045))))) -(((*1 *1 *1) - (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) - (-4 *4 (-250 *3)) (-4 *5 (-753))))) + (-12 (-5 *2 (-607 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-533)) + (-4 *3 (-1159))))) (((*1 *2 *3) - (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) - (-5 *3 (-606 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) + (-12 (-4 *4 (-436)) + (-5 *2 + (-607 + (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) + (|:| |eigmult| (-735)) (|:| |eigvec| (-607 (-653 (-392 (-905 *4)))))))) + (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-614 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-615 *2 (-391 *2))) (-4 *2 (-1176 *4)) - (-5 *1 (-770 *4 *2)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) - (-4 *2 (-617 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *3 *5)) - (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) - (-4 *5 (-617 (-391 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *5 *3)) - (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-617 *2)) - (-4 *3 (-617 (-391 *2)))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *4 (-436)) (-5 *2 - (-606 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210))))) - (-5 *1 (-532)))) - ((*1 *2 *1) - (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-5 *2 (-606 *3)))) - ((*1 *2 *1) + (-607 + (-2 (|:| |eigval| (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4)))) + (|:| |geneigvec| (-607 (-653 (-392 (-905 *4)))))))) + (-5 *1 (-277 *4)) (-5 *3 (-653 (-392 (-905 *4))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-392 (-905 *6)) (-1113 (-1123) (-905 *6)))) (-5 *5 (-735)) + (-4 *6 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *6))))) (-5 *1 (-277 *6)) + (-5 *4 (-653 (-392 (-905 *6)))))) + ((*1 *2 *3 *4) (-12 - (-5 *2 - (-606 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210))))) - (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) + (-5 *3 + (-2 (|:| |eigval| (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) + (|:| |eigmult| (-735)) (|:| |eigvec| (-607 *4)))) + (-4 *5 (-436)) (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) + (-5 *4 (-653 (-392 (-905 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) - (-4 *4 (-333)) (-5 *2 (-1205)) (-5 *1 (-507 *4))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3039 (-606 *3)) (|:| -1687 (-606 *3)))) - (-5 *1 (-1155 *3)) (-4 *3 (-1045))))) -(((*1 *2) - (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) - (-4 *3 (-351 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) + (-12 (-5 *3 (-3 (-392 (-905 *5)) (-1113 (-1123) (-905 *5)))) (-4 *5 (-436)) + (-5 *2 (-607 (-653 (-392 (-905 *5))))) (-5 *1 (-277 *5)) + (-5 *4 (-653 (-392 (-905 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-392 (-905 *4)))) (-4 *4 (-436)) + (-5 *2 (-607 (-3 (-392 (-905 *4)) (-1113 (-1123) (-905 *4))))) + (-5 *1 (-277 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1037))) (-5 *1 (-276))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-1054)) (-5 *1 (-276))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-1054)) (-5 *1 (-276))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1123)) (-5 *2 (-607 (-924))) (-5 *1 (-276))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-276))))) +(((*1 *1) (-5 *1 (-276)))) +(((*1 *1) (-5 *1 (-276)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-526)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1159)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4311)) (-4 *1 (-273 *3 *2)) (-4 *3 (-1052)) + (-4 *2 (-1159))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-537)) (-4 *2 (-414 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-989 *4)) (-4 *3 (-13 (-807) (-529)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) - (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *2 *3) - (-12 (-4 *4 (-753)) - (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) - (-5 *2 (-2 (|:| -2169 (-905 *6)) (|:| -3406 (-905 *6)))) - (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5))))) + (-12 (-4 *4 (-348)) (-5 *2 (-607 (-1101 *4))) (-5 *1 (-270 *4 *5)) + (-5 *3 (-1101 *4)) (-4 *5 (-1198 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-348)) (-5 *1 (-270 *3 *2)) (-4 *2 (-1198 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1172 (-526))) (-4 *1 (-267 *3)) (-4 *3 (-1159)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-526)) (-4 *1 (-267 *3)) (-4 *3 (-1159))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4310)) (-4 *1 (-221 *3)) + (-4 *3 (-1052)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-267 *3)) (-4 *3 (-1159))))) +(((*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-265))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1054)) (-5 *1 (-265))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-265))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-265))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-392 (-526))) + (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) (-5 *1 (-262 *4 *2)) + (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-291)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-456))) ((*1 *1 *1 *1) (-4 *1 (-722)))) + (-12 (-5 *3 (-581 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4))) + (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *4 *2))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-607 (-581 *2))) (-5 *4 (-1123)) + (-4 *2 (-13 (-27) (-1145) (-406 *5))) + (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *5 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *3 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-262 *4 *2)) (-4 *2 (-13 (-27) (-1145) (-406 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1123)) (-4 *5 (-13 (-533) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-607 (-581 *3))) (|:| |vals| (-607 *3)))) + (-5 *1 (-262 *5 *3)) (-4 *3 (-13 (-27) (-1145) (-406 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-537)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-998)) - (-5 *1 (-305 *4 *5 *2 *6)) (-4 *6 (-902 *2 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) - (-5 *2 (-1113 *3))))) + (-12 (-4 *4 (-13 (-811) (-533))) (-5 *2 (-111)) (-5 *1 (-261 *4 *3)) + (-4 *3 (-13 (-406 *4) (-960)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-607 (-2 (|:| |func| *2) (|:| |pole| (-111))))) + (-4 *2 (-13 (-406 *4) (-960))) (-4 *4 (-13 (-811) (-533))) + (-5 *1 (-261 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) - (-5 *2 (-986)) (-5 *1 (-717))))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) (((*1 *2 *2) - (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) - (-4 *3 (-609 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3278 *7) (|:| |sol?| (-111))) - (-537) *7)) - (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) - (-5 *3 (-391 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-547 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-554 *3)) (-4 *3 (-347))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) - (-5 *1 (-703 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-261 *3 *2)) + (-4 *2 (-13 (-406 *3) (-960)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) + (-4 *3 (-13 (-811) (-533)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-406 *3) (-960))) (-5 *1 (-261 *3 *2)) + (-4 *3 (-13 (-811) (-533)))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-526))) (-5 *1 (-260))))) +(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-260))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-607 (-299 (-211)))) (|:| -3764 (-607 (-211))))))) + (-5 *2 (-607 (-1106))) (-5 *1 (-252))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-252))))) +(((*1 *2 *3) (-12 (-5 *3 (-299 (-211))) (-5 *2 (-111)) (-5 *1 (-252))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252))))) +(((*1 *2 *2) (-12 (-5 *2 (-607 (-299 (-211)))) (-5 *1 (-252))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-300 *5))) - (-5 *1 (-1073 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) - (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-300 *5)))) - (-5 *1 (-1073 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) - ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-542 *3)) (-4 *3 (-989 (-537))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) - (-4 *2 (-807))))) -(((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) + (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *4 (-735)) (-5 *2 (-653 (-211))) + (-5 *1 (-252))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 (-299 (-211)))) (-5 *2 (-111)) (-5 *1 (-252))))) +(((*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-252))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-299 (-211))) (-5 *1 (-252))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) - (-4 *3 (-1176 *4)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) -(((*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1100))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) - (-4 *3 (-1045))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-299 (-211))) (|:| -3764 (-607 (-211))) + (|:| |lb| (-607 (-803 (-211)))) (|:| |cf| (-607 (-299 (-211)))) + (|:| |ub| (-607 (-803 (-211)))))) + (-5 *1 (-252))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-4 *5 (-347)) - (-4 *5 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-4 *4 (-998)) - (-5 *2 (-111)) (-5 *1 (-980 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) - (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) - ((*1 *2 *3) - (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-251))))) + (-12 (-5 *3 (-607 (-803 (-211)))) (-5 *4 (-211)) (-5 *2 (-607 *4)) + (-5 *1 (-252))))) (((*1 *2 *1) - (-12 (-4 *2 (-1154)) (-5 *1 (-826 *3 *2)) (-4 *3 (-1154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807))))) -(((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *1)) - (-4 *1 (-366 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-696 *3 *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-687)))) + (-12 (-4 *3 (-219)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-251 *4)) + (-4 *6 (-757)) (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1004)) (-4 *3 (-811)) (-4 *5 (-251 *3)) (-4 *6 (-757)) + (-5 *2 (-1 *1 (-735))) (-4 *1 (-238 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-735)) (-4 *1 (-251 *2)) (-4 *2 (-811))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) + (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-735)))) ((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-902 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-880)) + (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) + (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-251 *3)) (-4 *3 (-811)) (-5 *2 (-735))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-50)) + (-5 *1 (-246)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *1 (-248 *2)) + (-4 *2 (-1159))))) +(((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *1) (-5 *1 (-138))) + ((*1 *1 *2) (-12 (-5 *2 (-1083 (-211))) (-5 *1 (-246)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-247))))) +(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-878)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-833)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-246)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-607 (-246))) (-5 *1 (-247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-884)) (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) + (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) (-5 *1 (-147)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) - (-5 *1 (-147)) (-5 *3 (-606 (-896 (-210)))))) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) + (-5 *1 (-147)) (-5 *3 (-607 (-902 (-211)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) - (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) - (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 (-210))))))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247))))) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) + (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 (-211))))))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-246))))) +(((*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246))))) +(((*1 *1 *2) (-12 (-5 *2 (-833)) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-246))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211) (-211))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-211) (-211))) (-5 *1 (-246))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-392 (-526))))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 (-1041 (-363)))) (-5 *1 (-246))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-807)) - (-4 *3 (-1045))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) - (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) - (-4 *4 (-807)) (-5 *1 (-1125 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1008 (-975 *4) (-1113 (-975 *4)))) (-5 *3 (-816)) - (-5 *1 (-975 *4)) (-4 *4 (-13 (-805) (-347) (-973)))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-537)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-731)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-874)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-149)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139))) - (-5 *1 (-212 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) - (-4 *6 (-223 (-2258 *3) (-731))) - (-14 *7 - (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) - (-2 (|:| -2009 *5) (|:| -3283 *6)))) - (-5 *1 (-444 *3 *4 *5 *6 *7 *2)) (-4 *5 (-807)) - (-4 *2 (-902 *4 *6 (-818 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) - (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-513))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1005)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-644 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-647 *3 *2 *4)) (-4 *3 (-998)) (-4 *2 (-357 *3)) - (-4 *4 (-357 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-647 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-357 *3)) - (-4 *2 (-357 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) - (-4 *4 (-357 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-681))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) - (-5 *1 (-922 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1005)))) - ((*1 *1 *1 *1) (-4 *1 (-1057))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *2 (-223 *3 *4)) - (-4 *5 (-223 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) - (-4 *2 (-223 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) - (-4 *2 (-902 *3 (-509 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-896 (-210))) (-5 *3 (-210)) (-5 *1 (-1150)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-537)) (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-347)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) - (-4 *1 (-319 *4 *3 *5 *2)) (-4 *2 (-326 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-347)) (-4 *4 (-1176 *2)) - (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *2 *4 *5 *6)) - (-4 *6 (-326 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) - (-4 *1 (-319 *2 *3 *4 *5)) (-4 *5 (-326 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-4 *1 (-319 *3 *4 *5 *2)) (-4 *2 (-326 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-397 *4 (-391 *4) *5 *6)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-4 *3 (-347)) - (-4 *1 (-319 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) - (-5 *2 (-606 (-1040 (-210)))) (-5 *1 (-881))))) -(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1200 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) - (-4 *1 (-685 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1176 *5)) - (-5 *2 (-649 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-370 *4)) (-4 *4 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *2 (-23)) (-5 *1 (-610 *4 *2 *5)) - (-4 *4 (-1045)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-779 *4)) (-4 *4 (-807))))) -(((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-1045)) (-5 *2 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-513))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-614 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) - (-5 *5 (-1 (-402 *7) *7)) - (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-615 *7 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) - (-5 *5 (-1 (-402 *7) *7)) - (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-614 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) - (-4 *6 (-1176 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-615 *5 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) - (-4 *6 (-1176 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) - (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) - (-5 *1 (-562 *3)) (-4 *3 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1154)) (-5 *2 (-537))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-1045))))) -(((*1 *2) - (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-807)) (-5 *4 (-606 *6)) - (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-606 *4)))) - (-5 *1 (-1125 *6)) (-5 *5 (-606 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333)))) - ((*1 *1) (-4 *1 (-352))) - ((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) - (-4 *4 (-333)))) - ((*1 *1 *1) (-4 *1 (-522))) ((*1 *1) (-4 *1 (-522))) - ((*1 *1 *1) (-5 *1 (-537))) ((*1 *1 *1) (-5 *1 (-731))) - ((*1 *2 *1) (-12 (-5 *2 (-858 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) - (-4 *4 (-1045)))) - ((*1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-522)) (-4 *2 (-529))))) + (-12 (-5 *3 (-607 (-246))) (-5 *4 (-1123)) (-5 *2 (-111)) (-5 *1 (-246))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-606 *6) "failed") (-537) *6 *6)) (-4 *6 (-347)) - (-4 *7 (-1176 *6)) - (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) - (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) - (-5 *2 (-606 (-606 (-606 (-896 *3)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-264))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-752)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-606 (-1117))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) - (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) - (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) - (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-160 *5)) (-4 *5 (-163)) - (-4 *6 (-163)) (-5 *2 (-160 *6)) (-5 *1 (-159 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-300 *3) (-300 *3))) (-4 *3 (-13 (-998) (-807))) - (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) + (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1208)) + (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-5 *2 (-225 *5 *7)) - (-5 *1 (-224 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-278 *6)) (-5 *1 (-277 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) + (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1208)) (-5 *1 (-240 *3)) + (-4 *3 (-13 (-584 (-515)) (-1052))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1100)) (-5 *5 (-578 *6)) - (-4 *6 (-286)) (-4 *2 (-1154)) (-5 *1 (-281 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-578 *5)) (-4 *5 (-286)) - (-4 *2 (-286)) (-5 *1 (-282 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-578 *1)) (-4 *1 (-286)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-998)) - (-4 *6 (-998)) (-5 *2 (-649 *6)) (-5 *1 (-288 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-807)) - (-4 *6 (-807)) (-5 *2 (-300 *6)) (-5 *1 (-298 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-320 *5 *6 *7 *8)) (-4 *5 (-347)) - (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) - (-4 *9 (-347)) (-4 *10 (-1176 *9)) (-4 *11 (-1176 (-391 *10))) - (-5 *2 (-320 *9 *10 *11 *12)) - (-5 *1 (-317 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-326 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1158)) (-4 *8 (-1158)) - (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *9 (-1176 *8)) - (-4 *2 (-326 *8 *9 *10)) (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-326 *5 *6 *7)) (-4 *10 (-1176 (-391 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) - (-4 *2 (-357 *6)) (-5 *1 (-355 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-529)) - (-4 *6 (-529)) (-5 *2 (-402 *6)) (-5 *1 (-389 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-529)) - (-4 *6 (-529)) (-5 *2 (-391 *6)) (-5 *1 (-390 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-397 *5 *6 *7 *8)) (-4 *5 (-291)) - (-4 *6 (-945 *5)) (-4 *7 (-1176 *6)) - (-4 *8 (-13 (-393 *6 *7) (-989 *6))) (-4 *9 (-291)) - (-4 *10 (-945 *9)) (-4 *11 (-1176 *10)) - (-5 *2 (-397 *9 *10 *11 *12)) - (-5 *1 (-396 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-393 *10 *11) (-989 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) - (-4 *2 (-401 *6)) (-5 *1 (-399 *4 *5 *2 *6)) (-4 *4 (-401 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-529)) (-5 *1 (-402 *3)))) + (-12 (-5 *3 (-836 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) + (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-998) (-807))) - (-4 *6 (-13 (-998) (-807))) (-4 *2 (-414 *6)) - (-5 *1 (-405 *5 *4 *6 *2)) (-4 *4 (-414 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-4 *2 (-409 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-409 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-490 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-807)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-554 *5)) (-4 *5 (-347)) - (-4 *6 (-347)) (-5 *2 (-554 *6)) (-5 *1 (-553 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3121 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-347)) (-4 *6 (-347)) - (-5 *2 (-2 (|:| -3121 *6) (|:| |coeff| *6))) - (-5 *1 (-553 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-347)) (-4 *2 (-347)) (-5 *1 (-553 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-347)) (-4 *6 (-347)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-553 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-567 *6)) (-5 *1 (-564 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-567 *7)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-567 *8)) - (-5 *1 (-565 *6 *7 *8)))) + (-12 (-5 *3 (-836 *5)) (-5 *4 (-1044 (-363))) + (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1208)) (-5 *1 (-240 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-567 *7)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) - (-5 *1 (-565 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-1098 *7)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) - (-5 *1 (-565 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) + (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-604 *5 *6)))) + (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) + (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1209)) + (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1209)) (-5 *1 (-240 *3)) + (-4 *3 (-13 (-584 (-515)) (-1052))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) + (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) + (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1209)) (-5 *1 (-240 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-606 *8)) - (-5 *1 (-605 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-998)) (-4 *8 (-998)) - (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) - (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) - (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-998)) - (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) - (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-529)) (-4 *7 (-529)) - (-4 *6 (-1176 *5)) (-4 *2 (-1176 (-391 *8))) - (-5 *1 (-670 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1176 (-391 *6))) - (-4 *8 (-1176 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-998)) (-4 *9 (-998)) (-4 *5 (-807)) - (-4 *6 (-753)) (-4 *2 (-902 *9 *7 *5)) - (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) - (-4 *4 (-902 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-4 *7 (-753)) - (-4 *9 (-998)) (-4 *2 (-902 *9 *8 *6)) - (-5 *1 (-690 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-753)) - (-4 *4 (-902 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-696 *5 *7)) (-4 *5 (-998)) - (-4 *6 (-998)) (-4 *7 (-687)) (-5 *2 (-696 *6 *7)) - (-5 *1 (-695 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-696 *3 *4)) - (-4 *4 (-687)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-998)) - (-4 *6 (-998)) (-5 *2 (-742 *6)) (-5 *1 (-741 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) - (-4 *2 (-757 *6)) (-5 *1 (-758 *4 *5 *2 *6)) (-4 *4 (-757 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-793 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-792 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-800 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) - (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-799 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-832 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-832 *6)) (-5 *1 (-831 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6)))) + (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *5 (-607 (-246))) + (-5 *2 (-1208)) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-842 *5 *6)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-842 *5 *7)) - (-5 *1 (-841 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-998)) - (-4 *6 (-998)) (-5 *2 (-905 *6)) (-5 *1 (-899 *5 *6)))) + (-12 (-5 *3 (-1 (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) + (-5 *1 (-241)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-807)) - (-4 *8 (-998)) (-4 *6 (-753)) - (-4 *2 - (-13 (-1045) - (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) - (-5 *1 (-904 *6 *7 *8 *5 *2)) (-4 *5 (-902 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-998)) - (-4 *6 (-998)) (-5 *2 (-896 *6)) (-5 *1 (-934 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-998)) - (-4 *2 (-902 (-905 *4) *5 *6)) (-4 *5 (-753)) - (-4 *6 - (-13 (-807) - (-10 -8 (-15 -3996 ((-1117) $)) - (-15 -1890 ((-3 $ "failed") (-1117)))))) - (-5 *1 (-937 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-529)) (-4 *6 (-529)) - (-4 *2 (-945 *6)) (-5 *1 (-943 *5 *6 *4 *2)) (-4 *4 (-945 *5)))) + (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1208)) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) - (-4 *2 (-949 *6)) (-5 *1 (-950 *4 *5 *2 *6)) (-4 *4 (-949 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) - (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) - (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-998)) (-4 *10 (-998)) - (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) - (-4 *9 (-223 *5 *7)) (-4 *2 (-1001 *5 *6 *10 *11 *12)) - (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *11 (-223 *6 *10)) - (-4 *12 (-223 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-1040 *6)) (-5 *1 (-1035 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-805)) - (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) - (-5 *1 (-1035 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1038 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-1038 *6)) (-5 *1 (-1037 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) - (-4 *2 (-1091 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6)))) + (-12 (-5 *3 (-836 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1208)) + (-5 *1 (-241)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-1098 *7)) - (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) - (-5 *1 (-1097 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-998)) - (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-1111 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-998)) - (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1117)))) + (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-1167 *6)) (-5 *1 (-1166 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-805)) - (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) - (-5 *1 (-1166 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1173 *5 *6)) (-14 *5 (-1117)) - (-4 *6 (-998)) (-4 *8 (-998)) (-5 *2 (-1173 *7 *8)) - (-5 *1 (-1168 *5 *6 *7 *8)) (-14 *7 (-1117)))) + (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) + (-5 *1 (-241)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) - (-4 *2 (-1176 *6)) (-5 *1 (-1174 *5 *4 *6 *2)) (-4 *4 (-1176 *5)))) + (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) + (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) (-5 *2 (-1209)) + (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1209)) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1209)) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1209)) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-1123)) (-5 *5 (-607 (-246))) + (-4 *7 (-406 *6)) (-4 *6 (-13 (-533) (-811) (-995 (-526)))) (-5 *2 (-1208)) + (-5 *1 (-242 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1208)) (-5 *1 (-245)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) + (-5 *1 (-245)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *2 (-1208)) (-5 *1 (-245)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5 *7 *9)) (-4 *5 (-998)) - (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1185 *6 *8 *10)) (-5 *1 (-1180 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1117)))) + (-12 (-5 *3 (-607 (-902 (-211)))) (-5 *4 (-607 (-246))) (-5 *2 (-1208)) + (-5 *1 (-245)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-607 (-211))) (-5 *2 (-1209)) (-5 *1 (-245)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-607 (-211))) (-5 *4 (-607 (-246))) (-5 *2 (-1209)) + (-5 *1 (-245))))) +(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-243))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243))))) +(((*1 *2 *2) (-12 (-5 *2 (-526)) (-5 *1 (-243))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) + (-5 *2 (-1209)) (-5 *1 (-243))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-159 (-211)) (-159 (-211)))) (-5 *4 (-1041 (-211))) + (-5 *5 (-111)) (-5 *2 (-1209)) (-5 *1 (-243))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-902 (-211)) (-211) (-211))) + (-5 *3 (-1 (-211) (-211) (-211) (-211))) (-5 *1 (-241))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-838 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) + (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) + (-5 *1 (-240 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) - (-4 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6 *4 *2)) (-4 *4 (-1191 *5)))) + (-12 (-5 *3 (-838 *5)) (-5 *4 (-1044 (-363))) + (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) + (-5 *1 (-240 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) + (-5 *1 (-240 *3)) (-4 *3 (-13 (-584 (-515)) (-1052))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1044 (-363))) (-5 *2 (-1083 (-211))) (-5 *1 (-240 *3)) + (-4 *3 (-13 (-584 (-515)) (-1052))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-841 *6)) (-5 *4 (-1044 (-363))) (-5 *5 (-607 (-246))) + (-4 *6 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) + (-5 *1 (-240 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-841 *5)) (-5 *4 (-1044 (-363))) + (-4 *5 (-13 (-584 (-515)) (-1052))) (-5 *2 (-1083 (-211))) + (-5 *1 (-240 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) - (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) + (-12 (-5 *3 (-838 (-1 (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1200 *5)) - (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) - (-5 *1 (-1199 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-1222 *3 *4)) - (-4 *4 (-803))))) + (-12 (-5 *3 (-1 (-902 (-211)) (-211))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-211) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-902 (-211)) (-211) (-211))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *5 (-607 (-246))) (-5 *2 (-1083 (-211))) (-5 *1 (-241)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-841 (-1 (-211) (-211) (-211)))) (-5 *4 (-1041 (-363))) + (-5 *2 (-1083 (-211))) (-5 *1 (-241))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-208 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-239 *3)))) + ((*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1159))))) (((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))))) + (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) + (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-238 *4 *3 *5 *6)) (-4 *4 (-1004)) (-4 *3 (-811)) + (-4 *5 (-251 *3)) (-4 *6 (-757)) (-5 *2 (-607 (-735))))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) - (-14 *4 (-606 (-1117)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-805))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3415 (-402 *3)))) - (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) - (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) - (-4 *3 (-1012 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-606 *4)) - (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *4 *5 *6)) - (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) -(((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) ((*1 *1) (-4 *1 (-522))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) - ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) - (-5 *2 (-986)) (-5 *1 (-717))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-606 (-111))) (-5 *5 (-649 (-210))) - (-5 *6 (-649 (-537))) (-5 *7 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) - (-5 *1 (-715))))) + (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) + (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-607 (-735)))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) - (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-625 *4 *5))) - (-5 *1 (-590 *4 *5 *6)) (-4 *5 (-13 (-163) (-678 (-391 (-537))))) - (-14 *6 (-874))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-537)) (-5 *1 (-363))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-29 *4)))))) + (-12 (-4 *1 (-238 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-811)) + (-4 *5 (-251 *4)) (-4 *6 (-757)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) + (-12 (-4 *1 (-238 *3 *4 *2 *5)) (-4 *3 (-1004)) (-4 *4 (-811)) (-4 *5 (-757)) + (-4 *2 (-251 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) + (-4 *4 (-251 *3)) (-4 *5 (-757))))) +(((*1 *1 *1) + (-12 (-4 *1 (-238 *2 *3 *4 *5)) (-4 *2 (-1004)) (-4 *3 (-811)) + (-4 *4 (-251 *3)) (-4 *5 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-234))))) +(((*1 *1 *2) (-12 (-5 *2 (-174)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-234))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-735)) + (-4 *3 (-13 (-691) (-353) (-10 -7 (-15 ** (*3 *3 (-526)))))) + (-5 *1 (-232 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-231 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-230 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-526)) (-5 *1 (-227)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-526)) (-5 *1 (-227))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-1211)) (-5 *1 (-227)))) + ((*1 *2 *3) (-12 (-5 *3 (-607 (-1106))) (-5 *2 (-1211)) (-5 *1 (-227))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1106)) (-5 *3 (-526)) (-5 *1 (-227))))) +(((*1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-227))))) +(((*1 *1 *2) (-12 (-5 *2 (-1205 *4)) (-4 *4 (-1159)) (-4 *1 (-224 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-278 (-905 (-526)))) (-5 *2 - (-2 (|:| -3732 (-731)) (|:| |curves| (-731)) - (|:| |polygons| (-731)) (|:| |constructs| (-731))))))) -(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) - (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) + (-2 (|:| |varOrder| (-607 (-1123))) + (|:| |inhom| (-3 (-607 (-1205 (-735))) "failed")) + (|:| |hom| (-607 (-1205 (-735)))))) + (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-4 *1 (-221 *3)))) + ((*1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1052))))) +(((*1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) +(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) +(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) +(((*1 *1 *2) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-348) (-1145)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212))))) +(((*1 *2 *2) (-12 (-5 *2 (-211)) (-5 *1 (-212)))) + ((*1 *2 *2) (-12 (-5 *2 (-159 (-211))) (-5 *1 (-212))))) +(((*1 *2 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-211))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1123)) + (-5 *5 (-803 *7)) (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-4 *7 (-13 (-1145) (-29 *6))) (-5 *1 (-210 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1117 *6)) (-5 *4 (-803 *6)) + (-4 *6 (-13 (-1145) (-29 *5))) + (-4 *5 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-210 *5 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-803 *4)) (-5 *3 (-581 *4)) (-5 *5 (-111)) + (-4 *4 (-13 (-1145) (-29 *6))) + (-4 *6 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *1 (-210 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1106)) (-4 *4 (-13 (-436) (-811) (-995 (-526)) (-606 (-526)))) + (-5 *2 (-111)) (-5 *1 (-210 *4 *5)) (-4 *5 (-13 (-1145) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-1004)) (-14 *3 (-607 (-1123))))) + ((*1 *1 *1) + (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) + (-14 *3 (-607 (-1123)))))) (((*1 *2 *1) - (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) + (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-1004)) + (-14 *4 (-607 (-1123))))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-209 *3 *4)) (-4 *3 (-13 (-1004) (-811))) + (-14 *4 (-607 (-1123)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-299 *3)) (-4 *3 (-13 (-1004) (-811))) (-5 *1 (-209 *3 *4)) + (-14 *4 (-607 (-1123)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-209 *2 *3)) (-4 *2 (-13 (-1004) (-811))) + (-14 *3 (-607 (-1123)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1123)) (-5 *6 (-111)) + (-4 *7 (-13 (-292) (-811) (-141) (-995 (-526)) (-606 (-526)))) + (-4 *3 (-13 (-1145) (-919) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-803 *3)) (|:| |f2| (-607 (-803 *3))) (|:| |fail| "failed") + (|:| |pole| "potentialPole"))) + (-5 *1 (-205 *7 *3)) (-5 *5 (-803 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-392 (-526))) (-5 *1 (-204))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) - (-5 *2 (-1205)) (-5 *1 (-1120)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) - (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) - (-5 *1 (-1120)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1117)) - (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) - (-5 *1 (-1120))))) -(((*1 *1 *1) (-4 *1 (-1007))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-964)) (-5 *2 (-816))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-996))))) -(((*1 *1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-352))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) - (-5 *3 (-606 (-537)))))) + (-12 (-4 *4 (-335)) (-5 *2 (-111)) (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-735)) (-4 *4 (-335)) (-5 *1 (-203 *4 *2)) (-4 *2 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) - (-4 *4 (-1045)) (-4 *5 (-1045))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-435)) (-4 *4 (-807)) - (-4 *5 (-753)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) - ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) - ((*1 *1 *1) (-4 *1 (-822 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) - (-4 *4 (-807))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-347)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *1 (-433 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-347)) - (-5 *2 - (-2 (|:| R (-649 *6)) (|:| A (-649 *6)) (|:| |Ainv| (-649 *6)))) - (-5 *1 (-931 *6)) (-5 *3 (-649 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) + (-12 (-4 *4 (-335)) (-5 *2 (-607 (-2 (|:| |deg| (-735)) (|:| -2872 *3)))) + (-5 *1 (-203 *4 *3)) (-4 *3 (-1181 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) - (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *7))) - (-5 *1 (-482 *5 *6 *4 *7)) (-4 *4 (-1176 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-998)) (-4 *3 (-807)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-845 *3)))) - (-5 *1 (-845 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-4 *7 (-902 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-537)))) - (-5 *1 (-903 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) - (-15 -3315 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) - (-4 *3 (-1176 *4)) - (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) - (-5 *2 (-606 (-606 (-606 (-731)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) - ((*1 *2 *2) - (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) - (-4 *6 (-1012 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3830 *1) (|:| |upper| *1))) - (-4 *1 (-929 *4 *5 *3 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) - (-4 *3 (-920))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-537)) (-5 *1 (-1055)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-606 (-537))) (-5 *4 (-537)) - (-5 *1 (-1055))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) - (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-718))))) + (-12 (-5 *4 (-111)) (-4 *5 (-335)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2736 (-607 (-2 (|:| |irr| *3) (|:| -2456 (-526))))))) + (-5 *1 (-203 *5 *3)) (-4 *3 (-1181 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141))) - (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) - (-5 *1 (-1073 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141))) - (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) - (-5 *1 (-1073 *5))))) -(((*1 *1 *1) (-4 *1 (-1086)))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) - (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *6)))) - (-5 *4 (-977 (-800 (-537)))) (-5 *5 (-1117)) (-5 *7 (-391 (-537))) - (-4 *6 (-998)) (-5 *2 (-816)) (-5 *1 (-562 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) - (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) - (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301))))))) -(((*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) - ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) - (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-397 *3 *4 *5 *6)) (-4 *6 (-989 *4)) (-4 *3 (-291)) - (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *6 (-393 *4 *5)) - (-14 *7 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1200 *6)) (-4 *6 (-393 *4 *5)) (-4 *4 (-945 *3)) - (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-398 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) -(((*1 *2 *3 *3) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-348)) (-4 *6 (-1181 (-392 *2))) + (-4 *2 (-1181 *5)) (-5 *1 (-202 *5 *2 *6 *3)) (-4 *3 (-327 *5 *2 *6))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) - (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) - (-4 *8 (-291)) (-4 *6 (-753)) (-4 *9 (-902 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-606 (-2 (|:| -3622 (-1113 *9)) (|:| -3283 (-537))))))) - (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) -(((*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) - ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-606 (-363))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-314))))) -(((*1 *1 *2 *2) + (-2 (|:| |pde| (-607 (-299 (-211)))) + (|:| |constraints| + (-607 + (-2 (|:| |start| (-211)) (|:| |finish| (-211)) (|:| |grid| (-735)) + (|:| |boundaryType| (-526)) (|:| |dStart| (-653 (-211))) + (|:| |dFinish| (-653 (-211)))))) + (|:| |f| (-607 (-607 (-299 (-211))))) (|:| |st| (-1106)) + (|:| |tol| (-211)))) + (-5 *2 (-111)) (-5 *1 (-197))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-607 (-299 (-211)))) (-5 *3 (-211)) (-5 *2 (-111)) + (-5 *1 (-197))))) +(((*1 *2 *2) (-12 (-5 *2 (-299 (-211))) (-5 *1 (-197))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)) - (-4 *2 (-807)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4301)) - (-4 *1 (-357 *3)) (-4 *3 (-1154))))) + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-211)) (|:| |xend| (-211)) + (|:| |fn| (-1205 (-299 (-211)))) (|:| |yinit| (-607 (-211))) + (|:| |intvals| (-607 (-211))) (|:| |g| (-299 (-211))) + (|:| |abserr| (-211)) (|:| |relerr| (-211)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) + (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-299 (-211)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) + (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *3 (-653 (-299 (-211)))) (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-192)))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-607 (-363))) (-5 *2 (-363)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-526)) (-5 *1 (-191))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-607 (-211))) (-5 *1 (-191))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-2 (|:| -2805 (-112)) (|:| |w| (-211)))) (-5 *1 (-191))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-992)) (-5 *3 (-1123)) (-5 *1 (-179))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) - (-4 *3 (-13 (-347) (-1139) (-954)))))) -(((*1 *2) - (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) - (-5 *1 (-440 *3 *4 *2 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) - (-5 *1 (-859 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-862)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1176 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-701 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-807)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *1 (-933 *3)) (-4 *3 (-998)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) - (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) - (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) - (-4 *1 (-1018 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) -(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-375)))) - ((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-375))))) -(((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) - ((*1 *2 *1) - (-12 (-4 *3 (-529)) (-5 *2 (-111)) (-5 *1 (-586 *3 *4)) - (-4 *4 (-1176 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-687)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-111))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-1172 *4 *2)) - (-4 *2 (-1176 *4))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-537)) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1139)))))) -(((*1 *1) - (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) - (-4 *4 (-163))))) -(((*1 *1 *2 *2) (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) + (-5 *2 (-363)) (-5 *1 (-179))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1214 (-1117) *3)) (-4 *3 (-998)) (-5 *1 (-1221 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *1 (-1223 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-659)) (-5 *1 (-289))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1045))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *2 (-1012 *4 *5 *6)) (-5 *1 (-736 *4 *5 *6 *2 *3)) - (-4 *3 (-1018 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) - (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) - (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) - (-5 *2 (-1098 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) - (-14 *4 (-606 (-1117))))) - ((*1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) - (-14 *4 (-606 (-1117))))) - ((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-319 *3 *4 *5 *2)) (-4 *3 (-347)) - (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) - (-4 *2 (-326 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-163)))) - ((*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-685 *2 *3)) (-4 *3 (-1176 *2))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| "There is a singularity at the lower end point") + (|:| |upperSingular| "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-179))))) (((*1 *2 *3) - (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) - (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *1 *1) (-5 *1 (-1116))) - ((*1 *1 *2) (-12 + (-5 *3 + (-2 (|:| |var| (-1123)) (|:| |fn| (-299 (-211))) + (|:| -1537 (-1041 (-803 (-211)))) (|:| |abserr| (-211)) + (|:| |relerr| (-211)))) (-5 *2 - (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) - (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) - (-5 *1 (-1116))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-487))) (-5 *1 (-465))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-286)) (-4 *2 (-1154)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-606 (-578 *1))) (-5 *3 (-606 *1)) (-4 *1 (-286)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *1))) (-4 *1 (-286)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-286))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-179))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 (-1117 (-526)))) (-5 *1 (-178)) (-5 *3 (-526))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 (-526))) (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1125 (-392 (-526)))) (-5 *2 (-392 (-526))) (-5 *1 (-177))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(((*1 *2 *3) (-12 (-5 *2 (-1125 (-392 (-526)))) (-5 *1 (-177)) (-5 *3 (-526))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1205 (-653 *4))) (-4 *4 (-163)) + (-5 *2 (-1205 (-653 (-905 *4)))) (-5 *1 (-176 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-1128))) (-5 *1 (-174))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1159)) (-5 *2 (-735)) (-5 *1 (-173 *4 *3)) (-4 *3 (-639 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) - (-5 *1 (-166 *3))))) + (|partial| -12 (-4 *3 (-1159)) (-5 *1 (-173 *3 *2)) (-4 *2 (-639 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) - (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) - (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-300 *5)) (-4 *5 (-371)) - (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) - (-14 *4 (-606 (-1117))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) + (-12 (-4 *4 (-13 (-348) (-809))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2736 (-390 *3)))) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1181 (-159 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) + (-4 *3 (-1181 (-159 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-159 *4)) (-5 *1 (-172 *4 *3)) (-4 *4 (-13 (-348) (-809))) + (-4 *3 (-1181 *2))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) + (-4 *3 (-1181 (-159 *2))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) - (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-737 *4 *5 *6 *3 *7)) - (-4 *3 (-1176 *6)) (-14 *7 (-874)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *1 (-929 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) - ((*1 *1 *2) - (|partial| -1533 - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) - (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) - (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))) - (-12 (-5 *2 (-905 *3)) - (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) - (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) - (-4 *5 (-807))))) - ((*1 *1 *2) - (|partial| -1533 - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) - (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) - (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) - (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) - (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) - (-4 *4 (-753)) (-4 *5 (-807))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) - (-5 *1 (-1121))))) -(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) - ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) -(((*1 *1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1 *1) (-5 *1 (-1064)))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1139))) - (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-539 *6 *3 *7)) (-4 *7 (-1045))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *1 (-554 *2)) (-4 *2 (-989 *3)) - (-4 *2 (-347)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)) - (-4 *2 (-13 (-414 *4) (-954) (-1139))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))) - (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-912)) (-5 *2 (-1117)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-912))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-734)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-918))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-636 (-210))) - (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-711))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-291) (-141))) - (-4 *2 (-902 *4 *6 *5)) (-5 *1 (-877 *4 *5 *6 *2)) - (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) - (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1 *1) (-5 *1 (-1064)))) + (-12 (-4 *2 (-13 (-348) (-809))) (-5 *1 (-172 *2 *3)) + (-4 *3 (-1181 (-159 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) + (-4 *2 (-1181 (-159 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-390 *3)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-1181 (-159 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-348) (-809))) (-5 *1 (-172 *3 *2)) + (-4 *2 (-1181 (-159 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-529)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) - (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) - (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))) - (-4 *2 (-13 (-1045) (-33)))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-856 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-529)) - (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 (-606 (-874)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-606 (-606 (-210)))) (-5 *4 (-210)) - (-5 *2 (-606 (-896 *4))) (-5 *1 (-1150)) (-5 *3 (-896 *4))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-537)) - (-5 *6 - (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) - (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-537)) - (-5 *6 - (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) - (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-348) (-809))) + (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *5)))) + (-5 *1 (-172 *5 *3)) (-4 *3 (-1181 (-159 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-348) (-809))) + (-5 *2 (-607 (-2 (|:| -2736 (-607 *3)) (|:| -1632 *4)))) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) - (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + (-12 (-5 *2 (-607 (-159 *4))) (-5 *1 (-148 *3 *4)) + (-4 *3 (-1181 (-159 (-526)))) (-4 *4 (-13 (-348) (-809))))) ((*1 *2 *3) - (-12 (-5 *3 (-606 (-905 *4))) - (-4 *4 (-13 (-805) (-291) (-141) (-973))) - (-5 *2 (-606 (-995 *4 *5))) (-5 *1 (-1225 *4 *5 *6)) - (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748))))) + (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-348) (-809))) (-5 *2 (-607 (-159 *4))) + (-5 *1 (-172 *4 *3)) (-4 *3 (-1181 (-159 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-292)) (-5 *1 (-170 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2211 *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-302)) (-5 *3 (-210))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-313 *4)) (-4 *4 (-347)) - (-5 *2 (-649 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1200 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) - (-5 *2 (-1200 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1176 *4)) (-5 *2 (-1200 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-393 *4 *5)) (-4 *4 (-163)) - (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) - (-5 *2 (-1200 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1200 *1)) (-4 *1 (-401 *4)) (-4 *4 (-163)) - (-5 *2 (-649 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 (-649 *5))) (-5 *3 (-649 *5)) (-4 *5 (-347)) - (-5 *2 (-1200 *5)) (-5 *1 (-1032 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-606 (-578 *3))) - (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *7))) - (-4 *7 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) - (-5 *1 (-530 *7 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) - (-5 *1 (-709))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1117)) - (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) - (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *5 *3)) - (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1113 *5)) (-4 *5 (-347)) (-5 *2 (-606 *6)) - (-5 *1 (-510 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) - (-5 *1 (-316))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) - (-4 *3 (-357 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-484 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) - (-5 *2 (-2 (|:| |num| (-649 *4)) (|:| |den| *4))) - (-5 *1 (-653 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-4 *6 (-1176 *5)) - (-5 *2 (-2 (|:| -4113 *7) (|:| |rh| (-606 (-391 *6))))) - (-5 *1 (-767 *5 *6 *7 *3)) (-5 *4 (-606 (-391 *6))) - (-4 *7 (-617 *6)) (-4 *3 (-617 (-391 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1169 *4 *5 *3)) - (-4 *3 (-1176 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-606 (-606 (-896 (-210))))))) - ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-606 (-606 (-896 (-210)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-879))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) - (-5 *2 - (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) - (|:| |success| (-111)))) - (-5 *1 (-749)) (-5 *5 (-537))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-708))))) -(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) - ((*1 *1 *2) - (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) - (-14 *3 (-874)) (-4 *4 (-998)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-4 *4 (-998)) (-4 *3 (-1176 *4)) (-4 *2 (-1191 *4)) - (-5 *1 (-1194 *4 *3 *5 *2)) (-4 *5 (-617 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) - (-5 *2 (-986)) (-5 *1 (-718))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-125 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-1012 *3 *4 *2)) (-4 *2 (-807)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807))))) -(((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-782))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1200 (-3 (-451) "undefined"))) (-5 *1 (-1201))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-606 (-300 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) - (-5 *1 (-196))))) -(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-924)) - (-5 *3 (-606 (-537)))))) -(((*1 *1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) - (-5 *2 (-111)) (-5 *1 (-1082 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-522)))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) - (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef2| (-742 *3)))) - (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) - (-4 *2 (-1160 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) - ((*1 *2 *1) - (-12 (-5 *2 (-731)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) - (-14 *4 (-537))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-731)) (-4 *5 (-529)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-177)) (-5 *3 (-537)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-163)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816))))) + (-12 (-5 *2 (-1 (-902 *3) (-902 *3))) (-5 *1 (-167 *3)) + (-4 *3 (-13 (-348) (-1145) (-960)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-716))))) -(((*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) -(((*1 *1 *1) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045))))) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) - ((*1 *1 *1 *1) (-5 *1 (-1064)))) -(((*1 *2 *3) - (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-843 *4 *5)) (-4 *5 (-1154))))) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-537)))) - (-4 *4 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))) - (-4 *3 (-529)) (-5 *1 (-1179 *3 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-717))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1200 *4)) (-5 *3 (-649 *4)) (-4 *4 (-347)) - (-5 *1 (-628 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-347)) - (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4301)))) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))) - (-5 *1 (-629 *4 *5 *2 *3)) (-4 *3 (-647 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-606 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-347)) - (-5 *1 (-774 *2 *3)) (-4 *3 (-617 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) - (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) - ((*1 *2 *1) - (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) - (-5 *1 (-507 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) - (-4 *5 (-223 *3 *2)) (-4 *2 (-998))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1098 (-210))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2133 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-532))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1170 *3 *2)) - (-4 *2 (-1176 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1121))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-162)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1113 *7)) (-5 *3 (-537)) (-4 *7 (-902 *6 *4 *5)) - (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) - (-5 *1 (-305 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-522)) (-5 *1 (-151 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-606 (-918))) (-5 *1 (-275))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) - (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) - (-5 *1 (-709))))) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) - ((*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-731)) (-4 *5 (-435)) (-4 *5 (-807)) - (-4 *5 (-989 (-537))) (-4 *5 (-529)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-414 *5)) - (-4 *2 - (-13 (-347) (-286) - (-10 -8 (-15 -3301 ((-1069 *5 (-578 $)) $)) - (-15 -3315 ((-1069 *5 (-578 $)) $)) - (-15 -2341 ($ (-1069 *5 (-578 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-537)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) - (-5 *1 (-432 *5 *6 *7 *4))))) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-902 *3)) (-4 *3 (-13 (-348) (-1145) (-960))) + (-5 *1 (-167 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-107))) (-5 *1 (-166))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-166))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-292)) (-5 *1 (-165 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 (-392 *3))) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-165 *3)) (-4 *3 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) +(((*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) (((*1 *2 *1) - (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-4 *1 (-920)))) -(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1156))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-896 (-210)) (-210) (-210))) - (-5 *3 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-239))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51))))) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1013)) (-4 *3 (-1145)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-153))) + ((*1 *1 *2) (-12 (-5 *2 (-526)) (-5 *1 (-153))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123)))) + ((*1 *1 *1) (-4 *1 (-152)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-406 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1044 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) + (-5 *1 (-150 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 *1)) (-4 *1 (-152)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1123))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) +(((*1 *1 *1 *1) (-4 *1 (-137))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-525)) (-5 *1 (-151 *2))))) +(((*1 *1 *1) (-4 *1 (-137))) ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-233))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-1149 *3)) - (-4 *3 (-927))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-578 *3)) - (-4 *3 (-13 (-414 *5) (-27) (-1139))) - (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) - (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) - (-5 *2 (-874))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-247)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) - ((*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529))))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-525))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-347) (-989 (-391 *2)))) (-5 *2 (-537)) - (-5 *1 (-114 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *3 (-1012 *4 *5 *6)) - (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) - (-4 *1 (-1018 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1158))) - ((*1 *2 *2) - (-12 (-4 *3 (-529)) (-5 *1 (-1179 *3 *2)) - (-4 *2 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)))) - ((*1 *2 *1) - (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-731))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2211 *3))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) (((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) (((*1 *2 *3) - (-12 (-4 *1 (-333)) (-5 *3 (-537)) (-5 *2 (-1127 (-874) (-731)))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) - (-4 *4 (-13 (-807) (-529)))))) -(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) - (-5 *1 (-1073 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-13 (-291) (-807) (-141))) - (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) - (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) - (-5 *1 (-1073 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-278 (-391 (-905 *4)))) - (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) - (-5 *1 (-1073 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) - (-4 *5 (-13 (-291) (-807) (-141))) - (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-391 (-905 *4)))) - (-4 *4 (-13 (-291) (-807) (-141))) - (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-278 (-391 (-905 *5))))) (-5 *4 (-606 (-1117))) - (-4 *5 (-13 (-291) (-807) (-141))) - (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) - (-4 *4 (-13 (-291) (-807) (-141))) - (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) - (-4 *7 (-902 *5 *6 *4)) (-4 *5 (-862)) (-4 *6 (-753)) - (-4 *4 (-807)) (-5 *1 (-859 *5 *6 *4 *7))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) (((*1 *2 *3) - (-12 (-5 *3 (-300 *4)) (-4 *4 (-13 (-788) (-807) (-998))) - (-5 *2 (-1100)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-300 *5)) (-5 *4 (-111)) - (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) - (-5 *1 (-786 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-782)) (-5 *4 (-300 *5)) - (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) - (-5 *1 (-786 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782)) (-5 *4 (-300 *6)) (-5 *5 (-111)) - (-4 *6 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) - (-5 *1 (-786 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-788)) (-5 *2 (-1100)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-788)) (-5 *3 (-111)) (-5 *2 (-1100)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *2 (-1205)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *4 (-111)) (-5 *2 (-1205))))) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *2)) (-4 *2 (-406 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-811) (-533)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *1) (-4 *1 (-474))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-606 *7) *7 (-1113 *7))) (-5 *5 (-1 (-402 *7) *7)) - (-4 *7 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 (-391 (-537))))) - (-5 *2 (-606 (-2 (|:| |frac| (-391 *7)) (|:| -4113 *3)))) - (-5 *1 (-769 *6 *7 *3 *8)) (-4 *3 (-617 *7)) - (-4 *8 (-617 (-391 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) - (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *1 (-150 *3 *2)) (-4 *2 (-406 *3))))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *2) (-12 (-5 *2 (-878)) (-5 *1 (-149))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-211)) (-5 *2 - (-606 (-2 (|:| |frac| (-391 *6)) (|:| -4113 (-615 *6 (-391 *6)))))) - (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6)))))) -(((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) - ((*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1045)) (-4 *2 (-807)) - (-5 *1 (-112 *2))))) -(((*1 *1) (-5 *1 (-1205)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-2 (|:| |brans| (-607 (-607 (-902 *4)))) (|:| |xValues| (-1041 *4)) + (|:| |yValues| (-1041 *4)))) + (-5 *1 (-147)) (-5 *3 (-607 (-607 (-902 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-729)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) - (-5 *1 (-538)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-729)) (-5 *4 (-1010)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) - (-5 *1 (-538)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-747)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |fn| (-300 (-210))) - (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) - (|:| |extra| (-986)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-747)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) - (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) - (|:| |relerr| (-210)))) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) - (|:| |extra| (-986)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-760)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) - (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) - (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) - (|:| |abserr| (-210)) (|:| |relerr| (-210)))) - (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-768)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-765)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-768)) (-5 *4 (-1010)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-765)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-796)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) - (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-796)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) - (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) - (|:| |ub| (-606 (-800 (-210)))))) - (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-798)) + (-12 (-5 *3 (-884)) (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-798)) (-5 *4 (-1010)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-848)) (-5 *3 (-1010)) - (-5 *4 - (-2 (|:| |pde| (-606 (-300 (-210)))) - (|:| |constraints| - (-606 - (-2 (|:| |start| (-210)) (|:| |finish| (-210)) - (|:| |grid| (-731)) (|:| |boundaryType| (-537)) - (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) - (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) - (|:| |tol| (-210)))) - (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-851)) - (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1010)) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) + (-5 *1 (-147)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-884)) (-5 *4 (-392 (-526))) (-5 *2 - (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) - (|:| |explanations| (-606 (-1100))))) - (-5 *1 (-850))))) -(((*1 *2 *1) - (-12 (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) - (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) - (-4 *4 (-13 (-1045) (-33)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) - (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) - (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *5 (-807)) (-5 *2 (-111)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1147 *5 *6 *7 *3)) - (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) - (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *6 (-580 (-1117))) - (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) - (-5 *2 (-1107 (-606 (-905 *4)) (-606 (-278 (-905 *4))))) - (-5 *1 (-485 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-2 (|:| |brans| (-607 (-607 (-902 (-211))))) + (|:| |xValues| (-1041 (-211))) (|:| |yValues| (-1041 (-211))))) + (-5 *1 (-147))))) (((*1 *1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-347)) (-14 *5 (-946 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1) (-5 *1 (-595)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-537)) (-4 *1 (-307 *4 *2)) (-4 *4 (-1045)) - (-4 *2 (-129))))) -(((*1 *2 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-401 *4))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-178))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *4 *5 *6 *7)) - (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) - (-4 *7 (-1154))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-606 *4)) (-4 *4 (-807)) - (-5 *1 (-1125 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) + (-12 (-5 *2 (-878)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-348)) + (-14 *5 (-952 *3 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) + (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1159))))) (((*1 *1 *1) - (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) - (-4 *2 (-435)))) - ((*1 *1 *1) - (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) - (-4 *4 (-1176 (-391 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)) (-4 *3 (-435)))) - ((*1 *1 *1) - (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-435)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-1105 *3 *2)) - (-4 *2 (-1176 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) - (-5 *2 (-986)) (-5 *1 (-713))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-352)) - (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) - (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-712))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-752)) (-4 *3 (-163))))) + (-12 (|has| *1 (-6 -4310)) (-4 *1 (-145 *2)) (-4 *2 (-1159)) + (-4 *2 (-1052))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-392 *5)) + (|:| |c2| (-392 *5)) (|:| |deg| (-735)))) + (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1181 *2)) (-4 *2 (-1164)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-1181 (-392 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-392 *6)) (-4 *5 (-1164)) (-4 *6 (-1181 *5)) + (-5 *2 (-2 (|:| -2462 (-735)) (|:| -4270 *3) (|:| |radicand| *6))) + (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-735)) (-4 *7 (-1181 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) + (-5 *2 (-2 (|:| |radicand| (-392 *5)) (|:| |deg| (-735)))) + (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1181 (-392 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1164)) (-4 *5 (-1181 *4)) + (-5 *2 (-2 (|:| -4270 (-392 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-1181 (-392 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-735)) (-5 *1 (-138))))) +(((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-138)))) + ((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-138))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 (-138))) (-5 *1 (-135)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-135))))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *1) (-5 *1 (-135)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-391 (-537))) (-5 *1 (-562 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-998))))) + (-12 (-5 *2 (-607 (-526))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) + (-14 *4 (-735)) (-4 *5 (-163))))) +(((*1 *1) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) +(((*1 *1) + (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-526)) (-14 *3 (-735)) (-4 *4 (-163))))) +(((*1 *2 *1) + (-12 (-5 *2 (-607 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) + (-14 *4 (-735)) (-4 *5 (-163))))) (((*1 *1 *2) - (-12 + (-12 (-5 *2 (-607 *5)) (-4 *5 (-163)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-526)) + (-14 *4 (-735))))) +(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-735)) (-5 *2 (-1211))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(((*1 *1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-127))))) +(((*1 *1 *1 *1) (-5 *1 (-127)))) +(((*1 *1 *1 *1) (-5 *1 (-127)))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-125 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-811)) (-5 *1 (-120 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-811))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *2) (-12 (-5 *2 (-735)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1181 (-526)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4311)) (-4 *1 (-118 *2)) (-4 *2 (-1159))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-348) (-995 (-392 *2)))) (-5 *2 (-526)) + (-5 *1 (-114 *4 *3)) (-4 *3 (-1181 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1052)) (-4 *2 (-811)) + (-5 *1 (-113 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-113 *3)) (-4 *3 (-811)) (-4 *3 (-1052))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-607 (-1 *4 (-607 *4)))) (-4 *4 (-1052)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1052)) (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-112)) (-5 *2 (-607 (-1 *4 (-607 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-607 (-924))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-735)) (-5 *1 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-112) (-112))) (-5 *1 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-515) (-607 (-515)))) (-5 *1 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-111)) (-5 *1 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-112))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-737)) (-5 *1 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1106) (-737))) (-5 *1 (-112))))) +(((*1 *1) (-5 *1 (-111)))) +(((*1 *1) (-5 *1 (-111)))) +(((*1 *1 *1) (-5 *1 (-111)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-607 (-924))) (-5 *1 (-107))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-4 *1 (-105 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) +(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1159))))) +(((*1 *2) (-12 (-5 *2 (-607 (-1123))) (-5 *1 (-103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1123)) (-5 *2 - (-2 (|:| |mval| (-649 *3)) (|:| |invmval| (-649 *3)) - (|:| |genIdeal| (-485 *3 *4 *5 *6)))) - (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-220 *3)))) - ((*1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1045))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) - (-4 *4 (-1176 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) + (-2 (|:| |zeros| (-1101 (-211))) (|:| |ones| (-1101 (-211))) + (|:| |singularities| (-1101 (-211))))) + (-5 *1 (-103))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4312 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) + (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) + (-4 *4 (-650 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4312 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) + (-4 *2 (-1004)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1181 *2)) + (-4 *4 (-650 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) + (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1004)) (-4 *2 (-650 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) + (-4 *3 (-1181 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-101 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-101 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-607 *2) *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-101 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-436) (-141))) (-5 *2 (-390 *3)) (-5 *1 (-98 *4 *3)) + (-4 *3 (-1181 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-607 *3)) (-4 *3 (-1181 *5)) (-4 *5 (-13 (-436) (-141))) + (-5 *2 (-390 *3)) (-5 *1 (-98 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-526))) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-97 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1106)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2) (-12 (-5 *2 (-1211)) (-5 *1 (-95))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1106)) (-5 *1 (-95))))) +(((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1052)) (-5 *1 (-89 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-12 (-4 *5 (-348)) (-4 *5 (-533)) + (-5 *2 + (-2 (|:| |minor| (-607 (-878))) (|:| -3578 *3) + (|:| |minors| (-607 (-607 (-878)))) (|:| |ops| (-607 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-1205 (-653 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-653 *4)) (-4 *5 (-623 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-533)) + (-5 *2 (-2 (|:| -1676 (-653 *5)) (|:| |vec| (-1205 (-607 (-878)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-878)) (-4 *3 (-623 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-735)) (-5 *1 (-56 *3)) (-4 *3 (-1159)))) + ((*1 *1 *2) (-12 (-5 *2 (-607 *3)) (-4 *3 (-1159)) (-5 *1 (-56 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1159)) (-4 *3 (-357 *4)) + (-4 *5 (-357 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-526)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1159)) (-4 *5 (-357 *4)) + (-4 *3 (-357 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-1123))) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *1 *1) (-5 *1 (-1010)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) - (-4 *6 (-753)) (-5 *2 (-606 (-606 (-537)))) - (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *6 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) - ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) -(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-210))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *1 *1 *1) (-5 *1 (-363))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) + (-12 (-5 *3 (-607 (-1026 *4 *5 *2))) (-4 *4 (-1052)) + (-4 *5 (-13 (-1004) (-845 *4) (-811) (-584 (-849 *4)))) + (-4 *2 (-13 (-406 *5) (-845 *4) (-584 (-849 *4)))) (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-607 (-1026 *5 *6 *2))) (-5 *4 (-878)) (-4 *5 (-1052)) + (-4 *6 (-13 (-1004) (-845 *5) (-811) (-584 (-849 *5)))) + (-4 *2 (-13 (-406 *6) (-845 *5) (-584 (-849 *5)))) (-5 *1 (-53 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1054)) (-5 *3 (-737)) (-5 *1 (-50))))) +(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50))))) +(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-50))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054)) (-5 *1 (-50))))) +(((*1 *2 *1) (-12 (-5 *2 (-737)) (-5 *1 (-50))))) +(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1106)) (-5 *1 (-50))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 (-653 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 (-606 *4)))) - (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 *4)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-537) (-537))) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-731) (-731))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045))))) -(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) - (-4 *4 (-803))))) + (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) - (-4 *4 (-333)) (-5 *2 (-731)) (-5 *1 (-330 *4)))) - ((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) - (-14 *4 (-874)))) - ((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) - (-14 *4 - (-3 (-1113 *3) - (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) - ((*1 *2) - (-12 (-5 *2 (-731)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) - (-14 *4 (-874))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) - (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) - (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) - (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) - (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) - (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-347)) (-4 *3 (-163)) (-4 *4 (-357 *3)) - (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) - (-4 *2 (-647 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2)) (-4 *2 (-347)) (-4 *2 (-998)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1067 *2 *3 *4 *5)) (-4 *3 (-998)) - (-4 *4 (-223 *2 *3)) (-4 *5 (-223 *2 *3)) (-4 *3 (-347)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-1125 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) + (-12 (-4 *4 (-533)) (-5 *2 (-607 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) +(((*1 *2) + (-12 (-4 *3 (-533)) (-5 *2 (-607 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-403 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-1 (-111) *5 *5)) - (-5 *4 (-606 *5)) (-4 *5 (-807)) (-5 *1 (-1125 *5))))) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) - (-4 *4 (-333))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1117)) - (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-1120))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-537)) (-5 *2 (-111))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731)))) - (-5 *1 (-1098 *4)) (-4 *4 (-1154)) (-5 *3 (-731))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) - (-4 *2 (-807)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-753)) (-4 *5 (-998)) (-4 *6 (-902 *5 *4 *2)) - (-4 *2 (-807)) (-5 *1 (-903 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-347) - (-10 -8 (-15 -2341 ($ *6)) (-15 -3301 (*6 $)) - (-15 -3315 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) - (-5 *2 (-1117)) (-5 *1 (-994 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) - (-4 *4 (-807)) (-4 *2 (-529))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-370 *3)) (|:| |mm| (-370 *3)) (|:| |rm| (-370 *3)))) - (-5 *1 (-370 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-779 *3)) (|:| |mm| (-779 *3)) (|:| |rm| (-779 *3)))) - (-5 *1 (-779 *3)) (-4 *3 (-807))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) - (-4 *3 (-13 (-1045) (-33)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-264))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1117)) - (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-764 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1139) (-912)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-816)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-915))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-1113 *3)) - (-4 *3 (-13 (-414 *7) (-27) (-1139))) - (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) - (-5 *6 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1139))) - (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-237 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-807)) - (-4 *5 (-753)) (-4 *2 (-250 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) - (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) - (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) - (-4 *1 (-1012 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) - (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) - (-5 *4 (-606 (-874))) (-5 *5 (-606 (-247))) (-5 *1 (-451)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) - (-5 *4 (-606 (-874))) (-5 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) - ((*1 *1 *1) (-5 *1 (-451)))) -(((*1 *2 *1) - (-12 (-5 *2 (-896 *4)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) - (-4 *4 (-998))))) -(((*1 *1) (-5 *1 (-421)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363))))) -(((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) - (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) - (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-111)) - (-5 *1 (-247))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-649 (-1113 *8))) (-4 *5 (-998)) (-4 *8 (-998)) - (-4 *6 (-1176 *5)) (-5 *2 (-649 *6)) (-5 *1 (-482 *5 *6 *7 *8)) - (-4 *7 (-1176 *6))))) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) - (-5 *2 (-363)) (-5 *1 (-251)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-289))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4086 *4))) - (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1117))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) - (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) - (-5 *1 (-748))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-537))) (-5 *5 (-1 (-1098 *4))) (-4 *4 (-347)) - (-4 *4 (-998)) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4))))) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) - (-4 *5 (-435)) - (-5 *2 - (-2 (|:| |gblist| (-606 (-232 *4 *5))) - (|:| |gvlist| (-606 (-537))))) - (-5 *1 (-594 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *4 (-731)) - (-5 *2 (-649 (-210))) (-5 *1 (-251))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1154)) (-5 *2 (-1205))))) -(((*1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) - ((*1 *2 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) - ((*1 *1 *1) (-5 *1 (-816)))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998)) (-4 *4 (-163)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)) - (-4 *3 (-163))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1117)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-606 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1139) (-27) (-414 *8))) - (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) - (-5 *3 (-537)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111)))) - (-5 *1 (-965 *8 *4))))) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-533)) (-5 *2 (-735)) (-5 *1 (-42 *4 *3)) (-4 *3 (-403 *4))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-112)) (-5 *4 (-735)) (-4 *5 (-436)) (-4 *5 (-811)) + (-4 *5 (-995 (-526))) (-4 *5 (-533)) (-5 *1 (-40 *5 *2)) (-4 *2 (-406 *5)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *5 (-581 $)) $)) + (-15 -3297 ((-1075 *5 (-581 $)) $)) + (-15 -4274 ($ (-1075 *5 (-581 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *2) - (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) - ((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) - (-5 *1 (-713))))) -(((*1 *2 *1) - (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) - (-5 *2 (-606 *3))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) - (-4 *3 (-13 (-807) (-529)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) -(((*1 *2) - (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-327 *3 *4)) (-14 *3 (-874)) - (-14 *4 (-874)))) - ((*1 *2) - (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-328 *3 *4)) (-4 *3 (-333)) - (-14 *4 (-1113 *3)))) - ((*1 *2) - (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-329 *3 *4)) (-4 *3 (-333)) - (-14 *4 (-874))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) - (-4 *2 (-1154))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) - (-4 *4 (-998)) (-5 *1 (-979 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) - (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) - (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) - (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-51))))) + (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) + (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-922 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *1) (-5 *1 (-1201)))) -(((*1 *1 *1 *1) (-4 *1 (-522)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) - (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) - (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-879)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-879)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) - (-5 *1 (-880))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) - (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-451)) - (-5 *1 (-1204)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) - (-5 *2 (-451)) (-5 *1 (-1204))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-731)) (-4 *1 (-936 *2)) (-4 *2 (-1139))))) -(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746))))) -(((*1 *2 *1) - (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) - (-4 *1 (-1012 *3 *4 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) - (-5 *2 (-2 (|:| -3449 (-537)) (|:| |var| (-578 *1)))) - (-4 *1 (-414 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) + (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) + (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) + (-12 (-4 *3 (-436)) (-4 *3 (-811)) (-4 *3 (-995 (-526))) (-4 *3 (-533)) + (-5 *1 (-40 *3 *2)) (-4 *2 (-406 *3)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-136 *2 *4 *3)) - (-4 *3 (-357 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-484 *2 *4 *5 *3)) - (-4 *5 (-357 *2)) (-4 *3 (-357 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-945 *2)) (-4 *2 (-529)) - (-5 *1 (-653 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-1169 *2 *4 *3)) - (-4 *3 (-1176 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-537))) (-5 *4 (-537)) (-5 *2 (-649 *4)) - (-5 *1 (-979 *5)) (-4 *5 (-998)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-979 *4)) - (-4 *4 (-998)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-858 (-537)))) (-5 *4 (-537)) - (-5 *2 (-606 (-649 *4))) (-5 *1 (-979 *5)) (-4 *5 (-998)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-606 (-537)))) (-5 *2 (-606 (-649 (-537)))) - (-5 *1 (-979 *4)) (-4 *4 (-998))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) - (-4 *6 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-603 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) - (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 *5)) (-4 *6 (-1045)) - (-4 *5 (-1154)) (-5 *2 (-1 *5 *6)) (-5 *1 (-603 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) - (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) - (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-603 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-731))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-782))))) -(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) - (-4 *3 (-1154))))) -(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-51)) (-5 *1 (-789))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-391 (-537)))) - (-5 *2 - (-606 - (-2 (|:| |outval| *4) (|:| |outmult| (-537)) - (|:| |outvect| (-606 (-649 *4)))))) - (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) -(((*1 *2) - (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-401 *3))))) + (-12 (-4 *4 (-533)) (-5 *2 (-1117 *3)) (-5 *1 (-40 *4 *3)) + (-4 *3 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) + (-15 -3297 ((-1075 *4 (-581 $)) $)) + (-15 -4274 ($ (-1075 *4 (-581 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954)))))) + (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 *2)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) + (-15 -3297 ((-1075 *4 (-581 $)) $)) + (-15 -4274 ($ (-1075 *4 (-581 $))))))) + (-4 *4 (-533)) (-5 *1 (-40 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-607 (-581 *2))) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *4 (-581 $)) $)) + (-15 -3297 ((-1075 *4 (-581 $)) $)) + (-15 -4274 ($ (-1075 *4 (-581 $))))))) + (-4 *4 (-533)) (-5 *1 (-40 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) - (-4 *2 (-13 (-414 *3) (-954))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) - (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) - (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) - ((*1 *1 *1) - (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) - (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1103 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) - (-5 *1 (-1104 *3)))) - ((*1 *1 *1) (-4 *1 (-1142)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-163)))) + (-12 (-4 *3 (-533)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-348) (-283) + (-10 -8 (-15 -3298 ((-1075 *3 (-581 $)) $)) + (-15 -3297 ((-1075 *3 (-581 $)) $)) + (-15 -4274 ($ (-1075 *3 (-581 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-735)) (-4 *4 (-348)) (-4 *5 (-1181 *4)) (-5 *2 (-1211)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1181 (-392 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1181 (-47)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1052)) + (-5 *2 (-2 (|:| -4179 *3) (|:| -2164 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-735)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-526)) (-4 *2 (-406 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-995 *4)) + (-4 *3 (-13 (-811) (-533)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-607 *5)) (-4 *5 (-406 *4)) (-4 *4 (-13 (-811) (-533))) + (-5 *2 (-823)) (-5 *1 (-31 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-406 *4)) (-4 *4 (-13 (-811) (-533))) + (-5 *1 (-31 *4 *2))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-905 (-526))) (-5 *3 (-1123)) (-5 *4 (-1041 (-392 (-526)))) + (-5 *1 (-30))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117 *1)) (-5 *4 (-1123)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-607 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1123)) (-4 *4 (-13 (-811) (-533))) (-5 *2 (-607 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-811) (-533))) (-5 *2 (-607 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1117 *1)) (-5 *3 (-1123)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-731)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) - (-4 *4 (-998))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)) - (-5 *1 (-1118 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874)) (-5 *2 (-1200 *3)) (-5 *1 (-1118 *3)) - (-4 *3 (-998))))) -((-1232 . 729255) (-1233 . 729064) (-1234 . 728323) (-1235 . 728216) - (-1236 . 728114) (-1237 . 728007) (-1238 . 727790) (-1239 . 727536) - (-1240 . 727470) (-1241 . 727366) (-1242 . 727314) (-1243 . 727242) - (-1244 . 726369) (-1245 . 725903) (-1246 . 725481) (-1247 . 724793) - (-1248 . 724708) (-1249 . 724561) (-1250 . 724446) (-1251 . 724378) - (-1252 . 724292) (-1253 . 723925) (-1254 . 722745) (-1255 . 722711) - (-1256 . 722682) (-1257 . 722616) (-1258 . 722513) (-1259 . 721937) - (-1260 . 721885) (-1261 . 721494) (-1262 . 721357) (-1263 . 721304) - (-1264 . 721252) (-1265 . 720999) (-1266 . 720899) (-1267 . 720601) - (-1268 . 720549) (-1269 . 720445) (-1270 . 720347) (-1271 . 720220) - (-1272 . 720091) (-1273 . 719515) (-1274 . 718996) (-1275 . 718789) - (-1276 . 718718) (-1277 . 718621) (-1278 . 718506) (-1279 . 718382) - (-1280 . 718271) (-1281 . 718154) (-1282 . 717947) (-1283 . 717799) - (-1284 . 717620) (-1285 . 717505) (-1286 . 716929) (-1287 . 716799) - (-1288 . 716581) (-1289 . 716354) (-1290 . 716256) (-1291 . 715914) - (-1292 . 715598) (-1293 . 715570) (-1294 . 715472) (-1295 . 715087) - (-1296 . 714756) (-1297 . 714618) (-1298 . 714226) (-1299 . 714109) - (-1300 . 713423) (-1301 . 712621) (-1302 . 712502) (-1303 . 712312) - (-1304 . 712246) (-1305 . 712183) (-1306 . 712075) (-1307 . 711987) - (-1308 . 711696) (-1309 . 711584) (-1310 . 711109) (-1311 . 710946) - (-1312 . 710893) (-1313 . 710755) (-1314 . 710069) (-1315 . 709995) - (-1316 . 709882) (-1317 . 709788) (-1318 . 709645) (-1319 . 709561) - (-1320 . 709481) (-1321 . 708518) (-1322 . 708039) (-1323 . 707853) - (-1324 . 707783) (-1325 . 707496) (-1326 . 707419) (-1327 . 707301) - (-1328 . 706552) (-1329 . 706478) (-1330 . 706341) (-1331 . 706226) - (-1332 . 706019) (-1333 . 705987) (-1334 . 705714) (-1335 . 705607) - (-1336 . 705510) (-1337 . 705423) (-1338 . 705346) (-1339 . 705245) - (-1340 . 704671) (-1341 . 704546) (-1342 . 704490) (-1343 . 704254) - (-1344 . 704152) (-1345 . 704038) (-1346 . 703883) (-1347 . 703788) - (-1348 . 703722) (-1349 . 703604) (-1350 . 703525) (-1351 . 702934) - (-1352 . 702360) (-1353 . 702278) (-1354 . 702209) (-1355 . 702095) - (-1356 . 702025) (-1357 . 701973) (-1358 . 701808) (-1359 . 701734) - (-1360 . 701636) (-1361 . 701539) (-1362 . 701454) (-1363 . 701339) - (-1364 . 701232) (-1365 . 700658) (-1366 . 700605) (-1367 . 700549) - (-1368 . 700322) (-1369 . 699903) (-1370 . 699679) (-1371 . 699521) - (-1372 . 696226) (-1373 . 696119) (-1374 . 696090) (-1375 . 695986) - (-1376 . 695860) (-1377 . 695289) (-1378 . 694602) (-1379 . 693793) - (-1380 . 693600) (-1381 . 692315) (-1382 . 692208) (-1383 . 692122) - (-1384 . 692052) (-1385 . 691981) (-1386 . 691869) (-1387 . 691785) - (-1388 . 691729) (-1389 . 691042) (-1390 . 690901) (-1391 . 690740) - (-1392 . 690610) (-1393 . 690533) (-1394 . 690292) (-1395 . 689846) - (-1396 . 689726) (-1397 . 689537) (-1398 . 689443) (-1399 . 689172) - (-1400 . 689075) (-1401 . 689022) (-1402 . 688929) (-1403 . 688242) - (-1404 . 688191) (-1405 . 688106) (-1406 . 687979) (-1407 . 687928) - (-1408 . 687894) (-1409 . 687755) (-1410 . 687502) (-1411 . 687422) - (-1412 . 687208) (-1413 . 686868) (-1414 . 686722) (-1415 . 686147) - (-1416 . 685983) (-1417 . 685893) (-1418 . 685814) (-1419 . 685736) - (-1420 . 685573) (-1421 . 685493) (-1422 . 685371) (-1423 . 685259) - (-1424 . 685203) (-1425 . 685059) (-1426 . 683763) (-1427 . 683678) - (-1428 . 683253) (-1429 . 682678) (-1430 . 682542) (-1431 . 681959) - (-1432 . 681853) (-1433 . 681618) (-1434 . 681497) (-1435 . 681399) - (-1436 . 681347) (-1437 . 681240) (-1438 . 681183) (-1439 . 681081) - (-1440 . 680972) (-1441 . 680397) (-1442 . 680345) (-1443 . 680122) - (-1444 . 679984) (-1445 . 679824) (-1446 . 679660) (-1447 . 679564) - (-1448 . 679434) (-1449 . 679307) (-1450 . 679220) (-1451 . 678925) - (-1452 . 678842) (-1453 . 678268) (-1454 . 678237) (-1455 . 678053) - (-1456 . 677941) (-1457 . 677867) (-1458 . 677833) (-1459 . 677740) - (-1460 . 677667) (-1461 . 677560) (-1462 . 677398) (-1463 . 677346) - (-1464 . 677127) (-1465 . 676553) (-1466 . 676480) (-1467 . 676361) - (-1468 . 676235) (-1469 . 676164) (-1470 . 675632) (-1471 . 675580) - (-1472 . 675480) (-1473 . 675261) (-1474 . 675195) (-1475 . 674621) - (-1476 . 674568) (-1477 . 674424) (-1478 . 673555) (-1479 . 673457) - (-1480 . 673308) (-1481 . 673067) (-1482 . 672897) (-1483 . 672604) - (-1484 . 671412) (-1485 . 670838) (-1486 . 670713) (-1487 . 670632) - (-1488 . 670482) (-1489 . 670297) (-1490 . 669659) (-1491 . 669572) - (-1492 . 669500) (-1493 . 668957) (-1494 . 668815) (-1495 . 668241) - (-1496 . 668071) (-1497 . 667997) (-1498 . 667889) (-1499 . 667702) - (-1500 . 667521) (-1501 . 667455) (-1502 . 667363) (-1503 . 667082) - (-1504 . 666904) (-1505 . 666830) (-1506 . 666624) (-1507 . 666471) - (-1508 . 666376) (-1509 . 665845) (-1510 . 665473) (-1511 . 665385) - (-1512 . 665319) (-1513 . 665173) (-1514 . 665071) (-1515 . 664997) - (-1516 . 660469) (-1517 . 660370) (-1518 . 660274) (-1519 . 659995) - (-1520 . 659879) (-1521 . 659680) (-1522 . 659595) (-1523 . 658721) - (-1524 . 658112) (-1525 . 657733) (-1526 . 657572) (-1527 . 657479) - (-1528 . 657424) (-1529 . 657396) (-1530 . 657329) (-1531 . 657145) - (-1532 . 657093) (-1533 . 656921) (-1534 . 656826) (-1535 . 656717) - (-1536 . 656555) (-1537 . 656448) (-1538 . 655918) (-1539 . 655783) - (-1540 . 654588) (-1541 . 654278) (-1542 . 654164) (-1543 . 653956) - (-1544 . 653849) (-12 . 653677) (-1546 . 653618) (-1547 . 653234) - (-1548 . 653127) (-1549 . 653053) (-1550 . 653001) (-1551 . 652683) - (-1552 . 652631) (-1553 . 652390) (-1554 . 652338) (-1555 . 651978) - (-1556 . 651815) (-1557 . 651708) (-1558 . 651412) (-1559 . 651204) - (-1560 . 651082) (-1561 . 651050) (-1562 . 650669) (-1563 . 650516) - (-1564 . 650325) (-1565 . 650230) (-1566 . 649800) (-1567 . 649744) - (-1568 . 649647) (-1569 . 649491) (-1570 . 648908) (-1571 . 648796) - (-1572 . 648687) (-1573 . 648513) (-1574 . 648383) (-1575 . 648024) - (-1576 . 647935) (-1577 . 647618) (-1578 . 647463) (-1579 . 647350) - (-1580 . 647253) (-1581 . 647219) (-1582 . 647167) (-1583 . 647096) - (-1584 . 647035) (-1585 . 646973) (-1586 . 646784) (-1587 . 646411) - (-1588 . 646326) (-1589 . 646252) (-1590 . 646004) (-1591 . 645897) - (-1592 . 645845) (-1593 . 645614) (-1594 . 645440) (-1595 . 645266) - (-1596 . 645095) (-1597 . 645040) (-1598 . 644867) (-1599 . 644811) - (-1600 . 644684) (-1601 . 644498) (-1602 . 644361) (-1603 . 644254) - (-1604 . 644180) (-1605 . 643937) (-1606 . 643797) (-1607 . 642679) - (-1608 . 642538) (-1609 . 642481) (-1610 . 642324) (-1611 . 642110) - (-1612 . 628042) (-1613 . 627984) (-1614 . 627797) (-1615 . 627745) - (-1616 . 627645) (-1617 . 627402) (-1618 . 626752) (-1619 . 626554) - (-1620 . 626460) (-1621 . 626320) (-1622 . 626248) (-1623 . 626154) - (-1624 . 626043) (-1625 . 624281) (-1626 . 624228) (-1627 . 624157) - (-1628 . 623797) (-1629 . 623697) (-1630 . 623538) (-1631 . 623481) - (-1632 . 623409) (-1633 . 623358) (-1634 . 623250) (-1635 . 623138) - (-1636 . 622380) (* . 617854) (-1638 . 617712) (-1639 . 617591) - (-1640 . 617521) (-1641 . 617423) (-1642 . 617261) (-1643 . 617174) - (-1644 . 616258) (-1645 . 615945) (-1646 . 615727) (-1647 . 615595) - (-1648 . 615526) (-1649 . 615309) (-1650 . 615214) (-1651 . 614968) - (-1652 . 614889) (-1653 . 614785) (-1654 . 614731) (-1655 . 614663) - (-1656 . 614364) (-1657 . 614257) (-1658 . 614200) (-1659 . 614105) - (-1660 . 613825) (-1661 . 613500) (-1662 . 613415) (-1663 . 613271) - (-1664 . 613201) (-1665 . 613114) (-1666 . 613057) (-1667 . 612571) - (-1668 . 612407) (-1669 . 612261) (-1670 . 612152) (-1671 . 612058) - (-1672 . 611851) (-1673 . 611713) (-1674 . 611648) (-1675 . 611504) - (-1676 . 611265) (-1677 . 611146) (-1678 . 611037) (-1679 . 610908) - (-1680 . 610779) (-1681 . 610684) (-1682 . 610393) (-1683 . 610276) - (-1684 . 610118) (-1685 . 610002) (-1686 . 609860) (-1687 . 609803) - (-1688 . 609208) (-1689 . 608868) (-1690 . 608716) (-1691 . 608539) - (-1692 . 608225) (-1693 . 608159) (-1694 . 608021) (-1695 . 607917) - (-1696 . 607800) (-1697 . 607544) (-1698 . 607298) (-1699 . 607146) - (-1700 . 607118) (-1701 . 606498) (-1702 . 606408) (-1703 . 606262) - (-1704 . 606189) (-1705 . 605983) (-1706 . 605561) (-1707 . 605466) - (-1708 . 605371) (-1709 . 605225) (-1710 . 605169) (-1711 . 605095) - (-1712 . 604817) (-1713 . 604690) (-1714 . 604309) (-1715 . 604100) - (-1716 . 603857) (-1717 . 603619) (-1718 . 603566) (-1719 . 603333) - (-1720 . 603277) (-1721 . 603206) (-1722 . 603151) (-1723 . 602859) - (-1724 . 602780) (-1725 . 602709) (-1726 . 602659) (-1727 . 602519) - (-1728 . 602436) (-1729 . 602091) (-1730 . 601911) (-1731 . 601788) - (-1732 . 601685) (-1733 . 601466) (-1734 . 601332) (-1735 . 601269) - (-1736 . 601170) (-1737 . 601136) (-1738 . 600967) (-1739 . 600912) - (-1740 . 600739) (-1741 . 600657) (-1742 . 600529) (-1743 . 600457) - (-1744 . 600338) (-1745 . 600267) (-1746 . 600190) (-1747 . 600108) - (-1748 . 599044) (-1749 . 598935) (-1750 . 598867) (-1751 . 598572) - (-1752 . 598456) (-1753 . 598422) (-1754 . 598369) (-1755 . 598069) - (-1756 . 598017) (-1757 . 597920) (-1758 . 597825) (-1759 . 597773) - (-1760 . 597699) (-1761 . 597060) (-1762 . 597005) (-1763 . 596955) - (-1764 . 596896) (-1765 . 596752) (-1766 . 596689) (-1767 . 596636) - (-1768 . 596530) (-1769 . 596307) (-1770 . 595423) (-1771 . 595367) - (-1772 . 595295) (-1773 . 595202) (-1774 . 595027) (-1775 . 594727) - (-1776 . 594674) (-1777 . 594535) (-1778 . 594461) (-1779 . 594393) - (-1780 . 594341) (-1781 . 594179) (-1782 . 594051) (-1783 . 593885) - (-1784 . 593715) (-1785 . 593585) (-1786 . 593419) (-1787 . 593144) - (-1788 . 593016) (-1789 . 592852) (-1790 . 592503) (-1791 . 592201) - (-1792 . 592015) (-1793 . 591949) (-1794 . 591433) (-1795 . 591242) - (-1796 . 591035) (-1797 . 590387) (-1798 . 590302) (-1799 . 590117) - (-1800 . 590024) (-1801 . 589958) (-1802 . 589740) (-1803 . 589655) - (-1804 . 589534) (-1805 . 589468) (-1806 . 589353) (-1807 . 589159) - (-1808 . 589036) (-1809 . 588927) (-1810 . 588862) (-1811 . 588733) - (-1812 . 588596) (-1813 . 588473) (-1814 . 588409) (-1815 . 588243) - (-1816 . 588113) (-1817 . 587983) (-1818 . 587693) (-1819 . 587190) - (-1820 . 586807) (-1821 . 586699) (-1822 . 586587) (-1823 . 586286) - (-1824 . 585958) (-1825 . 585713) (-1826 . 585540) (-1827 . 585208) - (-1828 . 585032) (-1829 . 584937) (-1830 . 584692) (-1831 . 584539) - (-1832 . 584414) (-1833 . 584328) (-1834 . 584245) (-1835 . 583866) - (-1836 . 583738) (-1837 . 583672) (-1838 . 583619) (-1839 . 582885) - (-1840 . 582812) (-1841 . 582545) (-1842 . 582094) (-1843 . 581904) - (-1844 . 581847) (-1845 . 581709) (-1846 . 581617) (-1847 . 581378) - (-1848 . 581326) (-1849 . 581173) (-1850 . 580969) (-1851 . 580916) - (-1852 . 580715) (-1853 . 580591) (-1854 . 580140) (-1855 . 579982) - (-1856 . 579826) (-1857 . 579798) (-1858 . 579655) (-1859 . 579567) - (-1860 . 579291) (-1861 . 579178) (-1862 . 579060) (-1863 . 578846) - (-1864 . 578731) (-1865 . 578505) (-1866 . 578271) (-1867 . 578154) - (-1868 . 578072) (-1869 . 577959) (-1870 . 577744) (-1871 . 576825) - (-1872 . 576741) (-1873 . 576426) (-1874 . 576199) (-1875 . 576056) - (-1876 . 575951) (-1877 . 575756) (-1878 . 575647) (-1879 . 575596) - (-1880 . 575523) (-1881 . 574987) (-1882 . 574807) (-1883 . 574349) - (-1884 . 574224) (-1885 . 574169) (-1886 . 574036) (-1887 . 573963) - (-1888 . 573934) (-1889 . 573860) (-1890 . 573372) (-1891 . 573299) - (-1892 . 573228) (-1893 . 573053) (-1894 . 572965) (-1895 . 563433) - (-1896 . 563295) (-1897 . 563056) (-1898 . 562957) (-1899 . 562575) - (-1900 . 562495) (-1901 . 562434) (-1902 . 562402) (-1903 . 562232) - (-1904 . 562010) (-1905 . 561005) (-1906 . 560825) (-1907 . 560616) - (-1908 . 560515) (-1909 . 560310) (-1910 . 560273) (-1911 . 560062) - (-1912 . 559953) (-1913 . 559742) (-1914 . 559523) (-1915 . 559356) - (-1916 . 559256) (-1917 . 559204) (-1918 . 559127) (-1919 . 559071) - (-1920 . 558723) (-1921 . 558667) (-1922 . 553468) (-1923 . 553352) - (-1924 . 553221) (-1925 . 552963) (-1926 . 552796) (-1927 . 552709) - (-1928 . 552609) (-1929 . 552393) (-1930 . 552341) (-1931 . 552054) - (-1932 . 551926) (-1933 . 551513) (-1934 . 551295) (-1935 . 551238) - (-1936 . 550751) (-1937 . 550587) (-1938 . 550405) (-1939 . 550328) - (-1940 . 550078) (-1941 . 549938) (-1942 . 549851) (-1943 . 549402) - (-1944 . 549281) (-1945 . 549228) (-1946 . 549093) (-1947 . 548897) - (-1948 . 548814) (-1949 . 548529) (-1950 . 548406) (-1951 . 548112) - (-1952 . 547820) (-1953 . 547634) (-1954 . 547306) (-1955 . 547229) - (-1956 . 546949) (-1957 . 546812) (-1958 . 546651) (-1959 . 546596) - (-1960 . 546488) (-1961 . 546245) (-1962 . 546148) (-1963 . 545950) - (-1964 . 545852) (-1965 . 545700) (-1966 . 545641) (-1967 . 545451) - (-1968 . 545118) (-1969 . 545062) (-1970 . 544865) (-1971 . 544792) - (-1972 . 544634) (-1973 . 544277) (-1974 . 543847) (-1975 . 543760) - (-1976 . 543726) (-1977 . 543659) (-1978 . 543380) (-1979 . 542850) - (-1980 . 542743) (-1981 . 542102) (-1982 . 541761) (-1983 . 541679) - (-1984 . 541601) (-1985 . 541507) (-1986 . 541454) (-1987 . 541368) - (-1988 . 541284) (-1989 . 541211) (-1990 . 541128) (-1991 . 540922) - (-1992 . 540683) (-1993 . 540515) (-1994 . 540462) (-1995 . 540368) - (-1996 . 540238) (-1997 . 540210) (-1998 . 540062) (-1999 . 539810) - (-2000 . 539744) (-2001 . 539660) (-2002 . 539602) (-2003 . 539460) - (-2004 . 539370) (-2005 . 538990) (-2006 . 538864) (-2007 . 538795) - (-2008 . 538419) (-2009 . 538092) (-2010 . 537874) (-2011 . 537750) - (-2012 . 537561) (-2013 . 537454) (-2014 . 537359) (-2015 . 537069) - (-2016 . 536970) (-2017 . 536865) (-2018 . 536798) (-2019 . 536692) - (-2020 . 536626) (-2021 . 536400) (-2022 . 535912) (-2023 . 535776) - (-2024 . 535325) (-2025 . 535253) (-2026 . 535030) (-2027 . 534579) - (-2028 . 534289) (-2029 . 534078) (-2030 . 533954) (-2031 . 533765) - (-2032 . 533670) (-2033 . 533329) (-2034 . 533234) (-2035 . 533116) - (-2036 . 533048) (-2037 . 532915) (-2038 . 532821) (-2039 . 532741) - (-2040 . 532497) (-2041 . 532445) (-2042 . 532368) (-2043 . 532253) - (-2044 . 532112) (-2045 . 531820) (-2046 . 531767) (-2047 . 531646) - (-2048 . 530986) (-2049 . 530880) (-2050 . 530821) (-2051 . 530762) - (-2052 . 530603) (-2053 . 530348) (-2054 . 530282) (-2055 . 528502) - (-2056 . 528388) (-2057 . 528339) (-2058 . 528254) (-2059 . 528153) - (-2060 . 528070) (-2061 . 527988) (-2062 . 527851) (-2063 . 527628) - (-2064 . 527575) (-2065 . 527362) (-2066 . 526916) (-2067 . 526215) - (-2068 . 526130) (-2069 . 525816) (-2070 . 525487) (-2071 . 525289) - (-2072 . 525140) (-2073 . 523716) (-2074 . 523511) (-2075 . 523445) - (-2076 . 522930) (-2077 . 522772) (-2078 . 522702) (-2079 . 522638) - (-2080 . 522329) (-2081 . 522132) (-2082 . 521955) (-2083 . 521745) - (-2084 . 521035) (-2085 . 520883) (-2086 . 520759) (-2087 . 520664) - (-2088 . 520555) (-2089 . 520500) (-2090 . 520300) (-2091 . 520027) - (-2092 . 519897) (-2093 . 519684) (-2094 . 519632) (-2095 . 519142) - (-2096 . 518928) (-2097 . 518683) (-2098 . 518576) (-2099 . 518490) - (-2100 . 518437) (-2101 . 518360) (-2102 . 518265) (-2103 . 518182) - (-2104 . 518154) (-2105 . 518067) (-2106 . 517948) (-2107 . 517861) - (-2108 . 517752) (-2109 . 517632) (-2110 . 517433) (-2111 . 517173) - (-2112 . 517089) (-2113 . 517018) (-2114 . 516865) (-2115 . 516538) - (-2116 . 516415) (-2117 . 516211) (-2118 . 516074) (-2119 . 516022) - (-2120 . 514726) (-2121 . 514569) (-2122 . 513704) (-2123 . 513611) - (-2124 . 513524) (-2125 . 513390) (-2126 . 513246) (-2127 . 513169) - (-2128 . 513047) (-2129 . 512910) (-2130 . 512833) (-2131 . 512775) - (-2132 . 512668) (-2133 . 512529) (-2134 . 512474) (-2135 . 512394) - (-2136 . 512344) (-2137 . 512272) (-2138 . 512213) (-2139 . 512162) - (-2140 . 510960) (-2141 . 510609) (-2142 . 510538) (-2143 . 510386) - (-2144 . 509996) (-2145 . 509898) (-2146 . 509761) (-2147 . 509530) - (-2148 . 509282) (-2149 . 509209) (-2150 . 509057) (-2151 . 508980) - (-2152 . 508505) (-2153 . 508324) (-2154 . 508161) (-2155 . 507949) - (-2156 . 507766) (-2157 . 507669) (-2158 . 507241) (-2159 . 507081) - (-2160 . 506835) (-2161 . 506742) (-2162 . 506437) (-2163 . 505622) - (-2164 . 505543) (-2165 . 504233) (-2166 . 504164) (-2167 . 504086) - (-2168 . 503978) (-2169 . 503877) (-2170 . 503803) (-2171 . 503751) - (-2172 . 503648) (-2173 . 503585) (-2174 . 503127) (-2175 . 502983) - (-2176 . 502903) (-2177 . 502530) (-2178 . 502414) (-2179 . 502331) - (-2180 . 501094) (-2181 . 500999) (-2182 . 500757) (-2183 . 500670) - (-2184 . 500342) (-2185 . 500148) (-2186 . 499990) (-2187 . 499895) - (-2188 . 499638) (-2189 . 499480) (-2190 . 499418) (-2191 . 499317) - (-2192 . 498918) (-2193 . 498613) (-2194 . 498542) (-2195 . 498040) - (-2196 . 497987) (-2197 . 497921) (-2198 . 497670) (-2199 . 497570) - (-2200 . 497490) (-2201 . 497413) (-2202 . 497042) (-2203 . 496983) - (-2204 . 496930) (-2205 . 496806) (-2206 . 496756) (-2207 . 496405) - (-2208 . 496145) (-2209 . 495644) (-2210 . 494989) (-2211 . 493888) - (-2212 . 493557) (-2213 . 493491) (-2214 . 493439) (-2215 . 493313) - (-2216 . 493180) (-2217 . 493107) (-2218 . 492913) (-2219 . 492858) - (-2220 . 492801) (-2221 . 492773) (-2222 . 492397) (-2223 . 492331) - (-2224 . 492272) (-2225 . 491994) (-2226 . 491887) (-2227 . 491816) - (-2228 . 491717) (-2229 . 491626) (-2230 . 491556) (-2231 . 491454) - (-2232 . 491349) (-2233 . 491208) (-2234 . 491094) (-2235 . 490989) - (-2236 . 490905) (-2237 . 490530) (-2238 . 490493) (-2239 . 490401) - (-2240 . 490186) (-2241 . 489641) (-2242 . 489540) (-2243 . 489379) - (-2244 . 489110) (-2245 . 488856) (-2246 . 488785) (-2247 . 488398) - (-2248 . 488347) (-2249 . 488226) (-2250 . 488146) (-2251 . 488039) - (-2252 . 487912) (-2253 . 487851) (-2254 . 487757) (-2255 . 487674) - (-2256 . 487530) (-2257 . 487200) (-2258 . 486884) (-2259 . 486792) - (-2260 . 486740) (-2261 . 486655) (-2262 . 486582) (-2263 . 486351) - (-2264 . 486252) (-2265 . 486129) (-2266 . 486042) (-2267 . 485969) - (-2268 . 485903) (-2269 . 485681) (-2270 . 485584) (-2271 . 485497) - (-2272 . 485200) (-2273 . 485138) (-2274 . 484842) (-2275 . 484731) - (-2276 . 484610) (-2277 . 484405) (-2278 . 484235) (-2279 . 483993) - (-2280 . 483923) (-2281 . 483728) (-2282 . 483569) (-2283 . 483413) - (-2284 . 483203) (-2285 . 483043) (-2286 . 482934) (-2287 . 482706) - (-2288 . 482675) (-2289 . 482592) (-2290 . 482327) (-2291 . 482107) - (-2292 . 481966) (-2293 . 481879) (-2294 . 481792) (-2295 . 481740) - (-2296 . 481353) (-2297 . 481285) (-2298 . 481026) (-2299 . 480505) - (-2300 . 480287) (-2301 . 480166) (-2302 . 479867) (-2303 . 479814) - (-2304 . 479669) (-2305 . 479615) (-2306 . 479542) (-2307 . 479373) - (-2308 . 479205) (-2309 . 479132) (-2310 . 478969) (-2311 . 478730) - (-2312 . 478645) (-2313 . 478529) (-2314 . 478142) (-2315 . 477989) - (-2316 . 477960) (-2317 . 477926) (-2318 . 476742) (-2319 . 476705) - (-2320 . 476676) (-2321 . 475971) (-2322 . 475584) (-2323 . 475213) - (-2324 . 475090) (-2325 . 474914) (-2326 . 474788) (-2327 . 474679) - (-2328 . 474606) (-2329 . 473428) (-2330 . 473341) (-2331 . 473232) - (-2332 . 472881) (-2333 . 472676) (-2334 . 472532) (-2335 . 472462) - (-2336 . 471558) (-2337 . 471399) (-2338 . 471326) (-2339 . 470880) - (-2340 . 468681) (-2341 . 445306) (-2342 . 444726) (-2343 . 444643) - (-2344 . 444574) (-2345 . 444490) (-2346 . 444182) (-2347 . 444022) - (-2348 . 443890) (-2349 . 443740) (-2350 . 440988) (-2351 . 440774) - (-2352 . 440334) (-2353 . 440141) (-2354 . 439898) (-2355 . 439299) - (-2356 . 438545) (-2357 . 438401) (-2358 . 438264) (-2359 . 437595) - (-2360 . 437275) (-2361 . 437181) (-2362 . 437002) (-2363 . 436915) - (-2364 . 436841) (-2365 . 436399) (-2366 . 436225) (-2367 . 435952) - (-2368 . 435884) (-2369 . 435597) (-2370 . 435479) (-2371 . 434806) - (-2372 . 434754) (-2373 . 434653) (-2374 . 434625) (-2375 . 434303) - (-2376 . 434247) (-2377 . 434108) (-2378 . 434042) (-2379 . 433938) - (-2380 . 433607) (-2381 . 433469) (-2382 . 433410) (-2383 . 433319) - (-2384 . 432910) (-2385 . 432284) (-2386 . 432191) (-2387 . 432050) - (-2388 . 431881) (-2389 . 431726) (-2390 . 431625) (-2391 . 431597) - (-2392 . 431517) (-2393 . 431459) (-2394 . 431378) (-2395 . 431255) - (-2396 . 431017) (-2397 . 430913) (-2398 . 430794) (-2399 . 430701) - (-2400 . 430309) (-2401 . 430225) (-2402 . 429882) (-2403 . 429725) - (-2404 . 429628) (-2405 . 429506) (-2406 . 429395) (-2407 . 429079) - (-2408 . 428775) (-2409 . 428673) (-2410 . 428537) (-2411 . 425629) - (-2412 . 424974) (-2413 . 424816) (-2414 . 423546) (-2415 . 423388) - (-2416 . 423250) (-2417 . 423145) (-2418 . 422966) (-2419 . 422790) - (-2420 . 422586) (-2421 . 422432) (-2422 . 422289) (-2423 . 422149) - (-2424 . 422053) (-2425 . 421924) (-2426 . 421812) (-2427 . 421652) - (-2428 . 421599) (-2429 . 421531) (-2430 . 421424) (-2431 . 421372) - (-2432 . 421289) (-2433 . 421144) (-2434 . 421059) (-2435 . 420468) - (-2436 . 420313) (-2437 . 420140) (-2438 . 419924) (-2439 . 419789) - (-2440 . 419706) (-2441 . 419342) (-2442 . 419142) (-2443 . 418976) - (-2444 . 418697) (-2445 . 418526) (-2446 . 418394) (-2447 . 418360) - (-2448 . 418297) (-2449 . 418102) (-2450 . 417911) (-2451 . 417797) - (-2452 . 417769) (-2453 . 417719) (-2454 . 417474) (-2455 . 417365) - (-2456 . 417294) (-2457 . 416865) (-2458 . 416834) (-2459 . 416595) - (-2460 . 416473) (-2461 . 416374) (-2462 . 416292) (-2463 . 416144) - (-2464 . 416007) (-2465 . 414757) (-2466 . 414566) (-2467 . 414534) - (-2468 . 414317) (-2469 . 413958) (-2470 . 413829) (-2471 . 413769) - (-2472 . 413361) (-2473 . 413269) (-2474 . 413109) (-2475 . 412972) - (-2476 . 411572) (-2477 . 411027) (-2478 . 410858) (-2479 . 410577) - (-2480 . 410521) (-2481 . 410391) (-2482 . 410267) (-2483 . 410190) - (-2484 . 409375) (-2485 . 409130) (-2486 . 409078) (-2487 . 408985) - (-2488 . 408858) (-2489 . 408597) (-2490 . 408305) (-2491 . 408252) - (-2492 . 408157) (-2493 . 407860) (-2494 . 407534) (-2495 . 407434) - (-2496 . 407230) (-2497 . 407160) (-2498 . 405306) (-2499 . 405207) - (-2500 . 405095) (-2501 . 404996) (-2502 . 404892) (-2503 . 404697) - (-2504 . 404624) (-2505 . 404262) (-2506 . 404193) (-2507 . 404070) - (-2508 . 403996) (-2509 . 403466) (-2510 . 403308) (-2511 . 403080) - (-2512 . 402990) (-2513 . 402607) (-2514 . 402167) (-2515 . 402101) - (-2516 . 402005) (-2517 . 401891) (-2518 . 401759) (-2519 . 401626) - (-2520 . 401506) (-2521 . 401396) (-2522 . 401128) (-2523 . 400537) - (-2524 . 400012) (-2525 . 399926) (-2526 . 399764) (-2527 . 399695) - (-2528 . 399497) (-2529 . 399002) (-2530 . 398919) (-2531 . 398851) - (-2532 . 398736) (-2533 . 398614) (-2534 . 398586) (-2535 . 398516) - (-2536 . 398369) (-2537 . 397003) (-2538 . 396930) (-2539 . 396691) - (-2540 . 396187) (-2541 . 396079) (-2542 . 395835) (-2543 . 395754) - (-2544 . 395548) (-2545 . 395123) (-2546 . 395022) (-2547 . 393841) - (-2548 . 393747) (-2549 . 393667) (-2550 . 393464) (-2551 . 393390) - (-2552 . 393235) (-2553 . 392900) (-2554 . 392871) (-2555 . 392773) - (-2556 . 392703) (-2557 . 392576) (-2558 . 392173) (-2559 . 392096) - (-2560 . 392037) (-2561 . 391985) (-2562 . 391608) (-2563 . 391507) - (-2564 . 391206) (-2565 . 391025) (-2566 . 390420) (-2567 . 390353) - (-2568 . 390282) (-2569 . 390146) (-2570 . 390072) (-2571 . 390023) - (-2572 . 389953) (-2573 . 389830) (-2574 . 389762) (-2575 . 389667) - (-2576 . 389568) (-2577 . 389438) (-2578 . 389368) (-2579 . 389308) - (-2580 . 388914) (-2581 . 388846) (-2582 . 388540) (-2583 . 388244) - (-2584 . 387894) (-2585 . 387640) (-2586 . 387587) (-2587 . 387509) - (-2588 . 387457) (-2589 . 387377) (-2590 . 387147) (-2591 . 386941) - (-2592 . 386816) (-2593 . 386683) (-2594 . 386573) (-2595 . 386448) - (-2596 . 386353) (-2597 . 385536) (-2598 . 385484) (-2599 . 385383) - (-2600 . 385045) (-2601 . 384798) (-2602 . 384712) (-2603 . 384494) - (-2604 . 384411) (-2605 . 384082) (-2606 . 383949) (-2607 . 383368) - (-2608 . 383276) (-2609 . 382957) (-2610 . 382814) (-2611 . 382464) - (-2612 . 382408) (-2613 . 382326) (-2614 . 382253) (-2615 . 381751) - (-2616 . 381040) (-2617 . 380948) (-2618 . 380874) (-2619 . 380807) - (-2620 . 379969) (-2621 . 379866) (-2622 . 379793) (-2623 . 379720) - (-2624 . 379665) (-2625 . 378645) (-2626 . 378559) (-2627 . 378431) - (-2628 . 378135) (-2629 . 378083) (-2630 . 377198) (-2631 . 377040) - (-2632 . 376861) (-2633 . 376733) (-2634 . 376587) (-2635 . 376490) - (-2636 . 376272) (-2637 . 376128) (-2638 . 376044) (-2639 . 375655) - (-2640 . 375584) (-2641 . 375513) (-2642 . 375429) (-2643 . 375376) - (-2644 . 375247) (-2645 . 375219) (-2646 . 375132) (-2647 . 374926) - (-2648 . 374733) (-2649 . 374654) (-2650 . 374468) (-2651 . 374412) - (-2652 . 374082) (-2653 . 373661) (-2654 . 373590) (-2655 . 373502) - (-2656 . 373289) (-2657 . 373230) (-2658 . 372885) (-2659 . 372729) - (-2660 . 372562) (-2661 . 372380) (-2662 . 372271) (-2663 . 372243) - (-2664 . 372023) (-2665 . 371945) (-2666 . 371872) (-2667 . 371747) - (-2668 . 371471) (-2669 . 371306) (-2670 . 371203) (-2671 . 370966) - (-2672 . 370821) (-2673 . 370731) (-2674 . 370673) (-2675 . 370639) - (-2676 . 370498) (-2677 . 370188) (-2678 . 370035) (-2679 . 369929) - (-2680 . 369714) (-2681 . 369617) (-2682 . 369423) (-2683 . 369269) - (-2684 . 369184) (-2685 . 368853) (-2686 . 368668) (-2687 . 368563) - (-2688 . 368154) (-2689 . 368101) (-2690 . 368034) (-2691 . 367917) - (-2692 . 367664) (-2693 . 367441) (-2694 . 367099) (-2695 . 366918) - (-2696 . 366841) (-2697 . 366556) (-2698 . 366417) (-2699 . 366308) - (-2700 . 366172) (-2701 . 366019) (-2702 . 365834) (-2703 . 365761) - (-2704 . 365618) (-2705 . 365431) (-2706 . 365221) (-2707 . 364923) - (-2708 . 364794) (-2709 . 364728) (-2710 . 364648) (-2711 . 364327) - (-2712 . 364247) (-2713 . 364035) (-2714 . 363577) (-2715 . 363378) - (-2716 . 363164) (-2717 . 363093) (-2718 . 362842) (-2719 . 362733) - (-2720 . 362610) (-2721 . 362498) (-2722 . 362308) (-2723 . 362206) - (-2724 . 362100) (-2725 . 361907) (-2726 . 361730) (-2727 . 361464) - (-2728 . 361262) (-2729 . 360978) (-2730 . 360893) (-2731 . 360769) - (-2732 . 360660) (-2733 . 360486) (-2734 . 360329) (-2735 . 360201) - (-2736 . 359116) (-2737 . 358956) (-2738 . 357800) (-2739 . 357536) - (-2740 . 357477) (-2741 . 357083) (-2742 . 356449) (-2743 . 356176) - (-2744 . 356093) (-2745 . 355948) (-2746 . 355793) (-2747 . 355720) - (-2748 . 355596) (-2749 . 355466) (-2750 . 354713) (-2751 . 354685) - (-2752 . 354614) (-2753 . 354540) (-2754 . 354474) (-2755 . 354068) - (-2756 . 353964) (-2757 . 353769) (-2758 . 353688) (-2759 . 353605) - (-2760 . 353492) (-2761 . 353439) (-2762 . 353324) (-2763 . 353234) - (-2764 . 351504) (-2765 . 351439) (-2766 . 351160) (-2767 . 350862) - (-2768 . 350778) (-2769 . 350637) (-2770 . 350495) (-2771 . 350344) - (-2772 . 350097) (-2773 . 349925) (-2774 . 349842) (-2775 . 349776) - (-2776 . 349651) (-2777 . 349552) (-2778 . 349443) (-2779 . 349243) - (-2780 . 349102) (-2781 . 348923) (-2782 . 348786) (-2783 . 348730) - (-2784 . 348674) (-2785 . 348158) (-2786 . 348087) (-2787 . 347677) - (-2788 . 347598) (-2789 . 347543) (-2790 . 347319) (-2791 . 347214) - (-2792 . 347107) (-2793 . 347037) (-2794 . 346930) (-2795 . 346860) - (-2796 . 346758) (-2797 . 346652) (-2798 . 346449) (-2799 . 346176) - (-2800 . 346082) (-2801 . 345970) (-2802 . 345659) (-2803 . 345484) - (-2804 . 345303) (-2805 . 345157) (-2806 . 344996) (-2807 . 344843) - (-2808 . 344723) (-2809 . 344653) (-2810 . 344566) (-2811 . 344514) - (-2812 . 344363) (-2813 . 344196) (-2814 . 344138) (-2815 . 344072) - (-2816 . 343969) (-2817 . 343564) (-2818 . 343470) (-2819 . 343310) - (-2820 . 343224) (-2821 . 343058) (-2822 . 342763) (-2823 . 342660) - (-2824 . 342618) (-2825 . 342546) (-2826 . 342439) (-2827 . 342259) - (-2828 . 342192) (-2829 . 342053) (-2830 . 341928) (-2831 . 341873) - (-2832 . 341767) (-2833 . 341715) (-2834 . 341585) (-2835 . 341473) - (-2836 . 341235) (-2837 . 341182) (-2838 . 341116) (-2839 . 341061) - (-2840 . 340813) (-2841 . 340716) (-2842 . 340536) (-2843 . 339800) - (-2844 . 339748) (-2845 . 339593) (-2846 . 339290) (-2847 . 339205) - (-2848 . 339134) (-2849 . 339001) (-2850 . 338875) (-2851 . 338613) - (-2852 . 338539) (-2853 . 338426) (-2854 . 338227) (-2855 . 338156) - (-2856 . 338047) (-2857 . 337829) (-2858 . 337744) (-2859 . 337654) - (-2860 . 337495) (-2861 . 336948) (-2862 . 332788) (-2863 . 332681) - (-2864 . 332410) (-2865 . 332116) (-2866 . 332046) (-2867 . 331928) - (-2868 . 331805) (-2869 . 331444) (-2870 . 331390) (-2871 . 331214) - (-2872 . 329113) (-2873 . 328935) (-2874 . 328777) (-2875 . 328724) - (-2876 . 328573) (-2877 . 328403) (-2878 . 328294) (-2879 . 327966) - (-2880 . 327605) (-2881 . 327091) (-2882 . 327031) (-2883 . 326868) - (-2884 . 326649) (-2885 . 326524) (-2886 . 326431) (-2887 . 326087) - (-2888 . 325808) (-2889 . 325725) (-2890 . 325628) (-2891 . 325417) - (-2892 . 325338) (-2893 . 322557) (-2894 . 322455) (-2895 . 321937) - (-2896 . 321383) (-2897 . 320840) (-2898 . 320755) (-2899 . 320658) - (-2900 . 320542) (-2901 . 320400) (-2902 . 320329) (-2903 . 320122) - (-2904 . 319996) (-2905 . 319923) (-2906 . 319871) (-2907 . 319484) - (-2908 . 319324) (-2909 . 319240) (-2910 . 319128) (-2911 . 318971) - (-2912 . 318891) (-2913 . 318829) (-2914 . 318776) (-2915 . 318231) - (-2916 . 317967) (-2917 . 317916) (-2918 . 317669) (-2919 . 317376) - (-2920 . 317316) (-2921 . 317182) (-2922 . 317079) (-2923 . 316976) - (-2924 . 316923) (-2925 . 316810) (-2926 . 316656) (-2927 . 316587) - (-2928 . 316416) (-2929 . 316363) (-2930 . 316207) (-2931 . 315962) - (-2932 . 315798) (-2933 . 315727) (-2934 . 315120) (-2935 . 314983) - (-2936 . 314876) (-2937 . 314688) (-2938 . 314636) (-2939 . 314348) - (-2940 . 314202) (-2941 . 314143) (-2942 . 313990) (-2943 . 313743) - (-2944 . 313646) (-2945 . 313401) (-2946 . 313329) (-2947 . 313157) - (-2948 . 313098) (-2949 . 312917) (-2950 . 312861) (-2951 . 312765) - (-2952 . 312647) (-2953 . 312593) (-2954 . 311597) (-2955 . 311282) - (-2956 . 311164) (-2957 . 311093) (-2958 . 311037) (-2959 . 310940) - (-2960 . 310768) (-2961 . 310699) (-2962 . 310647) (-2963 . 310539) - (-2964 . 310288) (-2965 . 309842) (-2966 . 309772) (-2967 . 309587) - (-2968 . 309465) (-2969 . 309405) (-2970 . 309246) (-2971 . 309172) - (-2972 . 309062) (-2973 . 308890) (-2974 . 308746) (-2975 . 308353) - (-2976 . 308300) (-2977 . 308107) (-2978 . 308012) (-2979 . 307933) - (-2980 . 307850) (-2981 . 307773) (-2982 . 307542) (-2983 . 306471) - (-2984 . 306231) (-2985 . 306121) (-2986 . 305949) (-2987 . 305791) - (-2988 . 305474) (-2989 . 305406) (-2990 . 305308) (-2991 . 305256) - (-2992 . 305199) (-2993 . 305139) (-2994 . 304948) (-2995 . 304864) - (-2996 . 304580) (-2997 . 304493) (-2998 . 304440) (-2999 . 304406) - (-3000 . 303604) (-3001 . 303514) (-3002 . 303443) (-3003 . 303356) - (-3004 . 303297) (-3005 . 302772) (-3006 . 302687) (-3007 . 302338) - (-3008 . 302269) (-3009 . 302168) (-3010 . 300626) (-3011 . 300559) - (-3012 . 300509) (-3013 . 300397) (-3014 . 299774) (-3015 . 299716) - (-3016 . 299498) (-3017 . 299433) (-3018 . 299156) (-3019 . 298841) - (-3020 . 298711) (-3021 . 298453) (-3022 . 298372) (-3023 . 298294) - (-3024 . 298220) (-3025 . 297905) (-3026 . 297162) (-3027 . 297067) - (-3028 . 296953) (-3029 . 296793) (-3030 . 296678) (-3031 . 296542) - (-3032 . 296409) (-3033 . 296264) (-3034 . 296035) (-3035 . 295765) - (-3036 . 295694) (-3037 . 295662) (-3038 . 295410) (-3039 . 295353) - (-3040 . 295145) (-3041 . 294992) (-3042 . 294780) (-3043 . 294727) - (-3044 . 294654) (-3045 . 294523) (-3046 . 294163) (-3047 . 293959) - (-3048 . 293796) (-3049 . 293726) (-3050 . 293570) (-3051 . 293521) - (-3052 . 293342) (-3053 . 293219) (-3054 . 292840) (-3055 . 292738) - (-3056 . 292511) (-3057 . 292384) (-3058 . 292275) (-3059 . 292202) - (-3060 . 292094) (-3061 . 291929) (-3062 . 291831) (-3063 . 291767) - (-3064 . 291517) (-3065 . 291257) (-3066 . 291132) (-3067 . 291080) - (-3068 . 291009) (-3069 . 290908) (-3070 . 290804) (-3071 . 290657) - (-3072 . 290554) (-3073 . 290118) (-3074 . 290052) (-3075 . 289530) - (-3076 . 289432) (-3077 . 288966) (-3078 . 288615) (-3079 . 288509) - (-3080 . 288460) (-3081 . 288345) (-3082 . 288020) (-3083 . 287843) - (-3084 . 287790) (-3085 . 287644) (-3086 . 287535) (-3087 . 287267) - (-3088 . 287014) (-3089 . 286983) (-3090 . 286924) (-3091 . 286845) - (-3092 . 279889) (-3093 . 279861) (-3094 . 279809) (-3095 . 279706) - (-3096 . 279625) (-3097 . 279374) (-3098 . 279321) (-3099 . 279123) - (-3100 . 279016) (-3101 . 278939) (-3102 . 278648) (-3103 . 278545) - (-3104 . 278494) (-3105 . 278466) (-3106 . 277666) (-3107 . 277093) - (-3108 . 276734) (-3109 . 276193) (-3110 . 275963) (-3111 . 275792) - (-3112 . 275698) (-3113 . 275522) (-3114 . 275445) (-3115 . 275084) - (-3116 . 274879) (-3117 . 274651) (-3118 . 274488) (-3119 . 274432) - (-3120 . 274327) (-3121 . 274272) (-3122 . 273956) (-3123 . 273869) - (-3124 . 273704) (-3125 . 273549) (-3126 . 273304) (-3127 . 272916) - (-3128 . 272694) (-3129 . 272353) (-3130 . 272097) (-3131 . 271983) - (-3132 . 271888) (-3133 . 271808) (-3134 . 271645) (-3135 . 271412) - (-3136 . 271355) (-3137 . 271165) (-3138 . 271022) (-3139 . 270468) - (-3140 . 270359) (-3141 . 270255) (-3142 . 270172) (-3143 . 269903) - (-3144 . 269701) (-3145 . 269599) (-3146 . 268999) (-3147 . 268706) - (-3148 . 268214) (-3149 . 267902) (-3150 . 267830) (-3151 . 266827) - (-3152 . 266774) (-3153 . 266357) (-3154 . 266259) (-3155 . 266082) - (-3156 . 265735) (-3157 . 265042) (-3158 . 264993) (-3159 . 264196) - (-3160 . 264116) (-3161 . 263973) (-3162 . 263815) (-3163 . 263714) - (-3164 . 263495) (-3165 . 263352) (-3166 . 263231) (-3167 . 263148) - (-3168 . 262965) (-3169 . 262891) (-3170 . 262773) (-3171 . 262699) - (-3172 . 262449) (-3173 . 262366) (-3174 . 262116) (-3175 . 262064) - (-3176 . 261732) (-3177 . 261609) (-3178 . 261458) (-3179 . 261371) - (-3180 . 261318) (-3181 . 261119) (-3182 . 260365) (-3183 . 259519) - (-3184 . 259385) (-3185 . 259300) (-3186 . 259200) (-3187 . 259057) - (-3188 . 258444) (-3189 . 258006) (-3190 . 257727) (-3191 . 257583) - (-3192 . 257528) (-3193 . 257376) (-3194 . 257233) (-3195 . 253619) - (-3196 . 253522) (-3197 . 253418) (-3198 . 253242) (-3199 . 252867) - (-3200 . 252440) (-3201 . 251915) (-3202 . 251771) (-3203 . 251653) - (-3204 . 251572) (-3205 . 251477) (-3206 . 251353) (-3207 . 251291) - (-3208 . 251042) (-3209 . 250992) (-3210 . 250889) (-3211 . 250777) - (-3212 . 250743) (-3213 . 250638) (-3214 . 250610) (-3215 . 249955) - (-3216 . 249859) (-3217 . 249793) (-3218 . 249738) (-3219 . 249667) - (-3220 . 249557) (-3221 . 249458) (-3222 . 249364) (-3223 . 249139) - (-3224 . 249042) (-3225 . 248971) (-3226 . 248659) (-3227 . 248607) - (-3228 . 248552) (-3229 . 248414) (-3230 . 248109) (-3231 . 248024) - (-3232 . 247802) (-3233 . 247692) (-3234 . 247447) (-3235 . 247177) - (-3236 . 247025) (-3237 . 246896) (-3238 . 246768) (-3239 . 246437) - (-3240 . 246353) (-3241 . 246275) (-3242 . 246184) (-3243 . 246071) - (-3244 . 245955) (-3245 . 245805) (-3246 . 245750) (-3247 . 245627) - (-3248 . 245599) (-3249 . 245518) (-3250 . 245490) (-3251 . 244887) - (-3252 . 244802) (-3253 . 244731) (-3254 . 244664) (-3255 . 244565) - (-3256 . 244468) (-3257 . 244383) (-3258 . 244191) (-3259 . 244135) - (-3260 . 244052) (-3261 . 243941) (-3262 . 243868) (-3263 . 243748) - (-3264 . 243641) (-3265 . 243416) (-3266 . 243367) (-3267 . 243029) - (-3268 . 242713) (-3269 . 242681) (-3270 . 242628) (-3271 . 242545) - (-3272 . 242356) (-3273 . 242154) (-3274 . 242081) (-3275 . 241974) - (-3276 . 241919) (-3277 . 241790) (-3278 . 241452) (-3279 . 241372) - (-3280 . 241232) (-3281 . 240980) (-3282 . 240824) (-3283 . 240343) - (-3284 . 240283) (-3285 . 240106) (-3286 . 240001) (-3287 . 239821) - (-3288 . 239578) (-3289 . 239354) (-3290 . 239027) (-3291 . 238681) - (-3292 . 238594) (-3293 . 238169) (-3294 . 237684) (-3295 . 237483) - (-3296 . 237361) (-3297 . 237115) (-3298 . 237057) (-3299 . 236626) - (-3300 . 236598) (-3301 . 235899) (-3302 . 235839) (-3303 . 235773) - (-3304 . 235551) (-3305 . 235362) (-3306 . 235262) (-3307 . 235078) - (-3308 . 235028) (-3309 . 234854) (-3310 . 234731) (-3311 . 234537) - (-3312 . 234388) (-3313 . 234317) (-3314 . 234233) (-3315 . 233556) - (-3316 . 233454) (-3317 . 233403) (-3318 . 233298) (-3319 . 233201) - (-3320 . 233066) (-3321 . 232947) (-3322 . 232396) (-3323 . 232289) - (-3324 . 231881) (-3325 . 231828) (-3326 . 231554) (-3327 . 231477) - (-3328 . 231356) (-3329 . 231137) (-3330 . 230984) (-3331 . 230898) - (-3332 . 230713) (-3333 . 230533) (-3334 . 230446) (-3335 . 230305) - (-3336 . 230252) (-3337 . 229373) (-3338 . 229108) (-3339 . 229056) - (-3340 . 228972) (-3341 . 228868) (-3342 . 228795) (-3343 . 228767) - (-3344 . 228577) (-3345 . 228513) (-3346 . 228460) (-3347 . 228359) - (-3348 . 228114) (-3349 . 228007) (-3350 . 227948) (-3351 . 227855) - (-3352 . 227729) (-3353 . 227569) (-3354 . 227231) (-3355 . 226968) - (-3356 . 226778) (-3357 . 226120) (-3358 . 225977) (-3359 . 225884) - (-3360 . 224703) (-3361 . 224590) (-3362 . 224332) (-3363 . 224199) - (-3364 . 224132) (-3365 . 223974) (-3366 . 223755) (-3367 . 222309) - (-3368 . 222185) (-3369 . 222136) (-3370 . 221919) (-3371 . 221309) - (-3372 . 221111) (-3373 . 221028) (-3374 . 220925) (-3375 . 220846) - (-3376 . 220514) (-3377 . 220483) (-3378 . 220382) (-3379 . 220329) - (-3380 . 220277) (-3381 . 219970) (-3382 . 219874) (-3383 . 219840) - (-3384 . 219784) (-3385 . 219617) (-3386 . 219546) (-3387 . 219480) - (-3388 . 219013) (-3389 . 218872) (-3390 . 214810) (-3391 . 214752) - (-3392 . 214699) (-3393 . 214590) (-3394 . 214433) (-3395 . 214337) - (-3396 . 214039) (-3397 . 213909) (-3398 . 213766) (-3399 . 213608) - (-3400 . 213363) (-3401 . 213188) (-3402 . 212771) (-3403 . 212657) - (-3404 . 212235) (-3405 . 212067) (-3406 . 211998) (-3407 . 211945) - (-3408 . 211890) (-3409 . 211807) (-3410 . 211545) (-3411 . 211265) - (-3412 . 210981) (-3413 . 210731) (-3414 . 210551) (-3415 . 210099) - (-3416 . 209785) (-3417 . 209294) (-3418 . 209250) (-3419 . 209048) - (-3420 . 208905) (-3421 . 208727) (-3422 . 208629) (-3423 . 208404) - (-3424 . 208319) (-3425 . 207943) (-3426 . 205598) (-3427 . 205199) - (-3428 . 205062) (-3429 . 204614) (-3430 . 204459) (-3431 . 204256) - (-3432 . 204113) (-3433 . 203762) (-3434 . 203137) (-3435 . 202946) - (-3436 . 202804) (-3437 . 202699) (-3438 . 202580) (-3439 . 202480) - (-3440 . 202381) (-3441 . 202173) (-3442 . 202089) (-3443 . 201969) - (-3444 . 201912) (-3445 . 201835) (-3446 . 201775) (-3447 . 201178) - (-3448 . 199217) (-3449 . 198862) (-3450 . 198636) (-3451 . 198491) - (-3452 . 198432) (-3453 . 198287) (-3454 . 198232) (-3455 . 198101) - (-3456 . 195949) (-3457 . 195920) (-3458 . 195762) (-3459 . 195259) - (-3460 . 195115) (-3461 . 194798) (-3462 . 194718) (-3463 . 194650) - (-3464 . 194431) (-3465 . 194348) (-3466 . 194262) (-3467 . 194209) - (-3468 . 194051) (-3469 . 193945) (-3470 . 193637) (-3471 . 193608) - (-3472 . 193407) (-3473 . 193277) (-3474 . 192916) (-3475 . 192813) - (-3476 . 192760) (-3477 . 192607) (-3478 . 192555) (-3479 . 192483) - (-3480 . 192446) (-3481 . 192000) (-3482 . 191926) (-3483 . 191687) - (-3484 . 191604) (-3485 . 191531) (-3486 . 191360) (-3487 . 191259) - (-3488 . 191143) (-3489 . 191091) (-3490 . 189876) (-3491 . 189720) - (-3492 . 189283) (-3493 . 189209) (-3494 . 189051) (-3495 . 188974) - (-3496 . 188895) (-3497 . 188722) (-3498 . 188635) (-3499 . 186220) - (-3500 . 184645) (-3501 . 184454) (-3502 . 184223) (-3503 . 184101) - (-3504 . 183916) (-3505 . 183842) (-3506 . 183814) (-3507 . 183268) - (-3508 . 183154) (-3509 . 182803) (-3510 . 182740) (-3511 . 182653) - (-3512 . 182544) (-3513 . 182459) (-3514 . 182366) (-3515 . 181510) - (-3516 . 181300) (-3517 . 180871) (-3518 . 180783) (-3519 . 180637) - (-3520 . 180449) (-3521 . 180326) (-3522 . 180167) (-3523 . 180049) - (-3524 . 179894) (-3525 . 179842) (-3526 . 179789) (-3527 . 179626) - (-3528 . 179462) (-3529 . 179389) (-3530 . 179231) (-3531 . 179078) - (-3532 . 178948) (-3533 . 178914) (-3534 . 178827) (-3535 . 178740) - (-3536 . 178667) (-3537 . 178582) (-3538 . 178246) (-3539 . 178149) - (-3540 . 178033) (-3541 . 177854) (-3542 . 177802) (-3543 . 177637) - (-3544 . 177326) (-3545 . 177090) (-3546 . 176974) (-3547 . 176804) - (-3548 . 176529) (-3549 . 176467) (-3550 . 176043) (-3551 . 175974) - (-3552 . 175858) (-3553 . 175830) (-3554 . 175673) (-3555 . 175521) - (-3556 . 175466) (-3557 . 175407) (-3558 . 175123) (-3559 . 174992) - (-3560 . 174907) (-3561 . 173056) (-3562 . 172995) (-3563 . 172898) - (-3564 . 172849) (-3565 . 172767) (-3566 . 172543) (-3567 . 172414) - (-3568 . 172025) (-3569 . 171693) (-3570 . 171596) (-3571 . 171501) - (-3572 . 171131) (-3573 . 170755) (-3574 . 170596) (-3575 . 170381) - (-3576 . 170319) (-3577 . 170242) (-3578 . 170148) (-3579 . 170063) - (-3580 . 169964) (-3581 . 169796) (-3582 . 169455) (-3583 . 169381) - (-3584 . 169321) (-3585 . 169102) (-3586 . 169022) (-3587 . 168658) - (-3588 . 167257) (-3589 . 167180) (-3590 . 167051) (-3591 . 166968) - (-3592 . 166816) (-3593 . 166706) (-3594 . 166619) (-3595 . 166532) - (-3596 . 166389) (-3597 . 166317) (-3598 . 166154) (-3599 . 166074) - (-3600 . 165967) (-3601 . 165844) (-3602 . 165679) (-3603 . 165572) - (-3604 . 165417) (-3605 . 165269) (-3606 . 165217) (-3607 . 165062) - (-3608 . 164979) (-3609 . 164790) (-3610 . 164515) (-3611 . 164414) - (-3612 . 164331) (-3613 . 164213) (-3614 . 164123) (-3615 . 163699) - (-3616 . 163599) (-3617 . 163432) (-3618 . 163333) (-3619 . 163022) - (-3620 . 162945) (-3621 . 162839) (-3622 . 157331) (-3623 . 156998) - (-3624 . 156550) (-3625 . 156478) (-3626 . 156285) (-3627 . 155749) - (-3628 . 155550) (-3629 . 155472) (-3630 . 154656) (-3631 . 154474) - (-3632 . 154348) (-3633 . 153960) (-3634 . 153815) (-3635 . 153746) - (-3636 . 153345) (-3637 . 153273) (-3638 . 153059) (-3639 . 152989) - (-3640 . 152957) (-3641 . 152901) (-3642 . 152824) (-3643 . 152728) - (-3644 . 152519) (-3645 . 152066) (-3646 . 151901) (-3647 . 151503) - (-3648 . 151376) (-3649 . 151320) (-3650 . 151237) (-3651 . 151019) - (-3652 . 150840) (-3653 . 150774) (-3654 . 149916) (-3655 . 149495) - (-3656 . 149148) (-3657 . 149074) (-3658 . 149006) (-3659 . 148954) - (-3660 . 148468) (-3661 . 148249) (-3662 . 147975) (-3663 . 147762) - (-3664 . 147734) (-3665 . 147622) (-3666 . 147527) (-3667 . 147429) - (-3668 . 147349) (-3669 . 147251) (-3670 . 147223) (-3671 . 147080) - (-3672 . 146977) (-3673 . 146847) (-3674 . 146694) (-3675 . 146624) - (-3676 . 146509) (-3677 . 146414) (-3678 . 146214) (-3679 . 146097) - (-3680 . 145841) (-3681 . 145475) (-3682 . 145352) (-3683 . 145300) - (-3684 . 145199) (-3685 . 145147) (-3686 . 145062) (-3687 . 144981) - (-3688 . 144778) (-3689 . 144615) (-3690 . 144326) (-3691 . 144224) - (-3692 . 144054) (-3693 . 143993) (-3694 . 143911) (-3695 . 143845) - (-3696 . 143760) (-3697 . 143711) (-3698 . 143649) (-3699 . 143390) - (-3700 . 143311) (-3701 . 143258) (-3702 . 143190) (-3703 . 143017) - (-3704 . 142915) (-3705 . 141667) (-3706 . 141532) (-3707 . 141138) - (-3708 . 141086) (-3709 . 141033) (-3710 . 140980) (-3711 . 140952) - (-3712 . 140850) (-3713 . 140763) (-3714 . 140450) (-3715 . 140268) - (-3716 . 140190) (-3717 . 140038) (-3718 . 140010) (-3719 . 139936) - (-3720 . 139635) (-3721 . 139545) (-3722 . 139294) (-3723 . 139134) - (-3724 . 138918) (-3725 . 138774) (-3726 . 138632) (-3727 . 138595) - (-3728 . 138464) (-3729 . 138430) (-3730 . 138043) (-3731 . 137902) - (-3732 . 137809) (-3733 . 136190) (-3734 . 136095) (-3735 . 135971) - (-3736 . 135646) (-3737 . 135532) (-3738 . 135461) (-3739 . 135384) - (-3740 . 135269) (-3741 . 135237) (-3742 . 135097) (-3743 . 135016) - (-3744 . 134899) (-3745 . 134527) (-3746 . 133666) (-3747 . 133080) - (-3748 . 132589) (-3749 . 132515) (-3750 . 132357) (-3751 . 132067) - (-3752 . 131928) (-3753 . 131354) (-3754 . 130877) (-3755 . 130798) - (-3756 . 130749) (-3757 . 129381) (-3758 . 129056) (-3759 . 128794) - (-3760 . 128720) (-3761 . 128378) (-3762 . 128237) (-3763 . 127134) - (-3764 . 126994) (-3765 . 126837) (-3766 . 126454) (-3767 . 126026) - (-3768 . 125904) (-3769 . 125820) (-3770 . 125721) (-3771 . 125669) - (-3772 . 125592) (-3773 . 124940) (-3774 . 124818) (-3775 . 124784) - (-3776 . 124638) (-3777 . 124346) (-3778 . 123348) (-3779 . 123260) - (-3780 . 123151) (** . 120074) (-3782 . 120025) (-3783 . 119858) - (-3784 . 119721) (-3785 . 119553) (-3786 . 119319) (-3787 . 119093) - (-3788 . 118956) (-3789 . 118871) (-3790 . 118800) (-3791 . 118701) - (-3792 . 118585) (-3793 . 118397) (-3794 . 117799) (-3795 . 117696) - (-3796 . 117619) (-3797 . 117371) (-3798 . 117020) (-3799 . 116860) - (-3800 . 116739) (-3801 . 116576) (-3802 . 116524) (-3803 . 116067) - (-3804 . 116015) (-3805 . 115935) (-3806 . 115768) (-3807 . 115649) - (-3808 . 115530) (-3809 . 115358) (-3810 . 115287) (-3811 . 114523) - (-3812 . 113998) (-3813 . 113854) (-3814 . 113781) (-3815 . 111953) - (-3816 . 111818) (-3817 . 111332) (-3818 . 111280) (-3819 . 110720) - (-3820 . 110599) (-3821 . 110120) (-3822 . 109419) (-3823 . 109301) - (-3824 . 109121) (-3825 . 108902) (-3826 . 108753) (-3827 . 107252) - (-3828 . 107135) (-3829 . 107003) (-3830 . 106903) (-3831 . 106820) - (-3832 . 106624) (-3833 . 106573) (-3834 . 106391) (-3835 . 106243) - (-3836 . 106019) (-3837 . 105882) (-3838 . 105848) (-3839 . 104308) - (-3840 . 104199) (-3841 . 104081) (-3842 . 103965) (-3843 . 103747) - (-3844 . 103693) (-3845 . 103022) (-3846 . 102900) (-3847 . 102802) - (-3848 . 102574) (-3849 . 102503) (-3850 . 102338) (-3851 . 102265) - (-3852 . 102203) (-3853 . 102088) (-3854 . 102010) (-3855 . 101933) - (-3856 . 101715) (-3857 . 101597) (-3858 . 101330) (-3859 . 101164) - (-3860 . 101080) (-3861 . 101048) (-3862 . 100884) (-3863 . 100554) - (-3864 . 100411) (-3865 . 99675) (-3866 . 99551) (-3867 . 99298) - (-3868 . 99203) (-3869 . 99096) (-3870 . 98825) (-3871 . 98751) - (-3872 . 98639) (-3873 . 98499) (-3874 . 97895) (-3875 . 97707) - (-3876 . 97546) (-3877 . 96894) (-3878 . 95828) (-3879 . 95579) - (-3880 . 95478) (-3881 . 95379) (-3882 . 95178) (-3883 . 95101) - (-3884 . 95073) (-3885 . 94990) (-3886 . 94820) (-3887 . 94771) - (-3888 . 94641) (-3889 . 94361) (-3890 . 94235) (-3891 . 93275) - (-3892 . 93192) (-3893 . 93013) (-3894 . 92906) (-3895 . 92794) - (-3896 . 92720) (-3897 . 92655) (-3898 . 92048) (-3899 . 91966) - (-3900 . 91785) (-3901 . 91147) (-3902 . 91040) (-3903 . 90940) - (-3904 . 90730) (-3905 . 90615) (-3906 . 90511) (-3907 . 90437) - (-3908 . 90189) (-3909 . 90123) (-3910 . 90050) (-3911 . 89819) - (-3912 . 88658) (-3913 . 86528) (-3914 . 86008) (-3915 . 85841) - (-3916 . 85792) (-3917 . 85692) (-3918 . 85540) (-3919 . 85484) - (-3920 . 85324) (-3921 . 84691) (-3922 . 84465) (-3923 . 83852) - (-3924 . 83669) (-3925 . 83616) (-3926 . 83502) (-3927 . 83193) - (-3928 . 82834) (-3929 . 82522) (-3930 . 82453) (-3931 . 82304) - (-3932 . 82054) (-3933 . 81936) (-3934 . 81869) (-3935 . 81760) - (-3936 . 81656) (-3937 . 80316) (-3938 . 80113) (-3939 . 80061) - (-3940 . 78937) (-3941 . 78585) (-3942 . 78152) (-3943 . 78084) - (-3944 . 77981) (-3945 . 77730) (-3946 . 77602) (-3947 . 77503) - (-3948 . 77116) (-3949 . 77064) (-3950 . 76909) (-3951 . 76769) - (-3952 . 76695) (-3953 . 76091) (-3954 . 76039) (-3955 . 75924) - (-3956 . 75800) (-3957 . 75623) (-3958 . 70299) (-3959 . 70214) - (-3960 . 69819) (-3961 . 69648) (-3962 . 69343) (-3963 . 69288) - (-3964 . 69194) (-3965 . 69091) (-3966 . 68894) (-3967 . 68807) - (-3968 . 68560) (-3969 . 68505) (-3970 . 68418) (-3971 . 68363) - (-3972 . 68271) (-3973 . 68131) (-3974 . 67990) (-3975 . 67799) - (-3976 . 67720) (-3977 . 67444) (-3978 . 67035) (-3979 . 65999) - (-3980 . 65869) (-3981 . 65837) (-3982 . 65734) (-3983 . 65598) - (-3984 . 65432) (-3985 . 65354) (-3986 . 65298) (-3987 . 65213) - (-3988 . 64991) (-3989 . 64942) (-3990 . 64833) (-3991 . 64739) - (-3992 . 64643) (-3993 . 64509) (-3994 . 64116) (-3995 . 63705) - (-3996 . 58992) (-3997 . 58813) (-3998 . 58378) (-3999 . 58274) - (-4000 . 57680) (-4001 . 57595) (-4002 . 57438) (-4003 . 57388) - (-4004 . 57279) (-4005 . 57067) (-4006 . 56948) (-4007 . 56881) - (-4008 . 56687) (-4009 . 56516) (-4010 . 56454) (-4011 . 56356) - (-4012 . 56222) (-4013 . 56110) (-4014 . 56032) (-4015 . 55971) - (-4016 . 55800) (-4017 . 55748) (-4018 . 55605) (-4019 . 55284) - (-4020 . 55182) (-4021 . 55129) (-4022 . 55074) (-4023 . 55000) - (-4024 . 54796) (-4025 . 54715) (-4026 . 54663) (-4027 . 54383) - (-4028 . 54331) (-4029 . 54261) (-4030 . 53926) (-4031 . 53892) - (-4032 . 53757) (-4033 . 53669) (-4034 . 53526) (-4035 . 51949) - (-4036 . 51871) (-4037 . 51818) (-4038 . 51744) (-4039 . 51588) - (-4040 . 51476) (-4041 . 51361) (-4042 . 51255) (-4043 . 51175) - (-4044 . 50748) (-4045 . 50501) (-4046 . 50388) (-4047 . 50187) - (-4048 . 50064) (-4049 . 49908) (-4050 . 49790) (-4051 . 49700) - (-4052 . 49358) (-4053 . 49190) (-4054 . 49135) (-4055 . 48861) - (-4056 . 48716) (-4057 . 48665) (-4058 . 48631) (-4059 . 48513) - (-4060 . 48426) (-4061 . 48154) (-4062 . 48039) (-4063 . 47900) - (-4064 . 47738) (-4065 . 47666) (-4066 . 47527) (-4067 . 47087) - (-4068 . 46958) (-4069 . 46892) (-4070 . 46832) (-4071 . 46736) - (-4072 . 46589) (-4073 . 46342) (-4074 . 46290) (-4075 . 46132) - (-4076 . 46002) (-4077 . 45774) (-4078 . 45743) (-4079 . 45645) - (-4080 . 45572) (-4081 . 45345) (-4082 . 45167) (-4083 . 45114) - (-4084 . 44150) (-4085 . 44078) (-4086 . 43696) (-4087 . 43563) - (-4088 . 43430) (-4089 . 43318) (-4090 . 43290) (-4091 . 43058) - (-4092 . 42981) (-4093 . 42866) (-4094 . 42677) (-4095 . 42529) - (-4096 . 42147) (-4097 . 42076) (-4098 . 41982) (-4099 . 41927) - (-4100 . 41862) (-4101 . 41794) (-4102 . 41738) (-4103 . 41266) - (-4104 . 41214) (-4105 . 41072) (-4106 . 41017) (-4107 . 40898) - (-4108 . 40628) (-4109 . 40519) (-4110 . 40488) (-4111 . 40243) - (-4112 . 40141) (-4113 . 39985) (-4114 . 39951) (-4115 . 39846) - (-4116 . 35858) (-4117 . 35800) (-4118 . 35432) (-4119 . 35314) - (-4120 . 35261) (-4121 . 35151) (-4122 . 35091) (-4123 . 34946) - (-4124 . 34845) (-4125 . 34353) (-4126 . 34301) (-4127 . 34130) - (-4128 . 34000) (-4129 . 33937) (-4130 . 33755) (-4131 . 33567) - (-4132 . 33453) (-4133 . 33370) (-4134 . 32810) (-4135 . 32663) - (-4136 . 32515) (-4137 . 32408) (-4138 . 32296) (-4139 . 32003) - (-4140 . 31894) (-4141 . 31320) (-4142 . 31051) (-4143 . 30968) - (-4144 . 30873) (-4145 . 29708) (-4146 . 29483) (-4147 . 29141) - (-4148 . 29054) (-4149 . 28948) (-4150 . 28274) (-4151 . 28121) - (-4152 . 28009) (-4153 . 27518) (-4154 . 27363) (-4155 . 27244) - (-4156 . 27212) (-4157 . 27134) (-4158 . 26999) (-4159 . 26878) - (-4160 . 26801) (-4161 . 26743) (-4162 . 26632) (-4163 . 26450) - (-4164 . 26270) (-4165 . 26193) (-4166 . 26108) (-4167 . 25244) - (-4168 . 25125) (-4169 . 25072) (-4170 . 24937) (-4171 . 24836) - (-4172 . 24694) (-4173 . 24641) (-4174 . 24495) (-4175 . 24389) - (-4176 . 24210) (-4177 . 24040) (-4178 . 23946) (-4179 . 23825) - (-4180 . 23770) (-4181 . 23688) (-4182 . 23594) (-4183 . 22926) - (-4184 . 22791) (-4185 . 21581) (-4186 . 21453) (-4187 . 21379) - (-4188 . 21330) (-4189 . 21231) (-4190 . 20455) (-4191 . 20368) - (-4192 . 20156) (-4193 . 19556) (-4194 . 19457) (-4195 . 19391) - (-4196 . 17139) (-4197 . 17023) (-4198 . 16967) (-4199 . 16761) - (-4200 . 16673) (-4201 . 16617) (-4202 . 16484) (-4203 . 16353) - (-4204 . 16268) (-4205 . 16137) (-4206 . 16078) (-4207 . 16004) - (-4208 . 15907) (-4209 . 15806) (-4210 . 15679) (-4211 . 15609) - (-4212 . 15505) (-4213 . 15114) (-4214 . 14972) (-4215 . 14803) - (-4216 . 14425) (-4217 . 14370) (-4218 . 14226) (-4219 . 14056) - (-4220 . 14004) (-4221 . 13643) (-4222 . 13472) (-4223 . 13279) - (-4224 . 13178) (-4225 . 12669) (-4226 . 12524) (-4227 . 12399) - (-4228 . 12166) (-4229 . 11974) (-4230 . 11145) (-4231 . 8898) - (-4232 . 8786) (-4233 . 8633) (-4234 . 8582) (-4235 . 8481) - (-4236 . 7017) (-4237 . 6951) (-4238 . 6922) (-4239 . 6842) - (-4240 . 6644) (-4241 . 6535) (-4242 . 6380) (-4243 . 6194) - (-4244 . 6127) (-4245 . 6059) (-4246 . 5888) (-4247 . 5832) - (-4248 . 5540) (-4249 . 5456) (-4250 . 5428) (-4251 . 5221) - (-4252 . 5141) (-4253 . 5088) (-4254 . 5016) (-4255 . 4861) - (-4256 . 4717) (-4257 . 4662) (-4258 . 4610) (-4259 . 4513) - (-4260 . 4458) (-4261 . 4363) (-4262 . 4124) (-4263 . 3865) - (-4264 . 3751) (-4265 . 3337) (-4266 . 3097) (-4267 . 3023) - (-4268 . 2914) (-4269 . 2862) (-4270 . 2121) (-4271 . 2069) - (-4272 . 1319) (-4273 . 740) (-4274 . 625) (-4275 . 516) (-4276 . 409) - (-4277 . 329) (-4278 . 226) (-4279 . 153) (-4280 . 30))
\ No newline at end of file + (-12 (-5 *2 (-1123)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-811) (-533))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-811) (-533)))))) +((-1238 . 722536) (-1239 . 722109) (-1240 . 721988) (-1241 . 721873) + (-1242 . 721747) (-1243 . 721618) (-1244 . 721549) (-1245 . 721495) + (-1246 . 721360) (-1247 . 721284) (-1248 . 721128) (-1249 . 720900) + (-1250 . 719936) (-1251 . 719689) (-1252 . 719388) (-1253 . 719087) + (-1254 . 718786) (-1255 . 718449) (-1256 . 718357) (-1257 . 718265) + (-1258 . 718173) (-1259 . 718081) (-1260 . 717989) (-1261 . 717897) + (-1262 . 717802) (-1263 . 717707) (-1264 . 717615) (-1265 . 717523) + (-1266 . 717431) (-1267 . 717339) (-1268 . 717247) (-1269 . 717145) + (-1270 . 717043) (-1271 . 716941) (-1272 . 716849) (-1273 . 716782) + (-1274 . 716731) (-1275 . 716679) (-1276 . 716628) (-1277 . 716577) + (-1278 . 716507) (-1279 . 716069) (-1280 . 715867) (-1281 . 715744) + (-1282 . 715621) (-1283 . 715477) (-1284 . 715307) (-1285 . 715183) + (-1286 . 714944) (-1287 . 714871) (-1288 . 714730) (-1289 . 714679) + (-1290 . 714630) (-1291 . 714560) (-1292 . 714425) (-1293 . 714290) + (-1294 . 714062) (-1295 . 713816) (-1296 . 713636) (-1297 . 713465) + (-1298 . 713388) (-1299 . 713314) (-1300 . 713159) (-1301 . 713004) + (-1302 . 712818) (-1303 . 712635) (-1304 . 712458) (-1305 . 712401) + (-1306 . 712345) (-1307 . 712289) (-1308 . 712215) (-1309 . 712137) + (-1310 . 712081) (-1311 . 712050) (-1312 . 712022) (-1313 . 711994) + (-1314 . 711925) (-1315 . 711851) (-1316 . 711795) (-1317 . 711724) + (-1318 . 711571) (-1319 . 711497) (-1320 . 711423) (-1321 . 711371) + (-1322 . 711319) (-1323 . 711267) (-1324 . 711205) (-1325 . 711082) + (-1326 . 710760) (-1327 . 710672) (-1328 . 710571) (-1329 . 710451) + (-1330 . 710370) (-1331 . 710289) (-1332 . 710132) (-1333 . 709981) + (-1334 . 709903) (-1335 . 709845) (-1336 . 709772) (-1337 . 709707) + (-1338 . 709642) (-1339 . 709580) (-1340 . 709507) (-1341 . 709391) + (-1342 . 709357) (-1343 . 709323) (-1344 . 709271) (-1345 . 709227) + (-1346 . 709156) (-1347 . 709104) (-1348 . 709055) (-1349 . 709003) + (-1350 . 708951) (-1351 . 708835) (-1352 . 708719) (-1353 . 708627) + (-1354 . 708535) (-1355 . 708412) (-1356 . 708384) (-1357 . 708356) + (-1358 . 708328) (-1359 . 708300) (-1360 . 708190) (-1361 . 708138) + (-1362 . 708086) (-1363 . 708034) (-1364 . 707982) (-1365 . 707930) + (-1366 . 707878) (-1367 . 707850) (-1368 . 707747) (-1369 . 707695) + (-1370 . 707529) (-1371 . 707345) (-1372 . 707134) (-1373 . 707019) + (-1374 . 706786) (-1375 . 706687) (-1376 . 706593) (-1377 . 706478) + (-1378 . 706080) (-1379 . 705862) (-1380 . 705813) (-1381 . 705785) + (-1382 . 705757) (-1383 . 705729) (-1384 . 705701) (-1385 . 705610) + (-1386 . 705498) (-1387 . 705386) (-1388 . 705274) (-1389 . 705162) + (-1390 . 705050) (-1391 . 704938) (-1392 . 704765) (-1393 . 704689) + (-1394 . 704507) (-1395 . 704449) (-1396 . 704391) (-1397 . 704053) + (-1398 . 703768) (-1399 . 703684) (-1400 . 703551) (-1401 . 703493) + (-1402 . 703441) (-1403 . 703386) (-1404 . 703334) (-1405 . 703260) + (-1406 . 703186) (-1407 . 703105) (-1408 . 703024) (-1409 . 702969) + (-1410 . 702895) (-1411 . 702821) (-1412 . 702747) (-1413 . 702670) + (-1414 . 702615) (-1415 . 702556) (-1416 . 702457) (-1417 . 702358) + (-1418 . 702259) (-1419 . 702160) (-1420 . 702061) (-1421 . 701962) + (-1422 . 701863) (-1423 . 701749) (-1424 . 701635) (-1425 . 701521) + (-1426 . 701407) (-1427 . 701293) (-1428 . 701179) (-1429 . 701062) + (-1430 . 700986) (-1431 . 700910) (-1432 . 700523) (-1433 . 700177) + (-1434 . 700075) (-1435 . 699813) (-1436 . 699711) (-1437 . 699506) + (-1438 . 699393) (-1439 . 699291) (-1440 . 699134) (-1441 . 699045) + (-1442 . 698951) (-1443 . 698871) (-1444 . 698811) (-1445 . 698758) + (-1446 . 698639) (-1447 . 698557) (-1448 . 698475) (-1449 . 698393) + (-1450 . 698311) (-1451 . 698229) (-1452 . 698135) (-1453 . 698065) + (-1454 . 697995) (-1455 . 697904) (-1456 . 697810) (-1457 . 697728) + (-1458 . 697646) (-1459 . 697155) (-1460 . 696602) (-1461 . 696392) + (-1462 . 696318) (-1463 . 696064) (-1464 . 695837) (-1465 . 695627) + (-1466 . 695497) (-1467 . 695416) (-1468 . 695267) (-1469 . 694912) + (-1470 . 694620) (-1471 . 694328) (-1472 . 694036) (-1473 . 693744) + (-1474 . 693685) (-1475 . 693578) (-1476 . 693150) (-1477 . 692990) + (-1478 . 692791) (-1479 . 692655) (-1480 . 692555) (-1481 . 692455) + (-1482 . 692361) (-1483 . 692302) (-1484 . 691961) (-1485 . 691860) + (-1486 . 691741) (-1487 . 691525) (-1488 . 691344) (-1489 . 691178) + (-1490 . 690964) (-1491 . 690527) (-1492 . 690474) (-1493 . 690365) + (-1494 . 690250) (-1495 . 690181) (-1496 . 690112) (-1497 . 690043) + (-1498 . 689977) (-1499 . 689852) (-1500 . 689635) (-1501 . 689557) + (-1502 . 689507) (-1503 . 689436) (-1504 . 689293) (-1505 . 689152) + (-1506 . 689071) (-1507 . 688990) (-1508 . 688934) (-1509 . 688878) + (-1510 . 688805) (-1511 . 688665) (-1512 . 688612) (-1513 . 688560) + (-1514 . 688508) (-1515 . 688390) (-1516 . 688272) (-1517 . 688154) + (-1518 . 688021) (-1519 . 687740) (-1520 . 687604) (-1521 . 687548) + (-1522 . 687492) (-1523 . 687433) (-1524 . 687374) (-1525 . 687318) + (-1526 . 687262) (-1527 . 687065) (-1528 . 684723) (-1529 . 684596) + (-1530 . 684450) (-1531 . 684322) (-1532 . 684270) (-1533 . 684218) + (-1534 . 684166) (-1535 . 680128) (-1536 . 680033) (-1537 . 679894) + (-1538 . 679685) (-1539 . 679583) (-1540 . 679481) (-1541 . 678565) + (-1542 . 678488) (-1543 . 678359) (-1544 . 678232) (-1545 . 678155) + (-1546 . 678078) (-1547 . 677951) (-1548 . 677824) (-1549 . 677658) + (-1550 . 677531) (-1551 . 677404) (-1552 . 677187) (-1553 . 676749) + (-1554 . 676383) (-1555 . 676276) (-1556 . 676057) (-1557 . 675988) + (-1558 . 675929) (-1559 . 675848) (-1560 . 675737) (-1561 . 675671) + (-1562 . 675605) (-1563 . 675531) (-1564 . 675460) (-1565 . 675083) + (-1566 . 675031) (-1567 . 674972) (-1568 . 674868) (-1569 . 674764) + (-1570 . 674657) (-1571 . 674550) (-1572 . 674443) (-1573 . 674336) + (-1574 . 674229) (-1575 . 674122) (-1576 . 674015) (-1577 . 673908) + (-1578 . 673801) (-1579 . 673694) (-1580 . 673587) (-1581 . 673480) + (-1582 . 673373) (-1583 . 673266) (-1584 . 673159) (-1585 . 673052) + (-1586 . 672945) (-1587 . 672838) (-1588 . 672731) (-1589 . 672624) + (-1590 . 672517) (-1591 . 672410) (-1592 . 672303) (-1593 . 672196) + (-1594 . 672089) (-1595 . 671982) (-1596 . 671803) (-1597 . 671681) + (-1598 . 671431) (-1599 . 671130) (-1600 . 670925) (-1601 . 670759) + (-1602 . 670589) (-1603 . 670537) (-1604 . 670474) (-1605 . 670411) + (-1606 . 670359) (-1607 . 670170) (-1608 . 670016) (-1609 . 669936) + (-1610 . 669856) (-1611 . 669776) (-1612 . 669646) (-1613 . 669414) + (-1614 . 669386) (-1615 . 669358) (-1616 . 669277) (-1617 . 669187) + (-1618 . 669109) (-1619 . 669022) (-1620 . 668962) (-1621 . 668804) + (-1622 . 668611) (-1623 . 668126) (-1624 . 667884) (-1625 . 667622) + (-1626 . 667521) (-1627 . 667440) (-1628 . 667359) (-1629 . 667289) + (-1630 . 667219) (-1631 . 667060) (-1632 . 666756) (-1633 . 666514) + (-1634 . 666390) (-1635 . 666331) (-1636 . 666269) (-1637 . 666207) + (-1638 . 666142) (-1639 . 666080) (-1640 . 665801) (-1641 . 665591) + (-1642 . 665317) (-1643 . 664746) (-1644 . 664232) (-1645 . 664087) + (-1646 . 664020) (-1647 . 663939) (-1648 . 663858) (-1649 . 663756) + (-1650 . 663682) (-1651 . 663601) (-1652 . 663527) (-1653 . 663318) + (-1654 . 663105) (-1655 . 663015) (-1656 . 662948) (-1657 . 662812) + (-1658 . 662745) (-1659 . 662663) (-1660 . 662582) (-1661 . 662480) + (-1662 . 662280) (-1663 . 662212) (-1664 . 661970) (-1665 . 661719) + (-1666 . 661477) (-1667 . 661235) (-1668 . 661167) (-1669 . 660834) + (-1670 . 659834) (-1671 . 659615) (-1672 . 659534) (-1673 . 659460) + (-1674 . 659386) (-1675 . 659312) (-1676 . 659208) (-1677 . 659135) + (-1678 . 659067) (-1679 . 658857) (-1680 . 658805) (-1681 . 658750) + (-1682 . 658660) (-1683 . 658573) (-1684 . 656722) (-1685 . 656643) + (-1686 . 655898) (-1687 . 655768) (-1688 . 655561) (-1689 . 655399) + (-1690 . 655237) (-1691 . 655076) (-1692 . 654937) (-1693 . 654843) + (-1694 . 654745) (-1695 . 654651) (-1696 . 654536) (-1697 . 654451) + (-1698 . 654353) (-1699 . 654157) (-1700 . 654066) (-1701 . 653972) + (-1702 . 653905) (-1703 . 653852) (-1704 . 653799) (-1705 . 653746) + (-1706 . 652608) (-1707 . 652098) (-1708 . 652019) (-1709 . 651960) + (-1710 . 651932) (-1711 . 651904) (-1712 . 651845) (-1713 . 651732) + (-1714 . 651355) (-1715 . 651302) (-1716 . 651191) (-1717 . 651138) + (-1718 . 651085) (-1719 . 651029) (-1720 . 650973) (-1721 . 650808) + (-1722 . 650738) (-1723 . 650643) (-1724 . 650548) (-1725 . 650453) + (-1726 . 650296) (-1727 . 650139) (-1728 . 649986) (-1729 . 649228) + (-1730 . 648975) (-1731 . 648664) (-1732 . 648312) (-1733 . 648095) + (-1734 . 647832) (-1735 . 647457) (-1736 . 647273) (-1737 . 647139) + (-1738 . 646973) (-1739 . 646807) (-1740 . 646673) (-1741 . 646539) + (-1742 . 646405) (-1743 . 646271) (-1744 . 646140) (-1745 . 646009) + (-1746 . 645878) (-1747 . 645495) (-1748 . 645368) (-1749 . 645240) + (-1750 . 644988) (-1751 . 644864) (-1752 . 644612) (-1753 . 644488) + (-1754 . 644236) (-1755 . 644112) (-1756 . 643827) (-1757 . 643554) + (-1758 . 643281) (-1759 . 642983) (-1760 . 642881) (-1761 . 642736) + (-1762 . 642595) (-1763 . 642444) (-1764 . 642283) (-1765 . 642195) + (-1766 . 642167) (-1767 . 642085) (-1768 . 641988) (-1769 . 641520) + (-1770 . 641169) (-1771 . 640736) (-1772 . 640595) (-1773 . 640525) + (-1774 . 640455) (-1775 . 640385) (-1776 . 640294) (-1777 . 640203) + (-1778 . 640112) (-1779 . 640021) (-1780 . 639930) (-1781 . 639844) + (-1782 . 639758) (-1783 . 639672) (-1784 . 639586) (-1785 . 639500) + (-1786 . 639426) (-1787 . 639321) (-1788 . 639095) (-1789 . 639017) + (-1790 . 638942) (-1791 . 638849) (-1792 . 638745) (-1793 . 638649) + (-1794 . 638480) (-1795 . 638403) (-1796 . 638326) (-1797 . 638235) + (-1798 . 638144) (-1799 . 637944) (-1800 . 637789) (-1801 . 637634) + (-1802 . 637479) (-1803 . 637324) (-1804 . 637169) (-1805 . 637014) + (-1806 . 636947) (-1807 . 636792) (-1808 . 636637) (-1809 . 636482) + (-1810 . 636327) (-1811 . 636172) (-1812 . 636017) (-1813 . 635862) + (-1814 . 635707) (-1815 . 635633) (-1816 . 635559) (-1817 . 635504) + (-1818 . 635449) (-1819 . 635394) (-1820 . 635339) (-1821 . 635268) + (-1822 . 635063) (-1823 . 634962) (-1824 . 634771) (-1825 . 634678) + (-1826 . 634541) (-1827 . 634404) (-1828 . 634267) (-1829 . 634199) + (-1830 . 634083) (-1831 . 633967) (-1832 . 633851) (-1833 . 633798) + (-1834 . 633601) (-1835 . 633516) (-1836 . 633208) (-1837 . 633153) + (-1838 . 632501) (-1839 . 632186) (-1840 . 631902) (-1841 . 631783) + (-1842 . 631731) (-1843 . 631679) (-1844 . 631627) (-1845 . 631574) + (-1846 . 631521) (-1847 . 631462) (-1848 . 631349) (-1849 . 631236) + (-1850 . 631178) (-1851 . 631120) (-1852 . 631070) (-1853 . 630935) + (-1854 . 630885) (-1855 . 630822) (-1856 . 630762) (-1857 . 630165) + (-1858 . 630105) (-1859 . 629938) (-1860 . 629846) (-1861 . 629733) + (-1862 . 629649) (-1863 . 629534) (-1864 . 629443) (-1865 . 629352) + (-1866 . 629163) (-1867 . 629108) (-1868 . 628921) (-1869 . 628798) + (-1870 . 628725) (-1871 . 628652) (-1872 . 628532) (-1873 . 628459) + (-1874 . 628386) (-1875 . 628313) (-1876 . 628093) (-1877 . 627760) + (-1878 . 627577) (-1879 . 627434) (-1880 . 627074) (-1881 . 626906) + (-1882 . 626738) (-1883 . 626482) (-1884 . 626226) (-1885 . 626031) + (-1886 . 625836) (-1887 . 625242) (-1888 . 625166) (-1889 . 625028) + (-1890 . 624626) (-1891 . 624499) (-1892 . 624340) (-1893 . 624015) + (-1894 . 623527) (-1895 . 623039) (-1896 . 622523) (-1897 . 622455) + (-1898 . 622384) (-1899 . 622313) (-1900 . 622131) (-1901 . 622012) + (-1902 . 621893) (-1903 . 621802) (-1904 . 621711) (-1905 . 621421) + (-1906 . 621300) (-1907 . 621248) (-1908 . 621196) (-1909 . 621144) + (-1910 . 621092) (-1911 . 621040) (-1912 . 620892) (-1913 . 620712) + (-1914 . 620473) (-1915 . 620280) (-1916 . 620252) (-1917 . 620224) + (-1918 . 620196) (-1919 . 620168) (-1920 . 620140) (-1921 . 620112) + (-1922 . 620084) (-1923 . 620032) (-1924 . 619942) (-1925 . 619892) + (-1926 . 619823) (-1927 . 619754) (-1928 . 619649) (-1929 . 619278) + (-1930 . 619127) (-1931 . 618976) (-1932 . 618771) (-1933 . 618649) + (-1934 . 618574) (-1935 . 618496) (-1936 . 618421) (-1937 . 618343) + (-1938 . 618265) (-1939 . 618190) (-1940 . 618112) (-1941 . 617878) + (-1942 . 617724) (-1943 . 617427) (-1944 . 617273) (-1945 . 616949) + (-1946 . 616810) (-1947 . 616671) (-1948 . 616590) (-1949 . 616509) + (-1950 . 616244) (-1951 . 615511) (-1952 . 615374) (-1953 . 615283) + (-1954 . 615146) (-1955 . 615078) (-1956 . 615009) (-1957 . 614921) + (-1958 . 614833) (-1959 . 614662) (-1960 . 614588) (-1961 . 614444) + (-1962 . 613984) (-1963 . 613604) (-1964 . 612840) (-1965 . 612696) + (-1966 . 612552) (-1967 . 612390) (-1968 . 612152) (-1969 . 612011) + (-1970 . 611864) (-1971 . 611625) (-1972 . 611389) (-1973 . 611150) + (-1974 . 610958) (-1975 . 610835) (-1976 . 610631) (-1977 . 610408) + (-1978 . 610169) (-1979 . 610028) (-1980 . 609890) (-1981 . 609751) + (-1982 . 609498) (-1983 . 609242) (-1984 . 609085) (-1985 . 608931) + (-1986 . 608690) (-1987 . 608405) (-1988 . 608267) (-1989 . 608180) + (-1990 . 607514) (-1991 . 607338) (-1992 . 607156) (-1993 . 606980) + (-1994 . 606798) (-1995 . 606619) (-1996 . 606440) (-1997 . 606253) + (-1998 . 605871) (-1999 . 605692) (-2000 . 605513) (-2001 . 605326) + (-2002 . 604944) (-2003 . 603951) (-2004 . 603567) (-2005 . 603183) + (-2006 . 603065) (-2007 . 602908) (-2008 . 602766) (-2009 . 602648) + (-2010 . 602466) (-2011 . 602342) (-2012 . 602052) (-2013 . 601762) + (-2014 . 601478) (-2015 . 601194) (-2016 . 600916) (-2017 . 600828) + (-2018 . 600743) (-2019 . 600644) (-2020 . 600545) (-2021 . 600321) + (-2022 . 600221) (-2023 . 600118) (-2024 . 600040) (-2025 . 599715) + (-2026 . 599423) (-2027 . 599350) (-2028 . 598965) (-2029 . 598937) + (-2030 . 598738) (-2031 . 598564) (-2032 . 598323) (-2033 . 598268) + (-2034 . 598192) (-2035 . 597821) (-2036 . 597705) (-2037 . 597628) + (-2038 . 597555) (-2039 . 597474) (-2040 . 597393) (-2041 . 597312) + (-2042 . 597211) (-2043 . 597152) (-2044 . 596933) (-2045 . 596694) + (-2046 . 596570) (-2047 . 596446) (-2048 . 596219) (-2049 . 596166) + (-2050 . 596111) (-2051 . 595779) (-2052 . 595455) (-2053 . 595267) + (-2054 . 595076) (-2055 . 594912) (-2056 . 594577) (-2057 . 594410) + (-2058 . 594169) (-2059 . 593841) (-2060 . 593649) (-2061 . 593432) + (-2062 . 593259) (-2063 . 592837) (-2064 . 592610) (-2065 . 592339) + (-2066 . 592201) (-2067 . 592060) (-2068 . 591583) (-2069 . 591460) + (-2070 . 591224) (-2071 . 590970) (-2072 . 590720) (-2073 . 590425) + (-2074 . 590284) (-2075 . 589940) (-2076 . 589799) (-2077 . 589606) + (-2078 . 589413) (-2079 . 589238) (-2080 . 588964) (-2081 . 588529) + (-2082 . 588455) (-2083 . 588294) (-2084 . 588131) (-2085 . 587970) + (-2086 . 587803) (-2087 . 587750) (-2088 . 587697) (-2089 . 587568) + (-2090 . 587508) (-2091 . 587455) (-2092 . 587402) (-2093 . 587331) + (-2094 . 587278) (-2095 . 587136) (-2096 . 587041) (-2097 . 586950) + (-2098 . 586834) (-2099 . 586740) (-2100 . 586642) (-2101 . 586548) + (-2102 . 586407) (-2103 . 586142) (-2104 . 585286) (-2105 . 585130) + (-2106 . 584761) (-2107 . 584676) (-2108 . 584588) (-2109 . 584442) + (-2110 . 584293) (-2111 . 584003) (-2112 . 583925) (-2113 . 583850) + (-2114 . 583797) (-2115 . 583766) (-2116 . 583703) (-2117 . 583584) + (-2118 . 583495) (-2119 . 583375) (-2120 . 583080) (-2121 . 582886) + (-2122 . 582698) (-2123 . 582553) (-2124 . 582408) (-2125 . 582122) + (-2126 . 581677) (-2127 . 581643) (-2128 . 581606) (-2129 . 581569) + (-2130 . 581532) (-2131 . 581495) (-2132 . 581464) (-2133 . 581433) + (-2134 . 581402) (-2135 . 581368) (-2136 . 581334) (-2137 . 581279) + (-2138 . 581090) (-2139 . 580849) (-2140 . 580608) (-2141 . 580372) + (-2142 . 580320) (-2143 . 580265) (-2144 . 580195) (-2145 . 580106) + (-2146 . 580037) (-2147 . 579965) (-2148 . 579735) (-2149 . 579683) + (-2150 . 579628) (-2151 . 579597) (-2152 . 579491) (-2153 . 579259) + (-2154 . 578942) (-2155 . 578761) (-2156 . 578569) (-2157 . 578291) + (-2158 . 578218) (-2159 . 578153) (-2160 . 578125) (-2161 . 578075) + (-2162 . 576652) (-2163 . 575504) (-2164 . 574366) (-2165 . 573876) + (-2166 . 573300) (-2167 . 572560) (-2168 . 571985) (-2169 . 571343) + (-2170 . 570764) (-2171 . 570690) (-2172 . 570638) (-2173 . 570586) + (-2174 . 570512) (-2175 . 570457) (-2176 . 570405) (-2177 . 570353) + (-2178 . 570301) (-2179 . 570231) (-2180 . 569783) (-2181 . 569570) + (-2182 . 569314) (-2183 . 568973) (-2184 . 568712) (-2185 . 568403) + (-2186 . 568193) (-2187 . 567894) (-2188 . 567326) (-2189 . 567189) + (-2190 . 566987) (-2191 . 566707) (-2192 . 566622) (-2193 . 566279) + (-2194 . 566138) (-2195 . 565847) (-2196 . 565627) (-2197 . 565502) + (-2198 . 565378) (-2199 . 565232) (-2200 . 565089) (-2201 . 564974) + (-2202 . 564844) (-2203 . 564473) (-2204 . 564213) (-2205 . 563938) + (-2206 . 563698) (-2207 . 563368) (-2208 . 563023) (-2209 . 562615) + (-2210 . 562192) (-2211 . 561995) (-2212 . 561720) (-2213 . 561552) + (-2214 . 561351) (-2215 . 561129) (-2216 . 560974) (-2217 . 560782) + (-2218 . 560713) (-2219 . 560643) (-2220 . 560524) (-2221 . 560346) + (-2222 . 560291) (-2223 . 560045) (-2224 . 559955) (-2225 . 559765) + (-2226 . 559692) (-2227 . 559622) (-2228 . 559557) (-2229 . 559502) + (-2230 . 559411) (-2231 . 559106) (-2232 . 558763) (-2233 . 558689) + (-2234 . 558367) (-2235 . 558160) (-2236 . 558074) (-2237 . 557988) + (-2238 . 557902) (-2239 . 557816) (-2240 . 557730) (-2241 . 557644) + (-2242 . 557558) (-2243 . 557472) (-2244 . 557386) (-2245 . 557300) + (-2246 . 557214) (-2247 . 557128) (-2248 . 557042) (-2249 . 556956) + (-2250 . 556870) (-2251 . 556784) (-2252 . 556698) (-2253 . 556612) + (-2254 . 556526) (-2255 . 556440) (-2256 . 556354) (-2257 . 556268) + (-2258 . 556182) (-2259 . 556096) (-2260 . 556010) (-2261 . 555924) + (-2262 . 555821) (-2263 . 555732) (-2264 . 555523) (-2265 . 555464) + (-2266 . 555408) (-2267 . 555319) (-2268 . 555207) (-2269 . 555120) + (-2270 . 554973) (-2271 . 554788) (-2272 . 554624) (-2273 . 554457) + (-2274 . 554272) (-2275 . 554051) (-2276 . 553927) (-2277 . 553719) + (-2278 . 553627) (-2279 . 553535) (-2280 . 553399) (-2281 . 553304) + (-2282 . 553209) (-2283 . 551693) (-2284 . 551633) (-2285 . 551543) + (-2286 . 551448) (-2287 . 551367) (-2288 . 551060) (-2289 . 550865) + (-2290 . 550772) (-2291 . 550666) (-2292 . 550255) (-2293 . 550081) + (-2294 . 550004) (-2295 . 549815) (-2296 . 549635) (-2297 . 549211) + (-2298 . 549059) (-2299 . 548879) (-2300 . 548706) (-2301 . 548444) + (-2302 . 548192) (-2303 . 547381) (-2304 . 547212) (-2305 . 546993) + (-2306 . 546089) (-2307 . 545056) (-2308 . 544912) (-2309 . 544768) + (-2310 . 544624) (-2311 . 544480) (-2312 . 544336) (-2313 . 544192) + (-2314 . 543997) (-2315 . 543803) (-2316 . 543660) (-2317 . 543345) + (-2318 . 543230) (-2319 . 542890) (-2320 . 542730) (-2321 . 542591) + (-2322 . 542452) (-2323 . 542323) (-2324 . 542238) (-2325 . 542186) + (-2326 . 541699) (-2327 . 540423) (-2328 . 540308) (-2329 . 540179) + (-2330 . 539872) (-2331 . 539621) (-2332 . 539546) (-2333 . 539471) + (-2334 . 539396) (-2335 . 539337) (-2336 . 539266) (-2337 . 539213) + (-2338 . 539151) (-2339 . 539080) (-2340 . 538717) (-2341 . 538430) + (-2342 . 538319) (-2343 . 538226) (-2344 . 538133) (-2345 . 538046) + (-2346 . 537826) (-2347 . 537606) (-2348 . 537463) (-2349 . 537370) + (-2350 . 537227) (-2351 . 537075) (-2352 . 536921) (-2353 . 536850) + (-2354 . 536643) (-2355 . 536465) (-2356 . 536255) (-2357 . 536077) + (-2358 . 535959) (-2359 . 535644) (-2360 . 535366) (-2361 . 535245) + (-2362 . 535118) (-2363 . 535033) (-2364 . 534960) (-2365 . 534870) + (-2366 . 534799) (-2367 . 534743) (-2368 . 534687) (-2369 . 534631) + (-2370 . 534560) (-2371 . 534489) (-2372 . 534418) (-2373 . 534339) + (-2374 . 534261) (-2375 . 534176) (-2376 . 533916) (-2377 . 533827) + (-2378 . 533529) (-2379 . 533431) (-2380 . 533353) (-2381 . 533275) + (-2382 . 533132) (-2383 . 533053) (-2384 . 532981) (-2385 . 532778) + (-2386 . 532722) (-2387 . 532534) (-2388 . 532435) (-2389 . 532317) + (-2390 . 532196) (-2391 . 532053) (-2392 . 531910) (-2393 . 531770) + (-2394 . 531630) (-2395 . 531487) (-2396 . 531360) (-2397 . 531230) + (-2398 . 531106) (-2399 . 530982) (-2400 . 530876) (-2401 . 530770) + (-2402 . 530667) (-2403 . 530517) (-2404 . 530364) (-2405 . 530211) + (-2406 . 530067) (-2407 . 529913) (-2408 . 529836) (-2409 . 529756) + (-2410 . 529601) (-2411 . 529521) (-2412 . 529441) (-2413 . 529361) + (-2414 . 529258) (-2415 . 529199) (-2416 . 529024) (-2417 . 528871) + (-2418 . 528718) (-2419 . 528544) (-2420 . 528352) (-2421 . 528053) + (-2422 . 527858) (-2423 . 527743) (-2424 . 527617) (-2425 . 527540) + (-2426 . 527408) (-2427 . 527102) (-2428 . 526919) (-2429 . 526374) + (-2430 . 526154) (-2431 . 525980) (-2432 . 525810) (-2433 . 525711) + (-2434 . 525612) (-2435 . 525394) (-2436 . 525292) (-2437 . 525219) + (-2438 . 525143) (-2439 . 525064) (-2440 . 524767) (-2441 . 524668) + (-2442 . 524506) (-2443 . 524272) (-2444 . 523830) (-2445 . 523700) + (-2446 . 523560) (-2447 . 523251) (-2448 . 522949) (-2449 . 522633) + (-2450 . 522227) (-2451 . 522159) (-2452 . 522091) (-2453 . 522023) + (-2454 . 521928) (-2455 . 521820) (-2456 . 521712) (-2457 . 521610) + (-2458 . 521508) (-2459 . 521406) (-2460 . 521328) (-2461 . 521004) + (-2462 . 520523) (-2463 . 519896) (-2464 . 519832) (-2465 . 519713) + (-2466 . 519594) (-2467 . 519486) (-2468 . 519378) (-2469 . 519222) + (-2470 . 518620) (-2471 . 518382) (-2472 . 518214) (-2473 . 518092) + (-2474 . 517694) (-2475 . 517458) (-2476 . 517257) (-2477 . 517049) + (-2478 . 516856) (-2479 . 516586) (-2480 . 516413) (-2481 . 516234) + (-2482 . 516165) (-2483 . 516089) (-2484 . 515948) (-2485 . 515745) + (-2486 . 515601) (-2487 . 515351) (-2488 . 515043) (-2489 . 514687) + (-2490 . 514528) (-2491 . 514322) (-2492 . 514162) (-2493 . 514089) + (-2494 . 513971) (-2495 . 513853) (-2496 . 513694) (-2497 . 513515) + (-2498 . 513333) (-2499 . 513236) (-2500 . 513139) (-2501 . 513039) + (-2502 . 512936) (-2503 . 512811) (-2504 . 512686) (-2505 . 512558) + (-2506 . 512427) (-2507 . 512330) (-2508 . 512233) (-2509 . 512133) + (-2510 . 512033) (-2511 . 511868) (-2512 . 511703) (-2513 . 511510) + (-2514 . 511345) (-2515 . 511178) (-2516 . 511008) (-2517 . 510844) + (-2518 . 510680) (-2519 . 510581) (-2520 . 510390) (-2521 . 510290) + (-2522 . 510096) (-2523 . 509847) (-2524 . 509603) (-2525 . 509282) + (-2526 . 508895) (-2527 . 508695) (-2528 . 508432) (-2529 . 507891) + (-2530 . 507598) (-2531 . 507462) (-2532 . 507217) (-2533 . 507014) + (-2534 . 506908) (-2535 . 506808) (-2536 . 506699) (-2537 . 506590) + (-2538 . 506463) (-2539 . 506357) (-2540 . 506254) (-2541 . 506099) + (-2542 . 505966) (-2543 . 505833) (-2544 . 505724) (-2545 . 505606) + (-2546 . 505430) (-2547 . 505297) (-2548 . 505161) (-2549 . 505031) + (-2550 . 504922) (-2551 . 504801) (-2552 . 504677) (-2553 . 504577) + (-2554 . 504394) (-2555 . 504221) (-2556 . 504023) (-2557 . 503850) + (-2558 . 503735) (-2559 . 503611) (-2560 . 503484) (-2561 . 503366) + (-2562 . 503142) (-2563 . 502972) (-2564 . 502802) (-2565 . 502626) + (-2566 . 502475) (-2567 . 502199) (-2568 . 501808) (-2569 . 501678) + (-2570 . 501477) (-2571 . 501295) (-2572 . 501112) (-2573 . 500984) + (-2574 . 500881) (-2575 . 500741) (-2576 . 500610) (-2577 . 500497) + (-2578 . 500350) (-2579 . 500212) (-2580 . 500112) (-2581 . 500009) + (-2582 . 499903) (-2583 . 499794) (-2584 . 499694) (-2585 . 499588) + (-2586 . 499482) (-2587 . 499370) (-2588 . 499264) (-2589 . 499152) + (-2590 . 499022) (-2591 . 498874) (-2592 . 498338) (-2593 . 498196) + (-2594 . 498047) (-2595 . 497925) (-2596 . 497822) (-2597 . 497719) + (-2598 . 497613) (-2599 . 497476) (-2600 . 497370) (-2601 . 497240) + (-2602 . 497085) (-2603 . 496813) (-2604 . 496667) (-2605 . 496465) + (-2606 . 496365) (-2607 . 496212) (-2608 . 496093) (-2609 . 495965) + (-2610 . 495871) (-2611 . 495784) (-2612 . 495697) (-2613 . 495610) + (-2614 . 495523) (-2615 . 495436) (-2616 . 495343) (-2617 . 495256) + (-2618 . 495169) (-2619 . 495082) (-2620 . 494995) (-2621 . 494908) + (-2622 . 494821) (-2623 . 494734) (-2624 . 494647) (-2625 . 494560) + (-2626 . 494473) (-2627 . 494336) (-2628 . 494199) (-2629 . 494080) + (-2630 . 493961) (-2631 . 493821) (-2632 . 493734) (-2633 . 493647) + (-2634 . 493560) (-2635 . 493473) (-2636 . 493336) (-2637 . 493199) + (-2638 . 493112) (-2639 . 493025) (-2640 . 492938) (-2641 . 492851) + (-2642 . 492764) (-2643 . 492677) (-2644 . 492587) (-2645 . 492494) + (-2646 . 492401) (-2647 . 492305) (-2648 . 492255) (-2649 . 492205) + (-2650 . 492152) (-2651 . 491898) (-2652 . 491849) (-2653 . 491799) + (-2654 . 491765) (-2655 . 491700) (-2656 . 491663) (-2657 . 491526) + (-2658 . 491288) (-2659 . 491039) (-2660 . 490881) (-2661 . 490342) + (-2662 . 490143) (-2663 . 489928) (-2664 . 489766) (-2665 . 489367) + (-2666 . 489200) (-2667 . 488125) (-2668 . 488002) (-2669 . 487785) + (-2670 . 487654) (-2671 . 487523) (-2672 . 487365) (-2673 . 487261) + (-2674 . 487202) (-2675 . 487143) (-2676 . 487037) (-2677 . 486931) + (-2678 . 486013) (-2679 . 483884) (-2680 . 483068) (-2681 . 481263) + (-2682 . 481195) (-2683 . 481127) (-2684 . 481059) (-2685 . 480991) + (-2686 . 480923) (-2687 . 480845) (-2688 . 480445) (-2689 . 480089) + (-2690 . 479907) (-2691 . 479378) (-2692 . 479202) (-2693 . 478980) + (-2694 . 478758) (-2695 . 478536) (-2696 . 478317) (-2697 . 478098) + (-2698 . 477879) (-2699 . 477660) (-2700 . 477441) (-2701 . 477222) + (-2702 . 477121) (-2703 . 476388) (-2704 . 476333) (-2705 . 476278) + (-2706 . 476223) (-2707 . 476168) (-2708 . 476018) (-2709 . 475726) + (-2710 . 475468) (-2711 . 475440) (-2712 . 475390) (-2713 . 474798) + (-2714 . 474264) (-2715 . 473815) (-2716 . 473644) (-2717 . 473454) + (-2718 . 473167) (-2719 . 472781) (-2720 . 471909) (-2721 . 471569) + (-2722 . 471401) (-2723 . 471179) (-2724 . 470929) (-2725 . 470581) + (-2726 . 469571) (-2727 . 469260) (-2728 . 469048) (-2729 . 468484) + (-2730 . 467971) (-2731 . 466215) (-2732 . 465743) (-2733 . 465144) + (-2734 . 464894) (-2735 . 464760) (-2736 . 464308) (-2737 . 463819) + (-2738 . 463459) (-2739 . 463176) (-2740 . 463061) (-2741 . 462946) + (-2742 . 462731) (-2743 . 462678) (-2744 . 462625) (-2745 . 462573) + (-2746 . 462521) (-2747 . 462429) (-2748 . 462358) (-2749 . 462284) + (-2750 . 462213) (-2751 . 462160) (-2752 . 462089) (-2753 . 462036) + (-2754 . 461983) (-2755 . 461930) (-2756 . 461877) (-2757 . 461824) + (-2758 . 461771) (-2759 . 461718) (-2760 . 461665) (-2761 . 461612) + (-2762 . 461559) (-2763 . 461506) (-2764 . 461453) (-2765 . 461400) + (-2766 . 461347) (-2767 . 461276) (-2768 . 461205) (-2769 . 461133) + (-2770 . 461061) (-2771 . 460986) (-2772 . 460933) (-2773 . 460880) + (-2774 . 460827) (-2775 . 460774) (-2776 . 460721) (-2777 . 460668) + (-2778 . 460615) (-2779 . 460562) (-2780 . 460509) (-2781 . 460456) + (-2782 . 460403) (-2783 . 460350) (-2784 . 460297) (-2785 . 460244) + (-2786 . 460192) (-2787 . 460140) (-2788 . 460087) (-2789 . 460034) + (-2790 . 459943) (-2791 . 459890) (-2792 . 459862) (-2793 . 459834) + (-2794 . 459806) (-2795 . 459778) (-2796 . 459700) (-2797 . 459640) + (-2798 . 459588) (-2799 . 459536) (-2800 . 459484) (-2801 . 459432) + (-2802 . 459380) (-2803 . 458576) (-2804 . 458499) (-2805 . 458422) + (-2806 . 458356) (-2807 . 458289) (-2808 . 458222) (-2809 . 458165) + (-2810 . 458089) (-2811 . 458021) (-2812 . 457950) (-2813 . 457879) + (-2814 . 457813) (-2815 . 457726) (-2816 . 457654) (-2817 . 457547) + (-2818 . 457361) (-2819 . 457192) (-2820 . 457012) (-2821 . 456421) + (-2822 . 456258) (-2823 . 455680) (-2824 . 455605) (-2825 . 455241) + (-2826 . 454568) (-2827 . 454392) (-2828 . 454320) (-2829 . 454180) + (-2830 . 453990) (-2831 . 453883) (-2832 . 453776) (-2833 . 453660) + (-2834 . 453544) (-2835 . 453428) (-2836 . 453277) (-2837 . 453133) + (-2838 . 453059) (-2839 . 452973) (-2840 . 452899) (-2841 . 452825) + (-2842 . 452751) (-2843 . 452607) (-2844 . 452456) (-2845 . 452281) + (-2846 . 452130) (-2847 . 451979) (-2848 . 451852) (-2849 . 451463) + (-2850 . 451177) (-2851 . 450891) (-2852 . 450480) (-2853 . 450194) + (-2854 . 450121) (-2855 . 449974) (-2856 . 449868) (-2857 . 449794) + (-2858 . 449723) (-2859 . 449652) (-2860 . 449555) (-2861 . 449458) + (-2862 . 449298) (-2863 . 449211) (-2864 . 449124) (-2865 . 449037) + (-2866 . 448978) (-2867 . 448919) (-2868 . 448786) (-2869 . 448727) + (-2870 . 448557) (-2871 . 448469) (-2872 . 448372) (-2873 . 448338) + (-2874 . 448307) (-2875 . 448223) (-2876 . 448167) (-2877 . 448105) + (-2878 . 448071) (-2879 . 448037) (-2880 . 448003) (-2881 . 447969) + (-2882 . 447935) (-2883 . 445182) (-2884 . 445148) (-2885 . 445114) + (-2886 . 445080) (-2887 . 444968) (-2888 . 444934) (-2889 . 444882) + (-2890 . 444848) (-2891 . 444751) (-2892 . 444689) (-2893 . 444598) + (-2894 . 444507) (-2895 . 444452) (-2896 . 444400) (-2897 . 444348) + (-2898 . 444296) (-2899 . 444244) (-2900 . 443821) (-2901 . 443655) + (-2902 . 443586) (-2903 . 443533) (-2904 . 443377) (-2905 . 442856) + (-2906 . 442715) (-2907 . 442681) (-2908 . 442626) (-2909 . 441915) + (-2910 . 441600) (-2911 . 441095) (-2912 . 441017) (-2913 . 440965) + (-2914 . 440913) (-2915 . 440729) (-2916 . 440677) (-2917 . 440625) + (-2918 . 440549) (-2919 . 440487) (-2920 . 440269) (-2921 . 440014) + (-2922 . 439947) (-2923 . 439853) (-2924 . 439759) (-2925 . 439576) + (-2926 . 439494) (-2927 . 439372) (-2928 . 439250) (-2929 . 439104) + (-2930 . 438449) (-2931 . 437745) (-2932 . 437641) (-2933 . 437540) + (-2934 . 437439) (-2935 . 437328) (-2936 . 437160) (-2937 . 436954) + (-2938 . 436861) (-2939 . 436784) (-2940 . 436728) (-2941 . 436657) + (-2942 . 436537) (-2943 . 436436) (-2944 . 436338) (-2945 . 436258) + (-2946 . 436178) (-2947 . 436101) (-2948 . 436030) (-2949 . 435959) + (-2950 . 435888) (-2951 . 435817) (-2952 . 435746) (-2953 . 435675) + (-2954 . 435582) (-2955 . 435387) (-2956 . 435143) (-2957 . 434973) + (-2958 . 434852) (-2959 . 434480) (-2960 . 434311) (-2961 . 434195) + (-2962 . 433691) (-2963 . 433309) (-2964 . 433063) (-2965 . 432635) + (-2966 . 432543) (-2967 . 432446) (-2968 . 429160) (-2969 . 428340) + (-2970 . 428227) (-2971 . 428153) (-2972 . 428061) (-2973 . 427868) + (-2974 . 427675) (-2975 . 427604) (-2976 . 427533) (-2977 . 427452) + (-2978 . 427371) (-2979 . 427246) (-2980 . 427112) (-2981 . 427031) + (-2982 . 426957) (-2983 . 426792) (-2984 . 426633) (-2985 . 426402) + (-2986 . 426254) (-2987 . 426150) (-2988 . 426046) (-2989 . 425961) + (-2990 . 425593) (-2991 . 425512) (-2992 . 425425) (-2993 . 425344) + (-2994 . 425101) (-2995 . 424881) (-2996 . 424694) (-2997 . 424372) + (-2998 . 424079) (-2999 . 423786) (-3000 . 423476) (-3001 . 423159) + (-3002 . 423030) (-3003 . 422842) (-3004 . 422369) (-3005 . 422287) + (-3006 . 422072) (-3007 . 421857) (-3008 . 421598) (-3009 . 421168) + (-3010 . 420648) (-3011 . 420518) (-3012 . 420244) (-3013 . 420065) + (-3014 . 419950) (-3015 . 419846) (-3016 . 419791) (-3017 . 419714) + (-3018 . 419644) (-3019 . 419571) (-3020 . 419516) (-3021 . 419443) + (-3022 . 419388) (-3023 . 419033) (-3024 . 418625) (-3025 . 418472) + (-3026 . 418319) (-3027 . 418238) (-3028 . 418085) (-3029 . 417932) + (-3030 . 417797) (-3031 . 417662) (-3032 . 417527) (-3033 . 417392) + (-3034 . 417257) (-3035 . 417122) (-3036 . 417066) (-3037 . 416913) + (-3038 . 416802) (-3039 . 416691) (-3040 . 416623) (-3041 . 416513) + (-3042 . 416410) (-3043 . 412259) (-3044 . 411811) (-3045 . 411384) + (-3046 . 410767) (-3047 . 410166) (-3048 . 409948) (-3049 . 409770) + (-3050 . 409510) (-3051 . 409099) (-3052 . 408805) (-3053 . 408362) + (-3054 . 408184) (-3055 . 407791) (-3056 . 407398) (-3057 . 407213) + (-3058 . 407006) (-3059 . 406785) (-3060 . 406479) (-3061 . 406280) + (-3062 . 405651) (-3063 . 405494) (-3064 . 405103) (-3065 . 405051) + (-3066 . 405002) (-3067 . 404950) (-3068 . 404901) (-3069 . 404849) + (-3070 . 404703) (-3071 . 404651) (-3072 . 404505) (-3073 . 404453) + (-3074 . 404307) (-3075 . 404255) (-3076 . 403880) (-3077 . 403828) + (-3078 . 403779) (-3079 . 403727) (-3080 . 403678) (-3081 . 403626) + (-3082 . 403577) (-3083 . 403525) (-3084 . 403476) (-3085 . 403424) + (-3086 . 403375) (-3087 . 403309) (-3088 . 403191) (-3089 . 402029) + (-3090 . 401612) (-3091 . 401504) (-3092 . 401259) (-3093 . 401110) + (-3094 . 400961) (-3095 . 400798) (-3096 . 398551) (-3097 . 398275) + (-3098 . 398121) (-3099 . 397975) (-3100 . 397829) (-3101 . 397610) + (-3102 . 397478) (-3103 . 397403) (-3104 . 397328) (-3105 . 397193) + (-3106 . 397063) (-3107 . 396933) (-3108 . 396806) (-3109 . 396679) + (-3110 . 396552) (-3111 . 396425) (-3112 . 396322) (-3113 . 396222) + (-3114 . 396128) (-3115 . 395998) (-3116 . 395847) (-3117 . 395468) + (-3118 . 395353) (-3119 . 395110) (-3120 . 394647) (-3121 . 394334) + (-3122 . 393766) (-3123 . 393196) (-3124 . 392184) (-3125 . 391641) + (-3126 . 391328) (-3127 . 390990) (-3128 . 390659) (-3129 . 390339) + (-3130 . 390286) (-3131 . 390159) (-3132 . 389631) (-3133 . 388474) + (-3134 . 388419) (-3135 . 388364) (-3136 . 388288) (-3137 . 388169) + (-3138 . 388094) (-3139 . 388019) (-3140 . 387941) (-3141 . 387790) + (-3142 . 387698) (-3143 . 387628) (-3144 . 387536) (-3145 . 387466) + (-3146 . 387374) (-3147 . 387304) (-3148 . 387212) (-3149 . 387142) + (-3150 . 387087) (-3151 . 387017) (-3152 . 386897) (-3153 . 386842) + (-3154 . 386772) (-3155 . 386675) (-3156 . 386578) (-3157 . 386544) + (-3158 . 386510) (-3159 . 386292) (-3160 . 386142) (-3161 . 386012) + (-3162 . 385882) (-3163 . 385782) (-3164 . 385605) (-3165 . 385445) + (-3166 . 385345) (-3167 . 385168) (-3168 . 385008) (-3169 . 384849) + (-3170 . 384710) (-3171 . 384560) (-3172 . 384430) (-3173 . 384300) + (-3174 . 384153) (-3175 . 384026) (-3176 . 383923) (-3177 . 383816) + (-3178 . 383719) (-3179 . 383554) (-3180 . 383406) (-3181 . 382977) + (-3182 . 382877) (-3183 . 382774) (-3184 . 382686) (-3185 . 382606) + (-3186 . 382456) (-3187 . 382326) (-3188 . 382274) (-3189 . 382184) + (-3190 . 382072) (-3191 . 381759) (-3192 . 381578) (-3193 . 379967) + (-3194 . 379334) (-3195 . 379274) (-3196 . 379156) (-3197 . 379038) + (-3198 . 378894) (-3199 . 378739) (-3200 . 378578) (-3201 . 378417) + (-3202 . 378209) (-3203 . 378020) (-3204 . 377865) (-3205 . 377707) + (-3206 . 377549) (-3207 . 377394) (-3208 . 377254) (-3209 . 376828) + (-3210 . 376700) (-3211 . 376572) (-3212 . 376444) (-3213 . 376301) + (-3214 . 376158) (-3215 . 376016) (-3216 . 375871) (-3217 . 375118) + (-3218 . 374958) (-3219 . 374770) (-3220 . 374613) (-3221 . 374373) + (-3222 . 374126) (-3223 . 373879) (-3224 . 373668) (-3225 . 373529) + (-3226 . 373318) (-3227 . 373028) (-3228 . 372817) (-3229 . 372678) + (-3230 . 372467) (-3231 . 372161) (-3232 . 372016) (-3233 . 371874) + (-3234 . 371650) (-3235 . 371508) (-3236 . 371283) (-3237 . 371084) + (-3238 . 370927) (-3239 . 370597) (-3240 . 370437) (-3241 . 370277) + (-3242 . 370117) (-3243 . 369945) (-3244 . 369773) (-3245 . 369598) + (-3246 . 369246) (-3247 . 369052) (-3248 . 368890) (-3249 . 368816) + (-3250 . 368742) (-3251 . 368668) (-3252 . 368594) (-3253 . 368520) + (-3254 . 368446) (-3255 . 368322) (-3256 . 368148) (-3257 . 368024) + (-3258 . 367938) (-3259 . 367872) (-3260 . 367806) (-3261 . 367740) + (-3262 . 367674) (-3263 . 367608) (-3264 . 367542) (-3265 . 367476) + (-3266 . 367410) (-3267 . 367344) (-3268 . 367278) (-3269 . 367212) + (-3270 . 367146) (-3271 . 367080) (-3272 . 367014) (-3273 . 366948) + (-3274 . 366882) (-3275 . 366816) (-3276 . 366750) (-3277 . 366684) + (-3278 . 366618) (-3279 . 366552) (-3280 . 366486) (-3281 . 366420) + (-3282 . 366354) (-3283 . 366288) (-3284 . 366222) (-3285 . 365573) + (-3286 . 364924) (-3287 . 364796) (-3288 . 364673) (-3289 . 364550) + (-3290 . 364409) (-3291 . 364254) (-3292 . 364110) (-3293 . 363935) + (-3294 . 363297) (-3295 . 363174) (-3296 . 363050) (-3297 . 362373) + (-3298 . 361676) (-3299 . 361575) (-3300 . 361519) (-3301 . 361463) + (-3302 . 361407) (-3303 . 361351) (-3304 . 361292) (-3305 . 361228) + (-3306 . 361120) (-3307 . 361012) (-3308 . 360904) (-3309 . 360625) + (-3310 . 360551) (-3311 . 360325) (-3312 . 360244) (-3313 . 360166) + (-3314 . 360088) (-3315 . 360010) (-3316 . 359931) (-3317 . 359853) + (-3318 . 359760) (-3319 . 359661) (-3320 . 359593) (-3321 . 359544) + (-3322 . 358853) (-3323 . 358205) (-3324 . 357414) (-3325 . 357333) + (-3326 . 357229) (-3327 . 357137) (-3328 . 357045) (-3329 . 356971) + (-3330 . 356897) (-3331 . 356823) (-3332 . 356768) (-3333 . 356713) + (-3334 . 356647) (-3335 . 356581) (-3336 . 356519) (-3337 . 356132) + (-3338 . 355632) (-3339 . 355167) (-3340 . 354914) (-3341 . 354725) + (-3342 . 354383) (-3343 . 354087) (-3344 . 353919) (-3345 . 353788) + (-3346 . 353648) (-3347 . 353493) (-3348 . 353324) (-3349 . 351938) + (-3350 . 351804) (-3351 . 351662) (-3352 . 351433) (-3353 . 351164) + (-3354 . 351105) (-3355 . 351049) (-3356 . 350993) (-3357 . 350781) + (-3358 . 350642) (-3359 . 350535) (-3360 . 350418) (-3361 . 350352) + (-3362 . 350279) (-3363 . 350165) (-3364 . 349910) (-3365 . 349809) + (-3366 . 349613) (-3367 . 349301) (-3368 . 348831) (-3369 . 348725) + (-3370 . 348618) (-3371 . 348468) (-3372 . 348327) (-3373 . 347911) + (-3374 . 347663) (-3375 . 346999) (-3376 . 346845) (-3377 . 346731) + (-3378 . 346621) (-3379 . 345793) (-3380 . 345741) (-3381 . 345689) + (-3382 . 345483) (-3383 . 345289) (-3384 . 343935) (-3385 . 343485) + (-3386 . 342085) (-3387 . 341224) (-3388 . 341175) (-3389 . 341126) + (-3390 . 341077) (-3391 . 341010) (-3392 . 340935) (-3393 . 340732) + (-3394 . 340660) (-3395 . 340585) (-3396 . 340513) (-3397 . 340395) + (-3398 . 340150) (-3399 . 339832) (-3400 . 339747) (-3401 . 339662) + (-3402 . 339600) (-3403 . 339210) (-3404 . 338335) (-3405 . 337759) + (-3406 . 336521) (-3407 . 335711) (-3408 . 335459) (-3409 . 335207) + (-3410 . 334873) (-3411 . 334627) (-3412 . 334381) (-3413 . 334135) + (-3414 . 333889) (-3415 . 333643) (-3416 . 333397) (-3417 . 333150) + (-3418 . 332903) (-3419 . 332656) (-3420 . 332409) (-3421 . 331979) + (-3422 . 331861) (-3423 . 331017) (-3424 . 330985) (-3425 . 330638) + (-3426 . 330411) (-3427 . 330311) (-3428 . 330211) (-3429 . 328443) + (-3430 . 328329) (-3431 . 327278) (-3432 . 327185) (-3433 . 326194) + (-3434 . 325859) (-3435 . 325524) (-3436 . 325419) (-3437 . 325332) + (-3438 . 325303) (-3439 . 325246) (-3440 . 325166) (-3441 . 325094) + (-3442 . 325019) (-3443 . 324944) (-3444 . 324912) (-3445 . 324880) + (-3446 . 324848) (-3447 . 324816) (-3448 . 324784) (-3449 . 324752) + (-3450 . 324720) (-3451 . 324688) (-3452 . 324659) (-3453 . 324546) + (-3454 . 324433) (-3455 . 324320) (-3456 . 324207) (-3457 . 323118) + (-3458 . 322996) (-3459 . 322859) (-3460 . 322725) (-3461 . 322591) + (-3462 . 322294) (-3463 . 321997) (-3464 . 321649) (-3465 . 321419) + (-3466 . 321189) (-3467 . 321076) (-3468 . 320963) (-3469 . 315689) + (-3470 . 311323) (-3471 . 311011) (-3472 . 310856) (-3473 . 310328) + (-3474 . 309995) (-3475 . 309798) (-3476 . 309601) (-3477 . 309404) + (-3478 . 309207) (-3479 . 309091) (-3480 . 308965) (-3481 . 308849) + (-3482 . 308733) (-3483 . 308638) (-3484 . 308543) (-3485 . 308430) + (-3486 . 308224) (-3487 . 307067) (-3488 . 306972) (-3489 . 306856) + (-3490 . 306761) (-3491 . 306612) (-3492 . 306499) (-3493 . 306281) + (-3494 . 306177) (-3495 . 306116) (-3496 . 305817) (-3497 . 305047) + (-3498 . 304470) (-3499 . 303977) (-3500 . 303729) (-3501 . 303481) + (-3502 . 303182) (-3503 . 302568) (-3504 . 302120) (-3505 . 301963) + (-3506 . 301817) (-3507 . 301491) (-3508 . 301333) (-3509 . 301190) + (-3510 . 301047) (-3511 . 300904) (-3512 . 300623) (-3513 . 300401) + (-3514 . 299874) (-3515 . 299659) (-3516 . 299444) (-3517 . 299056) + (-3518 . 298876) (-3519 . 298664) (-3520 . 298463) (-3521 . 298281) + (-3522 . 297127) (-3523 . 296738) (-3524 . 296528) (-3525 . 296315) + (-3526 . 295472) (-3527 . 295443) (-3528 . 295374) (-3529 . 295303) + (-3530 . 295136) (-3531 . 295107) (-3532 . 295078) (-3533 . 295022) + (-3534 . 294861) (-3535 . 294801) (-3536 . 294105) (-3537 . 292927) + (-3538 . 292866) (-3539 . 292642) (-3540 . 292570) (-3541 . 292513) + (-3542 . 292456) (-3543 . 292399) (-3544 . 292342) (-3545 . 292267) + (-3546 . 291908) (-3547 . 291833) (-3548 . 291773) (-3549 . 291655) + (-3550 . 290704) (-3551 . 290577) (-3552 . 290364) (-3553 . 290289) + (-3554 . 290235) (-3555 . 290038) (-3556 . 289929) (-3557 . 289616) + (-3558 . 289508) (-3559 . 289405) (-3560 . 289244) (-3561 . 289143) + (-3562 . 289045) (-3563 . 288907) (-3564 . 288769) (-3565 . 288631) + (-3566 . 288369) (-3567 . 288160) (-3568 . 288022) (-3569 . 287733) + (-3570 . 287580) (-3571 . 287302) (-3572 . 287080) (-3573 . 286927) + (-3574 . 286774) (-3575 . 286621) (-3576 . 286468) (-3577 . 286315) + (-3578 . 286159) (-3579 . 286040) (-3580 . 285649) (-3581 . 285314) + (-3582 . 284969) (-3583 . 284618) (-3584 . 284273) (-3585 . 283928) + (-3586 . 283541) (-3587 . 283154) (-3588 . 282767) (-3589 . 282396) + (-3590 . 281666) (-3591 . 281315) (-3592 . 280861) (-3593 . 280432) + (-3594 . 279815) (-3595 . 279214) (-3596 . 278822) (-3597 . 278486) + (-3598 . 278094) (-3599 . 277758) (-3600 . 277536) (-3601 . 277009) + (-3602 . 276794) (-3603 . 276579) (-3604 . 276363) (-3605 . 276183) + (-3606 . 275967) (-3607 . 275787) (-3608 . 275399) (-3609 . 275219) + (-3610 . 275007) (-3611 . 274917) (-3612 . 274827) (-3613 . 274736) + (-3614 . 274649) (-3615 . 274559) (-3616 . 274478) (-3617 . 274289) + (-3618 . 274233) (-3619 . 274152) (-3620 . 274071) (-3621 . 273990) + (-3622 . 273855) (-3623 . 273720) (-3624 . 273596) (-3625 . 273475) + (-3626 . 273357) (-3627 . 273221) (-3628 . 273088) (-3629 . 272969) + (-3630 . 272762) (-3631 . 272682) (-3632 . 272590) (-3633 . 272498) + (-3634 . 272412) (-3635 . 272314) (-3636 . 272197) (-3637 . 271918) + (-3638 . 271639) (-3639 . 271579) (-3640 . 271513) (-3641 . 271447) + (-3642 . 271306) (-3643 . 271249) (-3644 . 271192) (-3645 . 271132) + (-3646 . 270735) (-3647 . 270211) (-3648 . 269933) (-3649 . 269512) + (-3650 . 269399) (-3651 . 268957) (-3652 . 268725) (-3653 . 268522) + (-3654 . 268340) (-3655 . 268210) (-3656 . 268004) (-3657 . 267797) + (-3658 . 267606) (-3659 . 267041) (-3660 . 266785) (-3661 . 266494) + (-3662 . 266200) (-3663 . 265903) (-3664 . 265603) (-3665 . 265473) + (-3666 . 265340) (-3667 . 265204) (-3668 . 265065) (-3669 . 263786) + (-3670 . 263461) (-3671 . 263080) (-3672 . 262967) (-3673 . 262713) + (-3674 . 262417) (-3675 . 262121) (-3676 . 261860) (-3677 . 261685) + (-3678 . 261606) (-3679 . 261518) (-3680 . 261417) (-3681 . 261322) + (-3682 . 261240) (-3683 . 261168) (-3684 . 260367) (-3685 . 260295) + (-3686 . 259963) (-3687 . 259891) (-3688 . 259559) (-3689 . 259487) + (-3690 . 259038) (-3691 . 258966) (-3692 . 258861) (-3693 . 258786) + (-3694 . 258711) (-3695 . 258639) (-3696 . 258296) (-3697 . 258166) + (-3698 . 258089) (-3699 . 257540) (-3700 . 257397) (-3701 . 257254) + (-3702 . 256756) (-3703 . 256411) (-3704 . 256183) (-3705 . 255913) + (-3706 . 255533) (-3707 . 255293) (-3708 . 255053) (-3709 . 254813) + (-3710 . 254573) (-3711 . 254345) (-3712 . 254117) (-3713 . 253965) + (-3714 . 253781) (-3715 . 253676) (-3716 . 253553) (-3717 . 253445) + (-3718 . 253337) (-3719 . 253010) (-3720 . 252744) (-3721 . 252433) + (-3722 . 252128) (-3723 . 251818) (-3724 . 251083) (-3725 . 250488) + (-3726 . 250311) (-3727 . 250166) (-3728 . 250011) (-3729 . 249888) + (-3730 . 249783) (-3731 . 249668) (-3732 . 249569) (-3733 . 249085) + (-3734 . 248975) (-3735 . 248865) (-3736 . 248755) (-3737 . 247661) + (-3738 . 247146) (-3739 . 247079) (-3740 . 247005) (-3741 . 246132) + (-3742 . 246058) (-3743 . 246002) (-3744 . 245946) (-3745 . 245914) + (-3746 . 245828) (-3747 . 245796) (-3748 . 245710) (-3749 . 245286) + (-3750 . 244862) (-3751 . 244305) (-3752 . 243193) (-3753 . 241469) + (-3754 . 239907) (-3755 . 239111) (-3756 . 238607) (-3757 . 238117) + (-3758 . 237711) (-3759 . 237053) (-3760 . 236978) (-3761 . 236906) + (-3762 . 236834) (-3763 . 236792) (-3764 . 236670) (-3765 . 236230) + (-3766 . 235790) (-3767 . 235350) (-3768 . 234828) (-3769 . 234663) + (-3770 . 234498) (-3771 . 234187) (-3772 . 234100) (-3773 . 234010) + (-3774 . 233678) (-3775 . 233561) (-3776 . 233480) (-3777 . 233321) + (-3778 . 233207) (-3779 . 233132) (-3780 . 232280) (-3781 . 231094) + (-3782 . 230994) (-3783 . 230894) (-3784 . 230554) (-3785 . 230475) + (-3786 . 230399) (-3787 . 230292) (-3788 . 230134) (-3789 . 230026) + (-3790 . 229890) (-3791 . 229754) (-3792 . 229631) (-3793 . 229535) + (-3794 . 229386) (-3795 . 229290) (-3796 . 229135) (-3797 . 228980) + (-3798 . 228300) (-3799 . 227620) (-3800 . 226877) (-3801 . 226309) + (-3802 . 225741) (-3803 . 225173) (-3804 . 224492) (-3805 . 223811) + (-3806 . 223130) (-3807 . 222561) (-3808 . 221992) (-3809 . 221423) + (-3810 . 220855) (-3811 . 220287) (-3812 . 219719) (-3813 . 219151) + (-3814 . 218583) (-3815 . 218015) (-3816 . 217911) (-3817 . 217322) + (-3818 . 217216) (-3819 . 217140) (-3820 . 217047) (-3821 . 216954) + (-3822 . 216861) (-3823 . 216768) (-3824 . 216669) (-3825 . 216563) + (-3826 . 216439) (-3827 . 216315) (-3828 . 215948) (-3829 . 215825) + (-3830 . 215723) (-3831 . 215359) (-3832 . 214825) (-3833 . 214749) + (-3834 . 214673) (-3835 . 214580) (-3836 . 214398) (-3837 . 214302) + (-3838 . 214226) (-3839 . 214133) (-3840 . 214040) (-3841 . 213878) + (-3842 . 213521) (-3843 . 213164) (-3844 . 210436) (-3845 . 208978) + (-3846 . 208416) (-3847 . 208217) (-12 . 208045) (-3849 . 207873) + (-3850 . 207701) (-3851 . 207529) (-3852 . 207357) (-3853 . 207185) + (-3854 . 207013) (-3855 . 206820) (-3856 . 206705) (-3857 . 206435) + (-3858 . 206372) (-3859 . 206309) (-3860 . 206246) (-3861 . 205968) + (-3862 . 205701) (-3863 . 205648) (-3864 . 205037) (-3865 . 204986) + (-3866 . 204793) (-3867 . 204720) (-3868 . 204640) (-3869 . 204527) + (-3870 . 204337) (-3871 . 203973) (-3872 . 203701) (-3873 . 203650) + (-3874 . 203599) (-3875 . 203529) (-3876 . 203410) (-3877 . 203381) + (-3878 . 203279) (-3879 . 203157) (-3880 . 203103) (-3881 . 202926) + (-3882 . 202865) (-3883 . 202684) (-3884 . 202623) (-3885 . 202551) + (-3886 . 202076) (-3887 . 201701) (-3888 . 201160) (-3889 . 201107) + (-3890 . 200979) (-3891 . 200827) (-3892 . 200774) (-3893 . 200632) + (-3894 . 200364) (-3895 . 191037) (-3896 . 190886) (-3897 . 190835) + (-3898 . 190784) (-3899 . 190733) (-3900 . 190663) (-3901 . 190465) + (-3902 . 190322) (-3903 . 190208) (-3904 . 190087) (-3905 . 189969) + (-3906 . 189857) (-3907 . 189739) (-3908 . 189634) (-3909 . 189553) + (-3910 . 189449) (-3911 . 188512) (-3912 . 188292) (-3913 . 188055) + (-3914 . 187973) (-3915 . 187626) (-3916 . 187552) (-3917 . 187457) + (-3918 . 187383) (-3919 . 187181) (-3920 . 187090) (-3921 . 186974) + (-3922 . 186861) (-3923 . 186770) (-3924 . 186679) (-3925 . 186589) + (-3926 . 186499) (-3927 . 186409) (-3928 . 186321) (-3929 . 183959) + (-3930 . 183891) (-3931 . 183837) (-3932 . 183712) (-3933 . 183648) + (-3934 . 183523) (-3935 . 183404) (-3936 . 182710) (-3937 . 182649) + (-3938 . 182530) (-3939 . 181778) (-3940 . 181725) (-3941 . 181536) + (-3942 . 181472) (-3943 . 181418) (-3944 . 181309) (-3945 . 179989) + (-3946 . 179907) (-3947 . 179817) (-3948 . 179759) (-3949 . 179494) + (-3950 . 179409) (-3951 . 179334) (-3952 . 179249) (-3953 . 179192) + (-3954 . 178976) (-3955 . 178835) (-3956 . 178100) (-3957 . 177530) + (-3958 . 176960) (-3959 . 176390) (-3960 . 175655) (-3961 . 174973) + (-3962 . 174385) (-3963 . 173797) (-3964 . 173521) (-3965 . 173068) + (-3966 . 172721) (-3967 . 172365) (-3968 . 172043) (-3969 . 171910) + (-3970 . 171777) (-3971 . 171445) (-3972 . 171336) (-3973 . 171227) + (-3974 . 171118) (-3975 . 171009) (-3976 . 170900) (-3977 . 170791) + (-3978 . 170682) (-3979 . 170573) (-3980 . 170464) (-3981 . 170355) + (-3982 . 170246) (-3983 . 170137) (-3984 . 170028) (-3985 . 169919) + (-3986 . 169810) (-3987 . 169701) (-3988 . 169592) (-3989 . 169483) + (-3990 . 169374) (-3991 . 169265) (-3992 . 169156) (-3993 . 169047) + (-3994 . 168938) (-3995 . 168829) (-3996 . 168720) (-3997 . 168522) + (-3998 . 168207) (-3999 . 166636) (-4000 . 166481) (-4001 . 166343) + (-4002 . 166200) (-4003 . 165997) (-4004 . 164046) (-4005 . 163918) + (-4006 . 163793) (-4007 . 163665) (-4008 . 163441) (-4009 . 163217) + (-4010 . 163089) (-4011 . 162886) (-4012 . 162707) (-4013 . 162180) + (-4014 . 161653) (-4015 . 161372) (-4016 . 160954) (-4017 . 160427) + (-4018 . 160242) (-4019 . 160099) (-4020 . 159599) (-4021 . 158957) + (-4022 . 158901) (-4023 . 158807) (-4024 . 158686) (-4025 . 158615) + (-4026 . 158541) (-4027 . 158310) (-4028 . 157685) (-4029 . 157253) + (-4030 . 157171) (-4031 . 157029) (-4032 . 156551) (-4033 . 156429) + (-4034 . 156307) (-4035 . 156167) (-4036 . 155980) (-4037 . 155864) + (-4038 . 155603) (-4039 . 155534) (-4040 . 155335) (-4041 . 155176) + (-4042 . 155021) (-4043 . 154914) (-4044 . 154863) (-4045 . 154479) + (-4046 . 154238) (-4047 . 154147) (-4048 . 152341) (-4049 . 151752) + (-4050 . 151673) (-4051 . 146210) (-4052 . 145420) (-4053 . 145041) + (-4054 . 144969) (-4055 . 144780) (-4056 . 144605) (-4057 . 144115) + (-4058 . 143693) (-4059 . 143253) (-4060 . 142390) (-4061 . 142266) + (-4062 . 142139) (-4063 . 142030) (-4064 . 141878) (-4065 . 141764) + (-4066 . 141625) (-4067 . 141543) (-4068 . 141461) (-4069 . 141353) + (-4070 . 140933) (-4071 . 140509) (-4072 . 140434) (-4073 . 140168) + (-4074 . 139901) (-4075 . 139518) (-4076 . 138817) (-4077 . 138757) + (-4078 . 138682) (-4079 . 138607) (-4080 . 138484) (-4081 . 138232) + (-4082 . 138145) (-4083 . 138069) (-4084 . 137993) (-4085 . 137897) + (-4086 . 133937) (-4087 . 132755) (-4088 . 132092) (-4089 . 131905) + (-4090 . 129684) (-4091 . 129358) (-4092 . 128977) (-4093 . 128533) + (-4094 . 128298) (-4095 . 128050) (-4096 . 127959) (-4097 . 126470) + (-4098 . 126391) (-4099 . 126285) (-4100 . 124756) (-4101 . 124344) + (-4102 . 123929) (-4103 . 123827) (-4104 . 123745) (-4105 . 123587) + (-4106 . 122194) (-4107 . 122112) (-4108 . 122033) (-4109 . 121678) + (-4110 . 121621) (-4111 . 121549) (-4112 . 121492) (-4113 . 121435) + (-4114 . 121305) (-4115 . 121101) (-4116 . 120784) (-4117 . 120362) + (-4118 . 115198) (-4119 . 114595) (-4120 . 113970) (-4121 . 113755) + (-4122 . 113540) (-4123 . 113372) (-4124 . 113157) (-4125 . 112989) + (-4126 . 112821) (-4127 . 112653) (-4128 . 112485) (-4129 . 110342) + (-4130 . 110070) (-4131 . 103153) (** . 100091) (-4133 . 99671) + (-4134 . 99423) (-4135 . 99366) (-4136 . 98868) (-4137 . 95974) + (-4138 . 95824) (-4139 . 95660) (-4140 . 95496) (-4141 . 95400) + (-4142 . 95282) (-4143 . 95158) (-4144 . 95015) (-4145 . 94844) + (-4146 . 94717) (-4147 . 94572) (-4148 . 94419) (-4149 . 94259) + (-4150 . 93773) (-4151 . 93683) (-4152 . 93016) (-4153 . 92822) + (-4154 . 92726) (-4155 . 92416) (-4156 . 91240) (-4157 . 91033) + (-4158 . 89856) (-4159 . 89781) (-4160 . 88600) (-4161 . 84996) + (-4162 . 84632) (-4163 . 84355) (-4164 . 84263) (-4165 . 84170) + (-4166 . 83893) (-4167 . 83800) (-4168 . 83707) (-4169 . 83614) + (-4170 . 83230) (-4171 . 83159) (-4172 . 83067) (-4173 . 82909) + (-4174 . 82555) (-4175 . 82397) (-4176 . 82289) (-4177 . 82260) + (-4178 . 82193) (-4179 . 82039) (-4180 . 81880) (-4181 . 81486) + (-4182 . 81411) (-4183 . 81305) (-4184 . 81233) (-4185 . 81155) + (-4186 . 81082) (-4187 . 81009) (-4188 . 80936) (-4189 . 80864) + (-4190 . 80792) (-4191 . 80719) (-4192 . 80478) (-4193 . 80138) + (-4194 . 79990) (-4195 . 79917) (-4196 . 79844) (-4197 . 79771) + (-4198 . 79517) (-4199 . 79373) (-4200 . 78037) (-4201 . 77843) + (-4202 . 77572) (-4203 . 77424) (-4204 . 77276) (-4205 . 77036) + (-4206 . 76841) (-4207 . 76571) (-4208 . 76375) (-4209 . 76346) + (-4210 . 76245) (-4211 . 76144) (-4212 . 76043) (-4213 . 75942) + (-4214 . 75841) (-4215 . 75740) (-4216 . 75639) (-4217 . 75538) + (-4218 . 75437) (-4219 . 75336) (-4220 . 75221) (-4221 . 75106) + (-4222 . 75055) (-4223 . 74938) (-4224 . 74880) (-4225 . 74779) + (-4226 . 74678) (-4227 . 74577) (-4228 . 74461) (-4229 . 74432) + (-4230 . 73700) (-4231 . 73575) (-4232 . 73450) (-4233 . 73310) + (-4234 . 73192) (-4235 . 73067) (-4236 . 72912) (-4237 . 71929) + (-4238 . 71070) (-4239 . 70862) (-4240 . 70488) (-4241 . 70074) + (-4242 . 69713) (-4243 . 69352) (-4244 . 69199) (-4245 . 68897) + (-4246 . 68741) (-4247 . 68415) (-4248 . 68344) (-4249 . 68273) + (-4250 . 68061) (-4251 . 67254) (-4252 . 67048) (-4253 . 66674) + (-4254 . 66154) (-4255 . 65886) (-4256 . 65336) (-4257 . 64786) + (-4258 . 64660) (-4259 . 63431) (-4260 . 62225) (-4261 . 61623) + (-4262 . 61405) (-4263 . 61219) (-4264 . 59119) (-4265 . 56944) + (-4266 . 56796) (-4267 . 56614) (-4268 . 56206) (-4269 . 55905) + (-4270 . 55554) (-4271 . 55386) (-4272 . 55218) (-4273 . 54904) + (-4274 . 31668) (-4275 . 17709) (-4276 . 16589) (* . 12093) (-4278 . 11837) + (-4279 . 11651) (-4280 . 10648) (-4281 . 10379) (-4282 . 9747) (-4283 . 8470) + (-4284 . 7222) (-4285 . 6350) (-4286 . 5085) (-4287 . 382) (-4288 . 280) + (-4289 . 160) (-4290 . 30))
\ No newline at end of file |